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ABSTRACT

DESIGN AND PERFORMANCE EVALUATION 
OF INDEXING METHODS FOR 

DYNAMIC ATTRIBUTES IN MOBILE 
DATABASE MANAGEMENT SYSTEMS

Jamel Tayeb
M.S. in Computer Engineering and Information Science 

Supervisor: Asst. Prof. Özgür Ulusoy 
May 1997

In traditional databases, we deal with static attributes which change very in- 
frecpiently over time and their change is handled with an explicit update opera
tion. In temporal databases, the time of change of attributes is also important 
and every update creates a new version. Attributes, typically change more 
frequently over time. A more agitated category of attributes are the so-called 
dynamic attributes whose value changes continuously over time, thus making 
it impractical to explicitly update them as they change. In this thesis, we 
conduct a performance evaluation study of two indexing methods for dynamic 
attributes. These are based on the key idea of using a linear function that 
describes the way the attribute changes over time and allows us to predict its 
value in the future based on any value of it in the past. The problem is rooted 
in the context of mobile data management and draws upon the fields of spatial 
and temporal indexing. We contribute various experimental results, mathemat
ical analyses, and improvement and optimization algorithms. Finally, inspired 
by a few of the observed shortcomings of both of the studied techniques, we 
propose a novel inde.xing method which we call the FP-Index which is shown 
analytically to have promising prospects and to beat both methods over most 
performance parameters.

Keywords: Mobile Data Management, Spatial Indexing, Dynamic attributes.
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ÖZET

HAREKETLİ VERİ TABANI SİSTEMLERİNDE 
DİNAMİK ÖZNİTELİKLER İÇİN İNDEKSLEME 

YÖNTEMLERİ TASARIMI VE PERFORMANS ÖLÇÜMÜ

Jamel Tayeb
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Yard. Doç. Dr. Özgür Ulusoy 
Mayıs 1997

Genel amaçlı veri tabanlarını oluşturan öznitelikler, nadiren ve bazı işlemlerin 
uygulanması sonucu değer değişikliklerine uğradıkları için, durağan öznitelikler 
olarak adlandırılmaktadırlar. Zamansal veri tabanlarında, özniteliklerin deği
şikliğe uğrama zamanları da önemlidir ve her değişiklikte özniteliğin yeni bir 
versiyonu yaratılır. Bu tip veri tabanlarında öznitelikler durağan özniteliklere 
oranla genelde daha sık değişikliğe uğrarlar. Özniteliklerin, dinamik öznitelikler 
olarak adlandırılan bir diğer kategorisi ise, zamana bağlı olarak devamlı değişme 
özelliğine sahiptir ve bu nedenle, her değer değişiminin bir işlem aracılığıyla 
veri tabanına yansıtılması sisteme çok büyük bir yük getirecektir. Bu tezde, 
dinamik öznitelikler üzerinde iki değişik indeksleme metodunun performans 
analizi gerçekleştirilmektedir. Bu yöntemlerdeki temel fikir, doğrusal bir işlev 
aracılığıyla, özniteliklerin geçmişteki değerlerini de kullanarak, gelecek için ala
bilecekleri değerlerin belirlenmesidir. Bu yöntemlerin araştırılması, hareketli 
veri tabanı yönetimi alanı temel alınarak gerçekleştirilirken, zamansal ve uzay- 
sal indeksleme konularından da gerekli yerlerde faydalanılmıştır. Tezin başlıca 
katkıları, çeşitli deneysel araştırma sonuçlarının sunulması yanında bazı mate
matiksel analizlerin gerçekleştirilmesi ve elde edilen sonuçlar ışığında FP-Indc.x 
olarak adlandırdığımız yeni bir indeksleme yöntemin geliştirilmesi olmuştur. 
Yeni yöntemin diğer indeksleme yöntemlerine olan üstünlüğü matematiksel 
analiz yoluyla kanıtlanmıştır.

Anahtar sözcükler: Hareketli Veri Tabanı Yönetimi, Uzaysal indeksleme. Di
namik Öznitelikler.
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Chapter 1

INTRODUCTION

The recent technological progress in portable laptop computers and the smaller 
palmtop computers led to the speculation that they will be ubiquitous in the 
near future. They are becoming increasingly more powerful, cheaper, and 
dotted with the ability to communicate with fixed networks via the wireless 
medium. If they become cheap enough we expect to have hundreds of thou
sands of people (some even talk about millions) moving around with such de
vices, each person having his own information needs. Users’ information needs 
will be particularly stimulated with the mobile devices’ ability to communi
cate. Both this ability to communicate with hosts in a fixed network and the 
expected information demands of these mobile users challenged the research 
community with new problems and started up the new research field of mobile 
computing. We are here at one of its very young branches; namely the field of 
mobile data management.

The standard architecture of a mobile computing system consists of a small 
set of fixed hosts linked via a wide area network and a larger set of mobile com
puters which would occasionally request services from the fixed hosts. Typ
ically. the fixed hosts have ample computational power and a large storage 
capacity while the mobile computers are limited by both CPU speed and stor
age capacity as well as battery resources. A small set of special fixed hosts are 
called mobile support stations and are dedicated to serving the wireless com
munication needs of the mobile users and also linking them to the resourceful

1



CHAPTER 1. INTRODUCTION

network which will supply them with various (commercial) services. There 
then immediately arises the necessity to handle mobility of the users (among 
other things).

Location is the most important piece of information in a mobile system. It 
gives rise for example to a new paradigm of queries called location-dependent 
queries [IB92] which are queries whose answer depends on the location from 
which they were issued. Consider a person driving a car who occasionally 
wants to be informed about motels that are within five miles of his location 
in order to select a reasonably priced hotel. Such a service would be valuable 
to any traveler (especially at night) and would indeed make his search for a 
suitable motel a very easy and comfortable task. It is clear that the set of 
motels computed as an answer to his query would be different each time his 
car moves by a reasonable distance.

Alternatively, the driver could request the information to be continuously 
updated on his on-board computer screen as the car moves. For this to be 
possible, the mobile support stations will need to track his position in an 
efficient way that does not involve very frequent communication nor the un
pleasant and unrealistic prospect of having to update the position attribute in 
a quasi-continuous manner. Remember also that there might be thousands of 
moving vehicles each with similar demands. A solution that was first proposed 
in [SWCD97] is for the moving object/vehicle to supply its motion ecpiation 
and current position which would then be used by the mobile support stations 
to predict the position in the ‘near’ future. This way, we will be able to answer 
location-dependent queries without the need to communicate very frequently 
with the moving object to check its location. Since the motion equation is just 
an approximation, we expect that after some time the. discrepancy between 
the object’s real position and its position as perceived by the mobile support 
station will reach an unacceptable magnitude. This may start to compromise 
the correctness of the supplied answers. However, it suffices to update the 
position occasionally (or the motion function or both) to remedy this problem. 
The issue of imprecision modeling in the context of this application is treated 
in more detail in [WCD‘''97].

Consider then the case where we have a large number of such mobile users.
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At any given time, we need to track their positions. The focus of our work is on 
queries on the set of objects themselves such as which subset will cross a given 
segment of space during a given time slice. This is in contrast to queries issued 
by the mobile objects seeking information about their surrounding space. If 
we view position as one attribute of the moving object, then it is indeed a 
peculiar kind of attribute in that it is continuously changing with time without 
explicit ‘continuous’ updates on the database storing it. Attributes with such 
a property were called dynamic attributes in [SVVCD97]. At this point we are 
ready to describe the goal of the research work presented in this thesis and 
state our major contributions.

The purpose of this work is to conduct a thorough experimental evaluation 
of two indexing techniques for dynamic attributes which support a variety of 
range searches. Besides the experimental study which is based on simulation, 
we occasionally resort to modest mathematical analysis of a few performance 
parameters. We present an index construction algorithm that is optimal in 
the disk access and CPU costs. It is given as an improvement over a naive 
algorithm. The thesis is further enriched by our contribution of a novel indexing 
method that amends many of the shortcomings of the first two. In the context 
of this new method, we present an optimal query processing algorithm that 
handles one category of queries very efficiently and can potentially reduce the 
cost of a single query to less than one disk access. We leave any further details 
to the forthcoming chapters.

The outline of this thesis is as follows. In Chapter 2, we describe the re
search problem in full detail and also introduce the two indexing techniques 
to be studied. Chapter 3 provides some background information to introduce 
the field into which our work is situated. We also describe related work and 
briefly survey from the literature what we deemed worth mentioning or what 
was helpful to us in the early stages of our work. The next three chapters 
represent the core of the thesis. Chapter 4 provides the results of studying the 
first technique which is the quadtree method. Chapter 5 is dedicated to the 
second indexing technique called the cross point method. In Chapter 6, we 
introduce our own novel access method which we dubbed the FP-Index. Its 
conception draws largely upon the insight gained from studying the previous
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two techniques. Finally, we present our conclusions in Chapter 7.



Chapter 2

PROBLEM DESCRIPTION

In our work, we conduct a performance study of two indexing techniques for 
dynamic attributes. The purpose of this chapter is to elaborate on this prob
lem statement and introduce the techniques to be studied. We start in Sec
tion 2.1 by introducing prerequisite concepts that are central to our study. 
After that, we describe the first technique which is called the quadtree method 
in Section 2.2. The second technique named the cross points is presented in 
Section 2.3.

2.1 Introductory Notions

Our work is largely based on the ideas introduced by Sistla et al. in [SWCD97]. 
The authors present a new data model suitable for representing moving objects 
in database systems. The model is called the Moving Objects Spatio-Temporal 
(MOST) data model and relies on the key idea of representing the position as 
a function of time. In other words, each object is associated with a motion 
function that allows us to predict its position in the future given its position 
at some point in the past. If the position of the moving object is one of its 
attributes, then this technique allows us to avoid the naive and unrealistic 
scheme of having to update the position attribute ‘whenever’ it changes. A 
peculiar property of such an attribute is that it changes continuously with



time. We are familiar with the static attribute whose value changes in a discrete 
(as opposed to continuous) way over time and have to be explicitly updated 
upon each such change. Examples include the salary attribute in an employee 
relation. However, we are here faced with ‘attributes that change continuously 
with time without being explicitly updated’ [SWCD97]. Such attributes were 
given the name dynamic attributes by the authors of [SWCD97]. Below, we 
present their description of the characteristics of such attributes in the form of 
a definition.

D efin ition  1 A dynam ic attribute A  is represented by three sub-attributes, 
A.value, A.updatetime, and A.function where A.function is a Junction of 
a single variable t that has value 0 at t =  0. The semantics is that at time 
A.updatetime the value of A is A.value, and until the next update of A, the 
value o f A at time A .updatetirneto is given by A.value + A.function(to). An 
update o f a dynamic attribute may change the value or function sub-attributes 
(or both).

CHAPTER 2. PROBLEM DESCRIPTION 6

We thus want to explore how we could efficienth· index and retrieve information 
about such attributes. We next need to describe the types of queries expected 
or supported.

In [SWCD97], three types of queries are discerned for the MOST data model. 
These are the instantaneous, the continuous, and the persistent queries. An 
instantaneous query submitted at time i, is processed against the database state 
at i,. The following example is given in [SWCD97]: ‘Display the motels within 
5 miles of my position.’ A continuous query submitted at tirhe i,· is processed 
against all database states starting from i,· (i.e., [¿,. ..oo )). It is described as 
‘an instantaneous query being continuously reissued at each clock tick.’ In 
the motels example, the user will just require to be ‘continuously’ informed 
about which motels are coming within 5 miles of his position. If we let Sj 
denote the state of the database at time tj, then at each tj > t,·, the continuous 
query is reevaluated against Sj. The persistent query is a bit more demanding. 
Like the continuous query, it has to be evaluated at each clock tick after its 
time of submission However, unlike the continuous query, at tj it has to 
be evaluated against the set of states Si, Si+i, . . . ,  Sj-i,S j rather than against



Sj alone. The example query provided in [SWCD97] is the following: ‘ let me 
know when the speed of object o in the direction of the x-axis doubles within 
iO minutes’ . Persistent queries arise in the e.xpression of temporal triggers in 
active database applications [SW95].

In our research, the focus is on supporting instantaneous and continuous 
c[ueries. However, the semantics we have in mind is slightly different from 
that exhibited in the examples provided by Sistla et al. in [SWCD97]. In the 
paper, the authors consider queries issued by the moving objects themselves 
(i.e., the mobile client) that mainly seek information about spatially static 
objects such as motels, restaurants, hospitals, etc. Our focus in this study is 
on range queries which ask about the moving objects themselves. The generic 
and generalized form of our queries is the following.

Give me all the objects whose value for attribute A falls in the at
tribute range [a,·. . .  Oj] at some time between time instances t(, and 

ie.

Let tnow denote the time at which the query was submitted. Depending upon 
the values for and G, we may have any of the following four types of queries:

1. If tb =  te =  tnow, we have an instantaneous range query asking about the 
present.

2. If tb =  tg =  ti and ti >  tnow, we have an instantaneous range query asking 
about the future.

3. If ¿6 =  tnow and ¿e =  oo, we have a continuous range query.

4. If tb =  ti and tg =  tj {tnow <  ti < tj), we have a general two-dimensional 
range query over the attribute and time dimensions.

CHAPTER 2. PROBLEM DESCRIPTION 7

VVe remark that in practice, we map the first three types of queries to the 
fourth one which is more general. In instantaneous range queries (cases 1 and 
2), we approximate the time point i, by the time range [i,· — 6t . . . t i  +  ¿i] where
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Figure 2.1: Trajectories of moving objects in the time-attribute space.

St is a small time lapse. In continuous queries, the theoretically infinite range 
[¿6 . . .  oo) is usually decomposed into the set of contiguous intervals

[t,·. . .  +  AT], [¿, +  A T . .. t. +  2A T ],. . . ,  [t,· +  n A T . . . U  +  {n 1 )A T ],. . .  (1)

This again reduces it to the fourth case. VVe return back to the key idea behind 
the management of dynamic attributes.

As mentioned above, we tame the rapid change of object positions by using 
a motion function; the idea is due to [SVVCD97]^ Each object upon entering 
the system supplies its current position and its motion function and may later 
on update both of them. Since in practice the objects will not follow perfectly 
their motion functions, answers to queries are only approximate and are bound 
to contain some amount of error. This is expressed in [SVVCD97] with the 
following remark: ‘ the answer to future queries is tentative and should be 
regarded as correct according to what is currently known about the real world’ . 
The work of Wolfson et al. [WCD'*'97] is devoted to this specific topic of 
imprecision and the provision of bounds on the amount of error. However, it 
is more specialized to the context of moving vehicles across a given route.

In our work, we consider objects with linear motion functions f { t )  =  a t +  b] 
no other types of functions are considered. This work could however in principle 
be extended to cjuadratic or more complicated functions. We leave that for 
future work. With the motion function.in hand, we could plot the trajectory 
of each object in the time-attribute space as shown in Figure 2.1. In fact

 ̂ . we propose to solve this problem by representing the position as a function of time;
it changes as time passes without an explicit update.”



the two indexing methods we study in this thesis take the plotted trajectories 
as a starting point. The two methods are the cross points and the quadtree 
method and are due to Wolfson [Wol96]. Below, we describe the details of each 
approach.

2.2 The Quadtree Method

CHAPTER 2. PROBLEM DESCRIPTION 9

As we mentioned above, since we can plot the objects' trajectories in two- 
dimensional space, the problem of dynamic attribute indexing is transformed 
into a spatial indexing problem. For this, we could draw upon the literature for 
spatial access methods [Sam89] and adapt one access method to our specific 
problem. We have selected the quadtree indexing structure.

The quadtree is treated thoroughly in [Sam84] with several of its variants. 
The idea common to all quadtree variations is the recursive decomposition of 
indexed space. However, we are interested in the so called region quadtree which 
is based on the successive subdivision of space into four equal-sized quadrants. 
This is shown in Figure 2.2. Among the region quadtree variants, we are inter
ested in a special class called PR quadtrees. In the PR quadtree, we recursively 
partition quadrants until we have no more than one data element stored in ev
ery leaf. The main disadvantage of this policy is that if we have two points 
that are very near to each other, we will need to have a very fine partitioning 
of indexed space just for the sake of having those two points fall into differ
ent subquadrants. This results in an unnecessarily deep quadtree directory. 
We note at this point that the quadtree is mainly used as an ili-memory index. 
Samet’s discussion of quadtree variants in [Sam84] draws largely from its use in 
image processing applications. Adaptation of the PR quadtree to handle data 
stored in disk pages yields the so called bucket PR quadtree. In the bucket PR 
quadtree, given a set of N  points we partition the indexed space recursively 
until no more than B points fall in every single subquadrant. We call B the 
bucket size. Typically, B  will be equal to the number of data records that 
fit in a single disk page. Let us then look into the structure of the quadtree 

directory.
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North-West North-East

South-West South-East

'  indexed 
space

li  i, + At  time

F’igure 2.2: Partitioning of the indexed space in the region quadtree.
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Figure 2.3: Record structure of the quadtree node.

Like a binary tree, a node in the quadtree directory has to embody enough 
information to direct the search for data to the appropriate lower subtrees. In 
other words, it has to ensure proper branching. It also has to have pointers 
to its four subtrees. This is the minimum information that we have to include 
in the record definition for quadtree nodes. For the information that guides 
searches, we choose to include the boundaries of the subquadrants of space 
that is being indexed by the tree rooted at the current node. The coordinates 

(Nmin^ymin) and (Xmax^ymax) of the lower left and upper right corners (re
spectively) of the indexed quadrant are enough. We then need four pointers 
to the south-west, north-west, north-east, and south-east children of the node. 
These will take the value NULL if the node is a leaf node. The complete record 
structure of a quadtree node is shown in Figure 2.3. The Parent field points 
to the parent node and takes the value NULL for the case of the root. The 
Size field counts the number of index elements in the data page pointed to by 
a leaf node. It is needed to detect bucket overflow and underflow and is not 
used for internal nodes. The Type field differentiates between leaf and internal 
nodes for the search, insertion, and deletion operations. Finally, the disk page 
field is a pointer to the page on the disk which contains the data points falling
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in the subquadrant indexed by the current node. This field is also active only 
in leaf nodes and is not used by internal nodes. We then look at how we adapt 
the bucket PR quadtree to our application.

The idea is the following. We start with an empty data page that is supposed 
to contain index elements from the whole data space. Every trajectory is known 
to cross the initial quadrant since it encompasses the whole data space. Because 
of this, we insert the first B trajectories’ associated data with no problem. 
The index elements consist of the object ID together with the intercept b 
and slope a of its trajectory’s equation f ( t )  =  at + b. A bucket split will 
occur at the B +  1®‘ insertion; it is executed as follows. We take the (a, b) 
pair of each object in the bucket and use it in conjunction with the bucket 
boundaries Xmin·, ymin·, Xmaxi Pmor to find out which of the four subquadrants 
the trajectory crosses. We then insert the corresponding < ID,a,b >  record 
in every crossed subquadrant (there can be at most three out of four). An 
example of this is shown in Figures 2.4 and 2.5. A bucket split requires that 
we allocate four new disk pages, one for each subquadrant. Upon completion 
of bucket split computations, the father data page is disposed of. The leaf 
quadtree node that was pointing to it must itself allocate memory for four leaf 
nodes which will point to the four newly allocated disk pages. It thus becomes 
an internal node. Furthermore, the boundaries of the four subquadrants have to 
be computed from the boundaries of the father quadrant. In our application, 
the quadtree directory consisting of the search nodes will reside in memory 
whereas data pages are on the disk.

