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:-Report Summary

An inherent problem of conventional point-to-point :_VAN)architectures is that they

cannot translate optical transmission bandwidth into comparable user available through-

put due to the limiting electronic_processing speed of the switching nodes. This report

presents the first solution to'WD]V[ based WAN networks that overcomes this limitation:

The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switch-

ing/transmission leading to an efficient and pragmatic solution. The Lightnet architecture

trades the ample WDM bandwidth for a reduction in the number of processing stages and

a simplification of each switching stage, leading to drastically increased effective network

throughputs.

The principle of the Lightnet architecture is the construction and use of virtual

topology networks, embedded in the original network in the wavelength domain. For this

construction Lightnets utilize the new concept of lightpaths which constitute the links

of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that

allow data to be switched through intermediate nodes using high throughput passive

optical switches. The use of the virtual topologies and the associated switching design

introduce a number of new ideas_ _'_'.-_ _-_ ,_-_ _ _ ""J _" : _ _ _-_::-'_ _ "

1. The use of embedded regular topologies reduces the average number of active pro-

cessing stages a packet has to traverse in the network. With a smaller number

of stages, the number of service instances per packet is reduced, so that the total

number of packets that can be processed in the network per unit of time, i.e. the

network throughput, is increased. Certain regular topologies, furthermore provide

inherent load balancing, leading to reduced buffering requirements. Most regular

topologies also entail simplification of network control procedures, such as routing,

tl_us further reducing the complexity of network protocols.

2. The construction of the regular topologies in a virtual mode provides a feasible

approach for establishing and maintaining regular structures in wide area networks,

which due to distance and cabling consideratiolls are characterized by arbitrary

topologies.

3. Lightnets introduce a two level switching and distribute the processing/switching

requirements between the electronic and optical switching capabilities of the inter-

mediate nodes according to the capability of each. Transmissions within lightpaths

use passive optical WDM switches whose switching bandwidth match_s the rates of

optical links. Transmissions between lightpaths use active electronic switches resid-

ing in the nodes of the virtual topology. Thus only a ]faction of total data needs to

be switched actively at each intermediate node, so that the effective link throughp_ut

is no longer limited by the "electronic switching bandwidth". In this way, Lightne_s_

can overcome the electronic switching/processing bandwidth bottleneck of interme-

diate nodes leading to an effective network throughput that can be higher by an

order of magnitude than in current wide area networks.

Quantitative results derived so far, support the performance expectations of the

proposed Lightnet architecture.
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Current network architectures fail to meet the integrated demands of emerging communi-

cation applications. First and foremost, a substantial increase in network bandwidth must

be provided to support applications such as HDTV, super-computer communications and

video-conferencing [1,4]. Co-existing with these vast bandwidth consumers, there will con-

tinue to be applications with substantially smaller requirements. Thus, in addition to the

need for high bandwidth, a bandwidth dynamic range of up to seven orders of magnitude

must be contended with e._ciently. Reliability and availability will also become critical

issues in future high speed networks carrying services previously supported by different

networks. Clearly, the degree of reliability of the new network must be at least as high

as that provided in the past by the network carrying the most stringent of the integrated

applications.

Wavelength division multiplexing is a leading technique for providing the very

high bandwidth needed in the emerging communication environments [2-3]. Conventional

WAN architectures cannot, however, utilize the entire bandwidth offered by WDM due

to the growing discrepancy between the electronic processing rates and the optical trans-

mission rates [4]. In fact, packet switching solutions have traditionally been motivated by

the need for efficient utilization, of bandwidth at the expense of increased processing in

the nodes. The performance potential of these networks is thus limited by the bottlenecks

created by the switching, buffering and processing requirements at these nodes. Today,

leading approaches for wide bandwidth WANs continue to be based on packet switching,

often termed "fast packet switching" [5,6]. In these solutions, packets are not required to

wait and be error checked at intermediate nodes. However, buffering, E/O conversion of

the packet header and routing oriented processing are still required. Therefore, with these

solutions, the node bottlenecks created by the discrepancy between optical transmission

and electronic processing/buffering capabilities are not removed. This leads to networks
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with a limited effective throughput, that can sometimes be only a small fraction of the

optical transmission bandwidth [1].

The Lightnet architecture presented here addresses this fundamental problem of

high speed wide area networks by trading the ample transmission bandwidth provided

by WDM, for a reduction in the amount of switching/processing required per end-to-

end packet transmission. This reduction is achieved by introducing the concept of a)

virtual regular topologies, b) the use of all-optical multihop routes - the lightpaths, for the

construction of these virtual topologies and by c) the development of these concepts in a

way which is consistent with WDM transmission/switching trends. Specifically, Lightnets

guarantee a reduced number of processing stages per transmission of each packet, the

simplification of each switching stage and the shifting of the switching load from active

electro/optic switches to passive, preset, photonic switches.

In foreseeable future, passive switches are the only solution capable of delivering

switching bandwidth on the order of the WDM transmission rates. On the other hand we

observe, that the use of preset, passive switches, leads to increased bandwidth consump-

tion: With present switches, the routes of lightpaths are fixed, so that packets potentially

travel longer paths than required by per packet routing in one of the existing packet/circuit

switching modes. This leads to the principle of a tradeoff in Lightnet, whereby bandwidth

is "sacrificed" for simplifying switching in a way that allows high bandwidth passive op-

tical switches to be utilized. In addition to allowing the use of high throughput passive

optical switches, lightpaths permit the construction of virtual topologies, embedded in

the original physical topology. In this construction, lightpaths become the links of the

virtual topologies. Due to the fact that the regular topologies are virtual, it becomes

feasible to set up and maintain regular topologies in the wide area domain. Furthermore,

by selecting certain regular topologies as the Lightnet virtual topology the following per-

formance related benefits can be pursued : 1) Inherently load balanced topologies can

be built reducing the problem of congestion, thus lowering buffering requirements. 2)

Simplified routing and congestion control procedures can be implemented in the active

switches further reducing the amount of processing required per packet transmission.

The Lightnet architecture design is associated with the following hardware con-
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siderations: 1) The active switch size, determined by the virtual topology node degree

and being equal to the number of lightpaths terminating at the node. 2) The passive

switch size, determined by the physical node degree, and the number of wavelengths. 3)

The number of wavelengths required, associated with the number of transmitters and re-

ceivers required, the passive switch size and the transmission technology. By accounting

for these hardware considerations, the Lightnet architecture carries not only the potential

to provide truly high speed WANs, but also leads to solutions that are practical.
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2. Fundamental Considerations in Lightnet Solution

The proposed Lightnet architecture is based on the following observations"

Given."

1) the wavelength division multiplexing is the emerging transmission technique,

2) in photonic switching:

a) the passive switch bandwidth is comparable to the transmission bandwidth,

b) the active switch bandwidth lags far behind.

Therefore:

a) To obtain a high throughput WDM based WAN passive (preset) optical switches

must be utilized. Preset switches lead to the "lightpath" concept, pre-established

all-optical transmission paths between source-destination nodes (not necessary ad-

jacent) in the network.

w

A lightpath is implemented by using the same wavelength on its route and passive

photonic switches. Since no active switching is incurred over a lightpath, its bandwidth

is equivalent to the fiber bandwidth.
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the number of wavelengths and, from independent considerations, the switching

complexity that would be required to establish a lightpath between all source-destination

pairs in a WAN, are prohibitively high!

Therefore:

lightpaths will be established between a subset of node pairs only.

In Lightnet, we therefore introduce the second basic idea - the use of lightpaths

as virtual links for generating new, virtual, topologies. We design the virtual topologies

to optimally balance passive and active switching, (the key performance bottleneck of

high speed networks) and to provide performance enhancement in a way independent of

the application traffic requirements. Specifically, as pointed out in section 1, by selecting

regular topologies:

The number of active switches a packet will traverse can be reduced logarithmi-

cally, compared to the number of active switching stages in the original topology. The

virtual topologies can further provide inherent load balancing, simplified routing and con-

gestion control procedures. Finally, it is important to observe that the Lightnet approach

constructs the regular topologies virtually so that the benefits of transmission over regular

structures can be introduced to any physical topology network. In this respect, the Light-

net architecture is unique not only in the wide area, but also in the local communication

domain.
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3. Overview of Lightnet Architecture Design Issues

The construction of a new architecture entails a large variety of problems and in that

sense Lightnet is no exception. In this report we present, investigate and propose an

initial solution to four basic Lightnet design issues:

1) WHICH regular topology to embed?

2) HOW to embed a regular topology in the physical WAN?

3) How to establish the LINKS of the virtual topology, i.e. the lightpaths?
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4) How to realize the NODES of the virtual network, i.e. the switches?

The answers to these questions have to take into consideration the technological

limitations of WDM transmission and switching on one hand, while providing a truly

"high speed" performance, on the other.

Choice of Virtual Topology: The topology determines the number of nodes actively

involved in transmitting a packet. It thus determines the total processing/buffering re-

quired to transmit a packet end-to-end and consequently the effective network throughput.

It also determines global issues, such as routing, congestion control, or load balancing.

The choice of topology must also obey the following hardware considerations: 1)

The active switch size, determined by the virtual topology node degree and being equal

to the number of lightpaths terminating at the node. 2) The passive switch size, deter-

mining the number of wavelengths and their assignments to lightpaths. 3) The number

of wavelengths required, determining the number of transmitters and receivers required,

the passive switch size and the transmission technology [3,4].

Virtual Topology Construction: In Lightnet, a virtual topology is embedded in a

general topology by associating the nodes of the virtual topology with the nodes of the

original, general topology. The edges of the virtual topology are implemented by creating

lightpaths, i.e., utilizing the WDM domain. It can be argued that the best network per-

formance will be obtained by choosing a clique as the Lightnet virtual topology. However,

the number of wavelengths that have to be used for this construction and the associated

switching complexity are prohibitively high. Therefore, topologies must be constructed

through an embedding process which minimizes hardware requirements, e.g., the total

number of wavelengths required. Certain topologies, such as regular topologies posses

well known performance/control advantages. A polynomial time algorithmic procedure

embedding a regular topology graph in a general topology network, while minimizing the

number of wavelengths (and consequently the complexity of the associated hardware), is

however not known [7,8]. New heuristics must therefore be introduced.

Lightpath Establishment: The correct and ej_cient establishment of lightpaths has

to be resolved under the wavelengths availability, continuity and switching constraints

mentioned above. The correctness aspect of lightpath establishment must avoid the prob-
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lems of allocation conflicts mentioned above. For et_iciency, for a given set of lightpaths

determined by the choice of the virtual topology, the utilization of wavelengths should

be maximized. In a dynamic environment, for a given rate of lightpath establishment

requests it is necessary to minimize the lightpath blocking probability. Lastly, to allow

for feasible, cost-effective switching implementation, a lightpath should be established

using a single, identical, wavelength throughout its path. Figures la and lb exemplify

the lightpath allocation problem for even a trivial configuration. The figures depict light-

paths establishment in a network with two available wavelengths (oJ = 2). In Figure la

the allocation is done in such a way that any additional future lightpath establishment

request can still be accommodated. In the allocation depicted by Figure lb, if a lightpath

request vl _ v3 arrives before an existing lightpath is terminated, it wi]J be blocked.

Lightnet Switching Node Design: In Lightnet a switch has to handle the lightpaths

that pass through it (passively) and lightpaths terminating in it (actively). Given the

bandwidth limitation of active switches, referred to in the preceding section, the Lightnet

switching configuration is targeted towards handling most of the data through the passive

switch. The resulting Lightnet switch is composed of three main switching components,

the passive switch, the iightpath terminating switch (LTS), and the active switch, as shown

in figure 2. The passive switch provides the "intra-lightpath" switching for the lightpaths

passing through the node and s.witches the lightpaths terminating at the node to the

active switch via the LTS. The active switch connects the local node to the network and

performs "inter-lightpath" switching according to the destinations of the packets arriving

on the lightpaths initiating/terminating at the local node. Lightpaths initiating at the

local node proceed from the active switch, through the LTS, to the passive switch. In

case of large geographical distances, or a large number of intermediate passive switches,

all signals departing the passive switch can be regenerated (as shown in figure 2) and

subsequently multiplexed according to the output links. By regenerating the signals, the

restriction on the lightpath span, i.e. the number of hops a lightpath can traverse, can be

eliminated.

The following sections deal in detail with each one of the four issues presented

above.
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In this section, we present the performance potential obtained by a number of regular

Lightnet topologies. The performance measures chosen for this comparison in this section

are those that are independent of the embedding process and of the underlying physical

topology. These are the network capacity, the number of buffers per node and the average

delay spent by the packets at the intermediate nodes. We note that the the embedding

process and the underlying physical topology will, on the other hand, determine the delay

spent by the packets on the links, i.e. the propagation delay.

In the first subsection, we describe the regular topologies studied. A performance

comparison between a Lightnet regular topology and the underlying physical WAN topolo-

gies using store and forward communication is presented in subsections 4.2 and 4.3 re-

spectively.

m
u

4.1 Description of Potential Lightnet Topologies
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In this subsection, we present the following regular topologies: binary tree, hyper-tree,

diamond, hyper-cube, De-Bruijn and torus. For each topology in addition to a brief

description, its diameter and node degree are specified. Recall that the diameter of the

virtual topology determines the average number of active switches (virtual topology nodes)

a packet will traverse in the Lightnet. The virtual node degree represents the number of

lightpaths that will terminate at the node, i.e., the degree of the active switch.

Binary Tree: The diameter (maximal number of hops between any two nodes in

the network) obtained by a tree is given by D = 2(log 2 n - 1).

The basic drawback of a tree topology is the congestion arising in the root. For

an n node binary tree, assuming uniformly distributed traffic, approximately {nA packets

per second will pass through the node, A being the arrival rate per node. Thus, network

capacity C is given by C = nAmax = 2/z where # is the service rate per node. Therefore,

the binary tree can be considered a viable approach only for lightly loaded networks.

Hypertree: The Hypertree was presented in [9] as an "improved" tree displaying



w

w

w

m

u

N

greater resilience to faults and alleviating the congestion at the root. The idea underlying

the Hypertree is connecting nodes to other nodes on the same level in the tree, thus

allowing movement of packets across the tree without passing through the root. A sample

15 node Hypertree is presented in figure 3.

In the hypertree, each node is connected to one other node on the same level,

resulting in a constant degree of 4 (two descendants, an ancestor and a "peer" connection).

Nodes are assigned numbers following the "natural" enumeration for binary trees (the

immediate descendants of node i are 2i and 2i+ 1, 1 being the root). Peer connections are

made between nodes whose corresponding bit representations differ by a single bit. Among

the possible connections, the one minimizing network diameter is chosen. A suboptimal bit

oriented routing algorithm employing the peer connections in the Hypertree is presented

in [9]. The diameter of the Hypertree is O(logn) but with a lower constant (half the

diameter of a simple binary tree).

Diamond: A Diamond consists of two inverted trees connected through the leaves,

coupled with peer connections forming a ring at each layer of the tree. Connections

also exist between the roots and the first descendants of the root (see figure 4 for a

14 node Diamond). The diameter of an Diamond with n - 2 nodes is given by D =

2 log 2 n - 5, an improvement over the binary tree. However, due to the peer connections

as well as direct connections bet_veen the roots and the first descendants of the roots, the

traffic distribution in an Diamond is much more balanced than that of a binary tree or a

Hypertree. The maximal degree of a node in the Diamond is also constant, given by 5 for

approximately half of the nodes and a degree of 4 for the others.

Torus: A Torus, a grid with connections wrapping around at the edges intuitively

seems to be the optimal constant node degree topology in terms of load balancing due to

its complete symmetry. Figure 5 depicts a 4 × 4 Torus. A Torus has diameter D =

with each node having degree 4 [10].

De-Brujin Network." A De-Brujin network is established following a simple con-

struction rule based on the binary representation of a node's number [11]. Let k be a

node number, 0 < k < 2_ - 1. The neighbors of k are the nodes whose numbers corre-

spond to:

8
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• k_=k>>l

• k_ = compl_most(kl)

• k3=k<<l

• k4 = compI_least(k3)

where <<, >> denote left and right shift and compLmost, comp_least denote complement

operations on the most and least significant bit. Thus, for example, the neighbors of

00010 are (00001,00000,00100,00101). Figure 6 depicts an 8 node De-Brujin network.

The De-Brujin network possesses a diameter of exactly D = log 2 n and a maximal degree

of 4.

Hypercube: The hypercube is a multi-dimensional cube. Two nodes are said to be

at a distance of one if their corresponding binary representations differ by a single bit.

Thus, a hypercube is a structure of n = 2 k nodes for some integer k, where every two

nodes at a distance of one are connected by a link. Figure 7 depicts a hypercube of degree

3 containing 8 nodes. The diameter of a hypercube is given by D = log2n. The node

degree, however, is given by log 2 n, making this the only structure in the group whose

node degree is not constant.

4.2 Performance Comparison of Potential Topologies

To evaluate the performance potential of different regular topologies to be embedded in

Lightnet a simulation was developed. Packet arrivals where assumed to follow a Poisson

distribution with uniform source/destination distribution. Packet processing was assumed

to take place at the source and destination nodes as well as at every intermediate node

in which a switchover between lightpaths occurs. A packet arriving at a node enters

instantly a processing server if one is available or joins a common queue if all are busy.

Considering the large discrepancy between transmission and processing speeds the former

was neglected. The queue service was modeled by 3 servers, each requiring 10 time units

to process a packet. Upon terminating service the packet proceeds instantaneously to the

next node (assuming high transmission speeds relative to per packet processing/switching

9
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time) where the process is repeated. Simulation results were obtained with 97% confidence

levels.

Table 1 presents the performance measures for the regular topologies discussed

in the previous section for networks with 128 nodes. Column 1 depicts the network

capacity defined as the maximum throughput (load) for which all node queues still exhibit

ergodic behavior. The results shown are all normalized relative to the hypercube capacity.

Networks with complete symmetry tend to posses high capacities since all nodes saturate

simultaneously. However, we note that the De-Brujin network which is non-symmetrical

displays higher capacity than the (symmetric) Torus. This is due both to the substantially

smaller average path length in the De-Brujin topology leading to less overall processing

per packet delivered and the excellent load balancing achieved in this network despite its

asymmetry. The hypercube, being both symmetrical and with low average path length

displays substantially higher capacity (more than 50% improvement) than both the Torus

and the De-Brujin. Among the tree topologies, the Diamond has the highest capacity,

nearly 300% higher than the hypertree.

The last three columns depict maximal buffer usage per node for the three afore-

mentioned loads. As expected, buffer usage follows the respective network capacities

rising rapidly as the limit of the ergodicity range is approached. Results displayed are

normalized to the ones obtainedfor the hypercube under low load. While the hypercube

is clearly the superior topology, the De-Brujin and the Torus tend to demonstrate similar

behavior. Again, the Diamond is the superior one amongst the tree topologies.

Thus, we conclude that from a pure performance measure point of view, the hyper-

cube demonstrates clear advantages. The main drawbacks of the hypercube are its large

node degree, logan compared with a constant degree in all other topologies, and network

growth only in powers of 2 (true also for the De-Brujin network). If node degree is to

be maintained constant, the De-Brujin network exhibits slightly superior capacity and

substantially lower jitter when compared with the second best constant degree topology,

the grid.

w
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4.3 Comparison of Lightnet Topologies with Existing Networks

To further establish the potential performance gain associated with embedding the regular

topologies using lightpaths, we compared these topologies with a 61 node, 1978 Arpanet

topology, as well as with several randomly generated topologies of the same size.

The random topologies were created so as to mimic closely the Arpanet 1978

topology in terms of diameter, mean node degree and actual node degree distribution

and overall number of links. The algorithm was then used to create random networks

with 16,32,64, and 128 nodes. 10 networks were created for each network size. Results

are shown both for the "best" network among the 10 as well as median results. All results

are normalized with respect to the hypercube.

To indicate maximum operational loads (i.e. determining overall capacities) we

depict in Figure 8 average delay spent by the packets at intermediate nodes, denoted by

D, versus the system throughput (S) for networks with c. 64 nodes.

