
UNIVERSITAT POLITÈCNICA DE CATALUNYA

DOCTORAL THESIS

A framework for multidimensional
indexes on distributed and
highly-available data stores

Author:
Cesare CUGNASCO

Supervisor:
Dr. Yolanda BECERRA

Co-supervisor:
Dr. Jordi TORRES

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Departament d’Arquitectura de Computadors

February 1, 2019

http://www.upc.edu
http://ac.upc.edu

iii

“Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir de la faire plus courte. ”
“I would have written a shorter letter, but I did not have the time. ”

Blaise Pascal, Provincial Letters: Letter XVI (4 December 1656)

v

Abstract

Cesare CUGNASCO

A framework for multidimensional indexes on distributed and
highly-available data stores

Spatial Big Data is considered an essential trend in future scientific and business
applications. Indeed, research instruments, medical devices, and social networks
generate hundreds of petabytes of spatial data per year. However, as many au-
thors have pointed out, the lack of specialized frameworks dealing with such kind
of data is limiting possible applications and probably precluding many scientific
breakthroughs. In this thesis, we describe three HPC scientific applications, ranging
from molecular dynamics, neuroscience analysis, and physics simulations, where
we experience first hand the limits of the existing technologies. Thanks to our expe-
rience, we define the desirable missing functionalities, and we focus on two features
that when combined significantly improve the way scientific data is analyzed.

On one side, scientific simulations generate complex data sets where multiple
correlated characteristics describe each item. For instance, a particle might have a
space position (x,y,z) at a given time (t). If we want to find all elements within the
same area and period, we either have to scan the whole dataset, or we must organize
the data so that all items in the same space and time are stored together. The second
approach is called Multidimensional Indexing (MI), and it uses different techniques
to cluster and to organize similar data together. On the other side, approximate
analytics has been often indicated as a smart and flexible way to explore large data
sets in a short period. Approximate analytics includes a broad family of algorithms
which aims to speed up analytical workloads by relaxing the precision of the results
within a specific interval of confidence. For instance, if we want to know the average
age in a group with ± 1-year precision, we can consider just a random fraction of all
the people, thus reducing the amount of calculation. But if we also want less I/O
operations, we need efficient data sampling, which means organizing data in a way
that we do not need to scan the whole data set to generate a random sample of it.

According to our analysis, combining Multidimensional Indexing with efficient
data Sampling (MIS) is a vital missing feature not available in the current distributed
data management solutions. This thesis aims to solve such a shortcoming and it pro-
vides novel scalable solutions. At first, we describe the existing data management
alternatives; then we motivate our preference for NoSQL key-value databases. Sec-
ondly, we propose an analytical model to study the influence of data models on

vi

the scalability and performance of this kind of distributed database. Thirdly, we
use our experience and the analytical model to design two novel multidimensional
indexes with efficient data sampling: the D8tree and the AOTree. Our first solu-
tion, the D8tree, improves state of the art for approximate spatial queries on static
and mostly read dataset. Later, we enhanced the data ingestion capability or our
approach by introducing the AOTree, an algorithm that enables the query perfor-
mance of the D8tree even for HPC write-intensive applications. We compared our
solution with PostgreSQL and plain storage, and we demonstrate that our proposal
has better performance and scalability.

Finally, we describe Qbeast, the novel distributed system that implements the
D8tree and the AOTree using NoSQL technologies, and we illustrate how Qbeast
simplifies the workflow of scientists in various HPC applications providing a scal-
able and integrated solution for data analysis and management.

vii

Acknowledgements

There are plenty of people I want to thank for their patience and help over these last
few years, but I will not be able to thank you all.

First, I want to thank my supervisors, Yolanda and Jordi, for supporting me
through the thousands of changes of plan, delays and the, sometimes heated, dis-
cussions. Can you believe it? It’s over! Just kidding, tomorrow is business as usual.

Thanks to the reviewers David, Josep Lluís, Lena, Nico, and Toni for their pre-
cious feedback. I know it may seem a formal requirement, but your inputs really
helped me reorganize my thoughts and work in a clear and structured way.

Thanks to the colleagues from the CASE department, Antoni, Beatriz, Fernando,
Guillaume, Hadrien y Mariano for the engaging use cases and for having listened to
me all those times I was praising the virtue of multidimensional indexing.

Thanks to Pol for making the dirty C++ work, and to Eloy for the over-killing
framework for running the tests. Without you my work would have been harder
and surely more boring.

Thanks to all the colleagues and friends I crossed paths with in room C6E201. We
shared many days, lunches, discussions on various topics (independence, Bitcoin,
and gossip, to name a few) and most importantly the coffee machine. Seriously
though, who left the capsule inside?

Thanks to Raül, that made the project Quake possible and, most importantly,
accepts my travel expenses. Thanks to Daniele, for the beautiful Qbeast logo, that
sometimes even steals the show from the algorithms I created.

Thanks to all the the people who heard me say time and time again “I can’t, I
have to work on my thesis!”. Damn, now I have to find another excuse!

Thanks to my father, for giving me the ability to ingest thousands of random and
mostly useless information, and to my mother, for giving me a positive outlook on
life and teaching me to joke even in the darkest hours. I dedicate this thesis to you.
To my grandparents, for being a moral example and inspiration. To my sister, for
always giving me an opportunity to bicker, and to my brother for bringing peace,
usually with a clever pun. To my uncles and aunties for always gathering all of us
as one big family. They even included Brando!

Research says that half of the Ph.D. students suffer from some kind of mental
disorder, and I must thank my wife Ambra if I didn’t fly over the cuckoo’s nest.
Basically, I didn’t have her permission. Jokes aside, she is the best thing that ever
happened to me. She also read all my works in the crazy attempt to improve my

viii

writing and to understand what I am doing, so much so that she probably deserves
a Ph.D. in computer science as well.

ix

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Contributions . 5

1.1.1 Performance characterization of NoSQL technologies applied
in HPC . 5

1.1.2 The D8tree: a read-optimized MIS 6
1.1.3 The AOTree: a write, and eventually read, optimized MIS . . . 7
1.1.4 Qbeast . 8

1.2 Thesis structure . 9

2 Performance characterization of NoSQL technologies applied in HPC 11
2.1 Target scientific HPC applications . 11

2.1.1 BigNASIM . 12
2.1.2 Alya . 14
2.1.3 Cell Data . 16
2.1.4 Missing functionalities and common aspects 18

2.2 Background . 19
2.2.1 Common grounds . 20
2.2.2 Atomicy Consistency Isolation and Durability 21
2.2.3 Concurrency Control . 22

PACELC model . 25
2PC drawbacks . 26

2.2.4 Shared consensus . 26
2.2.5 Durability . 29
2.2.6 Data placement and Metadata management 30

Global mapping . 30
Multiple masters . 31
Gossip . 32
Hashing . 32
The balls-into-bins problem . 32

2.2.7 Data model . 34
Key-value databases . 34
Document databases . 34

x

Column-oriented . 34
Row-oriented . 34
Graph . 34
Object stores . 35

2.3 Distributed data: SQL, NoSQL and Parallel File systems 35
2.3.1 SQL databases . 35
2.3.2 NoSQL . 36
2.3.3 NewSQL . 37
2.3.4 Distributed File Systems . 38
2.3.5 Object stores . 39

2.4 Multidimensional indexing . 39
2.4.1 Quad-tree . 40
2.4.2 KD-tree . 41
2.4.3 R-tree . 41
2.4.4 Distributed Multidimensional indexes 42
2.4.5 Multidimensional sampling . 42

2.5 I/O in HPC . 44
2.6 HPC visualization . 45
2.7 On the state of the art . 47
2.8 Apache Cassandra’s architecture . 48

2.8.1 The cluster structure . 49
2.8.2 Cassandra’s write and read paths 49

2.9 The importance of the data model . 51
2.10 Aeneas . 52
2.11 The analytical model . 53

2.11.1 Methodology . 56
2.11.2 Performance analysis . 57
2.11.3 Influence of the workload distribution 58
2.11.4 Definition of stages and identification of the bottlenecks 61
2.11.5 Performance Modelling . 64

Database model . 65
Validation . 68

2.12 Model analysis . 68
2.13 Summary . 70
2.14 List of publications . 71

3 The D8tree: a read-optimized MIS 73
3.1 Motivation . 74
3.2 NoSQL characterization . 76

3.2.1 Influence of parallelism . 76
3.3 Our proposal: the D8-tree . 78

3.3.1 Index implementation . 81

xi

3.4 Experiments . 82
3.5 Data replication . 86
3.6 Real-time D8tree indexing for HPC . 87

3.6.1 I/O for HPC applications . 87
3.7 Real-time D8-tree index creation . 88
3.8 Architecture . 90
3.9 Experiments . 92
3.10 Summary . 94
3.11 List of publications . 95

4 The AOTree: a write, and eventually read, optimized MIS 97
4.1 Indexing algorithms . 97

4.1.1 D8tree drawbacks . 100
4.2 D8tree performance analysis . 103
4.3 The OutlookTree . 105
4.4 The AOTree: eventually building the OutlookTree 108

4.4.1 Querying the AOtree . 111
Cubes domain estimation . 112
Overall process summary . 113

4.4.2 Distributed transaction . 114
4.4.3 Memory footprint . 115

4.5 AOTree testing . 117
4.5.1 Synthetic tests . 118
4.5.2 HPC integration . 119

4.6 Summary . 125
4.7 List of publications . 125

5 Qbeast 127
5.1 Overall architecture . 127
5.2 Data gathering . 128

5.2.1 Custom secondary index . 128
5.3 Propagating writes . 131

5.3.1 Priority calculation . 133
5.4 Integration with distributed computing framework 133

5.4.1 PyCOMPSs and Hecuba integration 133
5.4.2 Apache Spark integration . 134

5.5 Qview . 135
5.6 Summary . 136

6 Conclusions 137

Bibliography 139

xiii

List of Figures

1.1 Integration between the four contributions of this thesis. 5
1.2 The Qbeast logo, by the designer Daniele Ramancin. 8

2.1 The BigNASIM architecture . 12
2.2 A render of the physical problem . 14
2.3 A snapshot of Qview, our ParaView plugin 15
2.4 An example of cell segmentation . 16
2.5 An example of how the brain images are partitioned 17
2.6 The figure shows represent the PACELC model 26
2.7 The figure shows the Two-Phases Commit protocol (2PC) 27
2.8 Different approaches used by data store systems to handle metadata

and coordination vs data placement. 39
2.9 How data is distributed among nodes in Apache Cassandra 49
2.10 A schema describing the steps involved during a read or write opera-

tion in Apache Cassandra . 50
2.11 An example of two different datamodels 51
2.12 The Aeneas platform . 53
2.13 Data model influence on scalability. 58
2.14 Operations per node vs. sub-query time. 59
2.15 fine-grained: probability density with 16 nodes 60
2.16 Profile patterns: medium-grained and fine-grained 61
2.17 Performance reducing bottlenecks . 63
2.18 Response time versus row size. 66
2.19 Speed-up of parallel queries. 67
2.20 Observed versus predicted time. 68
2.21 Optimal number of rows and the predicted time. 69
2.22 Optimal settings versus ideal scalability. 69
2.23 Load distribution limits for a single master. 70

3.1 A screen-shot of the application . 75
3.2 Influence of parallelism . 77
3.3 The first(left) and second level (right) of a D8-tree. 80
3.4 A Octa-tree structure . 81
3.5 HDD vs. SSD. 85
3.6 Percentage of elements at any level . 86

xiv

3.7 Dynamic D8-tree indexing: (left) A push query of a new data item
triggers a replication to the higher cubes into in-memory MemTables,
with records ordered by priority. When a Memtable reaches its thresh-
old size it is flushed to disk, but only the first few elements are kept. . 89

3.8 The three different architectures we tried in this article: (a) The origi-
nal set up where an Alya master node receives and writes all the infor-
mation, (b) The Alya master node is connected to QBeast nodes, and
(c) all Alya workers push information to QBeast nodes independently. 91

3.9 Screen shots of real-time visualization of particles flowing into the res-
piratory system in a rapid air intake simulation. 92

3.10 System scalability . 93

4.1 A 3-levels D8tree with partition max size = 1. 98
4.2 The picture shows an example of short, regular and long jumps. . . . 100
4.3 The original architecture for runtime D8tree indexing. 101
4.4 How the order influences compaction performance 102
4.5 How the optimal row size changes for different queries and cluster

sizes. 104
4.6 Comparison between the Quad-tree, the D8tree and the outlook-tree. . 106
4.7 A graphical representation of how the data is organized in three MI

algorithms. 107
4.8 An example of insertion range estimation. 109
4.9 Possible Lost Update (P4) during copy. 110
4.10 The OutlookTree implementation schema. 114
4.11 Cassandra and Qbeast IOPS per node and relative speedup. 118
4.12 Particle deposition. 120
4.13 number of writes per worker. 120
4.14 A bar char of the number of writes per worker. 121
4.15 Time for 1000 steps in Alya. 122
4.16 Net I/O time by backends. 123
4.17 Qbeast and PostgreSQL response time for the three example queries. . 124

5.1 A broad view of QbeastV1 vs QbeastV2 128
5.2 Locally vs globally stored indexes . 130
5.3 Different strategies to propagate insertions. 131

xv

List of Tables

3.1 Performance Speedup D8Tree vs PostGIS 84

4.1 Performance comparison of GPFS and local SSD disks in Marenos-
trum IV. 118

4.2 Qbeast speedup improvement after ReadOptimizations with the rela-
tive number of iterations and index cube visited. 124

xvii

List of Abbreviations

2PC Two Phase Commit
2PL Two Phase Locking
Aeneas An Extensible NoSQL Enhancing Application System
AOtree Asymptotic Outlook Tree
BSC Barcelona Supercomputing Center
D8tree Denormalized Octa Tree
GC Garbage Collection
HPC High Performance Computing
HTAP Hybrid Transactional Analytical Processing
JVM Java Virtual Machine
MD Molecular Dynamics
MI Multidimensional Indexing
MIS Multidimensional Indexing with uniform data Sampling
MVCC MultiVersion Concurrency Control
NoSQL No SQL or Not only SQL
OLAP Online Analytical Processing
OS Operative System
RDBMS Relational Data Base Management System
SQL Structured Query Language
XML Garbage Collection
XSD XML Schema Definition

xix

Per la mia Mamma

1

Chapter 1

Introduction

Technology development is a human process, and as such it does not follow a strict
path. We are social animals; we communicate best with people that share our lan-
guage, background, and view of the word; with people from our community.

Communities are a powerful force, and the thousands of ongoing open-source
projects are living proof. The Linux kernel project, with more than 15 thousand
developers, is a striking example. The downside is that the stronger is the sense
of belonging to a group, the harder it gets to communicate and understand "out-
siders" [87].

It is easy to see how this type of tribalism influences modern politics, where
increasingly polarized factions are unable to agree on any topic, whether it is dealing
with global warming, emigration, economy or sovereignty.

The situation in computer science is not nearly as grim, yet the acronym NIH -
Not Invented Here - [10] is well known by anybody working in the sector. The "NIH
syndrome," also known as "the tendency of reinventing the wheel," is something we all
have experienced, if not perpetuated, in our daily work.

While continuously re-implementing similar software can eventually (or casu-
ally) improve the technology stack, it is arguably an inefficient way.

The focus of our work in the Barcelona Supercomputing Center (BSC) is data
management and distributed computing. We looked into different technological
communities and studied how similar problems have been solved in various fields.
We tested, analyzed and adapted "foreign" technologies for the HPC scientific re-
search. As a positive collateral effect, we have also brought HPC know-how to other
sectors, improving and extending the capability of a widely used database.

In the middle of the 2000s, the rise of the "Social Web" emphasized the impor-
tance of user-generated content and interaction. Web 2.0 companies had to adapt to
deal with a much larger flux of data, but existing solutions were unfit to the job.
In particular, Relational DataBase Management Systems took the hit. RDBMS, while
rich in features, they lacked the speed and the horizontal scalability capabilities re-
quired. Indeed, business-oriented features such as relational integrity constraints,
strong transactional consistency, and flexible declarative query language, which are

2 Chapter 1. Introduction

undoubtedly nice to have, are also complex and expensive to implement in a to-
tal peer-to-peer fashion and thus reduce the capability of such systems to linearly
increase their performance by simply adding more computers.

The outcome was that a new generation of databases with reduced function-
alities, but improved performance and scalability started to be popular. The new
and extremely heterogeneous data storage systems were named with the buzzword
NoSQL. Eased from SQL architectural constraints, NoSQL databases were put to
deal with increasingly larger data sets. For example, in 2014 Apple reported using
the NoSQL database Apache Cassandra to manage data in the order of the tens of
petabytes with millions of concurrent transactions. Such increase in performance
opened new applications in sectors where databases were historically considered
too slow to be used. In our case, it made it possible to use a database to store the
results of HPC scientific applications.

Dealing with storage, the HPC and NoSQL communities may share workloads
of comparable orders of magnitude, but they tend to have different priorities and
focuses. For NoSQL, the principal goal is availability, which means that a system
must always work, despite hardware or software faults as the slightest downtime
could lead to millions of euro of lost revenue.
Diversely, in HPC the focus is more on the bare performance, trying to push the
hardware to the boundaries, even if it means sacrificing functionalities or system
availability. In other words, any internet company that uses NoSQL is generally
willing to sacrifice the performance per machine, or performance per dollar, aiming
to more scalable and stable systems. Instead, in research we try to squeeze all the
computation we can get for the same budget, with less care if the system has some
downtime or requires low-level programming skills. Generalizing, on the one hand,
we see fleets of thousands of commodity hardware servers, while on the other fewer
high-end machines.

Therefore, it is not surprising that the two sectors have developed differently,
focusing on what is considered more important. In NoSQL, we have databases of
thousands of nodes distributed in different countries and continents working to-
gether, while in HPC we have master-slave file systems integrated into the high-
speed network with RDMA capabilities.

Nevertheless, with data centers estimated to have consumed 1.3% of world en-
ergy in 2010 [66] and expected to rise to 20% in 2025 [9], it is imperative to increase
computing energy efficiency, which also means bringing HPC know-how to the
whole ICT industry.

In the meantime, as HPC simulations grow larger, scaling up to thousands of
cores, there is an emerging need of fault-tolerance and highly-available architec-
tures, as with these numbers the likelihood that one or more nodes fail during an
executions increases. Also, in our experience, developers tend to re-implement exist-
ing solutions or use inefficient architectures when dealing with low-level interfaces.

Chapter 1. Introduction 3

Such a tendency, as we will discuss later in this thesis, leads to poor performance
that can nullify the advantage of high-end HPC hardware.

In this thesis, we will analyze which features of existing key-value database tech-
nology can be beneficial to HPC, what is missing, and how it is possible to improve
the working methodology of researchers. At first, we will describe the migration
of three scientific applications, ranging from molecular dynamics, neuroscience and
physics simulations to NoSQL solutions, and we study how the way we store the
data influences the performance and scalability of the system. Then, we analyze
which desirable features are missing, and we focus on two which we find extremely
important but somehow at times underestimated, and that significantly improve the
way scientific data is analyzed when combined.

Scientific simulations generate complex data sets where multiple correlated char-
acteristics describe each item. For instance, a particle might have a space position
(x,y,z) at a given time (t). If we want to find all elements within the same area and
period, we either have to scan the whole dataset, or we must organize the data so
that all items in the same space and time are stored together. The second approach
is called Multidimensional Indexing (MI), and it uses different techniques to cluster
and to organize similar data together.

While both ICT and HPC widely use single-dimension indexing on large data
sets, MI is different because multidimensional points lack of an intrinsic natural or-
der. While it is easy to determine that 3 comes before 5, we cannot say that the 2D
point (1, 3) comes before point (2,2). One might be closer to a specific location, like
point (0,0), but there is not a universal order, and therefore all indexing techniques
which rely on ordering data cannot be directly applied. An alternative approach
is to reduce the granularity of the dimensions and combine them in a unique, dis-
tinct value. This approach is used in many databases and indexing systems, but it
only works well when the distribution of the value is mostly uniform and does not
change in time. For instance, we could split a map of a city into quadrants of one km
squared size, and create a file for each quadrant containing the name of the restau-
rants and shops in that area. Some files will be probably larger than others, but no
file will grow up to the point it is unmanageable. Now, let us suppose that we use
the same approach to track the position of people in the city. In this case, we will see
that some files, the one coinciding with stadiums, concert halls, and shopping malls
will be much larger than others. Even worse, such distribution is likely to change
over time, or between day and night. To overcome these limitations, Multidimen-
sional Indexes take care of adapting the way data is partitioned following the data
distribution, even when it changes over time.

Many authors [37] [33] [101] pointed out how multidimensional and spatial big
data are going to be an essential part of future scientific and business applications.
In particular, Eldawy et al. [37] describe how we are entering the “Era of Big Spatial
Data”, with space telescopes generating up to 150 GB of spatial data per week [61],

4 Chapter 1. Introduction

medical devices producing spatial images at a rate of 50 PB per year and social net-
works that are managing billions of geotagged events per day. However, the lack
of specialized frameworks to deal with such kind of information is limiting possible
application and probably precluding many scientific breakthroughs. For instance,
Simion et al. [100] discussed in their work “The Price of Generality in Spatial Indexing”
how re-using existing solutions for one-dimensional indexing in spatial applications
leads to sub-optimal performance in PostgreSQL. Kornacker et al. [67] reached a sim-
ilar conclusion analyzing the use of generalized indexes in DB2/Common Server.
Again, Eldawhy and Mokbel[37] elaborated a comprehensive survey of the existing
solutions for big spatial data, and they described all existing approaches and their
relative limitations. In particular, they showed that few solutions target dynamic in-
dexing, and they only work for small point queries. Finally, they conclude that there
are several open research problems that must still be addressed in this area.

On the other side, approximate analytics has been often indicated [48][4] as a
smart and flexible way to interactively explore large data sets in a short period, as it
allows to test and try different hypothesizes rapidly. Approximate analytics includes
a broad family of algorithms which aim to speed up analytical workloads by relaxing
the precision of the results within a specific interval of confidence. For instance, if we
want to know the average age in a group with ± 1-year precision, we can consider
just a random fraction of all the people, thus reducing the amount of calculation.
But if we also want less I/O operations, we need efficient data sampling, which means
organizing data in a way that we do not need to scan the whole data set to generate
a random sample of it.

To our knowledge, there are no existing solutions that support scalable Multi-
dimensional Indexing combined with efficient data Sampling (MIS), a feature that
we consider fundamental when dealing with large data sets, as it enables more agile
data pipelines, and new types of interactive analysis and data exploration.

These two features when combined enable interactive exploration of massive
simulations, allowing scientists to explore the outcomes of their experiment with the
desired level of detail and to run distributed analysis with either arbitrary precision
or precise timing deadlines.

For these reasons, this Ph.D. thesis focuses on the incremental development of
novel distributed MIS solutions that can be applied both to HPC and data analytics
workloads.
The research described in this thesis brought to the invention of 2 novel MIS algo-
rithms and the development of a peer-to-peer distributed indexing architecture that
we think is going to influence the architecture of the future data storage systems and
it will simplify the way HPC simulations are managed.

1.1. Contributions 5

1.1 Contributions

This thesis will prove that alternative storage solutions based on NoSQL technolo-
gies are a viable and convenient option when dealing with scientific simulations as
they improve performance, speed up the research workflow and increase user pro-
ductivity.

Additionally, we will describe how we extended the capabilities of NoSQL tech-
nologies proposing Qbeast; a novel distributed system for multidimensional indexes
with arbitrary approximated precision that we will prove to be a viable solution to
store, visualize, explore and analyze large scientific simulations. Qbeast includes
two major contributions, the D8tree, and the AOTree, two novel indexing algorithms
that target different application scenarios.

Text

Porting of HPC
applications to

NoSQL

Background
analysis

Lack of
scalable MIS

Importance of
the data model

Analytical model

D8tree

QbeastV1
+

Alya

D8tree
performance

analysis

OutlookTree

QbeastV2
+

Alya

Performance characterization
of NoSQL technologies applied in HPC

The D8tree:
a read-optimized MIS

The AOTree:
a write, and eventually read, optimized MIS

Q
b

east

AOTree

FIGURE 1.1: Integration between the four contributions of this thesis.

This document describes in detail the research behind our work, the develop-
ment journey we followed and the results we achieved. Figure 1.1 shows the incre-
mental steps we have taken and the path we followed working on this thesis. The
Figure also shows how the different incremental steps can be organized into four
main contributions. More precisely:

1.1.1 Performance characterization of NoSQL technologies applied in HPC

In the first contribution, we will present a broad background analysis of existing
storage technologies with a review of their benefits, criticalities and missing func-
tionalities for scientific applications. Then, we will motivate our preference for
NoSQL key-value databases and we will analyze three HPC applications that we
have improved using this technology. We learned from these use cases two vital

6 Chapter 1. Introduction

lessons. Firstly, how important the data model is in achieving performance and scal-
ability in distributed applications. Secondly, that multidimensional indexing with
efficient data sampling is a critical missing feature in NoSQL technology that can
greatly benefit scientific research. These lessons will motivate the creation of our
first MIS algorithm, the D8tree.

Later, we will propose an analytical model that estimates the performance of
a distributed key-value database by taking into consideration the relationship be-
tween the data model - more precisely the cardinality of the key -, the size of a data
element, and the number of servers. This model will help to overcome some of the
limits of the D8tree, and it will drive the design of a new write-optimized MIS algo-
rithm, the AOTree.

The work performed in this area produced the following publications:

[32] Cugnasco, C., Becerra, Y., Torres, J., & Ayguadé, E. (2017, August). Ex-
ploiting key-value data stores scalability for HPC. In Parallel Processing Workshops
(ICPPW), 2017 46th International Conference on (pp. 85-94). IEEE.

[30] Cugnasco, C., Hernandez, R., Becerra Fontal, Y., Torres Viñals, J., & Ayguadé
Parra, E. (2013). Aeneas: A tool to enable applications to effectively use non-relational
databases. In Procedia computer science, Vol. 18, 2013 (pp. 2561-2564). Elsevier.

and it has been motivated by the following publications:

[53] Hernandez, R., Cugnasco, C., Becerra, Y., Torres, J., & Ayguadé, E. (2015,
March). Experiences of using Cassandra for molecular dynamics simulations. In
Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro In-
ternational Conference on (pp. 288-295). IEEE. oo

[55] Hospital, A., Andrio, P., Cugnasco, C., Codo, L., Becerra, Y., Dans, P. D., ... &
Gelpí, J. L. (2015). BIGNASim: a NoSQL database structure and analysis portal for
nucleic acids simulation data. Nucleic acids research, 44(D1), D272-D278.

1.1.2 The D8tree: a read-optimized MIS

The second contribution is the development of the D8tree, a fully peer-to-peer read-
optimized MIS that builds a de-normalized Octa tree index with stratified replica-
tion on top of key-value databases. The system takes advantage of the high write
throughput of the underlying key-value database to build a read-optimized struc-
ture that can efficiently run MIS queries. Also, we will describe the design of the
first version of Qbeast, the distributed system that produces the D8tree in real-
time. Then, we will analyze the performance and shortcomings of the integration
of the D8tree with a physics simulation run with Alya; a simulation code for high-
performance computational mechanics developed at the BSC.

1.1. Contributions 7

Finally, we will describe how our solution significantly speeds up and improves
the daily workflow of scientists by enabling early access to the results and simula-
tion steering.

The work performed in this area produced the following publications:

[31]Cugnasco, C., Becerra, Y., Torres, J., & Ayguadé, E. (2016, January). D8-tree: A
de-normalized approach for multidimensional data analysis on key-value databases.
In Proceedings of the 17th International Conference on Distributed Computing and
Networking (p. 18). ACM.

[13] Artigues, A., Cugnasco, C., Becerra, Y., Cucchietti, F., Houzeaux, G., Vazquez,
M., ... & Labarta, J. (2017). ParaView+ Alya+ D8tree: Integrating High Performance
Computing and High Performance Data Analytics. Procedia Computer Science, 108,
465-474.

1.1.3 The AOTree: a write, and eventually read, optimized MIS

The third contribution of this thesis is the development of a new indexing algorithm
that overcomes the shortcomings of the D8tree delivering higher writing through-
put while eventually guaranteeing its same query performance. By studying the
performance of the D8tree and using the analytical model to analyze the limitation
of possible applications, we will propose the OutlookTree, an index that reduces the
storage and transactional overhead of the D8tree by decreasing the data replication
without compromising query performance. Then, we will present the Asymptotic
Outlook Tree, AOTree, a patent-pending write and eventually read optimized in-
dexing system. The AOTree uses opportunistic data distribution and optimization
to build a write-optimized index that ultimately evolves into an OutlookTree, thus
improving query performance even in write-intensive HPC environments.

As part of this contribution, we will compare Qbeast’s AOTree implementation
with PostgreSQL and with file storage on GPFS. Furthermore, we will describe how
we achieved good performance integrating an MPI based application with our sys-
tem which uses TCP/IP.

The work performed in this area resulted in the following publications:

In preparation: Cugnasco, C., Calmet, H., Santamaria, P., Gil, E., Sirvent, R.,
Becerra, Y., Torres, J., Ayguadé, E., Labarta, J. (2019). Qbeast, the HPC multidimen-
sional database. To be submitted to ICPP2019

European patent request EP18382698.1, with title DISTRIBUTED INDEXES, ap-
plicant BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE
SUPERCOMPUTACIÓN, and author Cesare Cugnasco and Yolanda Becerra.

8 Chapter 1. Introduction

1.1.4 Qbeast

The fourth contribution is Qbeast, the system that distributively implements the
D8tree and AOTree. Indeed, as existing HPC problems motivate our research, we
had to find a way to test our algorithms and architectures when applied in a real-
istic application scenario, thus verifying that any theoretical advances would result
in real benefits. To test these assumptions, we can either build a prototype database
from scratch, or integrate our software into an existing database. With the first ap-
proach, we implement a strip-down mock system with only a few functions avail-
able. A mock system has the advantage that it is simpler to understand what influ-
ences the overall performance, as there are fewer components to interfere, but the
results are less significant. Indeed, a real-world application would require the miss-
ing features, thus potentially changing the final system behavior. For this reason, we
preferred the second approach, thus we implemented a system that reuses part of
the code and architecture of Apache Cassandra, a widely adopted and open source
NoSQL database.

FIGURE 1.2: The Qbeast logo, by the designer Daniele Ramancin.

We named the new software Qbeast 1.2 (read as ["kju:bi:st]), the “cubistic beast.”,
as an homage to the cubism art movement pioneered by Pablo Picasso that revolu-
tionized the way we can represent a 3-dimensional world into a 2D canvas. Simi-
larly, Qbeast aims to innovate the way multi-dimensional information is organized
into linear storage.

1.2. Thesis structure 9

1.2 Thesis structure

The thesis is structured as follows: Chapter 2 is our first contribution, and it con-
tains an analysis of the data management requirements of three HPC applications
and the description of the available solutions. This chapter also motivates our pref-
erence for key-value databases, and we propose an analytical model that explains
the relationship between the data model and scalability. Chapter 3 describes our
second contribution, the D8tree algorithm, and it examines its performance advan-
tages and drawbacks when indexing static data sets or when managing the I/O of
HPC applications. As our third contribution, Chapter 4 describes the path toward
a write-optimized MIS index by illustrating the drawbacks of the D8tree, defining
the OutookTree, and finally, proposing the AOtree that represents our final solution.
The chapter also contains a performance comparison of the AOtree with GPFS and
PostgreSQL. The implementation details and the architectural trade-off of Qbeast
are described in Chapter 5 as the fourth and last contribution of this thesis.

Finally, in Chapter 6 we will draw our conclusions, and we will discuss possible
future works.

11

Chapter 2

Performance characterization of
NoSQL technologies applied in
HPC

The first contribution of this thesis is a study of the data management requirements
of HPC applications and it contains a description of the existing storage solutions.
Also, this Chapter includes an analysis and modelization of the relationship between
the data model and the performance of key-value databases when used for HPC
applications. Firstly, we will analyze the data management requirements of three
scientific use cases on which we have been working on in the last few years, focusing
on their criticalities, missing functionalities and areas of improvement of the current
solutions.

Secondly, we give a broad description of all the available distributed data storage
solutions, and we will provide the reader with the required background information
to distinguish between different architectural choices. Thirdly, we will motivate our
choice to use key-value databases as a storage solution in HPC, and we will discuss
the importance of the data model in achieving high performance and scalability.
Lastly, we will describe an analytical model that we have developed to predict and
study the influence of the data model in key-value databases and that we will use to
design novel MIS algorithms.

2.1 Target scientific HPC applications

A large part of the work our research group has been doing in these years at the
Barcelona Supercomputing Center has been adapting and studying the performance
and the usability of NoSQL technology in HPC. One of the main problems we had to
face was overcoming the natural resistance to change. No matter how inconvenient a
legacy method or procedure is, users tend to oppose learning new ways to do things,
even if it simplifies its daily workflow. Having this in mind, our main focus has
been since the beginning to provide a familiar interface to users, requiring minimum
changes in their way to work. However, unlike SQL databases, in NoSQL databases
the way you organize data dictates which kind of query can or cannot be done, or

12 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

which ones will be fast or extremely slow. Therefore, our work always aimed to
find the right trade-off between having a more performant data model or preserving
interoperability with existing legacy code. Eventually, the experience we maturated
drove our research toward a scalable multidimensional index.

In this section, we will provide a brief description of the work we have done
over three main HPC applications coming from different scientific areas: life science,
applied medicine, and neuroscience.

2.1.1 BigNASIM

FIGURE 2.1: The BigNASIM architecture

Our first collaboration, BigNASIM [55] focused on building a NoSQL based ser-
vice containing the structures that allow the analysis for nucleic acids simulation
data. The service is online and accessible from http://mmb.irbbarcelona.

org/BIGNASim/. Molecular dynamics - MD- is one of the bioinformatics tools that
generate the largest amount of data and that consumes the highest volume of CPU
resources in supercomputing centers. MD focuses on studying the physical move-
ments of atoms and molecules. The simulations usually run for a pre-determined
amount of time and the resulting data, composed by the molecules’ positions, as
well as their physical properties, are periodically stored in equally distanced times-
tamps. After almost 40 years since the first biomolecular simulation, MD has reached
the maturity to tackle the simulation of macromolecules, on time spans that can go
from the multi-nanoseconds to even microsecond scales. As a byproduct, huge tra-
jectory files are stored for further analysis. However, it is common practice that such

http://mmb.irbbarcelona.org/BIGNASim/
http://mmb.irbbarcelona.org/BIGNASim/

2.1. Target scientific HPC applications 13

simulations are often ignored and forgotten after a rather superficial analysis. The
goal of BigNASIM is to create an open tool where researchers can upload their MD
trajectory, so that their work can be reused in different studies, potentially saving
thousands of computing hours, money and speeding up the research process.

The solution we adopted used a mixed approach, trying to take advantage of
two different NoSQL databases: Cassandra and MongoDB. MongoDB is used to
store all the metadata related with a simulation, while Cassandra stores the actual
trajectory data. We used two separate systems as Cassandra performs better for
large datasets with a structured form, while MongoDB is more flexible storing the
differently structured metadata information that different providers use. Our work
focused on Cassandra, with two main contributions:

1. Adapting a popularly used MD analysis python library, MDanalysis and MD-
plus to manage seamlessly trajectory stored in Cassandra.

2. Developing a custom trajectory bulk loader to speed up the loading of large
trajectories on Cassandra.

Cassandra adopts a DHT architecture, and thus the popularity and the cardinal-
ity of the primary keys strongly influence performance.

LISTING 2.1: The BigNASIM trajectory data model

CREATE TABLE topology (
atom_num i n t PARTITION KEY,
atom_name t ex t ,
atom_type int ,
chain_code int ,
residue_code int ,
residue_num i n t
) ;

CREATE TABLE t r a j e c t o r y (
frame int ,
atom_id te x t ,
x double ,
y double ,
z double ,
PARTITION KEY(frame , atom_id)
) ;

Listing 2.1 describes the data model we used to store the trajectory data. Topol-
ogy holds the description of the molecular system using atom numbers as the main
indexing key, and storing the atom details, and the usual logical ways of group-
ing them (residue, chain). The Trajectory table stores the coordinates indexed using
frame and atom numbers.

14 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

In this situation, the decision regarding the data model was mainly driven by the
need to minimize the change in the existing legacy library. Indeed, by defining the
frame number as partition key, we ensure that all the atomic coordinates at a given
snapshot are stored contingently in the same node. Additionally, each frame has
atomic identifiers as a second level index, allowing efficient access to any subset of
atoms. We have chosen to prioritize frame based access, after analysing the access-
ing patterns of the MDAnalysis software used to handle trajectory data. Indeed, we
were constrained by its interface, which always accesses to trajectories one frame at
a time. Consequently, with our model, the existing algorithms manage a trajectory in
Cassandra seamlessly as if it was a common file. At the same time, algorithms that
require data of only a subset of atoms may be optimized to take advantage of the
second level indexing. To move trajectory data in and out of the Cassandra subsys-
tem, the use of the Python package MDPlus assures full compatibility with existing
molecular dynamics software. Still, when dealing with massive bulk data loading
into the database, the overhead introduced by the network communications and the
data marshalling between different platforms can be a problem. For this reason,
we developed a utility program that takes as input a trajectory file and converts it
directly into SSTables files, the Cassandra internal binary data format.

2.1.2 Alya

FIGURE 2.2: A render of the physical problem

Alya is a BSC in-house HPC-based multi-physics simulation code designed to
simulate highly complex problems and efficiently run on high-end supercomputers.
Alya is developed in the CASE department of BSC. In a previous work, Artigues et
al. [14] made a first attempt to couple large simulations with a system that was able
to visualize them and run custom queries. They used a brute force approach, us-
ing Hadoop to store the results and Impala to run custom queries on the data. hen,
they generated a binary file in VTK file format, a popular library for manipulating

2.1. Target scientific HPC applications 15

and displaying scientific data files. Then they used ParaView, an open-source data
analysis and visualization application, to open and visualize these files. The down-
side of such an approach is that the simplest operation, such as the visualization of a
sample of a simulation, requires first to load in memory all the data, then a random
selection of the elements, writing the VTK file to disk and then opening the data in
ParaView. On other words, if a scientist only needs to see a fraction of the simulation,
the whole data needs to be loaded and filtered. A pivotal point in our research was
realizing that this approach is neither scalable nor efficient and so we had to look
for a smarter solution. That lead first to the D8tree and finally to the AOtree that
are better described in Chapters 3 and 4. The previous workflow pipeline required
firstly to run the whole simulation in a supercomputing facility. Secondly, once the
simulation completed, copy the data to the Hadoop cluster, then run the query, copy
the VTK in the local computer and finally visualizing it with ParaView. With our
solution, Alya is directly integrated with Qbeast, our indexing system. Indeed, we
provide the integration with Slurm, an open-source job scheduler used by many of
the world’s supercomputers and computer clusters. In such a way, the HPC code
can be co-allocated with a Qbeast cluster of arbitrary size. In any moment during
the simulation, the scientist can open in its desktop computer ParaView with our
plugin (Qview, described in Section 5.5) and interactively visualize the data.

FIGURE 2.3: A snapshot of Qview, our ParaView plugin

Figure 2.2 shows a snapshot taken from a video render generated from a simula-
tion of the physical problem. Render videos ensure stunning visualization, but they
lack interactivity. The render is produced only once the simulation has completed,
and the camera shows a pre-determined path and zoom. To change the perspective
or the focus you need to re-run the render, which is an operation that can take hours
even with GPU optimized machines. Figure 2.3 shows our approach with Qbeast.

16 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

In this case, we can access the data while the simulation is running and decide to vi-
sualize only a fraction of the data so that we can interactively explore the results. In
this snapshot specifically, we are visualizing the trajectory of the particles that have
flown by a specific area that we have selected from ParaView, while the code to filter
and select the particle was written with Hecuba. The image comes from a demo that
has been presented at the ISC and SC in 2017.

2.1.3 Cell Data

The third and last HPC application we will consider comes from the neuroscientist
community. In the context of the Human Brain Project, one of the two European
flagship projects, we have collaborated in studying the I/O bottleneck of different
applications that are used in the HBP community. Above all, we will focus on the
problem of cell data segmentation, that describes the tasks of recognizing brain cells
in high-resolution microscopical images. Each image has a size in the order or the
tens of GB, while a full brain scan can be several terabytes.

FIGURE 2.4: An example of cell segmentation

Figure 2.4 shows an example of cell segmentation. Each image is part of a hori-
zontal section of the brain. The yellow lines represent the cell borders that have been
detected. For each cell, we have to find the position in the image - and therefore in
the space - and additional physical properties such as maximum width and height.
In the first implementation, we analyzed, each image was divided into equally sized
parts and the work distributed among MPI workers that analyze a disjoint subset of

2.1. Target scientific HPC applications 17

them. In the end, each worker negotiates with the master node a unique ID for each
found cell. Then, the workers generate a position matrix of the size of their input
portion, mapping each image pixel to a number which either indicates the absence
of a cell - 0 - or identifies the cell present in that position. Finally, the master collects
all matrixes, merges them and stores the result in an HDF5 file, a commonly used
binary format for multidimensional arrays.