Once the application is running and the tree has been constructed, we would 
execute a search for an object or trajectory in the following manner. The linear 
motion equation f { t )  =  ai +  6 is our search key and the ID of the search object 
is used once we reach the relevant data pages. Starting at the root of the 
quadtree, we use the (a, 6) pair and the boundary fields Xmin,ymin, Xmax and 
Xmax found in the root to decide ‘which ways to go’; that is, which subquadrants 
are crossed by the sought object. We then descend the next level and repeat 
the same thing until we reach the relevant leaves at which point we use the disk 
page pointer field to bring the relevant data pages into the buffer (if they are 
not there). The difference between the quadtree and the binary tree searches
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Figure 2.4: An object’s tra
jectory crossing the north-east 
subquadrant of a larger quad
rant.

Figure 2.5: Upon overflow, 
the father quadrant itself splits 
into four subquadrants and the 
object generates three copies 
in the south-west, north-west, 
and north-east subquadrants.

is that in the binary tree we branch only one way while in our application 
of the quadtree we can have up to three ways to branch from a single index 
node. The search procedure as described is the basis of insertion, deletion, and 
update operations. Traversal of the quadtree to answer range queries is done in 
an analogous manner except that the search key consists of the boundaries of 
the range and we check for overlap between the range and the quadrant at each 
node reached. The study of performance of the quadtree method is presented 
in Chapter 4.

2.3 The Cross Points Method

The idea of the cross points method is illustrated in Figure 2.6. for a simple 
system with only three objects. A cross point is the name given to the inter
section between two trajectories. Given the plotted trajectories, we record all 
the intersections between all the pairs of objects (or only those which will take 
place in the ‘near’ future). .An intersection or a cross point is defined by the 
time tcp  at which it takes place and the IDs of the two objects participat
ing in it. Now, since at any point in time i,· each object heis a fixed value on 
the attribute dimension computable from its associated linear function of time.
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B e fo r e  t , : a j  < 3 2 < a j  

B e t w e e n  ti and t 2 - a j < a ,  < ^ 2  

A f t e r  i  2 : a j < a j  < *»2

Figure 2.6: The basic idea of the cross points method: between intersection 
events, the order is fixed.

there is a unique ordering 0(i,·) = <  a ,i ,. . . ,  a,w > of the attribute values of the 
objects in the system. The key observation upon which the method is based is 
that between any two cross point events, the ordering of the objects’ attribute 
values does not change. More formally, if tcpi and tcp 2 are the times at which 
the first and second intersection events took place, then Vi G [tcp ■ ■ ■tcp2 ) we 
have 0{t)  =  0{tcp i)· It then suffices to store this order in any unidimensional 
index or data structure and maintain it whenever an intersection event takes 
place by simply flipping the order of the two objects which intersected. Be
tween cross point events, we are able to answer any instantaneous range queries 
about the present by executing a range search over the indexing structure and 
retrieving the IDs of all the objects found in the range. A few observations are 
in order.

It is immediately clear that for N  objects we have to store N  data elements 
or records. In other words, no duplication of any kind is necessary. Moreover, 
w'e also have to store information about all the cross point events that will 
take place in the future. To do this, we compute the forthcoming intersection 
events periodically. Denote the period by AT. More precisely, at time point t, 
we compute all the cross points which occur in the future time slice [i,·. . .  i, 
AT].  For this reason, we call A T  the lookahead interval. Another important 
observation is that we have to store the cross points in sorted order according 
to their occurrence in time. We finally state that the cross points method does 
not support continuous queries. The problem of adapting it to do so is left as a 
future work. We have chosen the binary tree as the data structure for storing
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the sorted attribute order of the N  objects in the system. Besides, we store 
the set of forthcoming intersection events in a linked list with the earliest cross 
point at the head of the list. The study of performance of the cross points 
method is presented in Chapter 5.



Chapter 3

BACKGROUND AND 
RELATED WORK

In this chapter, we provide an overview of the relevant research literature and 
introduce the necessary background for the corning chapters. In Section 3.1, 
we talk about the inde.xing problem in general. Section 3.2 introduces the par
ticular field of spatial indexing. Section 3.3 talks about access methods that 
involve the time dimension. In Section 3.4, we talk about performance evalu
ation studies and introduce major performance criteria for assessing indexing 
techniques. In Section 3.5, we introduce the field of mobile data management. 
Finally, we include a brief mention of the field of computational geometry in 
Section 3.6.

3.1 Indexing in General

Indexing is at the heart of the field of database management. Whenever there 
is a repository of data, there immediately arises the problem of accessing it 
efficiently which is the indexing problem stated in its most general form. Over 
the past decades, the research community has continuously been challenged 
by new forms of the indexing problem. Factors accounting for this renewal 
include the advent of new hardware, new disk technologies, the prospects of

15
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exploiting concurrency or parallelism, and above all new kinds of data and more 
challenging database sizes. These factors stimulated researchers to design new 
access methods and improvements or variants of existing ones. The purpose 
of this section is to report on prior work on indexing that is most relevant to 
our research or that helped us in indirect ways to improve our understanding 
of the indexing problem.

The ubiquitous 5-tree [Com79] (and its even more ubiquitous variant the 
5"''-tree) is the father of many of today’s popular access methods. It is the 
successful secondary storage indexing solution for single attribute data over 
an ordered attribute space. We assume the reader is familiar with its basic 
principles. We just remind here that the 5"*"-tree stores all data records at the 
leaf nodes and uses the non-leaf nodes (index nodes) only as a search directory. 
The 5-tree on the other hand, uses the nodes as both a data repository and an 
indexing directory. The typically large fanout of 5-trees has the consequence 
that the height of the 5-tree index rarely exceeds two [Sal88]. Given that 
the root is always stored in main memory, most insertions, deletions, and 
exact match queries require no more than four disk accesses [SL91]. 5-trees 
continue to be studied until recently though from different perspectives. An 
e.xample is the field of concurrency control where special techniques were needed 
to ‘ prevent indices from becoming concurrency bottlenecks’ [SC91]. 5-tree 
concurrency control algorithms were experimentally evaluated in [SC91] where 
more than a dozen such algorithms are cited. In [SL91], an attempt is made 
to parallelize 5-trees by storing a single 5-tree on multiple disks. Among 
the techniques proposed are record distribution that relies on partitioning the 
key space, page distribution, and the use of large pages where each page is 
fragmented and its fragments are stored on multiple disks.

Underlying 5 ‘*’-trees is a general philosophy of indexing captured in hornet’s 
notion of Grow and Post Index Trees (GP-trees) which describe a class of 
methods. The main characteristics are given in the following excerpt taken 

from [Lom91].

GP-trees have nodes that map to disk blocks and possess a growth 
paradigm in which adding data in a key range leads eventually to
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growth in the space used locally to hold it, together with the posting 
of a new index term or terms for the growing space to parent nodes.

According to Lomet, ‘ 5-trees represent both the genesis and the archetype of 
the class of GP methods’ [Lorn91]. The paper provides an interesting insight 
and many useful remarks on access methods in general and guidelines on adapt
ing GP-tree like indices to spatial data. Remember that growth of 5 ''‘ -trees 
occurs by splitting a full node into two reducing the local storage utilization 
from 100% to 50%. This results in an average space utilization of about 69% 
[Sal94]. In [Lom87] and [Lom88], a new technique called partial expansion is 
used that improves utilization to 83%. In this technique, two node sizes are 
used, a small and a large one. When a small node overflows, instead of doubling 
space locally through splitting its data into two small nodes, the small-sized 
node is replaced by the large-sized one (which obviously is less than double 
the size of small nodes). When the large node in turn overflows, it is replaced 
by two small nodes. This way, growth is more smooth since doubling of local 
space occurs over two steps. The papers include a thorough analysis of the 
technique considering also its more generalized version where doubling occurs 
over an arbitrary (finite) number of steps. The same problem of improving 
bucket utilization is explored in [Hen96] in the context of spatial data and for 
A'-d tree based access methods. The heuristic used is essentially the same: ‘ In 
order to improve the bucket utilization, bucket splits have to be avoided when
ever possible’ [Hen96]. The idea is to perform local redistributions of objects 
over adjacent buckets, provided this does not increase the imbalance of the 
indexing structure. From this more or less general exposition· on indexing we 
move to the more specialized field of spatial data indexing.

3.2 Spatial Indexing

Spatial data is simply n-dimensional data defined over the n-dimensional Eu
clidean space. It ranges from a set of points in 2-dimensional space (which is 
the focus of our specific research problem) to a set of points in n-dimensional 
space (n > 2) where we have the problem of multiattribute indexing. In both
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cases, we have points which are objects of zero size. Alternatively, we may 
have objects of non-zero size which range from a collection of (2-dimensional) 
rectangles to hyperrectangles and hypervolumes in n-dimensional space. The 
5+-tree, being essentially for single attribute indexing or unidimensional data, 
is not suitable for solving the spatial indexing problem. A classical source 
on spatial data structures is [Sam89j. Samet’s treatment of the subject is di
vided into point data, curvilinear data, volume data, and data that consist of 
a collection of small rectangles (a typical VLSI application). The emphasis 
is on hierarchical methods that rely on a recursive decomposition of the in
dexed space into disjoint subspaces. [GB90] identifies four major application 
domains of spatial data management. These are mechanical CAD (described 
as ‘the application with the most demanding geometrical requirements’ ) and 
constructive solid geometry, VLSI CAD, vision systems (in robotics and man
ufacturing), and geographic and cartographic applications (which are most 
relevant to our problem). These have given rise to novel access methods which 
themselves stimulated many improvements yielding several variants. Let us 
then mention some notable spatial indexing techniques.

One of the most popular spatial indices is the i?-tree [Cut84j. It associates 
with each object its minimal bounding rectangle (MBR)

([gq, ¿o], [oi, · · · [a n -i , ^ n -l])

where [a,, 6,] denotes the extent of the object along the î  ̂ dimension. The in
dexed space is also represented by similar n-dimensional hyperrectangles and 
the index structure is similar to that of the 5-tree. Each index node is an 
array of entries wherein each entry contains the n boundaries of a hyperrect
angle and a pointer to the node encompassing all objects whose MBRs are 
contained in that hyperrectangle. A peculiar feature of the i?-tree is that the 
indexing hyperrectangles may overlap. This means that the indexed space is 
not divided into disjoint subspaces. The consequence of this on the search 
operation is that ‘more than one subtree under a node visited may need to 
be searched’ [Cut84]. This is because an object’s bounding rectangle may be 
situated inside two or more covering (and overlapping) hyperrectangles. An 
example of this for the two dimensional case is depicted in Figures 3.1 and 3.2. 
Furthermore, insertions and splits require some reorganizations and make use
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Hi H2

index node

Figure 3.1: Overlapping hy
perrectangles in 7?-tree repre
sentation of the indexed space.

Pi Pz

Figure 3.2: Both pointers Pi 
and P-2 will have to be fol
lowed when searching for ob
ject o bounded by MBR.

of a heuristic optimization which consists of trying to minimize the area of the 
hyperrectangles that encompass objects MBRs.

Several variants of the i?-tree have been proposed in the literature. Among 
them, we count the Ä^-tree [SRF87] and the R*-tree [BKSS90]. In the latter, 
Beckmann et al. question the choice of the heuristic that minimizes the area of 
hyperrectangles and propose to minimize the overlap between them, the overall 
storage utilization, and the margin^ of hyperrectangles. A more recent proposal 
is the Â’-tree [BKK96] which starts from the observation that i?-tree like in
dex structures ‘are not adequate for indexing high-dimensional data sets.’ An 
emphasis is again put on minimizing the overlap between the index’s bounding 
boxes, and the so called supernodes are used to mitigate the effects of high over
lap which quickly becomes a dominant phenomenon at higher dimensionality. 
Another recent i?-tree based index is the 5'5'-tree [WJ96] whidh uses ellipsoid 
bounding regions.

Other spatial access methods include the filter tree of Sevcik and Koudas 
[SK96]. It is based on the principle of separating the objects by size, placing 
larger objects at higher levels of the tree and smaller ones at the bottom levels. 
It yields good performance for range queries and spatial joins. A spatial index 
that departs slightly from the i2-tree is the cell tree of Giinther and Bilmes 
[GB91]. It solves the same problem of indexing multidimensional objects of

'T h e margin is the sum of the lengths of the edges of a rectangle [BKSS90].
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non-zero size but does not use bounding rectangles. Instead, it uses clipping 
and represents objects as unions of convex cells called convex chains. Cell 
trees are height-balanced and have the same structure as i?-trees except that 
hyperrectangles in index nodes are replaced by convex polyhedra.

All the above methods are for objects of non-zero size in n-dimensional 
space. Another version of the spatial indexing problem alluded to earlier is 
multiattribute indexing where objects are simply points in n-dimensional space. 
An example of such access methods is Lomet and Salzberg’s hB-tree or holey 
brick B-tree [LS90a]. It is also similar in spirit to the B -iiee but its indexed 
regions may have holes or are ‘bricks with perhaps smaller bricks removed from 
them’ . The list of spatial access methods is definitely long. We should mainly 
retain that we are indexing a two-dimensional space where time is one of the 
dimensions. For this reason, both spatial indexing structures and indexes where 
the time dimension is involved might prove useful in our research.

3.3 The Time Dimension

Since we are indexing data that changes dynamically over time, the notion of 
time is crucial when approaching our problem. A brief digression on access 
methods which involve time is in place.

Relevant areas include mainly temporal and multiversion access methods. 
A prominent temporal index is the time index [EWK90]. Data records have 
interval attributes of the form recording the start and ending of the
record’s valid time. Since there is a total order on the values of and tg in the 
system, they could be used for indexing. Quoting Elmasri et al. [EWK90] ‘ the 
idea behind our time index is to maintain a set of linearly ordered indexing 
points on the time dimension’. In fact, they use the points and te + 1 
in conjunction with a simple 5-t—tree. An append only policy is adopted 
where no deletions are allowed so that the database size can potentially grow 
without bounds. To remedy this, Elmasri et al. assume the existence of a purge 
mechanism which cuts off data pages that are old enough or transfers them to 
archival storage. The time index is important to us mainly because we suspect
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that it might somehow be adapted to solve our problem. In fact, an interesting 
research problem is whether we could map our problem of indexing dynamic 
attributes to the temporal indexing domain, .\nother question is whether we 
could have in our solution a way to purge ‘old’ data. This would relieve us of 
the need to destroy and rebuild our index periodically.

The latter property is more pronounced in the so called time-split B-tree or 
T^^-tree of Lomet and Salzberg [LS89]. It is an access method for multi version 
data that also follows a non-delete policy and ’migrates data incrementally from 
a magnetic disk to an optical disk’ . In the TSB-tree nodes, both timestamps 
and keys are used for indexing. When data nodes overflow, they could be 
split either on the key or timestamp (hence time) attributes. Splits based on 
timestamps are called time splits and are the mechanism for purging historical 
data ‘one node at a time’ [LS89]. Our interest in the TSB-tree comes from 
its smooth progress along the time dimension as newer timestamps dominate 
the tree and older data are moved to optical (write-once) disks where they 
become historical data. Although the methods we study in this thesis for 
dynamic attribute indexing do not have such a feature, we would still like to 
find one that supports it. In [LS90b], an analytic and experimental study of 
the TSB-tree's performance is provided.

We remark that many multiversion access structures are based on the 
tree. This is mainly because a partial order could easily be imposed on times
tamps or valid times. Lanka and Mays [LM91] propose what they call a fully 
persistent B'^-tree for multiversion data where they use a graph for storing the 
information on the partial order formed by versions. In [BGO'^93], a technique 
is presented for transforming a normal (single version) B-tree into a multiver
sion 5-tree. The authors claim that the technique is general and could apply 
to a number of spatial and non-spatial hierarchical external access structures. 
Furthermore, the resulting multiversion 5-tree is proved to be asymptotically 
optimal in the worst case in time and space for several operations and queries.
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3.4 Performance Studies

A performance study, whether analytic or experimental, is an integral part of 
any work on access methods. Moreover, comparative studies are more impor
tant once a multitude of indexing techniques have been proposed as solutions to 
the same problem. Zobel et al. [ZMR96] list ‘ four principal ways of comparing 
algorithms such as indexing techniques’ which are direct argument, mathe
matical modeling, simulation, and experiment. Our work is largely based on 
simulation experiments. However, where experiments are missing we resort to 
argumentation and also make modest attempts at providing a mathematical 
analysis whenever it illuminates better and improves understanding.

Our interest in performance studies is three-fold. First, we would like to 
have an idea about the real values used in the literature for some hardware 
parameters such as typical disk page sizes, buffer sizes, or disk access times. 
Let us take the example of page size for which we adopt the value of 4 Kilobytes. 
This is a standard value which we found in most experimental studies [Sal94, 
Lom91, SL91, BKK96, BKS96]. In [Sal94], Salzberg states the following: ‘ in 
1994, minimum size pages are usually 4K’. In [GB91], Giinther and Bilmes 
base their experiments on page sizes of 512 bytes, 1024 bytes, and 2048 bytes; 
this is the only exception we found. Another example parameter is the time 
it takes to access or fetch a disk page. We use minimum and maximum values 
of 10 msec and 30 msec respectively. Again, Salzberg [Sal94] states that ‘each 
fetch of a page takes about 10 msec on average on the fastest disk drives’. We 
ciuote a more accurate characterization of disk access cost from [BKS96].

... In the following, we assume an average seek time of 9 msec, an 
average latency time of 6 msec, and a transfer time for one' page (i.e. 
for 4 KB) of 1 msec. These parameters are typical valiies for current 
disks and result in 16 msec for reading a page.

The second reason why we are interested in surveying performance studies is 
to have an idea about the comparative behavior of the important and popular 
access methods in the literature. We have to say however that studies com
paring more than two methods are rare. A notable example of such a study is
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the comparative performance evaluation of spatial access methods conducted 
by Greene [Gre89]. Four indexing schemes were implemented which are the R- 
tree, /?'''-tree, K-D-B-tree, and 2Z)-ISAM. The paper concludes that the i?-tree 
‘provides the best tradeoff between performance and implementation complex
ity’ . The study is based on real implementation within the POSTGRES system 
which makes it more reliable. Another work dedicated to the comparison of 
several access methods is [KSSS89]. The paper contains two separate parts, 
one for point access methods (objects of zero size) and one for spatial access 
methods. In sum, eight indexing structures were implemented and evaluated. 
The paper also departs from the uniformly distributed data assumption (so 
prevalent in the literature) and uses skewed data trying several probability 
distributions beside real data.

Finally, the third reason behind our interest in performance studies is to 
survey the major performance parameters. In simpler words, we want to see 
what it takes to be a good access method. Among the parameters one has to 
keep an eye on when designing, analyzing or assessing an access method we 
list the following:

1. Disk storage requirements of the resulting indexed data.

2. Primary and secondary (if index nodes may reside on the disk) memory 
requirements of the indexing nodes (or index’s directory).

3. The ratio of directory pages to data pages.

4. The height of the index.

5. The time needed to construct the index (especially if it heis to be recon
structed periodically).

6. The auxiliary temporary memory needed to construct the index.

7. The disk access cost of insertions, deletions, and updates.

8. Point and range search costs (in terms of number of disk accesses).

9. Average memory/storage utilization (a figure of 70% is considered accept

able) [Sal94].
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10. The cost of any auxiliary maintenance operations necessary for the proper 
functioning of the index.

11. Performance under non-uniform (even ugly) data distributions.

12. Scalability to larger database sizes.

13. Existence of opportunities to exploit parallelism and concurrency on both 
the index nodes (or directory) and data nodes.

14. Ease of implementation and simplicity of associated algorithms.

However, we do not expect any single access method to score positively on 
all these criteria. As Zobel et al. note ‘no indexing scheme is all powerful’ 
[ZMR96].