Network capacities as a function of the network size (normalized to hypercube

with 16 nodes) are presented in table 2. Four result sets are presented for the random

graphs .: two representing maximal (maz_rnd) and median (med_rnd) capacity assuming

service times of # = 10 (equal to the regular networks case) and two representing the same

values for # = 40 (max_rnd_ and med_rnd_ respectively). As can be seen, the potential

improvement of embedding regular topologies in Lightnets can be more than tenfold.

5. Lightpath Establishment

Since lightpaths are the basic building block of Lightnets, their correct and efficient es-

tablishment is crucial to the successful implementation of these architectures. Lightpath is

defined as an "optical communication path" between two (not necessarily adjacent) nodes,

established by allocating the same wavelength throughout the route of the transmitted

data. As a result, transmissions between lightpath endpoints require no processing or

buffering at intermediate nodes. On the other hand, the wavelength continuity constraint

increases, intuitively, the number of wavelengths needed to establish a given lightpath

11
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set. Since lightpaths constitute the links of the Lightnet topologies, the total number of

lightpaths that can be established, as well as any other technology related limitation on

their establishment, such as the maximum length (span) of a lightpath, will affect the

virtual topology design. To employ WDM to implement a network architecture based on

lightpaths, a number of hardware related issues must, therefore, be examined. Specifi-

cally, the multiplexing technique and the resulting number of channels made available,

the photonic switches needed and the lightpath span.

With wavelength division multiplexing:

The number of channels available on each link is limited. Current experimental

systems are able to carry up to 20 channels, each modulated at 2 Gbit/s [22].

Similar devices approaching 60 channels are considered feasible in the near future

[22,23].

The design of the photonic switch required for switching lightpaths at the intermedi-

ate nodes is closely related to the wavelength continuity property of the lightpaths.

Since a lightpath maintains the same wavelength throughout its span, a channel

it/coming on one wavelength need not be switched to another wavelength. Conse-

quently, in realizing the photonic switch, it is possible to group the channels accord-

ing to their wavelength prior to switching. The photonic switch can thus consist of

switching matrices, one for each wavelength.

With regard to the end-to-end lightpath span, experiments conducted recently have

successfully demonstrated applications of optical amplifiers [15-19]. For instance, in

[15], 25 optical amplifiers were used in series (an amplifier every 80km) to provide

transmission of a 2.5 Gbit/s optical signal over 2,223 km of single mode fiber, with

a power penalty due to accumulated noise of only 4.2dB.

Final]y, lightpath implementation at intermediate nodes requires the availability

of suitable photonic switches. So far, emphasis on switching for LAN and WAN

operation concentrated on switch operation with setup rates on par with packet

transmission rates, a critical issue for packet switching networks. Electro-optic

12
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switches can be set up in less than lns [26], however due to the processing time

needed to make the switching decision and, due to their poor crosstalk and atten-

uation characteristics, they may hinder the performance of an all-optical longhaul

implementation. Mechanical optical switches of dimension up to 40x40, can, on the

other hand, switch single-mode signals with crosstalk of-90dB and attenuation of

around 2dB, thus obtaining crosstalk and attenuation characteristics far better than

those offered by electro-optic devices [21]. The use of mechanical switches, despite

these characteristics, was not previously considered for data switching networks due

to their slow set up speeds. The principle of using preset lightpaths changes this

situation dramatically: while the setup time of the mechanicM switches is relatively

large (50ms) [27], this does not constitute a problem in Lightnet, as lightpaths are

not established on a per packet basis and can have lifetimes measured in hours or

days.

The combination of these hardware aspects of lightwave communication and the

special properties of lightpaths suggest that a lightpath based Lightnet network can

present a technologically feasible solution for a wide area wavelength routing network.

At the'same time practical limits on the size of the photonic switch and on the number

of WDM channels per link make the minimization of the number of required wavelengths

an important aspect of the Lightnet architecture. We turn to address this problem next.

5.1 Problem Definition and Analysis

Several lightpath estabhshment policies are motivated by the Lightnet architectures:

A. The first case is the Static Lightpath Estabhshment policy: a network in which a

set of n lightpath requests is predetermined (dictated by the target virtual topol-

ogy) the objective function is to establish all demands using a minimum number of

wavelengths.

B. Since the number of available wavelengths in WDM systems is expected to remain

limited, it is of importance to study the problem of estabhshing a given set of light-

paths when the number of wavelengths, w, is bounded. We note that in this case,

13
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it is possible that new lightpaths will be blocked. The objective function there-

fore changes in this case to minimizing the ratio of lightpaths rejected to lightpaths

requested, defining the lightpath blocking probability.

C. The interest in studying the case in which lightpaths are established and terminated

dynamically, stems from the fact that the Lightnet topology can be modified by

reassigning lightpaths. By establishing the lightpaths dynamically, the Lightnet

can be reconfigured for purposes of reliability or availability.

D. Last, we consider the problem of dynamically establishing lightpaths in a network in

which the number of wavelengths is bounded.

Two central issues are common to the assignment of wavelengths to lightpaths

under the various policies. First, since as a consequence of resulting photonic switch sizes

and current technology, wavelengths are a scarce resource, it is necessary to establish

lightpaths efficiently in terms of the total number of wavelengths required. Second, the

requirement for establishing a lightpath using the same wavelength throughout its route,

introduces a potential bandwidth loss when compared to a lightpath establishment in

which the continuity constraint is not imposed. This loss can be perceived either as

an increase in the number of wavelengths required to successfully establish a given set of

lightpaths, or as an increase in tightpath blocking probability, if the number of wavelengths

is limited. In providing efficient solutions for lightpath establishment, our objective will

be to find algorithms that minimize this loss.

In deriving a lightpath establishment algorithm, we first analyze the complexity of

an optimal assignment of lightpaths, introducing the following model. We represent the

network by a triplet G(V, E, W) in which V represents the set of N nodes, N = IVI, E

represents the set of directional fiber links between nodes in V, (assuming (u, v) E E if

and only if (v, u) E E Vu, v E V) and W is the set of wavelengths on each link, ]W 1 = w.

It is assumed that w is equal for all links. We define a lightpath request for connecting

a given source/destination node pair by the links constituting a path between them. To

establish a lightpath, it is necessary to find an unallocated, identical wavelength, on all

the lightpath's links.
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Definition : Static Lightpath Establishment(SLE) problem- givenanetwork G($, E, W),

w > 3, and a predefined set of lightpaths L, is it possible to establish all lightpaths in the

set ?

By showing that the SLE problem is equivalent to the n-graph-colorability problem

it is possible to prove its NP-completeness, as given in Appendix A. That is, finding the

minimal number of wavelengths that would accommodate the demands would amount to

finding the chromatic number of some (general) graph, where the number of colors, n,

corresponds to the number of wavelengths, w.

5.2 Centralized Solutions

Due to the high complexity of an optimal solution we study heuristics solving the light-

path establishment problems. The fundamental aspects of lightpath communications are

covered by considering two possible objective functions : minimization of the required

number of wavelengths and minimization of lightpath blocking probability.

Before proceeding to describe solutions to the lightpath establishment problem

we develop a lower bound on the number of wavelengths required by an optimal algo-

rithm: the number of wavelengths required to establish a given lightpath set without the

wavelength continuity constraint. This number is given exactly by the number of light-

paths passing on the "busiest" link (i.e. the degree of edge congestion) and it is also, a

lower bound on w. We term this lower bound policy Non-Wavelength Continuous (NWC).

u

m

5.2.1 Static Demands_ Unbounded Number of Wavelengths

The first case to be studied is the one corresponding to the Static Lightpath Establishment

problem : a network in which a set of n lightpath requests is predetermined and the

objective function is to establish all demands using a minimum number of wavelengths.

We use a greedy allocation heuristic which iteratively allocates a given wavelength

to all possible edge disjoint (i.e. non-colliding) lightpaths to whom a wavelength was not

yet allocated. The procedure terminates upon allocating a wavelength to each lightpath.
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Using an intuition first observed in task scheduling problems [28], we first sort the light-

paths according to their respective lengths, and then try to allocate the wavelengths to

the longest lightpaths first. Intuitively, a long lightpath is harder to establish, since an

unallocated identical wavelength must be found on more links. Therefore, by establish-

ing long lightpaths first, a better wavelengths re-use should be achievable, leading to an

overall smaller requirement of wavelengths for a given lightpath set.

The exact description of the solution uses the following data structures :

lpcm[i,jJ :

Ipnum[i] :

w

set[if

sje

lambda[i] :

Ipalloc[i] :

the lightpath collision matrix. Ipcm[i,j] = 1 if lightpaths i and j

have a link in common (lightpaths i, j collide)

lightpath id's, ordered by descending lightpath length

wavelength number currently assigned

sets of lightpaths ordered according to allocated wavelength

start, end pointers to current set

wavelength definition array, lambda[i] points to

the first lightpath in set using wavelength i

flags indicating if lightpath i was already allocated

n : number of lightpaths in set

or(set, s,e, lpnum[i],Ipcm): function; returns true if lightpath Ipnum[i] has a

link in common with the lightpaths in the set set[s]..set[e],

based on the lightpath collision matrix Ipcm.

procedure static_establish

begin

lambda[1] = w = s = e = 1

for i = 1 to n do Ipalloc[i] = false

while(e < n) do begin(')
for i = 1 to n do begin

if not lpaIloc[i] then

if not or(set, s,e,lpnum[i],lpcm) then begin

set[el= lpnum[i]
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e=e+l

IpaIloc[i] = true

end

end

w--w+l

lambda[w] = s = e;

end

end

5.2.2 Static Demands, Bounded Number of Wavelengths

Since the number of available wavelengths in WDM systems is expected to remain limited,

it is of importance to study the problem of establishing a given set of lightpaths when

the number of wavelengths, w, is bounded by omega. We note that in this case, it is

possible that new lightpaths will be blocked. The objective function therefore changes in

this case to minimizing the ratio of lightpaths rejected to lightpaths requested, defining

the lightpath blocking probability.

The previous heuristic maximizes the use of every wavelength before proceeding

to allocate a new one. Thus, in effect, it intuitively maximizes the number of unused

wavelengths in the network in case their number is bounded. Noting that as long as there

is all unused wavelength, the lightpath blocking probability will be zero, we employ a

variation of this heuristic for the bounded wavelength problem. We note that an existing

drawback of this objective function is that it does not differentiate between long and short

lightpaths. Hence, a policy using this objective function, will in effect, discriminate against

long lightpaths. The relative effects of blocking probability as a function of lightpath

length are studied in section 5.2.5.

As before, we shall allocate a given wavelength to all possible lightpaths that have

not yet been allocated a wavelengths. However, the procedure will stop either if all

lightpaths have been allocated a wavelength or the available wavelength pool has been

exhausted. In addition, to allow for an unbiased study of the effect of blocking probability

as a function of lightpath length, we avoid sorting lightpaths according to lightpath length
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as in the previous case. Thus, the heuristic given in section 5.2.1. remains unchanged,

except the hne marked by (*) in the algorithm which is modified to •

while(e < n) and (w < omega)do begin

5.2.3 Dynamic Demands, Unbounded Number of Wavelengths

The interest in studying the case in which lightpaths are established and terminated

dynamically, stems from the fact that the Lightnet topology can be modified by reassigning

lightpaths. By establishing the lightpaths dynamically, the Lightnet can be reconfigured

for purposes of rehabihty, availabihty or even adaptation to long term traffic patterns.

We observe that in addition to the efficient use of wavelengths, the issue of stabil-

ity becomes of primary importance in the dynamic case. Past experience with dynamic

resource allocation suggests that lightpath allocation solutions might display a "fragmen-

tation" problem in which, while wavelengths may be available on each link on a given

path between a source and destination, the continuity constraint over the total path is

not satisfiable. Hence it is important to establish whether a given allocation algorithm

deteriot'ates over time as it does for example, in many memory allocation schemes.

We note that the approac h developed for the static cases maximizes the use of every

wavelength it allocates, before proceeding to allocate a new wavelength. We therefore

pursue this approach for establishing lightpaths dynamically, as it intuitively leads to the

maximal reuse of wavelengths, or in other words, should reduce fragmentation. The above

approach can be mimicked in a dynamic environment by a greedy heuristic that establishes

each lightpath using the first available wavelength. Thus, a new wavelength will be

allocated if and only if a hghtpath cannot be established using any of the wavelengths

already in use.

We first consider the case of an unbounded number of wavelengths. In the formal

representation for this solution we shall use the following data structures :

lightpath[id] • lightpath information record, holding the following fields •

- path: the links constituting the lightpath

18



- len: the lightpath length

- wavelength: the wavelength assigned to lightpath

busy[i,j] : busy[i,j] = 1 if wavelength j is currently assigned to a lightpath passing

through link i

path(s,d, vec, len) : procedure; returns in vec a route for a lightpath from s to d,

of length len

getid(id) : function; assigns a unique id to a lightpath

wave : index, used in searching for an available wavelength

z_

m

m
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i

The establishment procedure scans the matrix busy by columns (wavelengths) at-

tempting to find a column where all the entries corresponding to the lightpath's links are

zero (unused). If no such column is found among the wavelengths currently in use, the

wavelengths counter, wave, is increased so as to allocate a new wavelength. Following are

the procedures used to establish and terminate lightpaths :

establish(s, d, id)

(* establish a lightpath from s to d *)

begin

path'(s, d, vec, Ien )

getidOd )

lightpath[id].path = vec (* save path for hangup *)

lightpath[id].Ien = len

(_ find wavelength in which to establish lightpath *)

found = false

wave = 1

while not found do begin

tmp= 0

for i = 1 to Ien do trap = tmp+ busy[q[i],wave]

if trap = 0 then found = true

else wave = wave + 1 (_)

end

lightpath[id].waveIength = wave

19



i

= .

w

(* update data structure - lightpath established on wavelength wave

for i = 1 to len do busy[q[i],wave] = 1

end

Lightpath termination is taken care of by the following procedure •

terminate(id)

(* terminate a lightpath *)

begin

for i = 1 to lightpath[id].len do

busy[lightpath[id].path[i],lightpath[id], wave] = 0

end

5.2.4 Dynamic Demands, Bounded Number of Wavelengths

Last, we consider the problem of dynamically establishing lightpaths in a network in which

the number of wavelengths is bounded by omega. As before, the problem is motivated by

the limitation on the number of wavelengths.

Following the reasoning of the preceding unbounded case, we again employ a greedy

approach. The wavelengths arechecked in sequential order, establishing a lightpath by

allocating it the first wavelength that is not in use on any of the lightpath's links. However,

in this case, as the number of wavelengths is bounded, lightpath requests may be blocked.

The heuristic, therefore, proceeds as before except in this case, prior to increasing the

number of wavelengths in use, it is checked if the maximal limit has been reached. Thus,

by changing the line marked by (*) in the previous heuristic to

else if wave < omega then begin

wave = wave + 1

the solution for the bounded wavelengths case is obtained.

m
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5.2.5 Results
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The performance of the lightpath establishment heuristics is evaluated in terms of the ef-

ficiency of wavelength allocation. Having shown that the exact solution is NP-Complete,

comparison to exact results is not feasible for any networks of interest. However, as

pointed out in section 5.1, by removing the wavelength continuity constraint from light-

path establishment a lower bound on the number of wavelengths needed is obtained. Thus,

a comparison to the lower bound obtained by non-wavelength-continuous (NWC) case,

can be made to evaluate the performance of the various heuristics as well as to deter-

mine the relative penalty imposed by the continuity constraint of the proposed lightpath

establishment solutions.

The performance of the presented heuristics was derived by simulating general

topology networks under varying traffic conditions and objective functions. All results

were obtained with a confidence level of 95%. Lightpaths were randomly created choosing

source/destination nodes according to a uniform distribution. The links constituting each

lightpath were chosen following a shortest path policy, assuming all links to be of unit

length, with random tie breaking rule. For the dynamic environments, lightpath arrival

rate refers to the number of lightpath establishment requests per unit of time. An arrival

rate _ is implemented in the simulation as an exponentially distributed lightpath request

1 Lightpath holding times were assumed to be deterministic,interarrival time with mean _.

and equal to 200 time units.

In Table 3 we study the case of unbounded number of wavelengths by observing

the average number of wavelengths required to establish a given lightpath set size (static

demands) for three different network sizes. For each set size, the results presented are

averaged over 10 different randomly generated lightpath sets. We observe that the results

for the proposed policy and the NWC lower bound are practically identical. This result

can be explained by considering the implications of Theorem 2 (see appendix A). The

only discrepancy that may arise between NWC and the proposed policy can occur only

when cycles are contained in the network graph, with the hghtpath demand set also

forming a cycle. However, the probabihty of such a structure occurring, given a lightpath

set, is much smaller than the probability of multiple lightpaths passing through a link
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in the network. Hence, with high probability, the most congested link in the network

determines the number of wavelengths required by the lightpath establishment policy as

well as determining the NWC lower bound. The study of the effect of network size on

the number of wavelengths required to establish a given demand set, shown in Table 3,

supports the above observation. In addition it shows, that as the network size increases,

the number of wavelengths required for a given set size decreases. This is due to the

fact that in a larger network there are fewer collisions between lightpaths for the same

lightpath set size.

In Figure 9 a system with static demands and a topology depicted by Figure 10

where the number of wavelengths, w is set to 5, is studied. The objective function in

this case is the minimization of lightpath blocking probability given in Figure 9 as a

function of the lightpath set size. The average blocking probability for the wavelength

continuous policies, shown in Figure 9, is lower" than the NWC lower bound, by up to 2%.

This apparent contradiction is explained by observing that the wavelength continuous

policy exhibits a 4% higher blocking probability than NWC when considering only long

lightpaths (in this case equal to the network's diameter, 5 hops). Since a long lightpath

takes up system resources that can be used by multiple short ones, an average lower

average blocking probability results when long lightpaths are blocked. Figure 9 also shows

the blocking probability for short (1 link) lightpaths confirming the above observation,

noting that lightpath blocking probability for the wavelength continuous policy is lower

than that of the NWC case.

Before studying the actual number of wavelengths required to accommodate sys-

tems with dynamic demands and an unbounded number of wavelengths (w), or the block-

ing probabilities in systems with dynamic demands and bounded w, we first verify the

stability of these results. Figures 11 and 12 study the stability of the heuristics for the

unbounded and bounded wavelengths cases respectively. Figure 11 considers the stability

of the proposed heuristics in an unbounded wavelength network by plotting the number

of wavelengths required to establish all demands for three different lightpath set sizes as

a function of time. It is shown that following the transient phase, the average number of

wavelengths does not increase over time. Similarly, Figure 12 shows the blocking proba-
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bility as a function of time for the bounded wavelengths case (w = 5). We note that in

this case the blocking probability also remains practically constant over time.

A dynamic establishment of lightpaths without having the ability to perform wave-

length reallocation to already established lightpaths, can be expected to have a notable

bearing on dynamic lightpath establishment heuristic. Table 4 displays the number of

wavelengths required for the lightpath solution and the NWC lower bound as a function

of lightpath request rates. Comparing the values corresponding to the lightpath estab-

lishment heuristic with the NWC allocation we observe that for high rates, less than

25% additional wavelengths are required on average to establish lightpaths for the same

lightpaths request arrival rate. We also observe that the ratio between the number of

wavelengths required under wavelength continuous and the NWC case remains almost

invariant for different network sizes. Last, when observing the same lightpath request

arrival rate over different network sizes, the absolute number of wavelengths required

decreases, for reasons similar to the ones stated in the static case.

Figure 13 shows the case were the number of wavelengths is set to 5. The objective

function in this case is the minimization of lightpath blocking probability, depicted in these

figures as a function of the lightpath request rate, comparing the presented heuristic with

the NWC lower bound. We observe that the heuristic performs with a relatively small

penalty relative to the optimum:

Finally, it is of interest to investigate the relative improvement obtainable by in-

creasing the number of available wavelengths. Figure 14 depicts the lightpath blocking

probability as a function of the number of available wavelengths, w, for various lightpath

request rates in a dynamic lightpath establishment environment. It is noted that for

lower rates, a small increase of w leads to a substantial reduction in blocking probabil-

ity, whereas high rates require a large increase in the number of wavelengths to obtain a

similar blocking probability reduction. We further observe that the blocking probability

for a request rate of 0.5 tends to zero for w > 20. With higher rates the blocking proba-

bility increases, reaching 0.47 for the same w and a rate of 2.0. Thus, we conclude that

small increases in the number of available wavelengths can provide substantial reduction

in lightpaths blocking probability for small (less than 0.5) lightpath request rates.
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When dealing with an environment where lightpaths are requested and terminated dy-

namically a distributed solution for efficient lightpath establishment becomes attractive.