This approach had two main drawbacks. Firstly, the nodes could only synchro-
nize at the end of each part of the work, which led to suboptimal performance be-
cause areas with a higher concentration of cells tend to be slower to analyze. Sec-
ondly, the master limited the scalability as the amount of data we needed to store
to record the cell position was approximately the same size of the input data, and
moreover, it had to be transmitted to the master to be reorganized and persisted.
We improved the application using PyCOMPSs, a framework for distributing com-
puting workflows; Hecuba, a library for distributed data management; and Qbeast,
our implementation of a distributed MIS system. These technologies are better de-
scribed in Chapter 5. By using Hecuba to store data, the workers do not need to
synchronize between them before persisting data as anyone can do I/O individu-
ally. Once the synchronization was removed, using PyCOMPSs instead of MPI, we
allowed the scheduler to reorganize the execution of the tasks so that if a job took
longer to compete, the others could proceed in parallel with no stall.

Finally, Qbeast allowed avoiding to create and store the position matrix, as it
can index more efficiently each cell in the space. In some situations, using Qbeast
instead of the position matrix in HDF5 meant shrinking the space requirements from
approximately 40GB to 600MB for each image.

FIGURE 2.5: An example of how the brain images are partitioned

Figure 2.5 shows another application in which the indexing capability of Qbeast
can be useful. On the left side, we can see how a plane of a brain scan is partitioned in
segments so that the application can process each segment independently. However,

18 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

if a cell falls in between two partitions, it will be counted twice, and it will report the
wrong physical dimensions. The highlighted box in Figure 2.5 shows an example
of an area that we need to post-process to reconcile all intra-border cells. At the
same time, a similar process of cell reconciliation is also required when merging a
cell that spans on multiples plans, so that we can generate a more consistent atlas
of the brain. By using Qbeast, it is possible to reduce the I/O requirements of such
post-processing operations, as long as we have to load in memory only the cells that
fall into the bordering areas.

2.1.4 Missing functionalities and common aspects

The three applications we have discussed have different requirements and are an
excellent example of which kind of functionalities scientific use cases can require.
For example, in the case of BIGNASim, the focus is on providing a storage backend
that can seamlessly integrate with the existing legacy code without major changes.
Furthermore, as BIGNASim is a service accessible by the whole scientific commu-
nity, the data storage must be both highly available and able to horizontally scale to
cope with the increasing number of users. Also, as the simulations’ size can go up
to hundreds of gigabytes, it is essential to reduce the distance between users and the
datacenters, which is possible using multi-datacenter geographical replication. The
second use case, Alya, underlines the importance of being able to visualize uniform
random samples of the results while the experiment is still running without penaliz-
ing the overall simulation speed. In the cell data application, the focus is on the inte-
gration of the analytical code with the data storage systems, where it is paramount
to partition and split large datasets by their space distribution thus improving the
performance of space-correlated machine learning algorithms.

All three cases also have many similarities. For example, in all cases, the data
is never deleted, nor updated and only new elements are added to the simulation.
As we will discuss later, such usage pattern relaxes the requirements that a storage
system must support, as long as many consistency issues cannot rise.

Furthermore, all three cases simulate real-world 3D physical problems thus jus-
tifying our advocacy for better multidimensional support in scientific storage sys-
tems. In particular, the Cell Data and the Alya use cases also show the need of
efficient uniform data sampling on specific regions of the space. In the first case,
to improve machine learning algorithms execution, while in the second to speed-up
interactive visualization. In both cases, these functionalities can be supported by a
multidimensional index with efficient data sampling support (MIS).

In the following sections, we will discuss the available data storage solutions,
and we will provide the necessary background information required to understand
the difference and characteristics of the different systems. Finally, we will motivate
our preference for key-value databases, and we will discuss the importance of the
data model in such systems. This study will then guide our design for two novel
distributed MIS algorithms.

2.2. Background 19

2.2 Background

In this Section, we will try to give a brief but broad view of the available solutions
that deal with distributed management of data. We will highlight the most popular
tendencies and the shared aspects that can be found in software alternatives from
different sectors. We hope the reader will forgive us if we omit some relevant details
for the sake of a more general abstraction.

In this effort, we will point out what accumulates heterogenous systems such
as distributed parallel filesystems, whether POSIX compliant or not; SQL, NoSQL,
NewSQL databases; and object stores.

At first, we shall start discussing the scope these systems aim to tackle. Databases
traditionally fall in two broad categories; OTPL and OLAP. The first, Online Trans-
action Processing systems (OTPL) focus on relieving applications from dealing with
concurrent reads and writes. Different clients can modify the same data without
having to care about consistency. The typical workload comprises a high number
of simultaneous operations that affect a limited number of elements. The canonical
example is a bank with clients withdrawing money from their accounts at the same
time. On the other hand, OnLine Analytical Processing systems are more suited for
reporting, data mining, and forecasting. These types of workloads typically require
reading and aggregating large sets of information. Therefore OLAP databases are
mostly optimized for complex queries rather than concurrency. In other words, few
users doing long running read-mostly queries.

In a typical scenario, the data is copied periodically from an OTPL database into
the OLAP one with a process named Extraction Transformation Loading. The ETL
process adds a delay between the time new business events occur and when their
effect appears in reports and analytics. In numerous situations, as the value of in-
formation is said to decrease with time, a lag ranging from minutes to hours is un-
bearable. Hence, a relatively new tendency is Hybrid Transactional-analytical pro-
cessing (HTAP)[45], which aims to unite real-time transaction and historical data in
a unique system. As described by Andrew Pavlo et co.[83], there are generally three
types of approaches to implement HTAP pipelines in a database application. The
first and straightforward solution requires deploying two different database clus-
ters, one serving the transactional workload while the second serving the analytical
queries. In such a scenario, each update gets propagated to both clusters. Periodi-
cally, the application executes the required complex queries on the analytical cluster
and then pushes the results into the front-end database. In such a way, the analytical
workload does not interfere with the transactional one. As a drawback, we have two
systems to maintain and a considerable latency between an event and the moment
we can analyze it.

A somehow similar approach is the design known as lambda architecture[75]
that combines three layers, a batch one for historical data, a speed/streaming one to
provide views on incoming data, and a serving one that merges the two and delivers

20 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

the final information to the users. To provide a simple example, let’s imagine we
want to count the page visits of a website. With the streaming architecture we would
probably use a framework such as Apache Hadoop[97] or Apache Spark[118] to
analyze hourly the logs and to compute a view reporting the number of visits for
each page at the time the batch runs. On the other hand, we would have a streaming
framework, such as Apache Storm[108] or Apache Spark Streaming[116], to keep an
approximation of the count of visits. The serving layer will then act as a glue of the
two systems, merging the results and presenting it to the final users.

The problem of both approaches is that we must maintain two different systems
and sustain the overhead of copying the data several times across the various com-
ponents. The additional complexity also has a financial impact, as administrative
cost and developing overhead increases the overall personnel cost. Indeed for large-
scale database systems this cost is estimated to be 50% of the total cost of owner-
ship[92].

A third and more desired approach is building a unique system capable of sup-
porting analytical workload without degrading the speed of transactions. Many
databases have started to move in such a direction. A typical approach is to use
two different database engines and scheduling for the two types of workloads, this
way they do not interfere. This solution is popular both in NewSQL databases, such
as SAP HANA [99] and MemSQL [77], and NoSQL ones like Datastax Enterprise
Cassandra and ScyllaDB [95]. Yet, it is still open for discussion if a "one-size-fits-all"
approach is the best one [103].

The reader may wonder what these classifications, OLTP, OLAP, and HTAP have
to do with parallel filesystems and object storages as they do not provide transac-
tions or analytics functionalities. On the other hand, HPC applications that store
data in files have to deal with concurrent writes and reads from different nodes and
workers. Also, once the simulation completes, scientists often run additional anal-
ysis on the results, and that usually requires a change in structure and reorganizing
the data in a process that is similar to the previously cited ETL. Then, scientists must
write the code to run the analysis distributedly, building a system similar to the
OLAP ones.

From our point of view, if not mere filesystems or object storages, the overall
stack that HPC scientists use to support their pipeline can be classified, or at least
share many characteristics, with OLTP or OLAP systems. For example, if many
workers compete for the same file, a library such as MPI I/O is generally used to
buffer writes and coordinate MPI workers. Alternatively, if each worker generates
different files, a second phase is required to merge and transform the data. In sec-
tion 2.5 we will elaborate further on this topic.

2.2.1 Common grounds

The goal of this section is to build a common ground of terminology, algorithms
and common architectures that we can find in most of the distributed systems that

2.2. Background 21

manage data.
Such a broad and detailed description will then help us to understand the archi-

tectural choices that we have taken in the design of Qbeast. More precisely, it will
lay down a vocabolary that will help us to understand how our solution differ from
the others and which kind of guarantees we can provide to the users.

More precisely, the algorithms, approaches, and architectures that I will list will
touch in the following topics:

1. ACID

2. Concurrency control

3. Shared consensus

4. Durability

5. Data placement and Metadata management

6. Data model

2.2.2 Atomicy Consistency Isolation and Durability

Relational databases must ensure ACID guarantees to meet the standard. ACID is
defined as:

Definition 2.2.1 Atomicy:
An operation is either completely executed or completely aborted, by avoiding the existence
of inconsistent information in case of a crash of the system.

A typical example is a transfer between two bank accounts: it is mandatory that the
subtraction of the money from one account and the addition to the other are both
successful or both aborted.

Definition 2.2.2 Consistency:
The guarantee that operations in transactions are performed accurately, correctly, and with
validity, concerning the application business logic.

Using the previous example, the system could avoid a transfer if the first bank ac-
count does not have enough money.

Definition 2.2.3 Isolation:
It guarantees that two transactions, made at the same moment, are executed as if they were
executed sequentially.

Definition 2.2.4 Durability:
It means that after the committing of a transaction the data remains even in the event of a
power loss or if a system crash occurs.

In the following sections I will describe how these properties are implemented
in distributed databases.

22 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

2.2.3 Concurrency Control

With Concurrency Control we group all techniques that guarantee correct results -
consistency - even when multiple operations run concurrently and while preserving
speed. There are, however, different nuances regarding the meaning of consistency.
Additional to the ACID definition 2.2.2, we can find:

Definition 2.2.5 The guarantee that transactions see all the effects of transactions commit-
ted in the past.

Definition 2.2.6 The guarantee that database constraints, such as table relationship, unique-
ness etc., are not violated.

Definition 2.2.7 The guarantee that a completed update is visible to all clients of a dis-
tributed database.

In this discussion, we will focus only on the first and the last definitions of con-
sistency.

The first definition 2.2.5 relates to the concept of Serializability, which is the prop-
erty that the outcome of a concurrent transaction is the same outcome we would
have if the transactions were processed serially, without overlap.

According to "A Critique of ANSI SQL Isolation Levels Hal"[17], the undesired
phenomena that must be avoided to preserve serializability are:

Definition 2.2.8 (P0) Dirty Write:
Transaction T1 modifies a data item. Another transaction T2 then further modifies that
data item before T1 performs a COMMIT or ROLLBACK. If T1 or T2 then performs a
ROLLBACK, it is unclear what the correct data value should be.

Definition 2.2.9 (P1) Dirty Reads:
Transaction T1 modifies a data item. Another transaction T2 then reads that data item before
T1 performs a COMMIT or ROLLBACK. If T1 then performs a ROLLBACK, T2 has read a
data item that was never committed and so never really existed.

Definition 2.2.10 (P2) Non-repeatable Reads:
Transaction T1 reads a data item. Another transaction T2 then modifies or deletes that data
item and commits. If T1 then attempts to reread the data item, it receives a modified value or
discovers that the data item has been deleted.

Definition 2.2.11 (P3) Phantoms:
Transaction T1 reads a set of data items satisfying some <search condition>. Transaction T2
then creates data items that satisfy T1’s <search condition> and commits. If T1 then repeats
its read with the same <search condition>, it gets a set of data items different from the first
read

2.2. Background 23

Definition 2.2.12 (P4) Lost Update:
The lost update anomaly occurs when transaction T1 reads a data item, and then T2 updates
the data item (possibly based on a previous read), then T1 (based on its earlier read value)
updates the data item and commits.

Definition 2.2.13 (A5A) Read Skew:
Suppose transaction T1 reads x, and then a second transaction T2 updates x and y to new
values and commits. If now T1 reads y, it may see an inconsistent state, and therefore produce
an inconsistent state as output

Definition 2.2.14 (A5B) Write Skew:
Suppose T1 reads x and y, which are consistent with a particular constraint, and then a T2
reads x and y, writes x, and commits. Then T1 writes y. If there were a constraint between x
and y, it might be violated.

The last two definitions were not originally included in the ANSI SQL standard,
and they have been proposed by Berenson et al. [17] to address the shortcomings of
MVCC.

The canonical way to ensure Serializability is to use the two-phase locking (2PL)
protocol. The protocol states that a transaction should have two phases, an Expand-
ing/ Growing phase, and the following Shrinking/ Contracting one. In the first, locks
can be acquired but not released, while in the second, locks can be released but not
acquired. The locks are either exclusive write-locks or shared read ones. The rule
goes that if one transaction has a write-lock on a resource, the others cannot read
or write it, while multiple operations can have simultaneous read locks on the same
object. At the same time, if there is a read-lock on an item, it is impossible to acquire
a write one.

The main problem of 2PL is the degradation in performance caused by lock con-
tention. Also, as long as writes need to acquire an exclusive lock on a table, long-
running reading queries block any updates. Indeed, in such a case an analytic query
would likely acquire a read-lock on a whole table, stalling all concurrent writes for
the duration of the first query.

An alternative solution is MultiVesion Concurrency Control (MVCC), which uses
timestamps and incremental transaction ids to achieve transactional consistency with
snapshot isolation (SI), which holds lower guarantees compared to Serializability.
The main idea is that an update does not modify the old object but it creates a new
version. In such a way a transaction T sees the database state as produced by all
the transactions that committed before T started, but no effect from the overlapping
ones. Thus, we avoid (P1) Dirty Reads 2.2.9, (P2) Non-repeatable Reads 2.2.11, (P3)
Phantoms 2.2.11, without having to lock write or read operations.

To avoid (P4) Lost Update 2.2.12, the DBMS aborts a transaction T if a concur-
rent transaction committed an update of an item that T wants to change. This rule
is often called "First-Committer-Wins". However, anomalies such as (A5B) Write
Skew 2.2.14 [17] are possible.

24 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

An example of such an anomaly has been proposed by M.J.Cahill et al. [22]. Let’s
suppose we have a table Duties that keeps track of the working shifts of doctors in a
hospital. A doctor can either be "on duty" or "on reserve" for a given shift, and there
must always be a doctor on duty for each shift. A transaction that wants to put on
reserve a doctor will first update their record, and then count the number of doctors
on duty, and if there are none, abort the transaction. However, in such a scenario
with the mere SI, if all doctors on duty try at the same time to switch on "reserve",
they will be allowed to do so as they won’t be able to see the conflicting updates.

While there are existing solutions for serializable isolation for MVCC, they ei-
ther require to keep track of the entire read set of every transaction, with a massive
overhead for read-heavy workloads [22], or work only for in-memory databases[79].

A final alternative approach is the mere timestamp ordering implemented by
VoltDB[102], which splits the database in partitions and schedules transactions to
execute one-at-a-time at each partition. Such an approach, however, has the down-
side that a transaction that touches multiple partitions slows down the whole system
as nodes stay idle due to network latency [83].

The fourth definition of consistency 2.2.7 influences many aspects of the design
of a distributed database, as it guarantees that a completed update is visible to all
clients. In particular, it determines the overall throughput, latency, and stability of
a distributed system. In general, there is not a "one-size-fits-all" solution, and the
architecture of a distributed database must find the right trade-off between Avail-
ability and Consistency. Originally, such trade-off has been described by the CAP
theorem introduced by Dr. Brewer in a keynote in 1999 and then formalized by
Gilbert and Lynch [47] in 2002. The theorem states that in a web system there are
three desirable properties, but it is possible to have at most two of them. These
properties are:

Consistency
Same as 2.2.7: all the clients read the same values at the same time from all the
servers. When this is not possible, they receive an error.

Availability
Every query receives a non-error response, but it might contain an obsolete
value.

Partition tolerance
Even though the network arbitrarily loses or delays messages, the system must
continue to operate.

To ensure full ACID compliance, distributed RDBMS cannot sacrifice consistency
and therefore, in case of a network partition, they lose availability, which means
some operations will fail. For such reasons, they are usually cataloged as CA which
stands for Consistent and Availability. Also, distributed RDBMS have a reduced
availability in case a master server fails. In this case, part of the data may be accessi-
ble for read operations but not for the write ones.

2.2. Background 25

The main focus with NoSQL databases started with the assumption that in modern
web-based applications, the Partition tolerance is a must-have. Consequentially, in
the last few years many different databases were developed omitting many of the
common features of RDBMS, but having more focus on Partition tolerance. They
can be divided into two main categories:

CP: Consistency and Partition
These databases focus on guaranteeing that each node always reads the same
data; if a network partition occurs the requests will either fail or return the
most updated value.

AP: Availability and Partition
These databases are designed to guarantee the availability of the system even
in case of a network partition or the crash of a server. However, requests may
not contain the latest information.

Such a model, however, covers only the behavior of the system in case of a net-
work partition which rarely occurs. Many geographically distributed databases are
indeed willing to lose consistency in favor of latency also when no network parti-
tion is present. In such a case, a better model is the one proposed by Daniel Adabi
et al. [3]. They defined the PACELC model that extends the CAP in case there are no
network losses.

PACELC model

As shown in Figure 2.6, in the PACELC model a system can be defined by how it
behaves when the network works properly and when it does not. In case a net-
work partition occurs, it has to sacrifice either the Availability for the Consistency
or vice-versa. On one side, when there are not communication issues, it has to de-
cide between Consistency and low latency replies. Databases can favor one or the
other or can allow users to choose the best behavior for each scenario. In any case,
this choice influences the performance and scalability of both the database and the
application.

Two Phases commit RDBM and NewSQL databases tend to favor consistency over
availability, and therefore they use a master-slave based approach, the Two-Phase
Commit (2PC) protocol to achieve distributed consistency. As shown in Figure 2.7,
the two phases are:

Prepare phase:

1. The master sends a Prepare request to each slave.

2. The slaves execute the operations and send the Prepared responses (either
commit or abort) to the master. The resources are now locked.

3. The master collects all the responses.

26 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

FIGURE 2.6: The figure shows represent the PACELC model

Committing phase:

1. The master decides either if the transaction is successful or not, and com-
municates its decision to all the slaves.

2. The slaves complete the commit (or rollback) of the operation, then un-
lock the resources and send an acknowledgment to the master.

3. The master receives all the responses and commit (or rollback) globally.

2PC drawbacks

The problem of the Two-Phase Commit protocol is that it is not network-partition
tolerant. If the master fails after the committing request phase, the slaves continue
to lock the resources, and they do not know if they have to commit or rollback. The
problem in such a case is that the slaves cannot reach an agreement on whether the
transaction is completed or not. As we will discuss in the next section, the issue
relates to the more general problem of the shared consensus, and there are several
alternative solutions adopted both in distributed databases and filesystems.

2.2.4 Shared consensus

The simplest way to coordinate many actors, both in computer science and soci-
ety, is arguably to entrust one participant to decide and organize the others. Such a
solution works well with few participants but tends to be problematic in large set-
tings. The main problems are performance and resilience, since a single master node
might not be able to manage an increasing number of slaves. Similarly, availability is
compromised, as the system might stop working if the master is either temporarily

2.2. Background 27

FIGURE 2.7: The figure shows the Two-Phases Commit protocol
(2PC)

off-line or out of service. A straightforward solution for the first problem is to split
the overall domain into partitions and assign a master to each one. In such a way,
concurrent requests over disjoint partitions do not interfere with each other. How-
ever, in case of large transactions touching many partitions, the masters are required
to coordinate between them, adding a layer of complexity and ultimately reducing
performance. An additional problem arises when the data distribution changes over
time. Thus a re-balance of the workload between masters is required. While some
products promise to automate such a process, they still require additional mainte-
nance work as they have to deal with situations of partition re-sizing or migrations.
Such an approach is popular both in distributed databases and filesystems.

In any case, we still have to deal with the problem of a faulty or no responding
master. A wide range of algorithms, often called three-phase commit (3PC) protocol,
aim to avoid the case in which the failure of a participant prevents the overall pro-
cess to proceed. The typical solution is to nominate a new master if the first one
fails, but it requires to deal with the leader-selection process ensuring that all peers
agree. Among the various ways to implement such a process, the most popular is
the Paxos Consensus Algorithm proposed by Jim Gray and Leslie Lamport in 2004[49].
Their definition borrows from the more general problem of consensus which is a
traditional topic in the distributed computing community. Indeed, many solutions
with precise fault models and rigorous proofs of correctness have been proposed
in literature[35][84]. In particular, Gray and Lamport use a specific variant called
Paxos algorithm[72] [73], an asynchronous, non-Byzantine model, that takes care of
all boundaries cases that can arise from lost or delayed messages when all parties

28 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

have to agree on a common truth. The algorithm guarantees that if a large enough
subnetwork of participants is not faulty, a shared value can be reached.

The participants of the Paxos algorithm can be (not exclusively) proposers, ac-
ceptors, and learners. The first group proposes the values; the second are the ones
that can promise to accept the value if the majority is reached, and the third ones
are those who get to know the final agreement. Each proposal has a positive natural
number, which must be incremental and unique among all parties, so that each par-
ticipant has an individual sequence of possible numbers. We will call this number
EID, election ID. For example, if we have ten nodes, the first one might use the EIDs
0,10,20, the second one 1,11,21, and so on. The messages that participants can send
are:

Proposers:

1. Prepare(EID): can you accept a proposal with such EID?

2. Accept(EID, value): I accept this value with your EID

Acceptors, when replying to a Prepare(EID):

1. Promise(EID): yes, I can accept this EID

2. Promise(EID, Accepted(old_EID,old_value)): yes I can accept this EID,
but I previously accepted this old_value. This message is sent in case of
contentions when multiple Proposers want to reach a consensus with dif-
ferent values, thus it may happen that an Acceptor has already received
both a Promise and an Accept with a lower EID.

At the end, the Acceptors send to all the Learners the message Accepted(EID, value).
The process starts when a Proposer initiates the Paxos, it chooses an EID from its
range which must be higher than any EID previously observed. Then, the Proposer
sends the message Prepare(EID) to all Acceptors. At this point, the Acceptors can
behave in three different ways.

1. If they have not received previously any Prepare(EID), they reply with a Promise(EID)

2. If they have previously received a Prepare message with higher EID, they ig-
nore the message.

3. If they have previously received both a Prepare(EID) and an Accept(EID, value)
with a lower EID, they reply with Promise(EID, Accepted(old_EID,old_value)),
to let the Proposer know that another proposal has been previously accepted.

Then, after sending the Prepare(EID), the Proposer will face two situations:

1. If it receives only Promise(EID) from at least half plus one of the Acceptors, it
sends Accept(EID, value) to all of them

2. If it has received any Promise(EID, Accepted(old_value,old_value)), it will
send Accept(EID,old_value)

2.2. Background 29

Finally, when an Acceptor receives an Accept(EID, value), it sends to all Learners
Accepted(EID, value). When the Learners receive a majority of Accepted messages,
they know the consensus for such a value has been reached.

With such a design the protocol works if at least 2F+1 participants are available
despite the failure of F of them. Indeed, differently from the 2PC, after a timeout, a
Proposer can retry the process without any risk of ambiguous state.

In the case of databases, we can use the Paxos for reaching an agreement over
a commit. The Paxos Commit Algorithm [49] requires running a separate instance
of Paxos agreement for each slave. The master initiates a commit; it sends to all
slaves a message Prepare. The slaves then reply with either Prepared or Aborted,
and instead of having the master collecting all replies, the system uses Paxos to en-
sure all participants reach an agreement regarding the decision to Prepare or Abort.
Once a consensus has been achieved for each slave, all participants will know that
the transaction succeeded iif all the slaves agreed value is Prepared, and rollback
otherwise.

As it is easy to image, the cost of such a distributed algorithm is considerable.
The slaves must wait for at least five rounds of message exchanges before completing
a transaction, a number that can increase in case of faulty nodes or contention. More
precisely, if there are N slaves of which we can tolerate F faulty ones, a total of

(N + 1)(F + 3)− 2

messages will be sent[49]. In other words, if we add one node, the system will have
to exchange at least 3 more messages. Also, as we increase N, we should increase F,
and thus the number of messages can rapidly increase, thus becoming a scalability
issue in large settings.

Considering the PACELEC model, we can see how a distributed system, even
when no partition occurs, may sacrifice trade-off latency in favor of consistency in
such a scenario.

Another approach is the one used by Spanner [28], that uses the Paxos algorithm
to coordinate leaders and slaves memberships, using long-lived time leases (e.g. 10
seconds) and it shows similar performance characteristics.

2.2.5 Durability

A system ensures Durability if none of the committed transactions are lost in case of
power loss in the overall system. The typical approach is to use persistent memory
to store a write-ahead log (WAL) of all completed transactions. The system writes
in the log all changes before applying them, so that, after a crash, the system can
replay all entries found in the log since the last checkpoint. The canonical method,
known as ARIES[78], has been invented by an IBM researcher in the 1990s. A variant
of WAL, called journaling, is also typically used in the management of metadata in

30 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

filesystems which avoids invalid intermediate states such as storage leaks, lost files
or orphaned inodes that might occur in case of abrupt power loss. An alternative
is a copy-on-write approach, which similarly to the previously discusseds MVCC
techniques, creates a new copy of the metadata instead of modifying it, and then
it updates the metadata information that pointed to the updated one. In case of a
hierarchical structure such as a filesystem, this means that updates can propagate
up the root node or superblock.

In the last years, the rise of persistent memory hardware technologies, such as
phase change memories PCM [51], Resistive Ram (ReRAM), and non volatile dual in-line
memory module (NVDIMM) products such as Intel’s 3D XPoint[51] (now marketed
as Optane), are very likely going to change the way durability is achieved. Theo-
retical solutions, such as short-circuit shadow paging[26] or Barrier-Enable I/O to
reduce communication latency between the device and the memory [114], have al-
ready been proposed.

2.2.6 Data placement and Metadata management

In distributed data stores, data placement and metadata management often go hand
in hand. Data placement strategy influences the distributed architecture entrusted
to decide which machine should store each piece of information. Such a decision
can be taken by a single actor or it can follow a particular rule shared by all peers.
However, deciding who is entrusted to take such decisions or to ensure that all peers
agree on the same rule, is part of metadata management.

In literature, we can find plenty of contributions regarding the problem of choos-
ing in which node to store an object and how to ensure a balanced workload between
nodes. These algorithms aim to select the best node that can store a particular object.
In general, there are three main approaches:

Global mapping

Global mapping is a popular and straightforward solution that uses a global master
which keeps track of the position of each item’s replicas in the cluster. In such a
scenario, the master can decide where to place a copy of the data in the replicas that
have less load, and consequentially route requests.

One example is the Google File[46] System and its open source version - HDFS[20].
A master - the NameNode- balances the resource utilization by deciding where to
send each replica. This allows a fast recovery from a slave failure at the cost of
adding a single point of failure and a bottleneck in the system. Even if the mas-
ter may have shadow replicas, as Konstantin[98] analyzed, the NameNode memory
footprint grows with the cluster storage size and eventually it limits such architec-
ture. Konstantin showed that 10’000 HDFS nodes with a single NameNode should
scale up to 100 thousand readers and ten thousand writers. However, this estima-
tion assumes a batch processing scenario with file chunks of 64MB, but to achieve

2.2. Background 31

low latency response time on indexed data, we have to access few KBs at a time, and
this dramatically narrows down the upper bound. As proof, McKusick and Quin-
lan[76] reported that GFS recently evolved to a more complex sharding design with
multiple masters thus allowing lower response time and smaller file chunks.

Multiple masters

A way to avoid the limits of a single master is to use multiple ones, but to do so
it is necessary to find a proper way to split the domain of responsibility of each
master ensuring their workload is well balanced even when the data distribution
changes. In RDBMS, such technique is named Sharding and it consists in dividing
the data contained in the tables, in vertical or horizontal shards (subsets) and to
distribute them on different nodes. In such a way, it is possible to speed up the write
operations because, if executed on different shards, they run in parallel on different
servers without lock synchronization. A typical example is to divide the table Users
into two shards according to their geographic provenance. For example, they might
store all the users from a continent in the nearest data center. However, even in such
a scenario a global arbiter is required for multi-partition operations such as JOINs or
GROUP BYs. A global arbiter is also required when we need to change or rebalance
the masters’ domain.

In file systems, a similar approach is used to partition the file system tree in sub-
trees, where a different server manages each one. Similarly, in this case the challenge
is to ensure the size of partitions is uniform and there are no hot-spots. An example
might be an application that starts to generate thousands of files in a directory sub-
tree. Static subtree partitioning requires a system administrator to manually assign
each subtree of the file hierarchy to specific servers called NameServer. For example,
all files that go in directory /scratch might be handled by a server, while the ones
in /archive from another. In Lustre[86] this is the only possible approach to scale
the NameServers. A more flexible approach is the one adopted by distributed sys-
tems such as CephFS[112] and GFS [76], that use Dynamic Subtree Partitioning[113]
to adaptively allocate the responsability of managing directory. However, it is not
clear how the availability and consistency of the system are maintained in case of
failure of one of the NameServers during the hand over of a subtree from one mas-
ter to another. Also, moving a subtree is not a fast process, and it is employed only
in case of long-running unbalances, while the short time ones are not addressed.
For example, any application scanning the whole filesystem will likely overload one
NameServer at a time.

A mixed approach is the one taken by IBM Spectrum Scale, formerly known as
GPFS[94], which packs metadata and data together in the same block and thus there
is no NameServer. However, concurrent clients still have to coordinate to acquire
read and write locks on the files, to update the metadata (inode) and to allocate
new blocks. The architecture of GPFS comprises a single centralized TokenManager,
which grants authorizations - tokens - to the nodes. The first node to access a file also

32 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

acquires the metanode token, which means it is in charge of maintaining the inodes
information and lock. In case of concurrent writes on the same file, all nodes send
inode updates to the designed metanode. Therefore, GPFS has a mixed approach,
as it uses a single unique node to grant and revoke permissions to manage a file
and to coordinate concurrent writes on different parts of it; while it uses multiple
metanodes to synchronise inodes updates.

Gossip

Gossip algorithms are widely adopted to ensure efficient, reliable and eventual dis-
tribution of information among peers. The main idea is that peers randomly commu-
nicate with each other, eventually propagating messages. The advantage of such an
approach is that even if a node is down or communication is lost, the node will even-
tually get the information from a peer. The downside is that the information might
require a considerable time to be spread. For such a reason, in DynamoDB[34] and
the original version of Cassandra[71], the gossip algorithm is only used to maintain
information regarding membership, dealing with joining, leaving or no responding
servers. However, a later version of Cassandra started using the gossip protocol also
to advertise schema changes, such as new tables of data formats. A different use of
the Gossip algorithm is the NouDB one, which employs it to broadcast MVCC ver-
sions to all nodes[83].

Hashing

A final alternative is to use a deterministic algorithm to decide where to place a copy
of the data. For instance, Distributed Hash Table systems - such as Cassandra[71]-
use a pseudo-random hash function to place an object in one node of a cluster. Sim-
ilarly, CephFS[112] uses a pseudo-random function (CRUSH) to allocate random
blocks in distributed nodes. An issue of DHT systems is how to achieve balance in
load and storage utilization. Its imbalance can be described with the single-choice
balls-into-bins problem.

The balls-into-bins problem

The balls-into-bins problem supposes we are throwing at random m balls into n
bins, and we wonder how many balls the most loaded bin will have. This problem
is the basis of Hashmaps analysis, where a collision means storing multiple items
in the same memory cell and it is an unwanted situation. The typical approach as-
sumes that the number of cells is much larger than the number of elements. Only in
2006 Berenbrink et all[16] analyzed the "Heavy loaded case", which interests the DHT
systems as we assign many items to each server aiming to achieve a uniform dis-
tribution. The authors showed the imbalance decreases with the number of records
while it increases with the number of nodes. Indeed, when m ≥ n log n - which is

2.2. Background 33

the usual case for DHT databases - there is a node that receives

(m/n+O(
√
m ∗ log n

n
))

items with a high probability. We can also formulate the formula in terms of a ratio
of imbalance between nodes :

p = O
(√ log n ∗ n

m

)
On the other hand, Mitzenmacher[89] demonstrated that one can achieve a better

distribution with the "power of two random choices": instead of picking at random a
single server, one chooses two of them, and selects the least loaded one. In this
case the lower imbalance is just O(log log n). However, using the multiple-choice
algorithm, we have to face an implementation trade-off. For instance, we can store
items uniformly between servers but at the price of penalizing reads as the client
cannot know which is the chosen server and thus has to question all replicas.

Microsoft’s Kinesis[74] follows this approach achieving a better load and storage
balance by allowing the client to choose r replicas over k possible servers. The draw-
back is that we have to question all k servers during a read operation and this might
result in reducing k times the performance as database systems are often limited by
the CPU.

Alternately, we can store multiple copies of the same item so that the client can
pick the less loaded replica thus achieving a balanced distribution of read opera-
tions. However, it is costly to know the real-time load of each node, and the algo-
rithm should maintain approximated load statistics which might not detect short
living imbalances. Also, the second choice penalizes caching systems: if we ask
an item twice from the same node, the second request will be faster as it is served
out of memory. On the other hand, spreading calls to different servers results in a
higher page fault number, and that might nullify the benefits of a more distributed
workload. Indeed, Cassandra’s driver selects a replica only if the original node is
malfunctioning.

It is important to consider the ball into bin problem when designing a low latency
system that ensures the proper exploitation of in-memory operations and a uniform
workload across nodes. A typical pattern in HPC and Analytics is that the execution
is limited by the fact that all nodes have to access to a relatively small partition of
the data; a working set might rapidly change over time. As long as in this thesis we
aim to exploit key-value data stores for HPC applications our interest is in retrieving
any particular subset of data in the minimum time. In this situation, the m >> n

hypothesis is not always valid thus resulting in performance degradation.

34 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

2.2.7 Data model

If we want to distinguish all systems according to the way they organize data, we
should distinguish between:

Key-value databases

In a key-value data model, the value of the key dictates in which server you can store
and find a particular item. The advantage of this simple structure is that the queries
are fast and it is possible to have a high level of concurrency.

Document databases

Similar to the key-value model, in the document one the value has a proper seman-
tic, and it is usually stored in a JSON or XML format. Also, in many document
databases, it is possible to create secondary indexes on one field of the XML (or
JSON) structure.

Column-oriented

Column-oriented databases focus on analytical and reporting (OLAP) workloads.
Indeed, storing data by columns instead of rows reduces the I/O required when
computing aggregation over a large number of rows. Typically, this kind of database
does not support row-level transactions, and data is periodically (usually daily)-
moved to a transactional database (an OLTP system) through a process called Ex-
traction Transformation Load (ETL).

Row-oriented

A row-oriented data-model is similar to the model used in Relational databases. Its
structure is tabular such as the column-oriented one, with the difference that the
information is orderly stored, reducing the I/O while accessing a single row instead
of a single column such as in the column-oriented architecture.

Graph

A graph database uses graph structures for semantic queries with nodes, edges, and
properties. The key concept is each entity can have a relationship -edge - with an-
other one graph. Each graph can be associated with a weight or a value. The problem
of this kind of databases is how to partition the data between servers so that a query
can be executed efficiently. Indeed, a query may have to visit several nodes to com-
plete, and if these nodes are in a remote location, most of the execution time goes
for communication. This is usually the problem when using a random distribution
of the data. An alternative is to use domain knowledge to partition the graph, for
example storing together users from the same city.

2.3. Distributed data: SQL, NoSQL and Parallel File systems 35

Object stores

The object store data model is probably the simplest way to organize data. Each
object is identified by its unique name; there are no folders nor other hierarchical
organizations. The user defines a bucket or namespace in which each name must
be unique. While there are no folders, some systems may visually aggregate objects
with the same name prefix, thus providing a more user-friendly interface to users.
However, as folders are not first citizen entities in object stores, there are not opera-
tions such as move, delete, or list all contained files in a folder.

Indeed, the list of object in a bucket is usually not kept up to date and it is up-
dated hourly or daily. A common feature of object stores is to have rich support
for user-provided metadata which might include information over the ownership,
permissions or any other business related information to a specific object. Key-value
and object store are usually correlated as both systems map a unique id to a value.
While each available product has its characteristics, the main distinction between the
two is the data granularity. Indeed, in a key-value database, each key is generally as-
sociate to a value with a size comprised from the few bytes to few megabytes, while
in the second an object can size is easily be in the range of gigabytes or terabytes.

One important consideration is that the difference between these categories is
often blurred, as long as it is possible to use the same system with different models.
For instance, in some databases the data model is flexible enough to store data both
in a column or a row oriented layout.

2.3 Distributed data: SQL, NoSQL and Parallel File systems

Now that we have defined some of the techniques that we usually find in distributed
datastores, we can proceed to describe how generally SQL, NoSQL, NewSQL databases,
POSIX or non compliant file systems and object stores can be distinguished.

2.3.1 SQL databases

Let’s start with SQL databases. Data is arranged in tables with fixed columns and
types, and we can access and update single rows or tuple without worrying of con-
sistency between concurrent clients. Thanks to the relational model - introduced in
1969[36] - we can design the tables, and the links between them. This can be done
by taking into account the relationship between the various business entities that
we want to model, while we can (hopefully) not worry about how to organize the
physical layout of data to achieve better performance. As we described before, SQL
databases must comply with the ACID properties. To do so, they usually use 2PL
or MVCC concurrency control schema to preserve Atomicity Consistency and Isola-
tion, while WAL provides the Durability. Scaling the database to multiple nodes is

36 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

generally achieved by a shim layer that intercepts queries and routes them to the cor-
rect master partition while the 2PC protocol is used to coordinate intra-shard trans-
actions. We will consider PostgreSQL as the main representative of these databases
as long as it is open-source, advanced and supports multidimensional indexing. In
particular, PostgreSQL uses MVCC, 2PC, B+trees, and WAL.

Then, with the explosion of the internet and user-generated content, Internet ser-
vices providers started to put under new stress both existing databases and filesys-
tems.

2.3.2 NoSQL

On the database side, NoSQL databases have many combinations of architectures
and data models, as the main idea is that a "one-solution-fits-all" was not enough
anymore and after 40 years of development a strip down of functionality was nec-
essary to achieve the desired performance [103]. After all, even if OLTP systems
are capable of long-running analytic queries, the most popular approach is to relax
consistency and periodically copy all information into an OLAP system.

Among the many NoSQL databases, we will consider Apache Cassandra[70],
MongoDB and Redis.

Although, initially, Cassandra did not implement transactions, now it supports
a few subsets of lightweight partition levels, compare-and-set operations, such as
INSERT IF NOT EXIST using a Paxos based consensus protocol. They are, how-
ever, restricted to single partition key updates. The data is organized according to
a Log-structured merge-tree, LSM-tree, a data structure optimized for high insert
volume that uses multiple separate structures to maximize the hardware resource
usage. Then, data distributes according to the key hash - DHT. The information
about membership and schema are shared through the Gossip algorithm. Differ-
ently, MongoDB is a Document database, usually in JSON format, with document-
level transaction support using MVCC - but it does not avoid skew writes 2.2.14,
and 2PC. In case the master fails, a new master is elected, but in the meantime some
partitions are unavailable, and there might be an inconsistency between the new
and the faulty master [3]. Both Cassandra and MongoDB use WAL for durability (in
MongoDB it is often called journaling).

Redis is an in-memory key-value database with an advanced set of program-
ming functionalities as maps, lists, sorted sets or hyperloglogs. All operations are in
memory, and the secondary storage is used only for periodic checkpointing using a
compact but not indexed file format. Alternatively, it can use append-only files for
higher durability (similar to a WAL). In any case, the size of the database is limited
to the size of the primary memory.

2.3. Distributed data: SQL, NoSQL and Parallel File systems 37

2.3.3 NewSQL

As a counterbalancing force of so many low-level and highly specialized databases,
NewSQL databases started to target applications that need, or do not want to deal
with consistency issues, but yet require the scalability and the high-availability that
typical RDBMS system could not provide. In this category, we will consider Google’s
Spanner[28], VoltDB[102] and SAP HANA[99].

Spanner[28] was developed by Google in 2012 as they claimed NoSQL DBMSs
caused their developers to spend too much time writing code to handle inconsistent
data and using transactions made them more productive. In their design, they use
MVCC with 2PL to coordinate writes, while they use Paxos to manage distributed
transactions and atomic clocks and GPS to ensure external global consistency. With
such a design, Google claims to have created a system that has (almost) all three CAP
properties: Consistency, Availability and Partition tolerance. Spanner has achieved
an availability close to 99.999% thanks to the fact that Google owns its own wide
area dedicated network. Thus, it can guarantee network partitions are extremely
rare events[21], making the system Consistent and Available de facto, as they claim.