3.5 Mobile Data Management

The field of mobile data management represents the larger context into which 
our research problem fits. Recent technological developments that made portable 
computers more powerful and cheap started up the new field of mobile comput
ing. The advent of palmtop computers capable of running a number of popular 
applications led to the speculation that such devices will be ubiquitous in the 
near future. Indeed, Dunham and Helal [DH95] use the year 2005 in a fictitious 
example comparing a transaction in the present with its counterpart ‘ in the 
mobile world of 2005.’ On the power of recent laptop computers, Alonso and 
Korth [AK93] remark that “laptops have become capacious enough to hold 
databases that would have been called ‘very large’ not too long ago, and fast 
enough to support complex database operations” . Mobility has thus stirred up 
the research community to deal with new challenging problems.

VVe might safely say that both mobile computing and mobile data manage
ment have just been born as research fields. Satyanarayanan, in a 1996 paper 
entitled ‘F'undamental Challenges in Mobile Computing’ [Sat96] attempts to 
answer the question ‘what is unique and conceptually different about mobile 
computing?’ and provides ‘ fertile topics for exploration’ . This shows that the
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field of mobile computing is still trying to define its problems. As for the 
field of mobile data management, it recently witnessed a series of papers all of 
which attempting to answer basically the same question, namely, what new re
search problems does mobility bring about into the field of data management? 
[IB93b, IB93a, IB94, DH95, AK93]. A cursory survey of activity in the field 
leads us to suggest that the year 1993 is the ‘birth date’ of mobile data man
agement. There has been very faint activity (to the best of our knowledge) in 
1992 (but see [IB92]). In this latter paper, Imielinski and Badrinath forward 
the following remark in their section on future work: ‘ ... the research work 
described in this paper is to our knowledge, one of the few efforts that is ad
dressing issues of information access in a mobile distributed environment’. In 
a 1993 paper [Wol93], VVolfson describes a new project in which the problem of 
efficiently allocating and deallocating copies of data items residing in databases 
to mobile computers is investigated.

In general, major areas of impact of mobility include query processing, 
transaction processing, location management, replication management, han
dling disconnection, coping with scale, and security. There is ongoing research 
and preliminary solutions have been proposed in most of these areas. How
ever, we will not attempt to present them here. [OU97] explores the impact of 
mobility on real-time mobile data management.

Finally, we mention a narrower field which fits more as a context for our 
work; this is the area of vehicle navigation systems [Ege93]. It seems to combine 
all of the fields mentioned above so that we need spatial, mobile, and real-time 
data management. It is directly related to our research problem as we are 
basically indexing data that is rapidly changing over time. A relevant work in 
this area is that of Shekhar and Yang [SY91] where indexing is also considered 
in the context of intelligent vehicle navigation systems. Their index is called 
MoBiLe file and maps the two-dimensional space of motion to the disk tracks 
and sectors while attempting to preserve proximity relationships. This map 
requires a mapping function and knowledge about the population distribution, 
an ob ject’s geographical location is then used as the primary key to locate the 
disk block where it resides. However, since they do not make use of a motion 
equation, the nature of their work is different from ours.
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3.6 Computational Geometry

Another related area is the field of computational geometry [PS85]. The dy
namic range search is the field that is most relevant to our work [Mul94]. 
However, the methods of computational geometers have mostly been theoreti
cal putting an emphasis on asymptotic analysis rather than more fine-grained 
analyses required by a practitioner interested in real performance issues. More
over, the data set is always assumed to be in memory and secondary storage 
issues are not considered. A more detailed exposition of these views appears 
in [Tarn96]. The authors conclude the paper with recommendations for the 
computational geometry community to provide practical tools and techniques 
together with its contributions to the understanding and solving of basic ge
ometric problems. Among the data structures developed in computational 
geometry we mention the range tree and the segment tree [PS85]. In general, 
these data structures and the algorithms developed as solutions for the dynamic 
range search problem might prove useful in our research. We feel however that 
some effort is needed to bridge the gap between the wealth of theoretical results 
o f computational geometers and our concerns about the design of a secondary 
storage indexing structure. As such, a future research question is whether we 
could transform our dynamic attribute indexing problem into a more abstract 
version for which ingenious solutions already exist in computational geometry. 
The literature of the field should at least serve as a source of inspiration.



Chapter 4

THE QUADTREE METHOD

This chapter provides detailed experimental and analytic studies about the 
quadtree approach to dynamic attribute indexing. We start by describing 
the general simulation model common to both the quadtree and cross points 
approaches in Section 4.1. We then study the data structures and programs 
specific to the quadtree simulation experiments in Section 4.2. In Section 4.3, 
we review the storage requirements of the quadtree based index and present 
the relevent experimental results. In Section 4.4, we provide a mathematical 
analysis of the average percentage space utilization of the quadtree in the 
context of our specific application. In Section 4.5, we describe the cost involved 
in the regeneration of the index which takes place periodically; this is called 
build cost. We then contribute an important improvement over the naive 
approach to index reconstruction; this is an optimal algorithm described in 
detail in Section 4.6. Finally, we mention query processing performance of the 
method in Section 4.7.

4.1 The Simulation Model

The general model is roughly common to both the quadtree and cross points 
approaches and consists of a few parameters intrinsic to the performance study 
plus a set of workload parameters. The former set of parameters include A ,

27
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the number of objects in the system which serves to test the scalability of each 
method and the maximum number of objects it can handle within reasonable 
performance constraints. Given Л', we generate randomly the corresponding N 
linear equations describing the way attributes change over time. This is done 
by generating the intercepts b randomly and uniformly distributed over the 
attribute space [АтЫ ■ ■ · Атах]· VVe then generate the values of the slopes a in 
the range determined by how fast we would like our objects’ attribute values 
to change (on the average). They also include AT, a period of time which 
we call quadtree regeneration period in the quadtree method and the lookahead 
interval in the cross points method. In the former method, the quadtree is 
destroyed and rebuilt every A T  time units so that its rebuilding at time tnow 
means that it will be used to index objects only until time t̂ ow +  AT. In the 
cross-points method, the set of cross points that may be stored is limited by 
space constraints and hence only intersections that fall in the time interval 
[tnow · · · tnow +  AT] are computed at time tnow·

The average speed of the objects moving in the system is also important; let 
this be denoted by v. Of more value however is how big is v compared to the 
total indexed distance which we denote by ДЛ. We capture this observation 
in a model parameter which we call speed ratio defined as follows.

D efin ition  2 The speed ratio a of a system is the ratio of the average speed 
o f objects divided by the total length of the indexed unidimensional space. It 
can also be expressed as the fraction of distance an object moves in a single 
time unit relative to the total distance. The formula is:

a =
A A

This parameter is an intrinsic property of the system of objects and for this 
matter we will even assume it given. Conceptually, a is an indication of the 
dynamism of our system; the higher it is the more agitated the objects are 
while the lower it is the more sluggish the overall system becomes.

To evaluate query processing performance, we use the range size of queries 
as a parameter since we are mainly interested in range searches. Here too, it 
is the relative value of the range with respect to A A  that is significant rather
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than its absolute range length (which we shall denote by AR). The number 
of pages in the buffer BE {buffer size) is also an important factor when disk 
access comes into play. Note that data are disk-resident only in the quadtree 
approach while in the cross-points method, both the binary tree and its asso
ciated set of intersections are memory-resident. Finally, there is the so-called 
merge threshold used only in the quadtree approach. It is needed in its delete 
function where we have to check whether the number of elements in the four 
sibling leaf nodes has fallen below a certain value to justify merging them into 
one leaf node (which shrinks four disk pages into one). The merge threshold 
is the name given to this value. In fact, we used one single threshold value 
throughout the simulations that was determined to be optimal by experimen
tation.

The second set of parameters is related to workload and query processing. 
The former consists of the number of insertion, deletion, and update requests 
expected every A T time units. These result in changes in the contents of the 
inde.xing structure and are characteristic of the nature of both the application 
domain and the (resultant) indexing problem to be solved. The main query 
processing parameters are the number of instantaneous and continuous queries 
every A T  time units. Note that a continuous query arriving at some time 
point in the interval [f,·. . .  i, -|- AT] should also be considered at later intervals 
[tj .. .t j +  AT] {tj =  ti A nAT  for some n > 0) until explicitly cancelled. The 
parameters we have described are summarized in Table 4.1. Next, we describe 
the simulation programs.

4.2 Programs and Data Structures

Since we study two techniques, we have two main driver programs for our 
simulation, one for the quadtree approach and the second for the cross points 
approach implemented using a binary tree. Besides, we isolate all the code 
necessary for generating workload into a separate file and all the functions 
responsible for buffer management into yet another file making up for roughly 
four distinguishable program components. The programs were written in C 
(approximately 3000 lines of code). The experiments were run on Sun Sparc
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N Number of objects in the system
AT Regeneration or looka-head period
a Speed ratio
AR Range size of queries
BE Buffer size
NIQ Number of instantaneous queries every A T
NCQ Number of continuous queries every A T
IN S Number of insert requests every AT
DEL Number of delete requests every AT
UPD Number of update requests every AT

Table 4.1: Simulation model parameters.

workstations running the Solaris operating system. In this section, we describe 
cjuadtree-related data structures. Description of data structures for the cross 
points method is given in the next chapter dedicated to it. VVe use the notation 
R = <  Fieldi, . . . ,  Fieldn >  for record structures.

First we describe page-related data structures. In the quadtree approach, 
we model the disk as an array of pages and represent pages as a collection 
(again array) of objects plus a field indicating the number of elements in the 
page. Using symbols, we write D = <  p i , . . .  ,pyvo > to denote that a disk D 
is a vector of No pages, where each page p,· = <  N ,E i  > is a record with a 
number of elements field iV, and the elements themselves T, = <  c i , . . . ,  >
stored in an array (or vector). Similarly, B F  = <  Pi , . . . ,P bf >  means that 
our buffer is modeled as a vector of B F  buffer pages each having the same 
record structure as a disk page. In our experiments, Np was fixed to the 
maximum that we expect will be needed and is also limited by the machine’s 
main memory capacity while B F  is the model parameter described above.

We manage the buffer using the Least Recently Used (LRU) page replace
ment policy. For this we have a buffer manager data structure B M  =  < psi, . . . ,  pssF > 
where ps,· = <  dpi,lrui >  records the page status of the page of the buffer.
This page status is composed of the number of the disk page currently residing 
in BF[i] and the LRU stamp /rtq with which it was brought into the buffer.
The LRU policy is naively implemented using a global counter incremented 
each time a new page is fetched from the disk and brought into the buffer.
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then its value is assigned to lru{ if the page is assigned to BF[i], The main 
functions implemented in our buffer manager program include functions that 
transfer a page from disk to buffer (page fetch) and from buffer to disk (page 
flush) besides a set of functions for freeing a given number of buffer pages 
(at most 4 in our application) given the constraint that one or more desig
nated pages must remain there (even if their LRU order has come). The latter 
are needed in insertion and deletion functions of the quadtree. Next, we see 
in-memory data structures.

The simplest such structure is the object. The record is 0  = <  ID ,a ,b  > 
where ID  is the object ID and a and b are the slope and intercept (respectively) 
of the object's trajectory described by the linear function f [ t )  — at-\-b. Objects 
are the elements Cj mentioned above that occupy disk (or buffer) pages. The 
major data structure in the quadtree approach is the quadnode upon which 
the quadtree implementation is based. A quadnode record QN  was described 
earlier and is defined as follows:

QN = <  Xmin,Ymin, Nmax,ymax, Nq!̂ ·, Type, PN, SW, NW, NE, SE, Par >

The fields Xmin·, ymin·, Nmax·, and Ymax define the boundaries of the rectangular 
space being indexed by the quadtree rooted at QN. Field Nqm stores the 
number of index points indexed by the quadtree rooted at QN. The Type 
field designates the type of the node which can be leaf [Type =  0), next-to-leaf 
{Type =  1), or internal {Type =  2). Differentiation between leaf and next-to- 
leaf is crucial to all search, insert, update, and delete operations while the need 
to distinguish between next-to-leaf and internal nodes arises in the context of 
delete and merge operations. Field PN  stands for page number and is ‘active’ 
when Q N  is a leaf node in which case it gives the number of the disk page 
containing the actual indexed elements. When QN  is not a leaf node, the field 
P N  is simply not used. The SW, N W , N E , and SE  fields are pointers to 
the four subquadrants of QN  which are respectively the south-west, north
west, north-east, and south-east subquadrants. These fields take the NULL 
value when Q N  is a leaf node and point to actual quadnode records otherwise. 
Finally, Par is also a pointer that points to the parent node of QN  and is 

required by the deletion and merge functions.
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4.3 Storage Requirements

The main parameters we are interested to measure before looking into query 
processing performance are the number of disk accesses required to build the 
quadtree every A T  time units (henceforth denoted by TU) and the storage 
requirements of the tree. Figures 4.1 and 4.2 show disk consumption as a 
function of the number of objects N  being indexed (also called system size). 
Note that both graphs have the same pattern in which the number of disk

1 100--- ---
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Figure 4.1: Disk consump
tion for small system sizes.
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Figure 4.2: Disk consump
tion for large system sizes.

pages remains fixed for a while then increases rapidly over a small interval of 
objects count N  until it reaches some new plateau at which it remains fixed for 
an even longer interval of N. The notion or pattern of plateau is so prevalent 
in other experiments and almost intrinsic to the nature of our application that 
it deserves a precise definition so that we can make frequent use of the term 
later.

D efin ition  3 A plateau is an interval [N,·. . .  iV,+£,) in the number o f objects 
over which the resulting quadtree requires exactly the same number o f disk pages. 

We say L is the plateau length.

If L is very small, we will not really have a ‘plateau’ in the graph and the 
definition would thus not be very faithful to the term selected. However, for 
the moment let us assume that L is usually relatively big and we shall later go 
deeper into the anatomy of plateaus in our specific application. To continue
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Figure 4.3: The trajectory spends the whole session in 
the same attribute interval [a j. . .  hence causing ob
ject copies to be redundantly stored in every time inter
val (of width At in the figure).

the description, we see that plateaus occur at values of 16, 64, 256, 1024, 4096, 
and 16384 disk pages. The last plateau is not reached by the graph and occurs 
at 65552 and is the disk consumption when N  reaches 50000 (e.xperirnents stop 
at yV =  46000). The number of disk pages in a plateau is thus four times that 
of the previous plateau.

The quadtree starts with a single page and every disk page in our application 
has a capacity В =  340 index elements (4096 bytes divided by 12 bytes, the 
size of an object record). When filled, the single page is split into four and 
the В +  I objects are redistributed over the four subquadrants generating N' 
index elements satisfying В < N' < S{B -|- 1) as each trajectory may cross at 
most three subquadrants. The peculiarity of our application lies in the fact 
that almost all splits generate exactly two index elements and these fall either 
in the northern (NW and NE) or the southern (SW and SE) subquadrants.

To explain why this is so, we first define a session to be the time span be
tween two consecutive reconstructions of the quadtree. Thus a session lasts AT  
TUs and we let the session (call it Si) begin at time <,· =  iA T . Note also 
that the time span of a subquadrant in our quadtree is halved upon splitting 
which also divides the attribute interval indexed into two. When the number 
of objects is relatively large our original two-dimensional space becomes very 
finely partitioned so that the time interval indexed by any single leaf subquad
rant becomes too short for most objects to ‘cross’ the attribute boundary. This 
is especially so when the speed ratio a of the system is low.
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Figure 4.3 reveals the redundancy (though in an exaggerated fashion). As
sume that for a given session S{ and a given number of objects N  the at
tribute space is divided into p intervals and the time space into q intervals. 
Figure 4.3 illustrates the situation where an arbitrary object o’s position po 
satisfies aj <  i/o <  a_,+i during the session span [i,·.. .ti +  AT). In other words, 
the trajectory passes through only one single attribute interval (here denoted 
by [oj .. .Cj+i]) over the whole session. Corresponding to this attribute inter
val, object o will have as many copies as there are subintervals of [ti. . .  + A T ),
that is q. The q copies are redundant in the sense that they convey the same 
information and could thus be replaced by one. Figure 4.3 is an extreme case 
and in practice an object may cross two or more attribute intervals in a single 
session. How many such attribute intervals an object is expected to cross in a 
single session depends on the speed ratio a and the granularity of partitioning 
of the indexed space (in other words N). Low values of a and a very fine 
partitioning lead to much redundancy of the type depicted in Figure 4.3. On 
the other hand, a high a and a coarse partition of space reduces redundancy as 
trajectories are more likely to cross many attribute intervals in a single session. 
Let us quantify with more precision the average number of copies of a single 
object.

To state the question in a different way, we would like to count the num
ber of subquadrants a given trajectory crosses in a given partitioned (two- 
dimensional) space. For this, we denote by m the average number of attribute 
intervals (or slices) that a trajectory with a slope v spans in a time interval 
A T . Let us further assume that the attribute space is subdivided into equal
sized intervals each of length 8a. Then using the motion equation f { t )  — vt +  b 
defining the trajectory, we know the object will move a distance vAt along the 
attribute dimension, m can then take one of two values given in the form of 
the following inequality.

- A T  r —  \  T-i
(1)

vAT
< m <

rrA T l
. 8a . ¿a

Remember that m is a natural number and it lakes one of the two consecutive 
values given in inequality 1 depending upon where the object starts and finishes 
inside the attribute slices at the beginning t, and end <,· -f- AT  of the session. 
Once we know m, we need also to fix the number of time slices into which our
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1 2  . . .  n-1 n

Figure 4.4: A line crossing an n x m grid.

session is partitioned; we will denote this by n. .At this point we know that our 
object’s trajectory spans n time slices and m attribute slices. A more abstract 
version of the problem is then the following. Given an n x m grid of squares and 
a line crossing it from the square (1,1) to the square (n,m ), how many squares 
Cn,m does the line pass through? This is depicted in Figure 4.4. Note that in 
any single column (which corresponds to a time slice in our application) the 
trajectory can cross one or two squares depending on whether or not it crosses 
one of the horizontal boundaries of that column. Since there are m — 1 such 
boundaries to be crossed in m squares, and since each such crossing adds an 
extra square, the total number of squares Cn,m crossed is given by the simple 

formula:
Cn,m =  n + m -  1 (2)

Thus when an object moves across m attribute slices in a session partitioned 
into n time slices it will incur n + m — 1 copies. However, this is a maximum 
and we may subtract one for every boundary which the trajectory crosses at a 
corner (the point of intersection of four squares). Generally, we expect this to 
be rare and it will anyway not make a big difference. We remark that n is the 
lower bound for Cn,m and occurs when the trajectory is a perfect diagonal of 
the rectangular grid. We have gone through this analysis to give an idea and 
a feeling of where the high space requirements of the quadtree come from.

Coming back to our specific application, we remark as we said above that 
our objects tend to spend the whole session in a very small number of attribute 
intervals; in other words m is small. This leads to the fact that upon splitting 
very few objects will generate one or three copies while most of them generate 
exactly two copies that reside either in the upper or lower halves of the parent 
quadrant. Even in the case where a trajectory crosses three subquadrants of
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a given parent quadrant, it is likely that it will cross only one subquadrant of 
a nearby quadrant hence averaging to two. The result is that in most cases 
we have a next-to-perfect duplication factor of two in a local split of a data 
bucket. This turns out to have a relation with plateaus which we reexamine at 
this point.