The performance of a distributed heuristic can be studied from two perspectives. The

first, similar to the centralized solution, is concerned with the "performance penalty" of

the lightpath approach and the continuity constraint thereof in terms of blocking proba-

bilities. To obtain this, we perform a comparison with the NWC policy where lightpaths

are established for as long as there is any resource available on each link. The second issue

is to comparethe results obtained in a distributed way with those that can be obtained

if all information is available, in a centralized way, through a Centralized Lightpath Allo-

cation (CLA) heuristic. The "ideal" NWC case was defined in the preceding section, we

therefore next define the CLA heuristic.

The CLA solution is based on the following principle of achieving maximal wave-

length reuse throughout the network:

As long as there is at least one wavelength Ai which is not allocated on any link

in the network, CLA guarantees that any new lightpath demand will be met with no

blocking.

The CLA algorithm thusoperates as follows:

Assume that a given wavelength Ai has already been allocated in a subset Ei E E.

The larger this subset, the smaller is the proportion of new lightpaths which can be

established allocating Ai. Thus, for any new lightpath demand that can be established,

using one of A1, A_,..., we should perform this allocation by assigning it the wavelength

Ai (in the group) with largest Ei set.

The above CLA heuristic is evaluated using a simulation with the following param-

eters : Lightpath duration times were taken as constant (200 time units) and lightpath

inter-arrival time as exponential. All results were measured with a confidence level of

99%. Traffic was assumed to be uniformly distributed; routing was non-alternate, short-

est path, choosing a path at random when several were possible. 10 wavelengths were

assumed to be available on each link. In figure 16, the blocking probabihty is given as
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a function of lightpath arrival rate measured in lightpaths per time unit for the gen-

eral topology network depicted in figure 15. Figure 16 depicts the blocking probabilities

for CLA and "conventional circuit switching" (NWC policy) averaged over all lightpaths

and for longest lightpaths only. In terms of average blocking probability we see that

the results are very close and in fact, for certain loads, CLA actually displays slightly

lower blocking probabilities. This is due to the fact that long lightpaths are rejected

by CLA with a higher probability than in conventional circuit switching (see figure 16).

The higher rejection probability occurs due to the requirement to find an identical free

wavelength throughout the path. Hence since with CLA more short lightpaths will be

established, the average blocking probability is decreased. Having defined the ideal case

and a corresponding centralized heuristic, we now proceed with defining the distributed

solution.

5.3.1 PACK - A Distributed Heuristic

Lacking the global information used in CLA to maximize resource re-use across the net-

work, two viable approaches for distribution can be taken. The first approach is based

on exchanging information between neighbors, eventually creating a global picture, or

an assessment thereof, in each node. This approach is useful when the lifetime of the

information is long with respect to the information propagation time. However, when

the structures described have connection times that may be short, nodes will be making

decisions based on outdated information most of the time. We further point out that this

approach also incurs an additional complexity cost in bandwidth dedicated to control.

The second alternative is to emulate global knowledge by implementing a global policy.

This can be done by requiring that nodes that decide which resource will be allocated to

a lightpath do so, by using the same rules. This is precisely what the following "PACK to

beginning" heuristic does. Let )u, As,... be any arbitrary numbering of the wavelengths

known to all nodes. PACK will allocate the smallest numbered wavelength feasible. Thus

on a new lightpath requirement PACK emulates CLA in the attempt to maximize re-use

of wavelengths allocating them in the same order in all nodes. However, CLA adapts

this order according to the current wavelength allocation while PACK uses a fixed, preset
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ordering. Hence, CLA has a superior ability to adapt to changes in lightpath demands.

Performance discrepancies between these two heuristics may therefore be expected due to

this difference.

In the PACK distributed solution four types of messages are exchanged between

the nodes. The message length is, in the worst case, O(w). These messages are "

r

m

m

REQUEST (src,dest,wave,id) • lightpath establishment request, wave is a bitvector

containing a "0" in the i'th location if wavelength i can be allocated for the lightpath.

id is a unique lightpath identifier, obtained locally by concatenating the originating

node id to some counter.

ACCEPT (src,dest,i,id) : hghtpath establishment notice, i is the wavelength number

allocated to the lightpath.

REJECT (src,dest,id) • rejection notice issued when a lightpath request is blocked.

HANGUP (src,dest,id) • lightpath termination message, initiated by node originating

the lightpath request.

Each node maintains the following data structures •

L

w

7

lightpath(id) An array containing a record for each lightpath passing through the node.

The record contains the wavelengths allocated (or reserved) for the lightpath, its

incoming edge and its outgoing edge.

switch[1..n,1..d,1..d ] where w = n and d is the degree of the node. switch[] defines

the wavelength allocation and the appropriate switching function in the node (e.g.

switch[3, 2,4] = 1 indicates that link 2 is to be switched to link 4 for wavelength

,X3)

Following is the algorithm executed by each node upon receipt of the corresponding

messages •
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request(src, dest, wave, id}

if dest = node then begin

i = select_ slot(wave)

accept (src, de st, i, id}

end

else begin

n = next_ node(dest) (e, next node in route *}

for every wavelength i

if i used in incoming/outgoing link then

wave[i] = 1

if wave[i]=1 Vi reject(src, dest, id)

else begin

update data structures for lightpath id

if wave[i] set to '1' in this node,

set to '1' the relevant entry in switch

send(n, RE Q UES T, node, dest, wave, id}

end

end

end

accept (src, dest, i, id}

set to '0' all entries previously set to '1'

in switch for id, except i

let n be the incoming node of id

(from lightpath(id}}

if src ¢ node send(n, A CCEPT, src, node, i, id)

end

reject (src, dest, id}

27



set to '0' all entries previously set to 'I'

in switch, for id

let n be the incoming node of id

(from lightpath(id))

if src ¢ node send(n, REJECT, src, node, id)

end

w

m

terminate (src, dest, id)

if node ¢ dest begin

free entry in switch corresponding to id

let n be the outgoing node of id

(from lightpathgd))

s end(n, TERM[NATE, node, dest, id}

end

end

where select_ slot return the lowest numbered feasible wavelength.

Figure 17 contains a comparison in terms of blocking probabilities for PACK and

CLA for the sample network. As can be seen, the results are practically identical, both

for the average length lightpathblocking probability and the longest lightpath blocking

probability. Hence, by transmitting information only along the path of the lightpath, we

have obtained, contrary to intuition, a distributed heuristic paying a negligible price in

terms of performance.

6. Virtual Topology Construction

As pointed out earlier, the Lightpath architecture constructs a virtual topology, the Light-

net, in which lightpaths are the new links. Transmissions between any two nodes in the

Lightnet take place on the lightpaths, passing on the way photonic switches within the

lightpath and electronic switches between lightpaths.

28



m

w

i

N

=z

i

g

i

m

m

w

m

m

tram

m

The virtual topology determines the set of lightpaths needed, the passive and active

switch sizes, the load balancing properties of the system, routing, congestion, and other

control procedures, and determines the hardware requirements and performance. The

exact choice of the virtual topologies is therefore clearly a key aspect in the proposed

approach. For instance, when using a virtual tree topology, the node degree r/ can be

determined arbitrarily (e.g. 77= 3 for a binary tree), while the total number of wavelengths

is bounded by ½(r/- 1)log, n for a network with n nodes [24]. On the other hand, a tree

topology creates inherent traffic bottlenecks at all subtree roots with a potentially heavy

performance degradation for most traffic patterns. In this phase of research we define

the embedding process, propose an embedding solution and choose the embedding of a

hypercube regular topology which eliminates traffic bottlenecks.

6.1 Problem Definition and Demonstration

In Lightnet, a virtual topology is embedded in a genera topology by associating the nodes

of the virtual topology with the nodes of the original, general topology and implementing

the edges of the virtual topology by creating lightpaths. The embedding process consists

of three issues: first, the mapping of nodes in the virtual topology to nodes in the physical

topology, determining a list of source/destination nodes in the physical topology that must

be connected by lightpaths. Second, the determination of the physical links constituting

each of these lightpaths, henceforth referred to as lightpath routing. Third, the allocation

of wavelengths to lightpaths, so that 1) the same wavelength is allocated to a lightpath

throughout its span, henceforth termed wavelength continuity, and 2) no allocation conflict

occurs, a conflict being defined as the allocation of the same wavelength to two lightpaths

passing through the same link. We observe that for a general set of source/destination

nodes and a given lightpath routing, the wavelength allocation problem was addressed

in the preceding section. In the context of a hypercube topology embedding, we wish to

solve the resulting instance of the wavelength allocation problem in a way which provides

bounds on the number of wavelengths required, while exploiting the characteristics of

regular topologies.

A polynomial time algorithmic procedure embedding a regular topology graph in a
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general topology network, while minimizing the number of wavelengths and consequently

the complexity of the associated hardware, is not known [Appendix ]3, 7]. We therefore

intr¢,duce a two phase heuristic solution: in the first step we obtain a representation of any

general topology network in the simplest regular form, a string, and then proceed in the

second step to embed the regular topologies in this string. This approach is demonstrated

next.

Embedding Demonstration

The two phase approach is illustrated through the embedding of a hypercube in

the general topology network of figure 18(a). For this network we first find an equivalent

representation as a string, possessing the property that any two paths that are edge

disjoint on the string are also edge disjoint in the original network. This property ensures

that a wavelength allocated to two edge disjoint lightpaths in the string can also be

allocated to the corresponding lightpaths in the original topology, without causing an

allocation conflict. Figure 18(b) shows such a string representation. We notice that in

this case a one to one correspondence exists between the edges of the string and those

of the general graph. However, in the general case, a string edge may correspond to any

subset of adjacent general graph edges.

We next establish a sequential mapping of hypercube nodes to string nodes, in

which node 0 in the hypercube is mapped to node I in the string, node 1 in the hypercube

to node II in the string, etc. Following this mapping, we obtain the lightpaths imple-

menting the hypercube edges as shown in figure 18(c). Finally, an allocation conflict free

wavelength assignment, using five wavelengths is also shown in this figure, i.e., all light-

paths passing on every physical link are allocated different wavelengths. The hypercube

is redrawn in the standard form in figure 18(d), noting that every edge in figure 18(d)

corresponds to a lightpath in figure 18(c). We next present the switching fabric required

to support the Lightnet embeddings in every node.

6.2 Hypercube Solution

Several approaches are possible for embedding the string, in step 1, and the tIypercube, in

step 2, of the solution. These carry an inherent tradeoff between the conditions the graph
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Gp must meet vis/t vis the amount of network resources required (number of wavelengths

and passive switch size required to embed, in the second step, a regular topology in the

generated string). In the following sections we concentrate on a particular solution for

each step and show the graph/hardware requirements for it. Alternative solutions are

given in Appendix B.

We model a physical network topology as a directed graph Gp(Vp, Ep) where _ is

the set of nodes and Ep the set of edges. Each edge carries w wavelengths, determined as

given in section 2, by the target, regular topology. We assume that if (u, v) E Ep, u, v _ 1/_,

then also, (v, u) E Vp. Thus, transmissions on the same wavelength can proceed indepen-

dently in opposite directions. For Gp(Vp, Ep) we seek an equivalent string representation,

a°(_';, E,) such that :

m
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$1 I._ = I'_

$2 Each edge e E E, connecting nodes u, v E V, corresponds to a subset _: C_ Ep forming

a path in Gp from u to v.

$3 Any two paths that are edge disjoint in G, are also edge disjoint in Gp where the

edges are replaced by the corresponding edge subsets.

Conditions SI-S3 guarantee that any regular topology embedding on the string G, will

also apply to the physical network Gp, using the same wavelength allocation. Condition

S3 further guarantees, that two lightpaths allocated the same wavelength in G, can also

be allocated the same wavelength in G1,. Therefore, bounds computed on the number of

wavelengths and the associated node/switch capabilities needed in G,, will also hold in

Gp.

The most attractive approach in terms of hardware is obtained by generating the

string through the identification of a Hamiltonian path. We observe that the process of

generating a string from a Hamiltonian path is immediate as is the proof of the preserva-

tion of conditions S1 - S3. In such a path each node has a degree of 2, so that the size of

the photonic switches in each node is minimal, with a total of w 2 x 2 switches required,

one for each of the w wavelengths in the network.
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If the physical layout of the original topology can be controlled, a Hamiltonian

path can be established easily. Alternatively, it is known that the problem of finding a

Hamiltonian path in a given arbitrary graph is NP-Complete, requiring therefore the use

of heuristic solutions [8]. The solution presented in [8] presents an average polynomial

time algorithm which finds a Hamiltonian path or establishes that none exists. For graphs

created randomly, with a fixed probabihty of an edge existing between any two nodes,

the algorithm was shown to find a Hamiltonian path if such exists with an average time

of o(Iv!3).

m

6.2.1 An Embedding Algorithm

• We present the hypercube embedding algorithm and then investigate the number of wave-

lengths required, the virtual network diameter, and the resulting switch size.

Embedding : Let Gh(Va, Ea) denote a hypercube with a node v E I_, numbered by an

index i, i = 0..n = 2 k - 1, k integer and n = IVh]. Number the nodes in a string G, from

left to right by a single index i, i = 0..n - 1. Define the identity embedding function by :

E(i) = i, i = O..n - 1 (1)

Vv_velengths allocation : Scan string from left to right. Define an ordering on the light-

paths based on their left end-node. Lightpath li is said to be smaller than lightpath lj if

it's left end-node is to the left of lightpath lj's left end-node. The algorithm keeps track

of the usage of wavelengths per link (a wavelength is used in a link if it was allocated to

a lightpath passing through the link) and allocates wavelengths to the lightpaths based

on the above ordering. Formally :

procedure aUoc(}

(* allocate wavelengths to Iightpaths embedding

a hypercube in a string *)

2 number of wavelengths required *)(* W ---- _n ."

begin

for i := 1 to w do
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for j .'= 0 to n-1 do used[i,j] := false

(* used[i,j] = true if wavelength i was

allocated to a lightpath passing link j _)

for i := 0 to n-1 do

for all lightpaths with origin i do begin

find a wavelength )_ for which

used[A,k]=false V i <_ k < d

(_ d - Iightpath destination _)

allocate A to the lightpath and mark

used[_,k]=true V i _ k < d

end

end

Figure 18(d) illustrates the embedding of a hypercube using as the original topology

the graph of figure 18(a). By observing the edges encompassed by each lightpath, as

determined by figure 18(d), it is seen that the allocation is indeed conflict free, i.e.,

lightpaths having links in common have been allocated distinct wavelengths. As can be

seen, a total of 5 wavelengths is required.

The properties of the hypercube embedding are as follows : a) a node degree which is

logarithmic in the number of nodes, b) an average number of hops bounded by log 2 n, and

2 The first two properties are inherent toc) a linear number of wavelengths, given by _n.

the topology chosen. In the remainder we establish the third property and determine its

optimality.

Properties:

1. The maximum number of wavelengths required when embedding an n node hyper-

cube in a string with the identity embedding function and the above wavelength

allocation algorithm is given by 2

2. The embedding presented for the hypercube is optimal up to a constant factor.

3 The }-width of the n-node hypercube is given by w(Gh) = 1• _n.
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pendix B.
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6.3 Performance of a Hypercube Based Lightnet

To establish the efficiency of the Lightnet architecture we proceed to compare the per-

formance observed using conventional, store and forward wide area network operation

with the performance of the same networks employing the hypercube Lightnet embed-

ding. In this embedding the number of wavelengths required is determined by theorem 1

(see appendix B). In the embedding process the lightpath routing was restricted to the

string, i.e. only the string edges are used to construct the lightpaths. The performance

measures studied are network capacity, the maximum network throughput that can be

sustained while maintaining ergodicity in all queues and average buffering requirements

at the maximally loaded node.

In the network model we assume: Packet processing takes place at all nodes on a

packet's path in a conventional network and nodes performing switching between light-

paths in the Lightnet. A minimum-hop shortest path routing (in terms of nodes perform-

ing switching) with random selection for tie breaking rule is used. Since packet processing

in high speed networks is significant, the node capacity is modeled as finite. A packet ar-

riving at a node may enter a processing server if one is available, or join a common queue

if all servers are busy. Considering the large discrepancy between the optical transmission

bandwidth and the processing and propagation times, the former is considered negligible

in the model.

To evaluate the network performance a simulation was developed. In it, packet

arrivals are assumed to follow a Poisson distribution and source and destination selection

for each packet follows a uniform distribution. Node processing capability was modeled

by 3 parallel (packet) servers, each with service rate of 0.1 packet/unit time. Upon

terminating service the packet proceeds to the next node. A propagation delay of 100

time units is assumed between physically adjacent nodes. All simulation results were

obtained with 97% confidence levels.
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The hypercube topology was embedded in three randomly created physical topolo-

gies: The first "homogeneous" topology was generated with a diameter and node degree

distribution matching those of an earlier 1978 Arpanet topology. Two other topologies

were introduced to study the relative effects of various bottlenecks on the performance of

the store and forward and Lightnet architectures. The "two-lobe" topology consists of two

clusters of 31 nodes each, randomly connected using the same parameters as the homoge-

neous network. To this configuration two nodes were added, each with one link to one of

the nodes in each cIuster. The third, "elongated' topology, was generated with a longer

diameter of 20 as compared to 15 for the two lobe topology and 10 for the homogeneous

topology.

Since the primary issue raised in the design of optical networks is the discrep-

ancy between transmission which in turn leads to bottlenecks and reduced user available

throughput, we concentrate on comparing network capacities. Figure 19 presents network

throughput as a function of system load for the three physical topologies. The results

show that in the random topology network capacity was nearly tripled when using the

hypercube embedding. For the two-lobe topology, the hypercube embedding provided a

capacity increase by a factor of 4.5. Last, in the elongated topology, network capacity

increased by a factor of 7.5 for the hypercube embedding. The superior performance

of the Lightnet embedding is due to the reduced number of active switching stages per

packet transmission and the inherent load balancing when compared to the conventional

network operation. Notice that the throughput of Lightnet is independent of the physi-

ca/topology carrying the embedding. Although, for the same regular topology, packets

will traverse different physical paths in different underlying physical topologies, the data

paths in terms of nodes performing switching between lightpaths, the factor affecting ca-

pacity, remain invariable. Figure 20 shows the buffering requirements, demonstrating that

with the Lightnet approach the increased network throughput does not require additional

buffers.

w
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@ Implementation Considerations and Switching Node

Design

To employ WDM to implement a Lightnet architecture based on lightpaths, a number

of hardware related issues must be examined. Among them, the multiplexing technique

and the associated number of wavelengths made available, the devices determining the

lightpath span and the switching node design.

7.1 Wavelength Budget

The establishment of lightpaths for regular virtual topologies requires a number of wave-

length which is a function of the network size. With wavelength division multiplexing a

limited number of high speed channels are available on each link. Current experimental

systems are able to carry up to 20 channels, each modulated at 2 Gbit/s [12]. Similar

devices approaching 60 channels are considered feasible in the near future [12,13].

7.2 Lightpath Span

An important aspect of the lightpath architecture is the lightpath span. If the lightpath

span is large, in particular in the number of nodes it can passively traverse, then the

virtual topology can be established in a way which optimizes the number of required

wavelengths and the system capacity. Conversely, the choice of the virtual topology

might be constrained by the maximum lightpath span.

Three basic scenarios are being considered for addressing the lightpath span issue in

Lightnet: 1) electronic regeneration, 2) optical amplification and 3) optical regeneration.

In the following subsections we describe these options.

7.2.1 Electronic Regeneration

The first scenario is the simplest technological option using off-the-shelf components. It

involves optical/electrical (O/E) and E/O conversion in conjunction with the digital re-

generation of each lightpath at every node. Transmission rates of 2.4 Gbs are inherent
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to existing systems. Therefore this solution can support lightpaths of several Gbs each.

