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Abstract

Millions of location-aware devices, such as mobile phones, cars, and environmental
sensors constantly report their positions often in combination with a timestamp
to a server for different kinds of analyses. While the location information of the
devices and reported events is represented as points and polygons, raster data is
another type of spatial data, which is for example produced by cameras and sensors.
This Big spatio-temporal Data needs to be processed on scalable platforms, such as
Hadoop and Apache Spark. However, these platforms are unaware of, e.g., spatial
neighborhood, making them practically impossible to use for this kind of data.

Furthermore, the repeated executions of the programs during development and
also by different users result in long execution times and potentially high costs
in rented clusters. These costs can be reduced by reusing commonly computed
intermediate results.

Within this thesis, we tackle the two challenges described above. First, we
present the STARK framework for processing spatio-temporal vector and raster
data on the Apache Spark stack. For operators, we identify several possible algo-
rithms and study how they can benefit from the underlying platform’s properties.
We further investigate how indexes can be realized in the distributed and parallel
architecture of Big Data processing engines and compare methods for data parti-
tioning, which perform differently well with respect to data skew and data set size.
Furthermore, an approach to reduce the amount of data to process at operator level
is presented. In order to reduce the execution times, we introduce an approach to
transparently recycle intermediate results of dataflow programs, based on operator
costs. To compute the costs, we instrument the programs with profiling code to
gather the execution time and result size of the operators.

In the evaluation we first compare the various implementation and configuration
possibilities in STARK and identify scenarios when and how partitioning and index-
ing should be applied. We further compare STARK to related systems and show
that we can achieve significantly better execution times, not only when exploiting
existing partitioning information. In the second part of the evaluation we show that
with the transparent cost-based materialization and recycling of intermediate results
the execution times of programs can be reduced significantly.





Zusammenfassung

Millionen Geräte, wie z.B. Mobiltelefone, Autos und Umweltsensoren senden ihre
Positionen zusammen mit einem Zeitstempel und weiteren Nutzdaten an einen Ser-
ver zu verschiedenen Analysezwecken. Die Positionsinformationen und übertragenen
Ereignisinformationen werden als Punkte oder Polygone dargestellt. Eine weitere
Art räumlicher Daten sind Rasterdaten, die zum Beispiel von Kameras und Senso-
ren produziert werden. Diese großen räumlich-zeitlichen Datenmengen können nur
auf skalierbaren Plattformen wie Hadoop und Apache Spark verarbeitet werden,
die jedoch z.B. die Nachbarschaftsinformation nicht ausnutzen können – was die
Ausführung bestimmter Anfragen praktisch unmöglich macht.

Die wiederholten Ausführungen der Analyseprogramme während ihrer Entwick-
lung und durch verschiedene Nutzer resultieren in langen Ausführungszeiten und
hohen Kosten für gemietete Ressourcen, die durch die Wiederverwendung von Zwi-
schenergebnissen reduziert werden können.

Diese Arbeit beschäftigt sich mit den beiden oben beschriebenen Herausforde-
rungen. Wir präsentieren zunächst das STARK Framework für die Verarbeitung
räumlich-zeitlicher Vektor- und Rasterdaten in Apache Spark. Wir identifizieren
verschiedene Algorithmen für Operatoren und analysieren, wie diese von den Ei-
genschaften der zugrundeliegenden Plattform profitieren können. Weiterhin wird
untersucht, wie Indexe in der verteilten und parallelen Umgebung realisiert werden
können. Außerdem vergleichen wir Partitionierungsmethoden, die unterschiedlich
gut mit ungleichmäßiger Datenverteilung und der Größe der Datenmenge umgehen
können und präsentieren einen Ansatz um die auf Operatorebene zu verarbeiten-
de Datenmenge frühzeitig zu reduzieren. Um die Ausführungszeit von Programmen
zu verkürzen, stellen wir einen Ansatz zur transparenten Materialisierung von Zwi-
schenergebnissen vor. Dieser Ansatz benutzt ein Entscheidungsmodell, welches auf
den tatsächlichen Operatorkosten basiert.

In der Evaluierung vergleichen wir die verschiedenen Implementierungs- sowie
Konfigurationsmöglichkeiten in STARK und identifizieren Szenarien wann Parti-
tionierung und Indexierung eingesetzt werden sollten. Außerdem vergleichen wir
STARK mit verwandten Systemen. Im zweiten Teil der Evaluierung zeigen wir,
dass die transparente Wiederverwendung der materialisierten Zwischenergebnisse
die Ausführungszeit der Programme signifikant verringern kann.
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Chapter 1
Introduction

Space agencies of many nations operate satellites in space that monitor the earth.
Researchers can use their recordings to, e. g., investigate the impact of climate
change, measure the global urban footprint, and monitor the extent of rain forests,
deserts, and the rise of the sea level.

The DLR (Deutsches Zentrum für Luft- und Raumfahrt, engl.: German Aerospace
Center) publishes images taken by the Sentinel 2 satellite mission (and many oth-
ers). The satellite takes pictures of the earth using optical sensors. These images
are available in raster data format and researchers use them for various tasks.

Archaeologists can use the high resolution images of global scale to find traces
of ancient cities or ruins, even though they are buried underground. Using time
series analysis methodologies, they can also use the raster images and recordings
from other sensors to re-construct the cutback of the rain forests over time. In July
2018 the project ICARUS started its operational phase to track animals’ movements
from space using sensors mounted on the International Space Station with the goal
to predict natural disasters such as volcano eruptions and earthquakes1.

The NPMM2002 at the TU Ilmenau can be used to take high resolution images
of, e. g., wafers. Depending on camera resolution and magnification, data sets up
to 17 TB per object are produced [10, 54], which cannot be handled by single node
database systems anymore. The images are stored in raster data format and because
of their large size, scalable processing operators are needed. Besides error detection,
researchers use the high resolution images to find regions of interest to extract and
inspect with other software. Objects examined with such setups include wafers,
micro-mechanical objects, and optical assemblies, such as lenses. Often the goal
is to find errors produced during the making process or to analyze the material’s
properties.

However, not only images and sensor values are important spatial data. Nowa-
days, almost every mobile device and modern car is equipped with a Global Posi-
tioning System (GPS) device that can also report its position to the manufacturer or
some other company. Especially for car rental and car sharing companies the cur-
rent position information as well as its course over time can be useful to understand
where more cars are needed and how the fleet can be optimized. Another example
are agricultural machines which also often include a GPS system and report their
position. This information is used to automatically identify the borders of farmland
and cultivated areas. The gained information can be utilized for better route plan-
ning and autonomous driving of such machines. Software platforms used to preserve
and analyze this captivating but costly data must be able to handle especially the
spatial and temporal information efficiently.

1https://icarusinitiative.org/
2Nano Positioning and Measurement Machine

https://icarusinitiative.org/


CHAPTER 1. INTRODUCTION

Database systems have been around for decades and are heavily used in all kinds
of software to store and retrieve the valuable information. With their advance
and wide-spread acceptance since the 1970s, researchers have focused on developing
new and optimizing existing storage schemes, access methods, and query operator
implementations.
The spatial, temporal and, of course, their combination – spatio-temporal – data
greatly benefit from being treated specifically. Database Management Systems
(DBMSs) usually are implemented in a general fashion so that the internal processing
is data type agnostic, i. e., a filter operator can be applied on any attribute and a
join operator can combine relations on any join attribute type. However, while basic
attribute types are being processed using predicates such as equal (=) or less than
(<) spatial and temporal attributes need another set of functions and predicates.
Typical predicates on spatial data are intersects or contains, expressing that one
shape somehow intersects or completely contains another shape. For temporal data,
before and after are common predicates. Evaluating these predicates can be expen-
sive and DBMSs started to extend their portfolio of basic data types and operators
to represent spatial and temporal data objects along with efficient algorithms for
processing.

Besides implementing spatial operators in DBMSs, specialized programs were in-
troduced to analyze spatial data. So called Geographic Information Systems (GISs)
support various formats used to store spatial objects and provide users with a rich
set of operators to inspect their data sets. Often, GIS applications visualize the
processed data on maps and are able to add layers from other data sources, too.
Researchers, management, and authorities so are able to visually identify patterns
or are supported in their decision making process.

1.1 Motivation
In the late 2000s, a new trend arose among researchers and companies of all sizes:
Big Data and data science. As the price for storage dropped, more and more data
was collected and analyzed with the goal for companies to understand their cus-
tomers or predict future trends and opportunities. The increased amount of data
stored soon exceeded the processing capabilities of a single machine and distributed
and parallel systems to process them in acceptable time were required. In [28],
Google presented their implementation of the MapReduce paradigm that allowed
batch processing of large document collections in parallel on clusters of commodity
computers. The notion of MapReduce was adopted in several frameworks, like the
open source Hadoop MapReduce3. Although Hadoop scales very well with the num-
ber of nodes in a cluster (cf. Section 3.2.1), it natively supports basic data types
only (Strings, integer, . . . ). Thus, processing spatial or spatio-temporal data must
be achieved with high programming efforts by the users, who have to implement the
spatial predicates on their own. Indexes, a standard way to speed up execution in
DBMS, are neither available in Hadoop, nor is any other form of optimization for
spatial and temporal data characteristics. However, the native support for spatial

3https://hadoop.apache.org/
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Figure 1.1: Classification of this work in context of research areas.

and temporal data in these Big Data platforms is required by many use cases, as
will be described below. Even though the spatial or temporal data set itself may
be small enough to be processed on a single machine, in some use cases it may be
necessary to combine it with some other extremely large data set using e. g., a spa-
tial join so that it has to be performed in a parallel setup. This may be the case if
users need to find the name of a region, e. g., country for position information from
where a Twitter post was sent: the data set containing the regions is rather small
compared to the data set with posts from a long time range.

Furthermore, there are several scenarios where (parts of) the same program(s)
are run repeatedly: for testing reasons during development, due to the incremental
nature of data exploration, execution of the same program with different input
parameters, or simply multiple users running the same program simultaneously.
Because of these repetitions, many potentially expensive operators are executed
over and over again, computing the same result every time and wasting valuable
resources. Often, this development and data analysis happens in notebook systems
like Jupyter4 or Apache Zeppelin5. Here, users run their queries and programs
interactively and expect instant results.

While a framework will offer the required operations with an efficient imple-
mentation, usability and low entrance barrier are important for solving the actual
analyses tasks. Therefore, declarative languages that can be translated and opti-
mized are needed.

1.2 Problem Statement and Contribution
In the previous section some use case scenarios were introduced that depict the
necessity of spatial and spatio-temporal operators for processing large data sets in
a cluster environment. Figure 1.1 shows a classification of the work in this thesis,
whose result is a framework called STARK (Spatio-temporal Data Analytics on
Spark), in the context of other research areas. With this work, we aim to create a
framework that combines Data Science tasks with spatio-temporal data processing
on large data sets using Big Data technologies.

Recently, a few frameworks were proposed that partially provide the required
4https://jupyter.org/
5https://zeppelin.apache.org/
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CHAPTER 1. INTRODUCTION

operators and solve some of the identified problems. However, these systems mostly
focus on spatial vector data only and do not include any extension (data types or
operators) neither for spatio-temporal nor raster data. Furthermore, these systems
include partitioning strategies that look at spatial features only so that data sets
cannot be partitioned on their temporal feature.

Besides the lack of support for temporal data, these systems only provide ba-
sic operators to perform a spatial filter and spatial join – although many systems
only support a very limited set of predicates to apply. However, to perform more
sophisticated analyses on the spatio-temporal data sets, operations such as Skyline
computation and clustering are needed.

Furthermore, most of these systems do not support raster data and especially
not the combination with vector objects so that users can e. g., filter their raster
data set for parts that are within a country or another polygonal region.

The main goal of this work is to analyze how spatial, spatio-temporal as well
as raster data can be efficiently supported in cluster processing platforms. As the
target platform for our prototype implementation we select Apache Spark. For this
analysis, we build a framework for spatio-temporal data processing on Apache Spark
with the goal to provide fast and scalable operators.

Thus, in the context of this analysis and framework, the main contributions of
this work are:

1. Data Types and Operators for Vector and Raster Processing. We an-
alyze the required types for data representation as well as operations thereon.
The data types are used to model vector and raster data. Furthermore, we an-
alyze different ways to design and implement standard operators such as filters
and joins as well as analytical operators such as Skyline, k nearest neighbors,
and clustering over vector data.

2. Efficient Methods to Support Operations. Especially the partitioning
methods are crucial for efficient spatio-temporal data processing as they dis-
tribute the workload to the compute nodes and allow operators to utilize the
spatial and temporal characteristics of the data. Additional indexing strate-
gies, which are not present in current Big Data processing engines, allow to
execute the spatial operators in reasonable time. We study and evaluate dif-
ferent partitioning schemes and analyze their impact along with indexes on
query performance.

3. Recycling Intermediate Results. To improve the overall performance of
the systems when the same operator occurs frequently, we present a cost-based
decision model that identifies operators whose result should be materialized
to persistent storage. The model includes three different strategies to base
its decision on. When the same operator is encountered again in the same or
another script, the materialized result can simply be loaded instead of exe-
cuting the operator and all its predecessors in the program again. Using this
cost model, execution times of scripts that share common operations can be
reduced from minutes to a few seconds. To supply the decision model with
the required information to compute the costs, we introduce an approach to
profile operators executed in a data parallel cluster environment.

14



4. Declarative Language Support. Users are assisted in creating their analy-
sis programs by extensions of higher level languages to support the operations
included in our framework. These languages are for example the Structured
Query Language (SQL) as well as Pig Latin, a dataflow scripting language
originally designed to create MapReduce programs.

1.3 Outline
The rest of this thesis is structured as follows. We start by presenting two exemplary
use cases of typical spatio-temporal data processing. From these use case examples,
we extract requirements for data processing platforms. In the subsequent Chapter 3,
we discuss the fundamentals of this work, namely the basics of spatial and temporal
data processing as well as the core concepts of the Big Data processing platforms.
Chapter 4 presents projects related to the work of this thesis.

In Chapter 5 we present and discuss design decisions for our spatio-temporal data
processing framework from bottom up: Section 5.1 deals with storage formats and
near data processing opportunities, Section 5.2 presents approaches for data types,
spatial and spatio-temporal data partitioning as well as indexing, and in Section 5.3
we finally propose possible concepts for operators upon the data sets and show how
they can exploit and benefit from the previous levels. After we have presented the
conceptual design of the framework, Chapter 6 sketches important implementation
details of the STARK framework. Its support in declarative languages is shown in
Chapter 7.

As an improvement of resource utilization in the cluster, in Chapter 8 we present
a decision model for recycling intermediate results in dataflow programs.

In Chapter 9 we present the results of our performance evaluation of both, the
spatio-temporal data processing framework as well as the decision model. Finally,
the thesis closes in Chapter 10 where we present a summary and conclusion of the
previous chapters and give an outlook to open research questions.
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Chapter 2
Use Cases Examples

Spatial and temporal data can be found in many areas where data is being stored
and processed. In the following, we outline two use case examples that show the
importance of the support for spatio-temporal vector and raster data processing on
Big Data platforms.

2.1 Earth Observation & Environmental
Monitoring

Our planet is surrounded by a multitude of satellites that have various purposes.
Many of them observe properties of the planet and downstream them to a ground
station where all incoming measurements are received, pre-processed, and archived.
The improved technology for sensors that allows a fine resolution and the increasing
number of satellites orbiting the earth results in a massive amount of data to be
stored and processed. As of 2018, the German satellite data archive of the DLR
preserves around 20 PB of raw and processed data and it is expected to reach the
current capacity of the tape archive of 50 PB at the beginning of the 2020s.

Meta information about the payload files in the archive, such as the spatial and
temporal coverage, sensor settings, mission, etc. is stored in a catalog. This catalog
is queried to find the actual files in the archive that contain information to answer
a current question. Such questions are for example: Find all temperature recordings
from 2001 to 2018 in Germany or Find images of vessels in the Baltic Sea on 2018-
09-10. Germany and Baltic Sea can either be given as polygon boundaries or the
polygons need be fetched for the given names.

Since the meta information in the catalog is already large it may be worth pro-
cessing the queries in parallel in a cluster, rather than on a single database server.
The catalog system needs to process spatial, temporal as well as normal filter pred-
icates to find the required files. In order to not having to scan through all entries
in the catalog, indexes are required to efficiently check the spatial and temporal
predicates from the queries, i. e., if a record is in Germany or the Baltic Sea or in
the time range of 2001 to 2018 or on 2018-09-10, respectively. A catalog system
using data parallel execution in a cluster could reduce the time being spent scanning
the index and furthermore open the possibilities to directly process the large data
files in that cluster environment.



CHAPTER 2. USE CASES EXAMPLES

Besides the catalog meta data, earth observation produces even more spatial
and temporal data. The DLR as well as NASA and other aerospace agencies run
various web platforms where pre-processed data from satellites can be accessed and
downloaded for free. Such data is usually provided as raster data, e. g., in Comma
Separated Values (CSV), GeoTIFF or other file formats. For example, the CODE-
DE1 project provides access to images taken by the Sentinel 2 satellite mission. The
web interface lets users search for regions based on spatial and temporal filters. In
the background, from the user provided search constraints, a query is run against
the underlying database. When the result is ready, users can download their result
as raster images.

Often, this data has to be combined with other data sets which are potentially
large and parallel cluster computing is required. With an efficient and scalable
system that allows employees and end-users to directly run their analyses in a pro-
vided cluster, the amount of data that has to actually be transferred over the public
internet could be reduced significantly.

There are numerous projects that use imaging and sensors, also mounted on
satellites, to monitor the earth’s flora, fauna, and environmental parameters. Typ-
ically, temperature, rainfall, but also optical image data is represented as raster
data, where each pixel of a data set represents one measured value or a pixel in the
image, respectively. Interesting questions are for example What was the maximum
amount of precipitation per year in the Sahara over the last decade?, List the names
of countries with an average temperature above 25◦C, or Find all ships in this image.
To answer them, the raster data sets containing the temperature and rainfall data
must be filtered or joined with a vector object or data set, respectively. The tiles in
the raster dataset cover a spatial region which has to be tested against a single query
region to find rainfall values in the Sahara or be joined with a set of the border def-
initions (polygons). Not only is the combination of raster and vector data required,
but also the efficient execution, as join operations are known to be expensive and
therefore time consuming. To find ships in an image, the user extracts a ship from
the image and wants to find all similar objects. The reference image is basically a
pattern that must be matched against the data set.

2.2 Event Correlation
On the World Wide Web, a plethora of new content is created every second, ranging
from short tweets or posts on social media platforms over personal blog posts to
professional news articles. One can assume that a large majority of these articles
and posts contain references to some kind of event. Such events may be historical
incidents such as the beginning of a war or the coronation of a king. But also
references to more current news like concerts or sport events are included in these
texts. Besides the explicit mentioning of the time and location of occurrence of an
event in the text, the published resources themselves often inherently contain spatial
and temporal information. For tweets or posts on social media platforms the current
position of the user as well as the timestamp when the post was created are stored.

1https://code-de.org/
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Extracting the time, location, and actors from text resources and deciding which
mentioning of, e. g., a place belongs to an event and which person took part in it is
a complicated task, that requires sophisticated strategies and information retrieval
algorithms, e. g., as proposed in [94]. However, once the event information is avail-
able in a structured format it can be further analyzed, e. g., with respect to their
spatial and temporal correlations.

An important task in the context of business intelligence and document explo-
ration applications is finding similar events to a given reference event or identifying
groups of similar events in a given event data set. Events that are correlated in space
and/or time to a reference event can be found by searching for the nearest neighbors,
known as the k nearest neighbors or by applying a multidimensional optimization
algorithm to create the Skyline for this reference event. In order to decide which
events are correlated, a similarity metric is needed. This similarity can be expressed
by the spatial and/or temporal distances of the objects The distance between two
spatial objects can be calculated using the well known Euclidean distance and for
two temporal objects, the minimum distance can be used. However, the Euclidean
distance is only applicable in a Cartesian space, whereas calculations on a globe
should use the great-circle distance, e. g., using the Haversine formula. Though, nei-
ther spatial nor temporal distance functions are included natively in the Big Data
processing platforms.

Furthermore, the nearest neighbor and Skyline computations have a time com-
plexity of O(n2) if implemented in a näıve way. A spatial index on the data could
improve the nearest neighbor search significantly as it allows to discard large parts
of a data set that cannot contain result objects. Spatial and temporal data parti-
tioning also plays an important role in this scenario. For computing the Skyline,
the spatial and temporal distance of every object has to be compared to every other
object in the data set. With a partitioning strategy that is aware of its application,
these comparisons can be performed on the partitions as a preliminary filter and
hence, reduce the number of overall comparisons drastically.

2.3 Requirement Analysis
From a user perspective, the workflows in the use cases described above are always
similar. For initial processing and analysis tasks, notebook systems such as Jupyter
or Apache Zeppelin are used. In these scripts, the data, often present as plain
text files in the file system, is referenced and represented by some appropriate data
type. Using this data type and constructs of the chosen programming language, the
researchers specify operations to apply in order to solve their current task. Hence,
after an initial version of the script has been executed, its result is investigated and
appropriate follow-up operations are added. Since the data sets are large and many
researchers work in parallel on their individual problems, data set cannot necessarily
be cached. Thus, with every execution of a script (or cell in the notebook system),
the data file is loaded from storage.

In order to solve the example, questions outlined in the use cases, after the large
data set has been loaded, it is, for example filtered by some spatial region and/or
temporal interval or is joined with some other data set based on the spatial and/or
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Storage File Formats Compression

Near Data Processing

Data Model Tiles & Vector Objects

Spatio-temporal Partition Strategies

Index structures

Query Model Analysis OperatorsAlgebra

Vector & Raster Operators Retiling/Repartition

Figure 2.1: Three levels to integrate spatio-temporal data processing into.

temporal features. After this, the result is aggregated to, e. g., calculate the average
temperature value, potentially filtered to receive values (not) exceeding a threshold
parameter, and finally plotted on the screen. After the workflow has been finalized,
it may be executed again and again with different threshold values to inspect data
distribution and correlations.

Based on this, we can identify several requirements and user demands for spatio-
temporal vector and spatial raster data processing. The requirements can be catego-
rized into three levels, that built upon each other (cf. Fig. 2.1): The storage level is
the lowest level and represents the file system or hardware level. On the next level,
a data model for representation and exploitation of the respective characteristics
is needed. The query model implements the algebra and operators to work on the
data. In the following, we will discuss these requirements in more detail, starting at
the lowest level.

2.3.1 Storage Level

On the storage level, especially for raster data, one goal is to optimize the space
required to store data on disk and also to reduce the time to access all or specific
elements in a file. As we will discuss in Section 3.1.1, there already exist several file
formats for storing spatial vector and raster data. These formats are often generic in
order to support a wide range of applications and use cases. However, especially for
raster data some use cases might benefit from tailored formats that were designed
for specific scenarios and their characteristics. In such cases, the formats could
transparently apply compression on (parts of) the actual data.

Besides space efficiency, the time required to load the data sets is extremely
important to allow interactive usage of a system. To achieve this, not only optimized
file formats are needed, but also an intelligent storage layer that supports query
operators by either executing (parts of) the query on specialized hardware or use-
case aware software, like the file system. This is also known as Near Data Processing
(NDP).
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2.3.2 Data Model

As a basis for vector and raster data processing, native data types are needed to
represent data. Only with a valid representation of, e. g., a position or raster tile, a
system can store data efficiently and implement the operations required by users.

Vector data For vector data processing a data type is needed to represent at
least the most common shapes, namely points, linestrings, and polygons. Other
shapes, such as circles, may also be supported to even more enhance the usability.
Along with the spatial feature, a temporal component is needed to represent e. g.,
the valid time of the spatial feature. The valid time expresses the time (period)
when the associated object existed in the real world. Alternatively, the transaction
time is used as the time the object was added to a data set. Hence, an instant type,
describing a single point in time, and an interval, i. e., a time range with a start
and end point in time, are needed. Especially for the valid time, an interval may be
open-end, meaning the object will exist forever, or the end time is not known (yet).
The SQL extension on bitemporal data storage defined in [60] includes statements
to explicitly mark temporal columns to form the valid time and/or transaction time
of tuples.