We have earlier stated that the number of disk pages required by the 
quadtree reaches plateaus at the values of 16, 64, 256, 1024, 4096, 163S4, 
and 65552. It is not difficult to see that plateaus occur at values of 4‘ {i >  0). 
The question is then why do we have plateaus or why does the number of disk 
pages stabilize for a while at values of 4'? The reason is that all subquadrants 
tend to fill up at the same rate and reach capacity B  at the same time. This 
leads to a wave of splits across all quadrants of the quadtree that is triggered by 
a relatively small number of newly inserted objects. Furthermore, insertion of 
a single object sometimes triggers splits in all (or a big portion of) quadrants 
that correspond to a single attribute interval (it splits a whole row). After 
these splits are over, it will take quite some time (i.e., many insertions) before 
the new disk pages are filled again. During these insertions, disk pages are 
getting nearer to full capacity but no new disk pages are being required by the 
quadtree. For this reason, we have a plateau shape followed by a sharp rise 
that only ends at the next plateau. The number 4‘ comes from the fact that 
the quadtree starts with one (4°) disk page and every split wave multiplies 
the number of disk pages by four. Notice also that 4' =  2’ x 2‘ so that in 
a plateau of 4‘ , we actually have our original index space partitioned into a 
2‘ X  2' grid of quadrants. The ubiquitousness of this quadtree configuration in 
our application and the alternating pattern of plateaus and splits compel us to 
introduce the following term which we will need later.

D efin ition  4 An ¿‘^-regular quadtree is one which partitions the underlying 
indexed space into a 2' x 2* grid of quadrants. We also say that it is at the 
p lateau.

This leads (among other things) to a prohibitively large number of index points 
illustrated in Figure 4.5 for a system size above 10000. Notice that we reach 
one million index points at = 15000 and as much as 11 million index points
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ments for targe system sizes.

at N — 45000. This huge number of index points requires substantial memory. 
We have translated the number of pages parameter in earlier graphs into the 
corresponding memory requirements in megabytes (4 Kbytes/page) and the 
result is given in Figures 4.6 and 4.7. Here again, vve have the plateau pattern 
with a plateau at 1 Mbyte for the (number of objects) interval [3000... 5000], 
the next at 4 Mbytes for the interval [6000... 9500], the next at 16 Mbytes 
for the interval [12000... 20000], and the plateau at 64 Mbytes for the interval 
[23000 . . .  38000]. We also have a plateau at 256 Mbytes that starts beyond the 
point iV = 50000. We think this space overhead to be impractical especially 
that we may have several attributes. The main reason for this is the redundancy 
or number of copies which becomes higher and higher as the number of objects 
in the system increases. To understand this better, we introduce a measure of 

redundancy.



CHAPTER 4. THE QUADTREE METHOD 38

I ”
1 . 0

r
Figure 4.8: Duplication ratio.

D efin ition  5 The D uplication R atio D o f a quadtree is the average number 
of copies that a single object has in the quadtree:

Number of Index Points
D =

Number of Objects

The duplication ratio is given in Figure 4.8 as a function of N. Again the 
plateau pattern prevails but this time plateaus occur at powers of two (2* : 
i >  0) rather than four so that we also have plateaus at Z) =  8 and Z) =  32 
(not included in the figure). The figure shows a plateau at Z) =  64, then at 
D — 128 (not a power of 4), then at Z) =  256 for N  ss .50000. We observe 
that D corresponds to the number of quadrants on each side of the indexed 
space which we denote by [/!„,·„. . .  [t ,. . .  +  AT]. At plateaus, Z) is a
perfect power of two and is exactly equal to the number of quadrants on every 
side of the original quadrant. In between plateaus (or during split waves), the 
value of D is related to the number of quadrants on the border of the indexed 
quadrant that experienced a split; let us see how.

First call this number m and let ДЛ =  Amax — Л^.п be the length of the 
indexed attribute space. If we are in a split wave between the and г +  P ' 
plateau then 0 <  m <  2‘ so that when the wave ends we have 2’·*·̂  quadrants 
on the space border. When m border quadrants split, they produce 2m border 
quadrants of length ^т^АЛ and we still have 2‘ — m quadrants of length ^А Л . 
The total number of border quadrants at this point (after border split but 
before m +  I·*' one) is thus 2m +  (2’ — m) =  2' +  m. We then conjecture that 
D could be approximated by this value so that if Z),,m denotes the duplication 
ratio after the plateau is over and m border quadrant splits took place then

A.m «  2‘ +  m
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Figure 4.10: Insertion cost.

A simple experiment might prove its validity but we will stop considering this 
topic and retain that the redundancy as captured by the duplication ratio D  is 
responsible for most of the disadvantages of the bucket PR quadtree indexing 
structure in the narrow conte.xt of our application.

Before we close the topic however, we have a final remark on the relation 
between D and the number of disk pages which is given in Figure 4.9. Recall 
that every disk page is pointed to by a leaf node of the quadtree residing in 
memory. Then, the number of disk pages is equal to the number of quadrants 
produced through insertions and splits. This, as the small digression above 
suggests, is roughly equal to the square of the number of border quadrants on 
a single side of the indexed space. Thus disk consumption is the square of D 
which is confirmed by Figure 4.9.

Among the performance parameters affected by the redundancy described 
above is the cost of insertions, deletions, and updates. If an object is duplicated 
q times then it resides in q disk pages and any of the above operations targeting 
it will have to access all those q pages. The same thing applies to the insertion 
of a new object. If in time span A T  its trajectory crosses m attribute slices 
and the current quadtree is ¿‘^-regular then its insertion cost will be 2' +  m — 1 
as analyzed earlier. The average number of disk accesses needed to insert an 
object is given in Figure 4.10 as a function of N. The value of the buffer 
size used was 32. Again we have plateaus at 2‘ . This unfortunately means
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that when our quadtree (by the effect of insertions and splits) passes from 
the plateau to the i +  P ' plateau, the cost of insertion and deletion of an 
object which crosses m attribute slices (in A T  TUs) passes from 2' +  m — 1 
to 2'+^ +  2m — 1 hence effectively doubling. An e.xamination of our graphs 
reveals that in the process N  increases by only about 30%. The deterioration 
of performance is not only dependent on N  but also disproportionate to its 
percentage increase. One more performance variable dramatically affected by 
redundancy is the cost of reconstructing the quadtree which we call build cost. 
Before we look into this problem we prefer to digress for a while on the efficiency 
of memory utilization by our quadtree.

4.4 Percentage Space Utilization

In this section, we are interested in computing and knowing about the space 
efficiency of our quadtree in the context of our particular application. The main 
characterizing features of our application have been mentioned previously and 
include the fact that upon quadrant split each object generates two copies and 
usually resides in the upper or lower half of the split quadrant. We will also 
assume that a trajectory falls in a single attribute interval [oj. ..Oj+i). We 
will attempt a mathematical analysis of utilization in which we seek a formula 
for the average space efficiency of our quadtree. We begin by establishing the 
necessary terminology.

We say that an plateau is full if all the 2‘ x 2* =  2̂ ‘ disk pages are full 
(contain B  index elements). Furthermore, when the first quadrant in a full 
plateau splits we say the plateau breaks and that the split wave begins. 
The split wave ends when the Icist quadrant of the ¿‘^-regular quadtree that 
has not yet split undergoes a split yielding the i +  ^'-regular quadtree and 
initiating the i +  plateau. Let P,· denote the number of index elements 
at the î  ̂ full plateau; then P,· =  2^*P where P  is as usual, the bucket size. 
Let denote the number of index elements immediately after the split 
wave ends. We will perform our analysis based on a scenario of a shortest split 
wave, that is one which ends with the minimum number of insertions. This 
wave is as follows. We start with a full i'* plateau containing 2̂ ' quadrants
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and 2‘ attribute intervals. As such, and based on our assumption of a single 
trajectory falling in a single attribute interval [a_,. . .  Uj+i], we need exactly 2‘ 
insertions to begin and end the split wave. Each such insertion causes 2* 
splits along the time axis which transforms a 1 x 2‘ row into a 2 x 2'+  ̂ grid. All 
these assumptions are inspired by the real behavior of splits and trajectories 
in our application and a different split speed may not affect the average space 
efficiency which we are seeking to compute. Let P {N ) be equal to the number 
of index points in the quadtree which indexes N  objects and D {N ) be the 
number of disk pages required to store a quadtree which indexes N  objects. 
We use a classical definition of utilization.

D efin ition  6 The U tilization  R atio  U is the fraction of memory used by the 
index elements in a given quadtree relative to the total memory capacity of the 
disk pages consumed by that quadtree:

P {N )
U(N) =

D (N )B (3)

The notation U{N) is for utilization ratio in a quadtree of N objects. We are 
interested in the mean utilization ratio U which we define using the formula

N-̂ oo N (4)

However this being theoretical, we need to compute the mean over a finite 
range of values of N. We choose the range of values between two consecutive 
plateaus as our finite range. Let A, denote the number of objects at an full 
plateau of a quadtree. We define the mean utilization ratio Ui as follows.

j r
' A.+i -  A. (5)

Let us express formula 5 in words. Starting from the point when the plateau 
breaks, we insert objects consecutively until we reach the full i +  U* plateau 
and compute the utilization after every insertion (this is the term U{p) in the 
summation). We then calculate Ui as the arithmetic mean of those intermediate 
values. Let us then compute Pf'“ .

Recall that P /“' was defined as the number of index points immediately after 
the i*·̂  split wave ends. At this point, we have the previous P, index points
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each generated two copies during the split waves and the newly inserted 2‘ 
objects (which trigger 2‘ row splits) each yielding 2'·*·̂  copies (2*'''̂  is the new 
side length of the indexed space). We then have P /“' =  2P,· +  2‘2‘+̂  which after 
replacing P, by its values of 2̂ ‘ P  simplifies into the formula

p s w  _  2 2 * + 1 ( ^  - I -  1 )
(6)

We can then compute the disk utilization immediately after the split ends 
which we denote by Using Equation 3, in which P {N ) =  Pf^ and D(N ) =  
2t+i ^ 2‘+̂  =  2 '̂+  ̂ and replacing we find

P + 1 1
-

2P 2
ŜW _ (7)

The utility of this formula lies in the fact that it corresponds to the minimal 
space utilization of the quadtree in our application. This is so because any 
insertion beyond this point will increase the occupancy of the 2'+  ̂ x 2'·*·* quad
rants (whose number remains fixed) and this continues until we reach the full 
i +  U' plateau. Thus, it tells us that the worst case percentage utilization of 
our quadtree is 50%. This is not very comforting though and we now pass to 
the more serious task of computing the mean utilization ratio.

We start by computing the number of insertions (new objects) needed to 
pass from the full plateau to the ¿ +  full plateau which we denote by A A',·.
We know A.Ni =  Â ,+i — Ni (by definition). Note that AiV, is the sum of two 
values. The first is 2‘ , the number of insertions needed to end the split wave 
and the second is the number of insertions needed to bring the newly formed 
i +  U‘ -regular quadtree to the status of a full i +  U' plateau. These two phases 
will also govern our subsequent analysis and we need to give them names. Let 
us call the first one the SPLIT  phase and the second one the FILL  phase. 
At a full i +  U* plateau, the duplication ratio is 2*·*"̂  (side length of the grid). 
Hence the number of objects needed in the FILL  phase may be computed 
from the number of index points generated during this phase divided by the 
duplication ratio. This results in the following formula for AyV,.

Pi x̂ -  P rANi =  2‘ + 2*+i (8)

Stated in words, the difference between the number of index points at the 
full i +  plateau and that just after the split wave ended divided by the
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duplication ratio yields the number of objects that were inserted in the F IL L  
phase. Simplifying Equation 8 gives the cleaner formula

AA .̂ =  TB (9)

As there are 2' insertions in the S P L IT  phase, the number of insertions in 
the F IL L  phase is AA,· -  2‘ =  2‘ ( 5  -  1). Now, let UsPLiri'm) denote the 
utilization ratio when m objects have been inserted in the SPLIT  phase; m 
satisfies the constraint 0 < m < 2'. By analogy, we define as the
utilization ratio when m objects have been inserted and we are in the F IL L  
phase; that is ra satisfies the constraint 2* < m < AN,·. These are exactly the 
component utilizations we talked about earlier that we want to sum and divide 
by Ni^i — Ni to obtain U{ (see Equation 5). A more precise expression for Ui 
is then as follows.

IT o < m < 2 · UsPLiri.'^) +  Yl2'<m<2‘BUi = AN,· (10)

It now suffices to find formulas for Ugpiij{m ) and Upin,{m). To save space, 
we will not give the details of the derivations involved. Below is the formula 
for U spiij{m ) in terms of f, m, and B.

B - V
^split{^ )  — 1 ~

m
(11).2‘+i J \ B

The reader may verify for the special case m =  2', utilization equals which 
agrees with Equation 7 for derived in a different way. The formula for

Is 1 m
(12)TTi /  ̂ 1

Finally, using Equations 11, 12, and 9 then substituting them into Equation 10 
and simplifying gives us

(13)

We now shall use a few approximations to simplify further the above formula 
and see better what it stands for. We approximate by 1 which we expect 
is acceptable in most applications. In our specific application B =  340 so that 

=  0.997. We also denote by a,· the quantity | ^ .  We then have the 
following formula for t/, .

r r  3 5 - 4 o , ·
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To simplify the formula even further, notice that a,· =  4+ 57W so that lim,_oo o. =  
We may then approximate a,· by | as i need not in fact be arbitrarily large 

(e.g., for Î > 3, I < a, < j  +  T ). In a sense, vve are at this particular approx
imation removing the effect of selecting a certain plateau when we started 
this analysis. In other words, any such i would produce roughly the same mean 
utilization and so we are compelled to drop the subscript i from U,· This leads 
to the more expressive and consize formula

77 3 1
^ “ 4 + 5

(15)

The final step is to neglect ^ as well (0.002941 in our application) which leaves 
us with the elegant result

(16)

The average percentage utilization in our particular application and use of the 
quadtree is therefore 75%. This is not surprising though as it is the midpoint 
between the maximum utilization of 100% (which occurs in a full plateau) and 
the minimum utilization of 50% proved earlier (see Equation 7) and which 
occurs at The experimental evaluation of the percentage utilization as
a function of the number of objects is given in Figure 4.11. It confirms the 
fact that minimum utilization does not drop below 50%. Maximum utilization 
however is always bounded by the 90% barrier. This is because in practice, the 
i +  1*̂  split wave begins before the plateau becomes full. In other terms, 
when the first quadrant split in a 2* x 2‘ partitioned space takes place, there are 
still quadrants which are not yet full (i.e., contain less than B  index elements).
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Figure 4.13: B E  =  16 
pages.

4.5 Build Cost

The cost of rebuilding the quadtree is more severely affected by an excessive 
amount of redundancy or object copies as it is based solely on insertion and 
has to undergo all the split waves that are within its range. We illustrate the 
average build cost as a function of the number of objects for different values 
of buffer size and a fixed A T  =  lOOTUs in Figures 4.12, 4.13, 4.14, 4.15, 4.16, 
and 4.17. First, note that we conducted experiments to study the effect of A T  
on build cost. Interestingly enough, it transpires that it does not affect build 
cost. The regeneration period A T  does not affect the number of index points 
created either; then it also will not affect the disk utilization of the quadtree 
(being directly related to index points set size). In one experiment, we fixed 
buffer size at 32 and N  at 3500 varying A T  from lOOTI/s to lOOOOTt/s at steps 
of lOOTUs obtaining a quasi-fixed average build cost of 32970. In a similar 
setting, we got a quasi-fixed number of index points around 56000. This may 
not be very surprising since the driving factor behind bucket.overflows (and 
thus splits) is the number of objects while split and insertion overheads are 
what constitute build cost.

Does this mean that we could enjoy an infinite A T  so that our quadtree 
is generated only once? Can we at least hope in practice to enjoy a ‘ long’ 
period without reconstructing the quadtree? The answer is no. The reason lies 
in insertions and deletions. If all the objects which have existed in the index 
at some time tpast have left the system by time tnow and were all explicitly 
deleted (otherwise the index will grow without bounds) then we have practically 
regenerated the quadtree in the sense that we incurred the same cost. We thus
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Figure 4.16: B E  =  128 
pages.

pages.

Figure 4.17: BE =  256 
pages.

conjecture that a suitable A T  depends on the average lifetime of the objects in 
the system which we will denote by L. If A T  is too small compared to L then 
we are (uselessly) incurring the high cost of regeneration while constructing 
essentially the same tree. On the other hand, if A T  is much greater than L 
then we find ourselves effectively reconstructing the tree anyway as generations 
of objects come and go. Such observations compel us to conclude that A T ’s 
best value should be L (especially if the standard deviation of object lifetimes 
is small). We present this as a conclusion in the form of the following primitive 
equation where ATopt stands for the optimal value of A T .

ATopt — L (17)

However, we do not in any way mean it to be a solution to its relevant op
timization problem as it was derived through common sense rather than by 
analytic means. What is more important is that it is of no use if the build 
cost is prohibitive. A cursory look at the graphs illustrating build cost reveals 
values in the order of 10000 disk accesses for only 3000 objects. The buffer 
size provides little help in absorbing such a high cost. In fact, its only effect
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as revealed by the graphs is to delay the ‘explosion’ of build cost by a few 100 
objects. The graphs have an interesting pattern that is again related to the 
alternation of S P L IT  and F IL L  phases in the construction of the quadtree. 
It is linear during F ILL  phases. During the shorter SPLIT  phase it makes 
a small twist upward so that the next F IL L  phase’s graph is a steeper linear 
function. The reason for this high cost is that as we construct the quadtree 
from scratch, we have to bear all the costs of the consecutive split waves one 
after another hence effectively inserting every object many times. Besides, the 
CPU cost of all those insertions and reinsertions (at splits) is also unacceptable 
(it was the main reason why we did not try values of N  beyond 6000, it simply 
takes hours). This unfortunately leads us to rule out the bucket PR quadtree 
as a choice to solve our problem as long as we have not devised a regeneration 
algorithm of tolerable cost. We can best characterize a tolerable (time) cost as 
one which is ‘significantly’ low compared to AT. The next section treats this 
problem in more depth and presents a solution which we think is optimal.

4.6 An Optimal Quadtree Regeneration Al
gorithm

Given the number of objects N  in our system, we might know beforehand 
that we are to go through a certain number of costly split waves if we follow 
the naive approach of starting with a single bucket and making consecutive 
insertions. For example, in our application B =  340 and so we know that if 
-V >  340 we will encounter a bucket split at object insertion operation number 
341. This suggests that if we could know or predict right from the beginning 
(given only N ) the final shape of our quadtree then we could just start with 
an empty quadtree of that shape and fill it properly with index points. In a 
sense, our earlier (naive) approach built the quadtree top-down; we are here 
proposing to build it bottom-up.

By the word ‘shape’ of the quadtree we actually meant its corresponding 
partition of the original indexed quadrant, and by ‘ final shape’ we meant the 
final plateau at which the quadtree settles after N  insertions. Let us call i in an
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:th-regular quadtree the order of that quadtree. The problem is then reduced 
to finding the order i given N  which we explore in the next subsection.

4.6.1 Finding the Order of Quadtrees

We seek a formula for the order of a quadtree which we derive by simple 
analysis. Let us start with the base case. The condition N > B  tells us that 
we will have to split the bucket anyway. We then obtain 2N index points and 
4 buckets of capacity 4B. Notice that if 2N <  4B then the 2 x 2  quadtree 
is enough to store the N  objects. The condition 2N > 4B similarly tells us 
that (if we went top-down) we will have to go through the second split wave 
anyway after which we have 4Â  ̂ index points (2 copies per object as assumed 
before) and 16 buckets of capacity 16B. The next condition to evaluate is 
then 4N > 16B. Generalizing this we find that the top-down insertion of N 
objects will reach the ¿* -̂split wave if the condition 2'N > 2^'B is satisfied. 
By the same token, the i +  split will not be reached if 2'+^W < 2^b+i)5. 
Combining these two constraints, we obtain the following characterization of 
when N  objects produce an f‘^-order quadtree.

T B  < N  <  2‘+‘ 5

The following formula for i is then readily computed.

