58 research outputs found

    Efficient processing of large-scale spatio-temporal data

    Get PDF
    Millionen Geräte, wie z.B. Mobiltelefone, Autos und Umweltsensoren senden ihre Positionen zusammen mit einem Zeitstempel und weiteren Nutzdaten an einen Server zu verschiedenen Analysezwecken. Die Positionsinformationen und übertragenen Ereignisinformationen werden als Punkte oder Polygone dargestellt. Eine weitere Art räumlicher Daten sind Rasterdaten, die zum Beispiel von Kameras und Sensoren produziert werden. Diese großen räumlich-zeitlichen Datenmengen können nur auf skalierbaren Plattformen wie Hadoop und Apache Spark verarbeitet werden, die jedoch z.B. die Nachbarschaftsinformation nicht ausnutzen können - was die Ausführung bestimmter Anfragen praktisch unmöglich macht. Die wiederholten Ausführungen der Analyseprogramme während ihrer Entwicklung und durch verschiedene Nutzer resultieren in langen Ausführungszeiten und hohen Kosten für gemietete Ressourcen, die durch die Wiederverwendung von Zwischenergebnissen reduziert werden können. Diese Arbeit beschäftigt sich mit den beiden oben beschriebenen Herausforderungen. Wir präsentieren zunächst das STARK Framework für die Verarbeitung räumlich-zeitlicher Vektor- und Rasterdaten in Apache Spark. Wir identifizieren verschiedene Algorithmen für Operatoren und analysieren, wie diese von den Eigenschaften der zugrundeliegenden Plattform profitieren können. Weiterhin wird untersucht, wie Indexe in der verteilten und parallelen Umgebung realisiert werden können. Außerdem vergleichen wir Partitionierungsmethoden, die unterschiedlich gut mit ungleichmäßiger Datenverteilung und der Größe der Datenmenge umgehen können und präsentieren einen Ansatz um die auf Operatorebene zu verarbeitende Datenmenge frühzeitig zu reduzieren. Um die Ausführungszeit von Programmen zu verkürzen, stellen wir einen Ansatz zur transparenten Materialisierung von Zwischenergebnissen vor. Dieser Ansatz benutzt ein Entscheidungsmodell, welches auf den tatsächlichen Operatorkosten basiert. In der Evaluierung vergleichen wir die verschiedenen Implementierungs- sowie Konfigurationsmöglichkeiten in STARK und identifizieren Szenarien wann Partitionierung und Indexierung eingesetzt werden sollten. Außerdem vergleichen wir STARK mit verwandten Systemen. Im zweiten Teil der Evaluierung zeigen wir, dass die transparente Wiederverwendung der materialisierten Zwischenergebnisse die Ausführungszeit der Programme signifikant verringern kann.Millions of location-aware devices, such as mobile phones, cars, and environmental sensors constantly report their positions often in combination with a timestamp to a server for different kinds of analyses. While the location information of the devices and reported events is represented as points and polygons, raster data is another type of spatial data, which is for example produced by cameras and sensors. This Big spatio-temporal Data needs to be processed on scalable platforms, such as Hadoop and Apache Spark, which, however, are unaware of, e.g., spatial neighborhood, what makes them practically impossible to use for this kind of data. The repeated executions of the programs during development and by different users result in long execution times and potentially high costs in rented clusters, which can be reduced by reusing commonly computed intermediate results. Within this thesis, we tackle the two challenges described above. First, we present the STARK framework for processing spatio-temporal vector and raster data on the Apache Spark stack. For operators, we identify several possible algorithms and study how they can benefit from the underlying platform's properties. We further investigate how indexes can be realized in the distributed and parallel architecture of Big Data processing engines and compare methods for data partitioning, which perform differently well with respect to data skew and data set size. Furthermore, an approach to reduce the amount of data to process at operator level is presented. In order to reduce the execution times, we introduce an approach to transparently recycle intermediate results of dataflow programs, based on operator costs. To compute the costs, we instrument the programs with profiling code to gather the execution time and result size of the operators. In the evaluation, we first compare the various implementation and configuration possibilities in STARK and identify scenarios when and how partitioning and indexing should be applied. We further compare STARK to related systems and show that we can achieve significantly better execution times, not only when exploiting existing partitioning information. In the second part of the evaluation, we show that with the transparent cost-based materialization and recycling of intermediate results, the execution times of programs can be reduced significantly