Raster data A raster data set contains of set of tiles where each tile contains pixel
values. Typically, a tile has a rectangular shape and thus covers n ×m pixels. In
most cases the tiles may be aligned with the underlying coordinate system, i. e., the
edges of a tile are parallel to the axis of the coordinate reference system. However,
depending on the recording method, the tiles may also be skewed.

It must be possible to identify a tile in the global raster, e. g., its column and row
index in the grid, and it must contain the values for all the pixels in the tile. The
actual data types to be stored can differ from one data set to another: Byte, Integer,
Double, or even custom types. It must be possible to represent these different types
within tiles, while all pixels in a raster data set are typically of the same type.

However, depending on the application scenario, there might be multiple values
for a pixel, e. g., when the sensors in the satellite from the earth Observation scenario
in Section 2.1 measure values in different bands. In such a scenario, a tile must not
only store the sequence of pixel values, but also a sequence of values per pixel, one
for each band.

Spatio-temporal Partitioning & Indexes In a data parallel cluster, every node
processes a portion of the complete data set, called a partition. Due to the generic
data model of the processing platforms, the existing partitioning mechanisms do not
consider spatial or spatio-temporal distribution of data.

A partitioner is responsible to chunk a data set into disjunctive partitions. Each
partition is later processed by a single worker node. When data is loaded some
generic partitioning scheme (round robin, hash) might be applied. As a result, a
partition contains objects that are, from a spatio-temporal point of view, not similar
to each other, i. e., they are not necessarily located near to each other.
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Thus, new partitioning techniques are needed that quickly assign an element to
a partition based on its location and/or time of occurrence. There are, however,
some requirements for a partitioning algorithm:

Completeness: Every object of a data set must be assigned to (at least) one par-
tition.

Spatio-temporal locality: Objects that are in spatial and/or temporal close prox-
imity to each other should be assigned to the same partition.

Reasonable number of partitions: The number of partitions should be large
enough to keep all worker nodes busy but small enough to not burden the
execution engine with managing partitions and assigning them to workers as
this incurs a significant overhead and negative impact on query performance.

Balanced partition size: The number of elements in each partition should be
(almost) equal, so that every worker node has approximately the same amount
of work. This is necessary to prevent one node doing all the work while others
finish earlier and idle while waiting for the overloaded worker node.

Handle data skew: Skew can occur for example in a use case of position informa-
tion of mobile devices: While one can expect the majority of the devices to
be located in metropolitan areas, only very few can be found in rural areas.
Thus, in terms of the covered area, a partitioning should create many smaller
partitions in dense areas and larger ones in regions with few objects. Skew
can occur for the temporal feature as well, of course. Skew handling is tightly
coupled with the previous requirement of balanced partition sizes.

Such partitioners may be based on the spatial feature only, the temporal feature only,
or both together. The spatio-temporal partitioning information then can be used
during query execution to decide which partitions contribute to the query result.

Since tiles in a raster data set have a spatial extent as well, they can also be
partitioned based on their position.

Usually, data is loaded from text files or some relational database, like Hive.
After partitioning the data, all elements in the data set need to be tested for, e. g., a
filter or join predicate, without the help of index structures. However, especially for
the expensive spatial predicate checks appropriate index structures will reduce query
execution time so that it becomes practicable at all. If the index can be persisted,
subsequent executions will benefit from the potentially costly creation of the index
structures.

2.3.3 Query Model
Relational database systems provide a set of operations on spatial data and many
of them are also defined in the SQL/MM standard (Part 3)[59]. A platform for
vector and raster data processing also needs to implement (at least some of) these
functions to operate on the underlying data.

A loader function must support at least one of the established formats, like well-
known-text (WKT), well-known-binary (WKB), GeoJSON, etc. for vector data and,
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e. g., NetCDF for raster data. If loading data is not natively supported, transforma-
tion operations from other data structures are needed. Although when working with
large data sets, queries and programs are run interactively and results are expected
as fast as possible. Users and operations should not spend (too much) time with
preparing data sets for specific algorithms or operator implementations.

Vector operations A spatial filter on vector data returns all objects from a col-
lection that match a predicate with a given query object. In a spatio-temporal filter,
both aspects, the location and time (instant or interval) of the objects in the data
set must fulfill the given predicate. Like a traditional join in relational databases, a
spatio-temporal join must find all pairs of objects that match the given predicate.
The predicates define (or test) how two objects are related to each other. An ex-
haustive list of possible relations for spatial objects has been defined in the DE-9IM
by Clementini and Di Felice in [24] and the same can be derived for temporal ob-
jects. For operations, Güting introduced the geo-relational algebra in [43] and Allen
proposed the interval algebra in [6].

Besides these relational operations, analytical operations are needed to extract
new information from the raw data. The k nearest neighbors (kNN) search is just one
example to find objects that are similar to a given reference object. Similarly, the
Skyline as a multidimensional optimization problem considers the two dimensions
(distances to the reference object in space and time) separately. To find groups of
similar events a (density based) clustering method such as DBSCAN [38] can be
used. All three operations require a metric to define the similarity. Since we focus
on spatio-temporal data processing, such a metric can be the distance between the
objects, and thus, appropriate implementations are needed.

Depending on the use case and input data, different distance functions are re-
quired. They are needed for operators like Clustering, Skyline, kNN. The actual
function implementation may vary according to the use case: While for two dimen-
sional planar coordinate values the simple Euclidean distance function is enough,
for GPS coordinates on a globe, more accurate functions are needed. Furthermore,
there is e. g., the Hausdorff distance, which calculates the difference of sets are (in
a metric space). Also not only are the distance functions needed for spatial vector
(and raster) data, but also for temporal objects (point in time and intervals). To
allow a flexible usage of the envisioned platform, different distance functions should
be present and applicable for the operators. Furthermore, users should be able to
implement and use their own distance functions within the platform.

Raster operations While vector data processing functions are defined in the
SQL/MM standard Part 3 [59], there is no standard for raster data operations,
and especially not for the combination of raster with vector data [97]. However,
2019 the SQL/MDA [70] standard was published to specify access and handling
of multidimensional arrays in SQL. These multidimensional arrays can be used to
model and query raster data using SQL.
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For raster data, a filter typically defines a rectangular or polygonal area to find
all tiles that lie within or intersect with that area which are then further processed.
The filter operation is not limited to spatial features, but can also be used to find
tiles with certain values or exceeding them in a given range. Often, a raster data set
represents an image or values that can be drawn as an image (temperature values)
and thus, users need to find objects in these images. Therefore, a filter should also
be able to find all tiles containing the object, given as a (two-dimensional) sequence
of pixel values as a pattern.

Joining two raster data sets is required to combine the pixel values in each tile,
by adding them or calculating their difference. The latter could be used to combine
two raster images taken at different points in time to generate a raster data set
showing the change of temperature values or ground levels.

A combination of raster and vector data is crucial to find all tiles or pixels from
a raster data set that intersect with a given vector polygon, as described in the use
cases in Chapter 2. The combination of raster and vector data also means joining
them, which requires efficient implementation to achieve reasonable response times.

In addition to the filter and join operations, aggregation operators are needed to
process the values and actually compute some application dependent results. Such
functions include, e. g., area for vector data, and avg for raster data. Naturally,
these functions can also be used in filter and join conditions. Furthermore, operators
and functions that work locally on single tiles, but also globally on a set of tiles are
needed, e. g., to identify tiles with values exceeding a threshold or aggregate tiles to
a single scalar value.

Algebra, Language & Usability Since data workers should not focus on pro-
gramming tasks but rather on their current (data science) problem, a high-level lan-
guage is needed to hide the underlying internals (partitioning, specific algorithms
for operators, etc.). SQL is such a high-level declarative language. It is very wide
spread and is the de facto standard for interacting with (relational) database sys-
tems. Furthermore, Apache Spark supports SQL queries using SparkSQL extension
on Dataframes. Since there is also a need for SQL in the Big Data ecosystem, several
database systems with an SQL frontend have been developed that operate in a data
parallel cluster.

For supporting spatial vector and raster data operations, an SQL compiler must
be extended to support the operations and predicates mentioned in Section 2.3.3.
Additionally, the data types for representing vector objects and raster tiles must be
supported.

Albeit SQL is well-suited for extracting data from a data set and perform basic
calculations, it can hardly be used to prepare data from different sources, in partic-
ular when they are of different formats. Furthermore, long workflows are difficult
to express in a single SQL statement. For such tasks, a script language like Pig
Latin [75] is an alternative to SQL as it allows to easily create programs that can
process almost any type of data in arbitrary complex programs.

24



Chapter 3
Foundations

This chapter discusses the fundamentals needed when working with spatial and
temporal data. We begin with an introduction to spatial and temporal data and
the typical file formats used to store this kind of data. After this, we briefly present
spatial and temporal index structures and then explain the basic concepts of the
Big Data processing platforms.

3.1 Spatial & Temporal Data Processing
In order to process spatial and temporal objects, data types representing real world
objects and operations thereon are needed. Since spatial and temporal data process-
ing is performed in many application that also interact with each other, standards
for types and operations were defined.

This section gives a short introduction into the data types and also describes
the operations needed as well as existing index structures. More information can be
found in the following literature. In [42] Güting presents an introduction to spatial
database systems including the required types and operations. Eldawy and Mokbel
analyze which main features are required for spatial data processing systems in [34]
and Jacox and Samet look deeper into spatial join techniques in [61]. In [15] Begum
and Supreethi survey spatial indexing methods.

3.1.1 Data Types and Operations
Typical spatial objects that are contained in real world spatial data sets are [42, 43]:

Points: A point describes a position in an n-dimensional space. It does not have
an extent in that space and can be seen as the most basic shape. Points can
e. g., be used to represent the position of a sensor, the point of occurrence of
an event or even the location of a city – if the area of the city is unimportant
for the use case.

Linestring: A linestring is described by a sequence of connected points, where the
connection between two points is called a segment. Linestrings are used to
model roads or rivers, if their actual width is not of interest and only their
route is important.

Polygon: A polygon is an object with a spatial extent. The boundary of a polygon
is defined by a closed linestring whose starting point is also the ending point.
However, whether the last point has to be explicitly given with the values of
the first point depends on the used system. Polygons are used to model areas
such as lakes, countries, or, as mentioned before, cities in their actual area
or rivers and roads with their real width. A specialized form of a polygon
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Figure 3.1: Visualization of tiles in a raster data set.

is a rectangle, for which it is enough to only specify the two corner points
that can be connected by the rectangle’s diagonal. A polygon has a boundary,
and interior and exterior. In many systems, the interior is the smaller area
bounded by the given sequence of points, while the exterior is the comple-
ment of the interior. However, some systems expect the polygon definition in
clock-wise ordering and define the interior to be on the right hand side of the
given sequence of points and the exterior on the left hand side. Furthermore,
polygons may have holes, for example the official border of Italy has a hole for
the Vatican City.

These types are used within a data set/relation for attributes so that a system
can interpret them and use them within operations and optimization.

Besides the mentioned geometric shapes, one can easily think of further forms
that may be required for a specific problem. Such forms are e. g., triangles or
circles. They can, however, be modeled using polygons, although circles can only be
approximated. Real triangles and perfect circles are usually not found in nature so
that many systems do not define a specific data type for them. However, PostGIS
for example allows to create circles by creating a ST BUFFER object from a point and
provide a radius. According to the PostGIS documentation1, a buffer is a geometric
object that covers all points within the given radius around the provided geometry.

In addition to vector data, another important type of spatial data processing
is raster data processing. A raster data set divides the space into usually equally
sized rectangular raster tiles. A tile itself consists of a set of pixel values, each pixel
covering some area, as illustrated in Fig. 3.1. Raster data is typically created by
some sensors, for instance camera sensors. The resolution of the sensor determines
the pixel size. As described in the introduction, the imaging may be performed by
high resolution cameras taking images from chips on wafers or (optical) sensors on
satellites capturing the earth’s temperature or cloud coverage.

Raster tiles cannot simply be modeled using the existing rectangle or polygon
types. In raster data a pixel is contained as a value in a tile, while for vector data

1http://postgis.net/docs/ST_Buffer.html
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the geometry itself is the actual (spatial) value. For this reason and because both
types of data representation require their specific operations, individual data types
are needed.

While spatial vector (and raster) data is usually two- or three-dimensional, there
is only one dimension for temporal data. Analogous to points in spatial vector data,
there exists a point in time, also referred to as an instant. An instant describes
a certain value on a time axis. Intervals represent a period with an instant as its
beginning, and an optional instant as its end. The SQL 2011 standard [60] contains
definitions for such temporal data. This value however, depends on the required
granularity and is additionally limited by capabilities of the sensor (clock), if any.
Granularity means the precision of the measurement device or time type: minutes,
seconds, milliseconds, etc.

The temporal units form a hierarchy, i. e., an hour consists of minutes, a minute
consists of seconds, etc. This hierarchy could be used to model uncertainties: If
an instant is not given in on the finest granularity level supported, it may be seen
as imprecise, consequently making it an interval. Imprecise or uncertain definitions
have an impact on the operators working on these types as well as e. g., distance
functions. The handling of imprecise values, which is also possible for spatial data,
is not part of this thesis.

An interval describes a range on a time axis with a start and end point, and
therefore has a length. The start and end values are instants on the time axis.
Often, but not necessarily always, intervals are defined as right-open, meaning that
the given start value is included in the interval, but the end value is not.

Since spatial and temporal data has been collected and processed for a long time,
all relevant systems included support for such data. The part three of the SQL
Multimedia (SQL/MM) standard defined in [59] was created to ensure that all SQL
systems offering spatial data support are compatible to each other [96]. It defines
several basic data types as well as how users can store and retrieve spatial data in
and from their relations. Additionally, functions to test relationships between two
geometries and to convert between different geometry types are specified.

While SQL/MM standardizes how DBMS should handle spatial data and what
functions are required for users to query and process the spatial objects, it does
not specify how two geometries can be related to each other. The Dimensionally
Extended nine-Intersection Model (DE-9IM) [25] is a standard that describes how two
geometries are related to each other in the two-dimensional space and the topological
model makes it invariant to rotation. The model is based on the boundary, interior,
and exterior of the polygons and Fig. 3.2 shows a visualization of the result of the
relation of two 2-dimensional polygons. From the DE-9IM, spatial predicates can be
derived, which can be used to check the relations of two geometries to each other.
Typical predicates often used in applications are:

contains One geometry completely contains the other one, so that no point of the
contained geometry is outside of the containing geometry, i. e., in its exterior.

touches Two geometries share at least one common border point, but no interior
point of one geometry lies within the other geometry.

intersects At least one point of one geometry is in the interior the other geometry.
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contains touches intersects

contained-by equals disjoint

Figure 3.2: Visual representation of the possible relations of two vector geometries
in 2D space.

contained-by This is the reverse operation of contains.
equals Both geometries are congruent and no point of one geometry is outside the

other geometry.
disjoint Both geometries do not have any point in common.

Any application providing operations to process spatial and temporal data needs
to also provide functions to write and read such data to/from storage. Often, data
is shared between different applications: data is produced by some sensors and
send over network to a receiving station, where it is written to storage and later
loaded processed by some user application. DBMS with support for spatial data (see
Chapter 4) define their own binary storage format. However, for data exchange and
communication among various systems, some standard formats have been developed.

Well-Known-Text & Well-Known-Binary The Well-Known-Text (WKT) for-
mat is a textual format representing one geometry per entry. It is often used in CSV
files, generated e. g., from database dumps. Here, however, quotation or a delimiter
other than a comma has to be used, since WKT already uses commas within the
textual representation.

According to the definition (see [76] p. 3-11 ff.) a typical WKT string starts with
the type of the geometry, an opening parenthesis followed by the sequence of points
describing the geometries border, and a closing parenthesis. For example, the text
POINT(50.68 10.93) defines a two-dimensional point and POLYGON((50.68 10.93,
52.81 10.93, 51.58 13.47, 50.68 10.93)) represents a triangular polygon by a
sequence of points, forming the polygons border. A polygon may consist of multiple
rings, given as linestrings, which are also supported as an own type in WKT. The
previous example defined be polygon with only one ring, another one could be added
to model a hole in that polygon. WKT is also able to model collections of geometries
that are a logical unit, e. g., countries with their islands. This can be achieved using
the MULTPOINT, MULTILINESTRING, or MULTIPOLYGON types.

In contrast to the string representation of WKT, the Well-Known-Binary (WKB)
format models objects as a sequence of bytes so that applications can exchange data
in binary form (see [76] pp. 3-24 – 3-28). In WKB geometry types are encoded using
an integer value (point has code 1, polygon code 3, . . . ). Some header information,
such as the geometry type, format, number of points, etc. is prepended to the actual
payload data. Fig. 3.3 shows a sample representation of a polygon definition.
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Figure 3.3: Depiction of order of values in WKB

GeoJSON WKT and WKB both only define how to represent a single geometry
using textual or binary format, but they do not add any context, like Spatial Refer-
ence Identifier (SRID) or additional features. The JavaScript Object Notation (JSON)
format was created in the context of web development to share JavaScript objects
between different modules (such as front-end and backend) of a (web) application
and different applications. Compared to Extensible Markup Language (XML), JSON
is much more compact as it reduces the number of boilerplate characters making it
suitable for exchanging structured data objects.

A JSON document models an object in the form of key-value pairs. For an event,
keys can be for example eventID and description with appropriate values. The
values may be primitive types, including strings, collections, or even nested JSON
documents to model complex objects. For the location of the event, one could add
a key location and assign it the WKT string of that location. That way, any
application can use a JSON parser to unmarshal a received JSON document into an
object and then use another library to parse the WKT string of the location field
into a geometry object that can be used for further calculations.

An example of this approach is given in Listing 1. However, the JSON parser
will treat the WKT string of the location as a normal string and an application
requires an additional library and transformation step to parse that string into a
geometry object. Since values may also be complex JSON objects, one could also
set the location to an object that defines a shape type, the coordinate values and
necessary values. As an attempt to standardize the modeling of spatial objects in
JSON is the GeoJSON format described in RFC7946 [19].

GeoJSON can directly model a geometry using a JSON object with two keys:
type and coordinates, where type defines the shape, e. g., point, linestring, poly-
gon, etc. and coordinates specifies the coordinate or sequence of coordinates, for
the particular geometry. Depending on the use case, it might be enough to just
specify the coordinates for the shapes of a data set. If the use case requires to add
additional information to the geometries, GeoJSON provides feature objects, that
contains fields for additional meta data, such as a name, description, and other in-
formation, along with the geometry field. An example of a feature declaration is
given in Listing 2 that models a single feature, representing a polygon (rectangle)
and provides a name property as meta data.

There exist various libraries with parsers for JSON as well as GeoJSON to convert
the text data into objects (or structs) of the respective programming language.
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Listing 1 Example of a JSON document for one event.
{

"eventID": 12345,
"description": "First Metallica Concert",
"date": "1982-03-14",
"location": "POINT(33.83, -117.90)",
"actors": [ {"name": "Metallica"} ]

}

For GeoJSON, the libraries will create a Feature instance with the fields for the
geometry, as a Polygon instance and a field for the properties.

More File Formats Although already described in 1998 in [37], Shapefiles are
still an often used format for exchanging geospatial data and supported by many
Desktop GIS applications. A Shapefile is a collection of at least three files that
all together comprise the complete data set: the main file (.shp extension) stores
the geometries data as vector objects. An index file stores offsets to faster lookup
records in the main file. Additional attributes and features can be stored in a third
dBASE file.

The quite old format has some limitations that may make it unsuitable for large
data sets: each of the files comprising the Shapefile may be 2 GB at maximum.
There are other limitations such as record lengths, field name lengths, number of
fields, or that data fields can contain either space or time, but not both.

For raster data, an often used format is GeoTIFF, an extension of the TIFF
format with geospatial attributes. The format is popular as it allows a lossless data
representation, is able to compress the stored data using various schemes, and can
be augmented with application specific information [4]. GeoTIFF is a self-contained
format and directly includes all necessary attributes. The attributes are used for
e. g., the used coordinate system and the projection method [83].

NetCDF is a binary file format for storing and sharing any (hierarchical) scientific
data. In the header, key–value pairs are used to describe the meta information about
the file, but also the organization of the payload data [101]. The payload data is
stored as an (multidimensional) array, which makes it suitable for raster images.
However, unlike GeoTIFF, NetCDF does not include any compression techniques.

The aforementioned formats were designed when users worked on single ma-
chines. However, in the era of rented clusters where computing nodes are decoupled
from storage, e. g., Amazon EC2 and S3, requirements have changed. In cloud com-
puting, machines are added and removed from a configuration and nodes read only
parts of files. The Meta Raster Format (MRF) [13] addresses these challenges. MRF
consists of three files: an XML file containing meta information about the content
(spatial projection, tiling, etc.), a data file with the actual data as raw binary values
or even in image formats like JPG, PNG, and an index file with offset and spatial
location information for each tile in the data file.
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Listing 2 A sample GeoJSON document for a single feature object.
{

"type": "feature",
"geometry": {

"type": "polygon",
"coordinates": [

[10 10], [20 10], [20 20], [10 20], [10 10]
],
"properties": {

"name": "a query rectangle"
}

}
}

Temporal Data Dealing with temporal data is not trivial and causes many dif-
ficulties during development and execution of software systems. Especially working
with values from different time zones and representations requires special care. Cur-
rently, there exists no file format dedicated to temporal data. A common strategy
to store date or date-time information is to transform it to a textual representation
and parse this string when reading data. Most modern programming languages
provide mechanisms to apply a given pattern string describing the expected format
on a input string to convert it back to date/time object. The ISO-8601 standard
defines a timestamp format for interchanging date and time values. It uses either
the Coordinated Universal Time (UTC) or the local time of the application.

The SQL-92 was the first SQL standard to define how to handle date and time
types. It includes a time-zone information table and additionally defines how to con-
vert the various representation formats, such as the Unix Epoch and string formats,
to and from the date and time types. In standard SQL, a duration can be expressed
using the INTERVAL type. The types for date and time can be accessed using various
methods and it is possible to perform comparisons using standard operators (<,>,
. . . ) and calculations. The date and time representation to be used in Internet
protocols and documents is discussed in RFC 33392.

3.1.2 Geometric and Geodetic Computations
All spatial or spatio-temporal objects are located at some position in space (and
time) by definition. While for the temporal component of such objects it is clear
that they lie on the time axis of our real world, it is not always clear what the actual
space for the location of such objects is.

In many applications it is sufficient to interpret a point, e. g., (33.83, -117.90),
or any other geometry in a two-dimensional planar space. This planar space might
be a representation of the earth, but does not necessarily have to. It can as well
be seen as some abstract space with potentially infinite extent. However, using a

2https://tools.ietf.org/html/rfc3339
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planar space for calculations on geometries that are supposed to be on the earth’s
surface has some significant drawbacks that need to be considered.

The earth is a three dimensional spheroid. If it is treated as a two dimensional
planar space, this space is bounded in both dimensions although on a spheroid
there is no “end”. Another problem arises at the poles. With a two dimensional
representation, the poles, which are actually single points each, stretch to infinity
at the upper edge (the North Pole) or lower edge (the South Pole) of the two
dimensional space. Thus, images that use such a projection, i. e., Mercator projection
often do not show the poles [96]. This distortion towards the poles additionally
has the effect that countries are shown larger than they actually are, giving a false
impression of the earth. A projection without this distortion is e. g., the Authagraph
projection3, that retains shapes and sizes of the countries and continents as well as
the relative position to each other.

A further problem is in the calculation itself: while on the planar space the
relatively simple Euclidean distance can be used to compute the distance between
two points, on a spheroid the distance formula becomes more complicated as it must
respect the earth’s spherical shape. Though, if only data from a rather small area,
compared to the size of the earth, has to be processed, for many applications it is
enough to use the two dimensional planar space, because the deviation errors are
negligible.