I — (18)

Remember that we assume that the split wave breaks the plateau only 
when it is full. We said earlier that this is not the case in practice where one or 
more of the 2‘ x 2‘ buckets of the ¿'^-regular quadtree might become full and 
split before all 2 ‘̂ buckets become full. To remedy this we could simply add 1 
to i hence constructing a larger grid than the theoretical prediction to cater for 
premature splitting (which is always the case in real applications). This would 
be a big squander of memory capacity if N  were only slightly greater than 2'B 
where we expect it is too early for splits of the next wave to begin. On the 
other hand it is recisonable to do so if N  were too near to the value 2'~̂ B̂. In 
the former case we propose to use a 2’ x 2' grid and add overflow buckets for 
the (hopefully) few quadrants which are found to have overflowed. We may go
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deeper into analyzing this tradeoff but we choose to stop here and come back 
to the main regeneration algorithm.

4.6.2 The Path Computation Algorithm

Before presenting the algorithm we introduce some necessary notation. In what 
follows we talk about an z‘^-regular quadtree. We have earlier defined A/1 to be 
the length of the attribute dimension. Let 6ti =  ^  denote the length of each 
quadrant along the time axis and ¿o,· =  ^  denote the length of each quadrant 
along the attribute axis. Let our indexed space be =  [io · · · io + AT], [gq · · · «o +  A.4] 
and let

Qrn.n =  [to+m Sti.. .to+{fn+^)^ii), [ao+nSai. . . ao + (n + l)<5a,)(0 < m , n <  2')

designate the subquadrant of our space which lies at the intersection of the 
time interval and attribute interval as shown in Figure' 4.18. Finally 

let s =  2' be the side length of the ¿‘^-regular quadtree measured in number of 
intervals.

Since there will be 2̂ ‘ buckets in the final quadtree, we will need to fill and 
write 2 ‘̂ disk pages during reconstruction and this is then the minimum disk 
access cost which we can hope for. It would then be nice if we could shift all 
other auxiliary overhead into the CPU which is what we propose to do. The 
idea is to construct an in-memory s x s array (call it Q) which corresponds 
to the quadrants Qm,n oi our indexed space defined above. We then compute 
for each of the N  trajectories the coordinates (m and n: 0 < m, n < 2') of
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Figure 4.19: In two consecutive time intervals, a trajec
tory crosses either two or three quadrants.

quadrants it crosses and add the object information to every such quadrant. 
The entry Q[m,n] of.our array is thus a set defined as follows.

Q[m^n\ =  [op : trajectory of Op crosses Qm,n}

VVe call the latter operation object path computation. Let us then provide a 
short description of the object path computation algorithm and see its com
plexity.

Given an object Op, we examine the s time slices [taAmSti. . .  fo +  (m-f- 
(0 < m < s) one by one in increasing order of m. Using the motion equation 
fp{t) =  Opt -f- bp, we compute at each time slice in which attribute slices object 
Op’s trajectory falls; there can be at most two of them. Figure 4.19 shows 
this and illustrates the important observation that for two consecutive time 
intervals there can be at most three quadrants through which the trajectory 
passes. There are s = 2‘ time slices and 2‘“  ̂ consecutive ‘double slices’ ; then 
an object can have at most 3 x 2'“  ̂ index points (and at least 2‘ ) which is our 
upper bound. The path computation algorithm is thus 0{Z x 2*“ )̂. Since 2‘ 
is the minimum it is more accurate to say that the number of insertions into 
the array Q which we denote by Cpath-comp satisfies

2‘ < Cpath-comp < 3 x 2t-1 (19)

The main part of the quadtree regeneration algorithm is the loop for computing 
the paths of the N  objects. This is given below.

for p <— 1 to fV do 
for m ^  1 to s do

n =  find-attribute-interval(m, Op)
Q[m, n] <— Q[m, n] U{op}
if (op > 0) and (op crosses Q m ,n + i)  then
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Q[m,n +  1] <— Q [m ,n+  l]U {op} 
if (op < 0) and (op crosses Q m ,n - i )  then 

Q[m,n -  1] e- Qlm,n -  l]U {op} 
endfor 

eiidfor

If we let Cgeneration denote the CPU cost of regenerating the quadtree, then 
Cgeneration — ^Cpnth—comp* Hence the cost of legeneration satisfies the inequah

ity
N2' < CgeneraUon <  3-V2‘- l

The insertion of an object Op in Q[m^n] expressed in the above algorithm as 
a set union could be implemented to be 0 { l )  if we use an array of size B 
for Q[m^n\. The CPU cost of regenerating our quadtree is also optimal in the 
sense that no multiple insertions or recomputations are done for a single object. 
In summary, no extra overhead is incurred to create and place index points in 
their correct quadrants other than the strict minimum. Once the quadrants 
array Q is filled, we just transfer its contents from memory to the disk by 
allocating one disk page for every Q[m,n] (0 < m ,n < 2') and copying the 
index points in Q[m, n] to it. This amounts to exactly 2̂ * disk page accesses 
which are also the minimal number of accesses possible hence the optimality 
of the algorithm.

We would now like to examine what the above bounds translate to in prac
tice. We want to estimate the CPU cost or execution time Cgeneration and the 
cost of 2̂ * disk accesses (I/O  cost) for several values of N. For the latter cost 
we will use maximal and minimal disk access costs of 10msec and 30msec re
spectively which are typical values of modern hardware used in recent studies 
as well. For the CPU cost, we have to estimate the execution cost of the body 
of the inner loop in the path computatipn algorithm which iterates between 
2'N  and 3 X  2'~^N times. An accurate estimation is needed because the num
ber of iterations is in the order of millions for a big N. Before that, we present 
a direct comparison between the naive approach to index reconstruction and 
our new optimal algorithm in terms of the number of disk accesses needed (not 
the resulting time). This is shown in Table 4.3 for representative values of
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N
iMin.
disk
time

Max.
disk
time

Min.
CPU
time

Max.
CPU
time

Min.
total
timp

Max.
total
time

1000 0.04sec 0.12sec O.lsec 0.15sec 0.14sec 0.27sec
5000 0.64sec 1.92sec 0.2sec 0.3sec 0.84sec 2.22sec
10000 2.56sec 7.68sec 0.8sec 1.2sec 3.36sec 8.88sec
25000 40.96sec 2.04min 8sec 12sec 48.9sec 2.24min
50000 2.73min 8.2min 32sec 48sec 3.26min 9min
75000 2.73min 8.2min 48sec 1.2min 3.53min 9.4min
100000 lO.Omin 32.77min 2.13min 3.2min 13.05min 35.97min

Table 4.2: Runtime estimations of CPU and disk access overheads; sec stands 
for seconds and min stands for minutes.

N Naive QRA Optimal QRA
1000 0 16
1200 0 16
1400 256 64
1500 1007 64
2500 8980 64
2800 13724 256
3000 18970 256

Table 4.3: Comparison of the naive and optimal quadtree reconstruction algo
rithms (QRAs) in required number of disk accesses.

N  between 1000 and 3000. The values are hardly comparable. For the naive 
algorithm, we used the experiment where buffer size was 32. It is clear that 
the naive approach is extremely inefficient compared to the one we proposed 
here. We return to CPU cost estimation for the optimal algorithm.

The main statements of the loop body include a function for computing one 
attribute interval for the time slice and an object o,·. To optimize code we 
could get rid of function call overhead and include directly the function body. 
Furthermore, find-attribute-interval(m,Op)’s statements do not involve itera
tion and we could arrange it to use a closed formula to find n. It then reduces 
to a small number (two to four) of floating point operations to which we (pes
simistically) give a few microseconds to execute. The remaining statements 
constitute a collection of 10 comparisons and one or two array assignment
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statements whose overhead is about a few hundred nanoseconds (in fact, in a 
RISC pipelined architecture they may take much less). Then, we choose to 
assign the latter collection of statements l/<sec and the code for computing n 
4/isec for a total cost of 5/isec. In Table 4.2. minimum and maximum values 
for disk cost, CPU cost, and total reconstruction cost are provided. For sev
eral values of N, the product 2'N  is used to compute minimum disk cost and 
3 X  2' “ ^ y V  to compute maximum disk cost. Let us compare what we obtained 
with the previous experiments on build cost. For our standard buffer size of 
32 and a value of N  as low as 3000 we needed 20000 disk accesses which last 
10 minutes (using 30msec access cost). With this method, we only need 2.2 
seconds to rebuild a quadtree with 5000 objects. The naive quadtree regener
ation algorithm rendered the whole indexing structure impractical to use for 
applications where the number of objects e.xceeds 2500. The new algorithm 
yields reasonable performance for values of N  around 25000 where the average 
cost is between 1 and 2 minutes. This is especially so if we could start rebuild
ing the tree before the current period A T  ends. With this algorithm we thus 
have improved the manageable number of objects by an order of magnitude. 
However, our (ideal) target is =  100000 for which we still have impractical 
regeneration time (half an hour!). We think that 25000 objects is already a 
big system size enough for a (relatively) wide spectrum of applications and 
that the execution time for N  =  10000 for example is quite good (average is 
below 6 seconds). As for our target of 100000 objects, given the optimality 
of the algorithm, there is little hope to achieve it with improvements of the 
above method. A (radically!) different approach or indexing structure seems 
necessary to achieve a practical solution (if one exists) for such a large N. Let 
us now take a look at query performance.

4.7 Query Processing

We study two types of range queries: instantaneous and continuous queries. 
Both are two dimensional range queries each with a time range and an attribute 
range. An instantaneous query submitted at time tnow with an attribute range 
[Riow ■ ■ ■ Rhigh] targets the time range [tnow — St. . .  tnow +  St] where St is a small
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time lapse to be chosen according to the application domain. Assume we are 
at the ¿‘^-regular quadtree. Then we may constrain 6t to be small compared to 
a single time interval of the quadtree (i.e 6t <  ^ ) .  In an ¿‘^-regular quadtree, 
the number of disk accesses required to answer a range query is (intuitively) 
equal to the number of quadrants covered by the range. Let us characterize 
this more accurately.

Let A q =  Rhigh — Riow denote the length of the attribute range of a query 
Q and Tq =  Thigh — Tiow the length of the time range of query Q. Excluding 
the effect of buffering, the disk access cost of such a query is

/^idisk _Uq - 1 + )  ("l + \Tq ]
Soi ) \ Sti (20 )

We have simply multiplied the number of intervals covered by each of the two 
ranges. For the special case when one range starts exactly at the beginning of an 
interval, the 1 is removed from its corresponding multiplicand in Equation 20. 
If further, the range ends exactly before the beginning of an interval then we 
also remove the ceiling expression. As ranges are supplied independently of 
the current status of the quadtree and its partition, we expect the general case 
embodied in Equation 20 to hold most of the time. We can then determine the 
cost of instantaneous and continuous queries using this formula.

When we assumed 6t ^  above, we actually wanted the instantaneous 
query to fit in a single time slice 8ti. Alternatively we may adopt the policy 
of evaluating an instantaneous query submitted at t̂ ow using the time interval 
in which tnoy; falls since our purpose in using parameter St was to have a finite 
approximation to the infinitesimal tnow For continuous queries, -the theoretical 
time range over which they are evaluated is [tnow ■ ■ ■ oo).· In practice, if a 
continuous query comes in a period [p A T ... (p +  l)A !r), it is first evaluated 
over the time interval [tn ow -[p  +  1)A T ) then over all subsequent periods 
of the application until it is explicitly deleted from the queries list. Letting 

'̂fnst f̂ cont denote the disk cost of instantaneous and continuous queries 
(respectively) over an ¿‘^-regular quadtree we obtain the following formulas.

(21) 

( 22)

c t i  =  1 +

/^d isk  __ Qt
^cont ~  ^ 1 + iSl)

Sa

.4,
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Figure 4.20: Range size =  10% Figure 4.21: Range size =  1%

Figure 4.22: Range size =  0.1% Figure 4.23: Range size =  0.01%

Figure 4.24: Range size =  10% Figure 4.25: Range size = 1%

Figure 4.26: Range size =  0.1% Figure 4.27: Range size =  0.01%
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The cost of an instantaneous query is just the number of attribute inter
vals its attribute range spans while for continuous queries it is that number 
multiplied by 2', the number of time intervals in AT. Figures 4.20, 4.21, 4.22, 
and 4.23 show the average cost of instantaneous queries as a function of N 
across a few typical attribute range percentages (0.01%, 0.1%, 1%, and 10%). 
The range percentage is the length of the query range divided by A T  and mul
tiplied by 100. Notice that for small percentages (0.01% and 0.1%) we roughly 
need one disk access. The graphs exhibit the usual plateau pattern. The graphs 
for continuous queries’ average disk access cost are given in Figures 4.24, 4.25, 
4.26, and 4.27. As equation 22 predicts, for small percentages of the attribute 
space (0.01% and 0.1%) the average cost is exactly equal to 2‘ at the plateau 
(32, 64, 128, and 256 in the figures). For larger ranges they are a multiple of 2‘ . 
The CPU overhead is that of navigating through the quadtree from the root 
to the relevant leaves. For a duplication ratio D, this cost is 0 (log4(DA^)). 
.A major drawback of disk cost for both instantaneous and continuous queries 
that was alluded to earlier is that the cost of the same query doubles when the 
quadtree passes from the plateau to the i +  U‘ plateau.



Chapter 5

THE CROSS POINTS 
METHOD

In this chapter, we provide the results of our study of the cross points approach 
to dynamic attribute indexing. We start in Section 5.1 with a description of 
the program used in the simulation study and associated data structures. Sec
tion 5.2 contains the performance results of the experiments that were run on 
the method and some pertinent observations. Finally, in Section 5.3 we provide 
a critique that sums up most of our thoughts and observations pertaining to 
the general feasibility of the approach.

5.1 Program and Data Structures

The binary tree program has two main data structures, the binary tree node 
bintree (BT) and the crosspoint (CP) defined as follows:

B T  = <  ID , a, b, L eft, Right, Par >

C P  = <  Time, Pos, IDiow, IDhigh >

In the BT  record, the fields ID, a, and are the object properties defined 
earlier while the L eft, Right, and Par are the classical pointers of a binary 
tree node. A crosspoint is uniquely defined by four parameters. These are the

57



CHAPTER 5. THE CROSS POINTS METHOD 58

time and position at which the intersection happens and the two participating 
objects. The fields Time, Pos, IDiow·, and IDhigh embody this information. 
To be able to correctly process an intersection, we need to know which object 
had a lower position than the other before intersection; the subscripts in IDiow 
and IDhigh indicate this.

Note that no information about the objects is stored in a cross point except 
their IDs. The binary tree thus defined, does not contain the keys which serve 
to build and maintain it. These keys are the positions of the objects and are 
computable for a given time t using the a and b fields from the linear motion 
equation so that key{t) =  at +  b. This computation is done at every node along 
the path in an insert, delete, or search operation and the result is compared 
with the given key to decide to go left or right or stop. This is a design 
decision. Before that we attempted using the time at which an object was last 
invoked in an intersection event (call it tcp) to compute the position ycp  of 
an object o residing in the tree. We then would assign ycp  to the K ey  field 
of o in BT. Resorting to such a policy would have two virtues. First using 
a K ey  field allows us to get rid of including the slope and intercept fields in 
B T  hence saving four bytes per object in the tree. Second, we would save 
floating point computations in each search operation ((9(logA'^)) which might 
be a tangible performance gain for large N  since search is an integral part of 
all query processing operations as well as insert, delete, and update requests. 
It would anyway be interesting to find a correct and efficient way to store keys 
even without saving up fields of the BT  record.

Finally, we mention two more record structures from the workload genera
tor program. These are the operation record OP  which encompasses update, 
insert, and delete requests and the query record Q used to store information 
about instantaneous and continuous queries. These are defined as follows:

OP  = <  Time, ID, a ,b >

Q = <  Time, RiOlL’i Rhigh ^

The Time field stores the time at which the request arrived to the system. 
Fields Riow and Rhigh store the lower and higher ends (respectively) of the 
queried attribute space A R  for range query Q. Queries and operations are
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Figure 5.1: a =  0.1%. Figure 5.2: a =  0.05%.

Figure 5.3: a =  0.01%. Figure 5.4: a =  0.1%.

stored in linked lists ordered by the Time field in non-decreasing order. At 
this point, we close the description of our programs which we hope is enough 
and pass to the results of the experiments.

5.2 Performance Results

The set of intersections or cross points turns out to play a decisive role upon 
which depends the very practicality and applicability of the method. First, 
we examine the size of this set in Figures 5.1, 5.2, and 5.3. Notice that the

Figure 5.5: a = 0.05%. Figure 5.6: a =  0.01%.
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Figure 5.7: Execution time of the module which com
putes and stores cross points (A'=1000).

maximum value we tried was 2000. This is because of the (discouragingly) huge 
number of resulting intersection points we got. In these graphs, we calculated 
the number of cross point events that occur within the first 100 TUs of our 
simulation. These exclude newly coming objects during those 100 TUs each 
bringing its own set of intersection points. As an example, for 2000 objects and 
a =  0.1% we obtain about 100000 intersections; this is 1000 intersections per 
unit time. What is worse, the curve looks like a square function. This leads 
to a very small time lapse between one intersection and the next which we call 
average time between cross points. The values for this parameter as a function 
of N  are shown in Figures 5.4, 5.5, and 5.6. At A^=2000 and a =  0.1% the 
average is around 10“ “* TUs. It increases by an order of magnitude (to 10“  ̂
TUs) when a drops by an order of magnitude (0.01%). The problem is that 
the values of N  experimented with are very low and it is difficult to imagine 
the size of the set of intersection points at A'^=20000, not to mention our target 
of 100000 objects. Given that graphs have the shape of a quadratic function 
it is easy to see that the intersections set size will be impractical to handle 
both in space and time. We have not succeeded in finding a closed formula for 
the expected number of intersections in a system with N  objects. We know 
however that it is 0 {N ‘̂ ) and that the constant factor in the big-Oh notation 
depends mainly on a, the speed ratio. Finding such a formula would help a 
lot in understanding whether or not the difficulties of the cross points method 
are inherent but it turns out to be a challenging task.

As the number of intersections is quite large, it is only natural that merely 
computing and storing them consumes a lot of space and time resources. We
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are more interested in the latter cost because storage space may still be af
fordable and space requirements could be reduced by decreasing the lookahead 
interval AT. In Figure 5.7, we present execution time of the module which 
computes the intersections between objects. The number of objects used was 
1000 and we measure as a function of a which ranges from 0.0001 to 0.001 

(rather optimistic). We note however that we use a linked list to store the 
cross points and found that the resulting insertion time of a single cross point 
is very expensive. The values are therefore exaggerated but still indicative. 
Our first conclusion is thus that cross points need at least a logarithmic time 
insert indexing structure such as the height-balanced AVL tree. We then also 
require that retrieving the next cross point (in the processing phase) take (9( 1) 
which was the case with our linked list (next cross point at the head of the list). 
Still however doing this may not be enough to make the method practical.

For example, the length of A T  does not affect the complexity of the cross 
points computation algorithm. In other words, a smaller A T  does not relieve 
us from the requirement to examine all possible pairs (hence the quadratic 
complexity is imposing). And no obvious subset of pairs of objects may be 
possibly known not to intersect in some near future time interval 6t. This also 
gives us a rough criteria for the choice of AT. Namely, it should be as big 
as we afford memory to store cross points data and might be limited only by 
the constraint of a reasonable cross point retrieval time (preferably 0{\ ) as 
mentioned above).

All these observations, together with the fact that we did not implement a 
height-balanced tree (just a normal binary tree) for the study, discouraged us 
from doing any experiments on query processing. However, it is easy to see 
before hand that insertion, deletion, and update overheads as well as query 
processing performance all benefit from the (9(log N) complexity. For a value 
of N  as large as 100000 (our dream value), log =  17 which is roughly the 
actual number of floating point operations and comparisons needed to perform 
an insertion or a deletion plus the cost of rotations that keep the height balance 
(which are local most of the time). We then expect the cross points method 
to scale very well to large values of N  if the problematic overhead of cross 
point management is somehow circumvented. The above observations pushed
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us to reconsider the foundations of the method and go more deeply into its 
anatomy. We came up with a collection of ideas which we embody in the 
following critique of the method.