While this is a hardware intensive solution, it provides an optimal S/N ratio of the op-

tical signal, since it never has to travel more than one "hop" before being detected and

regenerated. With such a solution, a lightpath can be spanned over an unlimited number

of nodes. Put differently, lightpaths can be determined by the requirements of virtual

topology embedding, as described in the preceding section, and thus be used to optimize

network performance. Conversely, it can be argued that this is wasteful, since many links

will have needlessly large S/N ratios. The main disadvantage here lies in the replication

of the high-bandwidth electronic clock recovery circuitry needed to regenerate the optical

signal.

7.2.2 Optical Amplification

The second scenario is a non immediate, while near term technological option, involving

the nonregenerative amplification of the optical signal at each node using optical amplifiers

at every hop. The main concern with this solution is the preservation of an acceptable S/N

ratio so that the optical signal can be successfully detected at the end of the lightpath.

Since the signal's timing information is not regenerated as in the first scenario, phase

jitter and amplitude distortion will accumulate within the optical signal as it passes from

node to node, being amplified at each node. Care must be taken to ensure that the

accumulated noise on the optical signal does not cause an unacceptable error rate in the

detection circuit at the end of the hghtpath.

Experiments conducted recently have shown very successful use of optical amplifiers

[15-20]. For instance, in [15], 25 optical amphfiers were used in series (an amplifier every

80kin) to provide transmission of a 2.5 Gbit/s optical signal over 2,223 km of single

mode fiber, with a power penalty due to accumulated noise of only 4.2dB. This enormous

bandwidth-distance product indicates that the noise accumulation due to the optical

amplifiers should not be a problem over moderate distance lightpaths (< 1000km).

The use of optical amplifiers in this way eliminates most of the digital regeneration

hardware that would be required in the first scenario. Furthermore, optical amplifiers

such as those used in the references have recently entered the commercial market at
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approximately 15K each [21]. It is expected that this price will drop significantly as the

technology matures and competition grows.

7.2.3 Optical Regeneration

The use of optical regenerators is a long term solution, possibly 5-10 years away. The

existence of non-linear refractive index within a semiconductor laser amplifier has led to

proposals for new signal processing devices. The possibility for performing all optical

signal regeneration has been demonstrated [26]. This process can be achieved with co-

herent light by using the bistable characteristics of a Fabry-Perot laser amplifier. The

principle has been demonstrated at 140 Mbit/s. It is now necessary to develop techniques

to increase the operating speed and to perform clock recovery. When this technology will

mature, this option will be the preferred one in terms of system reliability and bandwidth.

7.3 Switch Design

The Lightnet switch is composed of three main switching components, the passive switch,

the lightpath terminating switch (LTS), and the active switch, as shown in figure 2. The

passive switch provides the "intra-lightpath" switching for the lightpaths passing through

the node and switches the light'paths terminating at the node to the active switch via

the LTS. The active switch connects the local node to the network and performs "inter-

lightpath" switching according to the destinations of the packets arriving on the lightpaths

initiating/terminating at the local node. Lightpaths initiating at the local node proceed

from the active switch, through the LTS, to the passive switch. As discussed in section

7.2 signals departing the passive switch can be regenerated and subsequently multiplexed

according to the output links thus removing the restriction on lightpath span.

The design of the Lightnet switch, as given in section 3, requires the use of passive

and active switching elements. The first class consists of the passive devices, also referred

to as "relational" devices (used for intro-lightpath switching of data). The second class of

devices will be referred to as the active devices or "logic" devices (used for inter-lightpath

switching). The passive devices perform the function of establishing a large bandwidth
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"relation", or a mapping between the inputs and the outputs. The relation is a function

of the control signals to the device and is independent of the data inputs. Thus, the

strength of relational devices is that they do not sense the presence of individual bits

passing through them, they only pass them. Due to this bandwidth transparency the

fabric bandwidth will be the transmission bandwidth. In the active devices the data that

is incident on the device controls the state of the device. The high speed reconfiguration

(setup time) requirement for these devices will limit the bit rates of signals that can

eventually flow through their fabrics to substantially less than those that can pass through

the passive switches fabrics. Thus, the strength of active devices is the added flexibility

that results from their ability to sense the bits that are passing through them; while their

weakness is that through sensing the bits that are passing through them, the maximum

bit rate they can handle becomes limited.

We next present the passive and active switches required for our implementation.

7.3.1 Passive Switches
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Recall that the requirements from the passive switches in the Lightnet solution are: 1) very

high bandwidth (same as the optical transmission bandwidth), 2) slow reconfiguration

rate, 3) low crosstalk, 4) low attenuation and 5) small dimensions.

MechanicM optical switches of dimension up to 40x40, can switch single-mode sig-

nals with crosstalk of-90dB and attenuation of around 2dB, thus obtaining crosstalk and

attenuation characteristics far better than those offered by electro-optic devices [14]. The

use of mechanical switches, despite these characteristics, was not previously considered

for data switching networks due to their slow set up speeds. The principle of using preset

lightpaths changes this situation dramatically: while the setup time of the mechanical

switches is relatively large (50ms) [14], this does not constitute a problem in Lightnet,

as lightpaths are not established on a per packet basis and can have lifetimes measured

in hours or days. Furthermore, the design of the photonic switch required for lightpaths

at the intermediate nodes can benefit from the wavelength continuity property of the

lightpaths. We observe that since a tightpath maintains the same wavelength throughout

its span, a channel incoming on one wavelength need not be switched to another wave-
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length. Consequently, in realizing the photonic switch, it is possible to group the channels

according to wavelengths prior to switching. The photonic switch can thus consist of w

switching matrices, one for each wavelength. Each of these switches has dimension of

(Dp + D_) × (Dp + D_), D_ being the physical node degree and D_ the virtual topology

node degree, as contrasted with a substantially more complex, (wDp + D,) × (wDp + D,)

switch, that would be required without wavelength continuity. We also observe that

the wavelength continuity of a lightpath ensures that no wavelength translation will be

required within a lightpath.

7.3.2 Active Switches

The dimension of the active switch required for the Lightnet architecture is (D,_) × (D_),

as contrasted with a substantially more complex, (wD,,) × (wD,,) switch, that would be

required for a conventional network architecture with w wavelengths. For active devices

the critical parameter that will determine the switch bandwidth will be its reconfiguration,

or switching, time. The only way to create a high speed active switch is using the WDM

dimension. For reasons amply demonstrated prior to the deployment of WDM for high

speed transmission systems, WDM is the only promising technology to provide the Gigabit

throughputs through its inherent parallelism. A switch design in WDM optical technology

is a significant departure from tlle conventional electronic packet switch designs. The first

WDM designed switch the HYPASS appeared only recently in the literature [25]. HYPASS

is a high-performance packet switch exemplifying a packet-switching fabric using WDMA.

In this fabric, the packetized information enters the fabric from the left, where it is initially

stored in a First In First Out (FIFO). The objective is to modulate the tunable laser,

tuned to the fixed wavelength of the designated output port; pass the information through

the transport star coupler; and then receive the information at the desired output port.

Prior to accessing the star coupler, it is necessary to check to see if the desired output

port is busy. This is accomplished through the specialized control hardware. If an output

port is av_lable, the protocol processor associated with the fixed wavelength receivers

will turn on the laser associated with the particular output port, allowing light to enter

the control star coupler. The tunable receivers attached to the control star coupler can
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tune to the wavelength of any of the output channels. If the signal is present, it will

signal the input channel decoder to tune the laser to the appropriate wavelength and then

command the FIFO to send the current packet to the desired output channel. Note that

in this fabric the packet address is converted to the specific wavelength of the output

channel. Thus, the address in the fabric is the wavelength of light entering the transport

star coupler. While the the switch interconnection topology is new compared to the

conventional electronic multistage switches, it uses traditional control protocols designed

for multiaccess low speed networks. This choice severely restricts the switch performance.

It is currently a widely accepted claim that the architecture as well as the switch control

need to be compatible with the high speed WDM technological (components) and physical

(end-to-end propagation delay) constraints.

It is true in general, and clearly remains true in our case, that the use of the

same technology in the (Lightnet) transmission domain (transmitters, receivers, optical

switches, etc.) and in the Lightnet electronic switching domain will guarantee that any

ongoing technological developments in WDM components will be utihzable and similarly

affect both network aspects. This observation further strengthens the argument for uti-

lizing WDM technologies in the switches as well as in the network.
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Table Captions

Table 1 : Performance Measures for Lightnet With 128 Nodes

Table 2 : Capacity for Various Network Sizes

Table 3 : Effects of Network Size on the Number of Wavelengths Required

for the Static Unbounded Case

(a) : Number of Wavelengths vs. Lightpath Set Size for Network Size

= 15

(b) : Number of Wavelengths vs. Lightpath Set Size for Network Size

= 30

(c) : Number of Wavelengths vs. Lightpath Set Size for Network Size

= 45

Table 4 : Effects of Network Size on the Number of Wavelengths Required

for the Dynamic Unbounded Case

(a) : Number of Wavelengths vs. Lightpath Request Rate for Network

Size = 15

(b) : Number of Wavelengths vs. Lightpath Request Rate for Network

Size = 30

(c) : Number of Wavelengths vs. Lightpath Request Rate for Network

Size = 45
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Figure 6 : A De-Brujin Topology
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Figure 15: General Topology
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Figure 18(a) : Sample General Topology Network
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topology

hcube

_OFltS

De-Brujin

diamond

htree

_rec

capacity

1.000

0.641

0.666

load=0.02

4.00

5.00

b II fie rs

load=0.30

9.00

11.00

loa.d=0.60

14.00

51.00

5.00 12.00 33.00

0.333 4.00 38.00 oo

0.142 6.00 o0 oo

0.058 8.00 oo oo

Table 1 • Performance Measures for Lightnet wi'th 128 nodes
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topology

hcube

torus

De-Brujin

diamond

htree

tree

maT-rnd

med-rnd

maz-rnd_

med-rnd4

nodes16 32 64 128

1.000 1.740 2.997 5.537

0.997 1.537 2.479 3.535

0.862 1.377 2.300 3.712

0.899 1.417 1.818 1.860

0.585 0.603 0.731 0.772

0.298 0.314 0.312 0.323

0.447 0.507 0.641 1.055

0.614 0.654 0.895 1.322

0.112 0.127 0.160 0.264

0.154 0.163 0.224 0.331

Table 2 • Capacity for various network sizes
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m

m

set

size

2O

40

60

8O

100

120

pohcy

WAC NWC

WAC / NWC

ratio

5.10±0.99t 5.00:1.05 1.02

9.10 = 1.60 8.90 : 1.52 1.02

11.50 = 2.07 11.30 = 1.89 1.02

14.90 = 2.33 14.80 ± 2.35 1.01

18.10 = 2.60 18.10 = 2.60 1.00

22.10 = 3.70 22.10 ± 3.70 1.00

(a) • Number of Wavelengths vs. Lightpath Set Size for Network Size = 15

m

set

size

20

4O

60

80

100

120

poScy

WAC NWC

5.00 ± 1.25 4.90 ___1.20

7120 ± 1.14 7.10 __ 1.20

10.60 ± 2.01 10.20 ± 1.87

13.70 ± 1.70

15.90 ± 2.73

17.80 ± 1.62

13.60 ± 1.65

15.50 _ 2.76

17.40 ± 1.90

(b) • Number of Wavelengths vs. Lightpath Set Size

wAC / NWC

ratio

1.02

1.01

1.04

1.01

1.03

1.02

for Network Size = 30

i

!

m

i

m

L

w

set

size

20

40

60

80

100

120

poScy

WAC

4.60 ± 1.07

6.90 ± i.i0

NWC

4.50 ± 1.18

6.80 :i: 1.03

WAC / NWC

ratio

1.02

1.01

9.40 =: 1.65 1.01

12.90 _- 1.79 i.01

15.50 ± 2.27 15.30 _ 2.54 1.01

16.20 _ 1.62 16.20 ± 1.62 1.00

(c) - Number of Wavelengths vs. Lightpath Set Size for Network Size = 45

Table 3 • Effects of Network Size on the Number of Wavelengths

Required for the Static Unbounded Case



m

arrival policy

rate WAC NWC

0.20

0.40

0.60

6.92 = 0.49

11.90 = 0.90

16.49 -- 0.85

5.51 - 0.44

9.59 = 0.85

13.28 = 0.54

WAC / NWC

ratio

1.26

1.24

1.24

0.80 19.90 = 0188 16.26 ± 0.89 1.22

1.00 25.90 ± 1.35 21.53 ± 1.33 1.20

24.33 -'- 1.4028.95 = 1.51 1.191.20

(a) : Number of Wavelengths vs. Lightpath Request Rate for Network Size = 15

i

w

arrival

rate
policy

WAC NWC

WAC / NWC

ratio

0.20 6.39 __ 0.50 4.83 = 0.48 1.32

0.40 10.58 _ 0.70 8.24 -+-:0.66 1.28

0.60 14.06 ± 0.69 11.01 :t: 0.72 1.28

0.80 17.87 = 1.21 14.22 ± 1.17 1.26

1.00 21.51 -4- 0.78 17.27 - 0.86 1.25

1.20 24.75 -_ 0.89 20.07 -4- 0.89 1.23

(b) • Number of Wavelengths vs. Lightpath Request Rate for Network Size = 30

arrival

rate

policy wAC / NWC

ratioWAC

5.88 ± 0.41

9.68 "= 0.60 7.33

i3.09 = 0.84 10.08

16.89 = 0.59 ! 13.42

20.64 m 0.99 I 16.66

24.29 ± 1.11 ! 19.77

0.20 1.31

0.40 : 0.68 1.32

0.60 ___.'0.66 1.30

0.80 : 0.60 1.26

1.00

1.20

(c) " Number of Wavelengths vs. Lightpath Request Rate for Network Size = 45

Table 4: Effects of Network Size on the Number of Wavelengths

Required for the Dynamic Unbounded Case
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Lightpath Communications : An Approach to

High Bandwidth Optical WANs

I. Chlamtac A. Ganz G. Karmi

University of Massachusetts

Amherst MA 01003

Abstract

Emerging applications require a substantially higher bandwidth than the one

offered by current networks. The technology necessary for providing the high band-

width on the optical fibers, by means of Wavelength Division Multiplexing (WDM),

exists. However, none of the network architectures proposed so far can efficiently

tap this bandwidth in the wide area domain, due to the limitations imposed by

the processing, buffering and switching required in these solutions. In this paper we

propose a novel architectural approach that meets the high bandwidth requirements

by introducing a communication architecture based on lightpaths, optical transmis-

sion paths in the network. Since lightpaths form the building block of the proposed

architecture, its performance hinges on their efficient establishment and manage-

ment. We show that although the problem of optimally establishing lightpaths is

NP-Complete, simple heuristics provide near optimal solutions for several of the

basic problems motivated by the Lightpath architecture.
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1. Introduction

Current network architectures fail to meet the emerging integrated demands of communi-

cation applications. First and foremost, a substantial increase in network bandwidth must

be provided to support applications such as HDTV, super-computer communications and

video-conferencing [1,13]. Co-existing with these vast bandwidth consumers, there will

continue to be applications with substantially smaller requirements. Thus, in addition to

the need for high bandwidth, a bandwidth dynamic range of up to seven orders of magni-

tude must be contended with efficiently [1]. Reliability and availability will also become

critical issues in future high speed networks carrying services previously supported by

different networks. Clearly, the degree of reliability of the new network must be at least

as high as that provided in the past by the network carrying the most stringent of the

integrated applications. Finally, many of the emerging applications will present demands

both for predictable service and on demand data delivery, leading to the requirement for

integrating packet and circuit switched policies on the same network.

Currently, Wavelength Division Multiplexing (WDM) [2-4] offers a solution to the

problem of providing the required bandwidth on optical links. However, the existing

switching, processing and buffering technologies lag behind the transmission capabilities,

turning the switching nodes into the loci of congestion. Therefore, the bandwidth pro-

vided by optical communication links cannot be readily translated into effective network

throughput, i.e. user available bandwidth [5-13].

Packet switching solutions have traditionally been motivated by the need for effi-

cient utilization of bandwidth at the expense of increased processing in the nodes. Today,

leading approaches for wide bandwidth WANs are solutions based on packet switching,

usually termed "fast packet switching" (also ATM, ATD) [14-18]. In these solutions

packets are not required to wait and be error checked at intermediate nodes. However,

buffering, E/O conversion of the packet header and routing oriented processing are re-

quired. Therefore, the node bottlenecks created by the discrepancy between transmission

and processing/buffering capabilities are not removed, leading to networks with limited

effective throughput.
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In this paper we propose an innovative solution to the problem of supplying wide

bandwidth to the users. We employ WDM not only to increase the user available through-

put, but also to simplify switching. The use of WDM for switching purposes, is strongly

motivated by considering current time division multiplexing standards for high speed

WAN communication [19,20]. In these, the inherent correspondence between time slots

and data channels is utilized so that no identification of the packet header is required for

switching at intermediate nodes. This leads to practical and simple switching without

the need for processing. Analogously, WDM possesses the inherent capability to identify

data channels without processing, through the association of these with wavelengths, i.e.

wavelength routing [2,4].

Consistently with these observations, the proposed architecture is based on the use

of liyhtpaths. A lightpath is an all optical path (data channel) established between any two

nodes in the network, created by the allocation of the same wavelength throughout the

path. A Iightpath requires no processing or buffering at intermediate nodes and poten-

tially, no intermediate E/O conversions. Thus we propose to exploit the vast bandwidth

attainable in multiple wavelength systems to establish a tradeoff between transmission

bandwidth and user available throughput. By employing lightpaths to carry packets

(and possibly, circuits), the total network processing and buffering requirements are re-

duced, when compared with a conventional store and forward network in which packets

are processed at each intermediate node. This reduction is achieved at the expense of

increased bandwidth consumption due to the fixed allocation of transmission paths (the

lightpaths) as well as possibly transmitting packets on paths (the lightpaths) i-onger than

the those dictated by a shortest path routing policy. By reducing processing require-

ments, the lightpath concept significantly alleviates the electronic bottlenecks allowing

increased user available throughput. Employing lightpaths as the sole medium for all

network communications thus presents significant advantages. However, practical limita-

tions on the transmission technology and optical devices (transmitters, receivers, optical

switches, etc.) restrict the number of available wavelengths, so that it is not possible to

establish a lightpath between every pair of nodes. Therefore, only a selected set of nodes

can be connected by lightpaths, leading to a new type of lightpath based networks, termed

Lightnets. The Lightnet nodes correspond to the actual network nodes, while the links

3
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correspond to lightpaths. The lightpaths thus serve as building blocks for the construc-

tion of Lightnet topologies, having as objective the minimization of the number of nodes

actively involved in transmitting a packet, therefore minimizing the processing/buffering

required to transmit a packet end-to-end. The topologies can be further optimized for

routing, congestion control, or special reliability requirements.

Since lightpath are the basic building block of Lightnets, their correct and efficient

establishment is crucial to the successful implementation of these architectures. Following

an overview of the Lightnet architecture we, therefore, proceed to study the lightpath

establishment problem in detail, analyzing its complexity and providing efficient solutions

for it.

2. The Lightpath Architecture

We introduce the lightpath as an "optical communication path" between two (not nec-

essarily adjacent) nodes, established by allocating the same wavelength throughout the

route of the transmitted data. As a result, transmissions between lightpath endpoints

require no processing or buffering at intermediate nodes. In this way, lightpath com-

munication is targeted for implementation in an optical WDM network, addressing the

mismatch between optical transmission rates and electronic processing speeds to alleviate

the bottlenecks created at intermediate nodes.

To understand why the lightpath concept and the architecture built around it are

inherently suited for high speed communication and to clarify the principles of Lightnet

operation we consider the following analogy :

As a consequence of the need to transport more people and of evolving technologies,

faster trains were developed, decreasing the amount of time passengers spent in actual

travel. In this way, the bulk of total traveling time was shifted to the time spent at inter-

mediate stops, increasing at the same time the congestion of intermediate train stations.

The express train transportation system was developed to resolve these issues. When tak-

ing an express train, the passenger does not have to wait at intermediate stations and his

travel time becomes determined primarily by the speed of the express train. Therefore,

4
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the express system leads to lower passenger delays and alleviates the congestion problem,

resulting in the need for smaller waiting room at intermediate stations.