However, applications used at, e. g., DLR process global data and require correct
results and thus, for calculations the earth’s shape needs to be modeled as correctly
as possible. The earth is not a perfect sphere, but rather a spheroid flattened at
the poles. The model of the earth is referred to as the Spatial Reference System
(SRS). It defines the coordinate system in which a point or any geometry is given.
Typically, libraries implementing spatial operations support different SRSs which can
be set often per geometry individually by setting the SRID of the geometry. In fact,
thousands of SRSs were already created each for a specific application scenario and
region: The PostGIS extension that adds spatial data types and operations to the
PostgreSQL DBMS includes over 5000 SRSs. An SRS tries to model the earth’s surface
as well as possible for a use case. The World Geodetic System 1984 (WGS84) is often
used in European or North American applications such as GPS based navigation
systems as it is a good general model of the earth in this area. However, data from
certain regions such as the Highlands of Tibet will suffer from inaccuracies as the
WGS84 does not model them well. There are other SRSs that fit the earth’s surface
better in this particular region [96]. In such geodetic coordinate systems a point is
given in two or, depending on the use case, three coordinates: a latitude, longitude,
and the optional altitude. In mathematical geometry the x value is given before the
y. In GPS, the latitude, which compares to y, is usually stated first: (latitude,
longitude) or (latitude, longitude, altitude).

Note, considering the SRS for spatial objects is not in the focus of this work and
just presented here for the sake of completeness. The WKT and WKB formats do
not support setting the SRS. Therefore, it is (currently) left to the user to convert
coordinates of different SRSs into a single desired one, or use the correct functions.

3http://www.authagraph.com/top/?lang=en
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Figure 3.4: R-tree spatial organization and tree structure.

3.1.3 Indexing Spatio-temporal Data
DBMSs have to execute queries with expensive operations extremely fast to meet
the users’ requirements. To reduce the amount of data that actually has to be
accessed during query evaluation, several index structures have been developed.
Index structures typically are tree structures and during the traversal significant
portions of the data set can be excluded without needing to evaluate predicates.
The most prominent index structure used in relational DBMSs, presumably is the
B+-tree. In a B+-tree the inner nodes contain the indexed values in sorted order
as well as pointers to the children. The leaf nodes then contain the pointers to
the actual data pages. The number of elements an inner or leaf node may hold is
determined by an order value each, e. g., m and k. A node stores between m and
2m values. If during delete or insert operations a node would contain fewer or more
values than m or 2m, respectively, according re-balancing steps are performed.

R-tree The spatial index structure that is probably most often implemented in
GIS and DBMS is the R-tree [45] (or one of its variants). It follows the same idea
as the B+-tree or its base variant, the B-tree. The notion of the R-tree is that an
inner node represents a Minimum Bounding Box (MBB) of the elements it contains.
Thus, the root node represents an MBB containing all elements in the index. On
each level, the space is divided into regions/MBBs, that may be non-disjoint. The
leaf nodes store the MBBs of the actual geometric objects. The R-tree is neighbor-
preserving, i. e., geographically near objects are also near to each other in the tree.
Inside a node, the objects are sorted for faster lookups. A sample R-tree is depicted
in Fig. 3.4: Fig. 3.4(a) shows the two-dimensional objects as well as the nodes’ MBBs
and Fig. 3.4(b) depicts the resulting tree structure.

Like B+-trees, the tree is balanced and insert and delete operations might cause
re-balancing steps. Especially inserts can get problematic as the MBB of the respec-
tive node has to be extended. Rebalancing steps resulting from node overflows and
splits are expensive to compute and also need to be propagated to the root node, so
that large parts of the tree may be reorganized after a single insertion.
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(a) Spatial organization of Quadtree
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(b) Unbalanced Quadtree structure.

Figure 3.5: Quadtree spatial organization and tree structure.

Lookups start at the root level and the query object is compared to all MBBs
inside a node. The traversal continues in the sub-tree that matches, i. e., intersects,
with the query object until the leaf level is reached. Since in an R-tree the MBBs
are non-disjoint, multiple children of a node might intersect with the query object
so that all those paths need to be traversed. A query to the R-tree only yields
result candidates, since only the MBBs of the geometries are stored. Therefore, it
is possible that for, e. g., a point query the query object intersects with the MBB of
a polygon, but not with the polygon itself. To prune this candidate result set, a
secondary step is required to check the actual geometries of the candidates against
the query object.

Following multiple paths during lookups can be a serious performance issue. To
solve this, the R+-tree [102] forces the MBBs of the nodes to be disjoint. It follows
that objects spanning multiple MBBs need to be clipped. This clipping results in
additional overhead when inserting objects, though.

There are more variants of the R-tree such as the R∗-tree [14] that tries to improve
the insert performance or the Sort-Tile-R-tree (STR-tree) that uses a sort-tile bulk
loading strategy, but is a normal R-tree otherwise.

The R-tree could be used to store temporal and spatio-temporal keys. For tem-
poral data, the MBBs will be one-dimensional intervals. In order to store spatio-
temporal data, the time can be added as the third dimension of the spatial feature.
Furthermore, there are specialized variants for indexing spatio-temporal data, such
as the RST -tree [86], the time parameterized R-tree (TPR-tree) [87], and the MV3R-
tree [100] for interval queries.

Quadtree A Quadtree [88] can also be used to index two-dimensional objects (the
extension for three-dimensional data is called Octree). The root node of the tree
represents the Minimum Bounding Rectangle (MBR) (the two-dimensional form of
the MBB) for all objects in the tree. A region is recursively divided into four sub-
regions, called quadrants, if the number of objects inside that region exceeds a given
threshold, typically defined by the block size on disk in traditional relational DBMS.
The generated quadrants usually have quadratic or rectangular shapes, because as
they offer cheap containment checks during lookups. The tree structure is given
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with the recursive division of the quadrants. As shown in Fig. 3.5, a Quadtree is
not balanced since at any level a generated quadrant may be empty while another
one still contains elements and may be further split.

Grid File Grid-Files [72] are a multidimensional index structure and were devel-
oped to reduce the number of disk accesses during exact match lookups while still
having a dynamic structure that is neighborhood-preserving.

As for Quadtrees, the minimum and maximum values in all dimensions need to
be known a priori. The space is divided into cells by lines parallel to the axes and
cells are combined into regions in a way that the size of a region matches the size
of a disk block. Splits are performed during inserts when a cell overflows.

One can find many more interesting index structures in the literature that may
be worth implementing or investigating in the context of this work, e. g., GeoHash or
Binary-space-partitioning tree (BSP-tree). GeoHash4 is a hierarchical structure that
recursively divides the space into a number of equally-sized regions and enumerates
them using Space-filling curve (SFC). The concatenation of the region numbers on
each level then form the geo-hash string. The BSP-tree splits the space in always
two regions. However, this split must not necessarily be parallel to the axes. The
decision if a region needs to be split is cost based, where in traditional relational
DBMS this cost is determined by the disk block size.

The R-tree (and its variants) have proven to be very fast and efficient and the
Quadtree is easy to compute and will therefore be used in the following. How-
ever, future work should investigate if GeoHash and other data structures might be
applicable in this work, too.

Temporal information can, but does not have to, be associated with a spatial
feature. This results in two variants for indexing: (1) spatio-temporal indexing and
(2) temporal indexing.

Indexing Temporal Data In spatio-temporal indexing, the spatial and the tem-
poral information is used as a combined key to be used in the index. For this,
multidimensional index structures, such as the ones explained above can be used
and the two-dimensional spatial objects are augmented by the temporal dimension.
These three dimensional objects could, e. g., be put into a variant of the R-tree.

4http://geohash.org/
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However, especially when working with data of historical events, the temporal di-
mension might span over an extremely long period, which might have a negative
impact on the performance of the index. When using only the temporal informa-
tion for indexing, interval trees are very common. As shown in Fig. 3.7 the tree is
organized as a binary tree. The left child of a node n stores all intervals that are
completely before nmid, whereas all intervals completely after nmid are stored in the
right child of n. The node n itself stores all intervals that intersect with nmid. On
the root level, nmid represents the middle point of the complete range covered by all
intervals in the data set. At every inner level, nmid represents the middle point of
all intervals in this sub-tree.

3.1.4 Indexes for Raster Data
Spatio-temporal vector objects are indexed to speed up queries that quickly need to
find these objects based on their spatial and/or temporal features. For raster data,
however, there are different use cases for indexing:

1. When one needs to find tiles that, e. g., intersect with tiles from another raster
data set or that lie within a given region.

2. When searching for tiles with certain values, the index must be based on the
pixel values inside the tiles.

In the first case, the index needs to be based on the spatial features of the raster
tiles. As we will show later in Fig. 5.12, raster tiles can be represented as rectangles
in the vector space. Hence, the spatial index structures described in this section can
be used also for raster data.

In the second case, the index needs to be built over the actual pixel values. A
simple, but certainly frequent use case is to find tiles that contain pixels of certain
value, e. g., a value from which one can deduce an error in the photographed material.
For this use case a global min-max index that stores the minimum and maximum
pixel value for each tile is useful. For a query looking for tiles with value x, the
index can be consulted to quickly find the tiles that have a minimum value less or
equal to x and a maximum value greater or equal to x. Additionally, indexes can
be built for pixel combinations. Such combinations could be a pattern of interest,
e. g., a ship on the ocean in satellite images. In the index, all tiles containing this
pattern can be stored.

3.2 Big Data Processing Platforms
Relational DBMSs have been extensively studied and improved over the decades since
the release of System R [9] in the 1970s. Over time, the systems and the underlying
algorithms have been adapted to handle the ever growing data sets. When companies
and organizations started to store (almost) all information generated or received in
their systems, the Big Data era began. Although DBMSs are capable of handling large
data sets by running distributed and parallel instances in a cluster, the unstructured
data generated in, e. g., log files and the manifold schemata from data sets from
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various sources required new ways of processing. Additionally, SQL is not suitable
for iterative algorithms and model creation to gain new insights.

In 2004 the MapReduce programming model was introduced by Google [28]. In
2008 Yahoo presented Hadoop MapReduce5, an open source implementation of this
programming model which was rapidly established as the platform for Big Data pro-
cessing. Companies, such as MapR, contribute to Hadoop, but also run commercial
spin-offs, e. g., for Amazon Elastic MapReduce.

3.2.1 Hadoop MapReduce
The Hadoop framework is based on a shared nothing architecture: a cluster of
commodity computers which are connected over network. Hadoop employs data
parallelism, meaning that all nodes in the cluster perform the same task indepen-
dently from each other on their own chunk of the large data set. A task is for
example the execution of the map or reduce function.

Execution Model The core notion of MapReduce is that programmers have to
implement only the two functions: map and reduce. The map function is used to
extract required information from a possibly unstructured input element and to
transform the input into a format that can be aggregated by reduce. Those func-
tions are well known from functional programming languages like Erlang or Haskell.
In functional programming languages, map and reduce are defined as higher-order
functions on lists. For map a programmer has to pass in a (lambda) function that
accepts one element from the list and returns a value from the same or another type.
With reduce, the values in a list can be aggregated into a single value and thus,
the function passed as a parameter value to reduce must take two elements from
the list as parameter. In functional programming, reduce is also known as fold, or
both coexist with slight differences.

In Hadoop terminology, in the map phase a mapper task executes the map func-
tion provided by the programmer. This means that the programmer does not need
to care about the parallelism, but just about the processing of one element of the
data set to extract required fields or values. Accordingly, in the reduce phase the
reducer task executes the provided reduce function. In between the map and reduce
phases, another crucial phase exists: shuffle & sort. Fig. 3.8 shows the general flow
and phases and visualizes the parallel execution of the provided map and reduce
functions in the map and reduce phases, respectively.

MapReduce is built on key–value pairs. The map function gets a key and a value
as input (from the framework), processes it, and outputs no, one, or many other
key–value pairs. The types of the output keys and values may be different from the
types in the input pair:

map(k1, v1)→ listof(k2, v2)

5https://hadoop.apache.org/
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Figure 3.8: Phases in the MapReduce programming model.

As shown in Fig. 3.8, the output of the map phase is put into the shuffle & sort
phase. In this phase, all result tuples from the map functions are grouped by their
key and for each group, the list of corresponding values is created. This phase is
named shuffle, because data from all nodes is sent and exchanged among all nodes,
so that it is basically redistributed. After shuffling (and sorting the groups), for
each group the group key and the according list of values is sent to a reduce task
that executes the user supplied reduce function to aggregate the values. Therefore,
the reduce function must follow the given signature:

reduce(k2, listof(v2))→ listof(v3)

A MapReduce program that solves a complex problem will consist of many cycles
of the map and reduce phase, where in each cycle another map and reduce function
will be executed that will further process the output of the previous cycle.

Many large companies run a (Hadoop) MapReduce cluster with hundreds of
machines that permanently move and process large data sets6. With that many
commodity hardware involved, failures occur quite frequently (disk crashes, memory
errors, memory limit exceeded, etc.). To achieve tolerance against such failures,
Hadoop writes all intermediate results, i. e., the outputs of the map, shuffle, and
reduce phases, to disk. Thus, if, e. g., a reduce task fails because the underlying
hardware is defect, the framework will start this task again on another node and it
will only have to read the intermediate result from disk instead of having to execute
the map and shuffle again to obtain its input.

Fault tolerance is further accomplished by using the Hadoop Distributed File
System (HDFS). HDFS connects all nodes in the Hadoop cluster into one logical file
system. A file in HDFS is stored as a sequence of blocks and each block is replicated
to several nodes in the cluster. By default a block is 128 MiB and replicated two
times. These values can be configured when setting up the HDFS. A task of the

6https://wiki.apache.org/hadoop/PoweredBy
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Hadoop program processes one block and when a node has failed and the task needs
to be restarted, this is done on a node that stores a replica of the respective block.

A cluster should, of course, not only run a single program (commonly referred
to as job) at a time, but rather share the resources among all submitted jobs so
that multiple jobs can run in parallel to increase throughput. This requires that
resources, such as nodes, CPUs on these nodes, RAM, etc. are assigned to a task.
The management and assignment of resources in the cluster to jobs and tasks is done
in the YARN component. YARN is responsible for the management part in Hadoop
MapReduce, i. e., besides the allocation of resources this is the actual execution of
the MapReduce programs as well as tracking the nodes’ states.

Data Partitioning By default, Hadoop starts a reduce task for each distinct key
in the output of the map phase. The assignment from the key, which can be of any
type, to a reducer with a numeric ID, is done using, e. g., a hash partitioner. The
framework calls the getPartition function of the configured partitioner for each
key to know on which reducer it should be further processed. Users can configure
Hadoop to use another, potentially self-implemented partitioner class to obtain more
control over the execution.

3.2.2 Apache Spark
A big advantage of the MapReduce platform is the fault tolerant parallel processing
of large data sets. However, as discussed in the previous section, fault tolerance is
achieved by writing the results of the mappers to disk where it is loaded again by
the subsequent reducers. As is known, writing to and reading from disk is rather
slow, compared to processing data in-memory (RAM). The Apache Spark7 platform
tries to solve this issue with an in-memory execution model.

Resilient Distributed Dataset In its core, Spark uses a data structure called
Resilient Distributed Dataset (RDD). An RDD is an immutable data structure and
abstracts the distributed nature and processing. Thus, a developer only works with
RDD objects and applies operations to them. Internally, RDDs are partitioned so
that every node only processes its assigned partition. If more partitions than worker
nodes exist, a node receives another partition when it has finished processing one
partition.

Operations performed on an RDD are divided into transformations and actions.
Transformations are operations that create a new RDD from an existing one, whereas
actions compute a value from the content. The transformations in Spark are lazy:
The actual computation of a transformation result is deferred until an action is
executed and needs the result of that transformation. To achieve this, the RDDs
store the function to apply to the data and also keep a reference to their input RDD.

This behavior helps to achieve fault tolerance. Since an RDD also stores its
lineage, i. e., information about its parent RDD from which it was created, the result
can be recomputed in case of a node failure. If a failure occurs and the result for a
partition of an RDD is lost for whatever reason, the Spark engine will simply restart

7https://spark.apache.org
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Listing 3 A Scala Spark program using Resilient Distributed Datasets.
1 case class Event(id: String, description: String, date: Date, type: EventType)
2 val sc: SparkContext = ...
3 val raw = sc.textFile("/data/events.csv")
4 val count = raw.map(line => line.split(";"))
5 .map(array => Event(array(0).toInt, array(1), new

Date(array(2)), EventType(array(3)))↪→

6 .filter(_.type == EventType.SPORTS).count()

the computation for that partition, triggering the computation of the respective
partitions in the parent RDDs as well.

Listing 3 shows a sample Scala program using Spark’s RDD application program-
ming interface (API). The program given in Listing 3 is called the driver program
which starts the processing and will receive the final results from the actions. The
Spark context variable sc is used to interact with the Spark engine, set and get
configurations, and also to load (text) files from persistent storage, such as HDFS
and create an RDD instance representing the file content. For text files, every line
in that file will be one entry of type string in the RDD. On this RDD, three trans-
formations are applied one after the other. First, the strings in the RDD are split
by a delimiter character (here, a semicolon) using the map operation which accepts
a function to apply to each element in the RDD, resulting in an RDD with each ele-
ment being an array of strings. Next, from these arrays instances of the user defined
class Event are created, again using map. After that, the events are filtered so that
only sport events are left. Since these were only transformations, no computation
will have been performed so far. Only when the count action is encountered, the
computation is triggered and only now the file will be loaded from storage.

As stated before, a node processes only a partition of the data set. To reduce
communication among the nodes, a node will try to apply as many transformations
as possible to its partition. Only when it needs data from another partition, e. g.,
to compute a group by or a join, data will be shuffled over the network to other
nodes.

By default, Spark uses a hash partitioner to create the partitions, e. g., by calling
the repartition method. However, the RDD API allows developers to apply a self-
implemented partitioner that for example is aware of certain data characteristics.
This is particularly useful for spatial data processing since a partition might, e. g., be
a region on the earth’s surface or a temporal interval. We will investigate how spatial
and temporal data partitioning can be utilized for spatio-temporal data processing
in Sections 3.2.2 and 5.2.2.

Internals of the RDD model To understand the execution details of Spark
programs, we need to look closer on the internal implementation of RDDs. An RDD
is an abstract class with basically two fields: the Spark context for the program the
RDD is used in and a list of dependencies. A Dependency in Spark encodes how a
partition in the result of an RDD is derived from the partitions in the parent RDD.
For example, a one-to-one dependency means that no shuffle is required to compute
the result of this RDD from its parent partition.
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Typically, in a one-to-one dependency, partition with index i is also derived from
partition i in the parent. However, this is not a requirement and the partition may
depend on any other partition. We will make use of this behavior for the partition
pruning later.

The RDD class has two abstract methods, namely compute and getPartitions.
The task of getPartitions is to tell the Spark engine about the partitions com-
prising the RDD. It will be called only once by the engine for planning purposes and
returns an array with instances of Partition. A Partition is identified only by its
index number. With this partition ID and the type of dependency (one-to-one or
shuffle) the engine keeps track which partition is needed by which worker node. The
actual computation of an RDD is performed in the compute method, which gets a
partition as well as a TaskContext object as input parameters. Since the transfor-
mations in Spark are supposed to be pipelined, the internal execution needs to be
pipelined. This pipelining is achieved using iterators, i. e., the RDD implementation
follows the Volcano iterator model [40] used in many relational DBMSs. Thus, the
compute method has to return an iterator over its result elements. The input data
is fetched by getting the iterator from the parent, based on the given partition and
task context. A concrete RDD implementation can perform its operation on this
input iterator and return its result iterator. Only an action will start consuming the
iterator and start the whole execution.

An example for a concrete RDD implementations is the class MapPartitionsRDD
which is e. g., created for map and filter transformations. Both of these take
a function as input. The MapPartitionsRDD class stores this function and in its
compute method it will be applied to every element in the input iterator.

Data Partitioning When loading data from HDFS, Spark generates partitions so
that each partition contains the same amount of data (records or bytes). Operations
such as reduceByKey however, need to repartition the data in order to collect all
values with the same key into a group. For this, Spark uses a hash partitioner
that assigns objects to partitions by applying a hash function to the key element.
Another partitioner used in Spark is the range partitioner that can be used to collect
ranges of keys into the same partition.

The RDD API allows to create own partitioners by extending the abstract base
Partitioner class. The partitioners can be applied only to RDDs with a key–value
schema, since the decision to which partition an object belongs to is always based
on its key. A partitioner must implement the getPartition method that accepts
one argument – the key. As a result this method returns an integer indicating the
index number of the partition that object is assigned to.

The partitioning is performed during a shuffle, represented by ShuffleRDDs.
Thus, partitioning is not performed by a single, but in parallel on the nodes during
execution of the program. If the partitioner needs to maintain a state during ex-
ecution, the state is present on every involved worker node and must therefore be
synchronized (merged).

In this work we will make use of the partitioner API to implement the discussed
partitioning strategies. Note, an RDD carries an attribute with a reference to the
partitioner that was used to create that RDD.
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Spark SQL and Dataframes RDDs can be used with Scala, Java, and Python.
This allows a wide range of developers to use the platform and lets them create
complex programs to solve their data processing tasks. However, with the increased
prevalence of Big Data processing in all kinds of areas, support of traditional SQL
queries was needed: Data has simply been moved onto this platform and existing
queries should be re-used.

SparkSQL was introduced as part of the Spark engine to execute SQL queries on
data stored as files in HDFS. SparkSQL makes use of Datasets and Dataframes as
layers above the core RDDs, that provide the engine with more information about
the types and operations. An RDD only has one generic type parameter, that may be
a single Integer or an abstract data type, that cannot be exploited by the execution
engine for optimizations. Dataframes, however, have typed columns similar to a re-
lation and operations on these columns. This gives the execution engine information
about the data (types) and the operations executed so that it can optimize them.
Operations on Dataframes resemble SQL operations, e. g., where, select, etc., but
SQL strings can also be processed, of course.

Internally, operations on Datasets and Dataframes are translated into opera-
tions on RDDs. The Dataset and Dataframe APIs, however, are of higher level than
the RDD API so that developers have less possibilities to influence execution, albeit
SparkSQL allows to add own operations, rewriting strategies, and data types.

Spark further allows to process data streams using so called DStreams that con-
sist of a sequence of micro batch RDDs or the higher level structured streaming on
basis of Dataset and Dataframe.

3.2.3 Other Platforms

Besides Hadoop MapReduce and Apache Spark, several other platforms exist to
process large data sets.

Apache Flink8, which has its origins in the Stratosphere project [5], is often
compared to Spark as it also employs an in-memory execution model. Like Spark,
it can be used in YARN (and Mesos) clusters to execute distributed parallel tasks.
Flink is primarily designed to process streams of data, but it can also be used for
batch processing. Besides reading from static files from various sources, Flink has
connectors for Kafka, RabbitMQ, and Twitter streams. The core data structure in
the streaming component are DataStreams on which operations are applied (similar
to Spark’s RDDs).

Flink can also apply a partitioning, which however directly influences the paral-
lelism of the query. One can only create as much partitions as there are cores/ex-
ecutors in the system.

Spark and Flink typically load their data as files from HDFS and with SparkSQL
user can run SQL queries on this data. However, with the need for SQL support on
the Hadoop platform, other (database) systems emerged. HBase9 is a NoSQL engine
on the Hadoop platform. It is designed after Google’s Bigtable [21] and provides

8https://flink.apache.org/
9https://hbase.apache.org/
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low latency data access and updates. The Apache Phoenix10 project creates a SQL
interface for HBase including ACID transaction properties. Hive11 is a warehouse
on the Hadoop platform also with SQL support. It is often used in write-once,
read-often scenarios but also provides ACID transactions.

The Apache Impala12 project is an SQL engine that uses the Hadoop infrastruc-
ture to execute the query in parallel. It is written in C++ and consists of three main
parts: the core daemon that runs on every data node and executes the query as well
as writes to the files, the StateStore that collects and monitors the health status
of each daemon, and the Catalog Service that provides meta information. Another
SQL-on-Hadoop engine is Actian Vector in Hadoop (VectorH) [26] that uses the
standalone Vector technology in single nodes for parallel vectorized processing and
tightly integrates with HDFS to find nodes with replicas of the required blocks. This
way they can guarantee local I/O operations.

10https://phoenix.apache.org/
11https://hive.apache.org/
12https://impala.apache.org/
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Chapter 4
Related Work

Spatial and spatio-temporal data processing has been of high interest since computer
programs were used to store, manage, and query information. All major relational
DBMSs have built-in support (Microsoft SQLServer, MySQL/MariaDB) or exten-
sions (Oracle Spatial, IBM Db2 Spatial Extender, PostGIS for PostgreSQL) for
managing spatial data. These database systems and extensions also provide raster
data types and operations. Besides these all-purpose DBMS with support for spa-
tial data, there are a few systems specifically designed for multidimensional array
data (raster data) processing . The most prominent systems are RasDaMan [11] by
Baumann et al. and SciDB [98] by Stonebraker et al. Like SciDB, TileDB [80] is a
storage manager for scientific data supporting dense and sparse arrays.