5.3 A Critique of the Cross Points Method

Our speculation about the difficulties experienced with the cross points method 
and the search for ways to circumvent them led us to believe that it is inherently 
inefficient with respect to the problem it tries to solve. This belief is based 
on the following important observation. While we would ultimately like to 
support range queries of different kinds, we are taking pains to record every 
event at which trajectories of any pair of objects cross each other. From a 
purely pragmatic standpoint, this information is not necessary for answering 
range queries. It is difficult to envisage an application wherein the event of two 
objects’ attributes taking the same value at the same time would be a useful 
piece of information. Note that this the generalized understanding or definition 
of a cross point. To translate this to our favorite example of moving vehicles, 
we are recording every instance at which a vehicle overtakes another and every 
instance at which two vehicles come across each other when they are on the 
same route (running in opposite directions). Nevertheless, all we are demanding 
to know is which vehicles will be in a given segment of the route during a given 
time slice (this is the general two-dimensional range query). Taking this to a 
higher level of abstraction, we are dealing with the relationship between objects 
which when viewed mathematically has a quadratic cardinality· in the system 
size N. We thus have unnecessarily raised both the space and time complexity 
of our problem when it did not require so. Remember that the management 
of cross points is the auxiliary overhead that was needed to keep the main 
indexing structure (the height-balanced AVL tree) functioning properly. We 
do not deny that by just looking at the binary tree storing attribute order, 
we have both an elegant structure and a very efficient one indeed with 0 {N )  
space overhead and C>(log2 -V) time overhead for all operations and queries 
supported. However, the price we pay for that is too high. We attempted to 
remedy this by trying to find a more efficient way to manage cross points.
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We then had the impression that the cross points computation problem does 
not yield itself easily to complexity reduction. There apparently is little room 
for optimizations and the problem is inherently quadratic. To appreciate this 
more, consider the naive approach. We exhaustively examine all the N'̂  pairs 
o f objects (except of course an object and itself) and compute at which point 
in time the pair intersects. It might be in the future and it could have been 
in the past. If the intersection is in a reasonably ‘near future’ (e.g., within the 
specified lookahead interval A T) then it is stored or appended to the list of 
cross points taking into account its position in time relative to the other cross 
points. We can immediately spot the following two sources of inefficiency in 
this naiv'e algorithm.

1 . We are uselessly computing the cross point events which take place in the 
far future. Having discovered that an intersection is too far in the future 
for us to bear the cost of storing it, we just ignore it. Nevertheless, we 
will compute it again in the coming period when A T  time has elapsed. 
In fact, if it is very far in the future, we may do the same computation 
several times (i.e. more than two) before we come to store it.

2. We are analogously, uselessly storing the cross point events which took 
place in the past. What is even worse, we in fact compute intersection 
events which never took place. Using the moving vehicles analogy, assume 
a moving vehicle suddenly ‘popped up’ (i.e., registered to our system) 
moving at a relatively high speed. Then the naive algorithm will assume 
it had to overtake or come across all the objects that are currently behind 
it (depending on their direction of motion and their velocities). However, 
it could simply have just entered the current road or highway from a 
junction. In other words, we are acting as if each object begins its journey 
along the attribute dimension from one of its endpoints.

Our attempts to reduce the ‘search space’ or rule out the useless pairs which 
are known not to intersect in the future failed to materialize into an algorithm. 
We remark however that by sorting the objects along the attribute dimension 
and also sorting then according to the absolute values of their slopes, we could 
know which subset of the N  objects will meet in the future. To explain this
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Figure 5.8: Subset of vehicles 
to come across a given vehi
cle in the future. The selected 
vehicle is at the center and 
the shaded area is for vehicles 
which will not meet it. The 
vehicles in this graph move in 
the same direction as the des
ignated one in the center.
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Figure 5.9: The same situation 
for vehicles moving in the op
posite direction to that of the 
given vehicle. Speed is irrele
vant here; it will meet with all 
vehicles currently ahead of it 
and with none of the vehicles 
behind it.

we again resort to the moving vehicles analogy. We just remind the reader 
that velocity corresponds to the slope or rate of change of the attribute value 
in the linear equation f { t )  =  at A b associated with every dynamic attribute. 
The idea is best explained in Figures 5.8 and 5.9. We plot the objects in the 
position-velocity spaceF For any arbitrary object in this space, we want to 
know which objects will intersect in the future. The space for objects moving 
in the same direction as its own is depicted in Figure 5.8 and the second case 
for objects moving in the direction opposite to its own is shown in Figure 5.9.

Unfortunately, this does not culminate in any computation which allows us 
to determine the forthcoming intersections in less than complexity. How
ever, it seems we have looked from too narrow an angle to hope for a solution 
when we considered a single object’s prospects. From a global system per
spective, we would like to know about the criteria (if any) for predicting the 
forthcoming cross point events  ̂ A more useful and precise question would be 
the following: given a snapshot of the system at some point in time, is there 
a mathematical expression for the next pair or m pairs of objects that will

'The sign of the slope which corresponds to the direction of motion might be conceived 
of as the third dimension. Instead, we simply use two graphs.
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intersect? Consider the objects in sorted order along the attribute dimen
sion. Let Oi and o,+i be two adjacent objects at positions a,· and a,-4.1 moving 
with ‘velocities’ (or slopes) u,· and u,+i respectively. By looking at the sign 
of their slopes (which corresponds to the direction of motion for vehicles) we 
could know whether or not they will intersect in the future. If this is the case, 
then the time tcp at which their intersection event takes place is given by the 
formula

tcp = ( 1)
-  Vi

This is just the distance separating the two objects divided by their relative 
speeds. The pair of objects which will intersect next is simply the pair with the 
lowest tcp- This could only lead us to an 0 {N )  algorithm for finding the next 
cross point and an 0 {m N )  algorithm for finding the next m cross points in 
order which ironically turns out to be worse than the 0{N^) naive algorithm.

We have thus provided a critique and an explanation of the difficulties and 
disadvantages of the cross points method. We also described a few of our 
attempts to introduce improvements on the method which, though did not 
culminate with success have resulted in a better understanding of its anatomy. 
We hope we were nor ‘unjust’ to the method and that we did not miss any 
important observation which might reverse the judgment.



Chapter 6

THE FP-INDEX

6.1 Introduction

In Chapter 4, we studied the use of the PR quadtree for dynamic attribute 
indexing. The study revealed high storage recjuirements which in turn affect 
query processing performance. This compelled us to investigate new ways of 
indexing that do not have this disadvantage. The result of our investigation 
was the development of a novel indexing method that is at the same time much 
simpler and more efficient across most performance parameters when compared 
to the quadtree. The purpose of this chapter is to present the details of the 
method. We also contribute a new algorithm for processing continuous queries 
that is optimal in the number of disk accesses required. With this algorithm we 
could even reach an average of less than one disk access per continuous query. 
We start by giving the motivation behind the method in Section 6.2. Section 6.3 
gives a description of our new access method; we called it the Fixed Partitioning 
Index (jPP-index). In Section 6.4, we digress briefly on the practical values for 
a  and the length of a single time unit; this is a necessary background for our 
subsequent analysis and estimations. Section 6.5 provides an analysis of build 
cost and Section 6.6 describes the primary and secondary memory requirements 
of the index with comparisons to the quadtree. Section 6.7 gives insertion cost 
and presents a technique called delayed insert for improving it. In Section 6.8, 
we analyze the expected cost of range queries when using our index; both

66
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continuous and instantaneous queries are considered. Section 6.9 gives the 
details of our novel optimization algorithm for continuous queries. Finally, we 
conclude the chapter in Section 6.10.

6.2 Motivation

We have noted earlier that one of the drawbacks of the quadtree approach is 
an excessive number of copies (or a high duplication ratio D) that directly 
affects all kinds of operations and both kinds of queries performed on the tree. 
However, we must remark that there is no way to avoid duplication which 
is inherent to our problem. Since we are monitoring an attribute over time, 
we must have more than a single copy of its corresponding object. What is 
then a reasonable number of copies? When does duplication start to involve 
unwarranted redundancy? Let us return to the specific picture of things in our 
quadtree.

We found that a trajectory spends a long portion (if not all) of A T  crossing 
a single attribute interval {A T  is the length of the time period between index 
reconstructions). If it takes n time intervals to cross that single attribute 
interval, then we are uselessly storing n — 1 copies because all of the n copies 
convey one piece of information; namely that a given object crossed a given 
attribute interval between some time tenters and another time tieaves- We derived 
earlier the expression for the number of quadrants crossed by a trajectory which 
spans m attribute intervals over n time intervals, which was n+m  — 1 . We could 
as well have used a single copy for every attribute interval covered which means 
m copies (then also n — 1 redundant copies). This is the minimum we can afford 
if the subdivision of the attribute space is imposed on us (given, that is). The 
conception of the proposed method of dynamic attribute indexing is inspired 
by the foregoing observation. The fact that an object spends most of its time 
in a single attribute interval suggests to us that we might exclude the time 
dimension altogether from our indexing information and use a unidimensional 
index. The details of the method are outlined in the next section.
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6.3 The FP-Index

The main idea of the FP-index is to keep the technique of indexing over con
secutive time intervals of length A T  (known as sessions) but index only on the 
single attribute dimension. We still regenerate and destroy our index every AT 
time units. We partition in a static way our attribute space [uq · · · «o +  AA) 
into E  equal-sized attribute intervals each of length Sag =  AA/E. We will call 
E the ■partition size. If between ti and i,· -f- AT, a trajectory crosses m such 
(consecutive) intervals then we need m copies of the corresponding object, one 
in each of the m intervals. Furthermore, given an interval and an object cross
ing it, besides storing the three object parameters (<  / / ) ,  a,f> > ) we also add 
the time tenters at which the object has entered the interval and the time tuaves 
at which the object left the interval (they satisfy i,· <  tenters·, l̂eaves ^  U +  AT).

According to when objects might enter and leave the attribute interval, 
we may distinguish three cases. These cases correspond to two categories of 
interval crossing. Objects might have entered the attribute interval at some 
time earlier than t,·, the beginning of the session. Then they spend all the 
session inside this same attribute interval (a_, < f { t )  <  aj. .̂ı,Wt : < i <
ti -f A T ). These objects are assigned to an independent category which we 
call the category of non-transitory objects depicted in Figure 6.1. They have 
ênters =  U and Ueaves =  +  A T  although they actually entered before i, and

will leave after i, -|-AT (tieaves >  ^ + A T ). We choose this assignment for query 
processing purposes which make comparisons easy during the filtering of query 
data. On the other extreme are objects which enter the interval after i, and
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Figure 6.2: First kind of tran
sitory objects: Trajectory enters 
the given attribute interval after 
ti, the beginning of the session 
and leaves it before its end (at 
/.· +  A T).

Figure 6.3: Second kind of transi
tory objects: Trajectory entered 
the given attribute interval in 
an earlier session (before t,) and 
leaves it before the end of the cur
rent session (at ¿,· -f A T).

leave it before i,· -j- A T (t,· < tenters-,tleaves < ti -f A T) as shown in Figure 6.2. 
These belong to the second category which we call transitory objects because 
they do not ‘ live’ in the interval for the length of the session but pass through 
it temporarily. Finally the third case of interval crossing whose objects are 
also transitory occurs when an object has entered the interval at some time 
before ti but leaves the interval before the end of the session (i/eoues < -b A T). 
This case is shown in Figure 6.3. For these objects we choose the assignment 
tenters =  ti although in reality tenters < ti in order to simplify computations 
and filtering as mentioned above. In our application, the variables tenters arid 
tieaves are needed in the processing of instantaneous queries which cover a thin 
time segment that must be compared with them to check for overlap. Having 
said this, let us go back to the FP-index.

This is a linear array A o i E entries where the entry is responsible for in
dexing the interval. As such, it relies on a Fixed Partitioning oi the attribute 
space hence the name FP-index. Figure 6.4 shows the memory and disk por
tions of the FP-index. Each entry A[f] is a record < FirstPagci, LastPagei > 
with two fields. FirstPagci is a pointer to the first disk page that contains 
data about the objects which cross the attribute interval during the current 
session. Since a single attribute interval may easily be crossed by more tra
jectories than can be stored in a single disk page, A[z] must point us to a set
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Figure 6.4: The FP-Index.

of disk pages. VVe implement this by including a field in every disk page that 
contains a pointer to the next disk page in the chain (of pages) corresponding 
to the current attribute interval. In order to facilitate insertion, we include 
the field LastPagci which points to the last disk page of the chain. Notice 
that we make no distinction between transitory and non-transitory objects in 
the index. All of them are stored together arbitrarily without regard to any 
information about time except the order in which they were inserted into the 
index during reconstruction. To gain more insight into the method, let us make 
some analysis and reconsider the amount of duplication involved.

Let V denote the average speed of objects in the system. In the FP-index, 
an object has as many copies m as the number of attribute intervals it crosses 
in a time A T . The distance covered by an object in a session is vA T ; thus we 
have a duplication ratio D as follows.

fuATl
D  =

Sat ( 1)

To ease our job, we will remove the ceiling from Equation 1; this results in an 
error less than 1/2. We will see later that our D is in the order of a few tens; in
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fact even if it is smaller than that we still consider decimal fractions negligible. 
Then we have D =  Remember that the speed ratio a was defined by
the formula a =  ^  as the fraction of distance traveled by an object moving 
with mean speed u in a single time unit with respect to A /l. Then we have 
V =  aAi4. Substituting this in Equation 1 we obtain

a A A A T
D =

SttE (2)

However, by definition E  =  Substituting by E in Equation 2 we get the 
following neat closed form for the average number of duplicates.

D =  ciEAT (3)

VVe have thus a deceptively simple  ̂ arithmetic equation that brings the four 
main parameters of our index together. These are the duplication ratio D, the 
speed ratio a, the partition size E, and the index regeneration period AT. It 
also provides us with a few hints on the mechanics of our method. Given a 
fixed a, the higher E the higher the number of duplicates we will have. This 
is intuitive since a high E means a fine partitioning of the attribute space 
that causes every trajectory to cross a larger number of intervals in a session 
(though still the same distance). D also increases when we increase A T  a hint 
that gives us the factor that will deprive us from enjoying a long AT. This 
is also intuitive since given more time an object travels more distance hence 
more intervals. Related to this observation is an interesting special case of 
Ec[uation 3; the case when the product aE  equals 1. This yields the elementary 
equality

D =  A T  ' (4)

It says that we can ‘enjoy’ a.s many time units between index reconstructions as 
we can afford duplicates of our objects; indeed a pattern that we did not expect. 
VVe have to say first that this special case is not contrived or theoretical; given 
that a is a fixed application parameter, one simply chooses E =   ̂ and checks if 
it makes a reasonable D. In the next section, we present a practical case where 
it holds. Furthermore, the product aE  is not a meaningless mathematical 
product. Since a  is the fraction of distance traveled in a single time unit, 
a E  is just the average number of attribute intervals crossed in a single time

Hn fact this is one of the simplest possible four-variable equations.
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unit. Equation 3 is very important and dominates the rest of this chapter; all 
subsequent analysis, estimations, and comparisons are dependent on it in one 
way or another. Before proceeding to work out its consequences, we introduce 
two quantities that are characteristic to the method. The first quantity is the 
number of index points Pg that we expect to have in a single attribute interval 
when our attribute space is partitioned into E intervals. It is readily computed 
as Pg =  (iV X  D)/E  where the product N x D gives us the total number of 
index points generated. The second quantity is presented through the following 
definition.

D efinition 7 An Interval W eight w is the number of data pages needed to 
store the index elements that belong to that attribute interval:

■N X D-
w =

E x  B

where E is the partition size, N is the system size, D is the average number of 
duplicates per object in the system, and B is the page size (in records).

The value of B  in our application is 204. This is obtained by dividing page 
size (4096 bytes) by record size which requires 20 Bytes in our case. Note 
that w =  We also use E  =  1000 as a fixed value in all that follows.
We think it is a reasonable choice between the two extremes of high and low 
values. An unnecessarily big E  yields an excessive number of copies which is 
the problem we set out to avoid in the first place. .A. small E  is bad for query 
processing because the query answer becomes only a small subset of what we 
have to retrieve to compute it. We will also see that in practice it brings 
about reasonable values with the remaining three parameters (see the next 
section). It remains to experiment with values of a and A T  and see what the 
resulting performance parameters look like. We will do this in the framework 
of a hypothetical application domain that justifies our selection of particular 
values for E, a, and A T ; we hope this application is typical. Since this gets 
us nearer to real applications, we first have to understand better what a  and 
time units stand for in practice. We see this in the next section.
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6.4 The Nature of a and Time Units

We have all along been using a and A T  in an abstract way. We want to know 
how large or small a is in a real application. Since a is the fraction of distance 
traveled in a single time unit, we first have to know how long is a single time 
unit. Is 1 TU equal to an hour? a minute? or a second? (or less?). We 
can examine the effect of each possibility in the context of an application. We 
consider a stretch of distance that is 1000 Km long and vehicles moving along 
it in both directions (directions correspond to negative and positive slopes) 
with an average speed u =  60 Km/hour. We check the three cases one by one. 
If 1 TU =  1 hour, then objects move a distance of 60 Km out of 1000 Km in 
a single time unit; this yields a =  0.06 and aE  =  60 (remember E is fixed 
at 1000). Then Equation 3 reduces to D — 60AT and it is up to us now to 
choose A T  thereby monitoring the resulting D. If we let A T  = 1 TU then 
we regenerate the index once in an hour and accept to have 60 copies of each 
object (i.e., each object crosses 60 intervals of length IKm in an hour). Using 
the same calculations, if 1 TU = 1 minute then a — 0.001, aE  =  1 and we 
have the interesting special case mentioned earlier where D — AT. Again it 
is up to us to choose A T  and this time we choose A T  = 60 TUs which gives 
D =  60. We obtain the same number of copies per object to store but we also 
get the same regeneration period (60 minutes =  1 hour); we continue with the 
last case. If 1 TU =  1 second then a =  0.00001666 and aE =  0.01666 so that 
Equation 3 evaluates to D =  0.01666AT. This time we choose A T  =  3600 
TUs which again gives Z) =  60 and the same period of one hour (3600 seconds) 
between index regenerations. What does all this mean? First the selection of 
the length of a single time unit is immaterial, it worked neither for nor against 
us due to the following reason. The shorter is a single time unit, the smaller 
is the resulting a (since objects travel less distance when time is shorter). But 
then we counter this by assigning A T  a proportionately larger number that 
keeps the real period length the same and yields the same D. Second the fact 
that a fluctuated from 0.06 to 0.00001666 without affecting the nature of our 
indexing problem suggests that we can always play with values (mainly A T) to 
get a tolerable duplication ratio D or at least find a compromise between A T  
and D. The reader might object that our choice of v (60 Km/hr) and AA (1000
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Km) already determined everything and the rest was a change of units; this 
might be true. In general, we feel that a highly turbulent and dynamic system 
(i.e., a big a) or a very sluggish one probably need to be treated as special 
cases and pose a different indexing problem to be solved. Whatever the case, 
we will continue with the above context and in subsequent sections we will use 
the second alternative for the length of a single time unit, that is 1 minute. 
We chose this because it gives our special case D =  AT  and also relieves the 
reader from making any calculations to derive D from AT  or vice versa in the 
examples that follow. For this we ask the reader to keep in mind that Z) =  30 
means both that we incur 30 copies per object and that we generate the index 
every 30 minutes. In our attempt to understand the performance of the FP- 
index we use the values 30, 10, 5, and 1 for D. The latter value means that 
we may even afford a single copy per object in the whole index if we are able 
to regenerate it in a relatively short time every minute. will also test four 
values of N  which are 10000, 25000, 50000, and 100000. We start by looking 
at regeneration or build cost.

