1,430 research outputs found

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Node design in optical packet switched networks

    Get PDF

    High speed all optical networks

    Get PDF
    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Migration strategies toward all optical metropolitan access rings

    Full text link
    This paper was published in Journal of Lightwave Technology and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the IEEE website: http://dx.doi.org/10.1109/JLT.2007.901325. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Nowadays, network operators are steadily deploying optical circuit switching (OCS) equipment in their metropolitan networks in order to cope with traffic increase and, most importantly, in order to reduce capital expenditures and operational expenditures of existing active technologies. On the other hand, optical burst switching (OBS) technology is expected to become mature in the medium term, and it may be used as an alternative to current OCS networks due to its potential advantages in terms of bandwidth allocation granularity. While OBS is being extensively studied in the literature, little attention has been paid in conducting a comparative analysis of OBS versus OCS, especially concerning cost analysis. In this paper, we provide a comparative analysis of OBS versus OCS as an evolutionary technology for all-optical rings in the metropolitan-access network. This paper is specifically targeted toward optimizing the number of optoelectronic receivers and wavelengths with real traffic matrices from the metropolitan rings in Madrid, Spain. Such matrices also include traffic projections of foreseeable broadband services, which are based on a market analysis from the largest operator in Spain. Our findings show that OCS might be more efficient than OBS in the metro-access segment, which is characterized by a highly centralized traffic pattern. However, the more distributed the traffic is, the more efficient the OBS is as well. Consequently, OBS might be better suited to metro-core networks, which show a more distributed and dynamic traffic pattern.The authors would like to thank the e-Photon/ONe+ network of excellenc

    Investigation of performance issues affecting optical circuit and packet switched WDM networks

    Get PDF
    Optical switching represents the next step in the evolution of optical networks. This thesis describes work that was carried out to examine performance issues which can occur in two distinct varieties of optical switching networks. Slow optical switching in which lightpaths are requested, provisioned and torn down when no longer required is known as optical circuit switching (OCS). Services enabled by OCS include wavelength routing, dynamic bandwidth allocation and protection switching. With network elements such as reconfigurable optical add/drop multiplexers (ROADMs) and optical cross connects (OXCs) now being deployed along with the generalized multiprotocol label switching (GMPLS) control plane this represents the current state of the art in commercial networks. These networks often employ erbium doped fiber amplifiers (EDFAs) to boost the optical signal to noise ratio of the WDM channels and as channel configurations change, wavelength dependent gain variations in the EDFAs can lead to channel power divergence that can result in significant performance degradation. This issue is examined in detail using a reconfigurable wavelength division multiplexed (WDM) network testbed and results show the severe impact that channel reconfiguration can have on transmission performance. Following the slow switching work the focus shifts to one of the key enabling technologies for fast optical switching, namely the tunable laser. Tunable lasers which can switch on the nanosecond timescale will be required in the transmitters and wavelength converters of optical packet switching networks. The switching times and frequency drifts, both of commercially available lasers, and of novel devices are investigated and performance issues which can arise due to this frequency drift are examined. An optical packet switching transmitter based on a novel label switching technique and employing one of the fast tunable lasers is designed and employed in a dual channel WDM packet switching system. In depth performance evaluations of this labelling scheme and packet switching system show the detrimental impact that wavelength drift can have on such systems

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    The TurboLAN project. Phase 1: Protocol choices for high speed local area networks. Phase 2: TurboLAN Intelligent Network Adapter Card, (TINAC) architecture

    Get PDF
    The hardware and the software architecture of the TurboLAN Intelligent Network Adapter Card (TINAC) are described. A high level as well as detailed treatment of the workings of various components of the TINAC are presented. The TINAC is divided into the following four major functional units: (1) the network access unit (NAU); (2) the buffer management unit; (3) the host interface unit; and (4) the node processor unit

    Foutbestendige toekomstige internetarchitecturen

    Get PDF
    • 

    corecore