Since the goal of this work is to add efficient support for spatio-temporal vec-
tor and raster data processing in data parallel Big Data engines, we will limit the
overview of related approaches to

1. frameworks with support for at least spatial vector data or raster data and

2. that are designed for Big Data engines (Hadoop and Spark).

Initially, for the Big Data platforms such as Hadoop MapReduce, Spark, and
Flink, there was no support for spatial data. To close this gap, several research
projects were initiated to address the challenges and implement parallel algorithms
and spatial data processing frameworks. In general, these works can be categorized
based on the underlying execution platform, Hadoop or Spark (to the best of our
knowledge there is no such research work based on Flink) and on how they integrate
with that platform.

We will introduce those projects in the following and compare them on the basis
of the following characteristics:

Data Types: Support for spatio-temporal vector data; support for raster data
Operators: Can vector and raster data be combined? Which operations are sup-

ported in general (filter, join, analytical operators)?
Partitioning & Indexing: What kind of spatial and/or temporal partitioning

schemes are available? Can data be indexed for performance improvement?
Language/Interface: How can users work with the framework?
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4.1 Hadoop MapReduce-based systems
SpatialHadoop The first approach to implement spatial operations as an exten-
sion for Hadoop MapReduce is SpatialHadoop [33, 31]. The framework provides
spatial types for typical vector data as well as operators for range queries, k-nearest
neighbors, and joins (spatial join, distance join). However, there is no support or
temporal data. Furthermore, convex hulls as well as Skylines over the input data
set can be computed. SpatialHadoop employs two index levels: on a global level
an index partitions data across all nodes while a second index organizes data inside
each partition. These indexes are used during read to eliminate records that do
not contribute to the final result. As index structures, SpatialHadoop supports grid
files, R-tree, and R+-trees.

HadoopGIS Another approach that extends the plain Hadoop MapReduce frame-
work with spatial operators is HadoopGIS [2]. Similarly to SpatialHadoop, it uti-
lizes a two level indexing: a global partition indexing and an optional local spatial
indexing. The query processing engine, called RESQUE, uses these indexes to iden-
tify partitions to load and to speed up processing the required partitions. The
RESQUE engine provides spatial operators like intersects, contains, distance, etc.
The HadoopGIS system is integrated into Hive to provide a declarative SQL-like
query language as user interface, namely HiveQL with spatial extensions. It sup-
ports typical operations such as range query, spatial join as well as kNN on the
typical vector data types. It does not support temporal data.

GeoMesa & GeoWave GeoMesa [39] uses the key-value store Apache Accumolo
as its storage backend. In GeoMesa the keys are created as a combination of the
temporal value and the GeoHash1 representation of the spatial component. It is
primarily designed for point data and non-point data has to be decomposed into
multiple disjoint geo-hashes, resulting in duplicated entries in the index. It seems
that data always has to have a spatial and a temporal component. When query-
ing data, only those data items intersecting with the query region are considered
– based on the computed geo-hashes. GeoWave2 is a geo-spatial index that is also
based on Accumulo or HBase. Like GeoMesa, it uses space filling curves to repre-
sent multidimensional objects as 1-dimensional keys. In these systems, no explicit
partitioning or spatial indexing is performed as they rely on the GeoHash and space
filling curves. As language, the Contextual Query Language can be used.

Sphinx Sphinx [35] extends the Hadoop database system Impala3 with spatial
vector data processing functionality and thus, provides an SQL interface to the user.
For that it adds typical spatial vector types (point, polygon, . . . ) and the spatial
range query and filter operators to the query planner and reuses the partitioning and
indexing techniques introduced in SpatialHadoop. The planner uses the statistics
provided in Impala to decide whether an index should be used - if available - for
execution. At runtime, Sphinx generates C++ code for the given query.

1https://en.wikipedia.org/wiki/Geohash
2https://ngageoint.github.io/geowave/
3http://impala.apache.org/
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Parallel SECONDO Parallel SECONDO [67] is a distributed version of the SEC-
ONDO [44] database. In parallel SECONDO, every node maintains its own SEC-
ONDO database (Data Server). The actual work is distributed to these nodes using
the Hadoop framework and each node runs its task in the SECONDO database. For
data exchange, Parallel SECONDO uses its own file system PSFS (Parallel SEC-
ONDO File System) and uses HDFS only to store meta data about PSFS. SECONDO
supports spatial networks of static or moving objects and spatial (vector) objects.
These types and the operations in SECONDO can be used to answer questions like:
“Which part of the network can be reached within 50 km distance from a given net-
work position?” or “Return the part of the network that lies within forest X” [44].

Spatial Index Framework In [105] Whitmann et al. present a framework to
index spatial data for the Hadoop platform that uses Quadtrees to support spatial
queries. Input data is read from HDFS and used to create a partial Quadtree on each
worker node. Then, using a custom partitioner, the entries of the partial trees are
shuffled to be combined to a sub-tree of a complete index. On each node, a partial
tree is created which is then shuffled to other nodes and combined to a sub-tree of a
complete index. There is no declarative language to be used and queries seemingly
have to be written as Hadoop programs. As operators, the system supports range
queries and kNN queries.

4.2 Apache Spark-based systems

GeoSpark GeoSpark [112, 111] is a Java implementation to process only spatial
vector data without special treatment of a temporal dimension. The project consists
of three parts: GeoSpark Core, SQL, and Viz. The GeoSpark core project imple-
ments all computational functionality while GeoSpark SQL contains the necessary
classes to integrate into Spark SQL. GeoSpark Viz contains some classes to visualize
the content of the data set in an image. Thus, the following presents the capabilities
of GeoSpark Core.

There are four different specialized RDDs: PointRDD, RectangleRDD, CircleRDD,
and PolygonRDD. These special RDDs internally maintain a plain Spark RDD that
contains elements of the respective type, i.e. points, rectangles, polygons, and circles.
Only the generic base SpatialRDD can hold geometries of various types. GeoSpark
supports k nearest neighbor queries, range queries, and join queries with contains or
intersects predicates only and each of these queries can be executed with or without
using an index. For joins, the within distance predicate can additionally be chosen.

As described in [112], GeoSpark supports R-trees and Quadtrees to create an
ad hoc index the RDDs. A persistent index does not seem to be possible since
there is no index load functionality. For partitioning the data sets, several strategies
are available: R-tree, Quadtree, Hilbert-curves, as well as fixed grid partitioning.
Internally, GeoSpark uses the JTS4 library to represent the spatial objects and it
uses the provided R-tree implementation for indexing and partitioning.

4https://github.com/locationtech/jts
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While in earlier versions it was not possible to associate a spatial object with
some payload information, the current version 1.2.0 stores the payload information
serialized into a string using a fixed delimiter, which is then stored within each
geometry object. In the Java API, RDDs are not created by transformations or
actions, but by creating new instances of the spatial RDDs and pass in values, such
as the path of the file to load and the offset of the spatial attribute within that file.
Operations like joins are not implemented as methods/functions on these RDDs, but
as extra classes, that accept one or more spatial RDDs as input.

SpatialSpark The goal of the SpatialSpark approach described in [110] is to pro-
vide a parallel join technique for large spatial vector data sets with the main focus on
parallel hardware like multi-core CPUs and GPUs. To compute a join, the complete
right relation is indexed using an R-tree broadcasted to all workers. Then, all items
of the left relation are probed against that R-tree to find join partners. If the right
relation does not fit into memory, SpatialSpark provides Fixed Grid Partitioning,
Binary Space Partitioning, and Sort Tile Partitioning with and without using an
R-tree as index [110]. As filter operation, SpatialSpark supports range queries with
the predicates contains, within (containedBy), and withinDistance. The partitioning
techniques from above, however, can not be used for filter operations. When query-
ing a persistent index for these range queries the intersects predicate is compulsorily
used. While SpatialSpark provides spatial operations for Spark, the core work of the
authors is to integrate spatial operations into Impala. Internally, they expect RDDs
with an ID and a geometry object, which are processed when calling the specific
query object (like RangeQuery or BroadcastSpatialJoin).

LocationSpark LocationSpark [99] supports various query types (range queries,
kNN search, joins, . . . ) via a Scala API. LocationSpark includes a query scheduler
that analyzes a sample of the input data and uses the collected statistics for adaptive
workload-aware partitioning [99]. That is, the a cost model decides if a partition
contains too many objects and initiates a repartitioning step if needed. However, it
supports only point and rectangle types and thus, is not usable for many application
scenarios. The spatial data is represented in a SpatialRDD consisting of tuples with
a geometry and a payload field. Data can be partitioned using a grid or Quadtree.
As index structures, R-trees, Quadtrees, IR-trees are supported.

GeoTrellis & RasterFrames The only platform that is capable of processing
raster data is GeoTrellis. GeoTrellis first provided distributed and parallel raster
data processing by leveraging its own engine using Akka to communicate between
worker nodes. In the current release, they moved from Akka to Spark and provide
a RasterRDD type to represent a raster data set consisting of tiles. It is possible
to perform various operations on RasterRDDs, such as joins, filters, or visualiza-
tion. The joins, however, are not using spatial predicates but use a key based on
the row and column index of a tile, which represents a normal Spark join. The
RasterFrames project adds support for raster data to the Spark Dataframes API.
With RasterFrames it is possible to apply raster operations as well as filters using
vector objects. To the best of our knowledge, for GeoTrellis and RasterFrames no
(scientific) publications exist.
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Table 4.1: Feature comparison of Spark-based spatial data processing platforms. V:
vector data, R: raster data

Feature STARK GeoSpark Spatial
Spark

Location
Spark Simba Raster

Frames

Raster X – – – – X

Temporal X – – – – –

Filter V–V
R–V V–V V–V V–V V–V R-V

Joins
V–V
R–R
R–V

V–V V–V V–V V–V R–R

Analytics
kNN

Skyline
DBSCAN

kNN – kNN
k-Means kNN

Partitioner

fixed grid,
cost-based

grid,
R-tree,

Quadtree

R-tree,
Quadtree,
Voronoi

fixed grid,
binary split,

Sort-Tile

grid, region
R-tree STR

Indexes R-tree,
Quadtree

R-tree,
Quadtree R-tree R-tree,

Quadtree R-tree –

API/Lang. Scala, SQL,
Pig Latin Java,SQL Java Scala SQL SQL

Further projects Besides these, there are some other projects, that all process
spatial vector data: Simba [107, 108] allows to create spatial data processing pro-
grams using SparkSQL or via Spark Dataframe API and optimizes these queries
employing a cost-based optimization module as an extension to SparkSQL’s Cata-
lyst optimizer.

Another project is Magellan5, for which the Git repository claims that it “deeply
leverages modern database techniques like efficient data layout, code generation
and query optimization in order to optimize geospatial queries”. Magellan supports
various geometry types, such as points, linestrings and polygons. As operations,
spatial filters and joins are supported. A Z-order curve is used to partition the
data. Magellan extends SparkSQL and provides its functionality as user-defined
functions (UDFs) to the system. To the best of our knowledge, besides the Git
repository and blog posts, no scientific publication exists for this system.

Table 4.1 shows a feature comparison of the previously mentioned projects and
our STARK. In this table, V stands for vector data, R for raster data. For filter and
join operations, the table lists which combination of these two types are allowed in
the respective operators.

This literature research showed that the demand for spatial and spatio-temporal
data processing platforms has led to a number of projects tackling this problem.

5https://github.com/harsha2010/magellan
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Besides processing spatial vector data only, users also need to process their large
raster data sets using Big Data technologies, resulting in the GeoTrellis and Raster-
Frames projects. Although many real world data sets containing spatial data often
also include temporal values, none of the described systems has explicit support for
this data type.

All of these systems include at least spatial filter and join operation. However,
besides these basic operations, more advanced analytical operations are needed as
well, such as the kNN search or clustering. Within this work, we build a spatial data
processing engine that is also aware of the time-related values. Furthermore, we
close the gap between vector and raster data processing engines and aim to allow
the combination of these two types of spatial data.
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Chapter 5
Framework Design

In this chapter we will outline and discuss the general concepts as a basis of a
framework processing raster and vector data sets at large scale. The framework will
address the requirements outlined in the previous chapters. The target platform for
this framework is Apache Spark using HDFS. However, the concepts of operators,
partitioning, and indexing can as well be applied to other data parallel systems.

5.1 Storage Level
In this section we discuss the possibilities for supporting vector and raster data on
the storage/file system level. It is the lowest level discussed in this thesis and layers
above will benefit from the features it provides.

Storage File Formats Compression

Near Data Processing

Data Model Tiles & Vector Objects

Spatio-temporal Partition Strategies

Index structures

Query Model Analysis OperatorsAlgebra

Vector & Raster Operators Retiling/Repartition

Figure 5.1: The storage level is the lowest level discussed in this thesis.

5.1.1 Storage Formats
Vector Data Vector data objects are typically stored as part of some data set
containing many different attributes. As an example, in the GDELT1 data set
events from all around the world are recorded. Here, every record has attributes
describing the involved actors, country codes as strings, the type of the event, the
time of occurrence, the location and many more. A file format or storage layout
can be optimized for different types of queries. In the context of this work, data on
disk/HDFS can be organized respecting the spatial and/or temporal neighborhood
of the objects: objects that are located near to each other should be stored in a way
so that they can be loaded together. This is tightly coupled with the partitioning
the data parallel systems perform. Thus, one approach is to materialize the spatial
and spatio-temporal partitioning meta information (cf. Section 5.2.2) and exploit
this for additional speed-up, as discussed below.

1https://www.gdeltproject.org/

https://www.gdeltproject.org/
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Figure 5.2: Storing one image after an-
other for fast access to full images.
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Figure 5.3: Pixel-wise storage: for every
pixel, store all values.

Raster Data As described in Chapter 2, an application of raster data is time
series analysis where for the same region, several images are taken over time. Here,
depending on the actual analysis task, different internal file organization strategies
can be employed:

1. store one image after another

2. store information pixel-wise, i. e., first all values for the first pixel in all images,
then for the second, and so on.

The two options are depicted in Figs. 5.2 and 5.3, respectively. While in the first
organization strategy loading one image completely, e. g., for visualization, is faster
than in the second one, the second strategy is suitable for analysis tasks that need
to perform calculations over all values existing for a pixel.

Using simple compression formats, such as run-length encoding, is often not
possible, because there simply is no long run of the same double value. Except for
the pixel-wise storage format: Since in many scenarios not every pixel will change
over time, compression might yield some benefit. Advanced compression techniques
are e. g., LERC [13], LZW [104], or Deflate [29]. Though, we will not consider
compression in the context of this thesis and leave it for future work.

5.1.2 Near Data Processing
The storage formats utilize data as well as query characteristics to speed up the
execution. However, the data still needs to be read completely from storage into
the worker nodes and is processed there. To further speed up query-response time
and reduce overall resource utilization, it is desirable to reduce the amount of data
loaded into memory.

Near data processing means to process data near the storage hardware, i. e.,
disk (more common: SSD). Recently, several approaches, like [106, 12] have been
published that use specialized hardware, such as Field Programmable Gate Arrays
(FPGAs), to execute database operators on data objects while they are transferred
from disk into RAM – hence, before they reach the CPU.

Though it would be possible to add additional hardware to a cluster and use it
for this kind of work, we can also perform logical near data processing. As discussed
above, the storage format employs the locality of the data, e. g., by writing parti-
tioning information to disk. Thus, when a program or query loads data from disk
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hdfs:///my_data/

part-00000
part-00001
part-00002
part-00003
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global_index

...
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part-00001
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filename spatial temp

xll,yll,xur,yur start,end
xll,yll,xur,yur start,end
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query global
index using q

P1 P2 P3
...

q

Figure 5.4: Logical Near Data Processing in HDFS: loading only partitions that
intersect with a query region.

in order to perform some (spatio-temporal) filter operation later on, this filter can
be pushed down into the load function. The function will then decide which parts
of the data set match with the given value (range) according to the filter predicate
and return only these partitions. In this way, it is possible to reduce the amount
of resources (RAM, worker nodes) needed to processes the current query and leave
more resources to other concurrently running queries.

Let P = {P1, P2, . . . , Pn} be the set of all partitions of a data set D and q a
spatio-temporal region used as a filter range. Then, the partitions that contain
result objects for that filter operation regarding region q and a predicate Φ can be
given as:

σΦ = {Pi|Pi ∈ P ∧ Φ(Pi, q)}

The idea is depicted in Fig. 5.4: for every partition, a separate file is created in
the HDFS. The meta information about the spatio-temporal partition bounds are
written to an additional global index. This global index can be organized as a
spatio-temporal index structure, e. g., an R-tree variant, or as a plain file. In the
latter case, a linear search has to be performed. This, however, is justifiable in most
cases since the number of partitions will be rather small, compared to the number
of data objects. When a filter on the data set is performed, it can be pushed down
into the loader function responsible to read the partitions and return them to the
processing engine. This function first reads the global index and identifies those
partitions that intersect with the query region q. Subsequently, the file names of
those partitions are forwarded to the native load function of the execution engine
in order to load only those and not the complete data set. In this way, the load
on the cluster can be reduced drastically as fewer worker nodes will be needed for
processing.

A similar approach can be implemented for values of raster data sets. Here, in
addition to the spatial (and temporal) components, we can also consider the actual
values and create an index storing Small Materialized Aggregates (SMA), such as the
minimum and maximum pixel value in each partition. This information can later
be used to speed up according filter and join operations.
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5.2 Data Model
This section deals with the data types needed representing the spatio-temporal vec-
tor and raster data. We will further discuss the partitioning as well as indexing
strategies with the goal to speed up the query execution time.

Storage File Formats Compression

Near Data Processing

Data Model Tiles & Vector Objects

Spatio-temporal Partition Strategies

Index structures

Query Model Analysis OperatorsAlgebra

Vector & Raster Operators Retiling/Repartition

Figure 5.5: The data model contains definitions to represent vector and raster data
as well as strategies to partition and index them.

5.2.1 Data Types
Vector Data Spatio-temporal vector data needs to be represented as an object
with a location and a time. In this framework, we consider the spatio-temporal
feature as a single property of a record. Thus, the spatial and temporal information
is represented by a single object. Since our main focus is on spatial data, the time
information is optional and may be left empty. In that case, the object does not
have an associated time information, although a time may be present in some other
attribute in the schema, of course.

The data type which contains the spatial as well as temporal information is
named stobject. The type itself as well as its fields can be given as follows in
EBNF:

stobject = geo, [time] ;

geo = POINT | LINESTRING | POLYGON |
MULTIPOINT | MULTILINESTRING | MULTIPOLYGON ;

time = instant | interval ;

instant = LONG | DATE | TIME | DATETIME;
interval = instant, [instant] ;

This means an stobject is an abstract data type with two fields: a geometry object
that represents a vector geometry and an optional time. The geo field must allow to
hold all known vector data types (points, polygons, etc.) and therefore, a base type
for all geometries is needed. These geometry types require their own data structures
to be represented, which can be taken from some external library. The time field
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Figure 5.6: Tile representation with position information.

must allow to hold instances as well as intervals. Intervals always have a known start
time, which is expressed as an instant, but their end may be undefined to represent
open-ended intervals. An instant can be created from a number representing seconds
elapsed since the Unix epoch or an explicit date. Such types are available in (almost)
all programming languages.

Raster Data Representing raster data requires to

1. model the raster tiles as container types with a set of cells,

2. allow various data types to be used for cell values,

3. include meta information about a tile in the tile itself, and

4. ensure tiles can be used together with vector objects in spatial predicates.

Raster data is stored using a tile type. An instance of this type represents a
single tile in the raster. A tile is always an rectangle and for each tile we store its
position information, i. e., the coordinate values of the upper left corner as well its
width and height (in terms of number of pixels), as shown in Fig. 5.6. Storing the size
information for each tile is important as it enables us to implement operators, such as
filters, that might match only a part of a tile which results in a set of irregular sized
tiles. Since computations are performed in parallel on different worker nodes, meta
information would have otherwise be made available to all nodes and be updated
when this information changes and tiles are created/deleted. Along with the position
and extent information, a tile stores the contained pixel values. All values are of one
certain type and usually all tiles in a raster data set store the same type. However,
raster data sets can be of any type: sensors may record double values, images
from cameras create RGB or integer values, and synthetically created data sets may
consist of user defined abstract types.

Similar to NULL in relational databases and programming languages, a special
value to indicate a missing value is needed. We rely on existing special values of built-
in types of programming languages to mark such a missing value. For floating point
values, this can be the not a number constant, or negative (or positive) infinity.
For other types, the NULL reference of the programming language is used.
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Multi-band tiles can be supported using the fact that a tile can hold user defined
types. For multi-band data, this type can be an array of values, where every entry
in this array is a value in one band.

Collections of Vector and Raster Objects Data sets may contain a plethora
of vector and raster objects, respectively. Thus, the objects need to be collected in a
container structure which can be processed in parallel in a cluster environment. In
Apache Spark, the platform used for the prototype implementation (cf. Chapter 6),
this structure is an RDD. In order to provide operations on this collection of objects
specialized collections, i. e., RDDs, are needed. The specialized RDDs must provide
the same operations as traditional RDDs, but additionally implement the operations
for spatio-temporal vector objects and raster tiles, respectively. Thus, we extend the
original RDD class of Apache Spark and create specialized classes that implement
the respective operations (filter and join). The partitioning and indexing to apply
will be configurable. The operations are discussed below in Section 5.3.2.

5.2.2 Spatio-temporal Partitioning
Data parallel systems need to partition the data according to some strategy to assign
parts of the input data set to worker nodes. Strategies such as hash partitioning or
round robin are well known and widely used within such systems. However, these
strategies do not maintain the locality of the data, meaning that spatial objects in
the input data set that are near to each other will likely be assigned to different
partitions. Thus, the area spanned by the elements inside a partition will overlap
with many if not all other (areas of the other) partitions. While this itself is no
problem for query execution in general, it inhibits the exploitation of the partition
area to optimize query execution.

A spatial (and temporal) partitioning method assigns an object to a partition
based on its position in space and/or time so that nearby elements will likely be
assigned to the same partition. We can distinguish three partitioning categories:
Spatial: In spatial-only partitioning only the spatial feature of the stobjects are

considered. This can also be applied to partition raster data sets.

Temporal: Analogously to spatial partitioning, in temporal-only partitioning only
the temporal feature is used to assign objects to partitions. Since in our design
the temporal information is optional, objects without a temporal part cannot
be assigned to any partition and should either be added to a meta partition
or an error is generated.

Spatio-temporal: Spatio-temporal partitioning applies both strategies in a single
partitioning step: first, the objects are partitioned using a spatial partitioning
approach and then, every generated spatial partition is again partitioned using
a temporal partitioner. It is, of course, possible to first apply a temporal
partitioner and after that the spatial partitioning. While the order in which
the partitioners are applied will most likely not have an impact on the load
balance among the nodes, it is very likely to have an impact on the resulting
query performance.
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Partition Pruning A spatial or temporal partition is defined by an area or range
it covers, rather than, e. g., a hash bucket ID.

When the bounds of a partition are known, this information can be used during
query execution to decide which partitions, or in the case of spatial joins, combina-
tion of partitions can contribute to the final result. This is very similar to the logical
near data processing discussed in Section 5.1.2. Though, in this case we apply the
pruning on the partitions in memory. This is useful when the partition informa-
tion is not present on disk, e. g., when partitioning was applied only after data was
loaded. The pruning can be used for filter, kNN search as well as for joins. Assume
two input data sets R and S, each partitioned into m and n partitions respectively.
If there was no information about the spatial or temporal bounds of the partitions
and a spatio-temporal join is performed, m × n combinations of partitions would
have to be created and all objects in the partitions would have to be tested to match
the join condition. However, if the spatial or temporal bounds of the partitions are
known, only those partitions that intersect with each other need to be combined.