    4Sensing - decentralized processing for participatory sensing data

    Get PDF
    Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática.Participatory sensing is a new application paradigm, stemming from both technical and social drives, which is currently gaining momentum as a research domain. It leverages the growing adoption of mobile phones equipped with sensors, such as camera, GPS and accelerometer, enabling users to collect and aggregate data, covering a wide area without incurring in the costs associated with a large-scale sensor network. Related research in participatory sensing usually proposes an architecture based on a centralized back-end. Centralized solutions raise a set of issues. On one side, there is the implications of having a centralized repository hosting privacy sensitive information. On the other side, this centralized model has financial costs that can discourage grassroots initiatives. This dissertation focuses on the data management aspects of a decentralized infrastructure for the support of participatory sensing applications, leveraging the body of work on participatory sensing and related areas, such as wireless and internet-wide sensor networks, peer-to-peer data management and stream processing. It proposes a framework covering a common set of data management requirements - from data acquisition, to processing, storage and querying - with the goal of lowering the barrier for the development and deployment of applications. Alternative architectural approaches - RTree, QTree and NTree - are proposed and evaluated experimentally in the context of a case-study application - SpeedSense - supporting the monitoring and prediction of traffic conditions, through the collection of speed and location samples in an urban setting, using GPS equipped mobile phones

    A framework for multidimensional indexes on distributed and highly-available data stores