The increased speed of optical communication (reduced packet transmission time)

contrasted with the electronic processing rates at the switching nodes creates an apparent

technological analogy: In the Lightnet solution, the wavelengths are the rails, a lightpath

is an express train connection established between two stations and circuits/packets are

the passengers. On the basis of lightpaths, the proposed architecture constructs an inte-

grated packet and circuit switching solution : for packet switching, packets will be routed

over "adjacent lightpaths", instead of being routed between all physically adjacent links,

as in conventional store and forward packet switched networks. For circuit switching,

bandwidth over multiple lightpaths can be allocated to a circuit for the circuit's duration.

To employ WDM to implement a network architecture based on lightpaths, a

number of hardware related issues must be examined. Among them, the multiplexing

technique and the associated number of channels made available, the photonic switches

and the amplifiers required to overcome multiplexing, switching and path losses. With

wavelength division multiplexing a limited number of high speed channels are available

on each link. Current experimental systems are able to carry up to 20 channels, each

modulated at 2 Gbit/s [21]. Similar devices approaching 60 channels are considered fea-

sible in the near future [21,22]. Lightpath implementation at intermediate nodes requires

the availability of suitable photonic switches. So far, emphasis on switching for LAN and

WAN operation concentrated on switch operation with setup rates on par _ith packet

transmission rates, a critical issue for packet switching networks. Electro-optic switches

can be set up in less than 1as [29], however, due to their poor crosstalk and attenuation

characteristics, they may be impractical for an all-optical longhaul implementation. Me-

chanical optical switches of dimension up to 40x40, can switch single-mode signals with

crosstalk of -90dB and attenuation of around 2dB, thus obtaining crosstalk and attenua-

tion characteristics far better than those offered by electro-optic devices [23]. The use of

mechanical switches, despite these characteristics, was not previously considered for data

switching networks due to their slow set up speeds. The principle of using preset light-

paths changes this situation dramatically: while the setup time of the mechanical switches
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is relatively large (50ms) [23], this does not constitute a problem in Lightnet, as lightpaths

are not established on a per packet basis and can have lifetimes measured in hours or days.

Furthermore, the design of the photonic switch required for lightpaths at the intermediate

nodes can benefit from the wavelength continuity property of the lightpaths. We observe

that since a lightpath maintains the same wavelength throughout its span, a channel in-

coming on one wavelength need not be switched to another wavelength. Consequently, in

realizing the photonic switch, it is possible to group the channels according to wavelengths

prior to switching. The photonic switch can thus consist of w switching matrices, one for

each wavelength. Each of these switches has dimension of (Dp + Dn) × (Dp + D,_), D r,

being the physical node degree and Dn the number of lightpaths terminating at the node,

as contrasted with a substantially more complex, (wDp + D,_) × (wDp + D,) switch, that

would be required without wavelength continuity. We also observe that the wavelength

continuity of a lightpath ensures that no wavelength translation will be required within

a lightpath. Lastly, an important aspect of the lightpath architecture is the end-to-end

lightpath span. Experiments conducted recently have shown very successful use of opti-

cal amplifiers [24-29]. For instance, in [24], 25 optical amplifiers were used in series (an

amplifier every 80kin) to provide transmission of a 2.5 Gbit/s optical signal over 2,223

km of single mode fiber, with a power penalty due to accumulated noise of only 4.2dB.

The combination of these hardware aspects of Iightwave communication and the special

properties of lightpaths suggest that a Iightpath based Lightnet network can present a

technologically feasible solution for a wide area wavelength routing network. The pre-

sented architecture thus carries a number of benefits :

It can reduce the number of active nodes through which a packet is switched be-

tween source and destination (only the lightpaths' end nodes), thus alleviating the

processing and buffering bottlenecks.

The Lightnet presents a possible solution to congestion problems, fault conditions

and provides a viable approach for networks having long term varying asymmetric

traffic patterns. The capability to account for these issues in a Lightnet architecture

is the result of the possibility to reassign lightpaths.

The switching nodes' hardware requirements are simplified, enabling the use of reduced
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size passive devices due to the wavelength continuity of the lightpaths, as well as enabling

use of photonic switches with slow set-up times. At the same time, notice that although

the Lightnet approach allows for a linearization of the switching complexity as a function

of the number of wavelengths, photonic switch sizes, as well as the current WDM state

of art, impose a limitation on the number of wavelengths made available. Thus, the

efficient assignment of wavelengths to lightpaths leading to a minimization of the number

of wavelengths required is an important aspect of the Lightnet architecture. We turn to

address this issue in the next section.

L__

m

3. The Lightpath Establishment Problem

Two central issues must be addressed when studying the assignment of wavelengths to

lightpaths. First, since wavelengths are a precious resource, it is necessary to establish

lightpaths eJficientIy in terms of the total number of wavelengths required. Second, the

requirement for establishing a lightpath using the same wavelength throughout its route,

introduces a potential bandwidth loss when compared to a lightpath establishment in

which the continuity constraint is not imposed. This loss can be perceived either as

an increase in the number of wave]engths required to successfully establish a given set of

lightpaths, or as an increase in lightpath blocking probability, if the number of wavelengths

is limited. In providing efficient solutions for lightpath establishment, our objective will

be to find algorithms that minimize this loss.

In deriving a lightpath establishment algorithm, we first analyze the complexity of

an optimal assignment of lightpaths, introducing the following model. We represent the

network by a triplet G(V, E, W) in which V represents the set of N nodes, N = IV[, E

represents the set of directional fiber links between nodes in V, (assuming (u,v) C E if

and only if (v,u) C E Vu, v C V) and W is the set of wavelengths on each link, IWI = w.

It is assumed that w is equal for all links. We define a lightpath request for connecting a

given source / destination node pair by the links constituting a path between them. To

establish a lightpath, it is necessary to find an unallocated, identical wavelength, on all

the lightpath's links.
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The problem we propose to study is the correct and efficient establishment of

lightpaths. The correctness aspect of lightpath establishment must solve the problems of

collisions • the simultaneous allocation of the same wavelength to more than one light-

path on any given link. In terms of efficiency, our goal is to maximize the utilization

of wavelengths. Thus, we shall seek solutions that minimize the number of wavelengths

used, for a given set of lightpaths or the lightpath blocking probability, for a given rate

of lightpath establishment requests. We propose to achieve this goal by allocating wave-

lengths in such a way that, given the allocation of wavelengths to existing lightpaths, a

maximum number of new lightpaths can be allocated. Figures l a and l b exemplify the

lightpath allocation problem. The figures depict lightpaths establishment in a network

with two available wavelengths (w = 2). In Figure la the allocation is done in such a way

that any additional future Iightpath establishment request can still be accommodated.

In the allocation depicted by Figure lb, if a lightpath request vl _ v3 arrives before an

existing lightpath is terminated, it will be blocked.

Definition : Static Lightpath Establishment (SLE) problem - given a network G(V, E, W),

w _> 3, and a predefined set of lightpaths L, is it possible to establish all lightpaths in the

set ?

We proceed to prove the NP-completeness of SLE by showing that the problem

is equivalent to the n-graph-colorability problem [30,31]. That is, finding the minimal

number of wavelengths that would accommodate the demands would amount to finding

the chromatic number of some (general) graph, where the number of colors, n, corresponds

to the number of wavelengths, w.

Theorem 1 • SLE is NP-Complete.

Proof • See appendix A.

Thus, even if all lightpath demands were predetermined, we would have to search for

a heuristic solution for all but trivial demand sets. In the next sections we therefore

present a number of polynomial time heuristic solutions for basic lightpath establishment

problems.

8
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In this section we study heuristics solving the lightpath establishment problems motivated

by the proposed architecture. The fundamental aspects of lightpath communications are

covered by considering two possible objective functions : minimization of the required

number of wavelengths and minimization of lightpath blocking probability. For these, the

establishment can either be static, with all lightpaths predetermined, or dynamic, where

lightpaths are established and terminated on-the-fly.

Before proceeding to describe solutions to the lightpath establishment problem we

develop a lower bound on the number of wavelengths required by an optimal algorithm

and show, that for a certain class of topologies, this lower bound is tight. Consider the

number of wavelengths required to establish a given lightpath set without the wavelength

continuity constraint. This number is given exactly by the number of lightpaths passing

on the "busiest" link (i.e. the degree of edge congestion) and it is also, a lower bound

on w. We term this lower bound policy Non-Wavelength Continuous (NWC). For the

following special case, this lower bound is tight :

Theorem 2 : For networks with acyclic topologies, if the NWC policy requires w wave-

lengths to establish a given lightpath demand set, then there exists an allocation of wave-

lengths to lightpaths such that no more than w wavelengths are required under the wave-

length continuous lightpath policy (WC).

Proof : see appendix B.

We note that for networks with topologies containing cycles this bound is not tight as

exemplified in Figure 2. Consider a 3 node ring with a Iightpath demand set consisting

of 3 lightpaths is shown. The lightpath set shown can be established using 2 wavelengths

under NWC yet 3 wavelengths are necessary with the WC policy. Having developed a

lower bound on an optimal solution, we now turn to presenting solutions for the different

aspects of the liglitpath establishment problem.

r

ti.
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4.1 Static Demands, Unbounded Number of Wavelengths

L_

m

The first case to be studied is the one corresponding to the Static Lightpath Establishment

problem : a network in which a set of n lightpath requests is predetermined and the

objective function is to establish all demands using a minimum number of wavelengths.

We use a greedy allocation heuristic which iteratively allocates a given wavelengths

to all possible edge disjoint (i.e. non-colliding) lightpaths to whom a wavelength was not

yet allocated. The procedure terminates upon allocating a wavelength to each lightpath.

Using an intuition first observed in task scheduling problems, we first sort the lightpaths

according to their respective lengths, and then try to allocate the wavelengths to the

longest lightpaths first. Intuitively, a long lightpath is harder to establish, since an unal-

located identical wavelength must be found on more links. Therefore, by establishing long

lightpaths first, a better wavelengths re-use should be achievable, leading to an overall

smaller requirement of wavelengths for a given lightpath set.

The exact description of the solution uses the following data structures :

=

m

L

u

Ipcm[i,j]

Ipnum[_] •

w

set[i]

S_ e

lambda[i] :

the lightpath collision matrix, lpcm[i,j] = 1 if lightpaths i and j

have a link in common (lightpaths collide)

lightpaths, ordered by descending length

wavelength number currently assigned

sets of lightpaths

start, end pointers to current set

wavelength definition array, lambda[i] points to

the first lightpath in set using wavelength i

flags indicating if lightpath i was already allocatedIpok[i]

n : number of lightpaths in set

or(set, s,e, lpnum[i],lpcm): function; returns true if lightpath lpnum[i] has a

link in common with the lightpaths in the set set[s]..set[e],

based on the lightpath collision matrix lpcm.

procedure static_ establish

10
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begin

lambda[1]= w = s = e = 1

for i = I to n do Ipok[i] = false

while (e < n) do begin (*)

• fori= 1ton do begin

if not Ipok[i] then

if not or(set, s,e, lpnum[i],Ipcm) then begin

serf el = Ipnumfi]

e=e+l

Ipok[i] = true

e=e-/-I

end

end

w=w÷ l

Iambda[w] = s = e;

end

end

The following two lemmas prove the correctness of the algorithm :

Lemma 1 : The algorithm eventually stops.

Proof : Stems directly for the fact that whenever w is increased (thus creating an empty

set of lightpaths), at least one lightpath can be established. Thus, for ever_ time w is

augmented, e is incremented at least once, eventually terminating the while loop.

Lemma 2 : No two lightpaths having a link in common are allocated the same wave-

length.

Proof : Lightpaths having common links will not be assigned to the set corresponding

to the same wavelength since the or function for them will return true and hence, s will be

incremented between the assignment of the lightpaths to set, implying that the lightpaths

will be established using different wavelengths.

The worst case is obtained when Ipcm[i,j] = 1 V i, j leading to an overall time complexity

of

11
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4.2 Static Demands, Bounded Number of Wavelengths

Since the number of available wavelengths in WDM systems is expected to remain limited,

it is of importance to study the problem of establishing a given set of lightpaths when

the number of wavelengths, w, is bounded by omega. We note that in this case, it is

possible that lightpaths will be blocked. The objective function therefore changes in this

case to minimizing the ratio of lightpaths rejected to lightpaths requested, defining for

the static case the lightpath blocking probabihty. We note that an existing drawback of

this objective function is that it does not differentiate between long and short lightpaths.

Hence, a policy using this objective function, will in effect, discriminate against long

lightpaths. The relative effects of blocking probability as a function of lightpath length

are studied in section 5.

We note that the previous heuristic maximizes the use of every wavelength before

proceeding to allocate a new one. Thus, in effect, it intuitively maximizes the number

of unused wavelengths in the network in case their number is bounded. Noting that as

long as there is an unused wavelength, the lightpath blocking probability will be zero, we

employ a variation of this heuristic for the bounded wavelength problem.

As before, we shall allocate a given wavelength to all possible Lightpaths that have

not yet been allocated a wavelengths. However, the procedure will stop either if all

lightpaths have been allocated a wavelength or the available wavelength pool has been

exhausted. In addition, to allow for an unbiased study of the effect of blocking probability

as a function of lightpath length, we avoid sorting lightpaths according to lightpath length

as in the previous case. Thus, the heuristic remains unchanged, except the line marked

by (*) in the algorithm which is modified to :

while (e < n) and (w < omega) do begin

The correctness of the lightpath assignment still holds by virtue of lemma 2. For

the termination we note that lemma 1 still holds, but in this case, since the number of

wavelengths is bounded, the overall time comp]exity is reduced to O(n × rain(w, n)).

12



7 :

4.3 Dynamic Demands, Unbounded Number of Wavelengths

The interest in studying the case in which lightpaths are established and terminated

dynamically, stems from the fact that the Lightnet topology can be modified by reassigning

lightpaths. By establishing the lightpaths dynamically, the Lightnet can be reconfigured

for purposes of reliability, availability or even adaptation to long term traffic patterns.

We observe that in addition to the efficient use of wavelengths, the issue of stabil-

ity becomes of primary importance in the dynamic case. Past experience with dynamic

resource allocation suggests that lightpath allocation solutions might display a "fragmen-

tation" problem in which, while wavelengths may be available on each link on a given

path between a source and destination, the continuity constraint over the total path is

not satisfiable. Hence it is important to establish whether a given allocation algorithm

deteriorates over time as it does for example, in many memory allocation schemes.

We note, that the approach developed for the static cases maximizes the use of

every wavelength it allocates before proceeding to allocate a new wavelength. We therefore

pursue this approach for establishing Iightpaths dynamically, as it intuitively leads to the

maximal reuse of wavelengths, or in other words, should reduce fragmentation. The above

approach can be mimicked in a dynamic environment by a greedy heuristic that establishes

each lightpath using the first available wavelength. Thus, a new wavelength will be

allocated if and only if a lightpath cannot be established using any of the wavelengths

already in use.

We first consider the case of an unbounded number of wavelengths. In the exact

representation for this solution we shall use the following data structures :

lightpath[id], lightpath information record, holding the following fields :

- path: the links constituting the lightpath

- fen: the lightpath length

- wavelength: the wavelength assigned to lightpath

busy[i,j] : busy[i,j] = 1 if wavelength j is currently assigned to a lightpath passing

through link i

path(s,d, vec, len) : procedure; returns a route for a lightpath from s to d

13
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getid(id)
wave

The links constituting the route are returned in vec and the route length in Ien

: function; assigns a unique id to a lightpath

• index, used in searching for an available wavelength

The establishment procedure scans the matrix busy by columns (wavelengths) attempt-

ing to find a column where all the entries corresponding to the lightpath's links are zero

(unused). If no such column is found among the wavelengths currently in use, the wave-

lengths counter, wave, is increased so as to allocate a new wavelength. Following are the

procedures used to establish and terminate lightpaths :

establish(s,d, id)

(* establish a lightpath from s to d *)

begin

path(s,d, vec, len}

getid(id)

lightpath[id].path = vec (_ save path for hangup "_)

lightpath[id].len = fen

(* find wavelength in which to establish Iightpath *)

found = false

wave = 1

while not found do begin

imp = 0

for i= 1 to len do tmp = imp + busy[q[i],wave]

if trap = 0 then found = true

else wave = wave + 1 (*)

end

lightpath[id].waveIength = wave

(_ update data structure - Iightpath established on wavelength wave

for i= I to len do busy[q[i],wave] = 1 end

,)

Lightpath termination is taken care of by the following procedure :

ter'minate (id)

14
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(* terminate a lightpath *)

begin

for i = 1 to lightpath[id].Ien do

busy[lightpath[id].path[i],lightpath[id], wave] = 0

end

The correctness of the solution is established by observing that before establishing

a lightpath using a given wavelength, establish verifies that the wavelength is not in use on

any of the lightpath's links. The process of establishing a lightpath terminates by either

finding a wavelength that is in use in the network, but not on any of the lightpath's links,

or by incrementing wave beyond the number of wavelengths currently in use, in which

case busy[i, wave] = 0 for any link i. Estabfishing a lightpath in a network in which w

wavelengths are currentIy in use is carried out in time O(N × w) in the worst case, where

N is the number of nodes in the network.

4.4 Dynamic Demands, Bounded Number of Wavelengths

m

m

Last, we consider the problem of dynamically establishing lightpaths in a network in which

the number of wavelengths is bounded by omega. As before, the problem is motivated by

the limitation on the number of wavelengths.

Following the reasoning of the preceding unbounded case, we again employ a greedy

approach. The wavelengths are tried in sequential order, establishing a lightpath by allo-

cating it the first wavelengths that is not in use on any of the lightpath's links. However,

in this case, as the number of wavelengths is bounded, lightpath requests may be blocked.

The heuristic, therefore, proceeds as before except in this case, prior to increasing the

number of wavelengths it is checked if the maximal limit has been reached. Thus, by

changing the line marked by (*) in the previous heuristic to

else if wave i omega then begin

wave = wave + 1

the solution for the bounded wavelengths case is obtained. The correctness of the solution

15
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is established as in the case of subsection 4.3. The worst case time complexity is also given

as before by O(N × _), where w is the number of wavelengths in use, w _< omega.

5. Results

In this section we study the performance of the lightpath establishment heuristics concen-

trating on the efficiency of wavelength allocation. Having proven that the exact solution

is NP-Complete, comparison to exact results is not feasible for any networks of interest.

However, as pointed out in section 4 by removing the wavelength continuity constraint

from lightpath establishment a lower bound on the number of wavelengths needed is ob-

tained. Thus, a comparison to the lower bound obtained by non-wavelength-continuous

(NWC) case, can be made to evaluate the performance of the various heuristics as well

as to determine the relative penalty imposed by the continuity constraint of the proposed

WC lightpath establishment solutions.

The performance of the presented heuristics was derived by simulating general

topology networks under varying traffic conditions and objective functions. All results

were obtained with a confidence level of 95%. Lightpaths were randomly created choosing

source / destination nodes according to a uniform distribution. The links constituting

each lightpath were chosen following a shortest path policy, assuming all links to be of unit

length, with random tie breaking rule. For the dynamic environments, lightpath arrival

rate refers to the number of lightpath establishment requests per unit of time. An arrival

rate A is implemented in the simulation as an exponentially distributed lightpath request

1 Lightpath holding times were assumed to be deterministic,interarrival time with mean X.

and equal to 200 time units.

In Table 1 we study the case of unbounded number of wavelengths by observing

the average number of wavelengths required to establish a given lightpath set size (static

demands) for three different network sizes. For each set size, the results presented are

averaged over 10 different randomly generated lightpath sets. We observe that the results

for the wavelength continuous lightpath establishment policy (WC) and the NWC lower

bound are practically identical. This result can be explained by considering the implica-
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tions of theorem 2 (section 4). The only discrepancy that may arise between NWC and

WC can occur only when cycles are contained in the network graph, with the lightpath

demand set also forming a cycle. However, the probability of such a structure occurring,

given a lightpath set, is much smaller than the probability of multiple lightpaths passing

through a link in the network. Hence, with high probability, the most congested link in

the network determines the number of wavelengths required by the WC lightpath policy

as well as determining the NWC lower bound. The study of the effect of network size on

the number of wavelengths required to establish a given demand set, shown in Table 1,

supports the above observation. In addition it shows, that as the network size increases,

the number of wavelengths required for a given set size decreases. This is due to the

fact that in a larger network there are fewer collisions between lightpaths for the same

lightpath set size.