Partitioning Strategies We can distinguish two kinds of partitioning methods:
with duplicate generation and without. A partitioning with duplicate generation
means that an element is assigned into multiple partitions. This may be the case
for geometries that cover a region (polygons) or time intervals (cf. Section 5.2.1).
Here, a respective object is replicated into all partitions it intersects with. Dupli-
cates may also arise when the boundaries of the partitions overlap, i. e., the areas
or ranges covered by the partitions are not disjunct and objects are assigned to all
partitions. However, for spatial and temporal data processing there is no reason to
generate non-disjunct partitions and thus, in the following we assume that parti-
tion bounds are always calculated so that disjunct partitions are created. Since this
replication might cause duplicate query result records, e. g., for spatial join oper-
ations, a de-duplication step is required afterwards. For identifying and removing
such duplicates, the reference point method proposed in [30] can be used.

To avoid the additional de-duplication step, a partitioning without duplicate
generation is required. Since we assume disjunct partitions, points and instants are
always contained in exactly one partition. Other types, i. e., linestrings, polygons,
and intervals, need to be assigned to partitions based on a single (characteristic)
point.

For geometries, this may be the centroid point or any interior point or point
of its boundary/MBR, whereas for time intervals the start, end (if existent), or the
middle could be used.

However, as discussed before, the partition bounds information is supposed to
be used to prune partitions that, e. g., do not intersect with a query range. As
shown in Fig. 5.7, the polygons and intervals may exceed the partition’s boundary.
In the figure, the three objects are each assigned to different partitions (marked by
X). Consider a query that wants to find all polygons that contain the query point
Q. If only the actual partitions’ boundaries are checked, we find that Q lies within
P4, which contains no objects in this example and thus, the result would be empty,
because the other partitions were excluded from evaluation. Therefore, in addition
to the calculated boundary, we also have to keep the extent of a partition. The extent
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Figure 5.7: Example of objects in different partitions as results for point query (red
circle).

is the MBR of the convex hull of all elements inside that respective partition and is
used instead of the actual calculated partition boundary to perform the intersection
check with the query range or partition from another data set.

In Section 2.3.2 we outlined four requirements for partitioning schemes: locality,
reasonable number of partitions, partition size, and skew handling. In the following,
we will discuss several approaches that meet these requirements differently well.

While in the one-dimensional space of temporal data only intervals are possible
as shape for the partitions, in the two- or higher-dimensional space of the spatial
data, several shapes can be used. However, when creating partitioning strategies
one has to keep in mind that the partition bounds are computed only once, while
for every object in the input data set this list of computed partitions is searched to
return the containing one. If the partitions are of a polygonal shape, this check will
be a point-in-polygon check which is much more expensive than a point-in-rectangle
check. In the remainder of this section, different possible partitioning strategies are
discussed.

Interval Partitioning To partition the data based on the temporal informa-
tion only, an interval based partitioning strategy is required. In a straightforward
strategy, the complete space, from the earliest (start-)time to the latest (end-)time,
is divided into a number of partitions of the same length.

The fixed-length partitions might contradict the requirement of equally sized
partitions and skew handling. Thus, with statistics about data distribution which
can be collected over a sample of the input data set, partitions with different interval
lengths but (almost) equal number of contained objects can be created.

To assign the objects (instants or intervals) to partitions (intervals), we have to
decide to which partition an object belongs. However, we cannot assume that the
intervals representing the temporal objects are completely contained in any partition.
To achieve a definite mapping anyway, we reduce the intervals of objects to a single
point (instant). Theoretically, there are at least three points that could represent an
interval: its start, its end, or the middle point. Though, the end might be undefined
for infinite intervals, making it also impossible to calculate a middle point. Thus,
neither of them can be used. Therefore, in the interval partitioner of our framework,
objects are assigned to partitions based on their starting point.
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Grid Based Partitioning Similar to the fixed-length intervals approach described
above, the spatial data space can be divided using a grid of equally sized partitions,
represented by rectangles. For this, only the minimum and maximum values in each
dimension must be known.

The number of partitions per dimension (ppd) is given as input parameter. The
side length of the rectangle (partition) in dimension i is then calculated as:

lengthi = |maxi −mini|
ppd

(5.1)

To compute the partition a given point p belongs to, the partitioner simply has to
calculate the partition ID partitionId. For a two dimensional scenario the formula
is given as:

x = bb | p1 −min1 | c / length1c
y = bb | p2 −min2 | c / length2c

partitionId = y ∗ ppd+ x

(5.2)

This strategy can easily be adapted to a higher number of dimensions. The
fixed grid partitioning is cheap to compute as it does not consider at the actual
data distribution besides the minimum and maximum values. However, especially
real world spatial data sets do not have a uniform distribution in most cases. They
rather contain some dense regions, e. g., in cities and sparse areas (oceans, deserts)
– depending on the application scenario. In such cases the fixed grid partitioning
results in a few partitions containing the majority of the objects while all other
partitions contain no or only some elements. The result is that some worker nodes
are suffering heavy load while the others that were assigned the empty partitions
idle.

Thus, in order to generate a balanced partitioning where all partitions contain
the same amount of objects, a strategy that considers the actual data distribution
is needed. In [55] He et al. present an approach that allows to set a maximum cost
for partitions. The goal of the partitioning strategy, developed in the context of a
MapReduce based DBSCAN implementation, is to generate partitions that all have
(almost) the same costs. He et al. define a cost formula that takes disk accesses and
loading times into account.

Based on this idea, we developed our own Binary Space Partitioning (BSP) to
create balanced spatial partitions. The general idea is as follows:

1. First, the data space is divided into small quadratic cells of a fixed side length.

2. For every dimension, create a candidate partitioning by performing a binary
split of the partition in the current dimension.

3. The candidate partitioning with smallest cost difference between both gener-
ated partitions is applied.

4. For both generated partitions recursively apply step 2 if:
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Figure 5.8: Visualization of an example
Binary Space Partitioning (solid lines)
with cells (dashed lines) and data objects
(points).

Figure 5.9: Visualization of an R-tree
partitioning.

• the generated partition is longer than one cell length in at least one
dimension and

• its cost is greater than the given maximum cost.

Applying this partitioning approach will result in partitions of almost equal cost,
if the cell size is chosen reasonably according to the data. Figure 5.8 shows the result
of a sample partitioning. To compute the costs for each candidate partitioning, the
costs for each cell must be known in advance. Thus, in an additional step before the
actual partitioning starts, the cell statistics are generated with an additional pass
over the data. These statistics are represented in a histogram for the cells with the
number of elements in each cell.

When using only a sample of the input data to compute the statistics and parti-
tioning, it may happen during the assignment of data objects to partitions that an
object is not contained in any partition. To decide to which partition this particular
object belongs to, two options exist:

1. An additional overflow partition is introduced which will hold all elements
that are not contained in any real partition. This overflow relation will very
likely span across the complete data space, since those not contained objects
spread over the complete data space and thus intersect with a large number of
the real partitions. The smaller the sample of the data used to compute the
partition is, the higher the probability that an object is not contained in any
partition and will be assigned to the overflow partition.

2. For an object o that is not contained in any partition, the nearest partition is
determined and the object is assigned to it. Additionally, the extent of that
partition is updated to include the given object.

Tree-based Partitioning Spatial index structures divide the data space into
(disjunct) regions and organize them in e. g., a tree structure. The R-tree and
Quadtree are such tree based structures. One can utilize the bounds of the tree’s
nodes as partitions.

Typically, an R-tree has a capacity parameter specifying the maximum number
of elements stored in a node. The capacity of the tree nodes has to be chosen
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according to the desired number of partitions and number of elements per partition.
This way, we can find the partition bounds in the first level, which is already the
leaf level, of the tree. Therefore, the capacity c is calculated as:

c = input size

max cost per partition

The MBRs of the leaf nodes in the tree represent the partitions. Figure 5.9
visualizes the partitions generated by this strategy. Maintaining a tree during many
inserts is time consuming and may produce nodes that do not optimally utilize
the space. However, bulk loading techniques such as the Sort-Tile-Recursive (STR)
packing [64] can be used especially when the tree is read-only after loading.

In a Quadtree a node always has four children, if they are not empty. Similarly
to the described approach for R-trees, the bounds of the nodes on the leaf level
in the Quadtree can be used as partitions. Note that since the trees are not used
for searching, it does not matter that the Quadtree is not balanced. We are not
interested in traversing the tree, but rather use the bounds of the generated leaf
nodes as partitions.

The advantage of the tree partitioning strategies over the previously discussed
grid strategies is that the tree is a dynamic data structure that adapts to the data.
While the fixed grid approach did not consider the data distribution at all, the
BSP needs a pass over (a sample of) the data to compute the histogram and then
create the actual partitioning based on the histogram. The R-tree partitioning
approach adapts to the data distribution during the build phase using the efficient
STR method.

R-trees and Quadtrees are common spatial index structures and are available in
commonly used libraries. However, other index structures for higher dimensional
data (d ≥ 2), such as kd-trees or grid files, can also be used for partitioning.

Like for grid partitioning the tree does not need to be built over the complete
data set, which would require to load the whole data into memory or use a disk
based tree which would incur additional load time because of the disk accesses.

Other Partitioning Strategies The grid- and tree-based strategies create rect-
angular partitions for spatial data. However, a rectangular shape is not necessarily
required and alternatives might also achieve good results.

Voronoi Partitioning Voronoi diagrams divide a two (or higher) dimensional
space into regions. Each region is determined by a center point which is usually
– but not necessarily – member of the input data. For all points from the input
data set the distance to all centers is calculated and the object is assigned to that
region it has the smallest distance to. However, this strategy has the disadvantage
of choosing good center points as it greatly influences the resulting partitions. If the
centers are too close to each other and are not distributed over the data space, it
is very likely that some partitions contain only few elements while other partitions
stretch over a large area and contain a large number of objects. For the assignment
of points to regions/partitions the distance needs to be calculated, which might be
more expensive than a point-in-rectangle check where only double values have to be
compared.
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Angular Partitioning The described approaches create a general partitioning
that is independent from the actual query. However, Chen, Hwang, and Wu pro-
posed a angular partitioning in [22] especially for the application in Skyline query
computing (see below) on MapReduce.

The idea is to, starting from a fix point, divide the data space into sectors
around that fix point. Each sector covers an angle around the fix point. For this,
the Cartesian coordinates are translated into polar coordinates, represented by a
radius (distance to the fix point) and one angle Φ in the two dimensional case.
The authors showed that this approach achieves good results for the Skyline query
processing. However, it could also be applied in general to the input data. In this
case the fix point could be, e. g., the lower left point or the mid point of the MBR of
the universe (the input data). The idea of this partitioning scheme can be grasped
from Fig. 5.17(a) on page 74.

Combined Spatio-temporal Partitioning The introduced strategies are either
designed for temporal or spatial vector/raster data only. However, since we are deal-
ing with spatio-temporal (vector) data, partitioning should consider all dimensions
of an object.

One approach is to add the time to the spatial feature as an additional dimension.
Since the grid-based and tree-based strategies can theoretically be implemented for a
higher number of dimensions, they can easily deal with three-dimensional (2 spatial
+ 1 temporal) or four-dimensional (3 spatial + 1 temporal) objects. Treating the
time as an additional dimension for the spatial objects will work, but might not
achieve best results. Thus, another option is to first partition on one dimension
(spatial or temporal) and after that, partition each of the resulting intermediate
partitions with respect the respective other dimension.

Raster Data Partitioning The tiles in a raster data set cover a spatial region
of rectangular shape and each tile carries the information about its spatial extent.
Thus, the same spatial partitioning strategies as for vector data can be applied on
a raster data set as well. For sparse raster data sets, i. e., where a few tiles are
scattered over a large area, a cost- or tree-based approach might be useful. For
regular raster data set where tiles cover the complete space, we can assume a simple
grid partitioning is best.

5.2.3 Indexing
In the context of this framework, indexing can be done on two levels:

1. Global Indexing: An index is created globally over the complete data set.
It is used to decide which partitions contribute to the query result.

2. Local Indexing: For every partition, a partition-local index is created over
the content of that partition. It is used to speedup processing that particular
partition.
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The logical near data processing as discussed in Section 5.1.2 is a form of global
indexing. The meta information about the partitions spatial and temporal extent
can be used as a form of index. We therefore will limit the following to local indexing
of partitions.

Usually, a partition is given to a worker in form of an iterator from which all
elements are pulled and processed according to the query, e. g., compared with a
given filter predicate. Since all data items within a partition are candidates for the
current spatio-temporal predicate , they all have to be evaluated. This is done on
all partitions (returned by the global index) and all records from the input, similar
to a full table scan in a DBMS. If the data set is large and the operation to apply
for each record is complex, execution of a query will take a lot of time, making
interactive applications and ad hoc queries impractical. Thus, theoretically any in-
memory spatial, temporal, or spatio-temporal index structure can be used to speed
up execution.

The worker nodes have to load the index into memory and thus, it must fit
into memory. This requires to partition the data in a way that the partitions do not
contain too many objects in the first place. The number of objects a partition should
have at maximum depends on the available RAM on the nodes and the record size.

An input data set which is, e. g., given as a CSV file does not have an index by
default. However, once an index was created it might be needed in later queries as
well. Therefore, two indexing modes exist: online index generation and persistent
indexing.

Online Index Generation A worker node iterates over all elements in its current
partition and adds the elements to an in-memory index. After evaluating
the query (filter, join, . . . ) the index is discarded, i. e., it exists only during
processing the partition. Note, that this mode is transparent to the user and
other operators as the index is not exposed to any other component in the
system.

Persistent Indexing Often users and groups of users work with the same data sets
and use it for various purposes. Thus, discarding the index after evaluating
one query is not always wanted and it should rather be materialized to storage.
This mode changes the schema of the input from a list of fields to a single Index
field. The indexed partitions can be written to storage using byte serialization
and also be loaded using a platform’s native methods.

Online indexing will probably have no effect for filter operations as all objects
in a partition have to be loaded and put into the index before the index structure
is queried for matching objects. Since all objects have to be touched anyway, the
predicate could directly be evaluated without the memory overhead of an index.
Nonetheless, for joins and other operations such as kNN search, the index might
bring some benefit.

In persistent indexing mode the overhead of building the index before using it
is not present and even filter queries can already benefit. Though, the index has
to be serialized as a binary object. In Java, serialized binary objects are known to
be extremely large. Thus, loading the index requires to read large binary objects,
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Figure 5.10: Indexing the partitions’ content

which potentially has too much overhead and wipes any benefit achieved by querying
the index. We will analyze this in the evaluation in Section 9.1.2. In Fig. 5.10 the
indexing of the partitions’ content is depicted as well as the effect on the schema.
Partitioning and partition pruning described in Section 5.2.2 is orthogonal to index-
ing and helps reducing the data before actual computation.

5.3 Query Model
Using the previously defined data types, partitioning schemes, and indexing strate-
gies, in this section we discuss possible operators to query the data sets.

Storage File Formats Compression

Near Data Processing

Data Model Tiles & Vector Objects

Spatio-temporal Partition Strategies

Index structures

Query Model Analysis OperatorsAlgebra

Vector & Raster Operators Retiling/Repartition

Figure 5.11: The query model provides various operations to query the data sets.

5.3.1 Operations for Spatio-temporal Vector and Raster Data
In order to implement operations on spatio-temporal vector and raster data, the
definition of an algebra is needed. In [43], Güting proposed a geo-relational algebra
as language to work on spatial vector objects. In combination with Allen’s interval
algebra [6], this algebra can be adapted for the spatio-temporal data objects in our
scenario. Thus, a set of spatio-temporal objects stobject*, the following operations
can be defined:
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stobject* x stobject -> stobject* // spatio-temporal filter
// (contains, intersects,
// Skyline, ...)

stobject* x stobject x NUM -> stobject* // k nearest neighbors
stobject* x stobject* -> stobject* // spatio-temporal join

stobject* -> stobject // convex hull, largest,
// smallest, ...

Naturally, non-spatial operations such as stobject* -> NUM for a count operation
can be used as defined in [43].

The following operations are defined for single instances of stobject:

stobject x stobject -> stobject // extend, convex hull,
// intersection

stobject x stobject -> BOOL // predicates: contains,
// intersects, smaller

Functions that check the relationships (intersects, contains, greater, smaller, . . . )
of two such objects with each other need to consider both, their location and time
information. Thus, a check of these relationships is only true, iff:

1. the check yields true for the spatial component, and

2. both temporal components are not defined or

3. both temporal components are defined and they also return true for the re-
spective check.

Given as a formal expression: for two spatio-temporal objects o and p and a predicate
Φ:

Φ(o, p) ⇔ Φs(s(o), s(p)) ∧ (
(t(o) = ⊥ ∧ t(p) = ⊥) ∨
(t(o) 6= ⊥ ∧ t(p) 6= ⊥ ∧ Φt(t(o), t(p))))

Where s(x) denotes the spatial component of x, t(x) the temporal component of
x, Φs and Φt denote predicates that check spatial or temporal objects, respectively,
and ⊥ stands for undefined or NULL.

In addition to the spatio-temporal operators above, we also need an algebra and
semantics to work with raster data sets and combine them with vector objects. In
the following, tile describes a single tile and tile* a set of tiles, i. e., the raster
data set. On such a set of tiles, the following operations are needed, where U is the
type of the values in tile:

65



CHAPTER 5. FRAMEWORK DESIGN

tile* x tile* -> tile* // raster-raster join
tile* x stobject* -> tile* // raster-vector join
tile* x stobject -> tile* // raster-vector filter

tile* x U -> NUM // count values
tile* x U -> BOOL // hasValue
tile* x U -> tile* // tiles with value

The above operations apply either a set of tiles, one or more vector objects, or a
scalar value on a set of tiles. To do so, the individual tiles need to be processed as
well. The required operations on single tiles are described below.

tile x tile -> tile // intersection of two tiles
tile x tile -> BOOL // intersects, contains, ...

tile x U -> NUM // count values
tile x U -> BOOL // hasValue
tile x U -> tile // arithmetic expressions

// (+,-,*,/)

tile x POINT -> U // get value at spatial position
tile x NUM -> U // i-th pixel value

tile x (U -> V) -> tile // transform from U into type V

tile -> U // min, max, avg, median

5.3.2 Spatio-temporal Vector and Raster Operators
In this section, we discuss the operators required for big spatio-temporal data analyt-
ics and analyze how they can benefit from parallelism and the discussed partitioning
and index strategies.

Filter As described above, a filter operation on a set V of stobjects requires a
query object q also of type stobject and returns all objects in the set, that match
with the query object according to a given predicate Φ:

σV V
Φ = {STO|STO ∈ V : Φ(STO, q)}

This predicate Φ could either be given as a value from a predefined set of predi-
cate constants or as a UDF. The implementation of the filter then tests the elements
in the data set (partition) against the given query object using the predicate func-
tion. The implementation can make use of available indexes.

Partition pruning can be applied on existing partitions either by selecting the
partitions to load from storage or, if the dataset has already been loaded, by pro-
cessing only those partitions P that match the query predicate regarding q: Φ(P, q).
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Figure 5.12: Filtering raster data with a vector polygon. The result contains new
tiles with different dimensions. Pixels marked with X mean NULL or NODATA.

Corollar 1. For a spatio-temporal predicate Φ, the result of a spatio-temporal filter
on input V and query object q can be constructed only from partitions PV of V ,
where Φ(PV , q) holds.

Since a tile T in the raster data set can be vectorized as a rectangle T vec a filter
on a raster data set R can be realized the same way. Thus, a raster data set can
be filtered using any spatial vector query object (polygon, rectangle, etc.) q. The
filter identifies all tiles that match q according to the filter predicate Φ and returns
them as a new raster data set. This is done by converting the tile into a vector
object, namely a rectangle, using its spatial meta information. The filter predicate
Φ is then applied on the rectangle representing the tile and q.

σRV
Φ = {T ′|T ∈ R : Φ(T vec, q)}

T ′vec = MBR(T vec ∩ s(q))
(5.3)

A query region may only intersect with a part of a tile. In this case, the result of
the filter returns a new tile that represents the intersection and thus, has different
extent than the original tile. As shown in Fig. 5.12, the new tile is generated from
the MBR of the intersection of the input tile and q. In this new tile, the pixel
values which are not part of the intersection are set to a user defined default value
representing a missing value. For images, an alternative approach is to set this to a
specific color, e. g., black or white.

Pattern Search In the following, we describe the efficient pattern search in raster
data sets [82]. The pattern search should return all tiles within a data set containing
the pattern. If the pattern spans across multiple tiles, all of them should be part
of the result. A pattern is defined as a two-dimensional array of values of the same
type as used in the raster data set. Defining the exact pixel values to search for is
difficult or even useless in some scenarios. In the use case described in Section 2.1,
the user searches for ships in satellite images. The ships are likely to have a color
between white and gray in the raster image. Each pixel of the ship probably has a
different gray value. Thus, the pattern search should also have a tolerance range to
also match pixels that differ from the pattern value up to a defined percentage.
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Figure 5.13: Scaled pattern values in an
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Figure 5.14: Possible positions
of a pattern inside a tile.

If the pattern is completely recognized within a tile, this tile can be added to
the result. However, if the pattern is large, it may be often the case that only parts
of it are found within a tile and the other part is in one or more neighboring tiles.
Therefore, the pattern search consists of two main steps:

1. Apply the pattern locally in tiles to produce candidate tiles and

2. merge neighboring candidate tiles to form the final result.

In order to allow a tolerance range for the search, we first scale the pattern values
to [0,1]. This can be done by dividing the pattern value by the maximum value of
the domain, e. g., 255 for type Byte. These values are then sorted in ascending order
in a list L. (cf. Fig. 5.13). The list is then replicated to each processing node that
will start to search for matches in its local tiles.

Tile-local Search Within a single tile, the values of the pattern need to be
compared with all values of the tile. The matching is performed using the scaled
values described above. A pixel value in the tile is converted to the scaled value and
from this the tolerance interval is created. For a pixel value of 200 the scaled value is
0.784. If the tolerance is 10%, the tolerance interval is calculated as [0.9∗0.784, 1.1∗
0.784] = [0.7905, 0.8627]. We then search for all pattern values in L that lie within
this interval. For every pixel value in a tile, this results in a list of possible matches
in the result. Now, for each pixel for which a match in the pattern was found, we
need to further check if the next values in the row also match their corresponding
pattern values.

Comparing every pixel with every value in the pattern would incur a massive
overhead which could render the whole pattern search unusable. Thus, the pattern is
processed line-wise: every line in the pattern is matched against the tile individually.
For every row in the pattern, we compute the position of the last value within the
tile. Figure 5.14 shows five scenarios of a pattern overlapping a single tile. Class 1 –
4 can be combined to form additional variants. Based on these classes, we calculate
the last possible position of the pattern row inside the tile and then try to match this
value with its corresponding pixel value in the tile. Only if the match is positive,
the current row is checked further.
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Figure 5.16: Adding matches to buckets.

If this last possible value in a row does not match the pattern, it does not matter if
the pixels between the start and the end value match and we can discard the current
candidate.

Note, the previous check uses each matched pixel in the pattern as a starting
point and is performed for every matching pixel independently. This produces a row
describing the match, as shown in Fig. 5.15. Every match is identified by a position
key consisting of the position within the tile (row and column number) denoted as t
as well as the position p within the pattern at which it starts. To merge the individual
identified rows, we collect them into buckets. The bucket number is calculated by
the t.row, t.col, as well as p.row values. For every row where p.row = 1, i. e., it was
recognized in the first row of the pattern, a new bucket is started. There is a special
case to consider here: the actual full match might start in the tile above (i. e., north
of) the current tile. The match found in the current tile will have p.row > 1. To be
able to combine the partial matches later, for matches that touch the upper edge of
the current tile we also start a new bucket (number (1) and (2) in Fig. 5.15).

All other matches are then merged into their according bucket. The matches are
stored in ascending order (by their row number in the tile) and a bucket only accepts
new rows with a p.row and t.row being greater than the corresponding values of
the previously inserted row. This means that the bucket 3 starts with a match
identified by p.row = 1 and t.row = 9 and only accepts a match with p.row = 2
and t.row = 10 (see Fig. 5.16).

Merging Local Results The local results on the nodes need to be merged to
form the global result. The results of two nodes are merged by combining the rows
of the respective buckets. To reduce the amount of data exchanged between nodes,
only the start and end point of the rows in the bucket need to be sent. All other
information can be reconstructed on the other node.

Based on the t.row, t.col, p.row, p.col values and the information about where
the partial match ends (left, right, bottom, top edge of tile) of the partial matches
in one tile, we can calculate the partial matches in another tile. Similar to the
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two phases of a hash join, we insert all partial matches of the first tile into a Map
structure with the key consisting of the five mentioned values. The map is probed
with the partial matches of the second tile. We continue combining two tiles this
way, until all tiles have been processed and matches have been combined.