    Get PDF
    Spatial Big Data is considered an essential trend in future scientific and business applications. Indeed, research instruments, medical devices, and social networks generate hundreds of peta bytes of spatial data per year. However, as many authors have pointed out, the lack of specialized frameworks dealing with such kind of data is limiting possible applications and probably precluding many scientific breakthroughs. In this thesis, we describe three HPC scientific applications, ranging from molecular dynamics, neuroscience analysis, and physics simulations, where we experience first hand the limits of the existing technologies. Thanks to our experience, we define the desirable missing functionalities, and we focus on two features that when combined significantly improve the way scientific data is analyzed. On one side, scientific simulations generate complex datasets where multiple correlated characteristics describe each item. For instance, a particle might have a space position (x,y,z) at a given time (t). If we want to find all elements within the same area and period, we either have to scan the whole dataset, or we must organize the data so that all items in the same space and time are stored together. The second approach is called Multidimensional Indexing (MI), and it uses different techniques to cluster and to organize similar data together. On the other side, approximate analytics has been often indicated as a smart and flexible way to explore large datasets in a short period. Approximate analytics includes a broad family of algorithms which aims to speed up analytical workloads by relaxing the precision of the results within a specific interval of confidence. For instance, if we want to know the average age in a group with 1-year precision, we can consider just a random fraction of all the people, thus reducing the amount of calculation. But if we also want less I/O operations, we need efficient data sampling, which means organizing data in a way that we do not need to scan the whole data set to generate a random sample of it. According to our analysis, combining Multidimensional Indexing with efficient data Sampling (MIS) is a vital missing feature not available in the current distributed data management solutions. This thesis aims to solve such a shortcoming and it provides novel scalable solutions. At first, we describe the existing data management alternatives; then we motivate our preference for NoSQL key-value databases. Secondly, we propose an analytical model to study the influence of data models on the scalability and performance of this kind of distributed database. Thirdly, we use the analytical model to design two novel multidimensional indexes with efficient data sampling: the D8tree and the AOTree. Our first solution, the D8tree, improves state of the art for approximate spatial queries on static and mostly read dataset. Later, we enhanced the data ingestion capability or our approach by introducing the AOTree, an algorithm that enables the query performance of the D8tree even for HPC write-intensive applications. We compared our solution with PostgreSQL and plain storage, and we demonstrate that our proposal has better performance and scalability. Finally, we describe Qbeast, the novel distributed system that implements the D8tree and the AOTree using NoSQL technologies, and we illustrate how Qbeast simplifies the workflow of scientists in various HPC applications providing a scalable and integrated solution for data analysis and management.La gestión de BigData con información espacial está considerada como una tendencia esencial en el futuro de las aplicaciones científicas y de negocio. De hecho, se generan cientos de petabytes de datos espaciales por año mediante instrumentos de investigación, dispositivos médicos y redes sociales. Sin embargo, tal y como muchos autores han señalado, la falta de entornos especializados en manejar este tipo de datos está limitando sus posibles aplicaciones y está impidiendo muchos avances científicos. En esta tesis, describimos 3 aplicaciones científicas HPC, que cubren los ámbitos de dinámica molecular, análisis neurocientífico y simulaciones físicas, donde hemos experimentado en primera mano las limitaciones de las tecnologías existentes. Gracias a nuestras experiencias, hemos podido definir qué funcionalidades serían deseables y no existen, y nos hemos centrado en dos características que, al combinarlas, mejoran significativamente la manera en la que se analizan los datos científicos. Por un lado, las simulaciones científicas generan conjuntos de datos complejos, en los que cada elemento es descrito por múltiples características correlacionadas. Por ejemplo, una partícula puede tener una posición espacial (x, y, z) en un momento dado (t). Si queremos encontrar todos los elementos dentro de la misma área y periodo, o bien recorremos y analizamos todo el conjunto de datos, o bien organizamos los datos de manera que se almacenen juntos todos los elementos que comparten área en un momento dado. Esta segunda opción se conoce como Indexación Multidimensional (IM) y usa diferentes técnicas para agrupar y organizar datos similares. Por otro lado, se suele señalar que las analíticas aproximadas son una manera inteligente y flexible de explorar grandes conjuntos de datos en poco tiempo. Este tipo de analíticas incluyen una amplia familia de algoritmos que acelera el tiempo de procesado, relajando la precisión de los resultados dentro de un determinado intervalo de confianza. Por ejemplo, si queremos saber la edad media de un grupo con precisión de un año, podemos considerar sólo un subconjunto aleatorio de todas las personas, reduciendo así la cantidad de cálculo. Pero si además queremos menos operaciones de entrada/salida, necesitamos un muestreo eficiente de datos, que implica organizar los datos de manera que no necesitemos recorrerlos todos para generar una muestra aleatoria. De acuerdo con nuestros análisis, la combinación de Indexación Multidimensional con Muestreo eficiente de datos (IMM) es una característica vital que no está disponible en las soluciones actuales de gestión distribuida de datos. Esta tesis pretende resolver esta limitación y proporciona unas soluciones novedosas que son escalables. En primer lugar, describimos las alternativas de gestión de datos que existen y motivamos nuestra preferencia por las bases de datos NoSQL basadas en clave-valor. En segundo lugar, proponemos un modelo analítico para estudiar la influencia que tienen los modelos de datos sobre la escalabilidad y el rendimiento de este tipo de bases de datos distribuidas. En tercer lugar, usamos el modelo analítico para diseñar dos novedosos algoritmos IMM: el D8tree y el AOTree. Nuestra primera solución, el D8tree, mejora el estado del arte actual para consultas espaciales aproximadas, cuando el conjunto de datos es estático y mayoritariamente de lectura. Después, mejoramos la capacidad de ingestión introduciendo el AOTree, un algoritmo que conserva el rendimiento del D8tree incluso para aplicaciones HPC intensivas en escritura. Hemos comparado nuestra solución con PostgreSQL y almacenamiento plano demostrando que nuestra propuesta mejora tanto el rendimiento como la escalabilidad. Finalmente, describimos Qbeast, el sistema que implementa los algoritmos D8tree y AOTree, e ilustramos cómo Qbeast simplifica el flujo de trabajo de los científicos ofreciendo una solución escalable e integraPostprint (published version

    Design and performance evaluation of indexing methods for dynamic attributes in mobile database management systems

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1997.Thesis(Master's) -- Bilkent University, 1997.Includes bibliographical references leaves 99-104.Tayeb, JamelM.S

    Performance optimisation of biological pathway data storage, retrieval, analysis and its interactive visualisation

    Get PDF
    The aim of this research was to optimise the performance of the storage, retrieval, analysis and interactive visualisation of biomolecular pathways data. This was achieved by the adoption of new technologies and a variety of highly optimised data structures, algorithms and strategies across the different layers of the software. The first challenge to overcome was the creation of a long-lasting, large-scale web application to enable pathways navigation; the Pathway Browser. This tool had to aggregate different modules to allow users to browse pathway content and use their own data to perform pathway analysis. Another challenge was the development of a high-performance pathway analysis tool to enable the analysis of genome-wide datasets within seconds. Once developed, it was also integrated into the Pathway Browser allowing interactive exploration and analysis of high throughput data. The Pathways Overview layout and widget were created to enable the representation of the complex parent-child relationships present in the pathways hierarchical organisation. This module provides a means to overlay analysis results in such a way that the user can easily distinguish the most significant areas of biology represented in their data. Although an existing force-directed layout algorithm was initially utilised for the graphical representation, it did not achieve the expected results and a custom radial layout algorithm was developed instead. A new version of the pathway Diagram Viewer was engineered to achieve loading and rendering of 97% of the target diagrams in less than 1 second. Combining the multi-layer HTML5 Canvas strategy with a space partitioning data structure minimised CPU workload, enabling the introduction of new features that further enhance user experience. On the server side, the work focused on the adoption of a graph database (Neo4j) and the creation of the new Content Service (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, enabled efficient access to the complex pathway data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%