Contrarily from Spanner, many other NewSQL databases have taken the "in-
memory" approach. In their paper "The End of an Architectural Era: (It’s Time for
a Complete Rewrite)" published in 2007, Stonebraker and Co. [103] analyzed how
much performance was lost in RDBMS due to a legacy architecture. They also real-
ized that specialized engines could achieve nearly two orders of magnitude increase.
The aftermath of this study is VoltDB, an in-memory database that tries to leverage
a multi-core architecture with a share-nothing design. In VoltDB the database is di-
vided in shards, one-per-core, and the transactions can run one-at-a-time, with no
distributed locking, but it has to use a centralized scheduling manager for transac-
tions that span over many shards. This approach works very well with "small" trans-
actions that stay in the same shards, but it does not work with long lasting or large
transactions as the whole system would effectively run one operation at a time. SAP
HANA[99] is another NewSQL in-memory database that aims at excelling in both
transactional and analytical workloads. To this end, it uses a hybrid memory stor-
age format that combines three different ways to store data in the record lifecycle -
a write optimized way, a columnar way and a compressed way. Initially, the whole
database had to fit in memory, with a severe impact on cost, but now it supports
off-loading to disk to rarely used data. At the same time, SAP HANA ensures dura-
bility with a WAL and periodic snapshotting, which makes the database span from
in-memory to persistent storage in a configurable way.

On the other end of the spectrum, we have file systems and object stores, but
we shall distinguish between POSIX parallel filesystems; such as GPFS[94], LUS-
TRE[86], BeeGFS[91], and CephFS[112]; and the not-POSIX filesystems which the
notable champion is HDFS[97]. Then we have distributed object stores, which can

38 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

be consistent or eventually consistent. Ceph Object Storage and Google Cloud Stor-
age fall into the first category, while in the second we have Swift and Amazon S3.

2.3.4 Distributed File Systems

GPFS[94], now in the IBM spectrum scale, is a very popular choice in HPC, and it is
also the system used by the Barcelona Supercomputing Center. GPFS uses a mixed
approach as it stores metadata and files together on the disks, stripping the files in
parts that are distributed along the nodes so that it can improve throughput. How-
ever, while the filesystem tree structure is distributed between disks, the nodes are
required to acquire permission to read/write and create files. The authorizations
(tokens) are granted by a unique TokenMaster which can become a performance
bottleneck in some particular cases. Differently, GPFS uses a multi slaves approach
to handle the inodes; the first node to acquire the token for a file becomes its metan-
ode, and so all operations concerning the update of the inode, from reading/writing
time updates, new directory etc, are handled by a single entity while other concur-
rent clients have to coordinate with it. In case of a failure of both TokenManager and
meta note, the system eventually chooses another candidate but in the meantime, re-
quests can fail, and the system is partially unavailable. On the other hand, LUSTRE
divides metadata and data blocks using a single NameServer or a multiple manually
partitioned NameServer, each of them is responsible for a partition of the filesystem
tree. In both GPFS and LUSTRE, redundancy is provided using hardware RAID sys-
tems, on top of which optional software replication can be added on selected files.
A diametrical approach is the one taken by CephFS that instead assumes the fail-
ure of a disk on large installation is frequent, thus it directly manages the replicas
of the data according to a pseudo-random hash function, CRUSH weighted to take
care of the disk placement (rack, data center, etc) and available resources. Regard-
ing the filesystem tree, CephFS separates metadata and data by using partitioned
NameServers. Differently from Luster, CephFS employs Dynamic Subtree Partition-
ing, that allows to automatically move the responsibility of a NameServer to another
with a process similar to the 2PC.

The last of the filesystems we are going to take into consideration is the HDFS,
the Hadoop Filesystem which employs a single NameServer with stand-by replicas
ready to take over in case of crashes of the NameServer. The NameServer also de-
cides where to place a copy - usually three - in different nodes depending on their
utilization. The data nodes are usually co-allocated with the Hadoop/Spark ones so
that computation can take place in the node that contains the data. Indeed, differ-
ently form typical HPC installations, Hadoop is designed for a cluster of commod-
ity servers with the locally attached disks with no hardware redundancy, where the
Hadoop daemon co-lives with the Hadoop computing application. Having a single
NameServer has been often pointed out as a major bottleneck of HDFS, and thus
many solutions have been proposed. Among many, Spotify’s proposal, HopFS[80],

2.4. Multidimensional indexing 39

which uses a NewSQL database - MySQL cluster - for the NameServer management.
They observed 16 times improvement of throughput.

2.3.5 Object stores

Object stores have the advantage that they do not have to manage the filesystem
tree. Thus they put less stress on the centralized NameServer which is usually only
used for creating unique buckets/namespaces. On the other hand, they usually have
to handle the massive quantity of data, often over vast distances. Above the many
Object stores, it is worthy to consider Amazon S3 and Swift for the eventual consis-
tent data stores, while Google Cloud storage and CephFS are examples of consistent
ones.

1 master
hot stand-bys

many masters
dynamic sharding

Gossip Paxos
many masters

 manual sharding

Round
robin

stripping

Randomly
DHT

The
master
decides

Manually

GPFS BeeGFS

MongoDB
CephFS

VoltDB Redis

Cassandra

HBase

Spanner

PostgreSQL

HDFS Lustre

Ceph Object Store

Swift

Google Cloud
Storage

FIGURE 2.8: Different approaches used by data store systems to han-
dle metadata and coordination vs data placement.

In Figure 2.8, we can see how the different available products are designed and
what they have in common. In particular, it is interesting to note that there is not a
unique or globally accepted architectural solution for none of the categories. For ex-
ample, Google seems to favor Paxos master slaves architecture, and its competitors
prefer more peer-to-peer solutions. Similarly, each of the products that target the
HPC market have different architectures. In general, we see similar solutions reused
in several applications with varying levels of nuance.

2.4 Multidimensional indexing

In literature, there are dozens of contributions about multidimensional indexing al-
gorithms and data-thinning techniques. The first are divided in two main categories:

40 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

Space partitioning indexes and Binary Tree evolutions.
With the term space partitioning we refer to a class of hierarchical data structures that
recursively decompose a certain space into disjoint partitions so that any element
can be stored in one, and only one, partition. This constraint leads to a simple search
procedure, but it causes the tree to be skinny, tall and potentially unbalanced.
Indeed, while a one-dimension binary tree can use node rotation techniques to re-
balance itself, the lack of a universal order on vector spaces, makes these operations
impossible.
Differently, other index algorithms, such as the R-tree and its variants, do not have
the constraint of disjoint spaces. Each node is in charge of a specific space, but nodes
can share common areas. This relaxation allows the node to have a better fan-out
and balance, however it comes with a higher search cost as long as results can be
found on multiple tree paths.
Although many algorithms are available in literature, we will describe only three of
them, as they are the most common, and most of the available algorithms are their
evolutions.

2.4.1 Quad-tree

The Quad-tree is a space partitioning algorithm where the splitting strategy is "space
driven". This means that, no matter how the data is distributed inside a block, when
it splits, the resulting children nodes will have a size and a position which depend
only on the height of the tree and space dimensions.
For example, in a two-dimensional space, a cube splits into four sons, each of them
covering one fourth of the space. Similarly, in a three dimensions space it breaks into
8 children, and so on, increasing the number of dimensions.
The benefits of this algorithm are that, given the constraint dimensions of the cube,
they can be coded in few bytes. Moreover, it is possible to use space filling curves
in order to enumerate each cube. In this way, when querying for a specific region,
it is possible to calculate which will be the prefix code of the interested nodes, thus
allowing extremely fast look-ups.
On the other hand, if the data is not uniformly distributed, this algorithm produces
unbalanced trees, as long as the denser areas result in deeper tree paths. Moreover,
the algorithm is forced to half the domain of each dimension at each split, and this
is an undesired behavior, particularly when data clusters on one dimension only.

An Oracle study [68] suggests Quad-trees could be recommended for update-
intensive applications using simple polygon geometries, high concurrency update
databases, or when specialized requests such as "touch" are frequently used.

2.4. Multidimensional indexing 41

2.4.2 KD-tree

The KD-tree is a space partitioning algorithm where, unlike Quad-trees, the splitting
strategy is "data driven". The splits are executed one dimension at a time: the ele-
ments of the nodes are ordered according to the chosen dimension. The node is then
split by partitioning across the median element. The algorithm continues cycling on
all dimensions.

The benefits of the KD-tree is that it produces balanced trees when constructed
on static data, but inserting new elements on an already built index can lead to an
unbalanced tree. Another drawback compared to quad-trees is that a query must
descend through all the node hierarchy in order to know the dimension of a node,
so fast look-up methods are not possible.

2.4.3 R-tree

R-trees have been proposed for the first time in 1984 by Antonin Guttman [50]. Since
then, many variations of the original algorithm have been developed over the years:
R+Tree [96] in 1987, R*tree [15] in 1990, Hilbert R-tree [65] in 1994, to more recent
researches such as Priority R-tree (PR-tree) [11] in 2008 and FLAT [105] in 2012. This
non exhaustive chronological list of algorithms, shows how the research on R-trees
has a long history and is still active today.
Without entering in detail in each version, the original R-trees’ approach is firstly
to relax the constraint of the shape and size of the boxes and secondly to rely on
heuristic policies to decide how to subdivide an area.
The idea is to split the space in rectangles (the R of R-trees) using data driven strate-
gies. When a node is full, it divides into smaller ones, and a heuristic approach is
used to divide the contained elements into subgroups. For example, one technique
consists in dividing the rectangle at the median point, while other ones use more
complex data clustering methods.
Once the points are grouped, the algorithm calculates the Minimum bounding rect-
angle (MBR) which contains the elements. When inserting new elements in the in-
dex, the R-tree starts searching from the root which node has a MBR that can contain
the element. In case there are any, it picks the node whose MBR requires the least
enlargement necessary to accommodate the element. In this second case, it may be
necessary to propagate the enlargement of the MBR up to the root node.
As Oracle’s paper [68] states, in most cases R-trees outperform Quad-trees up to a
2-3 factor.
The main disadvantage of R-trees, which is also the reason of the existence of so
many of its variants, is the overlapping of the rectangles. This adds an overhead
in the query as long as the algorithm must visit more blocks and descend multiple
paths to satisfy a request.
This has historically been considered as a drawback as long as it produces additional
I/O on the rotational disk. In modern distributed databases, it would be interesting

42 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

to see whether or not these additional requests would lead to a performance draw-
back, or instead a gain thanks to the increasing level of parallelism.

2.4.4 Distributed Multidimensional indexes

Recent papers have proposed different alternatives on how to implement both Quadtrees
and R-trees, as well as hybrid approaches, on distributed databases such as Cassan-
dra or HBase. For instance, in 2013 Ling-Yin Wei et al. [111] proposed a hybrid
approach named KR+-index: on a higher level they use a Quad-grid with Hilbert
keys so that sequential reads can perform better. At a lower level, they store data
into rectangles produced by R+tree indexes. Unfortunately, their indexing method
cannot support efficiently approximated queries, which is a fundamental require-
ment for our application.
Other works, such as HGRID[52] and MD-HBASE[81] present the same limit. The
work of Zhang et al.[119] in 2009 takes a different approach adopting a master-slave
architecture when considering the problem of consistency in DHTs. The master cre-
ates a gross grain R-tree index where each leaf points to one or more slave nodes.
Thus, each slave node creates a KD-tree on the space area assigned. The drawbacks
of this approach are that firstly the system needs a master, which is a possible point
of failure of the whole system which damages the overall availability. Secondly, dis-
tributing data across by assigning to each node a space area, can lead to an unbalance
workload: indeed, a logical hot spot in the data will result in hot spots in the cluster.

2.4.5 Multidimensional sampling

In literature, we can find little work on the generic problem of multidimensional
sampling while we can find a considerable corpus of contributions for the special
case of Geographical sampling. Indeed, regarding the problem of sampling geo-
graphic data sets, Sharma et al. [93] propose an extensive theoretical analysis of the
data-thinning problem for a various set of situations. They propose an integer pro-
gramming formulation of the data-thinning problem that allows analyzing the in-
fluence of all possible constraints. As described by Sharma et al. [93] in their work,
these constraints are:

Visibility: there is a maximum number of elements you can visualize at the same
time.

Zoom Consistency: if an element is visible in a zone at a given level of zoom, it
must also be visible when narrowing the visualization (zooming in).

Adjacency: at any zoom level, if an element is visible in an area, it must also be visi-
ble in all contingent areas. This constraint ensures consistency while "panning"
in a visualization.

Following the previous constraints, we can aim at different objectives; for example:

2.4. Multidimensional indexing 43

Maximality: show as many records as possible while respecting the consistency
constraint.

Spatial Density: the visualized elements have the same spatial distribution of the
whole data set.

Fairness: each element has the same probability of being visualized.
Importance: the higher the importance of an element, the higher should be its prob-

ability of being visualized.

Some of these objectives are mutually exclusive. It is easy to see that one must ei-
ther choose to pursue the goal of Fairness or Importance. Similarly, one must choose
between Maximality or Spatial Density. Let us imagine we are visualizing an area at
an arbitrary zoom level. In this area, N elements are visualized, which represent the
P% of the elements present in that zone. Now, if we want to move to a contingent
area, we should decide whether to visualize N elements from this area or the P% of
them. In the first case, we aim to the Maximality goal while, in the second case, we
preserve the Spatial Density.
Both approaches have their benefits and drawbacks, and thus we will study both
cases, leaving the user the opportunity to choose whether to use one instead of the
other.
We have chosen to focus on Fairness as long as it fits better our application case.
However, aiming to Importance would only require trivial modifications.

For our application, the most interesting scenario is the one considering a data
set composed of only points. As a matter of fact, our work was inspired by their pro-
posal: a randomized thinning algorithm for geoset composed only by points. The
authors proved that we can respect the constraints of Visibility, Zoom Consistency
and Adjacency by simply assigning to each point a number - a priority - indepen-
dently and uniformly at random. Their algorithm aims at building a Spatial Tree ST,
which is a balanced 4-ary rooted tree with Z levels representing the possible levels of
zoom. To build it, they propose to use random numbers defining a global ordering
between points. In such a way, it is possible to select which points will be shown in
each zoom level by simply picking the first n elements sorted by priority.
However, Sharma et al. [93] proposes to build the ST with the support of an external
Spatial index that can be, in their opinion, any "standard fashion spatial index" such
as Hilbert or Guttman. The external spatial index is used to retrieve all the elements
present in a given cell ordered by their priority. Unfortunately, in the paper, it is not
clear how this spatial indexes should be created, but we can consider two possible
solutions. In the first, they build a bi-dimensional R-tree on the dimensions x and
y (or lat and long). In this scenario, filling the higher levels of the ST - those with a
coarser zoom level - would require to scan the whole index. At the same time, the
lower levels of the ST - those with higher zoom detail - would likely require reading
the content of a single R-tree rectangle. The second solution is to build a 3 dimen-
sional R-tree on the dimension x, y and priority. In this case, the higher levels will

44 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

most likely match with R-tree’s rectangle, as long as the elements will also be parti-
tioned in rectangles according to their priority, thus allowing to efficiently select the
elements with high priority value. Again, this is a drawback of the ST’s lower levels,
the ones which contain elements from a narrow x,y spatial range but a wide - if not
the whole - priority range. This kind of query, implemented on a R-tree, will likely
require to navigate through several rectangles, thus requiring to filter in memory a
considerable amount of data.

Assigning a random priority to each point to then select the first k elements with
a higher value, resembles the problem of NN-neighbour and top-k queries which
are a classic subject of both spatial and common databases.
A top-k query aims at finding the first k elements that match the given constraints,
sorted by priority. For example, in a full-text search the priority is how a docu-
ment relates to required keywords. The typical solutions for the sole top-k queries
are Fagin’s threshold algorithms[39] and its evolutions such as the one proposed by
Theobald et al.[107]. These solutions use multiple weighted inverted indexes, one
for each attribute, concerning the relevance of each item to a specific characteristic. A
query is then resolved by visiting the indexes related to the characteristic interested
by the query. In the case of spatial databases, these techniques have been extended
by combining the usage of R-tree and inverted indexes. For example, Cong et al. [27]
propose the IR-tree, which maintains an inverted index for each node of the R-tree.
Similarly, Zhou et al. [120] propose to create an R-tree for each distinct keyword and,
therefore, merge the results. However, all these solutions are built with the idea that
the priority of each point depends on the query. Indeed, whether a query includes
or not a characteristic, the relative relevance between points changes.

Differently, in the Alya use case (Section 2.1.2), as well as others, the points’ pri-
ority does not dependent on the query and, on the contrary, it needs to be constant
to ensure the property of zooming consistency and adjacency. This constraint allows
us to benefit from this global priority order to optimize how the elements are stored.
These optimizations are not possible with top-k queries, as long as the priority is
computed on-line for each query, with considerable additional performance cost.

2.5 I/O in HPC

Nowadays, high performance computer simulations run on thousands of parallel
cores and generate outputs of the order of TeraBytes. How to parallelly store, orga-
nize, and analyze these results has become a key factor for both performance and
usability. Traditionally, the output with the results is stored in files. There are plenty
of different formats, with some of the most popular being HDF5[41] and netCDF[64].
Although their data models differ, since version 4, netCDF uses HDF5 as the back-
end, and thus they have similar performance characteristics. The problem with file
storage is how to achieve high performance while thousands of concurrent processes

2.6. HPC visualization 45

are accessing in parallel. A straightforward approach is to generate an output file for
each process, but this then requires having thousands of files which are complex to
manage and analyze. Alternately, HDF5 allows creating data set partitions – hyper-
slabs – that can be written and read independently by different processes. HDF5
offers two MPI-based accessing modes: independent and collective. In the first case,
all processes can access the file without any synchronization, but this can cause sev-
eral random I/O calls and thus penalises performance. Collective access reduces
the I/O by assigning a subset of MPI tasks to act as "aggregators" so that they can
gather smaller and independent requests in larger and contiguous I/O accesses. On
the other hand, the collective tasks add communication and synchronization over-
head, which may reduce performance and scalability.

Whether to use an approach or another is strongly influenced by the data lay-
out and the distributed filesystem[59][88] used. For example, if each process writes
into a hyperslab that maps to adjacent disk partitions, there is no need for collective
I/O. However, this is not the case for particle simulations. The typical dimensions
of particle simulations are time step, position, and particle identifier. However, each
process simulates all the particles that fall into its sub-domain at a given time step.
Therefore, each process writes into randomly distributed positions. Indeed, libraries
specifically tailored for particles simulations, such as H5hut[58], heavily employ col-
lective I/O.

An alternative approach is the one that Alya implements when writing Com-
putational Fluid Dynamic in HDF5[29]: each process writes into a different dataset
inside the same file. In this manner we can achieve good I/0 performance, but the
parallelization of the simulation fully dictates the file layout.

2.6 HPC visualization

Visualization in HPC is a vast topic that spreads from studying new ways to repre-
sent the information graphically: how to correctly encode data into images that can
be correctly interpreted by humans; to new ways to interact with data, like virtual or
augmented reality; and to the design of hardware architecture that allows to render
in real-time huge quantities of data. While the topic is fascinating and vast, we will
only focus on the definition of Post-hoc, In-situ visualization and data thinning, as
long as a more extensive analysis lies outside the scope of this thesis.

However, bandwidth and storage limit the amount of information we can effec-
tively analyze. Indeed, in HPC systems we have to deal with three main funnels in
terms of data bandwidth. The first is the speed data can be moved from the CPU and
the RAM, the second is the speed at which we can move data between nodes and
lastly the speed we can persist data to disk. With a broad estimation, we can take
as an example the Marenostrum IV supercomputer. Each node has 12x8 GB DDR4-
2667 DIMMS, which translates to a theoretical maximum throughput of 21GB/s each
RAM bank, for a total of 126GB/s for node. Each node is interconnected with a

46 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

100Gb Intel Omni-Path, with a throughput we can approximate to 10GB/s. If we
want to persist the information in the local SSD, we will touch the limit of approxi-
mately 320MB/s, while with a more performant NVMe disk or GPFS we can reach
2GB/s at most. In other words and with a broad estimation, all of the data we can
simulate we can move in the network one-tenth and store only one-hundredth. As
a result, simulation codes usually reduce the quantity of data sent to persistent stor-
age using different strategies, such as random sampling of periodic snapshotting.
However, in some applications, such a reduction of precision can be problematic
and thus an in-situ approach is adopted. In-situ comes from Latin, it means "on-site"
and it refers to the architectural choice of moving the analytical computation or the
rendering required for a visualization closer to the simulation. According to Rivi et
al[90], there are three main approaches for in-situ visualization:

Tightly coupled: the visualization/analysis code has direct access to the simulation
memory as they run on the same code and they are integrated. This approach
virtually allows to analyze or visualize all the data that is simulated, but it has
the drawback that the two systems compete for the resources, thus potentially
limiting the scalability of the simulation itself.

Loosely coupled: the simulation and the in-situ code run on different nodes, and
they share data with either a pull or a push driven approach. As the data
needs to be copied between the two systems this approach is limited by the
network capability.

Hybrid: in this setting, a tightly coupled part of the in-situ code reduces the quantity
of data and then sends it through the network for further processing.

Existing frameworks use different approaches. For example, ICARUS[18] im-
plements a virtual file driver for HDF5, so that the existing application can use the
HDF5[41] API to send data to the ICARUS as it was writing to a file. Other libraries,
such as the ParaView Coprocessing Library[38] require to modify the simulation
code to be integrated with the co-processor and to communicate with the outside vi-
sualization code. The approach they encourage is to use the co-processor to extract
the salient features from the data and then send them to persistent storage. In a sec-
ond phase, the visualization code can interactively visualize and render the stored
data.

An alternative is Paraview Cinema [6, 8] that stores a smaller resolution version
of the data, tailored for visualization. The philosophy behind Cinema is that beyond
certain scales, it is more efficient to store images with all possible combinations for a
visualization (distance, angle, variable, etc.) than the actual data needed to produce
those images.

These approaches show how in-situ analysis is often combined with post hoc anal-
ysis. The first allows overcoming the bandwidth limitation, while the second ensures
more flexibility.

2.7. On the state of the art 47

Indeed, the problem of in-situ visualization is that panta rhei, "everything flows,"
and therefore we cannot visualize twice the same data. In the case of visualization,
this means that the in-situ application generates videos or images with a single point
of view and focus, limiting the possibility to explore the results. Ahrens et al. [7] pro-
posed as a solution to take multiple images of the simulation with different points of
view and store them in a database for a second-time analysis. This approach guar-
antees more flexibility, but still, the user cannot generate new analysis or renders in
a second moment.

Additionally to more interactivity, a post hoc approach also has the benefit that
can use more extensive sets of data to generate visualization, as the size of the RAM
does not limit it.

All previously cited solutions integrate with ParaView, which is one of the most
popular tools used for HPC visualization. ParaView is a modern visualization and
analysis tool that has post-processing capabilities for modeling and simulation work-
flows. Its plugin in architecture and the fact that it is open source made it one of the
most used visualization programs in HPC. It also allows distributed processing us-
ing MPI to distribute the worker between slaves, while an external master is used to
present the result to the user.

2.7 On the state of the art

As we have discussed, there are plenty of different technologies and methodolo-
gies that all aim to the same goal, managing information, but with very different
approaches.

We can see that we have two central tendencies that go in opposite directions.
From one side, we have the strong advocacy of highly tailored and specialized piece
of software[103] which often comes with a significant tear down of functionality.
For every job, we can use a specific tool, which then brings us to adopt tens of differ-
ent solutions that have to be integrated and maintained with no little human effort.
Furthermore, even understanding which is the precise scope of each tool can be chal-
lenging.

On the other side, we are assisting a push back to the opposite direction, with
new technologies that aim to be the solution for highly available and distributed
SQL[28],[102], while others even target themselves as HTAP, thus ready to tackle
both OLTP and OLAP workloads[99]. While the concept of a unique solution for
all applications sounds appealing, it is, in our opinion, achievable only for a few
cases, while any divergence from the "template application" would most likely re-
quire more ad-hoc solutions. On the other hand, the effort of providing high level,
easy-to-use interfaces is not only appealing but necessary as the level of complexity
of software is likely going to rise in the future. Thus, we cannot expect developers,
industrial or scientists, to be expert in all the areas required.

48 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

At the same time in HPC, we discussed how even if in-situ analysis and visu-
alization focus on overcoming the memory barrier limitations; hybrid and post hoc
approaches are still convenient and often necessary. Indeed, going toward more
data-driven research, scientists need tools that support a more interactive and ex-
ploratory approach in the analysis of large simulations, and in our opinion, this is
only possible if we store in persistent memory snapshots or random samples of the
simulated experiment.

To deal with the throughput and analytical requirements of HPC applications,
our tool-of-choice above all the distributed data storage alternatives are key-value
databases. In our opinion, key-value databases have the right trade-off between
performance and a high-level interface. The ACID guarantees provided by SQL
and NewSQL databases represent the highest level of abstraction a user can require
for managing data, but they come with a considerable performance cost. As we
discussed before, supporting distributed transaction in a highly available matter is
possible, but it comes with a considerable overhead regarding latency and network
traffic. A cost we can avoid in the many scientific applications where the data is
never updated nor canceled, thus reducing the need for transactions.

On the other hand of the spectrum, distributed filesystem or object stores ensure
the highest writing throughput, but only if the I/O pattern is regular and sequential,
which is more an exception than the norm in our experience. Furthermore, they do
not support indexing, forcing the users to scan the whole file to find the required
information.

For such reasons, we decided to use key-value databases, as they can achieve
high-throughput with low latency even with unregular I/O patterns and they also
support secondary indexing. Above many available databases, we decided to study
Apache Cassandra due to its popularity, its large corpus of both academic and indus-
trial research and the vivid open source community that develops it. Furthermore,
Apache Cassandra can be easily integrated with existing powerful distributed com-
puting frameworks such as Apache Spark and PyCOMPSs with Hecuba, which al-
low to query databases and perform large aggregation or complex machine learning
analysis at scale.

2.8 Apache Cassandra’s architecture

Apache Cassandra inherits many characteristics from Google BigTable[19]’s data model
and Amazon’s Dynamo[34]’s architecture. We can simplistically describe Cassandra’s
data model as a large distributed HashMap, where each entry contains a SortedMap.
We need the key to access the outer map, as it is used to calculate which node con-
tains the data. Differently, the second map is orderly stored on a single server. Thus
it is also possible to retrieve slices of data with any desired range of key values.

In CQL, the first level key is named partition key, while the second one cluster-
ing key.

2.8. Apache Cassandra’s architecture 49

LISTING 2.2: Java-like signature of the Cassandra data model

HashMap<K1 , SortedMap<K2 , Object >> cassandraData
cassandraData . get (k1) . s l i c e (fromK2 , toK2)

2.8.1 The cluster structure

The data distributes among the nodes according to the partition key value. Thus a
Table row is the smallest unit that we can split and scatter across multiple nodes.

D

C

E

G

H A

B
F

Client request
(key='cb')

'ga'

'aa'

'ca'

'ea'

'ha' 'ba'

'da''fa'

token range

delegate

Node C forwards the
requrest to E, which is
the responsible node

Return
the response

response

Node C collects all
the responses of the
responsible node
and replicas.

FIGURE 2.9: How data is distributed among nodes in Apache Cas-
sandra

Figure 2.9 is a schema of how the data is distributed across nodes in a Cassandra
cluster. Each node is assigned a token range, which indicates the interval of value for
which it is responsible. The nodes has a random position in the logical ring, where
every node is responsible for the values included between the value of its token and
the token of the next node.

When a user wants to write or read the value of a row, it must provide its par-
tition key. The database computes the key hash and uses it to forward the request
to the node with the assigned token range. The hashing step is required to avoid
that logical hot spots in the data, result in unbalanced work distribution across the
nodes.

2.8.2 Cassandra’s write and read paths

To implement the D8tree and the AOTree we modified some internals of Apache
Cassandra. Thus, before explaining our work, it is vital to describe all the steps that
the database performs for each write or read operation.

Figure 2.10 shows the two different paths of action that Cassandra follows when
it receives a write or a read request.

50 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

operation
type?write read

Append to the
commit log

update
memtable

generate
response

check the
memTable

for each CF
SSTable

check
SSTable
Bloom
Filter

check
SSTable

Index

Yes

No

check
Column

Name Bloom
Filter

Yes

Yes

Column
Name
index

No

No

yes

Access to the
columns

No

if not-found

Join
columns

Return a responses
to the questioned

node
In case of different
versions of the same
column is selected
the most recent

FIGURE 2.10: A schema describing the steps involved during a read
or write operation in Apache Cassandra

Write path In the case of an update, Cassandra performs two main tasks. At first,
it records in the commit log (WAL), the operation to ensure durability. Secondly,
it updates an in-memory structure named Memtable. A Memtable is a write-back
cache that contains the most recently updated values of a specific table. Once up-
dated the commit log and the corresponding Memtable, Cassandra can immediately
acknowledge the success of the operation to the client. In a second moment, when
a Memtable reaches a configurable size or temporal threshold, Cassandra writes in
persistent storage its content in a single file called SSTable.

The advantage of such a design is that Cassandra can optimize the I/O reducing
the number of random accesses to disk, favoring fewer but larger sequential op-
erations. Indeed, Cassandra records multiple operations every time it updates the
commit log. Similarly, delaying the flush of Memtables to SStables speeds up I/0.

Compaction Periodically, the Memtables are serialized and flushed to the hard
disk in SSTables. An SSTable is immutable and contains data relative to a single

2.9. The importance of the data model 51

Table, but there are usually multiple SSTables for each table. Since SSTables are im-
mutable, when we want to modify a value that is already stored in an SSTable, Cas-
sandra does not change the old file but it writes the updated value in a new SSTable
file. Similarly, Cassandra handles deletes using a "tombstone" indicating that the el-
ement no longer exists. Periodically, a process named Compaction merges multiple
SSTables in a unique one removing the duplicated and outdated values.

Read path As described in Figure 2.10 when a Cassandra node receives a read re-
quest, it has to look into each MemTable and each SSTable. In the presence of multi-
ple versions, it returns to the most updated one. Since the SStables stay in secondary
storage, Cassandra tries to reduce the I/O keeping in memory an approximated
probabilistic structure that it uses to determine when skip reading a specific SSTable
as it is impossible that it contains the required value. Cassandra manages multiple
bloom filters [25] for each table, both at the row and the column name level so that
it can guess if a file has any value matching with both the partition and the cluster-
ing key. Given the probabilistic nature of the Bloom filters, they have relatively rare
false positive results, which means the database might access an SSTable even when
it does not contain the required information.

2.9 The importance of the data model

An important milestone in developing any distributed application, and even more
designing novel MIS algorithms, is to understand how the data model influences
performance. Indeed, NoSQL databases do not employ the relational data model,
but they expose to the user directly how data will be stored in the distributed system.
Therefore, different layouts - data models - dictate what information can be retrieved
in a matter of milliseconds and what in hours.

FIGURE 2.11: An example of two different datamodels

52 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

Figure 2.11 shows a simple example of how the data model can influence perfor-
mance. Let us imagine we have a bookshop and we want to store in Cassandra how
to catalog all of our inventory. Each book has an author, a title, a year of publication
and a price. We can assume that the combination of author and book title is unique.
Even in such a simple setting, we have to decide between two different ways to store
data. If in our application it is vital to look for all the books published in a particular
year, we would likely use the Data model 1, as all publications will be organized
chronologically. However, if we only use this data model and we want to search all
books from a given author, we will have to scan the database and check in which
year he or she published a book. Vice versa, Model 2 allows a fast lookup by author
name, but it does not allows other types of query. In the development of an actual
application, the developer should, therefore, decide which kind of queries are essen-
tial and use a data model that favors them, while determining which interrogation
can take more time.

2.10 Aeneas

An essential part of the effort in all the HPC/NoSQL applications we developed
has been finding the right data model configuration. This work can be tedious, as
it requires to set up the database, modify the application to store the data with a
different data model, store the data in the database and then set benchmarks with
different queries with a proper query distribution to understand which model per-
forms best. Even understanding how and why a data model performs better can be
challenging, as it entails gathering metrics information from several software stacks
and machines. To simplify such a process, we developed Aeneas, A tool to Enable
Applications to Effectively Use Non-relational Databases[30] which is freely avail-
able from the URL https://github.com/cugni/aeneas.

Figure 2.12 describes the overall Aeneas architecture that is composed of three
main parts: a loader, a workload generator and a graphical web interface that al-
lows to analyze and compare the results. The first component, the loader, takes as
input XML files that follow a precise XSD structure and that allows to describe at
high level the data model of the application - what we call the reference model - and
then it allows to map the information into a databases layout, for example chang-
ing the value order or storing them in multiple tables. Once the data is loaded, or
while it is loading, the workload generates a configurable workload using different
types of statistical distribution, such as a uniform, a Gaussian or Zipf distribution.
In the meantime, a daemon co-hosted application gathers metrics from both Cassan-
dra and the OS and it stores them in the databases for further analysis. In a third
moment, the user can access the data and visualize it from the graphical interface,
using different plots and visualization techniques.

We used Aeneas to support the development of all our HPC applications. We
also employed it to analyze the link between data models and their performance.

https://github.com/cugni/aeneas

2.11. The analytical model 53

FIGURE 2.12: The Aeneas platform

Indeed, we published a study reporting the performance of 5 different data models
for a scientific application [53]. Hernandez et al. [54] also proposed an Automatic
Query Driven data modeling in Cassandra based on these experimental studies. Tai
et al [104] recently proposed a similar approach. Replex is a multi-index data store
that uses different layouts to save multi-keyed data. They also proposed a novel way
to recover the information lost from a node crash by reading the data from another
data model.

2.11 The analytical model

In our experiments, we often observed that the number of keys, nodes, and the hard-
ware characteristics strongly influence the actual scalability of the system. Therefore,
we developed an analytical model that allows finding the right system configuration
to meet the desired performance for each kind of query type. In this section, we de-
scribe the math behind the random distribution of data and the experimental tests
we conducted to estimate the performance behavior of a key-value database. The
two parts put together assemble a model that can be used to find the right architec-
ture for each distributed application thus greatly simplifying the developing effort.
For example, each of the applications described in Section 2.1 has different require-
ments and characteristics, so we had to find the best architecture and configuration
for each case. Therefore, we had first, to speculate on each one of the possible bot-
tlenecks in our distributed system. Secondly, we had to create a prototype, run an

54 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

intensive test while profiling its performance. Finally, we checked if our assump-
tions were correct. If they were not, we had to iterate the whole processes. This
method is time-consuming, and it had to be run multiple times, as long as each ap-
plication tends to suffer from different problems. Also, in many cases, we have a
trade-off between the various factors, thus it is difficult to find the right balance. A
typical case is deciding when to use a master-slave or a peer-to-peer approach: a
master with a centralized logic is easier to implement, but the capability of a single
node might constrain the performance.

Likewise, we found a similar trade-off when assigning jobs to nodes: we can use
pseudo-random policies, which are faster and do not need a master, but then we
might have workload imbalance. Additionally, we can alleviate the imbalance by
partitioning the work in more and smaller tasks or by replicating the information
in more servers so that clients can pick the least loaded replica. Both cases have an
overhead regarding CPU, storage or cache affinity.

How can we find a good balance between these aspects? Can a one-size-fits-all
solution exist? Should a system that aims to few milliseconds response time have
the same infrastructure of a batch-oriented one?

Therefore, we propose a benchmarking methodology that allows summarizing
in a few metrics the behavior of distributed systems so that we can understand
which are the limits of such a design. Also, we provide an analytical model that
- once fed with the results of our benchmarking - can guide the improvement of the
system architecture by giving precious insights about which components of the sys-
tem are or will be the bottleneck at any given level of parallelism. Thanks to this
model, a developer can, in front of a set of technologies and SLAs, choose the right
architecture for its system.

A well designed distributed system should clearly distinguish between business
logic design and how the system distributes mainly for two reasons: reusability and
separation of concerns. Indeed, we want to write code that works well for different
applications; without requiring any algorithm modification. We prefer to entrust the
underlying distributed platform to configure and optimise the algorithm’s execu-
tion.

Following this principle, modern distributed BigData platforms, such as Apache
Hadoop, Spark or PyCOMPSs, allow writing an algorithm as a chain of operations to
perform on data, leaving the platform to decide where and how to execute each step.
Similarly, NoSQL databases, abstract the distribution of the data among servers, re-
lieving the client from choosing where to search for an item or how to handle fail-
ures. The developer is only required to describe the application data model, while
the database takes care of uniformly distributing the load and preserving consis-
tency.

However, the data modelling and the system behaviour are not entirely orthogo-
nal [30][53]. For instance, in Distributed Hash Table (DHTs) databases, the cardinal-
ity of the key has a significant influence on how the workload splits among servers.

2.11. The analytical model 55

Indeed, each distinct key randomly maps to a server with the optimistic assumption
that - with a "high enough" cardinality - requests will spread uniformly. In other
words, we have the undesired situation where a business logic related decision prej-
udices the system performance.

We will study Apache Cassandra [71] which architecture is described in Sec-
tion 2.8. Cassandra has two levels of indexing, one distributed built on the Partition
Key, while the seconds, which index the Clustering Keys, are orderly stored in a single
node. This double layer of indexing gives the user the possibility to decide which
items sort and group together and which ones spread randomly among the cluster.
For example, let’s suppose we want to index each phone number in the world: we
can choose to group each record by country - e.g. using the national prefix as the Par-
tition Key - by city or, at the end of the spectrum, store individually each record. Each
choice has its benefits regarding which kind of query can serve efficiently: while the
last configuration allows accessing only single users, the others also permit reading
and aggregating by country or city respectively.

In the first case, we will have around 200 keys: one for each country. In the
second one, we can estimate about one million keys while something of the order
of the billions for the single user indexing. Now the question is: if we want to store
all this data in ten servers, will it spread uniformly? We can use Formula 2.1 to
estimate with high-probability how many more keys - in proportion - will go in the
most loaded node. The formula, here briefly introduced, has a wider description in
Section 2.2.6.

p ≈
√

log n ∗ n
m

(2.1)

Where m is the number of keys and n the number of nodes. With Formula 2.1
we can estimate for the first case that one of the ten nodes will have 27 countries
assigned- which is about

√
log 10∗10

200 = 0.339 ≈ 34% more of what would have been
a perfect distribution. In the two other cases, as the imbalance decreases with the
number of keys, we will expect an unbalance of 0.5% and 0.015%. In the first situa-
tion the imbalance problem is evident, but in the second one, when grouping by city,
we can encounter a similar problem. Even though the cardinality is high enough to
distribute the cities uniformly among servers, some cities are much bigger than oth-
ers. As a matter of fact, about half of the population lives in the 500 most populated
cities, so with such a layout half of the queries would have an unbalanced distribu-
tion: we can expect to have one node with 21% more load than average. Even worst,
doubling the server increases the imbalance to 35%.

Obviously, in this simple example, we could just redistribute the data since we
know which grouped elements will have more load. But what if we do not have
such information? Or if the popularity of items rapidly changes over time? With
this work we aim to study this particular problem, providing a methodology and a
mathematical framework that allows evaluating beforehand the performance conse-
quence of any particular data model design.

56 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

2.11.1 Methodology

The methodology we propose has two different phases: the first one is composed
of several steps and it is based on performing a broad range of tests to analyze how
different configurations influence the system; the second one consists on defining a
statistical model to guide future application designs. In the following subsections
we describe the steps that we have performed.

Scalability analysis and data model influence. The first step in our methodol-
ogy is to analyze how the data model affects the trade-off between a more balanced
workload and a higher job fragmentation and thus influences the performance and
scalability of the application. As Formula 2.1 states the expected workload imbal-
ance in a DHT system is inversely proportional to the root of the number of keys. In
simpler words, the more keys, the more uniform workload the node will have. On
the other hand, more partitions result in more operations, messages, index entries
and thus disk accesses.

To study this trade-off, we created a testing prototype to evaluate the behaviour
of three data models. All three data models partition the dataset into blocks, which is
the data unit to store in the database, and all of them differ in the number of elements
per partition. Differences in the amount of blocks in each model are enough to affect
the uniformity of the workload distribution and the number of operations necessary
to perform a given query. In section 2.11.2 we describe the results of our experiment
and we analyze the influence the data model has on the scalability of our case study.

Definition of stages As we will see in section 2.11.2, the work imbalance is not
always enough to explain the lack of scalability, so further analysis is required. To
understand which part of a distributed system is responsible for the lack of scala-
bility it is necessary to study and to analyze in detail the application performance.
However, we had to face two problems: first, the system is running asynchronously
on multiple servers which means that we have to record, gather and correlate met-
rics from multiple sources. Second, as requests last less than a second, the common
performance tools like Ganglia [43] are useless since they are designed to detect long-
running phenomena. We found out that the best approach is to identify the primary
data flow phases and to record the time that requests spend in each of them. This
approach simplifies the identification of common patterns such as bottlenecks or
workload imbalances.