Join A spatio-temporal vector or raster join operation combines two vector data
sets, two raster data sets, or a raster and a vector data set using some spatial or
spatio-temporal predicate Φ to apply as join condition.

There are two strategies to perform a join operation in parallel: dynamic repli-
cation and dynamic partitioning. In dynamic replication, the smaller of both input
relations is replicated to the nodes maintaining partitions of the other relation. Dy-
namic partitioning means that both input relations are partitioned using the same
partitioning scheme and a node joins the content of two corresponding partitions. In
a data parallel shared nothing cluster, the dynamic replication can be implemented
using a broadcast to make the respective relation available on all worker nodes.
This approach should be used for small inputs only, which fit into memory of the
worker nodes.

When replicating one complete relation is not possible, the framework has to
determine which partitions to join.

Regardless of vector or raster data, the join can benefit from the existing spatial
or spatio-temporal partitioning. There are three scenarios:

1. If one or both inputs were not partitioned using a spatial/spatio-temporal
partitioner, the join partners are distributed over all partitions of the input
data sets R and S. Assume R consists of n and S of m partitions, then n×m
join partitions have to be created and for each the local join result is computed.
Alternatively, both inputs can be repartitioned dynamically, preferably using
the same partitioner algorithm.

2. The two inputs are both partitioned using a spatial/spatio-temporal parti-
tioner, but both with a different one (or with different parameters). In this
case, we can apply the partition pruning and identify intersecting partitions
and join them.

3. If both inputs were partitioned using the same partitioner, the created parti-
tions are congruent and partition i of input R has to be joined with partition
i from input S.

Corollar 2. For a spatio-temporal predicate Φ, the result of a join on input R and
S, with RP and SP being the set of partitions for each input, can be constructed
only from the combinations of those partitions RPi

from RP and SPi
from SP , where

Φ(PRi
, PSi

) holds.

In the second case, finding the intersecting partitions can be performed with
a simple nested loop if the number of partitions is small. For a large number of
partitions, the partitions of one relation can be indexed. This index can be queried
using the partitions from the other relation and the result is the list of partitions
that intersect with the query partition.
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In the third case, if the two inputs were partitioned using the same partitioner
(and parameters), it is known that partition RP0 has to be combined with SP0 , RP1

with SP1 , and so on. Thus, the lists of partitions of R and S can be zipped. There are
two important facts to consider here: (1) The number of partitions is not enough to
perform this zipping. If R contains objects in Germany and S objects in the USA,
then both data sets may be partitioned into p partitions, but RP0 ∩ SP1 = ∅. (2)
Furthermore, since objects may exceed the partition boundaries, the identification
of partitions to zip must be based on the partitions’ extent. Objects that intersect
multiple partitions are replicated into all of them. This requires to perform an
additional de-duplication step.

For the actual join, the worker nodes have to find the join partners in the content
of the two partitions. If an index exists on any of the two inputs, it can of course
be used to improve the join.

In the literature, several approaches to compute the spatial join (also in parallel)
exist. In [8] Arge et al. present a sweep-line based approach if neither input data
set is indexed. Further, [69] presents a spatial merge join and [66] adapts the hash
join principle to spatial joins. However, these approaches are in the context of
spatial database systems and not designed for shared nothing cluster environments,
though the basic idea can also be ported to these platforms. Brinkhoff, Kriegel,
and Seeger presented a parallel spatial join technique using R-trees where the tree,
which must exist on both inputs, is traversed in parallel [18]. The “Spatial Join with
MapReduce” in [113] presented the first spatial join on MapReduce and showed that
it can compete with the parallel version of the spatial merge join.

In general, there are three cases:
Case 1 No index exists on either input. In this case a nested loop or sweep-line

approach can be used. Alternatively, an index can be created on-the-fly on
one or both inputs and then Case 2 or 3 can be applied, respectively.

Case 2 An index exists on one of the inputs. Here, we iterate over the input without
index and probe the existing index to find the join partners. Alternatively, the
non-indexed input can also be indexed and Case 3 is applied.

Case 3 If both inputs are indexed, the join strategy presented in [18] can be used
for R-trees or [77] for Quadtrees.

While the general approach of identifying join partitions is the same for vector
and raster data, the resulting schema that they produce differs. In the following,
we will discuss how the actual join result is constructed for possible combinations
of vector and raster data joins.

Vector Data A join requires the definition of the join attribute in the two input
data sets. The Big Data engines typically assume the join attribute to be the key
in the schema. Hence, we also assume the schema in the input data sets to be a
key value pair of (STO , Payload), where STO is an instance of the spatio-temporal
data type defined in Section 2.3.2 and Payload is some associated payload data.

The vector data join returns all tuples from both inputs R and S that satisfy the
join condition Φ as (PayloadR, PayloadS):

./V V
Φ = {(PR, PS)|(STOR, PR) ∈ R, (STOS, PS) ∈ S : Φ(STOR, STOS)} (5.4)
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The payload itself may be a nested structure containing the associated STO again.
This way, it can be extracted from payload objects in the join result so that another
spatio-temporal operation (filter, clustering, etc.) can be applied subsequently.

Raster Data A join of a raster data set with a vector data set works the same
way as joining two vector data sets. After identifying intersecting partitions, their
contents are checked pair-wise to find all tiles that match with vector objects in
the vector data set. Since each tile stores the coordinates of its upper left point as
well as the width and the height, the transformation into a vector rectangle, that is
tested against the query polygon, incurs no significant overhead.

The resulting schema of the join of a raster data set R and a vector data set V
and predicate Φ is a pair of a tile and the tuple of V that matched with that tile:
(Tile, (STO,Payload)), where Payload is the payload from the vector data set
which is always of schema (STO, Payload):

./RV
Φ = {(T ′, (STO, P ))|T ∈ R, (STO, P ) ∈ V : Φ(T vec, STO)}

T ′vec = MBR(T vec ∩ STO)
(5.5)

Similar to the raster-vector filter, T ′vec is the minimum bounding rectangle of the
intersection ∩ of T vec and the vector object STO from V . T ′ then contains all pixels
of T that are contained in T ′vec.

Joining two raster data sets R1 and R2 will find (parts of) tiles that match a
given predicate Φ. The user additionally specifies a combine function f that will
be applied on the pixel values of the parts of the two matching tiles to compute the
pixel value in the resulting tile.

./RR
Φ,f = {T ′1 ⊕f T

′
2|T1 ∈ R1, T2 ∈ R2 : Φ(T vec

1 , T vec
2 )} (5.6)

As in the previous cases, T ′1 and T ′2 contain those pixels in T1 and T2, respectively,
that lie in the intersection of these two tiles. The resulting tiles are generated by
combining two matching tiles pixel-wise and compute the pixel value in the result
tile using f . Thus, f is a function of f : U × V → W , where U and V are the data
types used in R1 and R2, respectively, and W is the generated result value. U , V ,
and W can all be the same type, of course.

Skyline The Skyline, or Pareto-optimum, is a multidimensional optimization prob-
lem, with the goal to find those objects (or solutions) from a data set (or problem/-
solution space) so that each object of the result is the best option in at least one
dimension. In [17], Börzsöny, Kossmann, and Stocker proposed this operation as an
operator for relational database systems. The Skyline of a data set R for a given
query point q is defined as:

Sq = {pi|pi ∈ R ∧ ¬∃pj ∈ R : pj 6= pi ∧ pj �q pi} (5.7)

Where �q denotes a dominance relationship with pj �q pi meaning pj is better than
pi according to the query point q. Here, better means a minimum or maximum
criteria, depending on the application.

In contrast to [91] that adapted the idea to spatial-only data, the dimensions
that we consider here are the spatial and temporal distance to the reference object.
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Following this, the dominance relationship must be defined on the distance of the
object in R to q in the spatial and temporal dimension, as shown in Eq. (5.8).

pj �q pi ⇔ distst(pj, q) ≤ distst(pi, q) (5.8)

Since the distance values depend on the query point q, they cannot be pre-computed
in general, but are determined ad hoc during execution. Thus, the computation of
the Skyline for an input data set R includes two major steps:

1. Calculate the distance distst(p, q) of an object p to q in spatial and temporal
dimension and

2. decide if p is dominated by any other point in the result Skyline.

The Skyline is an interesting operator for finding similar objects in a data set to
a given reference object and several implementations have been proposed.

A näıve nested loop approach compares every object in R with all other objects,
resulting in a complexity of O(|R|2). Furthermore, a full nested loop implementation
in a data parallel system requires to shuffle all partitions to all nodes. This means,
massive amounts of data being replicated and transferred over network.

Adaptions to the characteristics of a cluster environment usually follow the
same general approach: compute partition-local Skylines individually in parallel
and merge them later to form the global Skyline.

A Skyline operator can greatly benefit from a spatial partitioning: when using
a partitioner on the set of distance values, the partitions have well-known bounds
(in terms of distance values / coordinates). Thus, there might be partitions which
cannot contain Skyline objects simply because they are dominated by another (non-
empty) partition.

Mullesgaard et al. presented an approach to compute Skyline in MapReduce
in [71]. In this approach they exploit the grid partitioning information and partitions
dominated by others are excluded from further processing. They use bitstrings with
positions set to 1 if the corresponding partition is not empty. For every non-empty
partition, the positions of the dominated partitions in the bitstring are set to 0.
After this step, only partitions whose index in the bitstring is still 1 are considered
in the further Skyline computation.

In [22], an angular partitioning that creates partitions (segments) of fixed angles
around the given query point is proposed. The advantage is that with this parti-
tioning strategy, no additional partition pruning is necessary and the local Skylines
already dominate many points so that merging them requires fewer redundant dom-
inance checks.

Figure 5.17(a) sketches this angular partitioning and highlights the resulting
Skyline points. For comparison, in Fig. 5.17(b) partitioning is shown.

We now discuss for possible implementations for the Skyline computation, that
(partially) adapt the just described approaches.

1. GridPart: First, for every element in the input its spatial and temporal dis-
tance to q is computed, resulting in an intermediate data set of distance values.
The distance data set is partitioned using a grid based partitioner. Then, only
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(a) Angular partitioning and local Skylines. (b) Local Skylines on Grid-based partitioning

Figure 5.17: Local Skyline computation with Angular vs. Grid-based partitioning.
Red points mark partition-local Skyline points that need to be merged to the final
result.

for those partitions that are not dominated by another one the local Skylines
are determined. The local Skylines are finally merged into a global Skyline
result [71]. The difference to the previous approach is that the input data set
is transformed into distance data set which is explicitly partitioned using a
grid. Alternatively to a bitstring, the dominance can be computed from the
partition number in the grid. Chen et al. achieved much higher dominance
ratio inside the partitions compared to grid partitioning, so that fewer points
from the local Skylines need to be merged.

2. Angular: We first compute the distance data set as in GridPart, but use the
angular partitioning introduced in [22]. For each angular partition (segment)
the local Skylines are computed which are finally merged into the final global
Skyline.

3. AngularNoPart: Repartitioning the whole distance data set is very expen-
sive. Thus, in the third approach we try to avoid shuffling the complete input
data. The code is given in Algorithm 1 as pseudocode. It starts with a non-
repartitioned data set R and for every partition a mapping from an ID to a
Skyline object is created. Then, for every element obj in partition P, the an-
gular partitioner of [22] is used to determine the partition ID the object would
belong to (but data is not repartitioned), based on its angle to the reference
object q and finds the Skyline objects in the map based on this ID. Thus,
for each physical partition created by the underlying platform, we generate
multiple local Skylines, based on a logical angular partitioning. Since we al-
ready maintain local Skylines, elements that are dominated by some objects
are pruned. This way, total data size to shuffle in order to build the global
Skyline is reduced. In the merging step, Skylines from different physical parti-
tions with the same angular partition ID are merged. The Skyline structure
maintains a list of Skyline points L. A newly offered point o is added to L, only
if it is not dominated by any point already in L. When o was added to L, all
points previously in L that are dominated by o are removed.
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Algorithm 1 AngularNoPart method for partition R and reference point q
1: procedure SkylineAngularNoPart(R, q)
2: skylines ← map<int → Skyline>
3: for each P ∈ partitions(R) do . partitions are processed in parallel
4: localSkyline(P, q)
5: end for

return merge(skylines) . merge all local Skylines
6: end procedure
7: procedure localSkyline(P,q)
8: partitioner ← new AngularPartitioner
9: for each obj ∈ P do

10: stDist ← dist(obj, q) . pair of spatial and temporal distance
11: partId ← partitioner.getPartition(stDist)
12: skylines[partiId].offer(stDist)
13: end for
14: end procedure

4. Aggregate: This approach also makes use of the Skyline structure and is
supposed to benefit from the plain parallel processing without any additional
partitioning information. For every partition, the local Skyline is computed.
These local Skylines are then merged into a global Skyline as final result.
This approach avoids an explicit repartitioning step to save execution time,
but computes the Skyline over all objects in the input data set. Note, the
partitions that this algorithm works on are not spatial partitions, but e. g.,
the normal partitions generated by Spark when loading the data. We dubbed
this approach aggregate, because the Skyline is computed as an aggregate
over the input data set.

While in MapReduce intermediate results are written to disk anyway, reparti-
tioning the data might not be a significant overhead. For in-memory architectures
like e. g., Spark and Flink however, the shuffling caused by partitioning incurs a sig-
nificant overhead compared to the plain execution time of queries. Thus, we expect
that approaches that forgo an explicit repartitioning to achieve very good results in
the evaluation in Section 9.2.2.

Nearest Neighbors Search For the nearest neighbors search operator a similar
strategy as for Skyline computation can be applied: compute the partition-local
solutions and merge them into a global final result.

Additionally, the kNN search can be supported by existing (or to be created)
indexes, such as R-trees. Here we discuss three different ways to compute the nearest
neighbors for a given reference point.

Näıve In a straightforward implementation, if no index exists, we first compute the
k nearest neighbors for each partition individually, by calculating the distance
of each data object to the reference point using a provided distance function.
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Algorithm 2 Partition-local kNN computation using kNN struct.
1: procedure kNearestNeighbors(partition, k, q)
2: knn ← [], max ← -1, m ← -1
3: for each p ∈ partition do
4: pos ← m + 1
5: if pos < k then
6: knn[pos] = p
7: update max(pos)
8: m++
9: else if dist(knn[max],q) < dist(p,q) then

10: knn[max] = p
11: update max()
12: end if
13: end for
14: return knn
15: end procedure

Then, the data objects are sorted in ascending order by their respective dis-
tance values and only the first k items are returned. If an index exists, or is
supposed to be created during execution, this index is queried for the k nearest
neighbors in that particular partition. In both cases, this results in n lists of k
elements, if the data set consists of n partitions. We then apply a global sort
of these n × k elements and return only the first k items as the final result.

LocalKnn Sorting all elements in a partition may be time consuming and also
requires to collect them in memory. Thus, we additionally implement a KNN
data structure that maintains k elements in an array as well as the positions of
the element with the maximum distance values in this array. As for Skylines,
the structure is used to aggregate the elements in the input data set, as shown
in Algorithm 2. For each partition a local KNN instance is generated and every
element in the partition is inserted. If fewer than k elements are in the KNN
array, the element is added and the positions for min and max are updated if
necessary. If the structure already has k elements, the new element is inserted
only if it has a smaller distance value than the current maximum. In that
case, the maximum is replaced with the new element and the max pointer is
updated. This strategy avoids an ordering of the elements and also removes
objects as soon as possible to reduce load on the workers. The local kNN results
are finally merged to find the global result.

BoundedKNN In the previous strategy, still for all elements in the data set their
distances to the reference point have to be computed and tested against the
current result objects. To reduce the number of elements being processed,
the kNN search can be bounded by the maximum distance of the kNNs in the
partition containing q [99]. It is given in Algorithm 3. This approach first
finds the partition containing q and finds the k nearest neighbors in it. Then,
an area around the query point q based on the distance of the k-th element to
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Algorithm 3 Bounded kNN Search
1: procedure boundedkNNSearch(rdd, k, q)
2: P ← getPartitionContaining(q)
3: kNNP ← kNearestNeighbors(P, k, q)
4: if kNNP == ∅ OR (dist(q, kNNP [k-1])== 0 AND kNNP .length<k) then
5: return LocalKnn(rdd, k, q) . P empty or less than k duplicates of q
6: end if
7: r ← buildRangeAround(q, kNNP [k-1])
8: I ← rdd.rangeQuery(r)
9: kNNI ← kNearestNeighbors(I, k, q)

10: if kNNI .length == k then
11: return kNNI

12: else if kNNI .length > k then
13: return kNNI .takeOrdered(k)
14: else if kNNI .length < k then
15: return LocalKnn(rdd, k, q) . too few elements in r, restart global

search
16: end if
17: end procedure

q is built and used to query to complete data set. This range query can make
use of the partition pruning mechanism outlined in Section 5.2.2. If the data
set contains duplicates, it may be that the maximum distance found in the
partition-local kNN search in line 3 is 0. In this case, the constructed query
range would be the point q itself instead of a real range. Thus, appropriate
steps must be taken, e. g., restart with one of the strategies explained above.

Clustering Clustering is an often applied operation to find groups of objects in the
input according to some similarity measure. For the spatio-temporal data considered
in this work, the similarity between two objects is their distance in the spatial and
temporal dimension.

Over the years, many clustering algorithms have been proposed in the literature,
such as k-Means [65], DBSCAN [38], OPTICS [7], and CURE [41]. Especially the
DBSCAN algorithms is often preferred over, e. g., k-Means as it makes no assump-
tions about the number of clusters (k) or the shape of the clusters. With the advance
of the Big Data platforms, people were required to find clusters in their large data
sets, too, and hence, many of the algorithms originally defined for single computers
were modified to exploit the parallel execution model of Hadoop. For DBSCAN sev-
eral adaptions for MapReduce, such as [27, 73, 55, 56], have been proposed. Only
[16] implements a spatio-temporal clustering, also based on DBSCAN.

The clustering operator is inspired by [55] and exploits the data parallelism and
leverages a spatial partitioning: the input data is partitioned so that preferably
all partitions contain the same number of elements using e. g., the BSP partitioner.
The partitions are extended in each dimension by the value of the ε parameter of
DBSCAN to overlap with their neighboring partitions. Thus, after this step, some
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Figure 5.18: Merge clusters via points in ε-overlap.

objects may be assigned to multiple partitions. We then compute a local DBSCAN
in each partition in parallel using the traditional DBSCAN algorithm.

The results are partition-local clusters which are merged in an additional step
where data objects from the overlap regions are used to merge clusters, as shown
in Fig. 5.18. This is achieved by creating a graph of cluster pairs where in the graph
nodes represent local clusters and edges denote inter-partition relationships between
clusters that can be merged. The algorithm is sketched in Algorithm 4

5.3.3 Distance Functions

Some of the above described operators require distance functions to compute their
result, such as the k nearest neighbor search, Skyline, and the clustering. Instead
of hard coding a single function, e. g., the Euclidean distance measure, the desired
distance function should be passed as a parameter by the user. In that way, ap-
plications that use geometric data, but also scenarios where geodetic calculations
are necessary can be supported by the framework. While the implementation of the
actual operator logic is the same, the distance function to correctly calculate the
distance between two objects on the earth’s surface differs from the calculation in a
two-dimensional planar space.

Furthermore, this concept allows to implement different strategies for distance
calculation for polygons and intervals, where the distance between such objects could
be the smallest distance, the distance of their respective center points, or their the
minimum and maximum distance. Thus, besides a scalar distance that contains
a single distance measure value, an interval distance which can be used to express
distance measures with a minimum and maximum value is required. This also allows
to process e. g., imprecise events that we proposed in [49] and will further discuss
for future work in Section 10.2.

Since the distance functions are applied on spatio-temporal objects, they either
return one value as result or a pair of (spatial dist, temporal dist). On such a
distance pair, users can apply weights to merge them into a single value and express
their preference of one dimension over the other.
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Algorithm 4 STDBSCAN
1: procedure dbscan(rdd, eps, minpts)
2: partitions ← computePartitions(rdd)
3: extend(partitions, eps) . make partitions overlap by eps
4: partedRDD ← assignToPartitions(rdd, partitions)
5: localClusters ← ∅
6: for each p ∈ partedRDD.partitions do
7: clusters ← localDBSCAN(p, eps, minpts) . in parallel in each partition
8: localClusters ++= clusters
9: end for

10: globalResult ← mergeClusters(localClusters)
11: return globalResult
12: end procedure

5.3.4 Language Integration
The discussed operations are based on a collection of spatio-temporal vector and
raster objects and we outlined how they can be implemented in a data parallel
cluster setup. As mentioned before, the framework will be implemented for Apache
Spark using the RDDs. Using RDDs however, has the disadvantage of having to create
Scala, Java, or Python programs that create and modify them using the respective
API in a program.

Programming, compiling, and deploying to the cluster is an overhead that might
be unacceptable for data scientists and other researchers that quickly need their
results. Thus, integration into declarative languages is needed where users simply
enter their query and the interpreting system is responsible for compilation, deploy-
ment, and execution.

To achieve this, the framework with its domain specific language (DSL) can
be integrated into SparkSQL by offering filter, join, as well as other operators as
functions that can be used in SQL queries. Since programs often have to perform
more tasks than just querying, like cleaning, reformatting, sanitation, etc., a more
powerful declarative language is useful and important. Thus, the STARK operations
are also integrated into the Pig Latin language. We will discuss the integration into
SparkSQL in Section 7.1 and the Pig Latin integration in Section 7.2.

5.4 Conclusion
In this section we discussed several aspects for designing and implementing a spatio-
temporal data processing engine on Apache Spark. For the discussed kNN and
Skyline operators, we proposed different implementation variants that can make use
of existing (or to be created) indexes as well as partitioning strategies.

As such partitioning strategies, we considered three variants. The FixedGrid as
well as the cost-based BSP and R-tree partitioners. In our evaluation we will show
how these partitioning strategies behave under different parameters. To further
improve query execution, indexes can be used. Since they are not available by
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default in the Big Data processing engines, we introduced two basic variants for
creating them: the online creation as well as the persistent indexes. Especially the
approach of the persistent indexes is supposed to improve query operators as it
avoids the potentially costly index creation at query execution time.

Besides the fundamental partitioning and indexing strategies, we further dis-
cussed the possibility of a logical near data processing. With this, query ranges or
reference points should be used to identify result candidate partitions.

In our evaluation in Chapter 9 we will analyze the impact and necessity of these
strategies on the overall query performance. Especially the early identification of
result partitions is promising as one can expect a drastic reduction of data to load
and process at the worker nodes.
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Chapter 6
Prototype Implementation for
Apache Spark

In the previous Chapter 5 we discussed several strategies to work with spatio-
temporal vector and raster data on data parallel platforms. To show their validity
and examine potential differences, we chose to implement the operators as well as
the partitioning and indexing strategies in a framework for Apache Spark. The re-
sult is a Scala-based framework, called STARK (Spatio-Temporal Data Analytics
on Spark), available as Open Source on GitHub1.

In this chapter we briefly describe the internal implementation of its core. The
general architecture of STARK is shown in Fig. 6.1.

6.1 STARK Architecture in Detail
The STARK framework is designed to integrate with the Spark Core API based on
RDDs. Thus, its classes extend the basic RDD structure of Spark and implement the
operators. Additional wrappers integrate STARK into the SparkSQL engine.

6.2 Adding Types for Vector & Raster Data
The discussed functions and strategies require data types that can be used to model
the vector and raster data sets. As discussed in Section 5.2.1, a vector object needs
to have a spatial as well as an temporal component and since not all spatial objects
also have a temporal value, this time component is optional.

Thus, to represent vector data, we introduce the basic datatype called STObject.
The class provides only two fields: (1) geo for storing the spatial component and
(2) time to hold the temporal component of an object.

STObject(geo: Geometry, time: Option[TemporalExpression])

In Scala, the time field is an Option, meaning that it either has a value or it is None
(instead of null).

Like many other Java based open source projects that deal with spatial data,
STARK uses the JTS library. This library provides basic data types for geometries,
such as points, line strings, and polygons as well as operations thereon. Additionally,
the library includes an R-tree implementation that will be used for indexing.