    A framework for multidimensional indexes on distributed and highly-available data stores

    Get PDF
    Spatial Big Data is considered an essential trend in future scientific and business applications. Indeed, research instruments, medical devices, and social networks generate hundreds of peta bytes of spatial data per year. However, as many authors have pointed out, the lack of specialized frameworks dealing with such kind of data is limiting possible applications and probably precluding many scientific breakthroughs. In this thesis, we describe three HPC scientific applications, ranging from molecular dynamics, neuroscience analysis, and physics simulations, where we experience first hand the limits of the existing technologies. Thanks to our experience, we define the desirable missing functionalities, and we focus on two features that when combined significantly improve the way scientific data is analyzed. On one side, scientific simulations generate complex datasets where multiple correlated characteristics describe each item. For instance, a particle might have a space position (x,y,z) at a given time (t). If we want to find all elements within the same area and period, we either have to scan the whole dataset, or we must organize the data so that all items in the same space and time are stored together. The second approach is called Multidimensional Indexing (MI), and it uses different techniques to cluster and to organize similar data together. On the other side, approximate analytics has been often indicated as a smart and flexible way to explore large datasets in a short period. Approximate analytics includes a broad family of algorithms which aims to speed up analytical workloads by relaxing the precision of the results within a specific interval of confidence. For instance, if we want to know the average age in a group with 1-year precision, we can consider just a random fraction of all the people, thus reducing the amount of calculation. But if we also want less I/O operations, we need efficient data sampling, which means organizing data in a way that we do not need to scan the whole data set to generate a random sample of it. According to our analysis, combining Multidimensional Indexing with efficient data Sampling (MIS) is a vital missing feature not available in the current distributed data management solutions. This thesis aims to solve such a shortcoming and it provides novel scalable solutions. At first, we describe the existing data management alternatives; then we motivate our preference for NoSQL key-value databases. Secondly, we propose an analytical model to study the influence of data models on the scalability and performance of this kind of distributed database. Thirdly, we use the analytical model to design two novel multidimensional indexes with efficient data sampling: the D8tree and the AOTree. Our first solution, the D8tree, improves state of the art for approximate spatial queries on static and mostly read dataset. Later, we enhanced the data ingestion capability or our approach by introducing the AOTree, an algorithm that enables the query performance of the D8tree even for HPC write-intensive applications. We compared our solution with PostgreSQL and plain storage, and we demonstrate that our proposal has better performance and scalability. Finally, we describe Qbeast, the novel distributed system that implements the D8tree and the AOTree using NoSQL technologies, and we illustrate how Qbeast simplifies the workflow of scientists in various HPC applications providing a scalable and integrated solution for data analysis and management.La gestión de BigData con información espacial está considerada como una tendencia esencial en el futuro de las aplicaciones científicas y de negocio. De hecho, se generan cientos de petabytes de datos espaciales por año mediante instrumentos de investigación, dispositivos médicos y redes sociales. Sin embargo, tal y como muchos autores han señalado, la falta de entornos especializados en manejar este tipo de datos está limitando sus posibles aplicaciones y está impidiendo muchos avances científicos. En esta tesis, describimos 3 aplicaciones científicas HPC, que cubren los ámbitos de dinámica molecular, análisis neurocientífico y simulaciones físicas, donde hemos experimentado en primera mano las limitaciones de las tecnologías existentes. Gracias a nuestras experiencias, hemos podido definir qué funcionalidades serían deseables y no existen, y nos hemos centrado en dos características que, al combinarlas, mejoran significativamente la manera en la que se analizan los datos científicos. Por un lado, las simulaciones científicas generan conjuntos de datos complejos, en los que cada elemento es descrito por múltiples características correlacionadas. Por ejemplo, una partícula puede tener una posición espacial (x, y, z) en un momento dado (t). Si queremos encontrar todos los elementos dentro de la misma área y periodo, o bien recorremos y analizamos todo el conjunto de datos, o bien organizamos los datos de manera que se almacenen juntos todos los elementos que comparten área en un momento dado. Esta segunda opción se conoce como Indexación Multidimensional (IM) y usa diferentes técnicas para agrupar y organizar datos similares. Por otro lado, se suele señalar que las analíticas aproximadas son una manera inteligente y flexible de explorar grandes conjuntos de datos en poco tiempo. Este tipo de analíticas incluyen una amplia familia de algoritmos que acelera el tiempo de procesado, relajando la precisión de los resultados dentro de un determinado intervalo de confianza. Por ejemplo, si queremos saber la edad media de un grupo con precisión de un año, podemos considerar sólo un subconjunto aleatorio de todas las personas, reduciendo así la cantidad de cálculo. Pero si además queremos menos operaciones de entrada/salida, necesitamos un muestreo eficiente de datos, que implica organizar los datos de manera que no necesitemos recorrerlos todos para generar una muestra aleatoria. De acuerdo con nuestros análisis, la combinación de Indexación Multidimensional con Muestreo eficiente de datos (IMM) es una característica vital que no está disponible en las soluciones actuales de gestión distribuida de datos. Esta tesis pretende resolver esta limitación y proporciona unas soluciones novedosas que son escalables. En primer lugar, describimos las alternativas de gestión de datos que existen y motivamos nuestra preferencia por las bases de datos NoSQL basadas en clave-valor. En segundo lugar, proponemos un modelo analítico para estudiar la influencia que tienen los modelos de datos sobre la escalabilidad y el rendimiento de este tipo de bases de datos distribuidas. En tercer lugar, usamos el modelo analítico para diseñar dos novedosos algoritmos IMM: el D8tree y el AOTree. Nuestra primera solución, el D8tree, mejora el estado del arte actual para consultas espaciales aproximadas, cuando el conjunto de datos es estático y mayoritariamente de lectura. Después, mejoramos la capacidad de ingestión introduciendo el AOTree, un algoritmo que conserva el rendimiento del D8tree incluso para aplicaciones HPC intensivas en escritura. Hemos comparado nuestra solución con PostgreSQL y almacenamiento plano demostrando que nuestra propuesta mejora tanto el rendimiento como la escalabilidad. Finalmente, describimos Qbeast, el sistema que implementa los algoritmos D8tree y AOTree, e ilustramos cómo Qbeast simplifica el flujo de trabajo de los científicos ofreciendo una solución escalable e integr