Bottleneck identification and analysis Once we identified the critical phases in
our application, we can analyze the timings by searching for possible architecture
weaknesses. For example, if we observe that requests spend a considerable amount
of time during phase master-to-slave, we can hypothesize we have a network prob-
lem. Similarly, if we see that requests spend significantly more time in-queue in one
node, we might investigate on the workload imbalance.

2.11. The analytical model 57

Section 2.11.2 presents the results of the battery of experiments that we have
performed to analyze each bottleneck and how the conclusions of our analysis allow
us to improve the implementation and the deployment of our application.

The analytical model While the performance analysis allows improving the effi-
ciency of the system, our final goal is to generalize our results into an analytical
model which allows exploring the feasibility of new architectures. Indeed, with the
analytical model, not only we can find the optimal trade-off between requests gran-
ularity and workload balance, but we can also simulate the performance characteris-
tics of new and arbitrary complex architectures, giving us a valuable tool to research
which is the best solution for each particular use case and platform. In section 2.11.5
we describe how we have defined the model for our case study.

2.11.2 Performance analysis

We have implemented a prototype to run on real data generated by the Alya simu-
lator and indexed by our D8tree indexing system. In this prototype multiple nodes
have to compute a simple aggregation — count by type — over one million elements
grouped in blocks of various size. The test starts when a master asks the slaves to
compute the aggregation over data stored locally. Each slave accesses only the lo-
cal blocks using the underlying key-value data store. In this simplified prototype,
the master knows from the beginning which are all the requests it has to issue. The
dataset is composed of one million elements and we used three data models with
different workload distribution characteristics. We named the three data workloads
as follow:

coarse-grained: 100 partitions, of 10,000 elements each.

medium-grained: 1,000 partitions of 1,000 elements each.

fine-grained: 10,000 partitions of 100 hundred elements each.

As the data is indexed with the D8tree system, the elements are stored in space
partitions named cubes. We selected - in a pre-query phase - all the cubes with sizes
that matched the three workloads. We picked at random cubes with one hundred,
one thousand and ten thousand elements and we pre-computed the list of keys each
workload has to read.

Our tests ran on on-premises servers equipped with two Intel Xeon Quad-Core
L5630 with a maximum clock speed of 2.13GHz for a total of 8 cores and 16 threads
and 24 GB of NUMA RAM. Each server had a SATA2 SSD and a rotational Hard
disk and Intel Gigabit Ethernet as network interface. The three tests ran on the same
database table. We run the tests on clusters of increasing sizes: 1, 2, 4, 8 and 16 nodes.

58 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

2.11.3 Influence of the workload distribution

In this section, we describe the first set of tests we ran on our prototype system,
focusing on how the data model influences the scalability of the application. Fig-

FIGURE 2.13: Data model influence on scalability.

+−6%

+40%

+66%

+92%

+−2%

+3%

+17%
+62%

+−1%

+5%

+44%+180%

coarse−grained medium−grained fine−grained

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

5

10

Number of nodes

tim
e

−
 s

ec
on

ds

type
ideal
balanced

ure 2.13 shows how the three cases reveal different scaling profiles when doubling
the number of servers in the system. The bar shows the time we observed; the
solid line (labelled ideal) shows the query time we should have experienced if the
query was scaling linearly while the dotted line (labelled balanced) shows the time
we would have if the workload was distributed perfectly. The labels on the bars
state the relative difference between the ideal and real times. The balanced line is
calculated by counting how many queries each node served and then measuring
the relative difference between the most loaded node and the average. Finally, we
estimated how much time the query would have run if the load was distributed
uniformly.

The first thing to notice is that none of the models scale perfectly, with a degra-
dation that increases with the number of nodes. With 16 nodes, we observed times
between 62% (medium-grained) and 180% (fine-grained) worst than an ideal scal-
ability. In both fine-grained and medium-grained workloads the balanced and ideal
lines overlap almost perfectly. This suggests that request imbalance between nodes
is the primary cause of lack of scalability in these two workloads.

A different case is fine-grained, as the balanced line diverges from the ideal one.
With 16 nodes, compensating the imbalance does not significantly counterbalance
the lack of performance, so that the ideal line is 180% lower than the balanced one.

2.11. The analytical model 59

Since we ruled out the workload distribution as the cause of the performance degra-
dation, we will later present a more detailed study. As confirmation of our hypoth-
esis about the effect of work imbalance on the application scalability we analysed
coarse-grained, which is the workload that splits the query into only one hundred
keys, each of them containing ten thousand elements. Given the relatively small
number of partitions, this policy shows the higher imbalance. As long as each key
is stored at random in a server, the smaller is the ratio keys/nodes, the higher is the
probability that some nodes will have more work than others.

FIGURE 2.14: Operations per node vs. sub-query time.

Figure 2.14 illustrates how the number of keys assigned to each node and thus,
the number of operations that each node has to perform, affects the performance of
the query. Figure 2.14 shows the results of the execution of coarse-grained workload
on 16 nodes and it is composed of two charts: on the top a bar plot that shows the
absolute number of requests each node served while the bottom graph shows the
time required to complete each request on each node. All requests begin at the same
time, so the query ends when the slower request completes.

At a first look, we can see how the two metrics are strongly correlated, but they
are not identical. Indeed, we can see that the peaks in the number of operations
match roughly the peaks in query time, but we cannot say the same for the low-
est points. For example, node G completes 5 operations in almost the same time as
node F finishes 2 of them when queries run in-memory on multiple cores CPU. Even
though results show a considerable variance in all our tests, we observed that the
node that served more requests is also the last to complete. Therefore, as long as the
distributed operation completes when all nodes end their jobs, it is the slowest node

60 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

FIGURE 2.15: fine-grained: probability density with 16 nodes

0.0

0.1

0.2

8 10 12 14 16 18
number of elements in the most loaded node

de
ns

ity

distribution
estimated
observed

to dictate the overall time. Summarising: 1) the slowest node is the one that domi-
nates the total time 2) the slowest node is usually the one with the most queries 3) the
workload imbalance is proportional to the number of servers, and thus it explains
why coarse-grained does not scale linearly. It also suggests that we can estimate this
performance drawback using Formula 2.1.

Intuitively, it might seem wrong how the requests are distributed in figure 2.14.
We were demanding 100 keys on 16 nodes so — in a perfectly balanced case —
the most loaded node would have to serve

⌈
100
16

⌉
= 7 operations while in our case it

served 10, which is 43% more. Therefore, we might wonder if this test is just a highly
unfortunate case.

Figure 2.15 shows the probability density relative to the number of requests the
most loaded node has to serve. We generated the graph with brute-force by dis-
tributing at random 100 keys between 16 nodes and recording how many keys fell
in the most loaded node. Figure 2.15 shows the recurrences: the two vertical bars
represent the imbalance we observed in the experiment — the blue line — while the
green one is the value predicted by Formula 2.1. Figure 2.15 shows that our obser-
vation was not particularly unfortunate. On the contrary, in 60% of the cases we
would have a more unbalanced scenario.

The central part of Figure 2.13 shows how medium-grained has lower imbalance
as it uses ten times more rows. For example, with 16 nodes we reduced the overhead
from 108% to only 44% compared to policy coarse-grained.

Model fine-grained shows a distinct behaviour. As we issue ten thousand queries
at the same time we would expect an almost homogeneous workload distribution,
but the system stops scaling with more than 8 nodes.

2.11. The analytical model 61

master to slaves in queue in cassandra slaves to master

fine−
grained

m
edium

−
grained

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

Master
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

Master
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

time − ms

0 400
800

1200
1600

duration

FIGURE 2.16: Profile patterns: medium-grained and fine-grained

2.11.4 Definition of stages and identification of the bottlenecks

To investigate the origins of the unexpected lack of scalability on fine-grained, we
have analysed the code and the prototype architecture to define the main stages in a
request execution and then we recorded the times spent by requests in each phase.
We identified the critical points of a request execution such as the ones where the
system interacts with different software or hardware layer or with remote machines.
We identified the following stages:
1) master-to-slaves: the time between the master issues a request and when one
slave receives it. 2) in-queue: the time a query waits in a slave before it is sent to
the database. 3) in-cassandra: the phase where the request is sent, processed and
returned by the database. 4) slaves-to-master: the time for the master to receive
a partial result sent by a slave. This four-phase analysis turned out to be crucial
for understanding the overall system performance: it allows pointing out which
components of a distributed system limits the performance.

Figure 2.16 shows the duration of each request in each phase in the two exe-
cutions: one with medium-grained — the bottom part — and fine-grained on the
upper side. Each cluster of segments is a single phase in a specific node, while the
length of the bars and their colour describe the time spent by a request in each phase.
In such a way, short-lasting events which should be the norm in a well operating sys-
tem are almost invisible thus highlighting eventual system congestions.

The bottom part shows medium-grained: we can see that the master-to-slaves

62 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

phase lasts at most ≈ 300 ms, and also that Cassandra is not fast enough to satisfy
all of the requests as quickly as they arrive. This is evident by looking at the in-
queue phase where a lot of requests spend a considerable time waiting. Finally,
the plot clearly shows how the workload distribution between Cassandra’s nodes -
as we saw before - is not uniform, and also that it directly influences performance.
Indeed, this workload executes in less than 1 second, which is approximately the
time required by the slower slave node — F — to complete all its requests in the in-
cassandra phase. Hence, we can deduce that Cassandra is the weak link in the chain
in this scenario, but also that, we can achieve a significant performance improvement
with a more uniform work distribution. On the other hand, fine-grained presents an
entirely different pattern. In this case, the master requires up to 1.5 seconds to finish
sending all requests: an extensive time that leaves Cassandra idle most of the time.
We can see it in both the in-queue and the in-cassandra phase. The first one is empty,
meaning that all requests spent practically no time in queue. In the second one, we
can see several empty - white - spots. These spots are the proof that Cassandra was
processing requests faster than our system was able to issue them. In other words, a
consistent portion of the whole execution time was spent idle while waiting for the
requests to reach Cassandra. Here the major system bottleneck is the master node:
it simply cannot send messages fast enough to keep Cassandra’s nodes working at
their full capabilities.

It is intrinsic of the master-slave architecture to be limited by the master’s capa-
bilities at some point. However, we wanted to understand which was the limiting
factor. At first, we investigated the network: our cluster network has a star archi-
tecture, so each node is directly connected to a switch that dispatches the packages
between nodes. With such an architecture, we suspected that the query saturated
the outgoing connection of the master: yet we measured that the outbound traffic
was only 7.5 MB split in 15 thousand packets. We measured that such a transmis-
sion takes 7ms in our cluster, way less than the 1.5s we observed.
Once excluded the network, we carried out a detailed profiling of the master appli-
cation. We found out that we were hitting the CPU bottlenecks: we were consuming
too many CPU cycles for each message. The CPU net cost of sending a message is
the combination of several aspects influencing the actual implementation, such as
the programming language and model, as well as the platform and libraries used.
When building our prototype, we aimed for a good balance between speed of devel-
opment and performance, so we used an Actor based library which runs on the Java
Virtual Machine platform. Using profiling techniques, we found out that the there
are two major contributors to the high message CPU cost. The first, and the most in-
fluential one, was the messages serialization. In Java, messages are objects and thus
we have to transcode them into their binary representation — the serialization — to
send them over the network. The default Java serialization implementation focuses
more on flexibility than performance: it allows serializing at runtime any object, at
the cost of adding extra meta-data into each object’s byte representation.

2.11. The analytical model 63

0

5

10

1 2 4 8 16
Number of nodes

se
co

nd
s

policy

coarse−grained

medium−grained

fine−grained

Scalability of the optimized prototype

FIGURE 2.17: Performance reducing bottlenecks

In our profiling, we measured that the serialization phase took about 400ms of the
whole execution. Serialization is a well-known issue of many distributed platforms
running in the JVM, and thus, there are several alternatives which aim to reduce both
the amount of bytes size and the CPU cycles required. Among many, we choose
Kryo [69], a library that allows to reduce consistently both the bytes and the CPU
required, by explicitly declaring which classes need serialization. The second op-
timization took place in our prototype code, where we observed that usually inex-
pensive operations, such as logging and integrity checks, were too costly at such a
frequency so we had to work to reduce their effect.
With such optimizations, the master node of our distributed application had a great
improvement, and the master node changed from sending ten thousand messages
from 1.5s to just 192ms. Breaking it down to the single message, it is moving from 150
to 19 microseconds each, almost one order of magnitude of difference. Also, with a
more efficient serialization, the amount of data transferred in the master to the slaves
lowered to 900KB, which travels over the network in approx 700 microseconds. As
a natural consequence of such an improvement, the results of our tests changed, es-
pecially for the fine-grained workload, which with the highest number of keys, was
the more penalized by the message overhead. Figure 2.17 shows how performance
changed.

The comparison of Figure 2.17 and Figure 2.13 shows how improving the mas-
ter changed the performance profile of the various models: for instance now fine-
grained shows almost linear scalability and it became the fastest workload when

64 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

running on 4 nodes and more. Indeed, fine-grained is 12% slower than medium-
grained on a single node for the higher overhead of issuing ten times more queries,
but this handicap is soon compensated when the number of nodes increases. For
example, with 8 nodes medium-grained has an imbalance of 16% while it is only
4% for fine-grained: a delta that nullifies the initial 12% handicap. It is interesting
to see how, even in this simple case, a one-size-fit-all solution does not exists and
depending on the number of nodes we might prefer one configuration rather than
another.

2.11.5 Performance Modelling

The last step in our methodology is to synthesize the results of the performance
analysis into an analytical model that can guide designers to select the most suitable
data organization for their applications. Thus, we created an approximated model
for each of the different components that play a major role in a distributed applica-
tion. So far, we observed three principal aspects: 1) the time the master needs to send
all requests 2) the time that the slowest slave takes to finish 3) the time the master
needs to fetch all results.

We saw that the request granularity - the number and the size of partitions in
which the whole job is split - influences the performance of most of those aspects.
Therefore, for each aspect, we created a regression model function of the number
of partitions. We built these models upon observation recorded during tests run on
our hardware and software stack. While the specific regression models may be real-
istic only for some hardware/software settings, the overall model and methodology
can be applied to any system: it would simply require to run the same tests on the
different hardware/software stack and create a new regression.

We saw in the previous experiments that the behaviour of the distributed system
was influenced by the slowest of the high-level factor: the speed of the master send-
ing requests, and the time required by the slowest slave to fulfill them. Therefore, at
the highest level we can synthesize the model as:

max{masterspeed, slaveslowest, resultfetching} (2.2)

The masterspeed is the time the master node needs to send a single request to one
slave. As we saw in Figure 2.16, the master can be the major bottleneck in perfor-
mance. We have been able to speed-up the master by optimizing its code imple-
mentation, but this is not possible in all situations. For example, if the master has to
compute expensive operations to issue each request, or if there is a dependency be-
tween them. For instance, navigating through an index, the master needs to examine
the content of each call before deciding which are the next elements to read. In both
cases, it is beneficial to understand in a designing phase how much time the master
can spend in such operations so that a developer can determine which are the lower
and upper bounds when adopting a master-slave or peer-to-peer approach.

2.11. The analytical model 65

In this thesis, we focused on the simpler case in which the master knows all the
keys to visit from the beginning. Therefore its behaviour can be easily modelled as:

masterspeed = keys ∗ timemsg (2.3)

In Formula 2.3, the keys are the number of partitions in the system, while the timemsg

represents the time spent, end to end, between the moment a request is sent and
received.
We saw in Figure 2.14 that the slowest node is - unsurprisingly - the one that has
to complete more requests. For this reason, to simulate the slowest node, we have
to consider how many operations the most loaded node will have to perform, and
then estimate the time required by the database to fulfill them. Putting all together,
the slaveslowest model must take into account: 1) the workload distribution between
nodes 2) the time required by the database to compute a request. These aspects result
in the following formula:

slowestslave = keymax ∗DBmodel (2.4)

where keymax the maximum number of requests a node is expected to receive, and
DBmodel is the time the database requires to serve them. We can deduct keymax from
Formula 2.1, and therefore:

keymax =
keys

nslaves
+

√
keys ∗ log(nslaves)

nslaves
(2.5)

As we discussed before, this formula is influenced by the number of nodes and
the number of keys - partitions - in a way that promotes the increasing number of
keys when we have more nodes. However, splitting a job into too many smaller
partitions has a performance drawback causing overhead in the database.

Database model

The design of databases aims to reduce the latency of the average query by adopting
greedy strategies; caches, indexes and bloom filters; that minimize the duration of
most of the requests at the cost of introducing variance. For example, a miss in a
cache of a false positive in a bloom filter can arbitrarily make a request orders of
magnitude slower than average. Also, databases optimize the hardware resources
by executing multiple operations at the same time, but this introduces a performance
degradation caused by the interference accessing shared resources. For such reasons,
we found out that the best way to model the database was first to study how the
time required to serve a single request varies in relation to its size. In a second step,
we estimated the performance degradation caused by the interface of concurrent
requests.

66 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

FIGURE 2.18: Response time versus row size.

To build the DBmodel, we made a stratified sampling of the rows in our dataset
so that we could get the same number of random samples for each range of row size.
Then we execute several repetitions of our test reading in random order the rows we
selected previously. Figure 2.18 shows how the query response time changes related
to the query size.

Figure 2.18 shows two plots: the first describes the whole test execution, while
the right plot is a close up that shows only the requests with up to 2500 elements.
The close up shows an unusual pattern in the Cassandra response time: at around
1425 items per row there is a discontinuity point. We found out that a Cassandra
internal parameter -column_index_size_in_kb - was the cause of such behaviour. As
Cassandra uses two-level indexing, it maintains for each row a column index but, as
it is not efficient to index each entry, it records only the first, and the last column each
column_index_size_in_kb, so rows smaller than 64KB are not indexed. As it turned
out, 1425 rows are approximately 64KB and thus the index overhead caused such
inconsistency. For such a reason, in Formula 2.6, we opted for a piecewise function:

querytime =

0.773 + 0.0439 ∗ keysize if keysize > 1425

1.163 + 0.0387 ∗ keysize otherwise
(2.6)

We repeated the tests allowing different numbers of concurrent requests. Increas-
ing the parallelism has an adverse influence on the system variance and the perfor-
mance of the single queries, but it increases the overall throughput. We observed
that the increase of the throughput is not constant, and it degrades in correlation
with the row size. Cassandra seems to be able to perform at a higher parallelism
with smaller queries and thus, to estimate the parallelism speed-up, we also have

2.11. The analytical model 67

FIGURE 2.19: Speed-up of parallel queries.

to consider which is the optimal parallelism for such a row size. To figure this out,
we formulated another test: we created another stratified sampling of 20 groups,
each of them with a row size range of 500 elements. For example, the first group has
keys with sizes one to five hundred, the second from five hundred to one thousand,
and so on up to ten thousand items per row. We queried all keys, for each group at
a time, testing different levels of parallelism. Finally, we computed the maximum
speed-up we achieved compared to the time required to get an element at a time.
Figure 2.19 shows the speed-up we achieve raising the parallelism correlated with
the query size. The colour of the dot represents the level of parallelism. The graph
shows two general trends. Firstly, the larger the queries are, the lower is the degree
of parallelism that performs better: The small queries perform best with 32 requests
at a time, the medium with 16 while the large ones with 8. Secondly, the red line in
Figure 2.19 shows that we can get a good approximation of the parallelism speed up
as long as it shows a logarithmic proportionality with the row size. Formula 2.7 ex-
presses the relationship between query size and the speed-up obtainable by running
queries in parallel. Figure 2.19 shows the maximum speed-up we could achieve
by raising the parallelism correlated with the query size. As you can see, the two
dimensions have a logarithmic relationship that we expressed into Formula 2.7.

parallelismmodel = 12.562− 1.084 ∗ log(keysize) (2.7)

Finally, putting together Formula 2.6 and Formula 2.7 we can define the DBmodel

as shown in Formula 2.8. The formulas allow modeling the database throughput in
relation to the size of the key.

68 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

FIGURE 2.20: Observed versus predicted time.

DBmodel =
querytime

parallelismmodel
(2.8)

Validation

We validated our model by comparing the estimated times with the one we recorded
in our previous tests. In Figure 2.20 the bars show the times we measured while the
two lines show the values we estimated with our model.

The precision of the estimation is high, especially considering the high variance
we observed in the tests. The only correction we had to carry out was for policy
coarse-grain to compensate the overhead caused by the Java Garbage Collector,
which our model does not contemplate as long as its influence is negligible in a
properly configured system. Figure 2.20 also shows the line dbModel+GC, which
adds the GC time into the model, notably increasing the model accuracy.

2.12 Model analysis

The flexibility of Formula 2.2 allows us to get useful insight on many different ques-
tions. For example, we can use an optimizer to find which would be the best number
of rows for the query we run.

Figure 2.21 shows which would be the optimal time we could get on our system
with the correct number of data partitions. It is interesting to see how the optimizer
increases the number of rows when there are more nodes. Cassandra seems to per-
form at best if we split the one million elements into ≈ 3300 rows. However the

2.12. Model analysis 69

FIGURE 2.21: Optimal number
of rows and the predicted time.

FIGURE 2.22: Optimal settings
versus ideal scalability.

optimizer is willing to sacrifice some of the database efficiency in exchange for a bet-
ter work distribution when adding more nodes. It means that we have to mediate
between two conflicting aspects: the database efficiency and the workload distribu-
tion.

Figure 2.22 shows in percentage how much more time it takes the query to run on
multiple nodes compared to an ideal linear scalability. We can see that even finding
the optimal configuration parameters; we still have a consistent loss. For example,
with 16 nodes the query requires ≈ 10% more of what would have been necessary
with a distributed workload.

Also, Figure 2.22 shows the difference between the total amount of loss and the
fraction caused by the imbalance increase. This difference quantifies how much
database efficiency the optimizer sacrificed to improve the performance. We can
look at these results from another perspective. Let’s suppose we are replicating the
data in multiple nodes and that the master employs a replica selection algorithm so
that it can ensure a balanced workload. For simplicity let’s round up the numbers:
the database performs optimally when issuing 4 thousand rows; the whole query
takes 8 seconds on a single node, while the single request takes 11 milliseconds if we
are issuing 16 queries in parallel per node.

On a cluster of 32 nodes, the query should run in 8
32 = 0.25 seconds if the sys-

tem scales perfectly. To do so, the algorithm should be able to issue at the very
first moment 16 ∗ 32 = 512 requests, and then continue issuing the same number
of requests every 11 milliseconds. However, as we saw before in our prototype,
sending a message takes about 19 microseconds, and thus sending 512 of them takes
19 ∗ 10−9 ∗ 512 = 9.7ms, leaving almost no time for the algorithm to run. As a con-
sequence, the time left for the replica selection algorithm reduces so much that it is
likely that with more than 32 nodes the master will start to be the major performance
bottleneck, and the system stops to scale.

We touch similar limits when distributing the requests at random. Figure 2.23
shows how the query time decreases by adding nodes. It also demonstrates that

70 Chapter 2. Performance characterization of NoSQL technologies applied in HPC

FIGURE 2.23: Load distribution limits for a single master.

with more than 70 servers, the master requires more time to send the requests than
the time the database would need to serve them. This limit is higher if compared
to the previous case with the replica selection algorithm, and it is so for two main
reasons. Firstly, the master has a simpler logic, so we can hypothesize it issues all
requests at the beginning of the query. Secondly, with a random distribution, the
system does not scale perfectly, consequently leaving more time for the operations
of the master.

2.13 Summary

In this Chapter, we first analyzed the requirement of scientific HPC application, and
we provided a broad view of the existing distributed data storage solution available
in the market. Above the many alternatives, we motivated our decision to use key-
value databases in HPC and to extend their capability by supporting MIS. Finally,
we presented our work on understanding which are the major aspects to consider to
ensure the scalability of a distributed application running on a key-value database.
We created a benchmarking framework to compare different configurations, and we
presented our research on the obtained results. Also, we proposed an analytical
model that enables developers to estimate the influence of each part of a distributed
system on the overall performance, so that it is easier to find the right balance for
each application requirements. The model allows finding the perfect number of par-
titions in which to split a distributed query so that we get the right trade-off between
database efficiency and workload distribution.

Finally, thanks to our module, we speculated, and estimate at which point either
the master-slave approach or the replica selection algorithm can limit the perfor-
mance.

2.14. List of publications 71

The knowledge gathered in this Chapter is used in the design of both our novel
indexing algorithms, the D8tree described in Chapter 3, and the AOTree in Chap-
ter 4. In particular, in Chapter 4 we will use the analysis we have presented to study
how we can improve the performance of the D8tree. Our model will be used to
understand up to which level it makes sense to replicate data in order to gain per-
formance on a distributed database system.

2.14 List of publications

Cugnasco, C., Becerra, Y., Torres, J., & Ayguadé, E. (2017, August). Exploiting key-
value data stores scalability for HPC. In Parallel Processing Workshops (ICPPW),
2017 46th International Conference on (pp. 85-94). IEEE.

Cugnasco, C., Hernandez, R., Becerra Fontal, Y., Torres Viñals, J., & Ayguadé
Parra, E. (2013). Aeneas: A tool to enable applications to effectively use non-relational
databases. In Procedia computer science, Vol. 18, 2013 (pp. 2561-2564). Elsevier.

Collaborations:
Hernandez, R., Cugnasco, C., Becerra, Y., Torres, J., & Ayguadé, E. (2015, March).

Experiences of using Cassandra for molecular dynamics simulations. In Parallel,
Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro Interna-
tional Conference on (pp. 288-295). IEEE.

Hospital, A., Andrio, P., Cugnasco, C., Codo, L., Becerra, Y., Dans, P. D., ... &
Gelpí, J. L. (2015). BIGNASim: a NoSQL database structure and analysis portal for
nucleic acids simulation data. Nucleic acids research, 44(D1), D272-D278.

73

Chapter 3

The D8tree: a read-optimized MIS

This Chapter contains the second contribution of this thesis and it introduces the
D8tree, our first novel read-optimized distributed MIS algorithm.

As discussed in Chapter 2, the shift to more parallel and distributed computer
architectures coincides with the rise of NoSQL databases that offer a scalable and re-
liable solution for "Big Data". However, none of them solves the problem of analyz-
ing and visualizing multidimensional data. There are solutions for scaling analytic
workloads, for creating distributed databases and for indexing multidimensional
data, but there is no single solution that points to all three goals together.
In this chapter, we describe our first solution to the problem; The D8-tree, a De-
normalized Octa-tree index that supports all three goals. It works with both analyti-
cal and data-thinning queries on multidimensional data ensuring, at the same time,
low latency and a linear scalability.
We have implemented a D8-tree prototype, and we compared it with PostgreSQL,
using the multidimensional plugin PostGIS, on a set of queries required by an in-
house HPC application. We found the D8-tree outperforming PostgreSQL in all
tested queries, with a performance gain up to 47 times.

The classic algorithms available in literature for multidimensional indexing (MI),
such as R-trees or Quad-Trees (Sections 2.4.3, 2.4.1), were designed for optimizing
the access to disk. They were designed to fit an environment where the major per-
formance cost was the seek time when accessing data sectors. Thirty years ago,
when A. Guttman firstly described the R-tree, reducing the number of accesses to
disk was surely one of the most important factors to take into account to guarantee
good performance. Since then, the technology background has inevitably changed.
A modern database system runs on multiple servers, each of them having multiple
CPUs. Moreover, rotational disks are being rapidly replaced by Solid State Disks
(SSDs) which do not have any latency times when accessing non contiguous sectors.
As a consequence, random access to disk sector does not imply any more perfor-
mance drawbacks.

As we described in Section 2.3.2, NoSQL databases ensure high availabilty and
scalability at the cost of reducing the database functionalities to a limited set of sim-
ple, but fast and scalable, operations. Consequentially, a user is forced either to

74 Chapter 3. The D8tree: a read-optimized MIS

continue using legacy systems or to implement an ad-hoc middleware software.
We found ourselves in the described case when working on the Alya HPC ap-

plication described in Section 2.1.2. The goal of our collaboration is to enable users
to navigate interactively in the simulation. The interaction must be done so that a
user can have the opportunity of increasing or decreasing at will the level of details
visualized, and also the precision of the query results.
These requirements need a backend service able to handle 3-dimensional queries
but, at the same time, keeping the response time in the order of a second; a limit that
is necessary for ensuring a natural interaction with a human being.

We took into consideration several existing solutions, as well as novel algorithms
proposed in literature, but we found none of them satisfactory for our requirements
in terms of performance and scalability. Indeed, while there are many scalable in-
dexing platforms supporting 2-dimensional Geo indexing - like Solr or ElasticSearch
-, we found none of them fully supporting the more complex 3-dimensional case.

Hence, we decided to create a novel indexing algorithm, designed to be imple-
mented on top of modern distributed key-value databases. Its design employs de-
normalization techniques to increase the scalability and the parallelism of multidi-
mensional queries. It also allows to run efficient data-thinning queries, enabling
the user to tackle massive data sets by analyzing smaller, but statistically relevant,
subsets. We have implemented a prototype and benchmarked it to a state-of-the-art
relational database such as PostgreSQL. Our solution has proven to execute faster
on all the tested queries, being up to 47 times faster than the relational counterpart
with a modest higher cost in terms of space.

3.1 Motivation

Our research started as a collaboration in a project that employs computational me-
chanics (see Chapter 2) to study how the particles flow through the human respi-
ratory system. As shown in Figure 3.1, using Alya 2.1.2 and a partial model of the
human body it has been possible to simulate how the particles are dragged into the
bronchi during an inhalation. Of particular medical interest is the simulation of La-
grangian particles transported by fluids, that can be either medicine or pollutants in
the air. In its original set up, Alya wrote the particles’ properties in persistent stor-
age. A typical simulation generates 300 Gb of plain text (CSV) data, but the amount
of data stored is artificially limited due to performance considerations. We used
two physical modules of Alya to carry out this work. The incompressible Navier-
Stokes equations are solved in a sniff condition, using a mesh of 350M elements,
while Lagrangian particles are transported by fluids, using drag law and Brownian
motion [56, 57, 109].

The goal of the study is understanding how drugs are assimilated by inhalation,
thus allowing to improve the existing medicine assimilation techniques. However,
the simulation does not provide the result of a problem directly; it generates a huge

3.1. Motivation 75

FIGURE 3.1: A screen-shot of the application

data set which has to be made available to a scientist for producing useful contribu-
tions.

Our collaboration aims to make the simulation easy to explore and visualize.
Their size exceed the quantity of memory available in a single computer, thus we
have to limit the number of elements visualized at the same time. Also, the user
must be able to increase or reduce at will the number of particles visualized, to focus
only on limited regions or to execute analytical queries. For example, narrowing the
visualization in a particular part of the trachea, asking where the particles that were
in an area have flown to, or knowing the percentage of the different types of particles
in a given space, etc. Last but not least, all these requests must run in a time of the
order of a second - if not less -, allowing a painless and responsive navigation of a
simulation.

As we analyzed in Section 2.4.4, these requirements are not available with the
existing solutions. There are solutions for scaling Big Data analysis, for creating
distributed indexes and for indexing multidimensional data, but there is no single
solution that points to all three goals together. Indeed, the first two are ineffective in
the case of multidimensional data due to the lack of a universal order of elements in a
vector space. At the same time, the existing MI algorithms cannot linearly scale since
it is not possible to navigate through their structure with arbitrary level parallelism.

Our solution supports all these goals together: a framework allowing to execute
both analytical and data-thinning queries on multidimensional data ensuring, at the
same time, short response times and a linear scalability on multiple servers.

76 Chapter 3. The D8tree: a read-optimized MIS

3.2 NoSQL characterization

The classical indexing algorithms, such as R-trees[50], were designed to take ad-
vantage of the hardware’s characteristic at the time. A time where seek latency of
the hard disks was the biggest performance bottleneck, RAM was extremely expen-
sive, and databases ran on monolithic single core machines. The architecture of the
computers has changed dramatically since then. The CPU’s clock frequency growth
has stopped, giving the way to new architectures built on multiple cores. Modern
CPUs have also adopted a Non-Uniform Memory Access (NUMA) design, which
distinguishes between the local and the remote RAM, opening new possibilities for
performance improvement when applications embrace share-nothing parallelism.
As a consequence, the first step for designing a new indexing algorithm is to analyze
what influences the performance of a modern key-value database. Even if different
products may have different performance profiles, our opinion is that all the avail-
able products will show a similar behavior in this context.
In Chapter 2.9, we analyzed how the data model influenced the performances of an
application while retrieving elements with a known identifier. In this scenario, the
client was directly accessing the database.
Differently, in this case, as long as we are searching for data matching a multidi-
mensional constraint, we cannot operate in the same way. We need to add a layer
between Cassandra and the client which takes care of translating the client’s requests
into simple key-value Cassandra operations.
The main function of this new middle-layer is to implement the indexing algorithm
optimizing the navigation through a distributed key-value system, instead of a se-
quential block device.
In this scenario, the partition and clustering keys are no longer the element’s iden-
tifiers, instead they are the index pointers for organizing data into groups. For ex-
ample, implementing an R-tree, the partition key can be the rectangle identifier, or
in a quad-tree the partition’s binary code. In any case, the indexing algorithm will
navigate through these groups searching for the elements that satisfy a query.
There are two main aspects influencing performance: the size of the group, and the
number of groups read in parallel. While the first can be configured simply as a
parameter, it is not possible to do the same with the level of parallelism. Indeed,
the chosen indexing algorithm strongly influences the maximum number of groups
accessible at the same time. As long as multidimensional indexes resemble a tree,
the fan out of each single node limits the number of requests executable in parallel.
Intuitively, if each node has only two children, we will have less parallelism than if
each node has eight children.

3.2.1 Influence of parallelism

We wanted to design an index that could maximize the benefits of running in par-
allel in a distributed environment. Thus, the very first step was to set up a simple

3.2. NoSQL characterization 77

experiment to find out how parallelism influences performance. We inserted in Cas-
sandra a sequence of numbers from 0 to 64 million splitting them into 65536 groups
containing 1024 elements each. In this case, the groups identifier is a number be-
tween 0 and 65535. We have chosen to make groups of a size of 1024 to make them
the same size of disk sectors. In our implementation, the group is a Cassandra row,
where the group’s id is the partition key and the numbers are the row values.
The testing client goes through all the groups asynchronously by issuing up to p
requests at the same time, where p is a configurable parameter. For example, with p
set to 8, the client issues 8 requests immediately and then it waits for the termination
of at least one of them before issuing the following ones. The scope of the test is to
see how p influences the time required to read the whole dataset.
We executed the test in four combinations of two variables: when the client resided
either in the same node of Cassandra or in a remote node, and when the data re-
quired was already in the system cache or not.

The test ran on a premise server equipped with two Intel Xeon Quad-Core L5630
with a maximum clock speed of 2.13GHz. In total it counted 8 cores and 16 threads.
Both CPUs mount 6 blocks of 4Gb DDR3 RAM memory for a total of 24 GB of RAM
with an NUMA architecture. The server had a SATA2 SSD and Hard disk. The
network interface was an Intel Gigabit.

FIGURE 3.2: Influence of parallelism

Figure 3.2 shows the performance reading the whole data set using different val-
ues of p and repeating the test ten times. It displays the median overhead of each
value of p in comparison to the best one. We can see how the number of parallel
requests dramatically influences performance. Indeed, between a simple configura-
tion with p equal to 1 to the best one with p equal to 64, we have a speedup of more
than 400%. We experienced the best results with p between 64 and 128. This result is
coherent with Cassandra’s documentation which states that when data fits in mem-
ory, as in our case, the optimal number of threads can be estimated multiplying by

78 Chapter 3. The D8tree: a read-optimized MIS

eight the number of cores. Of course, this is a rule of thumb, but it seems pretty
realistic in our tests.
It is interesting that performance, in all four configurations, increased almost lin-
early until reaching the optimal point between p of 64-128 but after performance
decreases with a logarithmic trend. This suggests that, if an algorithm has to devi-
ate from the optimal p, it is better to aim to a higher value of parallelism instead
of lower ones. These considerations are fundamental for our solution: indeed, we
can achieve high performances only designing an algorithm that can run at the same
level of parallelism at which these databases work at best.

3.3 Our proposal: the D8-tree

In the previous tests, we have seen that we can achieve the best results when issuing
between 64 and 128 queries per node at the same time. We also saw that this level of
parallelism relates to the number of processors for each node and seeing the trend
of computer architectures nowadays this is likely to increase in the future.
Furthermore, we want to design an index that can scale horizontally on multiple
servers. Understanding how the load distributes among the nodes when randomly
assigning tasks requires a more sophisticated analysis that will be part of our future
work. We can, however, make a rough estimation: if a node performs optimally
with p parallel requests, when we have n nodes, the optimal result will be some-
where close to n ∗ p. For example, if we run a cluster with 8 nodes, we can expect
to have the best performance when issuing overall between 512 and 1024 requests at
the same time.
Hence, when executing any arbitrary multidimensional query we would like to have
an index that allows us to execute about n ∗p independent queries at the same time.
However, choosing at will the level of parallelism is not something possible with the
classical approaches where we are limited by the node fan-out and the query selec-
tivity.
Let us take as an example the quad-tree, an index that divides the domain space into
squares. If a square is full, it splits into four disjoint offspring partitions and the
elements are distributed among them. Anytime a cube splits, it adds a level to the
index. When executing a query we have to start from the root node, then descend
to the children, then the grandchildren and so on. From each node, we can descend
in parallel into the four children so that a query runs with a parallelism of 4 on the
lower level, 16 in the following lower level, and so on descending.
However, the fan-out limit is only theoretical: a query might interest only few chil-
dren of each node thus reducing, or eliminating completely, the parallelism. For
example, if a query only needs the elements residing into a small domain area, the
execution is likely to descend the whole tree considering only one child per each
node thus making any parallelization impossible.
The previous example points out also another drawback. When descending the tree,

3.3. Our proposal: the D8-tree 79

the algorithm has to navigate through several nodes and this, on a distributed sys-
tem, is expensive and also a serious threat to the scalability of the whole system.

Finally, we considered the problem of thinned queries. Our research started from
an application requiring to execute efficiently queries sampling a small subset of el-
ements from a wide spatial area, as well as queries aiming to all the elements avail-
able in a narrow space. As we discussed in detail in Section 2.4.4, it is not possible
to execute efficiently using a classical approach such as the R-tree.

We came up with a solution to all the previous problems that embrace the data
de-normalization, a standard technique in databases to gain in performance at the
cost of duplicating parts of the data. Our solution is straightforward: instead of
having a Spatial tree for zooming and a Spatial indexing for retrieving the element,
we merged these two structures mapping them directly into a key-value store such
as Cassandra.
We will refer to our index as D8-tree (Denormalized Octa-tree).

Definition 3.3.1 A D8-tree is a balanced 8-ary rooted tree T(Z,K) composed of Z levels
and 81+Z−1

7 nodes where each node contains the TOP-K elements of the relative sub-domain
space.

Let N i
j be the ith node at the level j ∈ [1, Z] where i ∈ [1, 8j] is the node identifier

at the level j. Let en be an element stored in the D8-Tree and priority(en) its (ran-
domly) assigned priority. Finally, let Lj = {ek : ek ∈ N i

j , i ∈ [1, 8j]} be the union of
the elements present at the j level.
Then the following proprieties are valid:

1. The space domain of N i
j is one partition over 8j of the overall R3 space. Thus,

∀j ∈ [0, Z] :
⋃8j

i=1N
j
i = R3

2. Each level Lj has 8j nodes, and thus it contains up to K ∗ 8j elements.

3. Li ⊆ Lj , if i ≤ j and therefore if en ∈ Li then en ∈ {Li+1, , , LZ}

4. min{priority(en) : en ∈ Li} ≥ min{priority(en) : en ∈ Lj}, if i ≤ j

In other words, the characteristic of the D8-tree is to replicate the elements with
higher priority on the top levels of the tree so that the data contained within each
level is also stored in the lower ones. Figure 3.3 shows a representation of the levels
1 and 2 of a D8-tree where each node can accommodate maximum one element. It
is possible to see how the elements available at the first level, the red cubes, are
also accessible at the second level of the tree. Figure 3.4 shows the structure of an
Octa-tree where denser zones are more partitioned thus making data thinning more
complex. Indeed, if we want to sample one point from the top-left quadrant, the one
with the green pyramids and blue spheres, we should access each of the 15 partitions
reading all the elements and then randomly select the one we need in memory. With
the D8-tree, instead, we would need to read just one point from the first level of the
tree as long as it is already a random sample of the underlying space area.

80 Chapter 3. The D8tree: a read-optimized MIS

FIGURE 3.3: The first(left) and second level (right) of a D8-tree.