6.5 Build Cost

We build the FP-index in the same way as we did with the quadtree method. 
We allocate an array in memory of E  elements and then go through the tra
jectories one by one inserting an index element with associated information 
CnteTs and i/eaues In every interval crossed by the trajectory in the next A T  
time units. Since in this method we select A T  and D beforehand, we know 
there will be about N x D operations of this kind. .After finishing this, we go 
through the array entries and ‘pack’ every B  index elements together, allocate 
a disk page for them, and write them to the disk. We also update our index 
array A to record information about the first and last disk pages storing data of 
the current attribute interval being processed. Here again, we view build cost 
as the sum of an in-memory processing phase cost and the cost of the phcise 
where pages are flushed to disk. The cost of the latter phase is computed by 
multiplying the number of disk pages needed by the index by the disk access 
time. The total number of disk accesses needed is just E times the number of
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N Disk Access Time
10000 20 seconds
25000 5 minutes
50000 21 minutes

100000 1 hr 27 min

Table 6.1: Time to reconstruct the quadtree.

disk pages per interval, that is interval weight w. Thus we have

Disk Access Cost =  wE (5)

We will use the value of 20 milliseconds as an estimation of the time it takes 
to access a disk page. In our study of quadtrees we used a minimal value of 
10 msecs and a maximal value of 30 msecs; here we are using their average. To 
have a fair comparison, we will also repeat estimations for the quadtree regen
eration time using the value of 20 msecs as a disk access time. Furthermore, 
we note here that in an earlier table on build cost estimations for quadtrees we 
used the formula i =  [log2(A^/5 )J to compute the order of a quadtree with N  
elements. This formula gives an order i that is one less than the real order in 
practice due to the assumption of minimal split waves and a perfect pattern of 
plateaus and split waves^. In this chapter we will use the real order for which 
2' is as follows: 32 for 10000, 128 for A^=25000, 256 for A^=50000, and 512 
for A'=100000. We remind the reader that 2‘ is the side length of the parti
tioned space after inserting the N  objects and the resulting quadtree requires 
2‘ X  2' =  2 '̂ pages of secondary memory. The resulting disk access time for the 
four studied values of N  are given in Table 6.1 . W’e have earlier said that for 
N >  25000 the quadtree becomes impractical. We did not include the CPU 
portion of build cost as it is overshadowed by the high disk access cost. Before 
we present the tables for the FP-index, we digress briefly on an aspect of build 
cost not mentioned before.

It was implicitly assumed and accepted throughout the study that the time 
spent rebuilding the index is an idle time during which no requests of any kind

^VVe already suggested that in practice we may add one to the computed order to allow 
for earlier splits.
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N

10000
25000
50000
100000

D=30

7.5
15
30

D=10
1

2.5

10

D=5
0.5
1.25
2.5

D=1
0.1

0.25
0.5

Table 6.2: CPU cost of reconstructing the FP-index (in seconds).

will be processed^. We are then required to reduce build cost as much as we 
can to bring system idleness to acceptable levels. A measure of the goodness 
of a build time is how long it is compared to A T .  Let Trebuiid denote the time 
it takes to rebuild the index. We then formalize the notion of system idleness 
through a parameter we call percentage idleness defined by the formula

TrebuiidPercentage Idleness =
Trebuiid +  A T

X  100 (6 )

In practice, we would tolerate different percentage idleness values according 
to the nature of the application which involves such parameters as heaviness 
of workload or desired response time (for queries). In Tables 6.2 and 6.3 we 
provide the estimations of CPU time and disk access time in the rebuild cost 
of the FP-index; we also give percentage idleness“*.

The first thing we notice when comparing to quadtree values is that there 
is a remarkable improvement and that disk access cost for the FP-index is 
substantially lower than its quadtree counterpart. The biggest value we tried 
for N  (100000 objects) which with a quadtree-based index required one hour 
and a half, now takes only 5 minutes at D = 3 0  and 1..7 minutes at D = 1 0 .  

For A^=50000 we have 1 minute at Z)=10 while it required 21 minutes with 
quadtrees. The CPU cost of reconstruction is almost negligible for most com
binations of N  and D  as evidenced in Table 6.2. In both component costs of 
reconstruction, not only does the FP-index beat the quadtree in its feasible 
range of N  (up to 25000) but it also produces practical costs for higher values 
of N  which are infeasible with quadtrees. For our ‘dream’ value of 100000, 
we may in fact consider Z?=10 to be a feasible solution where the FP-index

^The index could be reconstructed in parallel but this would require twice as much mem
ory; we rule out this consideration anyway.

“'W e ignored CPU time in computing percentage idleness as it is negligible
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N D=30
Access
Time

Percent.
Idleness

D=10
Access
Time

Percent.
Idleness

D=5
Access
Time

Percent.
Idleness

D=1
Access
Time

Percent.
Idleness

10000 40 sec 2.17 20 sec 3.22 20 sec 6.25 20 sec 33.3
25000 1.3 min 4.15 40 sec 6.25 20 sec 6.25 20 sec 33.3
50000 2.7 min 8.26 1 min 9.09 40 sec 11.76 20 sec 33.3
100000 5 min 14.26 1.7 min 14.52 1 min 16.6 20 sec 33.3

Table 6.3: Disk access cost of reconstructing the FP-index.

is regenerated every 10 minutes and takes 1.7 minutes to construct yielding a 
percentage idleness equal to 14.52%.

Now what is the effect of D 1  It is directly related to the storage requirements 
of the index. Halving D  (roughly) halves the number of disk pages consumed 
which in turn halves build cost. Besides, percentage idleness provides us with a 
heuristic for choosing a suitable D  that does not unnecessarily tax our memory. 
When we have approximately the same percentage idleness for two different 
values of D  then we select the smaller D  to save space. Another pattern we see 
in Table 6.3 is that percentage idleness increases as D  decreases. This reveals 
that although decreasing D  causes build cost and A T  to decrease by a similar 
factor, they apparently do not decrease proportionately enough to keep the 
ratio T rebu U d!(T rebu iid  +  A T ) Constant. An extreme case is at D = 1 when we 
are busy one third of the time reconstructing (20 seconds for every minute). 
This is due to the fact that the index has reached a number of disk pages (1000) 
below which it cannot drop which corresponds to the limit of w =  1 even if the 
actual number of index points requires much less memory. In fact, the case 
D =  1 is peculiar in many aspects. In a sense it is a cherished possibility which 
we would like (ideally) to be able to reach in every application. But as it is 
associated with positive implications it also hcis disadvantages; we shall return 

to this in more depth later.
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6.6 Storage Requirements and Utilization

Intuitively, since we are incurring a minimum number of disk accesses in the 
index reconstruction algorithm for both the quadtree and FP-index, the drop 
in build cost must have come from a drop in the number of disk pages consumed 
by the index. In fact, this is what motivated the method in the fii'st place. The 
FP-index requires wE disk pages. Besides this, we will also compute utilization 
ratio. One way to do this is to divide the number of index points that belong 
to an interval which is by the capacity of the pages allocated to an interval 
which is wB. Then letting U denote utilization we have

ND
U =

wEB (7)

(8)

Since w =  \ND/EB], we obtain the more expressive form

ND/EB  
~  \ND/EB]

It is then the relation of a quantity to its ceiling. Table 6.4 presents the 
computed storage consumption (in Mbytes) and utilization of our FP-index 
for various combinations of N and D. The corresponding storage consumption 
values for the quadtree are 4 Mbytes at A^= 10000, 64 Mbytes at A^=25000, 
256 Mbytes at Af=50000, and 1 gigabyte(l) at A^=100000. In the FP-index, 
the highest value is at A^=100000 and D=30 where only 60 Mbytes are needed 
(as opposed to 1 gigabyte). As an example of improvements we take ^"=50000 
at Z)=10® which consumes 12 Mbytes compared to the quadtree’s 256 Mbytes. 
We then can safely conclude that we succeeded in devising an index that has 
practical and reasonable space requirements. Furthermore, unlike execution 
time estimations, our count of the number of disk pages required is fairly 
accurate and a real application may only exhibit negligible deviations.

Does it beat the quadtree on utilization? Not really. We have seen that in 
practice the quadtree oscillates between utilizations of 50% and 90% and has 
an average utilization of 75% in theory. For the FP-index, utilization is high at 
high values of N and D, and low at low values of N  and D. However, a poor 
storage utilization is associated mainly with low storage consumption so that

®This is our favorite value for D\ it seems to be a good compromise.
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N D=30 D=10 D=5 D=1
Requi. Util. Requi. Util. Requi. Util. Requi. Util.

10000 8 74% 4 49% 4 25% 4 5%
25000 16 92% 8 61% 4 61% 4 12%
50000 32 92% 12 82% 8 61% 4 25%
100000 60 98% 20 98% 12 82% 4 49%

Table 6.4: Storage requirements (in Mbytes) and utilization of the FP-index.

N D=10 D=5 D=1
10000 0.2
2.5000 2.5 0.5
50000 10
100000 20 10

Table 6.5: Actual memory utilization of the FP-index (in Mbytes).

the index is not big anyway. This is an important and positive observation 
though. The fact that when we have very low space requirements we also have 
a very small fraction of that space being actually used, suggests that the real 
amount of memory consumed by the index points alone is deceptively low. So 
low in fact, that we can venture to put it in main memory.

To see how far this was possible, we computed the actual memory require
ments of the FP-index for D=10, D=5, and D = l. The results are shown 
in Table 6.5. Note that when the index moves to memory we are no longer 
constrained by disk page size B  and could simply store the ifidex points cor
responding to each attribute interval in an array of fixed size. The reader 
may judge from the table which values of N  we could realistically tolerate in 
main memory. However, it seems reasonable to us that values of N around 
10000 yield an acceptable in-memory index. In fact, if the application at hand 
does not have many attributes to index we may consider A^=50000 feasible 
which at D =5  requires 5 Mbytes®. It is not difficult to see the consequences of 
memory residence of the FP-index on query processing performance and espe
cially insertion which becomes 0 (m ) where m is the mean number of intervals

®This is only a subjective guess.
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crossed by a trajectory (in a session) mentioned at the beginning of this chap
ter. Query processing reduces to simple array access and filtering. Let us note 
before moving to another topic that we consider this to be one of the major 
achievements’  ̂of the FP-index. System sizes which proved unmanageable with 
the cross points method and which the quadtree managed with difficulty and 
strain on memory and computational resources, are now tolerable even in main 
memory. As stated earlier, this was one of the major motivations that guided 
inception of the FP-index. A second motivation was to economize on query 
cost and a third was to reduce insertion, deletion, and update costs. Before 
moving on to discussing how far the FP-index succeeds in realizing these goals, 
we digress briefly on the topic of comparing its primary memory requirements 
with those of the quadtree.

6.6.1 Primary Memory Consumption

In this section we calculate how much memory the nodes of a quadtree require 
and compare it with the FP-index. Remember that the disk pages contain raw 
data while the indexing nodes which we store in main memory provide just 
information for navigation and search and pointers to disk pages at the leaf 
level. We have earlier refrained from treating this subject as the main mem
ory requirements of index nodes were overshadowed by the secondary memory 
consumption of the data pages. Since we are here in the context of comparing 
quadtrees performance with that of our FP-index over several parameters, this 
brief discussion is in place.

A single record of the quadnode contains 12 fields each requires 4 bytes 
yielding a total of 48 bytes per node. It then remains to compute the number 
of such nodes. We will compute this number for regular quadtrees; those whose 
corresponding space is partitioned into a 2‘ x 2' grid for some f®. If s =  2‘ is 
the side length of the grid, then we denote by Ls the number of nodes (leaf 
and internal) of the quadtree indexing an s x s partitioned space (remember 
that the partition is caused by insertions and splits and not vice versa). In this

'It has yet to be validated through experimental studies though.
^The order i of a quadtree, as defined in Chapter 4, coincides with its height.
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N S Ls Memory Consumption
10000 32 1365 64 Kbytes
25000 128 21845 1 Mbyte
50000 256 87381 4 Mbytes
100000 512 349525 16 Mbytes

Table 6.6: Primaiy memory consumption of quadtree nodes, 

quadtree there are data pages pointed to by leaf nodes. Then we have

“   ̂ + :p  +  : [ i  +  -
s’

■ + J 7

/= 0

= 1“
The fraction becomes negligible very quickly (e.g., it equals 0.0002441 at 
i=5). Neglecting this fraction yields the simpler approximative formula

4 o
'■ V-/ _ c “r·̂  — O

3 (9)

VVe use Equation 9 to compute the actual memory consumption for the four 
values of N  we have been using in the study. The result is given in Table 6.6. 
Notice how consumption quickly becomes in megabytes. As opposed to these 
values, the primary memory consumption of the FP-index is hardly noticeable. 
It is an array of E  records each consuming 8 bytes; at j5=1000 it requires less 
than 8 Kbytes. Furthermore, its requirements of primary memory depends 
only on E  and is totally independent from N. In summary, 'compared to the 
quadtree index, the FP-index’s primary memory consumption is negligible. We 
continue with other aspects of performance.

6.7 Insertion Cost

One of the dramatic improvements we have achieved is in reducing insertion 
cost. In all circumstances, it requires one disk access for each interval crossed 
by the new trajectory during the time that remains until the end of the session.
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We can do this because for each interval we have a pointer in our index A to the 
last page that contains data of that interval. This makes the number of disk 
accesses per insertion bounded by m, the mean number of intervals crossed 
in A T  time. Besides the resulting lower cost of insertion which we analyze 
below, there is also the advantage of independence from N, the system size. 
The average cost of insertion which we denote by Cinsert is then the same for an 
application with 5000 objects as for one with 100000 objects. It only depends 
on E  and the average speed v. On the other hand, Cinsert doubles between one 
plateau and the next in the quadtree as was explained in Chapter 4 and is thus 
badly affected by an increase in N. For the FP-index a more accurate estimate 
of the average number of disk accesses would be m/2. This is because objects 
come at different times of the session and according to the position in time 
at which they appear they will have time to cross between 1 and m attribute 
intervals till the end of the session.

As a first optimization measure, we could refrain from inserting objects 
which come ‘ too late’ in the session when there remains little time before re
constructing the index. Inserting such objects will hardly have any function 
other than burdening us with extra disk accesses if the remaining time is not 
enough to answer queries that involve them or if the resulting inaccuracy is 
negligible. On the other hand, we can still do better if we use a simple tech
nique which we call delayed insert. The idea of this technique is to gather 
in memory a few insertion requests for every attribute interval and then flush 
their corresponding objects to disk together hence incurring a single disk ac
cess for them. We implement this as follows. We use a vector T whose length 
is the partition size E. Whenever a new object comes, we compute as usual 
which attribute intervals it will cross in the remaining time; assume it crosses 
m intervals. Then instead of seeking our index A and retrieving the m rele
vant page numbers to finish the insertion, we simply insert those m points in 
array T in their correct positions (T[i] will receive the index point which falls 
in the attribute interval)., If during this insertion, some array element T[i] 
re'aches some threshold number of points q then w’e flush its contents to the 
disk. We call q the queue size. Vector T can then be implemented as an T  x <7 

two-dimensional array. We can immediately see that delayed insert with queue 
size q divides the average insertion cost per object by q. Ideally, \i q =  m we
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reach the cost of one single disk access per insertion as opposed to a single disk 
access per interval crossed. Unfortunately, there is an important limitation 
of delayed insert that may deprive us from such a luxury. Delaying insertion 
results in the following two kinds of misinformation.

1 . At the system scale. There is a fraction of objects which have effectively 
entered the system but which do not figure in our index. A range query 
submitted at any time will then be missing a few objects; namely those 
which are still in the queue. Depending on the criticality of such informa
tion we may tolerate different error rates.

2. At the object scale. Since insertion proceeds by interval and no longer by 
object, we may have part of an object's points flushed to the index and 
the other part still pending in the queue. That is because an object’s 
associated m intervals will usually not fill up at the same time. This 
might be less harmful to the accuracy of the answers computed for range 
queries. This is because it suffices that one index point associated with 
the new object (there are m of them) be already flushed to disk for a range 
covering its interval to include it in the answer.

We expect that at low values of q the error rate might be negligible and we 
may tolerate a small amount of inconsistency with reality. We have in mind 
values of q below 5. In fact, even using  ̂ =  2 is better than ignoring the 
technique altogether as it will cut in half the overall cost of insertions which is 
a significant gain in the long run. The simplicity and ease of implementation 
of delayed insert policy is another point in favor. Finally, we note that the cost 
of a deletion is w x m. This is because.once we know an object belongs to some 
attribute interval A[z] (1 <  i <  E) we have to retrieve all the lu associated data 
pages to search for it while for insertion we just needed to access the last page 
of the chain. The cost of an update is the sum of insertion and deletion costs.
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6.8 Range Query Performance

The case of range queries is slightly different from that of insertions although 
the improvement achieved in disk access cost is also substantial when compared 
with quadtree performance. Here, when a range covers any attribute interval, 
all the chain of disk pages associated with that interval (which is the interval 
weight w) have to be retrieved to answer the query. The cost is then no longer 
independent of N  as was the case with insertion. Fortunately, the system 
size affects query cost in a much less severe way in the FP-index than it does 
with quadtrees where each split wave doubles the cost. We provide a direct 
comparison of continuous query costs in the F’P-index and the quadtree index. 
We shall talk later about instantaneous queries. For the comparison to be 
fair, we use a standard hypothetical continuous query that covers 1% of the 
indexed space. When E =  1000, this coincides with 10 attribute intervals 
of the FP-index. However, this does not correspond to a rounded integer 
multiple of attribute intervals in the quadtree index (intervals do not have the 
same length in both indices). To remedy this, we add an extra interval in 
the quadtree case which mathematically means taking the ceiling. When we 
feel this was unfair to the quadtree method, we also add one or two intervals 
to the range length of the FP-index so as to make comparison as accurate as 
possible. The number of intervals into which the space gets partitioned in the 
case of the quadtree is not fixed but equal to 2' where i is the quadtree order. 
In Table 6.7, we give the disk access cost of the continuous query mentioned 
above. Table 6.8 shows this cost in the FP-index for the four values of D 
we used earlier. It also contains an extra column for the percentage drop in 
cost achieved when comparing with the corresponding quadtree value. With 
the exception of one entry, all other percentages indicate that the number of 
disk accesses required drops by at least two thirds. In fact, the cost drops to 
one tenth its original value in most cases. Again, this was possible thanks to 
our success in eliminating redundancy and reducing substantially the required 
number of copies in the design of the FP-index. This dramatic percentage 
improvement translates into a tolerable number of disk accesses per query as 
the values in Table 6.8 suggest. For example, the values at T>=30, i)=10, and 
D —6 average to 40 disk accesses which with an average access time of 20 msecs



CHAPTERS. THEFP-INDEX 85

N D Disk Accesses
10000 32 32
25000 128 128
50000 256 768
100000 512 2560

Table 6.7: Disk access cost of continuous queries in the ciuadtree method.

V D=30
Disk

Access
Percent.

Drop

D=10
Disk

Access
Percent.

Drop

D=5
Disk

Access
Percent.

Drop

D=1
Disk

Access
Percent.