In Figure 3 a system with static demands and a topology depicted by Figure 4

where the number of wavelengths, o_ is set to 5, is studied. The objective function in this

case is the minimization of lightpath blocking probability given in Figure 4 as a function

of the lightpath set size. The average blocking probability for WC, shown in Figure 3, is

lower than the NWC lower bound, by up to 2%. This apparent contradiction is explained

by observing that the WC policy exhibits a 4% higher blocking probability than NWC

when considering long (i.e. equal to the network's diameter) lightpaths only (5 hops).

Since a long lightpath takes up system resources that can be used by multiple short ones,

an average lower average blocking probability results when long lightpaths are blocked.

Figure 3 also shows the blocking probability for short (1 link) lightpaths confirming the

above observation, noting that lightpath blocking probability for the WC policy is lower

than that of the NWC case.

Before studying the actual number of wavelengths required to accommodate sys-

tems with dynamic demands and an unbounded number of wavelengths (o_), or the block-

ing probabilities in systems with dynamic demands and bounded o_, we first verify the

stabilitv of these results, as defined in section 4. Figures 5 and 6 study the stability of

the heuristics for the unbounded and bounded wavelengths cases respectively. Figure 5

considers the stability of the proposed heuristics in an unbounded wavelength network by

17
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plotting the number of wavelengths required to establish all demands for three different

lightpath set sizes as a function of time. It is shown that following the transient phase,

the average number of wavelengths does not increase over time. Similarly, Figure 6 shows

the blocking probability as a function of time for the bounded wavelengths case (ca = 5).

We note that in this case the blocking probability also remains practically constant over

time.

A dynamic establishment of lightpaths without having the ability to perform wave-

length reallocation to already established lightpaths, can be expected to have a notable

bearing on dynamic lightpath establishment heuristic. Table 2 displays the number of

wavelengths required for the lightpath solution and the NWC lower bound as a function

of ]_ightpath request rates. Comparing the values corresponding to the lightpath estab-

lishment heuristic with the NWC allocation we observe that for high rates, less than

25% additional wavelengths are required on average to establish lightpaths for the same

lightpaths request arrival rate. For low request rates, up to 32% more wavelengths are

required for the lightpath case. The difference however, is more than offset by the fact

that for these rates, a small (6-10) number of wavelengths are required. We also observe

that the ratio between the number of wavelengths required under WC and the NWC case

remains almost invariant for different network sizes. Last, when observing the same light-

path request arrival rate over different network sizes, the absolute number of wavelengths

required decreases, for reasons similar to the ones stated in the static case.

Figure 7 studies the case were the number of wavelengths is set to 5. The objective

function in this case is the minimization of lightpath blocking probability, depicted in these

figures as a function of the lightpath request rate, comparing the presented heuristic with

the NWC lower bound. We observe that the heuristic performs with a relatively small

penalty relative to the optimum.

Finally, it is of interest to investigate the relative improvement obtainable by in-

creasing the number of available wavelengths. Figure 8 depicts the lightpath blocking

probability as a function of the number of available wavelengths, w, for various lightpath

request rates in a dynamic lightpath establishment environment. It is noted that for

lower rates, a small increase of w leads to a substantial reduction in blocking probabil-
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ity, whereas high rates require a large increase in the number of wavelengths to obtain a

similar blocking probability reduction. We further observe that the blocking probability

for a request rate of 0.5 tends to zero for w > 20. With higher rates the blocking proba-

bility increases, reaching 0.47 for the same w and a rate of 2.0. Thus, we conclude that

small increases in the number of available wavelengths can prove substantial reduction in

lightpaths blocking probability for small (less than 0.5) lightpath request rates.

6. Conclusions

In this paper we presented a novel network architecture motivated by recent developments

in optical communications and targeted towards emerging wide bandwidth applications.

Through the introduction of the lightpath concept, the proposed Lightnet architecture

makes use of developing transmission and switching capabilities in the photonic domain

to overcome the inherent limitations of electronics based networks by introducing the

lightpath concept. Since the performance of this architecture is tightly linked to the e_-

cient establishment of lightpaths, a detailed investigation of the lightpath establishment

problem was conducted. The complexity of this problem was proven to be NP-Complete.

Heuristics covering static and dynamic lightpath establishment, both for bounded and

unbounded number of wavelengths were therefore presented and evaluated. It was demon-

strated, that the requirement to use the same wavelength along the entire lightpath carries

a limited performance penalty. The wavelength continuity in establishing lightpaths was

shown, on the other hand to allow for a reduced switch size, and avoid the need for

wavelength translation within a lightpath. The lightpath approach thus offers a high

performance solution realizable with simpler and less expensive technologies.

m
!

Appendix A

Proof of Theorem 1 :

First we show that solving the n-graph-colorability problem would also solve SLE. Define

an undirected graph GL(VL, EL) with a node i C VL for every lightpath in L. Two vertices

i, j C VL have an interconnecting edge e C EL if the respective lightpaths have at least one
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link in common. A coloring of VL with n or less colors, so that no two adjacent vertices

have the same color, would yield a wavelength allocation in W where no two lightpaths

having a link in common require the same wavelength. Thus, finding a feasible coloring

would also yield a feasible wavelength allocation, answering SLE.

To complete the proof we show that solving SLE would also solve the n-graph-

colorability problem, thus showing that finding a polynomial solution to SLE is unlikely.

To show this, we describe a polynomial time algorithm that translates any graph into

a network and an appropriate set of lightpath demands. Given a graph Gc(Vc, Ec) we

translate the coloring of Gc into a lightpath establishment problem as follows:

(1) create a node v ° for every node i C Vc.

(2) for every edge e = i _ j C Ec :

create 4 new nodes k t_, y, vi, vj and directed edges

l-1 l
vk-I ---_ _,, Vj --+ _3, Z --_ V k, X ---c Vj

Attach the mark i to edges going from/to vi's, and z --* V.

Repeat similarly for the mark j.

J stands for the j'th replication of theThe designation of a node in the new graph, vi,

node corresponding to node i in the original network, j = O..d(i) where d(i) is the node

degree of i. The construction is exemplified for a 4 node graph in Figures 9a, 9b. Figure 9a

contains a graph for which the n-colorability problem is to be solved. Figure 9b illustrates

its translation to a network, the number on the links being the marks. The lightpath

demand set L is defined by the IVc] lightpaths where lightpath i requires use of all links

having i as a mark. We note that the complexity of the algorithm is O(]Ec]).

Lemma : A solution to the SLE with n wavelengths implies that the chromatic number

of Gc is less or equal to n.

Proof : The lemma follows immediately from the construction. If the lightpaths can be

established then there exists a function assigning a wavelength to each lightpath

so that no lightpaths sharing a link are assigned the same wavelength. Since two

lightpaths share a link if and only if the respective nodes in Vc are adjacent, this
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implies the existence of a function assigning a color to each node in Vc, so that no

two adjacent nodes are assigned the same color.
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Appendix B

Proof of Theorem 2 :

Notation :

Ii - lightpaths. We denote arbitrarily the source node of a lightpath as its right node and

the termination node as the left node.

ei - the set of (unidirectional) links constituting lightpath Ii.

c(l,) - the collision set of I;. I_ E c(l,) if e_ N e_ ¢ ¢.

Lemma : Let Z; be a set of lightpaths defined on a graph G(V, E) where G is a tree. If

Ic(ll)l > n Vii E £ for some n then there exists an edge in E through which at least n

lightpaths pass.

Proof : By contradiction, i.e. assume that every link carries less than n lightpaths. First

we note that lell >_ 2 V/i c/2 since if there exists a single link lightpath, that link will

carry all the collisions of the tightpath, i.e. a total of n lightpaths. We define a dividing

link • of a lightpath li as the rightmost link in ei for which there exists a lightpath lj,

lj C c(I_) such that all links e_ N e i (all the common links of Ii and lj) are to the right of x.

We note that the dividing link of a lightpath always exists and it is never the rightmost

link. Consider now some arbitrary lightpath I1 and let x be it's dividing link. z induces a

disjoint partition on c(ll) into two sets, R1 and L1 where R1 contains lightpaths colliding

with 11 to the right of the dividing link only, and L1 contains all other lightpaths in c(ll).

We note that by the definition of the dividing link and from the assumption that no link

carries n lightpaths, neither R1 nor L1 is empty.

Consider now the lightpath 12, I2 E R1 that was the lightpath that defined the

dividing link of I1. This lightpath also has a dividing link, partitioning c(12) into L2 and

R_. We note that
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• L1 q: L2 since I2 C L2 but 12 ¢ L1.

• L2 K Li by the definition of the dividing link.

Finally, we observe that this partitioning process can proceed endlessly. For the k'th

partition, we have that the lightpath chosen for the partition, Ik, ensures that Lk-1 ¢: Lk.

Furthermore, since the underlying graph is a tree, Ik _ Li for any i < k. Thus we have

an infinite sequence of sets, L_ whose union is infinite, contradicting the finiteness of the

lightpath set Z:.

Theorem 2 (from the paper) : The number of wavelengths required to establish any set

of Iightpath demands under the lightpath policy is equal to the number required by NWC.

Proof : By induction on the demand set size.

Base : For set size S = i, w = 1 both for NWC and for the Lightpath Policy (WC).

Similarly, for S = 2, if the lightpaths collide then there exists a link common to both and

therefore, w = 2 for NWC. Clearly also, w = 2 for WC.

Inductive step : Assume wNW C = wWC for all lightpath demand set of size k or smaller

and consider a demand set of size k + 1 requiring w wavelengths under NWC. By lemma 1,

there must exist a lightpath 10, colliding with no more than w- 1 other lightpaths. Take 10

out of the set. We now have a demand set of size k which can be established under NWC

with w wavelengths. Therefore, it can also be established under WC with w wavelengths.

Given a correct LP wavelength allocation we can now establish I0 since it collides with no

more than w - 1 other lightpaths and there are w available wavelengths.

i Y---
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set

size

2O

4O

6O

8O

IO0

120

pohcy

WAC NWC

WAC / NWC

ratio

5.10 : 0.99 5.00 : 1.05 1.02

9.10 : 1.60 8.90 : 1.52 1.02

11.50 = 2.07 11.30 = 1.89 1.02

14.90 = 2.33 14.80 = 2.35 1.01

18.10 = 2.60 18.10 = 2.60 1.00

22.10 " 3.7022.10 = 3.70

(a) • Number of Wavelen_hs vs. Lightpath Set Size

1.00

for Network Size = 15

policy
WAC NWC

set

size

20 5.00 = 1.25

40 7.20 = 1.14

60 10.60 = 2.01

80 13.70 = 1.70

100 15.90 = 2.73

120 17.80 = 1.62

WAC / NWC
ratio

4.90 = 1.20 1.02

7.10 ± 1.20 1.01

10.20 ± 1.87 1.04

13.60 = 1.65 1.01

15.50 = 2.76 1.03

17.40 = 1.90 1.02

(b) : Number of Wavelen_hs vi. Lightpath Set Size for Network Size = 30

w

=

w

set

s_e WAC

20 4.60 _ 1.07

40 6.90 = 1.10

60 9.50 = 1.58

80 13.00 = 1.49

100 15.50 = 2.27

120 16.20 = 1.62

policy
NWC

4.50 - 1.18

6.80 = 1.03

WAC / NWC

ratio

1.02

1.01

9.40 = 1.65 1.01

12.90 = 1.79 1.01

15.30 - 2.54 1.01

16.20 = 1.62 1.00

(c) ' Number of Wavelen_hs vs. Lightpath Set Size for Network Size = 45

Table 1 : Effects of Network Size on the Number of Wavelengths

Required for the St*tic Unbounded Cue



arrival policy
rate 'WAC

0.20 6.92 _- 0.49

0.40 11.90 = 0.90

0.80 16.49 _- 0.85

0.80 19.90 = 0.88

1.00 25.90 = 1.35

1.20 28.95 = 1.51

(a) : Number of Wavelengths vs. Lightpath

NWC

WAC /NWC

ratio

5.51 - 0.44 1.26

9.59 - 0.85 1.24

13.28 -r 0.54 1.24

16.26 = 0.89 1.22

21.53 ± 1.33 1.20

24.33 ± 1.40 1.19

Request Rate for Network Size = 15

po_cy
WAC NWC

WAC / NWC

ratio

0.20 6.39 = 0.50 4.83 ± 0.48 1.32

0.40 10.58 = 0.70 8.24 ± 0.66 1.28

0.60 14.06 = 0.69 11.01 ± 0.72 1.28

0.80 17.87 ± 1.21 14.22 X 1.17 1.26

1.00 21.51 ± 0.78 17.27 = 0.86 1.25

1.20 24.75 ± 0.89 20.07 - 0.89 1.23

(b.) • Number of Wavelengths vs. Lightpath Request Rate for Network Size = 30

po_cy

WAC
,.,

5.88 ± 0.41

NWC

WAC / NWC

ratio

0.20 4.50 = 0.41 1.31

0.40 9.88 ± 0.80 7.33 : 0.88 1.32

0.60 13.09 ± 0.84 10.08 = 0.66 1.30

0.80 16.89 = 0.59 13.42 = 0.60 1.26

1.00 201'64 ='0.99 16.66 = 1.03 1.24

1.20 24.29 = i_II 19.77 = 1.16 1.23

(c) ' Number of Wavelengths vs. Lightpath Request Rate for Network Size = 45

Table 2 : Ei_ects of Network Size on the Number of Wavelengths

Required for the Dynamic Unbounded CMe
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Abstract

An inherent problem of conventional point to point

WAN architectures is that they cannot translate op-

tical transmission bandwidth into comparable user

available throughput due to the limiting electronic

processing speed of the switching nodes. This paper

presents the first solution to WDM based WAN net-
works that addresses this limitation. The proposed

Lightpath architecture trades the ample bandwidth

obtained by using multiple wavelength for a reduc-

tion in the number of processing stages and a sim-

plification of each switching stage, leading to sub-

stantially increased throughput.

The principle of the Lightpath architecture

is the construction and use of a virtual topology

network in the wavelength domain, embedded in the

original network. This paper studies the embedding

of virtual networks whose topologies are regular, us-

ing algorithms which provide bounds on the number
of wavelengths, switch sizes, and average number of

switching stages per packet transmission.

1. Introduction

Wavelength division multiplexing is the emerging

technology to provide very high bandwidth. Cur-

rently, however, there are no WAN architectures

that can utilize the entire bandwidth offered by the

optical fibers, supply wide bandwidth to the user

and overcome the switching, buffering, and pro-

cessing bottlenecks in intermediate nodes caused by

the relatively lower speed of electronics. The pur-

pose of the Lightpath architecture is to provide high

speed integrated packet and circuit switching ser-

vices to end users, while specifically addressing the

growing discrepancy between processing and trans-

mission bandwidths [1-3]. The Lightpath archi-

tecture is the first approach with the potential to

achieve the above mentioned objectives, employing

the emerging WDM technology to trade the am-

ple optical bandwidth for a reduction in electronic

processing/switching complexity, thus providing a

direction for a realistic high speed network design.

The Lightpath architecture employs pro-
established lightpaths- pro---established optical

paths connecting two nodes via preset photonic
space switches, as its basic transport vehicle. How-

ever it is practically infeasible to establish a light-

path between every two nodes in the network to cre-

ate a clique, due to the total number of wavelengths
needed and the need to terminate and process such

number of high speed channels at each node.

The Lightpath architecture constructs a vir.

tual topology, a LigMr_e_, in which lightpaths are the

new Links. Transmissions between any two nodes in

the Lightnet take place on the lightpaths, passing

on the way photonic switches within the lightpath

and electronic switches between lightpaths. Light-
net topologies do not require a lightpath connection

between every two nodes. Further.mort, we show

that Lightnets remove the throughput limitations
encountered when applying conventional WAN ar-

chitectures to high speed networks. By using virtual

topologies based on hghtpaths, Lightnets 1) reduce
the number of nodes actively involved in the rout-

ing/processing of a data unit, thus reducing elec-

tronic processing, buffering, and switching bottle-

necks, 2) allow the link bandwidth utilization to ex-
ceed the electronic capacity of the adjoining nodes,

and 3) make feasible, by being virtual, the setup
and maintenance of regular topologies in the wide
area domain.

The exact choice of the virtual topologies is

therefore clearly a key aspect in the proposed ap-

proach. By using regular topologies it is possible

to introduce inherent load balancing into the sys-
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tern, simpl.ify routing, congestion, and other control

procedures, as we[[ as determine the hardware re-

quirements and performance. For instance, when

using a virtual tree topology, the node degree rt
can be determined arbitrarily (e.g. r? = 3 for a

binary tree), while the total number of wavelengths

is bounded by _(rl- 1)logn n for a network with n
nodes [4]. On the other hand, a tree topology cre-
ates inherent traffic bottlenecks at all subtree roots

with a potentially heavy performance degradation

for most traffic patterns. In this paper we there-

fore choose the embedding of a hypercube regular

topology, which does not incur this performance li-

ability. The hardware resources required to embed

a hypercube in terms of number of wavelengths and
switch sizes are derived. Finally, the performance

of a sample network is compared, operating under
a conventional store and forward protocol and op-

erating using the hypercube embedding.

2. Solution Overview

In Lightnet, a virtual topology is embedded in a

general topology by associating the nodes of the

virtual topology with the nodes of the original, gen-
era] topology and implementing the 'edges of the

virtual topology by creating lightpaths. The em-

bedding process consists of three issues: first, the

mapping of nodes in the virtual topology to nodes in

the physical topology, determining a list of source

/ destination nodes in the physical topology that
must be connected by lightpaths. Second, the de-

termination of the physical finks constituting each

of these lightpaths, henceforth referred to as light-

path routir_9. Third, the allocation of wavelengths

to lightpaths, so that 1) the same wavelength is allo-

cated to a lightpath throughout its span, henceforth

termed waveler_gth continuity, and 2) no allocation

conflict occurs, a conflict being defined as the al-

location of the same wavelength to two lightpaths

passing through the same link. We observe that

for a general set of source / destination nodes and

a given lightpath routing, the wavelength alloca-

tion problem was addressed in [12]. In the context

of regular topology embedding, we wish to solve

the resulting instance of the wavelength allocation

problem in a way which provides bounds on the

number of wavelengths required, while exploiting

the characteristics of regular topologies.

A polynomial time algorithmic procedure

embedding a regular topology graph in a general

topology network, while minimizing the number of

wavelengths and consequently the complexity of the

associated hardware, is not known [5,6]. We there-
fore introduce a two phase heuristic solution : in

the first step we obtain a representation of any gen-

era] topology network in the simplest regular form, _

a string, and then proceed in the second step to

embed the regular topologies in this string.

The two phase approach is illustrated

through the embedding of a hypercube in the gen-

era/ topology network of figure l(a). For this net-
work we first find an equivalent representation as a

string, possessing the property that any two paths
that are edge disjoint on the string are also edge

disjoint in the original network. This property en-

sures that a wavelength allocated to two edge dis-
joint lightpaths in the string can also be allocated to

the corresponding fightpaths in the original topol-

ogy, without causing an allocation conflict. Fig-

ure l(b) shows such a string representation. We
notice that in this case a one to one correspondence

exists between the edges of the string and those of

the general graph. However, in the general case, a

string edge may correspond to any subset of adja-

cent general graph edges.

We next establish a sequential mapping of

hypercube nodes to string nodes, in which node 0

in the hypercube is mapped to node I in the string,

node 1 in the hypercube to node II in the string,

etc. Following this mapping, we obtain the light-

paths implementing the hypercube edges as shown

in figure l(d). Finally, an allocation conflict free

wavelength assignment, using five wavelengths is

also shown in this figure, i.e., all ligkt-paths passing

on every physical link are allocated different wave-

lengths. The hypercube is drawn in the standard

form in figure 1(c), noting that every edge in fig-

ure 1(c) corresponds to a lqhtpath in figure l(d).

o Obtaining a String Repre-

sentation

We model a physical network topology as a di-

rected graph Gp(_,Ep) where lip is the set of

nodes and Ep the set of edges. Each edge carries

w wavelengths, determined as given in section 2,

by the target, regular topology. We assume that

if (u,v) E Ep, u,v E Vp then also, (v,u) E I_.
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Thus, transmissions on the same wavelength can

proceed independently in opposite directions. For

G,(I_, Ep) we seek an equivalent string representa-
lion, G,(I_, E,) such that :

$2 Each edge e E E, connecting nodes u,v E V,

corresponds to a subset E C_ Ep forming a path

in Gp from u to v.