As a result, in the D8-tree an element can be replicated up to Z times. However,
the Formula 3.1 demonstrates that, in case of elements uniformly distributed among
the space, the amount of data duplicated is about one eighth of the overall data
stored.

lim
Z→∞

∑Z−1
i=1 K ∗ 8i∑Z
j=1K ∗ 8j

= lim
Z→∞

8Z − 8

8 ∗ (8Z − 1)
=

1

8
(3.1)

Formula 4.1 converges very quickly to 1
8 , so if Z=5, the space overhead is already

about 12.497. . . % .
Obviously, the case of a data set uniformly distributed in space is unrealistic and

in a real case the quantity of data replicated might exceed several times the size of
the original data. However, we think the benefits exceed the drawbacks of storing
duplicated data. We will also discuss further in Section 3.5, how we can modify the
index to reduce repeated information.

The benefits of adopting de-normalization are several. First of all, if we want
to visualize a spatial data set, and K equals the maximum number of elements visi-
ble at the same time, we can execute the data thinning queries extremely efficiently.
Indeed, the query requires reading only the data from a single node and, most im-
portantly, this is true at any zoom level. This was not possible with a common MI, as
long as we would read all elements in the zone and then select K of them in memory
(see Section 2.4.4 for more details).
Secondly, the interrogation of the index no longer requires passing through all the
node’s ancestors. Indeed, as long as all the data stored into the ancestor is also avail-
able in the offspring, a query can go directly to the smaller node that describes the
desired space. For example, reading elements from a small portion of the domain,
such as a space smaller than 1

8 of R3, we can jump directly to one of the nodes at the
second level. Similarly, if smaller than 1

64 to the ones of the third level and so on.
We can benefit from this property in two different situations. The first when

3.3. Our proposal: the D8-tree 81

FIGURE 3.4: A Octa-tree structure

we read a small set of data, as long as we can access directly to it avoiding useless
navigation through the index.
The second situation is when we need to read a considerable amount of data. In this
case indeed, we can speed up the execution spreading the work on many computer
nodes. For example, with a query about the data residing in the domain of node
N j

i , a client could decide to read directly to its 8 children or 64 grandchildren. This
"generational jump", can lead to consistent performance improvements. Indeed, as
we have seen in Section 3.2, executing in parallel 64 read requests results in up to
400% performance gain. In the same way, splitting the query in 512 nodes would
result in an optimal hardware utilization using an 8-node cluster.

3.3.1 Index implementation

We have successfully implemented the D8-tree on Apache Cassandra using Apache
Spark to create the index from a static data of 19GB of 3-dimensional particles tra-
jectory. The indexing algorithm has been implemented using Apache Spark’s pro-
gramming model which is described is Section 5.4.2.

Listing 3.1 shows the algorithm implementation using Scala and Spark. We used
a bottom-up recursive approach. The algorithm has 3 inputs: the data set, the total
number of levels in the tree Z, and the maximum number of elements in node K.
It starts with a set-up phase assigning to each element an arbitrary priority. Then,
it designates each item to one of the nodes of the current level. If a node contains

82 Chapter 3. The D8tree: a read-optimized MIS

more than K entries, it keeps only the first K and discards the others. The algorithm
iterates up to the root level considering only the data that have not been discarded
yet.
The algorithm uses a particular function to assign each element to a node. It returns
node identifiers, which are a string of K symbol ∈ [1, 8] composed in such a way
that every node shares almost the same id of the father, and a part of the suffix of an
additional symbol. For example, if a node identifier is the string "7342", its parent id
will be "734". More precisely, we use a Z-curve to generate the node identifier using
the binary algorithm proposed by F. Frisken and N. Perry [42].
Thanks to the property of the node id, we can handle nodes as bare strings. Indeed,
at each iteration, the algorithm removes the last symbol from each id to assign the
elements to the node’s parent. To complete the level, the algorithm aggregates all
the elements with the same node id, and lastly, it selects the first K elements falling
into each node. The algorithm proceeds in such a way up to the root node.

We used a bottom-up approach because it fits better when spreading the work
among different nodes. Indeed, an operation such as groupBy requires sending all
elements with the same key to the same worker and, therefore, same node. With a
top-down approach, our algorithm should start by aggregating all the data in the
first node, thus resulting in poor performance and frequently in the crash of the
whole system due to the overload. On the contrary, the bottom-up approach starts
by spreading uniformly the load across the workers and then, when climbing the
tree, it allows to reduce the working data to the only elements fitting in the previous
level, thus alleviating the complexity of the algorithm.

We took a different approach implementing the query algorithm. Indeed, we
decided to implement the code for each query in a separate application instead of
directly executing them with Spark. This choice was driven by the need of more
flexibility, as long as we could try different implementation details. The decision
was also driven by the fact that many of the queries do not require to perform any
aggregation on the data read, thus making unnecessary the usage of a system such
as Spark.

3.4 Experiments

We carried out a benchmarking test between our solution and PostGIS, an extension
PostgreSQL - the popular relational database - optimized for handling spatial and
multidimensional data. We conducted the experiment on three queries considered
vital for our application. These queries differ in the size of the space they delimit
and, therefore, the number of results. They reproduce the usage pattern of a user
that first analyses a simulation from a distance and then incrementally focuses on
smaller areas.

3.4. Experiments 83

LISTING 3.1: Simple D8-tree Scala indexing algorithm
val k : I n t = 10000 / / Max node s i z e .
val z : I n t = 10 / / Max number o f l e v e l s .
def D8tree (data :RDD[(Str ing , (Float , Point))] ,

l e v e l : I n t) = {
val survivors = data . map{

case (key , (rand , point)) =>
(key . subs t r ing (0 , l e v e l) , (rand , point))

} . groupBy { case (key , (rand , point)) =>key }
. flatMap { case (cube , elements) =>

elements . t o L i s t . sortBy {
case (key , (rand , point)) => rand

} / / S e l e c t t h e f i r s t K p o i n t s .
. take (k)

}
/ / I f a t t h e r o o t l e v e l , i t r e t u r n s t h e
/ / r e s u l t , o t h e r w i s e k e e p s i t e r a t i n g .
i f (l e v e l > 1) {

D8tree (survivors , l e v e l − 1)
/ / Merging t h e r e s u l t s .
. union (survivors)

} e lse survivors
}
/ / L e t ’ s c r e a t e t h e f i r s t k e y s : The f u n c t i o n
/ / c r e a t e K e y r e t u r n s t h e i d o f p o i n t ’ s cube a t
/ / l e v e l Z .
val lowerLevel = input . map(point =>

(createKey (point , z) ,
(Random . n e x t F l o a t () , point))

)
/ / C a l l t h e r e c u r s i v e f u n c t i o n .
recurQuad (lowerLevel , l e v e l =z)

84 Chapter 3. The D8tree: a read-optimized MIS

More precisely, Query A, which is the wider one, returns almost one million ele-
ments, Query B almost one-hundred thousands and the last one, Query C, returns
about a thousand elements.

Query A and B return an amount of results which cannot be easily visualized,
and thus we need to select only part of them. To do so, we will use two different
data-thinning techniques that reproduce different objectives: "LIMIT 1000" to maxi-
mize the number of elements visualized, and "TEN PERCENT" to preserve the items’
density. The first one simply sets a constraint about the maximum number of results,
while the second limits the percentage of data to read. Either way, we must guaran-
tee Zoom and Pan consistency, and we must be able to return the items in a random,
but fixed, priority. For example, using the first policy on Query A (∼ 1 million re-
sults), we will pick only the first thousand of elements sorted by priority. In the
second way, we will select the elements with a priority between 0 and 0.1 (assuming
priority ∈ [0, 1)) which should be about one hundred thousands elements. We also
tested "LIMIT 1000+" which is an alternative implementation of the query "LIMIT
1000" in PostGIS.

We repeated all tests ten times and selected the median value to discard outliers
in the result. At each repetition, the databases were restarted and the system cache
was dropped. We used the same on-premise machine described in Section 3.2. Fi-
nally, we ran the test with two different computer configurations. In one we stored
the data on a rotational disk while in the second in a solid state disk.

TABLE 3.1: Performance Speedup D8Tree vs PostGIS

Query A Query B Query C
hdd ssd hdd ssd hdd ssd

all 97 90 254 123 662 41
LIMIT 1000 4789 3388 1675 738
LIMIT 1000 + 767 63 649 30
TEN PERCENT 356 285 666 115

Table 3.1 shows the relative speedup of the D8-tree for each query, each different
storage device, and each query setting. In all our tests, the prototype implemen-
tation of the D8-tree built on Cassandra outperformed PostGIS by being between
30% and 47 times (4700%) faster. We tested both types of queries, approximated and
not, and this lead to large speedup variances. Indeed, the D8-tree shows consistent
performance, unlike PostGIS that is unable to execute efficiently the approximated
queries thus causing the huge speedup difference.

The data thinning queries on an R-tree index can be implemented in two distinct
ways. In the first one, we build a multidimensional index on only the data attributes
(in our case x,y and z) and then we filter data in memory. The second option is to in-
clude the random priority in the MI. In our case, it means building a 4-dimensional
R-tree. We have tested both implementations - "LIMIT 1000" and "LIMIT 1000+"- ,
as long as it is problematic to execute efficiently this kind of sampling in SQL. More

3.4. Experiments 85

precisely, "LIMIT 1000" refers to the simplest, and often the only possible, approach:
sorting all elements by priority and then selecting the first thousand ones. Not sur-
prisingly, the relative performance is extremely poor: the database has to sort a con-
siderable amount of data to then return only a small subset of elements. In such a
way, reading all the elements or just the first ones requires almost the same time.
For the sake of a more fair comparison, we implemented the "LIMIT 1000+" query
by hypothesizing that the client knows previously which percentage of the data falls
into the first one-thousands elements. In such a way, the client can execute a range
query on the 4D-index so that it returns the first elements. Such an approach leads to
an evident performance improvement, but in a real application, it is not trivial how
the client could know in advance how the data distributes in space.
The D8-tree does not have this problem; the top levels store the items with a higher
priority, and thus the algorithm can simply descend the tree as far as it has read
enough data to comply with the request. The data retrieved is already sorted by pri-
ority and therefore the D8Tree algorithm does not need to know "a priori" how the
data distributes, nor does it have to read and sort the whole data set. For this reason,
the D8Tree can be up to 47 times faster than "LIMIT 1000", and still be between 30%
and 700% faster then the "omniscient client" approach, "LIMIT 1000+".

FIGURE 3.5: HDD vs. SSD.

Figure 3.5 shows the time required to perform the two data thinning queries on
Cassandra. You can see how, in both configurations, with HDD or SSD, the queries
execute in few seconds, thus making possible an interactive exploration of the sim-
ulation by a human user. Furthermore, the Figure shows expected time in the worst
case scenario: on a real application we experienced a much lower response time.
Indeed, in our test the database runs on a single node and all requests need to ac-
cess directly to disk, as long as we drop the system cache before execution. Table 3.1
also shows a considerable difference between the speedup of HDD and SSD. As Fig-
ure 3.5 shows, this difference is not caused by a drawback of the D8-tree on SSD;

86 Chapter 3. The D8tree: a read-optimized MIS

on the contrary, it is proof that PostGIS executes a high number of random reads.
Indeed, the two tested devices have similar absolute speed, and they differ in the
latency required accessing different sectors.
It may not surprise that the D8-tree outperforms PostGIS in data thinning queries-
as long as we created it for this scope- but it is interesting to see that it also works
better for the "read all" kind of queries.

3.5 Data replication

The characteristic of our approach is to embrace data de-normalization which means
replicating more times the elements to gain in performance. We have proved that
this method is valid for the data thinning of multidimensional data, but now we
have to evaluate the cost in terms of disk space. In Section 3.3, we have shown that
the space overhead is about 12% when data distributes uniformly. However, in real
applications data has a skewed distribution and it leads to higher space occupation.
Indeed, for the previous test 3.4 we created an index of 10 levels with nodes that can
contain up to ten thousand elements and with such a configuration, we experienced
a duplication of the data of about four times. Even though it may seem a high cost, it
is worthy to notice that in distributed databases it is a common practice to replicate
data at least three times to ensure the availability of the information. Indeed, an
interesting approach to the problem can be merging the duplication required by the
index to the one needed to guarantee the availability of the data. In such a way, the
cost of the index’s replication would be virtually zero.
It is also important to notice that to improve PostGIS’ performance we had to create
two external multidimensional indexes - one of three dimensions and another of four
dimensions - which did not necessarily result in less space occupation of the D8-tree.
For example, for the previous tests, the D8-tree required 67GB of disk space, while
PostGIS used about 50GB.

FIGURE 3.6: Percentage of elements at any level

3.6. Real-time D8tree indexing for HPC 87

Figure 3.6 shows the percentage of elements available at any level. According to
the D8-tree proprieties, the last level - the tenth - stores the whole dataset. It is inter-
esting to see that the 8th and 9th levels already store respectively 98.4% and 99.7% of
the data. It means that from the 8th level on, only very small parts of the tree nodes
are full, thus adding further from this level causes a considerable high price in terms
of replication. As a matter of fact, if we consider the only elements stored up to the
8th level, the D8Tree would have a replication of only factor two.
As part of our future work we plan to make a deeper study about data replication
in indexes. However, the distribution shown in Figure 3.6 lets us believe that with
minor modifications of the algorithm it is possible to reduce the burden of data repli-
cation without compromising performance.

3.6 Real-time D8tree indexing for HPC

In the previous section, we have described an alternative approach to index and ana-
lyze multidimensional data with a non-relational database. The novel algorithm, the
D8tree, has proved to speed up query performance and to outperform the state-of-
the-art available solutions when dealing with multidimensional data visualization
of static data. Indeed, the D8Tree has shown to be up to 47 times faster than PostGIS
serving data-thinning queries, and it has also proved to be substantially more rapid
for the other kinds of requests examined. While these results show the feasibility
and the quality of our approach for multidimensional approximate queries on static
data. In this Section we will focus on the next step, which is extending the D8tree
for real-time indexing. With a real-time scalable indexing system, we can improve
the scientific workflow by allo wing scientist early access to the results, simplify the
overall data management, and achieve better performance in many cases.

In this section, we continue our previous work by presenting the first version of
Qbeast, a distributed, peer-to-peer system, able to build a D8tree under the intense
I/O workload generated by an HPC physics simulation.

3.6.1 I/O for HPC applications

Large scale time-dependent particle simulations can generate massive amounts of
data, making it so that storing the results is often the slowest phase and the primary
time bottleneck of the simulation. Furthermore, analysing this amount of data with
traditional tools has become increasingly challenging, and it is often virtually impos-
sible to have a visual representation of the full set. In this Section, we propose a novel
architecture that integrates an HPC-based multi-physics simulation code, a NoSQL
database, and a data analysis and visualization application. The goals are two: On
the one hand, we aim to speed up the simulations taking advantage of the scalabil-
ity of key-value data stores, while at the same time enabling real-time approximated
data visualization and interactive exploration. On the other hand, we want to make

88 Chapter 3. The D8tree: a read-optimized MIS

it efficient to explore and analyze the large database of results produced. Therefore,
this work represents a clear example of integrating High Performance Computing
with High Performance Data Analytics. Our prototype proves the validity of our ap-
proach and shows great performance improvements. Indeed, we reduced by 67.5%
the time to store the simulation while we made real-time queries run 52 times faster
than alternative solutions.

High performance simulations can run on thousands of computers for several
hours and generate massive quantities of data, such as the position and properties
of particles at each time step. Large scale simulations track hundreds of millions of
particles, and the size of the output files containing all this information can easily be
in the order of terabytes.

Traditionally, simulation results are stored in one or more files in formats such
as CSV, HDF5 or netCDF, but as described in Section 2.5, writing parallelly into a
single file can be expensive as it often requires additional collective synchronization
and communication between processes, which can limit performance.

As we approach the exaflop scale and simulation data grows in size, the future
of scientific visualization hinges not only on more powerful hardware, but also on
efficient algorithms that can reduce the precision of visualization while maintaining
the analytical proprieties of the data. To address this issue we implemented Qbeast,
a distributed peer-to-peer system that will be described in Chapter 5. Qbeast builds
the previously described D8tree (Chapter 3), thus allowing efficient sampling while
building multidimensional indexes in real-time. Our aim is to give the user the pos-
sibility of choosing the right trade-off arbitrarily between level of precision and re-
sponse time. Our system allows researchers to visualize simulations in real time and
after the simulation has finished, it allows visualizations of complex queries as well.
For example, what is the path followed by a specific particle, how do particles mix in
a region, where do particles in this region come from, how many particles go across
a given section, and all options that can be programmed into a DB query.

3.7 Real-time D8-tree index creation

We previously presented the D8-tree for static datasets[31]: it used a batch process-
ing approach to build the index, which is efficient but it requires the simulation to
have completed. To analyse a simulation at run time, we have to build the index
at the same speed the data is generated. The D8-tree structure contains copies of
the same item at multiple levels of the tree. For each level k, the whole domain is
decomposed in 8k partitions that we call cubes. Each cube has a maximum capacity
of C. When a cube reaches C, it sorts its content by a random priority and then it
discards the items with lower values. Therefore, a query that starts with the root leaf
reads a uniform random sample of data. While descending the tree it can increase
the number of samples. Maintaining updated such a structure on disk requires sort-
ing all the elements in each cube, which has a prohibitive performance cost under

3.7. Real-time D8-tree index creation 89

FIGURE 3.7: Dynamic D8-tree indexing: (left) A push query of a new
data item triggers a replication to the higher cubes into in-memory
MemTables, with records ordered by priority. When a Memtable
reaches its threshold size it is flushed to disk, but only the first few

elements are kept.

a continuous stream of insertions. Given an index of K levels, for each insertion,
we should access K different cubes, and modify each cube index by adding the new
element and possibly removing the overflowing ones.

Such a mutable structure has major drawbacks: it causes high cache pollution
and it requires costly synchronisation in multi-core architectures. Furthermore, it
performs badly with both rotational disks and flash drives. In rotation HDD, the
time for moving the magnetic heads to the desired disk partition –known as seek
time– is a significant part of the overall time, and thus it penalises accessing to non-
consecutive disk sectors. At the same time, as several articles pointed out[5][60], the
SSD devices degrade under a heavy load of random writes.

Indeed, NAND Flash Memories have unique erase-before-write and wear-out
characteristics, so that a block, usually 64-128 pages, must be erased as a whole
before writing a new page. Erasing is slow and it degrades the device, which is
why the SSD controller performs out-of-places updates. The result is fragmentation,
which under an update-heavy workload, requires writing several times the same
page to disk as Chen et al.[24] measured, this fragmentation can lead up to 14 times
slower performance.

LSM-tree indexes, such as the one used in Cassandra, have been pointed out
as an alternative to the widely adopted B-tree as they do not suffer of write am-
plification[110]. LSM-tree designs exploit the hierarchy between the volatile and
secondary memory, using the first to optimise accesses to the second. Elements are
kept in memory until a threshold is reached and then the items are stored ("flushed")
into a disk file in a single sequential write. A background process, called compactions,
aggregates single files in larger ones.

For all the cited reasons, we decided to follow the LSM-tree approach to create
our dynamic D8tree. We modified the database Apache Cassandra to implement

90 Chapter 3. The D8tree: a read-optimized MIS

our index. We made two changes: we added a trigger and we altered the logic
of the flushing algorithm. Figure 3.7 shows the overall architecture. On the right,
we can see that the client sends the request to the designed node where the trigger
replicates the query to the higher cubes. Cassandra stores each insertion into an
in-memory structure called Memtable keeping the records ordered by their priority.
When a Memtable reaches its threshold size, we modify the flushing algorithm to
write only the first elements to disk. In particular, Figure 3.7 shows how the particle
we inserted went in different positions of the three cubes so that in the higher one
"2", it is discarded when flushing the content into an SSTable on disk. Meanwhile,
the compaction process takes care to unite the small SSTables into larger ones, thus
reducing the index size.

3.8 Architecture

This section provides a brief summary of how we integrated Alya with Qbeast and
it describes how we connected Qbeast with ParaView, allowing to query the system
in real-time.

The original Alya architecture is shown in Figure 3.8a: a single master node man-
ages the simulation output. The Alya master collects all particles from the workers at
each time step, and then it appends the new results into a CSV file which is stored on
a distributed file system. While the CSV format has inarguably advantages given its
simplicity and human-readability, sending all results to one single worker is a major
performance bottleneck. We tested two different integration prototypes: master-
slave (Figure 3.8b) and peer-to-peer (Figure 3.8c).

Writing a high-performance communication protocol can be challenging, thus
we decided to connect Alya to Qbeast using the official Cassandra driver. We cre-
ated the Alya-Qbeast connector as a C++ library wrapper for Alya, which is written in
Fortran 90. The connector uses the C++ Datastax [23] driver to connect through an
asynchronous protocol to Cassandra. The driver manages failover and reconnection
in case of messages lost or node crashes, and it takes care of delivering the request to
the correct node. Cassandra takes care of persisting, indexing, and efficiently writing
to disk all the parallel requests sent by Alya. We used the same Alya-Qbeast connec-
tor for both implementations: in the first version, only the Alya master invokes the
connector while in the second one each slave uses the connector independently.

As Cassandra takes care of reordering the results, we can avoid the gathering
operation in the Alya Master. Figure 3.8c(c) shows the peer-to-peer architecture. In
the master-slave design the master dictates the output time. However, in the peer-
to-peer version, the slowest node limits the total output time. Each Alya worker
simulates a sub-domain of the whole simulation volume, and therefore it is com-
mon that in some phases of the simulation there are workers with a higher number
of particles, which consequently need more time to complete the simulation step.

3.8. Architecture 91

(A) The original architec-
ture

(B) master-slave version (C) peer-to-peer version

FIGURE 3.8: The three different architectures we tried in this article:
(a) The original set up where an Alya master node receives and writes
all the information, (b) The Alya master node is connected to QBeast
nodes, and (c) all Alya workers push information to QBeast nodes

independently.

In the experiments section, we present a detailed comparison between these two
Connector implementations.

The C++ Cassandra driver uses an asynchronous protocol thus allowing to effi-
ciently send several requests to Cassandra in parallel. However, as issuing too many
requests leads to system instability and performance degradation we added the pa-
rameter parallelism-level to limit the number of operations that are in execution at
the same time. Another option is to reduce the number of queries by grouping them
in larger ones, called batch statements. The trade-off is between network bandwidth
and latency. As this aspect influences performance, we defined the parameter batch-
size that indicates how many requests group into a batch statement.

The overall system is composed of: 1. ParaView 2. the ParaView-Qbeast plug-
in 3. the Qbeast Query Engine: a distributed middle layer that queries the D8-Tree
index exploiting the Cassandra data locality. 4. the Cassandra nodes: store and serve
requests on the D8-tree index.

Usually, ParaView runs on personal computers and renders the data locally, so
that if too many particles are loaded together the system collapses. While it is possi-
ble to distribute the rendering on multiple machines, it is costly both in terms of time
and resources. However, in many cases a random sample of the results is enough
for an interactive analysis of the simulation: we allow the user to choose the right
trade-off between the level of detail and system responsiveness. By tuning the preci-
sion and max-results parameters, the user defines the percentage of data to visualize
or sets an upper bound to the number of elements to fetch. Thanks to the D8-tree
[31], this can be efficiently implemented with Cassandra.

The process of sampling a dataset, also called data-thinning, would normally re-
quire the following steps: 1. Read the whole data set 2. Randomly discard in memory
99 elements every 100 3. return the 10000 filtered element. In such a way, reading
the whole dataset or just a sample requires almost the same time.

92 Chapter 3. The D8tree: a read-optimized MIS

In contrast, the D8-Tree has a response time proportional to the number of ele-
ments returned: getting one random part out of ten requires one tenth of the time to
read the whole data. The D8-tree uses a random priority to organize the data into
cubes, so that in the higher cube we find the elements with higher priority. There-
fore, if we want to get the k% of a dataset we just have to: 1. read the root cube
2. select all elements with priority ≤ k 3. if point 2 returns new items, we descend
into the 8 cube children and for each of them we go back to point 2. 4. if all queries
have completed, we return the results to the client.

In Figure 3.9 we show some screen-shots taken during the simulation of particles
flowing through a human nose. With this visualizations we were able to obtain
insights about how the simulation was proceeding before it completed.

FIGURE 3.9: Screen shots of real-time visualization of particles flow-
ing into the respiratory system in a rapid air intake simulation.

3.9 Experiments

In this section we present the tests we carried out on our Alya-Qbeast integration.
We analyze its performance compared with the original Alya implementation, and
we discuss the parameters that mostly influence performance. All tests simulated
the same particle respiratory system and ran on the BSC-CNS Marenostrum 3 Super-
computer. Each node in Marenostrum 3 is equipped with two Intel SandyBridge-EP
E5-2670 20M 8-core for a total of sixteen cores at 2.6 GHz processor base frequency
and 32 Gb of DDR3-1600 DIMMS ram. Each node uses the IBM GPFS file system
[62] running on the Infiniband FDR10. Both Alya and Cassandra started at the same
time in the supercomputer: Cassandra employs an internal BSC’s library module,
that allows creating a Cassandra cluster using a queue job system.

Horizontal system scalability The first experiment tests the scalability of Cas-
sandra: we increased the number of Cassandra nodes to measure the relative per-
formance improvement. We simulated 6.75 million particles moving during 10 time
steps using 256 Alya MPI workers. We disabled the Qbeast indexing, and we used
the peer-to-peer version.

For each Cassandra cluster configuration, we had to properly configure the Con-
nector. Indeed, to fully take advantage of the additional nodes, we need to increase

3.9. Experiments 93

(A) Cassandra scalability details

1

2.4

4.2
6.1

0

50

100

150

1 2 4 8

Cassandra nodes

tim
e

−
 m

s

time

connector

Cassandra

total

(B) GPFS VS Cassandra output time

160.78 s

65.12 s

37.85 s

26.17 s

0

1

2

3

1 2 4 8

Cassandra nodes

G
P

F
S

 r
el

at
iv

e
sp

ee
du

p

FIGURE 3.10: System scalability

the parallel insertions. For example, with 4 Cassandra nodes, the best performance
is with 200 concurrent requests.

Figure 3.10a shows that from 1 to 4 nodes, Alya scaled perfectly, in fact the re-
sponse time halved when the Cassandra nodes doubled. However, with 8 Cassan-
dra nodes, the relative speed-up resulted in only 6 times, instead of the ideal 8. To
understand what limits performance, we broke down the output time into Connec-
tor and Cassandra. The Connector only includes the time to transform a particle
from the Alya format into the Cassandra format. The latter considers the database
processing time. Figure 3.10a shows the different time components of an insertion
and how they change when increasing the number of Cassandra nodes. We can see
the time taken by Cassandra decreases while the time required by the Connector
remains stable: with 8 nodes the first reduces of 9.2 while the second improves of
only 1.6. With more than 4 nodes the Connector is the major performance bottleneck
and it does not allow the system to scale. Future work will improve the connector
implementation and help reduce this fixed performance cost.

GPFS versus Alya-Qbeast This test compares the performance of the original
Alya with the peer-to-peer Alya-Qbeast version. The original Alya design has a
master process that collects the results from all workers, and then it writes the results
into a file on GPFS.

The test simulated 6.75 million particles, 256 Alya MPI, 10 time steps. The origi-
nal Alya took 80.6 seconds to complete the output step of one iteration. By enabling
the Connector and using only one Cassandra node, the output step took 160.78 sec-
onds, while increasing the number of Cassandra nodes reduced the response time to
65 seconds with 2 nodes and to just 26 seconds with 8 nodes. In Fig. 3.10b we show
how Alya runs 3 times faster thanks to Cassandra’s linear scalability.

Alya master-slave versus peer-to-peer connector This experiment compares the
master-slave and the peer-to-peer Alya connector versions: both write data to Cas-
sandra. The aim is to understand how much the original Alya architecture is pe-
nalised by the master-slave approach. For this experiment we considered about 300
thousand particles, simulating their flow during 10 time steps. Alya used 64 MPI

94 Chapter 3. The D8tree: a read-optimized MIS

workers and insertions were handled by a single Cassandra node with the Qbeast
trigger enabled. The D8tree maximum depth was 5.

To fairly compare the two implementations, we had to find the optimal Connec-
tor configuration for the parameters batch-size (optimal value 5) and parallelism-level
(optimal value 10). With the optimal settings, the Alya-Qbeast peer-to-peer version
doubles the performance of the master-slave version. Even though we did not per-
form extensive tests of all possible settings, we had the possibility to estimate that a
master-slave approach requires about 84% more than the peer-to-peer one.

Dynamic indexing overhead In order to index simulation data in real time, the
Qbeast trigger needs to duplicate each insertion multiple times so that it propagates
up to the higher tree levels. To measure its overhead, we ran a new test with the
same condition of the previous scalability test but enabling the indexing. With the
D8tree maximum depth set to 5, the execution took 105.7 seconds. Compared to
37.85 seconds of the non-indexed version, it proved to be 1.8 times slower. As ex-
pected, indexing on real-time added an overhead: as maximum depth equalled 5,
Qbeast replicated each insertion 5 times. However, we experienced a smaller perfor-
mance detriment, as long as the Qbeast periodically filters in memory the inserts that
would not fit into the index, thus dramatically reducing the amount of data written
to disk and decreasing the algorithm overhead from 5 to 1.8.

Query performance experiment This last test compares the query capability
when using the D8-tree or when storing data into CSV files. For our experiment,
we chose an important query in our visualisation system: A small sampling over
a large simulation area. We decided to perform a query that returns 1.5% of the
particle present in the whole space domain, over a dataset of about ten million par-
ticles. The simulation considered 54000 particles during 200 time steps. We used
one Cassandra node and 12 Alya nodes connected through MPI. We ran the parti-
cle simulation with the trigger enabled to generate the D8-tree index, and we used
our ParaView Plug-in to query and visualise the random sample of particles. We
obtained the response in 4.19 seconds.

ParaView does not allow this kind of query so we used Apache Spark to read and
filter on memory the results from the Cassandra database to compare. Apache Spark
required about 210 seconds to load and filter the sample in memory, while with
our system we were able to retrieve and visualise the results in only 4.19 seconds.
This massive speed-up –52 times faster– enables the user to analyse interactively a
simulation.

3.10 Summary

In this Chapter, we presented our second contribution, the D8tree, and we presented
both its first static-data implementation and our prototype architecture that inte-
grates Alya, Qbeast, and ParaView allowing real-time interactive explorative analy-
sis and visualization of large simulation data. On static data, our tests showed the

3.11. List of publications 95

D8Tree can be up to 47 times faster than PostGIS serving data-thinning queries, and
it has also proved to be substantially more rapid for the other kinds of requests ex-
amined. Using Qbeast for real-time indexing, our work improved the storage of sim-
ulations, boosting performance and analytical capabilities. Our tests demonstrated
that key-value databases are a viable alternative to plain file storage for simulation
persistence, as they allowed to improve the write performance (in one case by up to
65.7%) by simply adding more database nodes. Also, we showed that it is possible
to maintain at real-time an index over the simulation results so that it is feasible to
visualize the early results of a running simulation. Indeed, while in our prototype
the indexing slows down the execution by 31%, it enables extremely fast arbitrary-
approximated query on the simulation. Compared with Apache Spark, we achieved
a 52-factor speedup.

The results of this prototype were satisfactory, yet we saw that the system had
several areas of improvement. First of all, each operation needs to be broadcasted
to all levels of the tree, which adds a considerable overhead both in terms of the
number of transactions that each node has to proceed, as well as regarding disk
space. In Chapter 4, we will study how it is possible to improve the architecture,
reducing the number of copies that the index is producing. To do so, we will use the
analytical model we previously introduced in Section 2.9 to model the performance
of a key-value database thus helping us understanding which are the limiting factors
of our initial architecture.

3.11 List of publications

Artigues, A., Cugnasco, C., Becerra, Y., Cucchietti, F., Houzeaux, G., Vazquez, M.,
... & Labarta, J. (2017). ParaView+ Alya+ D8tree: Integrating High Performance
Computing and High Performance Data Analytics. Procedia Computer Science, 108,
465-474.

Cugnasco, C., Becerra, Y., Torres, J., & Ayguadé, E. (2016, January). D8-tree: A
de-normalized approach for multidimensional data analysis on key-value databases.
In Proceedings of the 17th International Conference on Distributed Computing and
Networking (p. 18). ACM.

97

Chapter 4

The AOTree: a write, and
eventually read, optimized MIS

This Chapter contains our third contribution, the AOTtree. At first, we will address
some of the shortcomings of the D8tree, in particular, the need to replicate several
times the elements present in less-populated areas that causes a high overhead in
terms of transactions and disk space. To this end, we will first describe the D8tree’s
limitations, and then we will use the analytical model to study what can be changed
in the indexing algorithm without compromising query performances. Based on
this analysis, we will propose a new theoretical indexing algorithm; the Outlook-
Tree that reduces the disk space requirements without compromising the query
time. Then, as the OutlookTree does not work well under heavy write workload,
we will propose the Asymptotic Outlook Tree, in short AOTree, our novel struc-
ture that overcomes the shortcomings of a distributed tree with an innovative lazy
optimization approach. The description will focus on the key aspects required to
ensure consistency of the overall system during concurrent reads, writes, and opti-
mizations. Finally, we will introduce the results of comparative experiments of the
AOTree versus GPFS files and PostgreSQL.

4.1 Indexing algorithms

While there is a wide variety of secondary indexing algorithms, they all tend to or-
ganize data in hierarchical structures such as trees and this is an issue if we want
the index to be distributed in multiple machines. In such cases, expensive opera-
tions as distributed transactions and locks are required to preserve the consistency
of the data across different machines. Let’s take as an example the Quad-tree, a
2-dimensional space-partitioning indexing algorithm that divides the domain into
partitions of fixed sizes. The algorithm principle is simple: first, create a partition - a
square -, and store data inside. Then, when the number of elements stored reaches a
threshold, split the partition into smaller equally-sized parts. Finally, redistribute the
items into the smaller squares. During the splitting phase, we have to create a lock
on the first partition, create the smaller squares in remote nodes, move all the data
into them and finally release the locks. While the cost of such operations in a single

98 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

machine can be neglectable, they are prohibitive when storing the index on multiple
servers. Distributed locks are not only an obstacle for the system availability; they
also increase response latency and diminish throughput.

Aside from updating the structure, there is also the problem of querying it. A
hierarchy means that all interrogations must access to the same root elements: all
queries in a database system must pass through the same single server, sharply con-
straining the overall cluster performance.

In Chapter 3, we presented our work of integrating Alya and D8tree [31], proving
that it is possible to sustain the writing throughput of a simulation while indexing
the data in a pure peer-to-peer fashion. The D8tree uses de-normalization to relieve
the need of distributed transactions and enable a uniform workload distribution
between the cluster nodes. The main idea is to build the index on a perfect 8-ary tree1

with a configurable maximum height. Once they reach their maximum capacity, the
nodes only keep a sample of high priority data in the node domain.

A (0. 37, 0. 178) B (0. 08, 0. 15) C (0. 57, 0. 06)

Root " _" Level 1 Level 2

A A

C CB

0 1

32

00 01

02 03

10 11

12 13

20 21

22 23

30 31

32 33" _"

A

FIGURE 4.1: A 3-levels D8tree with partition max size = 1.

Figure 4.1 shows an example of a 3-levels D8tree where partitions can contain at
most one element, and we are storing three 2-dimensional data points - A,B,C - of
decreasing random priority. When inserting a new item, we store it into the smallest
area where it fits (e.g, “02” for A), then we try to insert the element in the “father”,
which name is the cube prefix (“0” for A). If the father has reached its limit, we select
the elements with the higher priority (A > B > C).

If we use a key-value data store, a convenient way to store the partitions is to use
the z-order [115] identifier as key, and the list of the elements that are stored in the
partition as value. Using this approach, the Listing 4.1 shows the entries we would
store in the database to implement the example in Figure 4.1.

LISTING 4.1: Figure 4.1 implementation on a key-value data store

kv [’ 00 ’] = [B]
kv [’ 02 ’] = [A]
kv [’ 10 ’] = [C]
kv [’ 0 ’] = [A]

1A k-ary tree with all leaf nodes at the same depth. All internal nodes have degree k. [85]

4.1. Indexing algorithms 99

kv [’ 1 ’] = [C]
kv [’ _ ’] = [A]

In this simple example, we can notice that the number of times an element is
stored depends both on its random priority and the number of items - density-
present in its area. For instance, C has a lower priority than B, but it gets repli-
cated one time more, as the domain of the partition “0” contains two elements while
“1” contains just one. This shows how the elements stored in less populated areas
are more likely to be replicated.

The fixed structure of the D8tree allows choosing different paths to complete a
query. Let’s suppose we are interested in all the data in the range 0.3 < x < 0.6 and
0.15 < y < 0.40 (the dashed blue rectangle in the Figure 4.1). We can start from the
root “_” and then decide to proceed further down after analyzing what we found. Or
we can go directly to level 1, reading “0” and “2”, or to level 2 by issuing 4 requests
for “02”,“03”,“20”,“21”.

Another benefit of this approach is that we can create the index once and for all
and then leave the Query Engine to optimize the execution at run-time.

Executing efficiently approximate queries is a key feature of the D8tree. The
index structure creates pre-computed samples enabling huge speedups for approx-
imate queries. Indeed, storing random samples of each space partition is a funda-
mental piece of the D8tree, as it allows an interactive exploration of a vast dataset
and it efficiently distributes the data across nodes. To insert a new item, we use a
hash of its identifier as a random priority. The benefit of this approach is that when
we know the maximum priority stored in a cube, we can estimate how many items
are present in all descendant cubes; in its space domain. For instance, if a partition
contains one thousand elements and the maximum items’ priority we find is smaller
than 1% of all the possible random values, we can roughly estimate the population
of this area. Indeed, if 1 is to 100, as 1000 is to the number of elements in the domain,
we can estimate ≈ 100, 000 elements. More precisely,

1000 : numberelements = 1 : 1000

numberelements =
1000 ∗ 1000

1
= 100000

Knowing the index fan-out, the Query Engine can use this estimation to decide
whether to “jump” short, long or regular.

Figure 4.2 shows the three kinds of jump that can occur on a simplified one-
dimensional tree generated using a gamma distribution. The percentage in the tree
on the left indicates how much data the node contains over the whole node domain.
Let us assume that the Query Engine has just retrieved an index’s node containing
38% of the required data in a specific area and now it has to decide how to proceed
the navigation. Since the cube contains 38% of the data, we can estimate that we

100 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

100%

53%

28%

80% 78%

67%

100%

100% 100%100% 100% 100% 100% 100% 100%
100%

53%

28%

80% 78%

67%

100%

100%100%100%100%100%100% 100%100%

Regular jump
round trips = 2
node read = 8

100%

53%

28%

80% 78%

67%

100%

100%100%100%100%100%100% 100%100%

Long jump
round trips = 1
node read = 8

100%

53%

28%

80% 78%

67%

100%

100%100%100%100%100%100% 100%100%

Short jump
round trips = 3
node read = 10

FIGURE 4.2: The picture shows an example of short, regular and long
jumps.

would need to access at least 1
38% = 2.63 full cubes if the data distributes uniformly.

In this optimistic hypothesis, we can find all data dlog2 2.36e = 2 levels below.
We refer to a “regular jump”, if the algorithm accesses to the cubes two levels

below, as the estimation predicts. If less, it is a “short jump” and a “long jump” if
more. After a jump we land on some cubes; if they do not contain all the data that
is needed, the Query Engine iterates the jumping process. Figure 4.2 shows how
the three policies differ regarding the number of iterations - round trips - and access
patterns. In Figure 4.2, all data that falls on the left of the root belongs to the domain
[0, 0.5), but we can retrieve all elements in different ways. We can read everything at
once from one single cube - “short jump”-, read two partitions with a “regular jump”,
or we can visit 4 partitions with the “long jump”. Issuing more requests to read the
same data adds an overhead. On the other hand, they can run in parallel on multi-
cores and servers with possible performance speedup.

Therefore, depending on the hardware architecture, the Query Engine might opt
for a type of jump or another. Which strategy is favorable depends on several as-
pects, as the percentage of data we need, how the data distributes, how we consume
the data (all together, in batches, with incremental precision etc..) and last but not
least, it depends on the characteristics of the system, such as the number of nodes or
the type of hardware used.

4.1.1 D8tree drawbacks

We found out that, although the outstanding query performance of the D8tree, the
overhead that it introduces regarding the number of transactions and I/O requests
for each insertion limits the overall system performance in write-intensive scenarios.