Drop
10000 20 .37.5 10 68.75 10 68.75 10 68.75
25000 32 75 16 87.5 10 92.18 10 92.18
50000 96 87.5 36 95.3 24 96.87 10 98.7
100000 1.50 94.14 50 98 30 98.82 10 99.6

Table 6.8: Disk access cost amd improvement achieved for continuous queries 
in the FP-index.

will take 0.8 seconds. Access time is even more reasonable at lower N. For 
example, at A^=25000 and E=5 it is 0.2 seconds. As to the performance of 
instantaneous queries, given the absence of any indexing information related 
to the time dimension from our index, they will require the same number of 
disk accesses as a continuous query that covers the same attribute range. This 
is the main drawback of our FP-index and in this respect the quadtree remains 
always superior with its cost of a single disk access per interval covered by 
the query. However, we believe that this is not serious enough to compromise 
the applicability of the method in practice especially for the lower values of N 
given the big improvement achieved in continuous (hence instantaneous) query 

performance.

Another relief is that if we find a way to batch the processing of continuous 
queries and do it in an efficient way at the beginning of sessions, then we will 
have more time for answering instantaneous queries and thus improve overall 

response time. The next section explores this new topic in depth.
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6.9 An Optimization Algorithm for Continu
ous Queries

In this section, we present the algorithm which minimizes the disk access cost of 
continuous query processing. Section 6.9.1 introduces the necessary concepts. 
In Section 6.9.2, we present the algorithm and in Section 6.9.3 we analyze its 
performance.

6.9.1 Introductory Notions

We have earlier said that a continuous query coming at time tnow will be eval
uated over the time starting from tnow and till the end of the session during 
which it was submitted. From then on it will be reevaluated every AT” time 
units after every reconstruction of the index until it is e.xplicitly deleted. We 
then have a set of queries with their associated upper and lower limits to be 
evaluated at the beginning of each session. An important observation intrinsic 
to the nature of range queries is that ranges may overlap. Furthermore, the 
higher the number of such queries and the wider their ranges, the more the 
amount of overlap increases. The heart of our optimization algorithm is the ex
ploitation of overlap to reduce to a minimum the total number of disk accesses 
required to answer the set of continuous queries. Since overlap is a central 
notion in our exposition, we shall seek to quantify it more concretely in a way 
that emphasizes our goals. For this, we first need the following definition.

D efin ition 8 Given a session s, an attribute space partitioned into E equal

sized intervals, and a set of continuous range queries over this space, the p op 
ularity Pi of the attribute interval (I < i ^ E) is the number o f queries 
whose range contains or partially overlaps with it.

An interval that is not covered by any query has a popularity of 0. We then 
express overlap in terms of p,·. We could simply choose the sum Pi 
an indicator of overlap or the ratio P i)IE  which actually means average
popularity. However we choose the following expression which though looking
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less natural agrees more with intuition.

D efin ition  9 IVe characterize overlap of range queries over an attribute space 
partitioned into E equal-sized intervals by the Overlap Index which we denote 
by 0 1  and e.vpress using the formula^

01 = -  l)[p. /  0]
¿=1

We subtract one from each non-zero popularity and take the sum over the 
E  intervals. The boolean expression [p,· ^  0] is used because an interval of 
popularity 0 does not contribute to overlap. Similarly, an interval of popularity 
one being covered by a single query range should not contribute to overlap 
hence the justification of p,· — 1. Hereafter, we say that a query references an 
attribute interval or that attribute interval is referenced by a query if the range 
of the query contains or partially overlaps with that query. Let us turn to our 
algorithm.

6.9.2 The Algorithm

The main idea is that if an attribute interval is covered by many queries, we 
should still bring its associated data pages to the buffer only once. While 
its data pages are in the buffer, we use them to compute answers for the 
referencing queries. What we will do is then the following. We will go through 
the attribute intervals one by one and bring into the buffer the data pages of 
all intervals of non-zero popularity. Once all referenced intervals’ data pages 
are in the buffer, they can be used to compute the answers o f all the queries. 
For this we will temporarily assume that the buffer is large enough to hold the 
disk pages associated with all the referenced intervals. We use this assumption 
mainly to ease our presentation; later we suggest remedies to this problem that 
will allow us get rid of it. To be able to describe the algorithm, we need some 
terminology and notation related to attribute intervals and queries. This is 
given below.

®The square braces are what D. E. Knuth called Iversonian notation after its originator 
Kenneth Iverson. In [GKP89] he says ‘the idea is simply to enclose a true-or-false statement 
in brackets and to say that the result is 1 if the statement is true, 0 if the statement is false’ .



CHAPTER 6. THE FP-INDEX 88

• di'. Number of data pages associated with the attribute interval.

• Pi: Popularity of the attribute interval.

• Starting point of the range of the range query.

• '̂̂ max· Ending point of the range of the range query.

• N q : Total number of range queries to be processed in the current session.

• Q ID ij: Identity number of the range query that references the 
attribute interval.

• Ci'. Total number of data pages containing data required to answer the
range query.

Next, we present our data structures. VVe will make use of five arrays; let us 
justify each of them. The first is our prominent FP-index which we called array 
,4. It is needed to retrieve from disk the data pages associated with intervals 
of non-zero popularity. The second is the array which contains the continuous 
queries to be processed which we call QL (for Queries List). The third is an 
array which stores the popularities of each of the E intervals; we call it array 
P. For the time being, popularities are needed to distinguish zero popularity 
intervals from non-zero popularity ones and determine accordingly which data 
pages will be needed and which will not. The fourth is an array that stores 
for each interval the ID s  of the queries referencing it. We call it the interval 
references array and denote it by R. Obviously array R's contents will have to 
be computed by our algorithm. The fifth and final array is one that records for 
every query which buffer pages contain the data pages needed for answering it; 
we call it array B. This array is the one that will be used for query processing 
and it may be seen as the output of our optimization algorithm. The array 
R  of interval references is needed only as an intermediate data structure that 
allows us to compute the contents of array B. Below, we give a summary of 
these arrays in more formal notation.

• A: The FP-index; A[i] = <  FirstPagei, LastPagci > (1 < i <  E).

• Q L :  The queries array; QL[i\ = <  Q I D i ,  A'^i^.A'^^^ > (I < i <  Nq ).
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for г <—1 to Nq do
bi= First attribute interval covered by QLliYs range. 
e,= Last attribute interval covered by QL[iYs range.
/♦ update in te rv a l referen ces and p opu larity  array * /  
for j  i— bi to 6i do

m  < -  p\i] +1
H(i| ^ u [QW,]

endfor
endfor

/* compute the contents o f the B  array */ 
for i <— 1 to E  do 

if P[i\ 7  ̂ 0 then
Transfer the chain of pages starting at A[i].FirstPage 
to buffer positions ¿¿i, 6:2) ■ · · ) 6,(7, 
for j  <— 1 to Pi do 

Q ID ij <r— R[i.,j\ 
for A: <— 1 to Ci do

B [ Q I D i , , \  ^  B [ Q I D i , ]  U {6,.,} 
endfor 

endfor 
en d if 

endfor

Figure 6.5: The optimization algorithm for continuous query processing.

• P: The popularities array; P[z] =  Pi {I <  i < E).

• R: The interval references array; R[i.,j] =  Q ID ij 
{1 < i <  E and 1 < j  < Pi).

• B: Array of query references to buffer pages; B[i] =  { 6,i, 6,-2, . . . ,  6,(7,} 
(1 <  * <  Nq ).

The algorithm is given in Figure 6.5. It has two separate phases driven by 
the two independent loops. The first phase computes popularities of attribute 
intervals (i.e., the pi's) and fills the interval references array R appropriately. 
It does this by going through the list of queries’ ranges and computing for 
every query the intervals it references. Each such reference is then recorded 
in array R and the associated popularity is incremented. The second phase is
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dedicated to computing the contents of array B  which as mentioned before is 
the algorithm’s output and may also be seen as containing a map of the buffer 
upon which depends the batch execution of the set of continuous queries. The 
job of the outer loop is to go through the list of intervals one by one and bring 
from disk to the buffer all the data pages associated with intervals of non
zero popularity. We let the pages of the interval reside in buffer positions 
bn·, bi2 , · ■ · ■, bic,· It now remains to record these positions for each query whose 
range covers the interval; this is the task of last two nested loops. This way, 
each query will know later where on the buffer its associated data resides. Once 
our optimization algorithm finishes its job, we are ready to process queries. To 
process the query, we read all buffer pages mentioned in B[i] and merge 
them. We then filter out duplicates and get the answer. Let us analyze the 
performance of the algorithm.

6.9.3 Performance Analysis

In this section, we analyze the performance gain achieved by the algorithm 
described above and suggest ways to remove the assumption of a large buffer. 
Let /  denote the total number of intervals referenced by the set of continuous 
queries in a session. Then /  may be expressed cis follows.

I  =  Z]b·· 0] ( 10)
1=1

First, notice that I < E no matter how large is the set of queries to be pro
cessed. Second, ivl is the resulting optimal number of disk accesses. If E, the 
partition size is given and fixed then there is no way to avoid accessing a disk 
page that was referenced by one or more queries; we sirhply cannot compute a 
correct query answer without it. We forward this observation in the form of a 

proposition.

P rop osition  1 Given a fixed partition size E of the attribute space, the above 
algorithm processes any set of continuous queries using an optimal number wl 
o f disk accesses where w is the interval weight and I  is given by

I = J2\Pi 0]
1 =  1
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How many disk accesses does this algorithm save us compared to the previous 
approach? For each referenced interval (p,· > 0), the previous approach 
incurred wpi disk accesses while our new optimal algorithm incurs only w disk 
accesses. The gain is then iu{pi -  1) when p, > 0. Thus, the total gain is given 
by the sum w{pi — l)[p,· > 0]. This is the product of interval weight and 
overlap index hence we get

Disk Cost Gain =  w x 01  = io (^ {p i — l)[p,· > 0]) ( 11)
t = l

This means that for a fixed / ,  the higher the number of queries the more gain 
we achieve and the lower the average cost of a single query. The latter cost 
may even drop below a single disk access if there are ‘enough’ queries. When 
does this happen? If the set of Nq queries span I  attribute intervals, then 
exactly zvi disk accesses are incurred. It thus suffices to have Nq > wl for this 
to happen. We have therefore managed through the use of batch processing 
and exploitation of query overlap to devise a query processing algorithm that 
incurs less than a single disk access per (continuous) query. Now, let us return 
to our initial assumption on buffer size and see how we can avoid it.

We assumed the buffer big enough to hold all of the lul referenced pages 
which is expressed by the constraint BE  > w l. Since /  is always bounded 
from above by E  and we cannot guarantee any bound lower than that, our real 
constraint is in fact B E  > wE. This is very unrealistic as it plainly requires 
the buffer to hold the whole data in the worst case. In order to circumvent this, 
we need to find a method that allow incremental query processing or a way to 
decompose I. In fact, we will do both. In our context, incremental query pro
cessing is the ability to compute the answer of a query without the restriction 
that all its referenced pages reside in the buffer at the same time. Unless we 
impose an upper bound on the maximum length of attribute space that could 
be queried, this ability is necessary. For the second goal of decomposing /  (or 
reducing it somehow), we introduce the following term.

Definition 10 An Interval Cluster (or simply cluster) is a set of adjacent 
attribute intervals / 14, /I 4 +i, . . . , of  non-zero popularity surrounded 
from the left and right by intervals of popularity zero; i.e., popularities satisfy
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P k - i  — Oj Vi : k < i < k P / Pi > 0, and =  0. We say I is the cluster 
length and w x I the cluster size.

The condition BE > w l must be satisfied only if all of the I referenced pages 
are contiguous. If there are any gaps then we have our I  references partitioned 
into a set of clusters C =  {C i, C2, . . . ,  where 7 is the number of such 
clusters. Our algorithm needs a very simple change to recognize gaps. We just 
need to make p, =  0 a stopping condition for bringing further pages into the 
buffer. We then process all the queries that caused or formed the current cluster 
(with their interval references). Having done this, we could move on to the 
next cluster, bring its pages to the buffer, and compute the associated queries’ 
answers in a totally independent manner. A useful and important observation 
is that the set of queries causing cluster Ci which we call 5, is disjoint from the 
set of queries that cause cluster Cj (i ^  j)', formally S{ fl Sj = (j). This requires 
the assumption that if a query conjunctively references two disjoint segments 
of the attribute space, it will be decomposed into two separate subqueries with 
different QIDs. Its desired consequence is that the pages of a given cluster 
could take the places in the buffer of the pages of the previous cluster without 
causing problems. It also reduces the amount of main memory needed for 
query processings*  ̂since it allows us to divide the set of queries into 7 mutually 
disjoint subsets each corresponding to the cluster it caused and evaluate each 
subset in series. Let Imax denote the maximum cluster length; we have the 
lighter constraint on buffer size

BE > w X L ( 12)

Let us then see how to process incrementally a query that involves more data 
pages than that our buffer can handle. For such queries, we just bring as 
many pages as we can afford, run through their data filtering out duplicates, 
and append the result to the query answer. We then do the same with the 
remaining sets of pages until we exhaust all of them. Finally, we make a 
last pass over the answer removing duplicates that were not recognized due 
to independent processing of chunks of pages. This algorithm could easily be 
extended to handle multiple queries that reference adjacent intervals. In this 
way, we have solved the problem of cluster sizes that are bigger than BE.

^°This involves gathering relevant index points and filtering duplicates.
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We propose then to go through the array P  of popularities and derive from 
it the set of clusters and their sizes. We then process clusters which fit in the 
buffer in batch mode and process the rest using the incrementality technique 
explained above. The gain in the number of disk accesses remains the same.

6.10 Summary

In this chapter, we proposed a new indexing method for dynamic attributes 
that was inspired by the causes of space and time inefficiency in the quadtree 
approach. This method uses only the attribute dimension in indexing and boils 
down to a very simple unidimensional array. .Although we have not yet done 
any experimental performance studies, the simple analysis provided here, shows 
that it is promising and that it beats the quadtree method in the following 
aspects:

1. The cost of reconstructing the index every A T time units.

2. The primary memory requirements of the index.

3. The disk storage requirements of the associated data.

4. The average number of duplicates needed per object.

5. The disk access cost of the insertion operation.

6. The disk access cost of continuous query processing.

7. The overall simplicity of the method and ease of implementation.

Furthermore we contributed an optimal algorithm for continuous queries that 
relies on batch processing at the beginning of sessions and the exploitation of 
query range overlap. It reduces the overall cost of the set of continuous queries 
to a small and tolerable number of disk accesses that is bounded from above, 
independent of the query load, and proved optimal.

Given that most improvements found by analysis are substantial in terms 
of percentage, we hope that experimental evaluation will only confirm our
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expectations and that discrepancies are unlikely to reverse our conclusions on 
the virtues of the method. Our FP-index is thus worth studying.



Chapter 7

CONCLUSION

We have thus reached the end of this work. We would like to recapitulate upon 
what we have done and project into future work. This thesis was started with 
a proposal to study and compare the quadtree method and the cross points 
method. We believe that we succeeded in providing a detailed performance 
study of both of the methods so that very little (not to say nothing) remains 
to be said about their behavior in the chosen context and supported query 
types. Moreover, where any of the two methods fell short of being practical 
or of exhibiting reasonable performance, we contributed (whenever possible) 
our own algorithms and suggested modest techniques of improvement. When 
we failed to do so, as was the case with the cross points method, we tried 
to explain why the problem was inherently difficult. Finally, we distilled the 
experience gained through the study of both methods into a novel solution: a 
new indexing technique we called the FP-index which is promising.

The experimental performance study of both the quadtree and the cross 
points method counts as a contribution in its own right. Although it was 
overshadowed by many of our additions, we think it was not trivial anyway. It 
consisted of the development of a simulation model with associated parameters. 
This in turn required us to gather a thorough understanding and a holistic 
view of what is at stake in designing and assessing the worth of any new access 
method. As an example minor contribution, we distilled our understanding into 
a list of fourteen parameters that sum up the desirable properties in any access
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method regardless of the nature of data it is meant for (the list is in Chapter 
3). We then implemented the model to be able to conduct the simulation 
experiments and this involved implementing the quadtree with its associated 
operations as well as the implementation of a buffer manager. Overall, the 
performance study constituted more than half of our work.

In the quadtree method, we contributed an optimal algorithm for recon
structing the index. It has optimal complexity in the sense that it requires 
exactly one computation to place an index point in its right place and so no 
redundant computations are involved and overall CPU time is minimal. It also 
recjuires an optimal number of disk accesses as it relies on computing the con
tents of the index’s data pages in memory and then transferring them together 
to the disk. We derived an analytical formula which allows us to predict the 
final shape of the resulting index given the system size N. In fact, the optimal 
quadtree reconstruction algorithm is based on it and would not have existed 
without it. We also provided a mathematical analysis of the average storage 
utilization of the quadtree which gave us the value of 75%. This at least served 
to improve our understanding of the mechanics of the method.

In the cross points method, we concluded that the method is impractical 
for values of N  above 2000 due to the quadratic complexity of the cross points 
algorithm and the resulting impractical execution time of the cross points com
putation function in a real sample run. We then contributed an informal criti
cism of the method in which we conclude that the quadratic complexity of the 
cross points computation algorithm is intrinsic to the problem and thus insur
mountable. As such, we could not go any further beyond the naive algorithm. 
We enriched the critique by presenting a few trails of thought and speculations 
about ways to improve upon the naive algorithm which we hope added more 
credibility to our arguments and improved the general understanding of how 
the method works.

We did not provide any comparative study between the quadtree and the 
cross points method. Since the early stages of our work, we sensed that if the 
cross points method is to make use of an in-memory data structure, there would 
later be little common ground for comparing the two methods. Our attempts 
to seek points of commonality did not culminate in success. In reality, we do
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feel that the methods are fundamentally different. Nevertheless, it was clear 
to us right from the beginning that if the au.xiliary overhead associated with 
the cross points method is acceptable and tolerable then it will indeed beat the 
quadtree approach over most parameters (if not all). This is because all the 
operations and query processing have complexity (9(log N) and no disk access 
costs are involved. As we could not circumvent the high cost of cross points 
management, the quadtree method is the declared winner.

Finally, we mention the contribution most valuable to us; this is the FP- 
index method. First, we have to say that although it was inspired by some of 
the disadvantages observed in the behavior of the quadtree index, it is not a 
mere extension nor a refinement of it. Rather, it is a radically different approach 
based on partitioning the attribute space in a fixed manner and indexing only 
on the attribute dimension. We have worked out all the important details of the 
method. Furthermore, through arguments and simple mathematical analysis 
vve argued for the superiority of its performance relative to the quadtree across 
the majority of performance criteria considered. In the area of query process
ing, we started from the observation that the ranges of queries may overlap and 
devised an intelligent and optimal continuous query processing algorithm that 
exploits overlap. It potentially reduces the cost of a single continuous query 
to less than a single disk access. We strove to make our presentation of the 
FP-index as complete as possible missing only a few simulation experiments 
to substantiate our claims based largely on simple analysis and common sense. 
\V̂  strongly believe however that the arguments we presented are enough proof 
o f the superiority of the PP-index and that even sizable error will not reverse 
judgment over most performance parameters. .4dd to this the fact that some 
conclusions are not dependent upon any estimations and are thus not prone to 
change in real experiments. As such, the experimental study of the PP-index 

is left for future work.

For additional future work, we would like to explore the possibility of an 
access method that does not need to be reconstructed periodically. We have 
been uneasy about the prospects of remaining idle more than 10% of the time 
just to destroy the current index and reconstruct the next one. We also consider 
this to be a disadvantage to the three methods presented in this thesis. It would
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be nice to find a technique whereby the access method ‘moves’ in a more smooth 
and graceful way along the time dimension rather than have itself destroyed 
and regenerated. Ideally, we would like it to emulate the animal populations’ 
evolution through time. An access method with such a property will also be 
more suitable for handling persistent queries which require referral to all past 
states up to a certain time point in the past (see Chapter 2). Adapting current 
access methods to handle persistent queries is also a future research problem.
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