The dependencies to the JTS library are kept to a minimum so that the frame-
work can be ported to any library if desired. The Google S22 is very promising
as it supports geodetic operations, while JTS performs geometric operations only.

1https://github.com/dbis-ilm/stark/
2https://s2geometry.io/

https://github.com/dbis-ilm/stark/
https://s2geometry.io/
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Figure 6.1: General architecture of STARK and its integration into Apache Spark

However, S2 is written in C++ and its Java port is not available, yet. The STObject
type and its methods are agnostic to the used coordinate system so that they can
easily be adapted to other libraries.

The Geometry type used in STObject is the base class of all geometric objects
in JTS. In STARK we additionally implement a Rectangle class that extends the
existing Polygon class to improve performance when dealing with such data. For
the temporal components, STARK brings its own types: the Instant class is used
for points in time, while the Interval class represents right open intervals. Ad-
ditionally, the end of an interval is optional to also model infinite intervals or in-
tervals whose end is unknown. Instant and Interval are both derived from a
TemporalExpression trait and implement functions such as intersect, contains,
before, after, etc.

To represent the tiles in a raster data set, a Tile class is used. The pixel data
of a tile is stored in an generic array so that tiles can be used for any pixel value
type U.

Tile(ulx: Double, uly: Double, width: Int, height: Int,
pixels: Array[U], w: Double)

As identified in the previous design chapter, a tile must encode its global position
in the data space. Thus, the Tile class stores the coordinates of its upper left (ul)
corner as meta information along with the width and height in number of pixels. To
recreate the rectangle in the vector space covered by the tile, the resolution must be
also be known. This is encoded in the width w of a single pixel in the vector space.

It is enough to represent a rectangle with only two points: one point with the
lowest values in all dimensions and the other one with the highest values in all
dimensions. In the two-dimensional space this is the lower left (ll) and upper right
(ur) point.

The rectangle T vec of a tile T is then created as a rectangle with these two points:
T vec

ll = (Tulx , Tuly − w ∗ height)
T vec

ur = (Tulx + w ∗ width, Tuly)
(6.1)
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6.3 Basic Operations
All data processing pipelines start with loading data from some source. STARK
relies on Spark’s native methods to load data from sources such as HDFS. Loading a
text file in Spark results in an RDD of strings where each string represents one line
in the input file. By applying transformations via map, users can extract the spatial
and temporal or raster values from the string and generate an STObject or Tile
instance. STObjects can be created by providing the coordinate values for points
or by passing a WKT string of the geometry. This allows to mix several geometric
types in a single data set. In both cases the temporal component can optionally be
given as a Long value.

Most operations are implemented in the SpatialRDDFunction class that wraps
a traditional RDD. This follows the concept that Spark implements for special
operators on Pair-RDDs, like a join. A join can only be executed if the input
RDDs are Pair-RDDs, i.e. they contain 2-tuples (k,v), where k is used as join
attribute. Spark automatically creates a PairRDDFunction object with the input
RDD as parameter, using Scala’s implicit conversion3. The PairRDDFunction class
then implements the join method.

STARK also provides such implicit conversions that create SpatialRDDFunction
objects for Pair-RDDs, where the key k is of type STObject4. The value v of
that pair can be of any type and is maintained during all operations. The class
SpatialRDDFunction implements all spatial operations supported by STARK: fil-
tering, join, kNN, clustering, as well as index creation.

The implicit conversion is transparent to the users and creates a seamless inte-
gration into any Spark program. Users do not have to explicitly create an instance
of any of STARK’s classes (except STObject) to use the spatial operators.

Consider an example where we have a dataset given as a CSV file that contains
a list of events from various categories. The schema of that file might be:
(id: Int, description: String, category: String, wkt: String, time: Long)

After loading, pre-processing, and transforming, we get an RDD of exactly that
type: RDD[(Int, String, String, String, Long)]. We then create an instance
of STObject representing the location and time of occurrence from the WKT string
and time field, respectively, of each entry:

val events = rdd.map { case (id, desc, category, wkt, time) =>
( STObject(wkt, time), (id, desc, category) ) }

The resulting RDD is of type RDD[(STObject, (Int, String, String))]. We can
now simply use this RDD to call the functions to perform a spatio-temporal range
query.
val qryTime = 1481287522
val qry = STObject("POLYGON((....))", qryTime) // create query object
val contain = events.containedBy(qry) // contained by the query region
val intersect = events.intersect(qry)

3https://docs.scala-lang.org/tour/implicit-conversions.html
4In the following we will refer to such an RDD[(STObject,V)] as SpatialRDD and exclude the

implicit conversion.
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The integration of raster operations follows the same approach: for an RDD[Tile],
an implicit conversion exists that creates a RasterRDD on which the raster operations
are defined.

Filter Operation Filters on SpatialRDD and RasterRDD are implemented in their
own RDD classes.

The FilterRDD has the input RDD as well as the query object, as instance of
STObject, as input parameters. Since RasterRDD can be filtered with vector objects,
too, the filter implementation for RasterRDD is analog. Additional parameters are
the filter predicate, expected as a value from predefined constants or as a UDF as
well as an index configuration. The index configuration is optional and needed only
if the input RDD is not already indexed and is used to create an index on the current
partition online during execution.

As described above in Section 3.2.2, the Spark framework requests the par-
titions from an RDD using its getPartitions method. In the FilterRDD the
getPartitions method checks if a spatial or temporal partitioner was applied to
create the input RDD. If so, the bounds and extents of all partitions are fetched
from the partitioner. These values are then tested against the query object using
an intersects predicate. Only if a partition’ extent intersects with the query object,
this particular partition is added to the result of the method. Non-intersecting par-
titions are pruned so that their contents are not further evaluated. Note that this
partition pruning is only applied if the filter predicate was given as a value from the
predefined constants and not as a UDF.

The compute method is executed in parallel on the worker nodes to process the
partitions returned by getPartitions. If the index configuration is set to use no
index, STARK iterates over the content of the current partition and tests every
element against the query object. With online indexing, the index is built according
to the provided settings (index type, order of the tree, etc.) and then it is queried
with the query object.

Joins A spatial or spatio-temporal join on SpatialRDDs and RasterRDDs is imple-
mented in the JoinRDD. The getPartitions method of this JoinRDD class contains
the partition pruning step.

This step is implemented by adding the partitions of one input to an in-memory
R-tree and query that index using the partition bounds of the other input. The result
of this method is a set of join partitions. For every partition of an RDD Spark creates
a task that has to be processed by the platform. If partition l1 is found to intersect
with r1, r2, . . . , rk, then k join partitions and therefore also tasks will be created. All
these tasks read the same data for their left input (l1). We implemented this kind
of join partition as OneToOnePartition, that references exactly one partition from
the left input RDD and one from the right input.

To prevent reading the same data in every task, another option is to reference all
partitions from the right input that intersect with the currently considered partition
from the left input. With this OneToManyPartition we can reduce the repeated
reads of the left partition and reduce the number of total tasks in the system.
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As mentioned earlier, when both data set are partitioned using the same parti-
tioner, the join can be implemented by zipping the corresponding partitions from
both data sets. However, since objects may exceed the spatial and/or temporal
bounds of a partition, they might intersect with multiple other partitions. Thus,
in order to implement this join variant, STARK computes with which partitions an
object intersects, and assigns it to all those partitions. However, since the object has
been replicated into multiple partitions, the join result contains duplicates that need
to be removed. Here, we assume that in the payload of a tuple a unique identifier
is present which is used to identify and remove duplicates.

Since joining two data sets (or the partitions’ contents) requires lots of pairwise
comparisons, a plain nested loop or sweep line approach is only applicable for small
inputs. Implementations using indexes yield much better results. Indexes, as de-
scribed in Section 5.2.3, can be created online and be discarded after use, or be
created permanently.

The actual join implementation for raster data with a vector data or with another
raster data set is the same as joining two SpatialRDDs. The only difference is that
the raster tiles are vectorized into rectangles which are used for the actual check in
the join predicate. Furthermore, the resulting tiles are created from the intersection
of the tiles or the tile and the vector polygon, respectively.

6.4 Operations for Data Analytics

Skyline In Section 5.3.2 four possible Skyline computation strategies were intro-
duced. STARK implements all four of these in order to be able to compare them
and decide which one achieves best results in terms of execution time.

The Aggregate strategy can directly be realized using Spark’s aggregate(zero,
seq, combine) method. This method aggregates the content of an RDD into a
single value. It starts with the zero value for each partition and sequentially adds
all elements from the partition using the provided seq function. The per-partition
aggregated values are then combined to a global aggregated value. In STARK, the
zero value is the already described Skyline class with an initially empty list and
values are added to this structure in the seq function. The Skylines generated for
each partition are then merged in the combine function by iterating over all elements
from one Skyline and inserting them into the other one – this will also check the
dominance relationship and discard dominated points.

In the GridPart strategy the fixed grid partitioner is used and dominated parti-
tions are pruned before their local Skylines are computed. STARK also implements
the angular partitioner for the strategies Angular and AngularNoPart. Their im-
plementation follows the description given in Section 5.3.2.

Since the Skylines are collected in RAM on the worker nodes, they must be small
enough to fit into the available memory. To avoid that worker nodes fail with too
large Skylines, which may happen for large objects, the many Skylines per partition
generated in AngularNoPart are stored in an external map that automatically spills
entries to disk if the workers run out of memory.
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k Nearest Neighbors As for Skylines, the implementation of the kNN search
follows the description in Section 5.3.2. Like the Skyline structure, for kNN we
built a KNN structure that tracks the k nearest objects and prunes objects when
newly added elements are nearer than existing ones. The algorithms make use of
an existing index, if available, to search for the partition-local results the a branch-
and-bound tree traversal provided by the JTS library is used.

Clustering The clustering operator uses the cost based BSP to divide the work
among the executors. Local clusters are merged in an additional step. The partitions
are extended in each dimension to overlap with their neighboring partitions so that
clusters that span across multiple partitions can be merged. Objects within this
overlap region are replicated to multiple partitions and thus, these replicas need to
be recognized during execution. Therefore, the cluster method in STARK expects
a function to extract key candidate from a tuple which is used to identify replicated
tuples.

6.5 Spatial and Temporal Partitioning
The spatial and temporal partitioners implemented in STARK are supposed to in-
tegrate with Spark as much as possible. Thus, to group the partitioners we defined
the SpatialPartitioner as well as TemporalPartitioner traits. These base traits
are implemented by the concrete partitioning strategy implementations. The grid
based partitioners (fixed grid, BSP) share another abstract class GridPartitioner
that provides methods to determine the minimum and maximum values in each di-
mension as well as to compute the bounds of the grid cells and the histogram over
the input RDD.

The computation of these statistics is performed over the input RDD before the
partitioning happens. The actual partitioning is performed in parallel during a
shuffle where copies of the partitioner are used on the worker nodes to decide to
which partition an object belongs.

6.6 Indexes
STARK uses the index structures available in the JTS library, namely STR-tree
and QuadTree. However, only the R-tree can be used for kNN computations. All
functions in STARK are designed to be independent from the actual underlying
index – if possible. Thus, wrapper classes around the JTS implementations exist,
that implement, e. g., the Index, or KNNIndex traits. This way, the kNN functions
that are implemented based on a index can require an index structure that supports
this type of query, while the filter or join expect only an index that implements the
general Index trait.

The original design of Spark is that operators receive an iterator over a partition’s
content so that only one element of that partition has to be kept in memory. Building
an index for a partition, however, requires to collect its complete content in memory.
Querying the index in the filter operator traverses the tree and collects the results in
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MBR time file
0,0 – 10,10 Interval(1234,5678) part-00000
10,0 – 20,10 Interval(1234,5678) part-00001

. . . . . .
170,80 – 180,90 Interval(9932,9999) part-00999

Figure 6.2: Global index created in STARK with partition information.

another list. As the construction of this list consumes time and allocates additional
memory, the R-tree implementation of JTS was extended in STARK to return an
iterator for the query result. This iterator is not an iterator over the result list,
but is populated with the next result element only if its next method is called, i. e.,
the result is actually consumed. After retrieving a result, the traversal of the tree
is paused until the next element is requested. This implementation lines up with
Spark’s lazy evaluation and saves time and memory.

6.7 Spatio-temporal Spark Context
Every Spark program uses the SparkContext (or SparkSession for SparkSQL) to
initially load data. The context is created in the driver and servers as an entry
point for the distributed processing, but also provides access to information about
the execution environment. Like the rest of Spark, the SparkContext, used to load
data into RDDs, is unaware of any spatial or temporal features. STARK implements
its own STSparkContext that extends SparkContext. In STARK, if SpatialRDDs
or RasterRDDs are written to disk that were partitioned using one of STARK’s
partitioners, the partitioning information is also stored to disk in the global index
file. The file contains the extent information for each partition along with the file
name were it was written to (cf. Fig. 6.2).

Using this global index, the STSparkContext implements the logical near data
processing and is able to prune the partitions to load, when provided a query object.
The identified partitions are loaded using Spark’s native functions. This context
class also implements methods to execute kNN search and load matching partitions
for joins.

While in the low level Scala API developers have to do this by hand, query
planners for higher level declarative languages, like SQL or Pig Latin can make use
this feature without the user’s interaction.
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Chapter 7
Declarative Language Support

The Scala API of STARK can be used by skilled programmers to implement the
processing pipelines and manually optimize operations. However, the rather low
level implementation of programs requires programming knowledge that may be not
present for many data scientists. In the field of data analytics declarative languages
are more wide spread, because they let people focus on their problem instead of
implementation and optimization details. Thus, to support data workers, STARK
integrates into SparkSQL and our own Piglet system. In this chapter, we will briefly
describe this integration.

7.1 SparkSQL Integration

The SparkSQL architecture allows external libraries to register user-defined types
(UDTs) and UDFs which can then be used for representing own data and calling
specialized functions.

7.1.1 Data Type Registration
The UDT is used as data type for a column in the schema, whereas a UDF can be
used in various places, e. g., in the SELECT or WHERE clause.

STARK uses this mechanism to register UDTs for the STObject and Tile classes:
STObjectUDT and TileUDT, respectively. This way, like in any relational DBMS, a
table schema can contain one or more columns that hold the spatial or spatio-
temporal feature of a row. For raster data sets, each row in the table has a (single)
column that holds the tile. In Spark, UDTs can be registered conveniently using the
UDTRegistration class. All STARK UDTs register themselves upon initialization.

The UDTs make spatio-temporal vector and raster data first class citizens for
SparkSQL. Often, in Spark data is loaded into RDDs or Datasets which are then
registered as tables or views to that they are known to SparkSQL. To create in-
stances of these types, constructor functions are needed. The STObjectUDT can be
created from WKT strings using the st geomfromtext function, known from the
Open Geospatial Consortium (OGC) standard. A similar tile function can be used
to create a TileUDT instance by providing the location of the upper left corner point,
width, height, pixel width as well as the array of value (e. g., doubles).

7.1.2 User Defined Functions
The spatial vector and raster functions are also added as UDFs. STARK sticks
to the names used in the OGC standard. Hence, vector functions, as described
in Section 5.3.2, carry the st prefix ( st intersects, st contains, etc.).
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The UDFs are registered using Spark’s internal methods to register temporary
functions via the Spark sessionState when the STARKSession is created. The
STARKSession encapsulates a SparkSession which is used for SparkSQL features.

An example query joining two vector data sets by an intersects predicate can be
formulated as:

SELECT l.name, r.name
FROM left l, right r
WHERE st_intersects(st_geomfromtext(l.wkt), r.geo)

Assuming a schema of left with attributes name and wkt whereas relation right
has a geo attribute containing already a STObjectUDT.

The raster data processing functions can be called in a similar way:

SELECT countValues(tile, 1)
FROM myraster
WHERE r_contains( st_geomfromwkt("POLYGON(...)"), tile)

As discussed in the previous chapter, STARK allows to combine raster tiles with
vector data objects and in the query above, the r contains functions finds all tiles
of a raster data set that are completely contained in the provided polygon.

While spatio-temporal filter operations can simply be expressed using the ap-
propriate UDF in the WHERE clause that then calls the underlying filter function on
the RDD, joins require some extra handling.

As shown above, the join predicate is also expressed in the WHERE clause. The
Apache SparkSQL optimizer Catalyst allows to inject own rules to transform log-
ical into physical operators. The rules are tested for every logical operator in the
plan. Hence, a rule gets a logical operator as input and if it can handle this logi-
cal operator, it returns an according physical operator. If the rule does not handle
this operator, it returns an empty result. Catalyst privileges user defined rules and
will not produce alternative physical operators based on other rules when a user
defined rule successfully created a physical operator. Similar to UDFs, the rules are
registered when the STARKSession is created.

STARK implements such a rule for joins. Spark automatically detects the re-
lations in the FROM clause and the respective expression in the WHERE clause and
creates a corresponding logical join operator. STARK’s join rule tests if the current
operator is a join with a spatial predicate and only then emits a physical join node.

The physical join operator creates the RDDs from the referenced names and
creates a SpatialJoinRDD – the RDD class that implements the join in STARK.

STARK implements an additional rule to load only the partitions intersecting
with the query range, just as described in Section 5.1.2. Spark automatically makes
filter operations available in to the load operator. However, the default operator
cannot handle the spatio-temporal predicate and would just ignore it. STARK’s
rewriting rule checks if the filter has a spatio-temporal predicate and if so, uses
the spatio-temporal query object to identify the intersecting partitions using the
STSparkContext. With the list of file names of these partitions a new physical
load operator is created. That way, the logical NDP can be transparently utilized in
SparkSQL.
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Figure 7.1: Overview of Piglet’s internal architecture.

7.2 Piglet
SQL has been around for several decades and was adopted in many areas as the
language of choice to query data sets. Its popularity has led to projects that use the
declarative language to query not only databases, but even raw data files, such as
NoDB/PostgresRaw [3] or textql1.

Exploring large and often unknown data sets is one of the most challenging tasks
in unlocking, preparing, and analyzing data to support decisions and derive models
in various domains. Data exploration often implies the incremental analysis of data
sets, starting with data cleaning and removing invalid entries and then finding a way
to the information of interest. For those data cleaning and iterative algorithms SQL
is often not flexible enough as it is suitable only for structured data in a relational
form, but cannot be used to process unstructured data (e. g., log files).

In the following we describe our Piglet transpiler, which we proposed in [48].

7.2.1 Architecture
The Pig Latin language is very promising because of its flexibility and easy-to-
remember syntax. With Piglet we adapt and extend the Pig Latin language and
generate programs for various target platforms, instead of only Hadoop MapReduce
as the original Pig Latin does. The overall architecture is shown in Fig. 7.1. The
main goal of Piglet is to provide a declarative language and generate programs for
various target platforms.

As shown in Fig. 7.1, Piglet accepts input scripts as files, but also provides an
interactive shell, similar to the Spark shell or Pig’s grunt shell. The scripts are
parsed into a dataflow plan, which is a directed acyclic graph (DAG), as interme-
diate representation. Based on this DAG, various analysis and rewriting steps are
performed similar to the logical rule-based optimization in a relational DBMS. These
optimization rules include push-down of filters in the DAG, combination of filters,
removing of duplicate filters, etc.

1https://github.com/dinedal/textql
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After optimization, code for the selected target platform is emitted. This is done
by traversing the DataflowPlan, the instance of the DAG, from the source operators
to the sinks in topological sort order and append the Scala code for each operator
to the program. For each operator, an emitter class exists that stores the template
for it. Since the code for some operators is the same for all platforms, it is shared.
For those operators whose code is not the same (syntactically, input parameters)
special emitters are present for each target platform.

After the code generation phase has finished, the generated program is compiled
into a jar archive and automatically sent to the cluster (or local host) for execution.

7.2.2 Language Extensions
As we discussed in the previous part of this work, Hadoop has no concept of spatio-
temporal data. Hence, the original Pig Latin language does not have any spatial
data types or functions. Therefore, Piglet extends the Pig Latin script language by
the necessary types and functions to represent and process spatio-temporal data.
Besides the extension for spatio-temporal data, Piglet includes even more exten-
sions for various use cases that will be described briefly below. Note, since Piglet
generates code for different execution platforms, not all extensions are supported by
all platforms as they may require special operators. In Appendix B, more complex
example scripts can be found that we also used during evaluation in Section 9.3.

RDF/SPARQL The Linked Open Data principle aims at providing information
in a structured, machine readable format. For this, Resource Description Frame-
work (RDF) has been established as a framework for representing objects with their
attributes in triples of subject – predicate – object. The query language for RDF
data sets in SPARQL whose main part are basic graph patterns (BGPs) that express
the structure and pattern of result objects. Piglet implements a BGP FILTER oper-
ator which lets users express such SPARQL-like queries inside a Pig Latin script.
This way, RDF data can be integrated with e. g., CSV or other formats. An example
usage of this BGP FILTER is given below:

rdf = RDFLOAD('cdcollection.nt');
filtered = BGP_FILTER rdf BY {
?artist <produced> ?record .
?artist <country> ?country .
?record <release> "2018" .

};
aggr = GROUP filtered BY country;

This query finds all artists with their original country that produced a record in
2018. The result will have three attributes: artist, record, and country that can be
referenced in subsequent operations.

Internally, the BGP FILTER is rewritten by the optimizer into a sequence of filter
and join operations. In [47] we defined the necessary rewriting rules as well as a
tuplified format to improve processing of the RDF triples on Hadoop and Spark.
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Streaming & Complex Event Processing Often, data is generated continu-
ously and at such a high velocity, that it is not possible (or not desired) to store
it permanently. Thus, queries are executed on a stream of data rather than on a
static input file. Piglet contains extensions to connect to different sources for data
streams, such as a TCP or ZeroMQ socket, which we also introduced in [51]. An
important operation on streams is the window function that holds a snapshot of
the data stream in order to compute aggregates. With Piglet’s WINDOW operator,
count-based or time-based windows can be expressed.

The following snipped shows how to connect to a TCP stream, create a tumbling
window of 5 seconds and group the window content on the first attribute to count
the number of occurrences of that value inside the window:
a = SOCKET_READ 'tcp://127.0.0.1:8889';
w = WINDOW a RANGE 5 seconds SLIDE RANGE 5 seconds;
grpd = GROUP w BY $0;
cntd = FOREACH grpd GENERATE group, COUNT(w);

Besides the plain stream processing operations, a frequent task is to find recur-
ring patterns, such as complex events. Complex events are defined as sequences
and combination of single events using logical operators (conjunction, disjunction,
negation) as well as temporal relations. For complex event processing, Piglet im-
plements a MATCH EVENT operator that can be used to express such complex events.
As a combination of the Linked Data principle and stream query processing, we
discussed the complex event processing on Linked Stream Data in [85].

UDF While the provided operators implement functionality needed in many pro-
grams, often more sophisticated algorithms or mathematical calculations are needed.
Such functionality is often present in external libraries. In the original Pig Latin,
users can include jar files using a REGISTER command. This will make all classes
and methods available as functions to the Pig Latin operators.

If the desired functionality has not been implemented in a library yet, or only
a single function is needed, users have to create a library in order to include that
in their Pig Latin program. To bypass this overhead, in Piglet users can directly
embed Scala code inside a <% ... %> block. The embedded functions can be used
in any Piglet operator, e. g., projection, filter, and join. In addition to embedded
code, Piglet also supports macros using DEFINE as a shortcut for recurring sequences
of operators.

7.2.3 Spatio-temporal Types and Operations
In the context of this work, we extended the Pig Latin language by spatio-temporal
types and operations. Internally, Piglet uses the STARK library and thus, these
extensions are only available for Spark as a target platform.

Data Types Spatial functions have been standardized in the SQL/MM standard.
The Pigeon language, proposed in [32], adapts these operations into the Pig Latin
environment. Pigeon is a library that is registered as UDF in a Pig Latin script and
provides converters and into a spatial type as well as basic and analysis functions.
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Pigeon uses the default column data type bytearray for the spatial feature column.
When spatial functions are called on such a column it is automatically converted
into a spatial object. Pigeon uses SpatialHadoop [33] as underlying execution engine
on Hadoop. Piglet follows a different approach, which we will describe below. In
the Pig Latin language, data sets are loaded by e. g., the PigStorage function that
reads text files (mostly CSV). In such formats, every column is interpreted as a
string or byte array and is later casted into the actual data type (integer, double,
bool, etc.). To create spatio-temporal objects, Piglet has a constructor function
to parse a string into a spatio-temporal object. To comply with the underlying
STARK library, this constructor accepts a WKT string as well as a temporal expres-
sion, such as a single Long value (instant) or a pair of them (interval). Internally,
in the logical plan in Piglet this operator is represented as a expression, namely
ConstructSTGeometryExpression. Only during code generation phase, when this
operator is encountered, it will emit Scala code that uses the STObject class from
STARK and its constructors to initialize an instance. Similarly, with a Tile type it
would be possible to load raster data sets: A textual or binary representation of a
tiles is loaded and for every tile an element is created.