Figure 4.3 shows the implementation of the D8tree on Cassandra [13]. A D8tree
indexing a 3D space creates a perfect 8-ary (2dimensions) tree, where each level L has
8L (only 4L in the figure for space constraints) partitions of the space domain. The

4.1. Indexing algorithms 101

1 insert for each
tree level

Insert Multiplier

multiple in-memory maps
stored in different nodes

Compactor

SSTable multiple in-disk
maps

SSTable

1) Sort element by priority
2) Select the first K elements

Stateless D8Tree
implementation

Fully defined D8Tree

000 001

00

0

_

010 011

01

100 101

10

1

110 111

11

Each node is stored in a different server
The tree has a predefined height

The number of level - tree
height - is a constant

level

0

1

2

3

FIGURE 4.3: The original architecture for runtime D8tree indexing.

algorithm stores every insertion in the corresponding partitions in each level of the
tree. When one node of the cluster receives a client request, a component called
Multiplier takes care of redistributing the data. First, it calculates in which partition
(cube) of the lowest level of the index the data should fall in. Then, it sends the up-
date to the cube and all its ancestors, forwarding them to the corresponding server.
The drawback of this approach is that we have to issue a new request for each level
of the tree, with a considerable overhead regarding network and CPU usage. How-
ever, not all the requests end up in the disk. Apache Cassandra, similarly to other
NoSQL databases, delays writes to disk to improve the disk throughput. Cassandra
stores the incoming requests into an in-memory mutable structure called Memtable.
When the Memtable exceeds a configurable threshold, the requests go into an im-
mutable on-disk structure, called SSTable. A background process called Compactor
takes care of merging the various SSTables into larger ones to reduce the number of
I/O requests during reads. In Chapter 3, we modified the Compaction process so that
if there are more elements per cube than allowed, it sorts each entry by their random
priority and then discards the ones with a lower priority. The same process takes
place when a Memtable is dumped into a SStable. The advantage of this approach is
that it is possible to build a D8tree without having a shared state between nodes or
threads. Indeed, since the compaction works as an idempotent monoid, there is no
constraint in the order we process the single data parts as it does not change the final
results. However, the order the compaction tasks place influences the performance.

102 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

A
key #elements

701 5

10 8

22 5

key #elements

10 12

65 9

22 6

key #elements

65 9

50 4

22 5

key #elements

10 12

50 3

701 6

key #elements

701 10

10 10

22 10

65 10

50 7

76
insertions

62
insertions

key #elements

10 10

22 5

50 3

701 10

sum 28

key #elements

10 10

22 10

50 4

65 10

sum 34

key #elements

10 10

22 10

65 9

701 5

sum 34

key #elements

10 10

22 10

50 7
65 9

701 6

sum 42

B C D

FIGURE 4.4: How the order influences compaction performance

Figure 4.4 shows a small numerical example: on the left, performing

compact(compact(A,B), compact(C,D))

requires 76 insertions, while on the right

compact(compact(A,D), compact(C,B))

only requires 62. Merging all four Memtables at onces would require storing only 47
elements. The order in which the SSTables and Memtables are merged depends on
the time the data is received. If we send many elements that go in the same partition
in a small time interval, it is likely that the Compaction will be able to drop a larger
percentage of the data compared to the case the same elements are received in a large
time span. Indeed, given its stateless design, the Compactor knows only about the
small subset of the data residing in memory, resulting in a conservative evaluation of
which data it has to filter; an overestimation that causes flushing to disk unnecessary
data. Even though the background compaction eventually discards the redundant
pieces, it can result in a considerable I/O overhead.

The second problem concerning the disk space usage is a direct consequence of
the original D8tree design: generating a perfect 8-ary tree. It means that a 3D index
with 10 levels might have up to

∑n=10
n=0 8n = 810+1−1

8−1 ≈ 1.2 ∗ 109 nodes and that an
element can be replicated up to 10 times. While the number of cubes is large, it can
be easily managed with a distributed key-value data store, especially if we encode
the cubes containing no data as misses.

4.2. D8tree performance analysis 103

In Chapter 3, we showed that when the data is uniformly distributed in the do-
main, the space overhead caused by replicating the element at different levels for a
3D index is about

lim
Z→∞

∑Z−1
i=1 K ∗ 8i∑Z
j=1K ∗ 8j

= lim
Z→∞

8Z − 8

8 ∗ (8Z − 1)
=

1

8
= 12.5% (4.1)

However, the cost can be much higher in real applications, as it strongly depends
on the data distribution. For instance, in different use cases, we observed replication
overhead ranging from 60% to one order of magnitude higher.

4.2 D8tree performance analysis

Since the goal of this work is to reduce the storage, network and CPU overhead of
the D8tree, we analyzed which parts of the index could be modified without losing
performance in read operations. The D8tree builds an index without any assumption
about the performance characteristics of the underlying system: it does not take into
account the overhead of accessing the data location or sending a remote request.
As a result, we could find an optimal query plan with the same index structure
even on two clusters with completely different technologies and performance. For
instance, a system where all data fits in the primary memory might benefit from
using smaller cubes rather than a cluster using rotational disks. Similarly, different
network technologies have different costs to send and handle remote requests.

In the D8tree, the Query Engine is free to decide whether to perform a “long
jump" up to the maximum height of the tree. However, this level of freedom comes
to the cost that the index structure must provide a large combination of querying
paths, and that causes a high usage of resources.

In particular, it is supporting the jump long that causes the higher overhead in the
index, as it requires to copy elements in a high-number of smaller cubes. Therefore,
to reduce the index size, we decided to analyze which could be a reasonable upper
bound for the jump long so that we can reduce the index size with minor performance
degradation. To this end, we used the analytical model presented in Section 2.9 that
estimates the performance of a distributed key-value database when varying the
number of servers.

Figure 4.5 shows the optimal size of the partition we should use to retrieve differ-
ent amounts of items from a cluster with increasing number of servers. Obviously,
the smaller the partitions are, the more requests we have to issue.

For instance, the smallest query 10K, the one that returns ten thousand items,
should be divided into d10000160 e = 63 partitions when the database runs on a single
node, while it should have d1000075 e = 134 partitions on a database of 10 nodes.
Also, the model shows us that the optimal row size is 160 elements if all data re-
sides in a single server, independently from the query dimension. Therefore, we

104 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

40

80

120

160

1 5 10 50 100 500 2000 5000 10000

number of nodes

ro
w

 s
iz

e

dimensions

2

3

Number of elements

10 K

100 K

1 M

10 M

100 M

1 G

FIGURE 4.5: How the optimal row size changes for different queries
and cluster sizes.

should use this value as the default cube size when building a D8tree as it is the row
granularity at which the database works best.

When we do a regular jump, we try to guess at which level of the index we can
find all the data. Ideally, at this level, the partitions have approximately the optimal
row size, 160 in our example. On the other hand, the long jump would go one, or
more, levels downwards where the cubes contain ≈ 1

2dim
of the father’s data as they

split along all the dimensions. Therefore, in a 2-dimensional scenario, a cube is ap-
proximately one-quarter of their father size, in a 3D case one-eighth, in 4D 1

16 and so
on. At the same time, we will issue 4, 8 and 16 times more requests respectively, thus
achieving better workload distribution. We can use our model to find out when the
long jump is beneficial. In Figure 4.5, the horizontal solid line marks at what point
a long jump in useful for the 2-dimensional case. Similarly, the dotted line indicates
that point for the 3D case. In the first case, we would have a performance improve-
ment running a few queries, but only in clusters of 100 nodes and more. On the side,
with 3 dimensions there is no benefit until we have clusters of 10 thousand nodes
or more. In none of the cases, we observed a benefit for long jumps of two levels or
more.

The result of such analysis is that we can have a better understanding of what
makes sense to replicate, and what does not, in a realistic database cluster scenario.
For instance, Figure 4.5 shows that we have no improvement replicating more than
the regular jump for 3 and more dimensions with the tested hardware and software.
In the case of 2D, we might have a benefit replicating one, but only one.

Even though these results are based on a particular hardware/software config-
uration, we can reasonably assume that future clusters will still have a limited -

4.3. The OutlookTree 105

countable - benefit from a long jump, thus we can accommodate future architectures
adding a configuration parameter, which we call technological boost.

4.3 The OutlookTree

Following the previous assumptions, we improved the original D8tree design by
replacing the idea of a global “index max-height” with the idea that every single
cube has its own “max-height”. Therefore, from a cube perspective, we will only
replicate the data up to the offspring nodes necessary to perform a regular jump. We
named this new kind of tree, the outlookTree, as we duplicate the data only up to the
“reasonable outlook” of each cube, with the assumption that we will do at maximum
regular jumps.

Definition 4.3.1 The outlookTree is a K-ary unbalanced rooted tree T(D,S,B) where D is
the number of dimensions and where the nodes have either zero or K = 2D children. Each
node is a KLth disjoint partition of the D-dimensional space –node’s domain– where L is
the depth, meaning the distance between the node and the root. Each node contains up to
S of the elements that fall into its domain. If a node reaches the threshold S, it maintains a
random sample of the whole data, with P representing the ratio between the data contained
and the data that falls into its domain.

The outlookTree guarantees that any node is the root of a perfect K-ary tree with height
equals to the node’s outlook which is defined:

O = dlogK
1

P
+Be = B + d− logK P e (4.2)

The positive constant B represents a configurable technology boost.

Figure 4.6 shows a graphical comparison of three kinds of indexes produced over
a dataset composed of ten thousand random elements with a mixed uniform and
Zipf distribution. The maximum cube size is one hundred elements. The Quad-
tree is displayed on top: the white nodes contain data while the colored ones are
references to other nodes. A common way to implement Quad-trees on top of key-
value databases is to use a unique ID for each space partition. Each cube uses the
father’s ID as the prefix, as it represents a disjoint fraction of the father’s domain.

Therefore, queries start from the root node “_” and proceed downward visiting
all partitions interested by the query. Let us suppose we are interested in a random
sample containing 20% of the elements of a particular area. As the QuadTree splits
the space into regular partitions, we can use the query predicate to calculate the
smallest cube that might contain the required information. Supposing that this cube
is “03". Since we do not know the state of the index, node “03” could contain data,
be a reference to other nodes, or not exist at all. Thus, all queries must start from the
root node. In our example, we would access in sequence the reference nodes “_”,
“0”, “03”, and read the data stored in “030”,“031”,“032”,“033”. Finally, we would
filter in memory the result by randomly selecting one element every twenty.

106 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

Fully defined D8Tree

00

0

_

03

3

10%

85%11%

43% 51%

1 2

01 0244% 43% 30 3331 32

Quad-tree tree

00

0

_

03 30

3

33

1 2

31 3201 02

16 leaf nodes

OutlookTree

00

0

_

03

3

10% => 2

85% => 111% => 2

43%
=>1

51%
=>1

1 2

01 0244%
=> 1

43%
=>1

30 3331 32

FIGURE 4.6: Comparison between the Quad-tree, the D8tree and the
outlook-tree.

The mid section of Figure 4.6 shows a D8tree built on the same data set. The node
color represents the percentage of data present in the cube: black means the node
contains all the elements that fall into its domain, while the lighter color indicates
that the node has only a fraction of them. Serving the previous query with the D8tree
is faster, as we can directly go to node “03” since we know that it exists and that it
contains at least a fraction of the data we need. In this case, it comprises the sample
we need, thus no further steps are required. As drawback the total number of nodes
is much higher. In Figure 4.6 , the D8tree has 44 − 1 = 255 data nodes, while the
QuadTree has 16 + 4 + 2 = 22 data nodes and 4 + 2 + 1 = 7 metadata ones.

The bottom of Figure 4.6 shows the OutlookTree, configured with B equal to 0.
The value after the arrow (=>) is O, the outlook. If a node has outlook O, all the
nodes at O levels of distance are defined. Consequently, the previous query would
start from node “_”, then go directly to node “03”, as the outlook=2 guarantees that
it exists. The advantage is that only some parts of the tree are a perfect 2-ary tree;
there are only 37 data nodes, 85% less compared to the D8tree.

Figure 4.7 shows an example of how three the indexes can be implemented on

4.3. The OutlookTree 107

0 1

2 3

00 01 10

02 03 12

20 21 30

11

13

31

22 23 32 33

000 001 010

002 003 012

020 021030

011 100 101 110 111

013 102 103 112 113

031 120 121 130 131

022 023 032 033 122 123 132 133

200 201 210 211 300 301 310 311

202 203 212 213 302 303 312 313

220 221 230 231 320321330 331

222 223 232 233 322 323 332 333

_

00 01 10

02 03 12

20 21 30

11

13

31

22 23 32 33

0 1

2 3

000 001 010

002 003 012

020 021030

011 100 101 110 111

013 102 103 112 113

031 120 121 130 131

022 023 032 033 122 123 132 133

200 201 210 211 300 301 310 311

202 203 212 213 302 303 312 313

220 221 230 231 320321330 331

222 223 232 233 322 323 332 333

_

00 01 10

02 03 12

20 21 30

11

13

31

22 23 32 33

0 1

2 3

000 001 010

002 003 012

020 021030

011 100 101 110 111

013 102 103 112 113

031 120 121 130 131

022 023 032 033 122 123 132 133

200 201 210 211 300 301 310 311

202 203 212 213 302 303 312 313

220 221 230 231 320321330 331

222 223 232 233 322 323 332 33

_

L
ev

el
 3

L
ev

el
 2

L
ev

el
 1

L
ev

el
 0

Quadtree D8tree OutlookTree

FIGURE 4.7: A graphical representation of how the data is organized
in three MI algorithms.

a key-value database, using as the key a space-filling curve - the z-order. The area
with a square pattern represents non-defined nodes– a miss–, while in the QuadTree
the rhombus pattern illustrates the metadata nodes.

Let us imagine we have two queries about two different areas and that the smaller
node that contains the queries’ domain are nodes “321” and “030” respectively. Both
queries are easily implemented with the D8tree as it guarantees that each node up to
level 3 is defined and that we can directly access the two nodes. On the other hand,
we cannot use the same approach with the QuadTree and the OutookTree. Indeed, a
Top-Down navigation of the QuadTree requires for query “321” to go through nodes
“_” and “3” and filter in memory around one-quarter of the data. Instead, query
“030” goes down the whole tree, moving through nodes “_”,“0”,“030”.

The same approach with the OutlookTree is slightly more efficient, as once we
access to the root node we get its outlook - 2- and thus we can jump directly to level
2, saving a roundtrip in both queries.

One might argue that while we reduced the number of nodes, we reintroduced
the performance bottleneck caused by forcing all queries to pass through the root
node. However, in both the QuadTree and the OutlookTree, it is possible to alleviate
the stress on the higher nodes by caching some information. Furthermore, as we
will describe in details later, the OutlookTree allows using a compacted and loosely

108 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

updated in-memory data structure that enables the use of approximated data struc-
tures. Indeed, while in the QuadTree all nodes must have a consistent view of the
cached information to avoid losing data, our architecture works correctly also in case
of outdated caches or missed updates.

4.4 The AOTree: eventually building the OutlookTree

The previous section described the benefits of the OutlookTree design over the D8tree,
stressing out how it was possible to reduce the disk space and the number of trans-
actions by “cutting” part of the tree. On the other hand, the fact that the outlook of
each cube might increase during the index lifetime makes the OutlookTree structure
dynamic, thus hard to keep both consistent and fast in a distributed environment.

The “theoretical” outlook of a cube is calculated using Formula 4.2; it has a mono-
tonic value that increases as soon as new data goes into the index. However, strictly
following the OutlookTree definition, every time the outlook of a cube increases, we
should forward all its data to its descending nodes. A straightforward implementa-
tion would require distributed locks and transactions, similar to the ones needed for
the QuadTree, which would cause the same limits regarding system scalability and
availability. For this reason, we designed an architecture that builds a sub-optimal
version of the index that eventually converges to a full OutlookTree. In this way,
we are able to implement the index without locks while optimizing the index while
serving queries, in a process that we call ReadOptimization (RO). Once an RO com-
pletes forwarding the data of a cube to its descendants, we can increase the node’s
“committed outlook”, which is the one we can use during reads. Alternatively, we use
the term “committed level” to indicate up to which level a particular partition of the
tree is optimized.

The first difference we can notice, comparing the original D8tree architecture in
Figure 4.3 and the architecture we implemented for the OutlookTree in Figure 4.10,
is that we introduced two new components; the RangeEstimator and the aforemen-
tioned ReadOptimizer.

The RangeEstiamator (RE) has three main duties. Firstly, it reduces the number of
transactions by sending a copy of the data only to cubes where it might fit. Secondly,
it ensures that the cubes’ committed outlook is guaranteed. Lastly, it ensures no data
is lost during a ReadOptimization. To achieve its goals, the RE uses an in-memory data
structure to estimate in which nodes to insert the new items.

As shown in Listing 4.2, at a high level the RangeEstimator is a function that re-
turns two values, rfrom and rto which are used to calculate where to send the data.

LISTING 4.2: A psuedo-code of RangeEstimator application

cube = ’ 0 2 3 2 2 1 2 3 0 0 1 0 9 3 1 . . . ’
r_from , r _ t o = range_est imator (cube)
i n s e r t _ i n t o _ c u b e s = []

4.4. The AOTree: eventually building the OutlookTree 109

for i in range (r_from , r _ t o) :
i n s e r t _ i n t o _ c u b e s . append (cube [0 : i])

The RangeEstimator generates a random priority for each element using a hash of
the item’s unique identifier. Then, it uses the priority to calculate from which level
onwards the element should be inserted. It starts from the root: it compares the
node’s maximum random priority, and if the element’s priority is higher, it iterates
the process only to the child that could contain the elements. The process continues
until it finds a node with a smaller max-priority, thus defining rfrom.

In the meantime, the RangeEstimator calculates up to which level to propagate
the insertion; the value rto.

In a first implementation, we simply used Formula 4.2 to calculate the outlook,
updating the write_rand only once we had redistributed the data. However, the
system incurred in a deadlock under heavy updates. Indeed, we had the undesired
situation where we had to redistribute the data before updating the write_rand, thus
without reducing the amount of elements a cube can contain. This resulted in the
cubes growing faster than the system was able to replicate them.

For this reason, we now distinguish between the “transient” write_rand, which
can be continuously updated as it influences only the rfrom; and the committed out-
look that influences the rto.

_

1

12

123

Level 0:
write_rand = 0.01
committed outlook = 2

Level 1:
write_rand = 0.1
committed outlook = 1

Level 2:
write_rand = 0.7
committed outlook = 1

Level 3:

Update
priority = 0.04

area = "12345.."

write_rand > priority

FIGURE 4.8: An example of insertion range estimation.

Figure 4.8 shows a simplified versions of the RangeEstimator that uses the write_rand
and committed outlook. We can see how by inserting an element with priority equal
to 0.04, the algorithm goes down the levels of the index to find the first cube that has
a higher priority - cube “1” in this case. At the same time, the algorithm calculates
the first not-overflown node - the dashed “123” - and the maximum of the commit-
ted outlook of all the visited nodes. Therefore, in this case, the insertion would be
propagated to the nodes “1”,“12” and “123”.

110 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

Distinguishing between the transient and committed status ensures consistency
between concurrent read and write operations, but it does not guarantee that the
ReadOperation does not lose data. Figure 4.9 shows an example of a Lost Update
(P4)2.2.12, described in Section 2.2.3, that can occur in any tree-based indexing al-
gorithm when we have a node that has reached its maximum size, and we have
to break it into new sub-partitions. The problem is that without a lock, we cannot
read and then update the index without losing data. In the image, the data from
cube “..212” has to be propagated into its children. Therefore the “splitter” process
reads all the items from the first cube and divides them between the ones that go into
“..2121” or “..2122”. In the meantime, a concurrent new insertion that goes into node
“..212”, would not be propagated to the children nodes, resulting in inconsistency.
On the other hand, if we update the outlook value of node “..212” before starting
the copy, we will have all simultaneous insertions propagated to its children. As a
downside, the new outlook would also allow queries to go directly to nodes “..2121”
and “..2122”, which do not contain the whole data yet. The result would be that
concomitant queries would have missing data.

..212

..2121 ..2122

splitter
t=0.1 read

t=0.2 writes

t=0.2 insert

new
nodes

FIGURE 4.9: Possible Lost Update (P4) during copy.

A straightforward implementation requires a 2PL strategy: locking the cube
while the data is read and copied into the children. A lock would put on hold all
read and write operations on the part of the distributed index with an unsustain-
able performance cost. To avoid this situation, we designed a protocol that allows
lock-free data copy and index creation.

As said before, when ingesting new data our system builds a sub-optimal version
of OutlookTree that requires additional steps during a read. The proper OutlookTree
is then lazily generated during reads. After a query, as we have already retrieved
data from the disk, we perform a background ReadOptimization that redistributes
the data, thus reducing the overhead of future read operations.

The consistency of the whole system is maintained by the RangeEstimator. By
changing the rto in a timely matter, we guarantee that all items inserted go directly
to the new children while we are “read optimizing” a cube. Using the example
in Figure 4.9, we ensure that while the splitter is copying the data from “..212” to

4.4. The AOTree: eventually building the OutlookTree 111

its offspring, the RangeEstimator propagates all concurrent new insertions also to
“..2121” and “..2122”. However, this change does not influence read operations, nor
prematurely changes the node’s outlook. We do so by “announcing” a cube to all
servers of the cluster before visiting it. If all nodes acknowledge it before we retrieve
the cube, we can optimize it.

To correctly implement this mechanism, we must distinguish between five states
of a cube:

leaf: a cube that has not reached its maximum capacity yet.

full: it has surpassed its target capacity and thus it will store only the new values
with a priority lower than a specific value, the write_rand.

announced: A query is going to visit a full cube, and we might optimize it. To
avoid Lost Updates, we must ensure that rto includes the cube’s children so
that concurrent insertions do not get lost.

replicated: The cube has been optimized. It has a committed outlook.

visitable: The cube contains all the ancestors’ elements that enter its domain. A
cube is visitable if it is either the root of the index or if all its ancestors up to
the root are replicated.

To describe the four states of a cube, we use three variables:

write_rand: the priority of the last item that fits into the cube.

announcement_time: the time all servers acknowledged the cube’s announcement.

committed_outlook: a variable that keeps track of which ReadOptimizations occurred.

The write_rand is calculated by taking advantage of all the times the database
has to sort data to maintain its Log-structured merge-tree (LSM) architecture. When
the Compaction completes, we broadcast the new write_rand values to all servers. A
cube is stored in a single primary server, but it can have replicas; in case of conflicting
values, the smaller write_rand wins.

4.4.1 Querying the AOtree

The first step in executing a query is to calculate its area of interest, and then we find
the cube with the smallest domain that can contain all searched information. We
call this cube the Minimum Bounding Cube, MBC. In the case of the D8tree, queries
can start directly from the MBC or any of its descendants as the data is replicated
up the index’s max-height. Diversely, in the AOtree data is only eventually and op-
portunistically replicated, so we must ensure that the query starts from a “visitable”
cube.

A naive way to ensure we do not miss any entry is to start all queries from the
root cube, and once we know its outlook, we can proceed down to its replicated

112 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

descendants. The downside is that the root node - and similarly the higher nodes
of the tree - could become a performance bottleneck in the system. We avoid so by
storing into an arbitrary sized in-memory trie the outlooks of the highest index’s
nodes. As the outlook has monotonic crescent value, we do not have to worry about
inconsistency as a missing or outdated value would only cause to visit a higher-
than-needed number of index nodes.

The in-memory trie provides the known committed level for the area described by
the MBC, which could be smaller, greater or equal to the level of the MBC. In the first
case, we cannot ensure that the MBC is visitable and we must find the first ancestor
that it is and start from there. If it is equal, the MBC is visitable and thus we can
directly start the query from it. In the last case, when the committed level is greater
than the MBC, we are free to decide from which level downward to start the index
exploration.

For example, if our MBC “012345” is visitable, but we know that part of the tree
has a committed level of 2, we will first have to visit cube “012”, from which we will
gather the correct committed level and thus we will proceed to cube “012345”. On
the other hand, if we know the committed level is 7, we could also start with cubes
“01234500”, “01234501”, etc.

In case we are free to decide from which level of the tree to start our exploration,
we need to take into consideration three main aspects.

A replication constraint: we must stay within the committed level.

A cubes estimation: if we can estimate the number of results of a query, we can
calculate the minimum number of the nodes we will have to visit to find all
the required data.

A maximum parallelization threshold: as multiple queries can run at the same time;
we must ensure system stability by limiting the number of concurrent requests.

Cubes domain estimation

An essential step in planning the exploration of the AOtree index is understanding
how many cubes we will need to visit to gather all the data we need. While we
proceed with the index navigation, we can increase the precision of our estimation.
We can use the write_rand of each visited cube to estimate the fraction of elements
that it contains over the ones that fall into its domain and that its offspring store. We
can estimate the percentage of data contained in a cube as:

cube% =
write_rand

MAXIMUMwrite_rand
∗ 100

For instance, if the write_rand were store as a byte, the MAXIMUMwrite_rand

would have been 255. Therefore, a cube with write_rand 123 would have cube% ≈
48%.

4.4. The AOTree: eventually building the OutlookTree 113

Once we have the query required precision query% and the cube%, we can cal-
culate the minimum number, the lower bound, of the cubes we must visit to satisfy
a query given the index dimensionality D. We can calculate the cubesLB using the
following formula:

cubesLB = dlogD (
query%
cube%

)e

For example, in a 3 dimensional index (D=3), if we have visited cube “0123” that
contains 1% of the data in its domain, and we are looking for 10% of the data in that
area,

cubesLB = dlog3 (
10%

1%
)e = d2.096e = 3

Therefore, in this case where the committed level ≥ 6, with 6 being the sum of the
cubesLB and the level of the starting cube “0123”, we can freely decide to continue
to the cubes in level 6, “0123***”, if that respects the maximum parallelization thresh-
old.

Overall process summary

When we put all together, the overall process can be can be summarized in the fol-
lowing steps:

1. If a cube reaches its size limit, the Compaction will eventually calculate its
write_rand, and it will propagate it to all nodes. The cube changes from leaf
to full.

2. At query time, the QueryCoordinator (QC) decides from which cubes to start. If
the first cubes to visit can be optimized, the QC announces to all servers which
cubes could be “optimized”. The time all nodes acknowledged the fact the
cube might be replicated in the future is stored as a announcement_time. The
cube is now announced.

3. During a query, we put into the ReadOptimization queue all cubes we read that
can be optimized.

4. The ReadOptimization process picks a cube from the queue and checks if the
data has been retrieved after the announcement time. If so, it propagates the
data to the descendants. Otherwise, it drops the operations as we could miss
concurrent updates.

5. Once the ReadOptimization completes, the node committed_outlook is set to 1
and the cube is replicated. From this moment forward, the Compaction can
drop all elements with a priority greater than write_rand. Also, queries can
decide to skip the node and access directly to its offspring.

114 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

6. When a cube updates its committed_outlook, it notifies its father. Each cube
keeps tracks of the sons’ completed replications. When all sons achieved a
minimum committed_outlook of K, the father committed_outlook increases of
K, and the information propagates to the ancestors recursively.

 2

multiple inserts
Insert RangeEstimator

multiple in-memory maps
stored in different nodes

Compactor

SSTable multiple in-disk
maps

SSTable

1) Sort element by priority
2) request node status:
 if node is Replicated =>

select the first K elements
3) broadcast updated priority

AOTree
implementation

OutlookTree

00

0

_

010

01 10

1

110 111

11

Each node is stored in a different server
Only the denser area have a node, but the
committed outlook (underlined in the
picture) prediction is respected

011

0110 01110100 0101

000 001

} 0

 2

 2

1

1

} 1

} 0

} 0 } 0

} 0

in-memory
 data structure

read priority distribution

read and update
cube status

ReadOptimizer

level

0

1

2

3

4

While reading the index, the RO
optimize it. The process copies
the cube's data into its children
and then updates its committed
outlook

FIGURE 4.10: The OutlookTree implementation schema.

4.4.2 Distributed transaction

Any distributed system has to deal with two main problems: message delivery and
peer consensus. The first concerns the amount of overhead we are willing to pay to
ensure a message we sent has been received. In increasing order of guarantees - and
therefore overhead -, a message can be delivered “at most once”, “at least once”, and
“exactly once”. While the first has no overhead, the other have a more complex logic,
a higher memory footprint, and they require sending additional messages.

The RangeEstimation uses the write_rand to calculate the rfrom. As long as the
write_rand is monotonic decrescent, if a server loses an update, it will observe a
value greater than the real one. Consequentially, it will estimate a smaller rfrom,
resulting in an additional operation but not in data loss. For such reasons, these
messages can be delivered in a best-effort manner, without requiring acknowledg-
ment, in a “at most once” manner.

Let us suppose that we are inserting two almost identical elements i1 and i2 that
should go into cube012. The two operations are processed by two different servers,
n1 and n2 that have inconsistent metadata as they lost part of the communication.

4.4. The AOTree: eventually building the OutlookTree 115

Therefore, the value of outlook(cube012) differs in the two nodes: for example we
might have o1 = 2 and o2 = 1. As a result, i1 will be propagated to cube0123 and
cube01234, while i2 only to the cube0123. In both cases the data is stored in at least one
node, but as the outlook is used also to create the query plan, a query executed in n1
might decide to skip cube0123 and read directly cube01234, therefore missing i2.

To avoid this situation, the actual implementation of the RangeEstimator (RE) uses
a combination of various data structures keeping track of the cubes that have been
announced or replicated. Starting from the root, the RE searches for the first cube
that is not in the replication_set and that can contain the update (priority(item) <

write_rand).
Differently from the write_rand, we cannot underestimate a cube’s outlook as it

could result in data loss. To ensure we do not lose data performing a ReadOptimiza-
tion, when a node adds a cube to the replication_set we need all peers to acknowl-
edge they have done the same. In this case, we need “at least once” delivery, as we
need to know when all servers have received the update, but duplicated messages
pose no threat. By knowing the time all nodes have received the last update that
changed the outlook, we can avoid any inconsistency that may happen during a
ReadOptimization. Indeed, if part of the servers observe a different outlook we might
occur in the previously cited problem of Lost Update (P4).

The second problem is consensus, as a cube could have replicas and different
servers can try to update the write_rand value. However, in such situation we do not
need complex algorithms as the Paxos protocol described in Section 2.2.4. Indeed, in
this case we can simply use the rule in which the smaller value wins as write_rand
has a monotonic decreasing value.

4.4.3 Memory footprint

To achieve high-performance any database system needs to reduce at a minimum the
quantity of I/O necessary for each operation. To this end, modern databases opti-
mize the way the data is indexed and stored to the disk to maximize the throughput,
while durability is guaranteed by grouping many operations in a single write into
the commit log. As a result, each insertion results in less than one I/O operation on
average. Designing our system, we did not want to increase the I/O, and therefore
we need to keep in-memory a small set of information about the index structure to
ensure its consistency. The RangeEstimation requires few information to be replicated
in each server; thus even if we increase the number of machines in our cluster, our
index might be limited by the amount of memory on the single computer, hinder-
ing the scalability of the system. Therefore, reducing the size of the globally shared
information is paramount.

A straightforward implementation of the RangeEstimation would need to know
the last write_rand and committed_outlook for each cube to calculate both the rfrom
and rto. Even though the quantity of information for each cube is relatively small,
each server would need to have a full copy of write_rands of the whole cluster, thus

116 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

limiting the system scalability. To avoid so, we studied a novel in-memory structure
that could approximate the RangeEstimation with a smaller memory requirement.

To preserve the index consistency, we must ensure that

≈
rfrom ≤ rfrom
≈
rto ≥ rto

where
≈

rfrom and
≈
rto are the approximation of rfrom and rto. Indeed, if we underesti-

mate the rfrom, the system will propagate the data to a cube that cannot accommo-
date it; thus the Compactor eventually will remove it. When overestimating the rto,
we will insert the element in a node where it is not yet reachable by any query. It is a
temporary waste of space, but it can be recovered either if the index grows or during
compaction. In both cases, no data is lost.

Recalling the outlook definition 4.2, the outlook increases when the write_rand

decreases. Therefore, if we want to ensure
≈
rto ≥ rto, we need

≈
write_rand ≤ write_rand.

On the other hand, to guarantee
≈

rfrom ≤ rfrom, we need
≈

write_rand ≥ write_rand,
which is in contrast with what the rto requires.

For this reason, we decided to use two different functions to calculate
≈

rfrom and
≈
rto. We will call the rfrom estimator ˆrfrom defined as:

ˆrfrom(i) = min {j : ∀cubej 3 i ∧ priority(i) ≤ φ̂(cubej)}

φ̂(cube) =
≈

write_rand :
≈

write_rand ≥ write_rand

where i is the item we are going to insert in the index. On the other hand, the rto
estimator r̂to is defined as:

r̂to(i) = max {θ̂(cubej) : ∀cubej 3 i}

θ̂(cube) =
≈

outlook :
≈

outlook ≥ outlook

The advantage of this formulation is that we can implement φ̂ by keeping in
memory only a subset of an arbitrary size of the write_rand values. For instance,
we can keep the smallest ones, as they are the ones that ensure the greatest I/O
save as they allow avoiding the greater number of insertions. Secondly, a smaller
write_rand indicates a denser area and thus we have a higher probability that future
insertions will interest that zone.

Similarly, we can use for θ̂ any Approximate Membership structure, such as the
Counting Quotient Filter (CFQ) [82] or Bloom Filters [25]. In such a way, we can
arbitrarily reduce the memory footprint at the cost of a higher indexing overhead.

Furthermore, the data used by the RangeEstimation can be integrated with the
outlook trie used by the QueryCoordinator to reduce the space used in the replica-
tion_set. If a cube falls into the committed_outlook of another cube, we already
know that it is a replicated cube, thus we can avoid to store it in the replication_set.

4.5. AOTree testing 117

For instance, if cube “012” has committed_outlook 5, we can avoid to save all cubes
“012*****”. In a 3D index, this could potentially save 85 = 32768 entries.

The committed_outlook format is a binary structure that keeps track of which
descendants has been optimized. It has two parts: a global counter that indicates
the committed_outlook, and an offspring mask that keeps track of the children delta
outlook. When a ReadOptimization completes, the counter equals 1. If later all the
cube’s children get optimized as well, the counter is set to 2, meaning that all the
data contained in the cube is also replicated two levels downwards. The second part
is the offspring mask: it allocates few bits to store the outlook of the children nodes.
In the current implementation, we use 4 bytes: 1 for the counter and 3 for the mask.
In a 3 dimensional index, as each cube has 2dimensions = 8 children, we can allocate
3 bits for each son, so that we can keep track of a delta outlook up to 7. The higher
the dimensional cardinality the fewer bits can be allocated for each node. However,
as long as high-dimensional indexes have a larger fan-out, the tree grows shallower
with smaller outlooks.

4.5 AOTree testing

This section contains the tests we ran to validate the performance of the AOtree
implementation provided by the new version of Qbeast. At first, we will introduce
the scalability results generated by an open source benchmark tool. Secondly, we
will discuss the performance of a real HPC application that has been adapted to use
our system, focusing on its performance profile and the problematics involved in
integrating an MPI based code with a TCP based database. Lastly, we will propose
a performance comparison of the time required to run the HPC application using as
storage Qbeast, Cassandra, PostgreSQL and a single file on GPFS.

We ran our tests at the Barcelona Supercomputing Center, in the Marenostrum
IV. Each one of the computing nodes we used contains two sockets with an Intel
Xeon Platinum 8160 24C processor at 2.1 GHz for a total of 44 cores for a node.
The primary memory is composed by 12x8 GB DDR4-2667, 96GB in total, with a
ratio of 2GB per core. All nodes are interconnected with a 100Gb Intel Omni-Path
Full-Fat Tree and a 10Gb Ethernet [1]. We stored the database data into the local
scratch, a SATA 240GB Intel s3520 SSD. The disks are rated for sequential read up to
320 MB/s; sequential write up to 300 MB/s, random read 65000 IOPS and random
write 16000 IOPS [63]. For comparison, we also stored data in GPFS. Table 4.1 shows
how the scratch SSD disks and the GPFS compared in terms of IOPS and bandwidth
when increasing the size of a block of write. We ran the tests using the fio [40]
benchmarking tool.

We can see how the two storage devices behave differently; the SSD has bet-
ter IOPS for small size writes, while stripping layout of the GPFS ensures better
throughput for large sequential writes.

118 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

Block size

4k 64k 64M
GPFS 1337 IOPS - 5.5 MB/s 1058 IOPS - 69.4 MB/s 25.42 IOPS - 1719 MB/s
scratch 27071 IOPS - 98.6 MB/s 16250 IOPS - 99.8 MB/s 4.77 IOPS - 321 MB/s

TABLE 4.1: Performance comparison of GPFS and local SSD disks in
Marenostrum IV.

4.5.1 Synthetic tests

Our first tests aimed to estimate a lower and upper bound for the performance of
our system. Therefore, we tested an increasing number of database nodes versus a
set of clients that were performing random insertions. We used the Cassandra stress
test tool to perform the benchmark. We configured the system to perform random
insertions with a Gaussian distribution, inserting in a table with the same structure
as the one we used to store the results of the Alya simulation. The model used as
partition key the particle identifier and clustered the time. The rest of the values are
x, y, z position, speed, accelerator and other physical characteristics of the particles
for a total of 15 double and 3 integer number.

FIGURE 4.11: Cassandra and Qbeast IOPS per node and relative
speedup.

On a single Marenostrum node, we achieved ≈ 56K IOPS with Cassandra and

4.5. AOTree testing 119

≈ 32K IOPS with Qbeast, which is the expected performance as long as we are in-
dexing and thus for each insertion in the main table we have to perform at least one
additional insertion on the index table. However, we see that neither Cassandra nor
Qbeast present perfectly linear scalability. In the case of Cassandra, we suspect that
the difference is mostly due to our testing environment, as we used an equal number
of clients and nodes to stress the tests and thus it might be possible the Cassandra
simply outperformed the clients. On the other hand, Qbeast shows suboptimal scal-
ability that we suspect is caused by the use of logged batch. Indeed, the current
implementation of Qbeast uses a combination of Triggers and logged batches inser-
tion that, as described in Section 5.3, adds a significant overhead both in terms of
network and IO.

4.5.2 HPC integration

A nontrivial task is integrating an MPI based application with an asynchronous TCP-
based protocol. There are two main problems. The first concerns how to handle the
asynchronous communication with a high enough level of parallelism that can ex-
ploit the distributed database and thus achieve good performance. To this end, we
used the C version of Hecuba [2] an HPC oriented library that we develop in our re-
search group at the Barcelona Supercomputing Center. Hecuba allows efficient use
of NoSQL databases in MPI oriented applications by taking care of all the callback
and asynchronous messages management. Internally, it keeps a limited size queue
of objects to be inserted, so that it can issue many parallel queries that can uniformly
distribute among servers. Our implementation also ensures all the data has been in-
serted before the execution completes and supports self-limiting strategies to avoid
collapsing the database under a too heavy workload.

The second aspect concerns how to mix HPC code designed for a single appli-
cation per core and the database driver that uses a thread pool design. Figure 4.14
shows three traces of an execution of the first timestamps of the Alya simulation
that stores data with Qbeast. On the vertical axis we see the different MPI work-
ers, while the horizontal colored bars describe the type of operation the worker was
doing in a given period. The red indicates the worker is waiting for an input from
other workers, while the blue represents active computation. The upper trace in Fig-
ure 4.14 shows that most of the time all workers are waiting for one considerably
slower worker to complete. In a physics simulation, it is common to split the space
into smaller parts, so that each worker can focus on its domain. After each times-
tamp, workers share information regarding the particles that moved from a domain
to another. The downside of such an approach is that particles may be concentrated
in the specific area during part of the simulation.

In our specific use case, we used Alya to study the efficiency of drug inhalers, so
the code begins with all drug particles residing in a limited area. Thus, we have most
of the data in a few workers and consequentially an initial unbalanced workload.

120 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

FIGURE 4.12: Particle
deposition.

FIGURE 4.13: number
of writes per worker.

This effect is visible in Figure 4.13 that shows the number of particles written for
each MPI worker. Another interesting behavior of this class of physics simulation is
shown in Figure 4.12: particles can deposit on human tissue and thus the number of
particles decreases as time goes by. From our point of view, these two characteristics
- the initial unbalance of work and the decreasing number of particles - indicate that
the most critical parts for I/O are the first few timestamps. Therefore, in our tests,
we will focus only on the initial part of the problem as long as it is the most I/O
intensive.

Our first integration of Alya and Qbeast showed a poor performance that could
not be completely justified by the imbalance of the physics problem. Indeed, in a
typical scenario, Hecuba can distribute the insertions on more servers, thus mitigat-
ing the unbalance. However, this did not happen with Alya: when a single worker
is writing to the database, all other workers are consuming CPU as they use a busy
spin strategy to ensure low latency when receiving data for the network. There-
fore, the single worker cannot parallelize the insertions as it has to compete for CPU
resources with the other nodes.