S3 Any two paths that are edge disjoint in G, are

also edge disjoint in Gp where the edges are
replaced by the corresponding edge subsets.

Conditions $1-S3 guarantee that any regular

topology embedding on the string G, will also apply

to the physical network Gp, using the same wave-
length allocation. Condition $3 further guarantees,

that two lightpaths allocated the same wavelength
in G, can also be allocated the same wavelength

in Gp. Therefore, bounds computed on the num-

ber of wavelengths and the associated node/switch

capabilities needed in G,, will also hold in Gp.

In the following subsections we present sev-
eral approaches, carrying an inherent tradeoff be-

tween the conditions the graph Gp must meet vis _t
vis the amount of network resources required (num-

ber of wavelengths and passive switch size required

to embed, in the second step, a regular topology in

the generated string).

3.1 A Hamiltonian Solution

The most attractive approach in terms of hard-

ware is obtained by generating the string through

the identification of a I'Iamiltonian path. We ob-

serve that the process of generating a string from
a Hamiltonian path is immediate as is the proof of

the preservation of conditions $1 - $3. In such a

path each node has a degree of 2, so that the size of

the photonic switches in each node is minimal, with
a total of w 2 x 2 switches required, one for each of

the _ wavelengths in the network.

If the physical layout of the original topol-

ogy can be controlled, a Hamiltonian path can be

established easily. Alternatively, it is known that

the problem of finding a Hamiltonian path in a

given arbitrary graph is NP-Complete, requiring

therefore the use of heuristic solutions [7]. The so-

lution presented in [8] presents an average polyno-
mial time algorithm which finds a Hamiltonian path

or establishes that none exists. For graphs created

randomlyl with a fixed probability of an edge ex-

isting between any two nodes, the algorithm was

shown to find a Hamiltonian path if such exists with

an average time of O([VlS).

3.2 AN Eulerian Solution

When a Hamiltonian path cannot be found, con-

sider finding an edge disjoint path through all the

nodes in the network, an Euler path, yielding a

string in which all edges are traversed exactly once.

As proven in [10] the string construction conditions
S1 - $3 are met for the Euler path solution. Com-

pared to a Hamiltonian path, the presence of an

Euler path is easily characterized; when such exists

it is easily found [9]. On the other hand, each node

may be traversed up to D times, D being the node

degree (since each edge may be used once). Con-

sequently, for this solution, each node will require

t_ photonic switching matrices, with the bound on

the size of each matrix given by D x D, cobeing the

number of wavelengths in the network as before.

The algorithm for finding an Euler path is

a simple path extension algorithm [9]. Given the

original graph Gp, first, find an Euler path, e.g. for

the sample graph of figure 3, given by:

E--.D---*F_B--.D_A---.C---_H-*

F-,E-.G

Second, tag the first instance of every node on
the path. Replace all untagged nodes and the

edges connecting them, between every two adjacent

tagged nodes, by a single edge. For the above ex-

ample this procedure generates the following string:

E--, D-. F--. B-_ A--.C--. H-.G

3.3 A Spanning Tree Solution

This last string generation approach does not im-

pose any conditions on the network topology be-

yond connectivity. It is based on finding a spanning

tree of Gp. The string is then generated by a traver-
sal of this tree. Since in this traversal the number

of times each node is visited is bounded only by the

physical node degree, the size of the passive switch-

ing matrices is again given by D x D. To determine
the number of switching matrices in each node we

next present the detailed solution.
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Let T be a directed spanning tree of G r ob-

tained by running a DFS algorithm on Gp [9}. A
sample path described by the DFS algorithm for the

graph given in figure 3 is given by:

B---. F _ E _G--. E_ D _ A_C _ H

On this path tag the first instance of every node

and perform the replacement of edges, as described

in the second step of the Euler path solution gener-

ating, for the previous path, the following string:

B--.F--.E--.G_D---.A-.C---.H

As proven in [10], this construction meets condi-
tions S1 - S3. Note that in the preceding solu-

tions, the edges in the string correspond to disjoint

sets of edges in Gp. When generating a string by

traversing a spanning tree, the corresponding sets
in Gp are disjoint only if the edges have the same

direction on the string (e.g. in the above example,

the path from va to v5 along the direction of the

string and the path from va to v4 in the opposite

direction: both paths use the same edge, va ---* v4
in Gp).

As a result, if w wavelengths are required to

establish a given topology on a string _generated by
either of the two previous solutions, 2w wavelengths

will be required when the string is generated from
a spanning tree, a set of w for each direction. This

result establishes the size of the passive switch re-

quired for the spanning tree approach as 2w switch-
ing matrices of dimension D x D in each node.

4. Embedding A Hypercube

In this section we present the hypercube embedding
algorithm and then investigate the number of wave-

lengths required, the virtual network diameter, and

the resulting switch size.

Embedding : Let Gh(Wh, Eh) denote a hypercube

with a node v E Vh numbered by an index i, i ---

0..n = 2k - 1, k integer and n = IWhl.Number the

nodes in a string G, from left to right by a single

index i, i = 0..n- 1. Define the identity embedding
function by :

c(i) = i, i= 0.=- 1 (1)

Wavelengths allocation : Scan string from left to

right. Define an ordering on the lightpaths based

on their left end-node. Lightpath l, is said to be

smaller than lightpath Ij if it's left end-node is to

the left of lightpath Ij's left end-node. The algo-

rithm keeps track of the usage of wavelengths per
link (a wavelength is used in a hnk if it was allo-

cated to a lightpath passing through the hnk) and

allocates wavelengths to the hghtpaths based on the
above ordering) Formally :

procedure alloc 0

(" allocate wavelengths to lightpaths embedding
a hypercube in a string _)

(* w = _n : number of wavelengths required *)
begin

for i .'= 1 to w do

for j := 0 to n-1 do used[i,j] := false
(" v.sed[_, j] = true if wavelength i was

allocated to a lightpath passing link j "}
for i := 0 to n-1 do

for all lightpaths with origin i do begin

find a wavelength _ for which

used_,k]=false V i < k < d

(* d - lightpath destination *)

allocate _ to the lightpath and mark

usedl_,k]=true ¥ i < k < d
end

end

Figure l(d) illustrates the embedding of a

hypercube using as the original topology the graph

of figure l(a). By observing the edges encompassed

by each lightpath, as determined by figure l(d), it
is seen that the allocation is indeed conflict free,

i.e., lightpaths having links in common have been

allocated distinct wavelengths. As -_n Be seen, a

total of 5 wavelengths is required.

The properties of the hypercube embedding are as

follows : a) a node degree which is logarithmic in

the number of nodes, b) an average number of hops

bounded by log_ n, and c) a gnear number of wave-

lengths, given by _n. The first two properties are

inherent to the topology chosen. In the remainder

we estabhsh the third property and determine its
optimality.

Theorem 1 For large n, the marimal number of

wavelengths required when embedding an n node hy-

percube in a string with the identity embedding func-

tion and the above wavelength allocation algorithm
2

is given by 5n.
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Proof: VV'efirst proceed to prove a lemma counting

the number of lightpaths passing through a link in

the string :

Lemma 1 For large n, the mazimal number light-

paths passing through a link in the string is given by

/3n

Proof : Denote an edge e E Ej connecting nodes i

and i+ 1 by i+ 1. We note that the number of light-

paths passing through an edge i is given recursively

by

S(n-i,n)+i l<_i<n

n inn

S(i,2n) = S(2n-i,n)+n-i n<i< 2n
0 2nki

(2)
where S(i,n) denotes the number of lightpaths

passing through edge i in a hypercube with n nodes.
We seek to find the maximum of this function.

From [10] we have that

2
max S(i,n) = -n (3)

,e[t.,_-q 3

We note that this lemma provides a; lower bound

on the number of wavelengths that will be required

to implement the embedding using this embedding

function. We next present a lemma motivating the

simple algorithm given above for the allocation of

wavelengths to lightpaths so as to attain the lower

bound presented in the previous lemma.

Lemma 2 Let L be a set of lightpaths defined on

a string G,(V,, E,) and let the mazimal number

of lightpaths passing through any given link be m.

Then, there ezists an assignment of wavelengths to

hghtpaths using no more than w = m wavelengths.

Proof : See [10].

The proof of the theorem follows immedi-

ately from these two lemmas since no more than

w = [/3hi lightpaths pass through any given link in
the string and by virtue of lemma 4 an allocation of

wavelengths to lightpaths exists which avoids colli-

sions using no more than w wavelengths.

The correctness of the wavelengths alloca-

tion algorithm, and specifically the availability of

a wavelength for allocation at the inner loop are

guaranteed by the proof of lemma 4. The near-
optimahty of this embedding is proved by develop-

ing a lower bound on the number of wavelengths

required to embed a topology Ge on another given

topology G_. We use a proof along the lines pre-

sented in [11]. Define a ½-partition of a graph G
as a partition of the node set of G into two equinu-

merable sets. In this partition an edge is said to be

comprehended by one subset if both its endpoints

are in the subset. Otherwise we shall term the edge

a cross-edge. The ½-width of G, w(G) is defined as
the minimal number of cross-edges where the min-

imum is taken over all possible ½-partitions of G.
Using these definitions we have:

Lemma 3 A lower bound for the number of wave-

lengths required to embed an arbitrary topology G_

on another topology Gg is given by :

> (4)

Proof : See [10].

Theorem 2 The embedding presented for the hy-

percube is optimal up to a constant factor.

Proof : We first proceed to find a lower bound on

the ½-width of the hypercube.

Lemma 4 The ½-width of the n-node hypercube is
given by w(Gh) = ½rL.

Proof : See [10].
The theorem now follows since it was shown that

at least in1 wavelengths are requireT'wh'_e an algo-
rithm employing 13n wavelengths was shown.

5. Performance

To establish the efficiency of the Lightnet architec-

ture we proceed to compare the performance ob-

served using conventional, store and forward wide

area network operation with the performance of the

same networks employing the hypercube Lightnet

embedding. In this embedding the number of wave-

lengths required is determined by theorem I. In

the embedding process the lightpath routing was re-

stricted to the string, i.e. only the string edges are

used to construct the lightpaths. The performance
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measures studied are network capacity, the max-

imum network throughput that can be sustained

while maintaining ergodicity in all queues and aver-

age buffering requirements at the maximally loaded
node.

In the network model we assume : Packet

processing takes place at all nodes on a packer's

path in a conventional network and nodes perform-

ing switching between hghtpaths in the Lightnet.
A minimum-hop shortest path routing (in terms of

nodes performing switching) with random selection
for tie breaking rule is used. Since packet process-

ing in high speed networks is significant, the node

capacity is modeled as finite. A packet arriving at

a node may enter a processing server if one is avail-

able, or join a common queue if all servers are busy.

Considering the large discrepancy between the opti-
cal transmission bandwidth and the processing and

propagation times, the former is considered neghgi-
hie in the model.

To evaluate the network performance a sim-

ulation was developed. In it, packet arrivals are as-
sumed to follow a Poisson distribution and source

and destination selection for each packet follows a

uniform distribution. Node processing capability

was modeled by 3 parallel (packet) servers, each

with service rate of 0.1 packet/unit time. Upon

terminating service the packet proceeds to the next

node. A propagation delay of 100 time units is as-

sumed between physically adjacent nodes. All sim-
ulation results were obtained with 97% confidence

levels.

The hypercube topology was embedded in

three randomly created physical topologies : The

first "homogeneous" topology was generated with

a diameter and node degree distribution matching

those of an earlier 1978 Arpanet topology. Two

other topologies were introduced to study the rel-
ative effects of various bottlenecks on the perfor-

mance of the store and forward and Lightnet archi-
tectures. The "two-lobe" topology consists of two

clusters of 31 nodes each, randomly connected us-

ing the same parameters as the homogeneous net-

work. To this configuration two nodes were added,
each with one hnk to one of the nodes in each clus-

ter. The third, "elongated" topology, was generated

with a longer diameter of 20 as compared to 15 for

the two lobe topology and 10 for the homogeneous

topology.

Since the primary issue raised in the de-

sign of optical networks is the discrepancy between
transmission which in turn leads to bottlenecks and

reduced user available throughput, we concentrate

on comparing network capacities. Figure 2 presents
network throughput as a function of system load

for the three physical topologies. The results show

that in the random topology network capacity was

nearly tripled when using the hypercube embed-

ding. For the two-lobe topology, the hypercube

embedding provided a capacity increase by a fac-
tor of 4.5. Last, in the elongated topology, net-

work capacity increased by a factor of 7.5 for the

hypercube embedding. The superior performance

of the Lightnet embedding is due to the reduced
number of active switching stages per packet trans-

mission and the inherent load balancing when com-

pared to the conventional network operation. No-
tice that the throughput of Lightnet is independent

of the physical topology carrying the embedding.

Although, for the same regular topology, packets
will traverse different physical paths in different

underlying physical topologies, the data paths in

terms of nodes performing switching between hght-

paths, the factor affecting capacity, remain invari-

able. Figure 3 shows the buffering requirements,

demonstrating that with the Lightnet approach the

increased network throughput does not require ad-
ditional buffers.

6. Discussion and Conclusion

The purpose of this paper was to demonstrate a

new approach to harnessing the emerging WDM

technology for high speed WAN communication.
To be effective, an optical wide area network must

deal with the mismatch between the electronic pro-

cessing rates and the optical transmission band-
width and must present a solution with emphasis

on viable optical/electronic switching. The princi-

ple of the introduced approach is the trading of the

high optical bandwidth for reduced electronic pro-

cessing/switching requirements, while providing for
simplified optical switching at intermediate nodes.

Utilizing the ample bandwidth provided by WDM
in the form of multiple parallel channels, the Light-

path architecture introduced a number of new ideas

which converge into such solution: 1) The use of em-

bedded regular topologies reduces the average num-

ber of processing stages a packet has to traverse in
the network and provides inherent load balancing.
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With a smaller number of stages, the number of ser-

vice instances per packet is reduced. Thus, the total

number of packets processed in the network per unit

of time, i.e. the network capacity, is increased. The

use of regular topologies leads to further reduction

of buffering requirements and a potential simplifi-

cation of control procedures, such as routing and

congestion control. 2) The construction of the reg-

ular topologies in a virtual mode provides a practi-

cal approach for establishing and maintaining reg-
ular structures in wide area networks, which due to

distance and cabling considerations are character-

ized by arbitrary topologies. 3) The introduction of

two level switching allows to distribute the process-

ing/switching requirements between the electronic

and optical switching capabilities of WDM systems.

In Lightnet, the electronic switching capability of
the nodes determines the number of channels that

will be processed/switched electronically, i.e. the

virtual node degree. The optical switching is made

feasible by the lightpath properties: a) lightpath
routes are determined at the virtual topology em-

bedding phase, allowing the use of preset passive op-

tical switches; b) wavelengths continuity within the

llghtpath, allows to significantly reduce the switch

complexity.

The performance results presented in the

paper quantitatively support the basic objectives

of the Lightnet design. They show that for di-

verse WAN physical topologies the user available

throughput is increased up to nearly an order of

magnitude.
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Abstract

Emerging applications require a substantially

higher bandwidth than tile one offered by current
networks. Tile technology necessary for providing

the high bandwidth on the optical fibers, by means

of Wavelength Division Multiplexing (WDM) ex-

ists. However, none of the network architectures

proposed so far can efficiently tap this bandwidth,
due to the limitations imposed by the processing,

buffering and switching required in these solutions.
In this paper we propose a novel architectural ap-

proach that meets the high bandwidth requirements

by introducing a communication architecture based

on lightpaths - purely optical transmission paths in
the network. Since lightpaths form the building

block of the proposed architecture, its performance

hinges on their efficient establishment and manage-

ment. We show that although the problem of opti-

mally establishing lightpaths is NP-Complete, dis-
tributed heuristics provide near optimal solutions

for several of the basic problems motivated by the

Lightpath architecture.

1. Introduction

Current network architectures fail to meet

the emerging integrated demands of commu-

nication applications. First and foremost,
a substantial increase in network bandwidth

must be provided to support applications such

as HDTV, super-computer communications and

video-conferencing [1-9]. Co-existing with these
vast bandwidth consumers, there will continue to

be applications with substantially smaller require-

ments. Thus, in addition to the need for high baud-

width, a bandwidth dynamic range of up to seven

orders of magnitude must be contended with eft/-

ciently [21]. Reliability and availability will also be-

come critical issues in future high speed networks

carrying services previously supported by different
networks. Clearly, the degree of reliability of the

new network must be at least as high as that pro-

vided in the past by the network carrying the most
stringent of the integrated applications. Finally,

many of the emerging applications will present de-

mands both for predictable service and on demand

data delivery, leading to the requirement for inte-

grating packet and circuit switched policies on the
same network.

Currently, Wavelength Division Multiplexing

(WDM) [16-181 offers a solution to the problem
of transmitting the required bandwidth on optical

links. However, the existing switching, processing

and buffering technologies lag behind the transmis-

sion capabilities, turning the nodes into the loci

of congestion. Therefore the bandwidth provided

by optical communication links cannot be readily
translated into a user available bandwidth.

The leading approaches for wide bandwidth
WANs are solutions based on packet switching, usu-

ally termed "fast packet switching" (also ATM,

ATD) [22-26]. In these solutions packets are not
required to wait and be error checked a'[ il_ermedi-

ate nodes. However, E/O conversion of the packet

header and routing oriented processing are reqnired

and in case the outgoing link is busy, the packet is
either stored or discarded. Packet switching solu-

tions are inherently characterized by efficient uti-

lization of bandwidth at the expense of incre,'tsed

processing in the nodes. Therefore the node bot-
tlenecks created by the discrepancy between trans-

mission and processing/buffering cap,'tbilities are

not removed, leading to networks with insufficient

bandwidth and unbounded delays.

In this paper we propose an innovative solution

to the p,-oblem of supplying wide bandwidth to the

users. We employ WDM not only to _ttain the

required bandwidth but also to simplify switching.
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Tileuse ofWDM forswitchiugpurposes,isstrongly

motivated by considering current time division mul-

tiplexing standards for high speed WAN comnm-

nication [10,11]. Ill these, the inherent correspon-
dence between time slots and data channels is uti-

lized so that no identification of the packet header

is required at intermediate nodes. This leads to

practical and simple switching without tile need for
processing. Analogously, WDM possesses the in-
herent capability to identify data channels without

processing, through the association of these with

wavelengths.

Consistently with these observations the pro-
posed architecture is based on the use of liohtpaths.

A l|ghtpath is an all optical path (data channel)

established between any two nodes in the network,

created by tile allocation of the same wavelength

throughout the path. A lightpath requires no E/O

conversions, processing or buffering at intermediate
nodes. Therefore the lightpath concept removes the
electronic bottlenecks allowing efficient utilization

of the bandwidth made available by WDM while

reducing cost and increasing the network reliabil-

ity.

Elnploying lightpaths as the sole medinm for all
network comnmnications thus presents significant

advantages. However, due to the limited number

of available wavelengths, it is generally not pos-

sible to establish a lightpath between every pair
of nodes in tile network. In order to efficiently

utilize the available wavelengths, a lightpath net-

work, Lightrtet, is established. Tile Lightnet nodes

correspond to the actual network nodes while the

links correspond to the established lightpaths. The

Lightnet topology has as objective the minimization
of tile number of nodes actively involved in trans-

mitting a packet, therefore minimizing the process-

ing/buffering required to transmit a packet end to
end. This topology can be further optimized for

routing, congestion or special reliability require-

meats. By using tile lightpaths as tile common and

only transmission medium for packet and circuit

switched communication, the proposed architecture

provides the required high bandwidth and offers in-

tegrated on-demand and connection-oriented data
transmission.