    Multi-Dimensional Joins

    Get PDF
    We present three novel algorithms for performing multi-dimensional joins and an in-depth survey and analysis of a low-dimensional spatial join. The first algorithm, the Iterative Spatial Join, performs a spatial join on low-dimensional data and is based on a plane-sweep technique. As we show analytically and experimentally, the Iterative Spatial Join performs well when internal memory is limited, compared to competing methods. This suggests that the Iterative Spatial Join would be useful for very large data sets or in situations where internal memory is a shared resource and is therefore limited, such as with today's database engines which share internal memory amongst several queries. Furthermore, the performance of the Iterative Spatial Join is predictable and has no parameters which need to be tuned, unlike other algorithms. The second algorithm, the Quickjoin algorithm, performs a higher-dimensional similarity join in which pairs of objects that lie within a certain distance epsilon of each other are reported. The Quickjoin algorithm overcomes drawbacks of competing methods, such as requiring embedding methods on the data first or using multi-dimensional indices, which limit the ability to discriminate between objects in each dimension, thereby degrading performance. A formal analysis is provided of the Quickjoin method, and experiments show that the Quickjoin method significantly outperforms competing methods. The third algorithm adapts incremental join techniques to improve the speed of calculating the Hausdorff distance, which is used in applications such as image matching, image analysis, and surface approximations. The nearest neighbor incremental join technique for indices that are based on hierarchical containment use a priority queue of index node pairs and bounds on the distance values between pairs, both of which need to modified in order to calculate the Hausdorff distance. Results of experiments are described that confirm the performance improvement. Finally, a survey is provided which instead of just summarizing the literature and presenting each technique in its entirety, describes distinct components of the different techniques, and each technique is decomposed into an overall framework for performing a spatial join

    Book of short Abstracts of the 11th International Symposium on Digital Earth

    Get PDF
    The Booklet is a collection of accepted short abstracts of the ISDE11 Symposium
    corecore