Figure 4.14 shows the Paraver traces of the first 30 seconds of three different con-
figurations of Alya. Each line represents the state of a worker: blue indicates the
worker is computing useful work, red shows the worker is waiting for a message
from another worker, while orange suggests the worker is performing an MPI com-
munication task. The numbers indicate when Alya completed persisting a times-
tamp. The first one on the top shows our first implementation. It is easy to see how
the last worker on the bottom is the one slowing down the whole execution. If we
measure the time required for the single worker to complete and we divide it by the
insertion performed, we can estimate that the system achieved approximately 17K
IOPS, which is considerably less than the IOPS that the Qbeast cluster could sustain
in the tests we executed. The trace in the middle shows the performance of Alya
when disabling the busy spin. It is easy to see how the time required to write to
Qbeast reduced from approximately 7.2 seconds to 2.4, which results in≈ 53K IOPS
which is an appropriate performance for the cluster we are using. The downside
of such an approach is that the cost of an MPI communication increases, eventually

4.5. AOTree testing 121

si
m

p
le

 in
te

g
ra

ti
o

n
sl

ee
p

 w
ai

t
M

P
I3

 s
h

ar
ed

 m
em

o
ry

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

7

7 8 9 10 END

FIGURE 4.14: A bar char of the number of writes per worker.

counterbalancing the advantage of a faster I/O. Indeed, while the second trace is
faster in the first ten steps, the first implementation requires less time on more ex-
tended runs. For example, our measurements show that the average time the worker
spent in the MPI_Allgatherv increased by factor 2.4. We can visually observe this slow
down by comparing the width of the orange phases in the upper and middle traces
in Figure 4.14. To improve I/O without sacrificing the whole execution, we used a
hybrid approach. We decided to introduce an additional step in which we shuffle the
data between workers on the same node so that each one participates equally in the
writing process, and we can take advantage of the used CPU resources. Figure 4.14
shows how this approach pays off in terms of performance. Indeed, while the first
configuration completed 5 and 7 timestamps respectively, by using the MPI shared
memory shuffling, we finished all the 10 initial steps. This also indicates that more
than being limited by the performance of the database, the overhead of sending data
is often the major performance bottleneck.

Using the MPI shared memory adds a synchronization step between workers
which adds ≈ 27ms to each time step, an increase in the I/O time of around 5-7
%. Using shared memory is a sub-optimal solution but it serves the scope of our
tests as the general goal is to reduce the number of synchronizations required for
I/O. In the future, we will investigate more flexible solutions such as the integration
with dynamic scheduling framework such as DLB [44] to ensure nodes can share
CPU resources. An alternative approach is to use MPI to send data directly to the
database, but it requires to migrate the database architecture from a thread pool
design to a worker MPI layout.

Figures 4.15 and 4.16 report the performance of the different backend we tested

122 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

FIGURE 4.15: Time for 1000 steps in Alya.

increasing the number of workers. Figures 4.15 shows the total time when using
as backend a file on GPFS, one node of Qbeast, eight nodes of Qbeast, one node
of PostgreSQL and no backend at all. Alternatively, Figure 4.16 shows the net time
Alya spent performing I/O. There are several insights we can gather from these
results. First, we shall note that Qbeast can store and index data faster than the
GPFS can write into a not-indexed CSV file. As the reader may be surprised by
such a result, we should clarify that Alya uses a master-slave approach to output
data into an ASCII file, which is arguably not the most efficient format. However,
as we discussed in Section 2.5 an alternatives is MPI/IO which is not the perfect
solution either. Indeed, the number of particles changes during the time due to the
deposition and they can move from a domain and another, thus making complex to
use of Hyperslabing, which would in any way eventually require to shuffle all data
between nodes. Alternatively, each worker could write independently in a different
file, which would probably be the faster solution, but then the user would have to
merge and reassemble the results in a second phase. In any case, the point we want
to prove is not that our system can be faster than file storage, but that in applications
where the output file is required to have a specific structure to facilitate the analysis,
our system can compete, if not be faster, then mere files. Another interesting result
is that time required for I/O for one Qbeast node or eight is not proportional, as the
second is not one-eighth of the first. Also, by changing the number of Alya workers,
the I/O time remains approximately constant, except for one node of Qbeast with
16 Alya nodes that registers a considerable decrease in performance. Such a spike in
performance suggests that our system starts to suffer when ratio between database
and application nodes is higher than 1:16. At the same time, we see adding more
Qbeast nodes does not linearly reduces the number I/O time, suggesting that in
our implementation, either in the MPI3 shuffling or in the database communication

4.5. AOTree testing 123

FIGURE 4.16: Net I/O time by backends.

there is a performance bottleneck that we might investigate in future works.
In the Figure 4.15 and Figure 4.16 we can also see the performance of PostgreSQL

is considerably lower while ingesting a high rate of writes while building a PostGIS
multidimensional index. The speed also decreases when increasing the number of
concurrent actors. For a fair comparison, we used the same MPI3 shared memory ap-
proach and prepared statements for PostgreSQL. We also store the data in the scratch
SSD, as PostgreSQL showed better performance on SSD than GPFS. To improve the
throughput, each worker commits its chunk of the insertions after each timestamp,
so that the driver can optimize the writing of the single particles. We did not test a
distributed version of PostgreSQL as the set up of such a system in a queue based
system such as Marenostrum IV can be challenging and it would not have brought
additional insights. Indeed, even in this case, PostgreSQL could linearly scale, we
would need three PostgreSQL nodes to match GPFS, and five instances to match one
node of Qbeast and an HPC scenario in which it might be considered convenient to
deploy more storage nodes that application is rare.

To evaluate the performance when reading the data, we used a similar methodol-
ogy to the one we used in Chapter 3; we selected three typical queries that scientists
use when exploring the result of our particle inhalation problem. At first, scientists
need to have an overall look at the whole simulation. Secondly, a relevant query is
to see which particles deposited in a specific area of the nasal cavity, the olfactory
region, where drugs get absorbed faster. Lastly, it is interesting to check how the
particles get expedited from the nozzle of the inhaler.

Given the size of the areas of interest, we will gather only a sample of the data.
More precisely, a sample of 0.01% of the whole simulation, while 1% of data in the
other two queries. In the following, we will identify the queries as “all 0.01%”,
“olfactory 1%”, “inhaler 1%”. With such configuration, the three queries return 20,

124 Chapter 4. The AOTree: a write, and eventually read, optimized MIS

FIGURE 4.17: Qbeast and PostgreSQL response time for the three ex-
ample queries.

speedup optimization runs iterations cube visited
All 0.01% 24.51 6 2 10
Olfactory 1% 6.34 10 19 19
Inhaler 1% 2.37 8 61 61

TABLE 4.2: Qbeast speedup improvement after ReadOptimizations
with the relative number of iterations and index cube visited.

27, 200 thousand results respectively.
Figure 4.17 compares the response time of Qbeast, when the AOTree is optimized

and when it is not; and PostgreSQL, either using a 3D or a 4D secondary index. We
can see how Qbeast always outperforms PostgreSQL with the optimized AOTree.
Also, even with the not-optimized AOTree, Qbeast is faster than the PostgreSQL on
two queries out of 3.

Table 4.2 shows the performance improvments of the AOTree after multiple Read-
Optimizations. The table shows how many Read Optimizations run before optimiz-
ing the part of the index interested by the three queries. It is important to note a
RO execution for one query most likely benefits also others, thus reducing the over-
all number of RO required to achieve good performance. The table reports also the
different speedup we can achieve in the three queries, ranging from 24.51 X improve-
ment to a “mere” factor 2.37. In query “All 0.01%” we find the highest speedup as
the index gets closer to the OutlookTree. Indeed, in such case, the query completes
in just two iterations. On the other hand, in the other two examples, we can see the
number of iterations is considerably higher, meaning that the algorithm has to con-
tinue to explore the index various times before finding all data. After analyzing the
structure, we found out the high number of iterations is due to the fact the current
implementation fails to increase the outlook of cubes with empty children. Indeed,

4.6. Summary 125

as the empty children do not get optimized, they prevent the increasing of the father
outlook. As a future work, we will solve this bordering situation and thus we expect
even higher performance speed-up for these queries.

4.6 Summary

In this Chapter, we described the performance limitation of the D8tree when dealing
with write-intensive applications and we studied how to overcome such constraints
proposing a new theoretical index, the OutlookTree. The OutlookTree reduces the
disk space and transactional requirements without compromising the performance
of reading queries. However, the OutlookTree cannot be built under heavy load as
long as any outlook change requires to lock large portions of the tree while moving
data from a server to another. Therefore, we proposed the AOtree, which builds
a sub-optimal index that uses various optimization strategies to converge to the
OutlookTree structure eventually. This Chapter also describes the experiments we
performed on the AOTree that demonstrate it is possible to use in HPC advanced
functionalities such as MI indexing and sampling with no performance cost, or even
improvements according to our tests.

4.7 List of publications

In preparation: Cugnasco, C., Calmet, H., Santamaria, P., Gil, E., Sirvent, R., Becerra,
Y., Torres, J., Ayguadé, E., Labarta, J. (2019). Qbeast, the HPC multidimensional
database. To be submitted to ICPP2019

The content of this Chapter has been used in the European patent request EP18382698.1,
with title DISTRIBUTED INDEXES, applicant BARCELONA SUPERCOMPUTING
CENTER - CENTRO NACIONAL DE SUPERCOMPUTACIÓN, and author Cesare
Cugnasco and Yolanda Becerra.

127

Chapter 5

Qbeast

This Chapter describes the forth and last contribution of this thesis: Qbeast. Qbeast
is a distributed software that implements the D8tree and the AOTree in symbiosis
with Apache Cassandra. Indeed, to ensure the proposed novel algorithms are conve-
nient tools for solving HPC problems, we had to test these algorithms and architec-
tures in realistic scenarios. Two main approaches were possibles. A possible method
is to create a mock version of a database with only a few functions available. A
mock system has the advantage that it is simpler to understand what influences the
overall performance, as there are fewer components to interfere. On the other hand,
the results are less significative as long as a real-world application would require the
missing features and thus potentially change the system behavior. Therefore, we opt
to integrate our algorithms within a widely adopted database and we reused part of
the code and architecture of Apache Cassandra.

In this chapter, we will focus on the implementation details, the architecture and
the trade-off design decisions we had to take to implement and test the D8tree and
AOtree. In particular, we will describe the two main versions of Qbeast, the dis-
tributed indexing system that builds and allows to query our indexes. We will call
QbeastV1 the versions that create and query D8tree indexes, while QbeastV2 works
on the AOTree.

We will also describe Qview, the ParaView plugin we developed to query and
visualize the results stored in Qbeast.

5.1 Overall architecture

While theoretically, the process of the query could run in a completely distributed
manner, with the first node only acting as an initiator of a chain reaction, we had to
centralize the process for technical reasons. The main problem is that in a distributed
execution it is complex to tell apart a completed query from one that is waiting for
delayed results. As a naive solution, we could simply wait enough time to ensure
all sub-queries completed, but that would considerably slow down the execution.
As future work, we are considering a more distributed approach to the problem in
which we use the index tree structure to spread the responsibility of controlling the
process of the query. Also, as we analyzed with teh analytical model in Section 2.12,

128 Chapter 5. Qbeast

CQL

Qview

5 1

23

0

RPC Thrift based API

5 1

23

0

CUSTOM INDEX API

CQL

FIGURE 5.1: A broad view of QbeastV1 vs QbeastV2

a single query coordinators limits the perfromance only for cluster of 70 or more
nodes.

5.2 Data gathering

The data retrieving phase is not shown in Figure 5.1 for a matter of space. There
are two main approaches, a centralized one and a distributed one. In the first one,
the client can initialize the query in any of the Qbeast nodes, which then becomes
the query coordinator managing all the communication with the nodes. All Qbeast
nodes forward the data to the coordinator - on server 0 in the example, which then
forward the required data to the client. The advantage of such an approach is that
the API is straightforward for the client, as it can simply use an RPC call, wait for
the result and gather it. However, when a query grows in size we start to expe-
rience problems of memory as the initialization node has to hold all results and it
can, therefore, crash on a heavy workload. Also, it adds the overhead of sending,
serializing and deserializing the data additional times.

5.2.1 Custom secondary index

In QbeasV2, we used a different approach, and we integrated Qbeast inside Cas-
sandra so that both codes live in the same JVM and they can access the same in-
memory object without the need to serialize or network overhead. Furthermore,
we abandoned the custom Thrift protocol as we aimed for tighter integration with

5.2. Data gathering 129

Cassandra. Indeed, we used the modular architecture of Cassandra to develop a
custom secondary index so that both insertions and query can use the same CQL
language and drivers. As long as Qbeast allows randomly sampling, which is not a
feature contemplated by the CQL standard, we had to use as a workaround a cus-
tom expression. Listing 5.1 shows an example of how using QbeastV2 we can create
a table, an index on a subset of its columns, and insert or query data from it.

LISTING 5.1: An example of QbeastV2 schema creation and query

CREATE TABLE p a r t i c l e (
pid int ,
time double ,
x double ,
y double ,
z double ,
PRIMARY KEY (pid , time)

) ;
CREATE CUSTOM SECONDARY INDEX qbeast_ idx

ON p a r t i c l e (x , y , z) USING ’ es . bsc . qbeast . QbeastIndex ’ ;
INSERT INTO p a r t i c l e (pid , time , x , y , z)

VALUES (1 , 0 . 2 , 0 . 4 , 0 . 5 , 0 . 6) ;
SELECT ∗ FROM p a r t i c l e
WHERE x >0.1 AND x <0.9 AND

y >0.1 AND y <0.9 AND
z >0.1 AND z <0.9 AND
expr (qbeast_idx , ’ p r e c i s i o n =0.3 ’)

ALLOW FILTERING ;

Using the secondary index interface, Cassandra sends back the data to the user
and distributes the query to the different nodes. On this side, the client can use
two different approaches. If the client simply issues a query to a single node, this
node will forward the request to the others, gather the results and forward to the
application with a similar matter we discussed before. This approach is useful for
small queries, but for larger ones a better way is to gather the data directly from
each Qbeast node. We can do so by splitting the query according to the DHT token
ring, so that we can send a disjoin query partition to each single node and avoid
additional network transmission.

LISTING 5.2: An example of token range partition in QbeastV2.

SELECT ∗ FROM p a r t i c l e
WHERE x >0.1 AND x <0.9 AND y >0.1 AND

y <0.9 AND z >0.1 AND < <0.9 AND
expr (qbeast_idx , ’ p r e c i s i o n =0.3 ’) AND
TOKEN(par t id) >= 0 AND TOKEN(PARTID) < 100
ALLOW FILTERING ;

130 Chapter 5. Qbeast

SELECT ∗ FROM p a r t i c l e
WHERE x >0.1 AND x <0.9 AND y >0.1 AND

y <0.9 AND z >0.1 AND < <0.9 AND
expr (qbeast_idx , ’ p r e c i s i o n =0.3 ’) AND
TOKEN(par t id) >= 100 AND TOKEN(PARTID) < 200
ALLOW FILTERING ;

SELECT ∗ FROM p a r t i c l e
WHERE x >0.1 AND x <0.9 AND y >0.1 AND

y <0.9 AND z >0.1 AND < <0.9 AND
expr (qbeast_idx , ’ p r e c i s i o n =0.3 ’) AND
TOKEN(par t id) >= 200
ALLOW FILTERING ;

In Listing 5.2, we can see an example in which we have three nodes: the first node
is responsible in the DHT table for all the keys with a hash value between 0 and
100, the second from 200 to 300 and the last the ones from 300 upward. Therefore,
the client can send the three queries shown in the listing directly to the node that
contains the data avoiding additional data transfer.

However, there is a key difference between the way Qbeast and Cassandra’s cus-
tom index API work and that can cause some problematics. Indeed, Cassandra as-
sumes that each node has a local file that indexes all and only the entries stored in
that node, while in Qbeast the index is randomly distributed.

FIGURE 5.2: Locally vs globally stored indexes

Figure 5.2 shows the difference between the two approaches. In the first case,
data is randomly distributed between nodes, and each of them builds a local index
with only the data it stores. In the second case, we build a global index, and we
randomly assign each part of it to a node. The problem of the first approach is that
each query gets broadcasted to all nodes. Since database performance is usually
limited by the CPU, broadcasting the query means the system cannot scale in terms

5.3. Propagating writes 131

of IOPS. The drawback of the second approach is that we must jump from a node
to another to complete a query. However, both the D8tree and the AOtree do not
have such a disadvantage as the queries can directly access to the node needs, as we
discussed in the previous chapters.

An interesting aspect of our implementation is that the Cassandra secondary
index API assumes the indexes will all have a local design, thus it propagates the
same query to all nodes. On the other hand, Qbeast runs queries distributedly on
multiple nodes. Therefore, when Cassandra sends the same query to all nodes, there
is the risk of triggering various instances of the same operation. At the moment of
writing, we implemented a workaround solution that uses either the query predicate
or a user-provided id to tell apart global queries or repeated ones.

5.3 Propagating writes

The simple structure of the D8tree allows the writing process and the reading one to
be decoupled. Indeed, once we configured the maximum height of an index, a client
can freely navigate through the index without knowledge of the state of a database.
At the same time, each insertion has to be broadcasted to all levels of the tree and
then, as we discussed before, written to disk only if the compact decides there is
enough space to store it in such a space partition.

A D8tree of height K requires K tentative insertions in one cube in each one of
the K levels.

"213"

{
 Id:1,
 priority: 0.1,
 x: 1.23,
 y:3.21,
 z:3.01
}

7

1

5

8 2

4
6

Trigger 3

"213" {...}

"21"

"2"

{...}

{...}Client

Cassandra
cluster

"213"

{
 Id:1,
 priority: 0.1,
 x: 1.23,
 y:3.21,
 z:3.01
}

7

1

5

8 2

4
6

3

"213" {...}

"21"

"2"

{...}

{...}Client

Cassandra
cluster

FIGURE 5.3: Different strategies to propagate insertions.

Figure 5.3 shows the different strategies we can employ to store data to propa-
gate K times each insertion. Let us suppose we are writing data on the table particles
and the D8tree is built on the table particles_d8tree. In the first case, the client will
send a write to the table particle where the Qbeast’s trigger will calculate the cube
identifiers for all K additional cubes in table particles_d8tree where to send the up-
date. To ensure eventual atomicity, the new mutations generated by the trigger are
executed in a logged batch insertion, together with the original one. In such a way,

132 Chapter 5. Qbeast

we can ensure that all updates are eventually persisted. However, such a guarantee
comes at a considerable cost.

Indeed, the whole process of inserting using a trigger goes as follows:

1. Node 7 receives the insertion for the table particle and executes the trigger,
which converts the simple insertion to a batch one.

2. To ensure that the writes will get eventually stored even if it fails, Node 7 has
to send at least two copies of the batch into the local batchlog of two other
peers.

3. Once the replicas acknowledge the insertion into the batchlog, Node 7 propa-
gates the insertions to Nodes 1, 3, 5 and waits for their reply.

4. If Nodes 1, 3, and 5 succeed, Node 7 acknowledges the client and sends a
message to delete the batchlog of its entry to the two peers.

As a result, using the Trigger with the logged batch in a D8tree of eight K means
sending a total of K ∗ 2 + 4 + 2 messages, and three communication rounds - client
coordinator, coordinator batchlog replicas and coordinator slaves. Also, all the data
must be stored in two batch logs so that for each element we perform in total K ∗ 3
I/O operations.

In the second case, we have the client sending one update to table particles and K
insertions to particles_d8tree. In total 2 ∗ (K+1) messages are exchanged in parallel
in a single communication round. Cleary, the second method is more efficient, but it
reverses to the client the responsibility to ensure all insertions have succeeded and
to retry again in case they are not. Also, in deployments in which the client is far
away from the database cluster or it uses a slower network, the first approach might
be still favorable.

In Qbeast, we use the first approach for the D8tree, while the current implemen-
tation of the AOtree uses the second approach. Indeed, in the AOtree, the trigger
uses the RangeEstimator to reduce the number of writes. The RangeEstimator uses
some information such as the replication set, and cached outlooks that are stored
inside Qbeast and that are not currently shared with the clients.

On the other hand, the additional overhead of the batch is mitigated by the fact
that the AOtree requires far fewer copies of the same data, thus alleviating the extra
cost of logged batches. As an example, in the Alya use case we usually set the D8tree
K to 10, while in the AOtree we observed an average replication of approximately 2.
Using the previous formulas we can calculate that for each insertion the D8tree with-
out trigger requires 22 messages and multiplies 11 times the I/O, while the AOtree
with the trigger only needs 10 messages and 5 times the I/O. Nevertheless, in future
work, we might investigate smarter client driver that can furthermore reduce the
message and the I/O to the minimum possible: six messages and 3 times the I/O.

5.4. Integration with distributed computing framework 133

5.3.1 Priority calculation

In both versions of Qbeast, the priority of a cube is computed optimistically by tak-
ing advantage of the compaction process of Cassandra. In both cases, we modi-
fied the BigTableWriter class of Cassandra to intercept both the sorted compaction
and the merge of Memtables and SStables. We take advantage of the already sorted
data to discard the exceeding elements in the D8tree. In the AOTree we update the
write_rand and also drop exceeding data but only if the cube is optimized. While
in the D8tree the cutting strategy is simple, in the AOtree we need considerable co-
ordination between different parts. Indeed, we must consider all the different states
that a cube can have in the AOTre.

Furthermore, to alleviate the drawbacks previously described in Chapter 4 and
illustrated in Figure 4.4, we also intercept calls that update the Memtables. How-
ever, while compaction is a relatively infrequent event, we have an update to the
Memtables at each insert which means that when intercepting such calls we must
ensure to add little overhead. For such a reason in QbeastV2, the function that de-
cides whether to cut a Memtables uses approximated information to avoid costly
infra-thread synchronizations.

5.4 Integration with distributed computing framework

Apache Cassandra and Qbeast offer basic read, write, and index lookups operations,
while it does not support any query that requires intensive memory usage, such
as aggregations or joints. For such cases, we need an additional system that can
perform data manipulation in a scalable and distributed manner, and that can well
integrate with the underlying database.

We have integrated our system with two different distributed computing frame-
works, Hecuba with PyCOMPSs[106], and Apache Spark[117].

5.4.1 PyCOMPSs and Hecuba integration

PyCOMPSs is a framework developed in the Barcelona Supercomputing Center that
aims to simplify the development of distributed parallel applications written in
Python. PyCOMPSs is built on top of COMPS and allows users to parallelize se-
quential applications by simply annotating the Python functions that should run
in parallel. The system takes care of all the dependencies between tasks and en-
sures they are executed on different machines respecting the tasks’ dependencies
and moving data from a server to another when necessary. Moreover, PyCOMPSs
can dynamically adapt the tasks dependency graph during the execution thus better
mitigating any work unbalance or improving the performance of algorithms with
irregular execution patterns.

In our research group, we created Hecuba, a library that extends the PyCOMPSs
capability with additional data management functionalities. Hecuba reduces the

134 Chapter 5. Qbeast

data movement between computing nodes by storing data into Apache Cassandra
and Qbeast. Listing 5.3 shows how Hecuba can parse filtering predicates over an
indexed collection and push down the filtering to Qbeast that can use its index to
reduce the data to filter in memory.

LISTING 5.3: Qbeast and Hecuba integration.

from hecuba import ∗
c l a s s P a r t i c l e s (S torageDic t) :

"""
@TypeDef << p i d : i n t , t ime : > , p t y p e : i n t , x : doub l e , y : doub l e , z : doub l e >
@Index_on (x , y , z)
"""

sim1 = P a r t i c l e s ("my. sim ")

a r e a _ o f _ i n t e r e s t = f i l t e r (lambda ((pid , time) , (ptype , x , y , z)) :
0 . 1 < x < 0 . 3 and 0 . 3 < y < 0 . 7
and 0 . 1 < x < 0 . 1 3 and ptype ==3 , sim1 . items ())

t h e f i l t e r i n g p r e d i c a t e g e t s r e d u c e d t o
r e d _ f i l t e r =lambda ((pid , time) , (ptype , x , y , z)) : ptype ==3

In the example in Listing 5.3, as we are creating a Qbeast index on x, y, z, but
not on part_type, Hecuba runs a 3D query on Qbeast and then filters in-memory all
elements with a type different than 3.

5.4.2 Apache Spark integration

In addition to PyCOMPSs, we have also integrated Qbeast with Apache Spark due
to its up-growing popularity and its versatility. Spark started as a research project at
UC Berkeley AMPLab in 2009 and was open sourced in early 2010 moved to Apache
foundation in 2013. A wide range of contributors now develop the project (over 1200
developers from 300 companies). Apache Spark is a fast and general purpose engine
for large-scale data processing, an improvement to the map-reduce Hadoop model.
Apache Spark comes with a vast software environment. Above all projects that grow
around MLlib, Spark Streaming, and Spark SQL are the ones more interesting. MLlib
is a powerful Machine Learning library that offers a growing set of scalable tools
such as classification, regression, clustering, collaborative filtering, dimensionality
reduction, and optimization. Spark Streaming[116] allows streaming analysis and
data manipulation using the concept of micro batching on programmable windows
of time. Finally, Spark SQL[12] allows performing data analysis by issuing SQL
queries that are converted into map-reduce tasks by the framework and executed in
parallel on Spark. It also supports bytecode generation, which reduces the overhead
of pipelining multiple operations as it creates more efficient and cache friendly code.

LISTING 5.4: An example of integration between Qbeast and Spark.

val p a r t i c l e s =spark . read

5.5. Qview 135

. format (" org . apache . spark . s q l . cassandra ")

. opt ions (Map(
" t a b l e " −> " p a r t i c l e s " ,
" keyspace " −> " exp1 "

))
. load ()

/ / API a p p r o a c h
p a r t i c l e s . f i l t e r (’ x >= 0 . 0 1 && ’ x <0.02 && ’ y > 0 . 1)

. groupBy (’ source)
. count () . show ()

/ / SQL a p p r o a c h
p a r t i c l e s . createGlobalTempView (" p a r t i c l e s ")
spark . s q l (" " "
SELECT type , count (∗)
FROM p a r t i c l e s
WHERE x >= 0 . 0 1 AND x <0.02 AND y > 0 . 1
GROUP BY type
" " ") . show ()

We have a prototype that integrates Qbeast with Spark. Our solution uses the Cas-
sandra Spark connector to connect the two systems, with the addition of a push-
down optimization that allows filtering operations on the indexed columns to run
on Qbeast. Listing 5.4 shows an example of how it is possible to run an aggregational
query using Spark and Qbeast. The listing shows two different ways to trigger the
query. The first uses the DataFrames API, while the second uses a SQL query that is
then interpreted by Spark SQL. In this example, our integration intercepts the pred-
icate " x >= 0.01 AND x<0.02 AND y > 0.1" and sends it to Qbeast, which used the
AOTree to reduce the required I/O drastically.

Currently, we are working on also intercepting operations that require a random
uniform sample of a data set so that it can run efficiently with a fraction of cost with
Qbeast.

5.5 Qview

In this thesis, we have diffusively cited Qview, the plug-in that we use to query
and visualize 3D data stored in Qbeast. The first version of Qview used a custom
designed RPC API to issue the query in Qbeast and visualize the data, while the
latest version is directly integrated with the Cassandra C++ driver, allowing queries
on non indexed tables. Qview takes care of opening an SSH tunnel Qbeast and
convert the ParaView area of interest in a Qbeast query. Then, it gathers the data
and turns it into the ParaView format. Thanks to the integration with Hecuba, the
user can also run arbitrary queries that run in the supercomputing, store the results
in Qbeast and then use our plugin to visualize them with the desired level of details.

136 Chapter 5. Qbeast

5.6 Summary

We presented two different strategies to implement the D8tree and AOtree, and
we discussed the advantages and disadvantages of each one of them. Develop-
ing QbeastV2, we took some architectural choices that might have penalized per-
formance but that have notably simplified the integration of our system in existing
installations. Indeed, with the current design, it is possible to use Qbeast without
the need to rewrite any legacy code. Moreover, it can be easily installed in existing
clusters without disruption. Future work will focus on raising the technology readi-
ness level of QBeast by increasing its robustness and stability. Also, we will consider
the development of our indexing system for different databases.

137

Chapter 6

Conclusions

In this thesis, we proved that alternative storage solutions based on NoSQL tech-
nologies are possible and convenient when dealing with scientific simulations as
they improve performance and user productivity.

Additionally, we proposed Qbeast; a novel distributed system for multidimen-
sional indexes with arbitrary approximated precision that we proved is a viable so-
lution to store, visualize and analyze large scientific simulations.

This document described in detail the path we took to develop the Qbeast archi-
tecture, the algorithms that we designed and the research background the guided
our investigation.

As part of the first contribution, we analyzed the use of NoSQL technologies for
scientific HPC applications, and we found out how important the data model is for
performance and scalability and that scientific application requires MIS function-
alities to simplify the research workflow. Then, we built an analytical model that
allows studying how the data model influences performance in distributed systems.
In the meantime, thanks to a comprehensive analysis of the available storage and
data management solutions, we concluded that there are no existing solutions that
provide scalable MIS functionalities for HPC.

This finding led to the second contribution, the development of the D8tree which
proved to be considerably faster of PostgreSQL for a wide array of queries. Then, via
Qbeast, we integrated the D8tree with Alya, and we studied how Qbeast improves
the scientists’ workflow.

As a third contribution, we studied the performance shortcomings of the D8tree
with the goal of enabling its use also in write-intensive applications. Thanks to this
analysis, combined with the analytical model proposed in the first contribution, we
developed the OutlookTree, which reduces the storage footprint of the D8tree with-
out sacrificing the query performance. Finally, we proposed the AOTree, a write and
eventually read optimized indexing algorithm that allows building a relaxed ver-
sion of the OutlookTree without distributed locks and transactions, thus improving
query performance even in write-intensive HPC environments. As a final contribu-
tion, we discuss some architectural choices we have taken developing Qbeast and
how it can integrate with external computational platforms as Apache Spark and

138 Chapter 6. Conclusions

PyCOMPSs.

The AOtree represents the final stage of an evolutionary development that took
place in the last years of our research. Its design is the result of years of experience
and hard trial and error work, and it is a major achievement for our research.

Indeed, the AOtree demonstrates that it is not only possible to bring to the HPC
world advanced functionalities such as MI indexing and sampling, but also that they
can come with no performance cost, rather improvement according to our tests.

We believe its design will influence the architecture of the future data storage sys-
tems and it will simplify the way HPC simulations are managed. For such reasons,
in October 2018 we submitted a patent request to protect the most critical aspects of
our architecture. The patent covers both the architecture we presented in Chapter 4
and the developments that we foresee in the future.

Future works While the AOTree is a milestone in our research, we believe it opens
multiple lines of work. To cite a few; smarter index optimizations, support of high
dimensional space, stratified sampling and machine learning algorithm optimized
to work on MIS. In Chapter 4, we presented only the ReadOptimization as opti-
mization policy, but others are possible. For example, in our patent application, we
also describe policies aiming to predict future queries or to optimize area containing
popular items. Also, we are studying how to adapt popular machine learning algo-
rithms such as the K-NN, Kmeans, and the DB-scan, to take advantage of the nature
of the AOtree to reduce both the algorithm complexity and I/O requirements.

It is our belief Qbeast will influence the design of the future distributed databases
and improve the scientific workflow in the HPC community. A future line of work is
tighter integration with HPC, improving the compatibility with the MPI and OpenMP
libraries, and supporting in-situ analysis by entrusting Qbeast to decide which data
to persist or to analyze in loco.

We also believe that Qbeast can play an essential role outside HPC. Indeed,
thanks to the support of the European Community we are investigating how to bring
our research to the broader community of Business Intelligence. Indeed, our project
proposal for Quake - QBeast Utility Analysis to marKet and Enterprise - has been
accepted under the grant Horizon 2020 Future and Emerging Technologies Innovation
Launchpad. Started in April 2018, project Quake is focusing on the study of possible
commercial exploitations for Qbeast. Quake financed the creation of our patent, and
it is supporting the development of a business prototype and a sound business plan
endorsed by a detailed market study. As part of the prototype, we used our system
to index social network fashion images using both neural autoencoders and multi-
dimensional deep learning classification. In the next months, we will gather users
feedback to improve the accuracy of our classification and dimensional reducing
algorithms and we will tests which ones provide the best user experience.

139

Bibliography

[1] BSC MareNostrum Technical Information. (https://www.bsc.es/marenostrum/
marenostrum/technical-information).

[2] Hecuba. (https://github.com/bsc-dd/hecuba/).

[3] Daniel J Abadi. “Consistency tradeoffs in modern distributed database sys-
tem design: CAP is only part of the story”. In: Computer February (2012),
pp. 37–42.

[4] Sameer Agarwal et al. “{BlinkDB}: Queries with bounded errors and bounded
response times on very large data”. In: EuroSys (2013), pp. 29–42. DOI: 10.
1145/2465351.2465355.

[5] Nitin(University of Wisconsin-Madison) Agrawal et al. “Design Tradeoffs for
SSD Performance”. In: ATC (2008), 57–70. ISSN: 13837621. DOI: 10.1016/j.
sysarc.2014.07.003.

[6] James Ahrens et al. “An image-based approach to extreme scale in situ visu-
alization and analysis”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press. 2014,
pp. 424–434.

[7] James Ahrens et al. “An Image-Based Approach to Extreme Scale in Situ Vi-
sualization and Analysis”. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2015-Janua.January (2014),
pp. 424–434. ISSN: 21674337. DOI: 10.1109/SC.2014.40.

[8] James Ahrens et al. “In situ mpas-ocean image-based visualization”. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, Visualization & Data Analytics Showcase. 2014.

[9] Anders Andrae. Total Consumer Power Consumption Forecast. 2017. URL: https:
//www.researchgate.net/publication/320225452_Total_Consumer_

Power_Consumption_Forecast.

[10] D. Antons and F. T. Piller. “Opening the Black Box of "Not Invented Here": At-
titudes, Decision Biases, and Behavioral Consequences”. In: Academy of Man-
agement Perspectives 29.2 (2015), pp. 193–217. ISSN: 1558-9080. DOI: 10.5465/
amp.2013.0091. URL: http://amp.aom.org/cgi/doi/10.5465/
amp.2013.0091.

(https://www.bsc.es/marenostrum/marenostrum/technical-information)
(https://www.bsc.es/marenostrum/marenostrum/technical-information)
(https://github.com/bsc-dd/hecuba/)
http://dx.doi.org/10.1145/2465351.2465355
http://dx.doi.org/10.1145/2465351.2465355
http://dx.doi.org/10.1016/j.sysarc.2014.07.003
http://dx.doi.org/10.1016/j.sysarc.2014.07.003
http://dx.doi.org/10.1109/SC.2014.40
https://www.researchgate.net/publication/320225452_Total_Consumer_Power_Consumption_Forecast
https://www.researchgate.net/publication/320225452_Total_Consumer_Power_Consumption_Forecast
https://www.researchgate.net/publication/320225452_Total_Consumer_Power_Consumption_Forecast
http://dx.doi.org/10.5465/amp.2013.0091
http://dx.doi.org/10.5465/amp.2013.0091
http://amp.aom.org/cgi/doi/10.5465/amp.2013.0091
http://amp.aom.org/cgi/doi/10.5465/amp.2013.0091

140 BIBLIOGRAPHY

[11] Lars Arge et al. “The Priority R-tree: A Practically Efficient and Worst-case
Optimal R-tree”. In: ACM Transactions on Algorithms (2008). ISSN: 15496325.
DOI: 10.1145/1328911.1328920.

[12] Michael Armbrust et al. “Spark SQL”. In: Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data - SIGMOD ’15 (2015),
pp. 1383–1394. ISSN: 07308078. DOI: 10.1145/2723372.2742797. URL:
http://dl.acm.org/citation.cfm?doid=2723372.2742797.

[13] Antoni Artigues et al. “ParaView + Alya + D8tree: Integrating High Perfor-
mance Computing and High Performance Data Analytics”. In: Procedia Com-
puter Science 108 (2017), pp. 465–474. ISSN: 18770509. DOI: 10.1016/j.
procs.2017.05.170.

[14] Antoni Artigues et al. “Scientific Big Data Visualization : a Coupled Tools
Approach 1 . Background : The tools”. In: (2014), pp. 4–18. DOI: 10.14529/
jsfi140301.

[15] Norbert Beckmann et al. The R*-tree: an efficient and robust access method for
points and rectangles. 1990. DOI: 10.1145/93605.98741.

[16] Petra Berenbrink et al. “Balanced Allocations: The Heavily Loaded Case”. In:
SIAM Journal on Computing 35.6 (2006), pp. 1350–1385. ISSN: 0097-5397. DOI:
10.1137/S009753970444435X. URL: http://dx.doi.org/10.1137/
S009753970444435X.

[17] Hal Berenson et al. “A critique of ANSI SQL isolation levels”. In: Proceedings
of the 1995 ACM SIGMOD international conference on Management of data - SIG-
MOD ’95. Vol. 7. June 1995. New York, New York, USA: ACM Press, 1995,
pp. 1–10. ISBN: 0897917316. DOI: 10.1145/223784.223785. URL: http:
//roderic.uv.es/bitstream/handle/10550/41689/100573.pdf?

sequence=1&isAllowed=yhttp://portal.acm.org/citation.

cfm?doid=223784.223785.

[18] John Biddiscombe and Jerome Soumagne. “Parallel computational steering
and analysis for hpc applications using a paraview interface and the hdf5
dsm virtual file driver”. In: Proceedings of the 11th . . . (2011). ISSN: 18727654.
DOI: 10.1016/j.ejogrb.2016.02.011. URL: http://dl.acm.org/
citation.cfm?id=2386244.

[19] “Bigtable: A distributed storage system for structured data”. In: 7th Sympo-
sium on Operating Systems Design and Implementation (OSDI ’06). USENIX As-
sociation, 2006.

[20] D Borthakur. “The hadoop distributed file system: Architecture and design”.
In: Hadoop Project Website (2007), pp. 1–14. DOI: 10.1109/MSST.2010.
5496972. URL: http://cloudcomputing.googlecode.com/svn/
trunk/??/Hadoop_0.18_doc/hdfs_design.pdf.

[21] Eric Brewer. “Spanner, TrueTime & The CAP Theorem”. In: (2017), pp. 1–7.

http://dx.doi.org/10.1145/1328911.1328920
http://dx.doi.org/10.1145/2723372.2742797
http://dl.acm.org/citation.cfm?doid=2723372.2742797
http://dx.doi.org/10.1016/j.procs.2017.05.170
http://dx.doi.org/10.1016/j.procs.2017.05.170
http://dx.doi.org/10.14529/jsfi140301
http://dx.doi.org/10.14529/jsfi140301
http://dx.doi.org/10.1145/93605.98741
http://dx.doi.org/10.1137/S009753970444435X
http://dx.doi.org/10.1137/S009753970444435X
http://dx.doi.org/10.1137/S009753970444435X
http://dx.doi.org/10.1145/223784.223785
http://roderic.uv.es/bitstream/handle/10550/41689/100573.pdf?sequence=1&isAllowed=y http://portal.acm.org/citation.cfm?doid=223784.223785
http://roderic.uv.es/bitstream/handle/10550/41689/100573.pdf?sequence=1&isAllowed=y http://portal.acm.org/citation.cfm?doid=223784.223785
http://roderic.uv.es/bitstream/handle/10550/41689/100573.pdf?sequence=1&isAllowed=y http://portal.acm.org/citation.cfm?doid=223784.223785
http://roderic.uv.es/bitstream/handle/10550/41689/100573.pdf?sequence=1&isAllowed=y http://portal.acm.org/citation.cfm?doid=223784.223785
http://dx.doi.org/10.1016/j.ejogrb.2016.02.011
http://dl.acm.org/citation.cfm?id=2386244
http://dl.acm.org/citation.cfm?id=2386244
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://cloudcomputing.googlecode.com/svn/trunk/??/Hadoop_0.18_doc/hdfs_design.pdf
http://cloudcomputing.googlecode.com/svn/trunk/??/Hadoop_0.18_doc/hdfs_design.pdf

BIBLIOGRAPHY 141

[22] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. “Serializable isolation for
snapshot databases”. In: ACM Transactions on Database Systems 34.4 (2009),
pp. 1–42. ISSN: 03625915. DOI: 10.1145/1620585.1620587. URL: http:
//portal.acm.org/citation.cfm?doid=1620585.1620587.

[23] C/C++ Driver for Apache Cassandra. https://goo.gl/Q5pq5sr.

[24] Feng Chen et al. “Understanding intrinsic characteristics and system impli-
cations of flash memory based solid state drives”. In: ACM SIGMETRICS Per-
formance Evaluation Review 37.1 (2009), pp. 181–192. ISSN: 0163-5999. DOI: 10.
1145/1555349.1555371. URL: http://portal.acm.org/citation.
cfm?id=1555349.1555371.

[25] Saar Cohen and Yossi Matias. “Spectral bloom filters”. In: Proceedings of the
2003 ACM SIGMOD international conference on on Management of data - SIG-
MOD ’03. New York, New York, USA: ACM Press, 2003, p. 241. ISBN: 158113634X.
DOI: 10.1145/872757.872787. URL: http://portal.acm.org/
citation.cfm?doid=872757.872787.

[26] Jeremy Condit et al. “Better I/O through byte-addressable, persistent mem-
ory”. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles - SOSP ’09. Vol. 168. 2. New York, New York, USA: ACM Press,
2009, p. 133. ISBN: 9781605587523. DOI: 10.1145/1629575.1629589. URL:
http://portal.acm.org/citation.cfm?doid=1629575.1629589.

[27] Gao Cong, Christian S Jensen, and Dingming Wu. “Efficient retrieval of the
top-k most relevant spatial web objects”. In: Proceedings of the VLDB Endow-
ment (2009). DOI: 10.14778/1687627.1687666.

[28] James C Corbett et al. “Spanner: Google’s globally distributed database”. In:
Google’s Globally Distributed Database 31.3 (2013), pp. 1–22. ISSN: 0734-2071.
DOI: 10.1145/2491245. URL: http://dl.acm.org/citation.cfm?
id=2491245%5Cnpapers3://publication/doi/10.1145/2491245.