Since the lightpath is the basic building block, its
correct and efficient establishment is crucial to the

successful implementation of the Lightpath archi-

tecture. Following an overview of the architecture

we therefore proceed to study this problem in detail,

analyzing its complexity and providing distributed
solutions for it.

2_ The Lightpath Architec-

ture

We introduce the lightpath as a Udirect commu-
nication path" between two (not necessarily ad-

jacent} nodes, established by allocating the same

wavelength throughout the route of the transmit-
ted data. As a result, transmissions between light-

path endpoints require no electro--optic conversion
and no processing at intermediate nodes. There-

fore, lightpath communication can be readily im-

plemented in an all-optical WDM network, can be

managed by pure end-to-end control and carries

data at %he speed of light" across the network.

To understand wily tile lightpath concept and tile
architecture built around it are a natural develop-

meat in communication and to clarify the principles

of a lightpath based communication architecture we
consider the following analogy :

With tile increase in the speed of trains and grow-

ing congestion at stations, express train transporta-
tion systems were developed. When taking an ex-

press train_ the passenger does not have to wait at

intermediate (local} stations and his travel time be-

comes determined only by the speed of tile express

train. Therefore, tile express system solved the con-

gestion problem, and lead to lower passenger delays
and smaller waiting room at intermediate stations.

The increased speed of optical communication

contrasted with the speed of electronics at the

switching nodes creates an apparent technologi-

cal analogy: In our proposed solution, tl_e wave-

lengths are the rails, the lightpath is an express con-
nection established between two stations and cir-

cuits/packets are tile trains. Furthermore, just as

in railways, the number of wavelengths (rails} is not
sufficient to establish a lightpath (express connec-

tion) between any two stations in the network. The
limitation on the number of lightpaths that can be
established thus makes the efficient establishment

of lightpaths a crucial issue.

Due to the need for end-to-end lightpath estab-

lishment, lightpaths cannot meet the needs for on

demand communication through on demand light-

path establishment. The lightpaths are thus further

equated with express train connections, as clearly,

they are more dynamic than creation of wavelengths
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(laying rails), but not as dynamic as changes ill traf-

fic (passenger} distribution whether in a network or

a railway system. Therefore, to create an efficient
communication network we carry our analogy one

step further by establishing a fast communication
structure, the Lightnet, based on iightpaths simi-

larly to the design of all express train schedule in
a railway system. The design of the Lightnet will

take into consideration the number of wavelengths,

the maxinmm number of hops possible without E/O
conversions and the underlying network topology.

On the basis of the common Lightnet, the pro-

posed architecture constructs an integrated packet
and circuit switching solution. For packet switch-

ing, packets will be routed over =adjacent light-

paths", using available free bandwidth, instead of
being routed between physically adjacent nodes, as

in conventional packet switched networks. In the

proposed circuit switching solution, bandwidth over
several lightpaths will be allocated to a circuit for
the circuit's duration.

The presented architecture carries several funda-
mental benefits:

• The Lightnet reduces the number of active

nodes a packet travels from source to desti-

nation, thus alleviating the performance and
reliability bottlenecks, created by E/O con-

versions, processing and storage.

, The Lightpath Establish-

ment Problem

Since the performance of the Lightpath architecture
hingeson the efficientestablishment of lightpaths,

we turn now to study thisproblem in detail.We

note that the requirement for wavelength continu-

ityintuitivelyleadsto a bandwidth losswhen com-

pared to systems where the continuityconstraintis

not imposed. This losscan be perceived eitheras

an increasein the number ofwavelengths required

to successfullyestablisha given set of lightpaths,

or as an increasein the blocking probabilityifthe

number ofwavelengths islimited.In providingsolu-

tionsfor lightpathestablishment,our objectivewill

thereforebe to findalgorithms that minimi=e this

loss.

In derivinga lightpathestablishment algorithm,

we firstanalyzethe complexity ofan optimal assign-

ment oflightpaths,introducingthefollowingmodel.

We representthe network by a tripletG(V, E, W) in

which V representsthe set of nodes, E represents
the set of directionalfiberlinksbetween nodes in

V, and W isthe set of wavelengths on each link,

IWI = w. We shallassume that w isequal for all

links.

Definition : A lightpathrequestisdefined by the

linksconstitutingthe lightpath that has to be es-
tablishedbetween a source and a destinationnode.

For transmissions to proceed on a llghtpath,the

llghtpathmust be establishedby findingan unallo-

cated, identical,and properly settingup the pho-

tonicspace switches at the intermediatenodes.

• The lightpaths present a novel approach to The problem we propose to study is the cot-

solving congestion problems, fault condlt]ons rect and e_£cient establishment of lightpaths. The
and offer particularly attractive solutions to

networks having asymmetric traffic patterns.

The capability to account for these issues is

a result of the quasi-dynamic nature of the

Lightnet.

The switching nodes' hardware requirements

are simplified, enabling the use of relational

devices in which the relation of the map-

ping between the inputs and the outputs is

independent of the data [27]. A possible

implementation of a switching node for the

Lightpath architecture is depicted in figure 1.

We refer to [13-15,27] for descriptions of suit-

able photonic switches.

correctness aspect of lightpath establishment nmst

solve the problems of collisions : the simultane-
ous allocation of the same wavelength to more than

one lightpath on any given link. In terms of ef-
ficiency, our goal is to maximize the utilisation of

wavelengths. Thus we shall seek solutions that min-

imize lightpath blocking probability, as a function

of lightpath requests. We propose to achieve this

goal by allocating resources in such a way that,

given the allocation of wavelength to existing light-

paths, a maxhnal number of new lightpaths can be

allocated. Figures 2a and 2b exemplify the light-

path allocation problem. The figures depict light-

paths establishment in a network where WDM is

employed, with two available wavelengths (w = 2).

ht figure 2a the allocation is done in such a way
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that any (single) future lightpath den, and can be
allocated. In tile allocation depicted by figure 2b,

if a lightpath demand vl --* v3 comes up before an
existing lightpath is terminated, it will be blocked.

We next consider a lower bound oil the com-

plexity of the above "Dynamic Lightpath Establish-

ment" (DLE} problem by showing that a simpler,
closely related problem is NP-Complete :
Definition : Static Lightpath Establishment

(SLE} problem - given a network G(V, E, W), w >
3, and a predefined set of lightpaths L, is it possible

to establish all lightpaths in the set ?

We proceed to prove the NP-colnpleteness of SLE

by showing that the problem is equivalent to the n-
graph-colorability problem [19,20]. That is, finding
the minimal number of resources that would accom-

modate the den, ands would amount to finding the

chromatic number of some {general) graph, where
the number of colors, n, corresponds to the number

of wavelengths, w.

Theorem : SLE is NP-Complete.

Proof: First we show that solving the n-graph-

colorability problem would also solve SLE.

Define an undirected graph GL (VL, EL) with
a **ode v E VL for every lightpath in L. Two

vertices vl, v2 C VL have an interconnecting

edge e E EL if the respective lightpaths have
at least one link in common. A coloring of VL

with n or less colors, so that no two adjacent

vertices have the same color, would yield a
resource allocation in W where no two light-

paths having a llnk in common require the
same resource. Titus, finding a feasible color-

ing would also yield a feasible resource allo-
cation, answering SLE.

To complete the proof we show that solving SLE

would also solve the n-graph-colorability problem,

thus showing that finding a polynomial solution to
SLE is unlikely. To show this, we describe a polyno-

mial time algorithm that translates any graph into

a network and an appropriate set of lightpath de-

mands. Given a graph GL(VL, EL) do :

o for every node i E VL.(l_reate a node v i

(2_or every edge e = i --4 j E E :
k l

create 4 new nodes x_ y, vi ,vj

and directed edges

k-, ,-I _ ,t) ---4 X, O 3- ---4 $_ 3; --* V _ X ----* 13 3.

Attach the mark i to edges going

from/to v/'s, and x _ y.

Repeat similarly for the mark j.

The construction is exemplified for a 4 node graph

in figures 3a, 3b. Figure 3a contains a graph for
which the n-colorability problem is to be 8olved.

Figure 3b illustrates its translation to a network, the

numbers on the links being the marks. The light-

path den, and set L is defined by the iV,.] lightpaths

where lightpath i requires use of all links having
i as a mark. We note that the complexity of the

algorithm is O(IEL I).

Lemrna : A solution to the SLE with a resource

set of size n implies that the chromatic **um-

ber of GL is less or equal to n.

Proof : The lemma follows immediately from the

construction. If the lightpaths can be estab-
lished then there exists a function assigning

a resource to each llghtpath so that no light-

paths sharing a link are assigned the same

resource. Since two lightpaths share a link

if and only if the respective nodes in VL are

adjacent, this implies the existence of a func-

tion assigning a color to each node in Vt., so
that no two adjacent nodes are assigned the
same color.

Titus, even if all lightpath demands were prede-
termined, we would have to search for a heuristic so-
lution for all but trivial demand sets. When dealing

with an environment were lightpaths are requested

and terminated dynamically, an efficient lightpath
establishment becomes even more difficult as fu-

ture demands cannot be predicted. The next sec-

tion presents a number of polynomial time solutions

for dynamic lightpath establishment. Surprisingly,

these demonstrate that relatively simp-Ie l/-euristics

can yield very good results.

4. Lightpath

Heuristics

Establishment

In searching for heuristic solutions, our purpose
is twofold : investigate the performance of each

heuristic and, obtain heuristics that produce cor-

rect, efficient allocations distributively for dynamic

lightpath demands. The case we consider is that
of non-alternating, source routing. As computing

an optimal allocation is intractable for any traf-
fic demand set of interest, the problem of evalua-
tion becomes also difficult. The translation to the
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colorability problem could have been theoretically

used for comparison to lower bounds on the chro-
matic number. Unfortunately, no good bounds are
known. Furthermore, the best bound, _/ > n/a,

where n is tile number of nodes, a tile stability num-

ber and 7 the chromatic number, is both expensive

to compute and can be shown to be arbitrarily bad

119,201.
We shall therefore study the performance of the

distributed heuristics from two perspectives. Tile

first is concerned with the "performance penalty"

of the lightpath approach and the continuity con-
straint thereof in terms of blocking probabilities. To

obtain this, we perform a comparison with %onven-

tional circuit switching" where lightpaths are estab-

llshed for as long as there is any resource available
on each link, i.e. not necessarily the same one. Such

would be the case if "ideal" wavelength convertors

with zero delays were available. Tile second issue

is to compare the results obtained in a distributed
way with those that can be obtained if all informa-

tion is available, in a centralized way. In what fol-

lows, we first present a Centralized Lightpath Allo-

cation {CLA) heuristic, compare it to to the "ideal"
case and then proceed with tile presentation of dis-

tributed heuristics and their performance, relative
to CLA.

4.1 Centralized Lightpath Alloca-
tion

In order to minimize lightpath blocking probability

we first consider an approach based on the princi-

ple of achieving maximal wavelength reuse through-

out the network. The intuition supporting this ap-

proach is twofold :

1° As long as there is at least one wavelength Xi
which is not allocated on any link in the net-

work, we are guaranteed that any new light-

path demand can be met with no blocking.

2° Assume that a given wavelength Ai has al-

ready been allocated in a subset Ei E E. The

larger this subset, the smaller is the propor-

tlon of new lightpaths which can be estab-

lished allocating _,. Thus, for any new light-

path demand that can be established, using

one of Al, A_,..., we should perform this al-

location by assigning it the wavelength X, (in

the group) with largest Ei set.

We next present a formal solution based on this

approach.
The data structures used in CLA are :

1 : lightpath demand; array containing the links

defining the lightpath.

wave : array determining wavelength utilization;

wave[i] is the number of links in which wave-

length i is allocated.

alive : 0 / 1 matrix; allocli ,j] = 1 if wavelength

j is allocated in link i (hence wave is the sum

of the columns of alive).

Tile heuristic scans alloc finding which wave-
lengths are feasible, choosing among them, the one

for which wave[i] is maximal :
CLA algorithm

establish(l)

(_ establish a lightpath i _)
maz = -I

/or i = 1 to n begin (*/or all wavelenqths *}

feasible = 1

/or all links k on l's path

feasible -- feasible and alloc[l[i],k]
if feasible and if max < wave[i] then

max = wave[i], w = i
end

if max > 0 then begin

for i = 1 to ten do anoc/l/i],w] = 1

wave[w] = wave[w] : len

"establish " the lightpath
end

else - the lightpath is blocked

terminate(l,w}

(_: terminate a lightpath l established

by using wavelength w *)
for i -- 1 to l do alloc/l[i],w] = 0

wave/r/ = wave[_]- ten

The above heuristic was evaluated using a simula-

tion with the following parameters : Lightpath du-

ration times were taken as constant (200 time units)

and lightpath inter-arrival time as exponential. All
results were measured with a confidence level of

99%. Traffic was assumed to be uniformly dis-

tributed; routing was non-alternate, shortest path,

choosing a path at random when several were pos-

sible. 10 wavelengths were assumed to be available

on each link. In figures 5-10 blocking probabilities
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are given as a function of lightpath arrival rate mea-

sured ill lightpaths per time unit. Figure 4a depicts

._ sample general topology network. Figure 5 de-
picts the blocking probabilities for CLA and conven-

tional circuit switching averaged over all lightpaths
and for longest lightpaths only. In terms of average

blocking probability we see that the results are very

close and in fact, for certain loads, CLA actually
displays slightly lower blocking probabilities. This

is due to the fact that long lightpaths are rejected

by CLA with a higher probability thau in conven-

tional circuit switching (see figure 5). The higher

rejection probability occurs due to the requirement
to find an i_lentica] free wavelength throughout the

path. Hence since with CLA more short lightpaths

will be established, the average blocking probability
is decreased.

4.2 PACK - A Distributed Heuris-

tic

As pointed out in section 2, for a realistic implemen-

tation of the lightpath approach, distributed heuris-

tics are needed. Lacking the global information
used in CLA to maximize resource re-use across the

network, two viable approaches for distribution can

be taken. The first approach is based on exchang-

ing information between neighbors, eventually cre-

ating a global picture, or an assessment thereof,

in each node. This approach is useful when the

lifetinle of the information is long with respect to

the information propagation time. However, when
the structures described have connection times that

may be short, nodes will be making decisions based
on outdated information most of the time. We fur-

ther point out that this approach also incurs an
additional complexity cost b_ baJ_dwidth dedicated
to control. The second alternative is to emulate

global knowhdge by implementing a global policy.

This can be done by requiring that nodes that de-

cide which resource will be allocated to a lightpath

do so, by using the same rules. This is precisely

what the following "PACK to beginning" heuris-

tic does. Let Al,A2,... be any arbitrary number-
ing of the wavelengths known to all nodes. PACK

will allocate the s!na[lcst numbered wavelength fea-
sible. Thus on a new lightpath requiremel,t PACK

emulates CLA in the attempt to nmaximize re-use

of wavelengths allocating them in the same order
in all Imdes. However, CLA adapts this order ac-

cording to the current wavelength allocation while

PACK uses a fixed, preset ordering. Hence, CLA

has a superior ability to adapt to changes in light-

path demands. Performance discrepancies between
these two heuristics may therefore be expected due
to this difference.

In the PACK distributed solution four types of

messages are exchanged between the nodes. The

message length is, in the worst case, O{w). These
messages are :

REQUEST (src,dest,wave,id} : lightpath estab-

lishment request, wave is a bitvector contain-

ing a _0" in the i'th location if wavehngth i

can be allocated for the lightpath, id is a

unique lightpath identifier, obtained locally
by concatenating the originating node id to
some counter.

ACCEPT (src,dest,i,id} : lightpath establishment

notice, i is the wavelength number allocated
to the lightpath.

REJECT (src,dest,id} : rejection notice issued
when a lightpath request is blocked.

HANGUP (sre,dest,id} : lightpath termination
message, initiated by node originating the

lightpathreq_est.

Each node maintains the following data struc-
tures :

lightpath(id) An array containing a record for
each lightpath passing through the node. The

record contains the wavelengths allocated (or
reserved) for the lightpath, its incoming edge
and its outgoing edge.

switch[1..n,1..d,1..d ] where oJ = n and d is

the degree of the node. swit'L'h[] defines
the wavelength allocation and the appro-

priate switching function in the node (e.g.
switch[3, 2, 4] = 1 indicates that llnk 2 is to

be switched to link 4 for wavelength Xa).

Following is the algorithm executed by each node

upon receipt of the corresponding messages :

PACK algorithm

request(src,dest, wave,id)
if dest = node then begin

i = select slot(wave)

aeeept(src,de,¢t,i, id)
end

else begin

n = nezt_ node(dea) (" next node in route ")



=

E
zp...

_ i

|

tl

for every wavelength i
if i used in incoming/outgoing link then

wave[if = 1

if wave�i/=1 Vi reject(src,dest, id}

else begin

update data structures for lightpath id

if wave[if set to '1' in this node,
set to '1' the relevant entry in switch

se nd(n, RE¢ UES 7",node, de s t, wave,id)
end

end

end

accept(src,dest, i, id}
set to '0' all entries previously set to '1'

in switch for id, ezcept i

let n be the incoming node of id

(from lightpath(id}}
if src _ node send(n, ACCEPT, sre,node,i, id}

end

reject(src,dest, id}
set to '0' all entries previously set to '1'

in switch for id

let n be the incoming node of id

(from lightpath(id}}

if src _ node send(n, REJECT, src,node,id}
end

terminate(src,dest, id}
if node # dest begin

free entry in switch corresponding to id
let n be the outgoing node of id

(from lightpath(id}}

se rid(n, TERMINA TE, node, des t, id}
end

end

where select_ slot return tile lowest numbered feasi-

ble wavelength.

Figure 6 contains a comparison in terms of block-

ing probabilities for PACK and CLA for the sample

network. As call be seen, tile results are practi-

cally identical, both for the average length light-

path blocking probability and the longest lightpath

blocking probability. Hence, by transmitting infor-

mation only along the path of the lightpath, we

have obtained, contrary to intuition, a distributed

heuristic paying a negligible price in terms of per-

fornlauce.

4.3 Special Topologies

To better understand the relative performance of
the CLA and PACK heuristics we considered addi-

tional network topologies. Figure 4b depicts a net-

work where the topology and traffic pattern create

a single link bottleneck. Blocking probabilities for

this network, shown in Figures 7 and 8, analogous

to figures 5 and 6, denmnstrate that earlier obser-
vations remain valid. This is explained by the fact

that in the general topology network chosen in the

previous case, bottlenecks are also bound to occur

(although at different points in the network at dif-
ferent times). It is thus of interest to consider the
other extreme network case for relative performance

of the two heuristics. Namely we want to consider a

completely symmetrical network, a torus, in which
no single bottleneck will occur, as depicted in fig-

ure 4c. The differences between the performance of

the two heuristics are in this case more pronounced,
as can be seen from figures 9 and 10. A maximal dis-

crepancy, 15%, occurs between PACK and CLA for

the longest lightpaths. The quantitative difference

in the behavior of the two algorithms as a functions

of the network topologies can be explained from the

following observation. In the presence of bottle-

necks, long lightpaths cannot be established, not
even under conventional circuit switching. Hence,

in these networks the importance of optimal wave-

length reuse is less pronounced than in symmetric
networks. Therefore, in symmetric networks, the

prime factor determining the establishment proba-

bility is the wavelength allocation method.

5. Conclusions

In this paper we presented a novel network archi-

tecture motivated by recent developments in opti-

cal communications and targeted towards emerg-

ing wide bandwidth applications. The architecture

makes use of developing transmission and switch-

ing capabilities in the photonic domain to over-
come the inherent limitations of electronics by in-

troducing the lightpath concept. It was shown how,

based on lightpaths, an arcl,itecture meeting the

requirement.s of emerging wide bandwidth applica-

tions, can be designed. Since the performance of

this architecture is linked, first and foremost, to the

efficient establishment of lightpaths, a detailed in-

vestigation of the lightpath establishment problem
was conducted. The complexity of this problem was
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studied and proven to be NP-Complete. However,

it was shown, that using polynomial time heuristics

near-optimal results call be obtained. Both cen-

tralized and distributed establishmeut heuristics for

the dynamic lightpath establishment problem were

presented.
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