[29] Raul de la Cruz, Hadrien Calmet, and Guillaume Houzeaux. “Implementing
a XDMF / HDF5 Parallel File System in Alya”. In: Whitepaper of PRACE-1IP
project (2011), pp. 1–8. URL: http://www.prace- ri.eu/IMG/pdf/
Implementing_a_XDMF_HDF5_Parallel_File_System_in_Alya-

2.pdf.

[30] Cesare Cugnasco et al. “Aeneas: A Tool to Enable Applications to Effectively
Use Non-relational Databases”. In: Procedia Computer Science 18 (2013), pp. 2561–
2564. ISSN: 18770509. DOI: 10.1016/j.procs.2013.05.441. URL: http:
//linkinghub.elsevier.com/retrieve/pii/S187705091300584X.

[31] Cesare Cugnasco et al. “D8-tree: a de-normalized approach for multidimen-
sional data analysis on key-value databases”. In: Proceedings of the 17th In-
ternational Conference on Distributed Computing and Networking - ICDCN ’16

http://dx.doi.org/10.1145/1620585.1620587
http://portal.acm.org/citation.cfm?doid=1620585.1620587
http://portal.acm.org/citation.cfm?doid=1620585.1620587
https://goo.gl/Q5pq5sr
http://dx.doi.org/10.1145/1555349.1555371
http://dx.doi.org/10.1145/1555349.1555371
http://portal.acm.org/citation.cfm?id=1555349.1555371
http://portal.acm.org/citation.cfm?id=1555349.1555371
http://dx.doi.org/10.1145/872757.872787
http://portal.acm.org/citation.cfm?doid=872757.872787
http://portal.acm.org/citation.cfm?doid=872757.872787
http://dx.doi.org/10.1145/1629575.1629589
http://portal.acm.org/citation.cfm?doid=1629575.1629589
http://dx.doi.org/10.14778/1687627.1687666
http://dx.doi.org/10.1145/2491245
http://dl.acm.org/citation.cfm?id=2491245%5Cnpapers3://publication/doi/10.1145/2491245
http://dl.acm.org/citation.cfm?id=2491245%5Cnpapers3://publication/doi/10.1145/2491245
http://www.prace-ri.eu/IMG/pdf/Implementing_a_XDMF_HDF5_Parallel_File_System_in_Alya-2.pdf
http://www.prace-ri.eu/IMG/pdf/Implementing_a_XDMF_HDF5_Parallel_File_System_in_Alya-2.pdf
http://www.prace-ri.eu/IMG/pdf/Implementing_a_XDMF_HDF5_Parallel_File_System_in_Alya-2.pdf
http://dx.doi.org/10.1016/j.procs.2013.05.441
http://linkinghub.elsevier.com/retrieve/pii/S187705091300584X
http://linkinghub.elsevier.com/retrieve/pii/S187705091300584X

142 BIBLIOGRAPHY

(2016), pp. 1–10. DOI: 10.1145/2833312.2833314. URL: http://dl.
acm.org/citation.cfm?doid=2833312.2833314.

[32] Cesare Cugnasco et al. “Exploiting Key-Value Data Stores Scalability for HPC”.
In: Proceedings of the International Conference on Parallel Processing Workshops.
IEEE, Aug. 2017, pp. 85–94. ISBN: 9781538610442. DOI: 10.1109/ICPPW.
2017.25. URL: http://ieeexplore.ieee.org/document/8026073/.

[33] Alfredo Cuzzocrea, Il-Yeol Song, and Karen C Davis. “Analytics over large-
scale multidimensional data: the big data revolution!” In: . . . 14th international
workshop on Data . . . (2011), pp. 101–104. DOI: 10.1145/2064676.2064695.
URL: http://dl.acm.org/citation.cfm?id=2064676.2064695%
5Cnpapers3://publication/doi/10.1145/2064676.2064695.

[34] Giuseppe DeCandia et al. “Dynamo: Amazon’s Highly Available Key-value
Store”. In: Proceedings of the Symposium on Operating Systems Principles (2007),
pp. 205–220. ISSN: 01635980. DOI: 10.1145/1323293.1294281. URL: http:
//dl.acm.org/citation.cfm?id=1323293.1294281.

[35] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus in the
presence of partial synchrony”. In: Journal of the ACM 35.2 (Apr. 1988), pp. 288–
323. ISSN: 00045411. DOI: 10.1145/42282.42283. URL: http://portal.
acm.org/citation.cfm?doid=42282.42283.

[36] E. F. E F. Codd. “Derivability, redundancy and consistency of relations stored
in large data banks”. In: ACM SIGMOD Record 38.1 (June 1969), p. 17. ISSN:
01635808. DOI: 10.1145/1558334.1558336. URL: http://portal.
acm.org/citation.cfm?doid=1558334.1558336.

[37] Ahmed Eldawy and Mohamed F. Mokbel. “The era of Big Spatial Data”.
In: 2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016
10.12 (2016), pp. 1424–1427. ISSN: 15516245. DOI: 10.1109/ICDE.2016.
7498361. URL: http://dl.acm.org/citation.cfm?doid=3137765.
3137828.

[38] Nathan Fabian et al. “The ParaView coprocessing library: A scalable, general
purpose in situ visualization library”. In: 1st IEEE Symposium on Large-Scale
Data Analysis and Visualization 2011, LDAV 2011 - Proceedings (2011), pp. 89–
96. DOI: 10.1109/LDAV.2011.6092322.

[39] Ronald Fagin, Amnon Lotem, and Moni Naor. “Optimal aggregation algo-
rithms for middleware”. In: Journal of Computer and System Sciences (2003).
DOI: 10.1016/S0022-0000(03)00026-6.

[40] Fio, flexible I/O tester. (https://linux.die.net/man/1/fio).

[41] Mike Folk, Gerd Heber, and Quincey Koziol. “An overview of the HDF5
technology suite and its applications”. In: Proceedings of the EDBT/ . . . March
(2011), 36–47. DOI: 10.1145/1966895.1966900. URL: http://doi.acm.
org/10.1145/1966895.1966900%5Cnhttp://www.rasdaman.com/

http://dx.doi.org/10.1145/2833312.2833314
http://dl.acm.org/citation.cfm?doid=2833312.2833314
http://dl.acm.org/citation.cfm?doid=2833312.2833314
http://dx.doi.org/10.1109/ICPPW.2017.25
http://dx.doi.org/10.1109/ICPPW.2017.25
http://ieeexplore.ieee.org/document/8026073/
http://dx.doi.org/10.1145/2064676.2064695
http://dl.acm.org/citation.cfm?id=2064676.2064695%5Cnpapers3://publication/doi/10.1145/2064676.2064695
http://dl.acm.org/citation.cfm?id=2064676.2064695%5Cnpapers3://publication/doi/10.1145/2064676.2064695
http://dx.doi.org/10.1145/1323293.1294281
http://dl.acm.org/citation.cfm?id=1323293.1294281
http://dl.acm.org/citation.cfm?id=1323293.1294281
http://dx.doi.org/10.1145/42282.42283
http://portal.acm.org/citation.cfm?doid=42282.42283
http://portal.acm.org/citation.cfm?doid=42282.42283
http://dx.doi.org/10.1145/1558334.1558336
http://portal.acm.org/citation.cfm?doid=1558334.1558336
http://portal.acm.org/citation.cfm?doid=1558334.1558336
http://dx.doi.org/10.1109/ICDE.2016.7498361
http://dx.doi.org/10.1109/ICDE.2016.7498361
http://dl.acm.org/citation.cfm?doid=3137765.3137828
http://dl.acm.org/citation.cfm?doid=3137765.3137828
http://dx.doi.org/10.1109/LDAV.2011.6092322
http://dx.doi.org/10.1016/S0022-0000(03)00026-6
(https://linux.die.net/man/1/fio)
http://dx.doi.org/10.1145/1966895.1966900
http://doi.acm.org/10.1145/1966895.1966900%5Cnhttp://www.rasdaman.com/ArrayDatabases-Workshop/Slides/5-hdf5_oo.pdf%5Cnhttp://dl.acm.org/citation.cfm?id=1966900
http://doi.acm.org/10.1145/1966895.1966900%5Cnhttp://www.rasdaman.com/ArrayDatabases-Workshop/Slides/5-hdf5_oo.pdf%5Cnhttp://dl.acm.org/citation.cfm?id=1966900
http://doi.acm.org/10.1145/1966895.1966900%5Cnhttp://www.rasdaman.com/ArrayDatabases-Workshop/Slides/5-hdf5_oo.pdf%5Cnhttp://dl.acm.org/citation.cfm?id=1966900

BIBLIOGRAPHY 143

ArrayDatabases-Workshop/Slides/5-hdf5_oo.pdf%5Cnhttp:

//dl.acm.org/citation.cfm?id=1966900.

[42] Sarah F. Frisken and Ronald N. Perry. “Simple and Efficient Traversal Meth-
ods for Quadtrees and Octrees”. In: Journal of Graphics Tools 7 (2002). ISSN:
1086-7651. DOI: 10.1080/10867651.2002.10487560.

[43] Ganglia Monitoring System. http://ganglia.info/. Accessed: 2016-07-29.

[44] Marta Garcia, Jesus Labarta, and Julita Corbalan. “Hints to improve auto-
matic load balancing with LeWI for hybrid applications”. In: Journal of Paral-
lel and Distributed Computing 74.9 (2014), pp. 2781–2794. ISSN: 07437315. DOI:
10.1016/j.jpdc.2014.05.004.

[45] Gartner. “Real-time Insights and Decision Making using Hybrid Streaming
, In-Memory Computing Analytics and Transaction Processing”. In: (2016),
pp. 1–9.

[46] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google file
system”. In: ACM SIGOPS Operating Systems Review 37.5 (2003), p. 29. ISSN:
01635980. DOI: 10.1145/1165389.945450.

[47] Seth Gilbert and Nancy Lynch. “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services”. In: ACM SIGACT News
33.2 (June 2002), p. 51. ISSN: 01635700. DOI: 10.1145/564585.564601.
URL: http : // portal . acm . org/ citation . cfm ? doid= 564585 .
564601.

[48] Inigo Goiri et al. “ApproxHadoop: Bringing Approximations to MapReduce
Frameworks”. In: Proceedings of the Twentieth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems 1 (2015),
pp. 383–397. DOI: 10.1145/2694344.2694351. URL: http://doi.acm.
org/10.1145/2694344.2694351.

[49] Jim Gray and Leslie Lamport. “Consensus on Transaction Commit”. In: 1.July
(2004). ISSN: 03625915. DOI: 10.1145/1132863.1132867. URL: http:
//arxiv.org/abs/cs/0408036.

[50] A Guttman. R-trees: a dynamic index structure for spatial searching. ACM Press,
1984.

[51] Frank T. Hady et al. “Platform Storage Performance with 3D XPoint Technol-
ogy”. In: Proceedings of the IEEE 105.9 (2017), pp. 1822–1833. ISSN: 00189219.
DOI: 10.1109/JPROC.2017.2731776.

[52] Dan Han and Eleni Stroulia. “HGrid: A Data Model for Large Geospatial Data
Sets in HBase”. In: 2013 IEEE Sixth International Conference on Cloud Computing
(). DOI: 10.1109/CLOUD.2013.78.

http://doi.acm.org/10.1145/1966895.1966900%5Cnhttp://www.rasdaman.com/ArrayDatabases-Workshop/Slides/5-hdf5_oo.pdf%5Cnhttp://dl.acm.org/citation.cfm?id=1966900
http://doi.acm.org/10.1145/1966895.1966900%5Cnhttp://www.rasdaman.com/ArrayDatabases-Workshop/Slides/5-hdf5_oo.pdf%5Cnhttp://dl.acm.org/citation.cfm?id=1966900
http://doi.acm.org/10.1145/1966895.1966900%5Cnhttp://www.rasdaman.com/ArrayDatabases-Workshop/Slides/5-hdf5_oo.pdf%5Cnhttp://dl.acm.org/citation.cfm?id=1966900
http://dx.doi.org/10.1080/10867651.2002.10487560
http://ganglia.info/
http://dx.doi.org/10.1016/j.jpdc.2014.05.004
http://dx.doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1145/564585.564601
http://portal.acm.org/citation.cfm?doid=564585.564601
http://portal.acm.org/citation.cfm?doid=564585.564601
http://dx.doi.org/10.1145/2694344.2694351
http://doi.acm.org/10.1145/2694344.2694351
http://doi.acm.org/10.1145/2694344.2694351
http://dx.doi.org/10.1145/1132863.1132867
http://arxiv.org/abs/cs/0408036
http://arxiv.org/abs/cs/0408036
http://dx.doi.org/10.1109/JPROC.2017.2731776
http://dx.doi.org/10.1109/CLOUD.2013.78

144 BIBLIOGRAPHY

[53] R. Hernandez et al. “Experiences of Using Cassandra for Molecular Dynam-
ics Simulations”. In: Parallel, Distributed and Network-Based Processing (PDP),
2015 23rd Euromicro International Conference on (2015), pp. 288–295. ISSN: 1066-
6192. DOI: 10.1109/PDP.2015.43.

[54] Roger Hernandez et al. “Automatic query driven data modelling in cassan-
dra”. In: Procedia Computer Science 51 (2015), pp. 2822–2826. ISSN: 18770509.
DOI: 10.1016/j.procs.2015.05.441.

[55] Adam Hospital et al. “BIGNASim: A NoSQL database structure and analy-
sis portal for nucleic acids simulation data”. In: Nucleic Acids Research 44.D1
(2016), pp. D272–D278. ISSN: 13624962. DOI: 10.1093/nar/gkv1301.

[56] Guillaume Houzeaux, Michel Aubry, and Mariano Vázquez. “Extension of
fractional step techniques for incompressible flows: The preconditioned Or-
thomin(1) for the pressure Schur complement”. In: (). ISSN: 0045-7930. DOI:
DOI:10.1016/j.compfluid.2011.01.017. URL: http://www.
sciencedirect.com/science/article/B6V26- 520J96C- 2/2/

ab5d4e88c36e26eac7c15f5edfcbb159.

[57] Guillaume Houzeaux et al. “Parallel uniform mesh multiplication applied
to a Navier-Stokes solver”. In: Computers and Fluids 80.1 (2013), pp. 142–151.
ISSN: 00457930. DOI: 10.1016/j.compfluid.2012.04.017. URL: http:
//dx.doi.org/10.1016/j.compfluid.2012.04.017.

[58] Mark Howison et al. “H5hut : A High-Performance I / O Library for Particle-
based Simulations”. In: (2010).

[59] Mark Howison et al. “Tuning HDF5 for Lustre file systems”. In: IASDS ’10
Proceedings of the Workshop on Interfaces and Abstractions for Scientific Data Stor-
age 5 (2012). URL: http://escholarship.org/uc/item/46r9d86r.
pdf.

[60] Xiao-yu Hu and Robert Haas. “The Fundamental Limit of Flash Random
Write Performance”. In: Writing (2010).

[61] Hubble Essentials: Quick Facts. (http://hubblesite.org/the_telescope/
hubble_essentials/quick_facts.php).

[62] IBM General Parallel File System. https://goo.gl/yWmVXw.

[63] Intel SSD DC S3520 Series. (https : / / ark . intel . com / products /
93012/Intel-SSD-DC-S3520-Series-240GB-2-5in-SATA-6Gb-s-

3D1-MLC-).

[64] Jianwei Li et al. “Parallel netCDF: A High-Performance Scientific I/O Inter-
face”. In: Supercomputing (2003), pp. 1–11. DOI: 10.1109/SC.2003.10053.

[65] Ibrahim Kamel and Christos Faloutsos. “Hilbert R-tree: An Improved R-tree
using Fractals”. In: International Conference on Very Large Databases (VLDB)
(1994).

http://dx.doi.org/10.1109/PDP.2015.43
http://dx.doi.org/10.1016/j.procs.2015.05.441
http://dx.doi.org/10.1093/nar/gkv1301
http://dx.doi.org/DOI: 10.1016/j.compfluid.2011.01.017
http://www.sciencedirect.com/science/article/B6V26-520J96C-2/2/ab5d4e88c36e26eac7c15f5edfcbb159
http://www.sciencedirect.com/science/article/B6V26-520J96C-2/2/ab5d4e88c36e26eac7c15f5edfcbb159
http://www.sciencedirect.com/science/article/B6V26-520J96C-2/2/ab5d4e88c36e26eac7c15f5edfcbb159
http://dx.doi.org/10.1016/j.compfluid.2012.04.017
http://dx.doi.org/10.1016/j.compfluid.2012.04.017
http://dx.doi.org/10.1016/j.compfluid.2012.04.017
http://escholarship.org/uc/item/46r9d86r.pdf
http://escholarship.org/uc/item/46r9d86r.pdf
(http://hubblesite.org/the_telescope/hubble_essentials/quick_facts.php)
(http://hubblesite.org/the_telescope/hubble_essentials/quick_facts.php)
https://goo.gl/yWmVXw
(https://ark.intel.com/products/93012/Intel-SSD-DC-S3520-Series-240GB-2-5in-SATA-6Gb-s-3D1-MLC-)
(https://ark.intel.com/products/93012/Intel-SSD-DC-S3520-Series-240GB-2-5in-SATA-6Gb-s-3D1-MLC-)
(https://ark.intel.com/products/93012/Intel-SSD-DC-S3520-Series-240GB-2-5in-SATA-6Gb-s-3D1-MLC-)
http://dx.doi.org/10.1109/SC.2003.10053

BIBLIOGRAPHY 145

[66] Jonathan G Koomey and D Ph. “Growing in Data Center Electircity Use 2005
to 2010”. In: (2011).

[67] Marcel Kornacker, C Mohan, and Joseph M Hellerstein. “Concurrency and
recovery in generalized search trees”. In: SIGMOD ’97 Proceedings of the 1997
ACM SIGMOD international conference on Management of data 26.2 (1997), pp. 62–
72. ISSN: 01635808. DOI: 10.1145/253262.253272. URL: http://portal.
acm.org/citation.cfm?doid=253262.253272.

[68] Ravi Kanth V. Kothuri, Siva Ravada, and Daniel Abugov. “Quadtree and R-
tree indexes in oracle spatial: a comparison using GIS data”. In: the 2002 ACM
SIGMOD international conference on Management of data (2002). DOI: 10.1145/
564691.564755.

[69] Kryo: Java serialization and cloning. https://goo.gl/R8jacQ.

[70] Laksham Avinash and Prashant Malik. “Cassandra: a decentralized struc-
tured storage system”. In: ACM SIGOPS Operating Systems Review (2010),
pp. 1–6. ISSN: 01635980. DOI: 10.1145/1773912.1773922. URL: http:
//dl.acm.org/citation.cfm?id=1773922.

[71] Avinash Lakshman and Prashant Malik. “Cassandra”. In: ACM SIGOPS Op-
erating Systems Review 44.2 (Apr. 2010), p. 35. ISSN: 01635980. DOI: 10.1145/
1773912.1773922. URL: http://portal.acm.org/citation.cfm?
doid=1773912.1773922.

[72] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed
system”. In: Communications of the ACM 21.7 (July 1978), pp. 558–565. ISSN:
00010782. DOI: 10.1145/359545.359563. URL: http://portal.acm.
org/citation.cfm?doid=359545.359563.

[73] Leslie Lamport and others. “Paxos made simple”. In: ACM Sigact News 32.4
(2001), pp. 18–25.

[74] John MacCormick et al. “Kinesis”. In: ACM Transactions on Storage (2009). DOI:
10.1145/1480439.1480440.

[75] Nathan Marz and James Warren. Big Data: Principles and best practices of scal-
able real-time data systems. New York; Manning Publications Co., 2015. ISBN:
9781617290343.

[76] Kirk McKusick and Sean Quinlan. “GFS: evolution on fast-forward”. In: Com-
munications of the ACM 53.3 (2010), pp. 42–49. ISSN: 00010782. DOI: http:
//doi.acm.org.ezp-prod1.hul.harvard.edu/10.1145/1594204.

1594206. URL: http://portal.acm.org/citation.cfm?id=1666420.
1666439.

[77] MemSQL. http://www.memsql.com.

http://dx.doi.org/10.1145/253262.253272
http://portal.acm.org/citation.cfm?doid=253262.253272
http://portal.acm.org/citation.cfm?doid=253262.253272
http://dx.doi.org/10.1145/564691.564755
http://dx.doi.org/10.1145/564691.564755
https://goo.gl/R8jacQ
http://dx.doi.org/10.1145/1773912.1773922
http://dl.acm.org/citation.cfm?id=1773922
http://dl.acm.org/citation.cfm?id=1773922
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/1773912.1773922
http://portal.acm.org/citation.cfm?doid=1773912.1773922
http://portal.acm.org/citation.cfm?doid=1773912.1773922
http://dx.doi.org/10.1145/359545.359563
http://portal.acm.org/citation.cfm?doid=359545.359563
http://portal.acm.org/citation.cfm?doid=359545.359563
http://dx.doi.org/10.1145/1480439.1480440
http://dx.doi.org/http://doi.acm.org.ezp-prod1.hul.harvard.edu/10.1145/1594204.1594206
http://dx.doi.org/http://doi.acm.org.ezp-prod1.hul.harvard.edu/10.1145/1594204.1594206
http://dx.doi.org/http://doi.acm.org.ezp-prod1.hul.harvard.edu/10.1145/1594204.1594206
http://portal.acm.org/citation.cfm?id=1666420.1666439
http://portal.acm.org/citation.cfm?id=1666420.1666439
http://www.memsql.com

146 BIBLIOGRAPHY

[78] C. Mohan et al. “ARIES: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging”. In: ACM Transac-
tions on Database Systems 17.1 (Mar. 1992), pp. 94–162. ISSN: 03625915. DOI:
10.1145/128765.128770. URL: http://portal.acm.org/citation.
cfm?doid=128765.128770.

[79] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. “Fast Serializ-
able Multi-Version Concurrency Control for Main-Memory Database Sys-
tems”. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data - SIGMOD ’15 (2015), pp. 677–689. ISSN: 07308078. DOI:
10.1145/2723372.2749436. URL: http://dl.acm.org/citation.
cfm?doid=2723372.2749436.

[80] Salman Niazi et al. “HopsFS : Scaling Hierarchical File System Metadata Us-
ing NewSQL Databases This paper is included in the Proceedings of the 15th
USENIX Conference on”. In: Fast (2017).

[81] Shoji Nishimura et al. “MD -HBase: Design and implementation of an elas-
tic data infrastructure for cloud-scale location services”. In: Distributed and
Parallel Databases 31 (2013). DOI: 10.1007/s10619-012-7109-z.

[82] Prashant Pandey et al. “A General-Purpose Counting Filter”. In: Proceedings
of the 2017 ACM International Conference on Management of Data - SIGMOD
’17 (2017), pp. 775–787. ISSN: 16130073. DOI: 10.1145/3035918.3035963.
URL: http://dl.acm.org/citation.cfm?doid=3035918.3035963.

[83] Andrew Pavlo and Matthew Aslett. “What’s Really New with NewSQL?” In:
ACM SIGMOD Record 45.2 (2016), pp. 45–55. ISSN: 01635808. DOI: 10.1145/
3003665.3003674. URL: http://dl.acm.org/citation.cfm?doid=
3003665.3003674.

[84] M. Pease, R. Shostak, and L. Lamport. “Reaching Agreement in the Pres-
ence of Faults”. In: Journal of the ACM 27.2 (Apr. 1980), pp. 228–234. ISSN:
00045411. DOI: 10.1145/322186.322188. URL: http://portal.acm.
org/citation.cfm?doid=322186.322188.

[85] perfect k-ary tree. https://goo.gl/sV7K45.

[86] Torben Kling Petersen. “Inside The Lustre File System”. In: SEAGATE Tech-
nology paper. (2015).

[87] Henning Piezunka and Linus Dahlander. “Distant search, narrow attention:
How crowding alters organizations’ filtering of suggestions in crowdsourc-
ing”. In: Academy of Management Journal 58.3 (2015), pp. 856–880. ISSN: 00014273.
DOI: 10.5465/amj.2012.0458. URL: http://pubs.acs.org/doi/
abs/10.1021/ie010187i.

http://dx.doi.org/10.1145/128765.128770
http://portal.acm.org/citation.cfm?doid=128765.128770
http://portal.acm.org/citation.cfm?doid=128765.128770
http://dx.doi.org/10.1145/2723372.2749436
http://dl.acm.org/citation.cfm?doid=2723372.2749436
http://dl.acm.org/citation.cfm?doid=2723372.2749436
http://dx.doi.org/10.1007/s10619-012-7109-z
http://dx.doi.org/10.1145/3035918.3035963
http://dl.acm.org/citation.cfm?doid=3035918.3035963
http://dx.doi.org/10.1145/3003665.3003674
http://dx.doi.org/10.1145/3003665.3003674
http://dl.acm.org/citation.cfm?doid=3003665.3003674
http://dl.acm.org/citation.cfm?doid=3003665.3003674
http://dx.doi.org/10.1145/322186.322188
http://portal.acm.org/citation.cfm?doid=322186.322188
http://portal.acm.org/citation.cfm?doid=322186.322188
https://goo.gl/sV7K45
http://dx.doi.org/10.5465/amj.2012.0458
http://pubs.acs.org/doi/abs/10.1021/ie010187i
http://pubs.acs.org/doi/abs/10.1021/ie010187i

BIBLIOGRAPHY 147

[88] Jean-pierre Prost et al. “MPI-IO/GPFS, an Optimized Implementation of MPI-
IO on Top of GPFS”. In: SC ’01: Proceedings of the 2001 ACM/IEEE Conference
on Supercomputing. November 2001. 2001, pp. 0–14. ISBN: 1-58113-293-X. DOI:
10.1109/SC.2001.10047.

[89] Aw Richa. “The power of two random choices: A survey of techniques and
results”. In: Combinatorial . . . 1.1 (2001), pp. 1–60. URL: http://books.
google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&pg=

PA255&dq=The+Power+of+Two+Random+Choices+:+A+Survey+of+

Techniques+and+Results&ots=wxTNXanuWg&sig=YeKtV6TSR966W8cVEgkdVOEgZtg\

nhttp://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&

oi=fnd&.

[90] Marzia Rivi et al. “In-situ visualization: State-of-the-art and some use cases”.
In: PRACE White Paper (2012), pp. 1–18.

[91] Pamela Rogerson-revell. “BeeGFSintro”. In: 47.4 (2010), pp. 162–166. DOI:
10.1177/0021943610377298.

[92] A Rosenberg. “Improving query performance in data warehouses”. In: Busi-
ness Intelligence Journal 11.1 (2006), p. 7.

[93] Anish Das Sarma et al. “Consistent thinning of large geographical data for
map visualization”. In: ACM Transactions on Database Systems (2013). DOI: 10.
1145/2539032.2539034.

[94] Frank Schmuck and Roger Haskin. “GPFS: A shared-disk file system for large
computing clusters”. In: Proceedings of the First USENIX Conference on File and
Storage Technologies January (2002), 231–244. ISSN: 02692813. DOI: 10.1111/
j.1365-2036.2004.02077.x. URL: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.19.7147&rep=rep1&

amp;type=pdf.

[95] ScyllaDB achieves Cassandra feature parity, adds HTAP, cloud, and Kubernetes sup-
port. https://goo.gl/3QctwZ.

[96] Timos K Sellis, Nick Roussopoulos, and Christos Faloutsos. “The R+-tree: A
Dynamic Index for Multi-dimensional Objects”. In: International Conference on
Very Large Databases (VLDB). 1987. ISBN: 0-934613-46-X.

[97] Konstantin Shvachko et al. “The Hadoop Distributed File System”. In: 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). Vol. 454.
IEEE, May 2010, pp. 1–10. ISBN: 978-1-4244-7152-2. DOI: 10.1109/MSST.
2010.5496972. URL: http://www.aanda.org/articles/aa/abs/
2006/30/aa5130-06/aa5130-06.htmlhttp://ieeexplore.ieee.

org/document/5496972/.

[98] Konstantin V Shvachko. “HDFS Scalability: The limits to growth”. In: ; login::
the magazine of USENIX & SAGE (2010).

http://dx.doi.org/10.1109/SC.2001.10047
http://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&pg=PA255&dq=The+Power+of+Two+Random+Choices+:+A+Survey+of+Techniques+and+Results&ots=wxTNXanuWg&sig=YeKtV6TSR966W8cVEgkdVOEgZtg\nhttp://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&
http://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&pg=PA255&dq=The+Power+of+Two+Random+Choices+:+A+Survey+of+Techniques+and+Results&ots=wxTNXanuWg&sig=YeKtV6TSR966W8cVEgkdVOEgZtg\nhttp://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&
http://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&pg=PA255&dq=The+Power+of+Two+Random+Choices+:+A+Survey+of+Techniques+and+Results&ots=wxTNXanuWg&sig=YeKtV6TSR966W8cVEgkdVOEgZtg\nhttp://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&
http://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&pg=PA255&dq=The+Power+of+Two+Random+Choices+:+A+Survey+of+Techniques+and+Results&ots=wxTNXanuWg&sig=YeKtV6TSR966W8cVEgkdVOEgZtg\nhttp://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&
http://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&pg=PA255&dq=The+Power+of+Two+Random+Choices+:+A+Survey+of+Techniques+and+Results&ots=wxTNXanuWg&sig=YeKtV6TSR966W8cVEgkdVOEgZtg\nhttp://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&
http://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&pg=PA255&dq=The+Power+of+Two+Random+Choices+:+A+Survey+of+Techniques+and+Results&ots=wxTNXanuWg&sig=YeKtV6TSR966W8cVEgkdVOEgZtg\nhttp://books.google.com/books?hl=en&lr=&id=ZGgnFGfHGroC&oi=fnd&
http://dx.doi.org/10.1177/0021943610377298
http://dx.doi.org/10.1145/2539032.2539034
http://dx.doi.org/10.1145/2539032.2539034
http://dx.doi.org/10.1111/j.1365-2036.2004.02077.x
http://dx.doi.org/10.1111/j.1365-2036.2004.02077.x
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.7147&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.7147&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.7147&rep=rep1&type=pdf
https://goo.gl/3QctwZ
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://www.aanda.org/articles/aa/abs/2006/30/aa5130-06/aa5130-06.html http://ieeexplore.ieee.org/document/5496972/
http://www.aanda.org/articles/aa/abs/2006/30/aa5130-06/aa5130-06.html http://ieeexplore.ieee.org/document/5496972/
http://www.aanda.org/articles/aa/abs/2006/30/aa5130-06/aa5130-06.html http://ieeexplore.ieee.org/document/5496972/

148 BIBLIOGRAPHY

[99] Vishal Sikka et al. “Efficient transaction processing in SAP HANA database”.
In: Proceedings of the 2012 international conference on Management of Data - SIG-
MOD ’12. New York, New York, USA: ACM Press, 2012, p. 731. ISBN: 9781450312479.
DOI: 10.1145/2213836.2213946. URL: http://dl.acm.org/citation.
cfm?doid=2213836.2213946.

[100] Bogdan Simion et al. “The Price of Generality in Spatial Indexing”. In: BigSpa-
tial ’13 Proceedings of the 2nd ACM SIGSPATIAL International Workshop on An-
alytics for Big Geospatial Data (2013), pp. 8–12. DOI: 10.1145/2534921.
2534923.

[101] Václav Snášel et al. “Geometrical and topological approaches to Big Data”.
In: Future Generation Computer Systems 67 (2017), pp. 286–296. ISSN: 0167739X.
DOI: 10.1016/j.future.2016.06.005. URL: http://dx.doi.org/
10.1016/j.future.2016.06.005.

[102] Michael Stonebraker and Ariel Weisberg. “The VoltDB Main Memory DBMS”.
In: IEEE Data Eng. Bull. (2013), pp. 21–27. ISSN: 00237205. DOI: 10.3141/
2046-07. URL: http://sites.computer.org/debull/a13june/
voltdb1.pdf.

[103] Michael Stonebraker et al. “The End of an Architectural Era: (It’s Time for a
Complete Rewrite)”. In: Proceedings of the 33rd International Conference on Very
Large Data Bases. 2007. ISBN: 9781595936493. URL: http://dl.acm.org/
citation.cfm?id=1325851.1325981.

[104] Amy Tai et al. “Replex : A Scalable , Highly Available Multi-Index Data Store”.
In: Atc (2016), pp. 337–350.

[105] Farhan Tauheed et al. “Accelerating Range Queries for Brain Simulations”.
In: 2012 IEEE 28th International Conference on Data Engineering (). DOI: 10.
1109/ICDE.2012.56.

[106] Enric Tejedor et al. “PyCOMPSs: Parallel computational workflows in Python”.
In: International Journal of High Performance Computing Applications 31.1 (2017),
pp. 66–82. ISSN: 17412846. DOI: 10.1177/1094342015594678.

[107] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. “Top-k query evalu-
ation with probabilistic guarantees”. In: on Very large data bases-Volum (2004).
DOI: doi:10.1016/B978-012088469-8.50058-9.

[108] Ankit Toshniwal et al. “Storm@twitter”. In: Proceedings of the 2014 ACM SIG-
MOD international conference on Management of data - SIGMOD ’14. New York,
New York, USA: ACM Press, 2014, pp. 147–156. ISBN: 9781450323765. DOI:
10.1145/2588555.2595641. URL: http://dl.acm.org/citation.
cfm?doid=2588555.2595641.

[109] Mariano Vazquez et al. “Alya: Towards Exascale for Engineering Simulation
Codes”. In: (). URL: http://arxiv.org/abs/1404.4881.

http://dx.doi.org/10.1145/2213836.2213946
http://dl.acm.org/citation.cfm?doid=2213836.2213946
http://dl.acm.org/citation.cfm?doid=2213836.2213946
http://dx.doi.org/10.1145/2534921.2534923
http://dx.doi.org/10.1145/2534921.2534923
http://dx.doi.org/10.1016/j.future.2016.06.005
http://dx.doi.org/10.1016/j.future.2016.06.005
http://dx.doi.org/10.1016/j.future.2016.06.005
http://dx.doi.org/10.3141/2046-07
http://dx.doi.org/10.3141/2046-07
http://sites.computer.org/debull/a13june/voltdb1.pdf
http://sites.computer.org/debull/a13june/voltdb1.pdf
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://dx.doi.org/10.1109/ICDE.2012.56
http://dx.doi.org/10.1109/ICDE.2012.56
http://dx.doi.org/10.1177/1094342015594678
http://dx.doi.org/doi:10.1016/B978-012088469-8.50058-9
http://dx.doi.org/10.1145/2588555.2595641
http://dl.acm.org/citation.cfm?doid=2588555.2595641
http://dl.acm.org/citation.cfm?doid=2588555.2595641
http://arxiv.org/abs/1404.4881

BIBLIOGRAPHY 149

[110] Peng Wang et al. “An efficient design and implementation of LSM-tree based
key-value store on open-channel SSD”. In: Proceedings of the Ninth European
Conference on Computer Systems - EuroSys ’14 (2014), pp. 1–14. ISSN: 21601968.
DOI: 10.1145/2592798.2592804. URL: http://dl.acm.org/citation.
cfm?doid=2592798.2592804.

[111] Ling-Yin Wei et al. “Indexing spatial data in cloud data managements”. In:
Pervasive and Mobile Computing (2013). DOI: 10.1016/j.pmcj.2013.07.
001.

[112] Sage A Weil et al. “Ceph: A Scalable, High-Performance Distributed File Sys-
tem”. In: OSDI ’06 Proceedings of the 7th symposium on Operating systems de-
sign and implementation. 2006, pp. 307–320. ISBN: 1-931971-47-1. URL: https:
//dl.acm.org/citation.cfm?id=1298485.

[113] Sage A. Weil et al. “Dynamic Metadata Management for Petabyte-Scale File
Systems”. In: Proceedings of the ACM/IEEE SC 2004 Conference: Bridging Com-
munities 00.November (2004). DOI: 10.1109/SC.2004.22.

[114] Youjip Won et al. “Barrier Enabled IO Stack for Flash Storage”. In: (2017).
ISSN: 15522938. URL: http://arxiv.org/abs/1711.02258.

[115] Z-order. https://en.wikipedia.org/wiki/Z-order.

[116] Matei Zaharia et al. “Discretized streams”. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles - SOSP ’13. 1. New York, New
York, USA: ACM Press, 2013, pp. 423–438. ISBN: 9781450323888. DOI: 10.
1145/2517349.2522737. URL: http://dl.acm.org/citation.cfm?
doid=2517349.2522737.

[117] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstrac-
tion for\rIn-Memory Cluster Computing\r\n\n”. In: (). ISSN: 00221112. DOI:
10.1111/j.1095-8649.2005.00662.x. URL: https://www.usenix.
org/system/files/conference/nsdi12/nsdi12-final138.pdf.

[118] Matei Zaharia et al. “Spark : Cluster Computing with Working Sets”. In: Hot-
Cloud’10 Proceedings of the 2nd USENIX conference on Hot topics in cloud com-
puting (2010), p. 10. ISSN: 03642348. DOI: 10.1007/s00256-009-0861-0.

[119] Xiangyu Zhang et al. “An efficient multi-dimensional index for cloud data
management”. In: Proceeding of the first international workshop on Cloud data
management - CloudDB 2009 (). DOI: 10.1145/1651263.1651267.

[120] Yinghua Zhou et al. “Hybrid Index Structures for Location-based Web Search
*”. In: (2005). DOI: 10.1145/1099554.1099584.

http://dx.doi.org/10.1145/2592798.2592804
http://dl.acm.org/citation.cfm?doid=2592798.2592804
http://dl.acm.org/citation.cfm?doid=2592798.2592804
http://dx.doi.org/10.1016/j.pmcj.2013.07.001
http://dx.doi.org/10.1016/j.pmcj.2013.07.001
https://dl.acm.org/citation.cfm?id=1298485
https://dl.acm.org/citation.cfm?id=1298485
http://dx.doi.org/10.1109/SC.2004.22
http://arxiv.org/abs/1711.02258
http://dx.doi.org/10.1145/2517349.2522737
http://dx.doi.org/10.1145/2517349.2522737
http://dl.acm.org/citation.cfm?doid=2517349.2522737
http://dl.acm.org/citation.cfm?doid=2517349.2522737
http://dx.doi.org/10.1111/j.1095-8649.2005.00662.x
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
http://dx.doi.org/10.1007/s00256-009-0861-0
http://dx.doi.org/10.1145/1651263.1651267
http://dx.doi.org/10.1145/1099554.1099584

	Abstract
	Acknowledgements
	Introduction
	Contributions
	Performance characterization of NoSQL technologies applied in HPC
	The D8tree: a read-optimized MIS
	The AOTree: a write, and eventually read, optimized MIS
	Qbeast

	Thesis structure

	Performance characterization of NoSQL technologies applied in HPC
	Target scientific HPC applications
	BigNASIM
	Alya
	Cell Data
	Missing functionalities and common aspects

	Background
	Common grounds
	Atomicy Consistency Isolation and Durability
	Concurrency Control
	PACELC model
	2PC drawbacks

	Shared consensus
	Durability
	Data placement and Metadata management
	Global mapping
	Multiple masters
	Gossip
	Hashing
	The balls-into-bins problem

	Data model
	Key-value databases
	Document databases
	Column-oriented
	Row-oriented
	Graph
	Object stores

	Distributed data: SQL, NoSQL and Parallel File systems
	SQL databases
	NoSQL
	NewSQL
	Distributed File Systems
	Object stores

	Multidimensional indexing
	Quad-tree
	KD-tree
	R-tree
	Distributed Multidimensional indexes
	Multidimensional sampling

	I/O in HPC
	HPC visualization
	On the state of the art
	Apache Cassandra's architecture
	The cluster structure
	Cassandra's write and read paths

	The importance of the data model
	Aeneas
	The analytical model
	Methodology
	Performance analysis
	Influence of the workload distribution
	Definition of stages and identification of the bottlenecks
	Performance Modelling
	Database model
	Validation

	Model analysis
	Summary
	List of publications

	The D8tree: a read-optimized MIS
	Motivation
	NoSQL characterization
	Influence of parallelism

	Our proposal: the D8-tree
	Index implementation

	Experiments
	Data replication
	Real-time D8tree indexing for HPC
	I/O for HPC applications

	Real-time D8-tree index creation
	Architecture
	Experiments
	Summary
	List of publications

	The AOTree: a write, and eventually read, optimized MIS
	Indexing algorithms
	D8tree drawbacks

	D8tree performance analysis
	The OutlookTree
	The AOTree: eventually building the OutlookTree
	Querying the AOtree
	Cubes domain estimation
	Overall process summary

	Distributed transaction
	Memory footprint

	AOTree testing
	Synthetic tests
	HPC integration

	Summary
	List of publications

	Qbeast
	Overall architecture
	Data gathering
	Custom secondary index

	Propagating writes
	Priority calculation

	Integration with distributed computing framework
	PyCOMPSs and Hecuba integration
	Apache Spark integration

	Qview
	Summary

	Conclusions
	Bibliography