Operations Piglet provides various basic and also advanced analysis functions.
Unlike in Pigeon, besides filtering and joining data sets, Piglet is also able to control
the partitioning and indexing. A ST FILTER operator allows to provide a spatio-
temporal object as query range on the input data set. Optionally, the filter can
be configured to use the online indexing mode of STARK (cf. Section 5.2.3). Simi-
larly, the ST JOIN operation used to perform a join with a spatio-temporal predicate
can also be configured to apply a partitioning and/or indexing before the actual
operation. In STARK, all operations are available only if the corresponding RDD
contains tuples of (STObject, Payload). Thus, the code emitters in Piglet for
these operators

1. transform the data so that the STObject element is the key, then
2. execute the STARK operator, and finally
3. perform a re-transformation to achieve the initial schema, if necessary.

This way, users do not have to worry about how data has to be organized for execu-
tion – keeping the simplicity in declarative languages. The schema transformations
are implemented using Spark’s keyBy and map operations which are cheap transfor-
mations that do not incur any significant overhead.

The following example shows how data is loaded, converted to the geometry type
and can be filtered using a spatial filter.
a = LOAD 'events.csv' USING PigStorage(',') AS (name: chararray, lat: double,

lon: chararray);↪→

b = FOREACH a GENERATE name, geometry("POINT("+lat+" "+lon+")") as loc;
c = ST_FILTER b BY containedby(loc, geometry("POINT(50.1 10.2)"));
DUMP c;

In addition to query operations, we extended the language to include a PARTITION
BY as well as an INDEX operation. As the names suggest, the operators allow to con-
trol the partitioning and indexing within a Pig Latin script.
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Chapter 8
Reusing Intermediate Results in
Dataflow Programs

As we described in the uses cases in Chapter 2, the creation of processing pipelines
is often an iterative process. Data scientists need to understand the content of
the input data set, perform some data cleaning and sanitation, and eventually find
out how it needs to be integrated in order to solve their current task. Typically,
this follows an incremental and explorative approach where the dataflow jobs are
specified and executed step by step to inspect and validate results, test different
parameters, and decide about subsequent steps to add further necessary operators.

As an example, researchers analyze the events stored in the GDELT data set.
The CSV export contains more than 50 columns with many NULL values. Researchers
working with this data set first need to find out which columns to use. Then, in the
next version of the program invalid rows are removed and the result is inspected.
After that, the events from all over the world are reduced to events in, e. g., Europe
using a spatial filter. Finally, the actual algorithm, e. g., clustering can be applied.

After the successful creation of such programs, they are stored for later addi-
tional executions. Often, these programs also take input parameters, such as filter
thresholds, columns to project to, or input paths and perform the sequence of op-
erations to produce some result. Such a generic program can be used by a group of
researchers and be executed by every researcher individually in the cluster.

The repeated execution of operators and whole parts of a query during data ex-
ploration as well as when many users work with the same data, leads to a situation
where the same operations are executed again and again. Not only does this take
unnecessary time to complete the query, it also occupies cluster resources that could
be used by other programs, or in case of rented clusters, need to be payed. For
example, an Amazon EC2 cluster has a per-hour pricing of around $ 1.8 (c4.8xlarge,
Region Frankfurt) but storage is only $ 0.024 per GB (S3, 50TB, Region Frank-
furt)1. If the execution times of the jobs running on such clusters can be reduced
significantly, users could save a considerable amount of money.

Thus, to speed up execution and save resources, intermediate results, i. e., results
of operators within a program that are not the final desired result, can be material-
ized to (persistent) storage. Repeated executions then can benefit from the existing
materialized result and load this one instead of computing it again.

Storing every intermediate result is not feasible, as this will likely exceed the
storage capacity of any cluster at some point in time. Therefore, only those inter-
mediate results which are likely to be used again should be materialized. However,
if the time to load materialized data takes longer than computing it again, which is
the case for a large result set that was computed e. g., by a cheap filter with very
low selectivity, reusing it will prolongate the execution.

1Prices from October 2019
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Figure 8.1: Merging multiple DAGs into a single DAG

Hence, we can identify three requirements for a system that allows to reuse
intermediate results:

Selection Strategy: A selection strategy to decide which intermediate results of
a query should be materialized is needed.

Cost Model: The selection strategy can consider the costs (in terms of execution
time) of operators in the plan and the time saved when reusing the result of
this operator during another execution.

Cache: When storage is limited, the total available space can be treated as a cache.
When the cache capacity for materialized results is reached, a strategy to
replace old result objects by new ones is needed.

In the following, solutions for the above mentioned requirements are proposed.
We first start by identifying how intermediate results can be shared between queries,
then define the basic structures for the decision model that implements the above
mentioned requirements.

8.1 Opportunities for Reusing
Merge Strategy Over time, one or more users (data scientists, . . . ) of the cluster
create their set of scripts that load the input data set, perform transformations and
calculations etc. If the input data set changes, e. g., because a new sensor took a
new picture, a satellite mission transferred new data to the ground station, or a
crawler extracted new values from web pages, the already existing scripts may need
to be executed again to compute new result products over the updated information.
In this case, the scripts may be sent in one batch to the execution engine.

The engine will parse the scripts in the batch, create a DAG for each of them and
execute them – in the trivial case one after the other. However, since the scripts
in the batch load the same input, they are likely to also perform the same pre-
processing of the raw input data. To optimize resource usage in the cluster, the
DAGs in the batch can be merged into a single DAG.
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Algorithm 5 Merging dataflow plans
1: procedure Merge(plans)
2: resultP lan← plans[0]
3: for i← 1 to plans.size− 1 do
4: for all op in topDownDFS(plans[i]) do
5: if resultPlan.contains(op.lineageID) then
6: continue
7: else
8: resultPlan.addAndConnect(op)
9: end if

10: end for
11: end for
12: end procedure

The idea is shown in Fig. 8.1: Operators that occur in multiple jobs/DAGs are
present only once in the DAG of the result job. The algorithm to merge a list of
dataflow plans into one plan is shown in Algorithm 5. The first plan is used as a
basis for merging and will be copied completely to the result plan. After that, we
iterate over all remaining plans to process them individually: Each plan is traversed
using depth-first-search starting at the source (LOAD) operators and going down
to the sink operators. For each operator that we find by traversing the plan, we
check if we can find the operator in the merged plan by searching for its lineage
ID (see Section 8.3.1). If the operator is found, it means that this operator and its
predecessors are already part of the result plan, because they were present in one
of the already processed plans, and it is therefore skipped and not added again. If
the current operator is not found in the result plan, it has to be added and needs
to be connected to the respective input and output operators. For connecting the
operators, the information about input and output operators of the original operator
is used, i.e. the respective operators can be found by searching for their lineage IDs.
It may be the case that not all input or output operators are already part of the
result plan. In this case the respective connections will be left unset as they will be
established as soon as the according operator is added in one of the following cycles
of the inner loop.

In Fig. 8.1, initial job J1 is used as final merged plan for job Jm. When job J2
is processed, we start at operator l1 and find its lineage ID in Jm and therefore it
is skipped. The same holds for the next inspected operator f . Then, j is processed
and its lineage ID is not yet found in Jm. Thus, it is added to the merged plan.
After all operators of J2 have been checked, the algorithm starts the same process
with job J3. Here, the operators l1, f , j, and l2 are found in Jm and only g2 and s3
need to be added to Jm.

Materialization The merge strategy is only applicable for a batch of scripts. If
a group of researchers access the data in an ad hoc fashion, they run their queries
independently from each other and do not submit them in a batch. However, the
scripts may also access the same data sets and hence, share the same operators.
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In general, there might be a set of scripts which is not executed in a single batch,
but in a transactional style.

To optimize response times and resource utilization, intermediate results, i. e.,
results of operators within the program, can be saved automatically or explicitly
by a user in order to make them available for other scripts. This is similar to
materialized views in relational DBMSs. The materialized results can then be loaded
by other programs to avoid a duplicated execution of these operators. Fig. 8.2 on
page 99 shows the general idea of the materialization strategy.

8.2 Related Work
Caching and reusing intermediate query results has been extensively studied for
relational databases and data warehouses. Selecting partial results, or views respec-
tively, for materialization [53, 23] as well as rewriting queries using these views [52]
are two closely related problems that are used in database systems to improve query
response time.

Early works on reusing materialized views (or derived relations) were done by
Larson and Yang in [63, 109]. Other research results on the view-matching prob-
lems for SQL queries were published in [1] and [95]. In [81], the Hawc architecture
is introduced that extends the logical optimizer of an SQL system and considers the
query history in order to decide which intermediate result may be worth materializ-
ing to speed up further executions – even if this would create a more expensive plan
which, however, is executed only once. A related problem is automatic index tuning
which has been studied extensively [58, 89, 90, 102]. Here, recommenders analyze
the given workload and underlying data and recommend to or autonomously create
and drop indexes.

For Hadoop MapReduce the MRShare framework [74] merges a batch of jobs
into a new batch so that groups of jobs can share scans over input files and the Map
output. This is similar to our merging strategy described earlier. Other projects
such as ReStore [36], PigReuse [20], or [103] are similar to MRShare in the sense
that they all merge a batch of scripts into a single plan or share the intermediate
results after a map phase. In PigReuse, the optimization goal is to minimize the
number of operators and the number of generated MapReduce jobs - but they do
not analyze the total cost of the generated plans.

Several additional frameworks were created for Apache Spark to support data
analysts with their tasks. KeystoneML [93] is able to identify expensive operations in
machine learning pipelines on Big Data platforms like Apache Spark. They employ
a cost model using cluster costs (such as network bandwidth, CPU speed, etc.) and
operator costs to estimate total execution costs. Using this, physical operators for a
logical plan are chosen and materialization points are determined. RDDShare [57]
is also based on Spark and simply identifies common operators in a batch of Spark
programs and merges them into a single program.

Our work differs from the approaches mentioned in a way that they either only
focus on merging a batch of scripts or they do not use a cost model for their algo-
rithms. Furthermore, most related work is based on Hadoop MapReduce, except
KeystoneML and RDDShare, which differs significantly from Spark’s characteristics.
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Figure 8.2: Runtime difference for loading materialized result.

8.3 A Cost-based Decision Model
This section describes the approach for a cost-based decision model which can be
used to identify frequently used operator results worth materializing. The goal of
our cost model is to identify those operators in the DAG where materializing their
intermediate results speeds up subsequent executions most and is based on the
execution time and result cardinality of operators. Fig. 8.2 shows a DAG where the
width of a node’s box represents its processing time. If, e.g., the result of the second
join operator is materialized, subsequent executions of dataflow programs that also
contain this part in their respective DAG will benefit by only having to load the
already present result from disk.

This leads to two basic questions that need to be answered:

1. If multiple materialized results are present and applicable for reuse in a job,
which of them should be loaded?

2. The intermediate result of which operators in the current job are worth mate-
rializing so that a subsequent execution will benefit most?

In order to support these decisions, our model introduces materialization points,
for which the benefits are calculated. In the following, we will introduce and define
these terms.

8.3.1 Foundations
Equivalence of Operators To be able to recycle intermediate results in a dataflow
program, the system, or more specifically the optimizer of that system, needs to be
able to decide if the result of an operator o is contained in the result of another
operator p from a different job2.

The decision if the result of one operator is contained in another one is not
trivial and hard to decide. Furthermore, as discussed before, dataflow languages
are extended by UDFs (or embedded code) that implement specialized algorithms.
Such UDFs have to be treated as black boxes which make the containment check
impossible.

2These two jobs may be the same script executed at two different times.
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To overcome this problem, instead of testing for containment, one can test if
two operators are identical and leave the containment check for future work. Two
operators are identical, if their input operators are identical and they produce the
same output. This check can be realized using unique lineage identifiers (LIDs). The
LID is the hash code of the lineage string, which consists of the operator name (LOAD,
FILTER, GROUPBY, . . . ) and the parameter values, such as input file name or filter
predicates, combined with the lineage string of the direct input operator(s). We
denote the lineage string of an operator oi as lid(oi). The lineage string of the filter
operator with a simple predicate x < 7 (for some attribute x in the schema):

FILTER :x<7%LOAD:input.csv:1544956894

For the load operator the lineage string additionally contains the last modification
date of that file (retrieved via the corresponding file system API) to be consistent if
the underlying file was modified by another program.

Materialization Point A materialization point M marks a position in a DAG for
the decision model for which the intermediate result is either to be materialized or
existing materialized values can be loaded from storage. Thus, a materialization
point is defined for an operator, but represents its result. For any operator oi the
corresponding materialization point is denoted as Mi, meaning that Mi is an alias
for the output of operator oi in the optimizer component.

We have to distinguish between candidate materialization points and material-
ization points. Candidate materialization points are those potential places in a DAG,
where the intermediate result should either be materialized or could be loaded from
storage. In general, any non-sink operator has the potential to be materialized and
therefore can be regarded as a candidate materialization point. Besides the sink
operators, source operators are also excluded for materialization, as the result of a
source operator is the actual input data set and materialization would mean to store
the input data set again. Obviously, this will not bring any additional value.

A materialization point is then a candidate materialization point which was se-
lected for materialization or for loading the materialized data. The materialized
data is treated as a cache and the set of all materialization points M1,M2, . . . ,Mn

that are currently kept in the cache is the materialization configuration M =
{M1,M2, . . . ,Mn}.

Benefit The goal of recycling intermediate results is to achieve some significant
speedup when the same sequence of operators is executed repeatedly. In this context,
the speedup is the saved execution time of the job. We call this amount of time
saved the benefit. It is the task of the decision model to maximize the benefit and
hence minimize the execution times of submitted jobs. The benefit is calculated as
the amount of time saved when intermediate results are loaded instead of executing
the complete job, as depicted in Fig. 8.2. Alternatively, one can also regard the
benefit as the amount of money saved by needing to rent fewer machines in a public
cloud.

The benefit and the decision model are both based on the actual costs of op-
erators. While data management systems (such as DBMSs) maintain and update
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statistics of the relations, such as number of blocks, tuple size, etc., such infor-
mation is unavailable in the cluster processing frameworks like Spark and Hadoop,
because they operate on plain text files. Therefore, the information required by the
cost model for its decisions must be acquired during the execution of a job. In order
to calculate the benefit for an operator oi our model relies on the following statistics:

• cardinality card(oi): The number of result tuples of oi.

• tuple width width(oi): The average number of bytes per result tuple of oi.

• execution time texec(oi): The duration it takes the operator to completely
process its input data.

Since these statistics have to be collected at runtime during job execution, an
operator with lid(oi) has to be executed at least three times to benefit from materi-
alization:

1. In the first run, no statistics are present and profiling code will be injected
into the program to collect the needed statistics.

2. When oi is encountered a second time, the optimizer can determine from the
now existing statistics, if oi is expensive and whether a speedup can be achieved
for subsequent runs if the result of this particular operator is materialized. The
rewriter, as part of the optimizer, then is instructed to insert a materialization
operator that will write the results of oi to persistent storage along with a
mapping of lid(oi) to the produced file.

3. In a third run, the materialized result for lid(oi) is found and considered to
be loaded instead of executing the operator and all its predecessors. In this
case, the rewriter will insert a source operator that reads the materialized file
and removes oi as well as all its predecessors recursively from the DAG. A
predecessor op of oi can, of course, only be removed if no other operator oj in
the DAG depends on op.

With the available statistics, the benefit tbenefit of a materialization point Mi can
be expressed as in Eq. (8.1).

tbenefit(Mi) = ttotal(Mi)− tread(Mi) (8.1)
ttotal(Mi) =

∑
o∈prefix(Mi)

texec(o) (8.2)

Here, ttotal(Mi) denotes the cumulative execution time of operators in the prefix
of oi from the source to Mi and tread(Mi) is the time required to read the materialized
data of Mi from storage.

The calculation of ttotal(Mi) depends on the prefix of Mi. If the prefix of Mi does
not contain a join (or similar) operator, ttotal(Mi) can be calculated as in Eq. (8.2).
If the prefix of Mi does contain a join (or similar) operator j, with k1(j), . . . , kn(j) as
the direct inputs to j, only the longest (concerning execution time) of those branches
is considered:

ttotal(Mi) = max{ttotal(k1(j)), . . . , ttotal(kn(j))} +
∑

o∈prefix(Mi)
∧o/∈prefix(j)

texec(o) (8.3)
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Figure 8.3: The global operator graph for four jobs. Stored information on nodes
and edges is exemplary shown for a single operator node.

This means to take the maximum time of all input branches of the join operator
and add the execution times of all other operators in the prefix of Mi which are not
part of the join input, i. e., are located between j and oi. Since the input branches
of the currently considered join operator may contain other join operators as well,
this approach has to be applied recursively to calculate the costs.

tread(Mi), the time required to read the materialized result of Mi, depends on
the number of bytes that can be read per second (bps) in the cluster the application
is running on. In centralized systems the read performance only depends on the
possible throughput of the storage device. HDFS, however, stores replicas for each
block of a file, and thus, the performance also depends on the distribution of the
blocks in the network. Hadoop contains tools to test the IO performance of the
cluster installation.

tread(Mi) = card(oi) · width(oi)
bps

(8.4)

Global Operator Graph The idea of materializing frequently used intermediate
results requires to store the history of executed jobs and their operators. We call this
history the global operator graph; a DAG that was created by merging the DAGs of
all ever submitted jobs. The global operator graph is used to calculate the benefit of
candidate materialization points during the rewriting phase and thus also stores the
collected statistics on the operator nodes. In order to make this history information
available across multiple jobs, the graph is stored persistently.

The collected runtime statistics are stored on the nodes, representing operators
which are identified by their respective lids. The frequency how often an operator
followed another one in all executed jobs is stored in the edges between these op-
erators. Besides these operator and execution statistics, the global operator graph
also serves as a meta catalog for materialization points, i. e., already materialized
results. Fig. 8.3 shows an example of such a global operator graph for four jobs J1
(solid red edges), J2 (dashed blue), J3 (dotted green), and J4 (dashed purple). In
reality, in the model there is only one edge between the nodes. The multiple edges
are just for illustrating the different jobs.

Initially, the graph is empty and the DAG of the first job to be executed is
used as the global operator graph. For all other jobs, their DAGs are traversed in
topological sort order operator by operator, starting at the sources. If the current
operator is not present in the graph, yet, it will be added and connected to its
parent operator(s). The new connection is an edge in the graph with an initial value
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of one. Using topological sort order guarantees that the parent operator(s) have
already been added to the graph. If the current operator is already present in the
graph, this means that a program with the same prefix was executed before. In
such a case only the respective edge value is incremented by one and then the next
operator in the current job’s DAG is being processed.

After the execution of a job has finished and all statistics (runtimes and result
sizes of the operators) have been collected (cf. Section 8.4), they are added to the
respective nodes in the graph. If the operator is executed for the first time, no
statistics are present for this operator and the collected values are simply added to
the node in the graph. If the operator was already executed before as part of another
job, present statistics are merged with the newly collected ones by averaging them.

The graph serves as input for the decision model and is used to calculate the
benefit based on the statistics and materialization points.

8.3.2 Decision Model
Like in traditional DBMS, the decision model is part of an optimizer component in
the system. It is used to answer the two questions posed in the beginning of this
section.

Which Materialization Point to Load? Answering the first question is straight-
forward. From the list of candidate materialization points for a given job, only those
are selected for which materialized results are present. Then, from these candidates,
the one materialization point that will result in the highest benefit is chosen to
achieve the greatest speedup. If the job contains multiple paths, which are then
combined in a join (or similar), selecting multiple materialization points, one for
each path, is possible.

Which Materialization Point to Store? For the selection of a candidate ma-
terialization point to materialize to persistent storage, the decision model has to
consider three orthogonal dimensions:

1. Which candidate materialization points are meaningful at all?
2. How to rank the resulting candidate materialization points from (1) to decide

which are materialized?
3. How to handle cache overflows and decide what to remove from cache?

1. Candidate Materialization Point Selection Obviously, a sink operator
is not a candidate for materialization as the result is either written to persistent
storage anyway or printed to screen. In the latter case, the materialization point
before that sink operator would be one whose result could be re-used by another job.
A source operator will only read data from storage and pass it to the next operator
without modification. Hence, materializing the output of a source operator will
write the same data back to disk and no benefit can be gained from this. Therefore,
subsequent operations only need to consider candidate materialization points that
do not belong to a source or sink operator.
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2. Strategies for Ranking Materialization Points To decide which can-
didate materialization point to really materialize, different strategies exist, which
might be suitable for different use cases:

Last A näıve but intuitive strategy for selecting a materialization point is to always
choose the latest possible one. This is the one materialization point that
is closest to a sink operator. If a job contains n sinks, the materialization
point before each sink is selected, which means to write n intermediate results.
This is a simple caching strategy and might work well during the incremental
development of scripts, described earlier. However, this bears the “risk” that
the materialized result will not be needed again, e.g., if subsequently executed
scripts are not the next step of the incremental development, but branch off
at another operator so that an earlier materialization point would have been
a better choice. Furthermore, the last materialization point may only bring a
small (or even no) benefit for reusing.

MaxBenefit This strategy chooses that one materialization point with the highest
benefit. Compared to the previous strategy, where the last one is selected, it is
guaranteed to bring the best possible benefit when the result is needed again.
Like in the previous strategy, if the result is not needed again, materialization
was pointless.

Markov The selection of the materialization point(s) should be considered as an
optimization problem, regarding the required space of the respective interme-
diate result on disk and the possible benefit: Since available space on disk
is limited, only those materialization points with high chances to be needed
again should be selected. Thus, selection of the materialization points should
consider the probability for reuse – for which a Markov chain can be applied.

In fact, the result of the Markov strategy should be regarded as a two dimensional
(benefits and probabilities) optimization problem to maximize the benefit as well
as the probability for reuse of the selected materialization points. The result of
this optimization problem are all points where there exists no other point with
both a higher benefit and higher probability. All points in the Pareto front mark
materialization points with either a high probability and/or high benefit, thus being
worth materializing. If only one materialization point should be selected, it has
to be chosen from the Pareto front. For this, the probability of re-occurrence of a
materialization point can be considered as the weight for the benefit, so that the
materialization point with the highest product of probability and benefit should be
selected:

{Mi ∈M | @Mj ∈M, i 6= j :
Ptotal(Mj) ∗ tbenefit(Mj) > Ptotal(Mi) ∗ tbenefit(Mi)}

(8.5)

If this set contains multiple elements, one can be chosen arbitrarily or user specified
weights can be applied to express a favor of one dimension over the other.

In Eq. (8.5), Ptotal(oi) denotes the minimum probability found on the path in the
DAG from the source operators to oi:

Ptotal(oi) = min{Pok,ol
|ok, ol ∈ prefix(oi), ok → ol} (8.6)
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where ok → ol means that ok has an edge ol in the DAG. Pok,ol
describes the

probability that ok will be followed by operator ol and can be calculated in different
ways. One approach is to put the frequency into relation of the total number of
executions, with respect to some time windowW . The probability Pok,ol

then would
be as in Eq. (8.7).

A second approach is to put the frequency in relation to the number of operators
that follow ok, as shown in Eq. (8.8).

Pok,ol
=

fWok,ol

min(W , runs) (8.7)

Pok,ol
=

fWok,ol

deg+
W(ok) (8.8)

Here, fWok,ol
is the plain frequency count for the transition stored on the edges,

that lie within the considered window W , runs is the total number of jobs that are
executed by the system, and deg+

W(ok) is the outdegree of a node ok.
3. Cache management. Materializing the intermediate results requires suffi-

cient storage capacity. However, as for any cache, the available space is limited to
some extent and not everything can be kept forever. When a new item is supposed
to be added to the cache, but there is not enough space available, stragegies to de-
cide which items are kept and which are removed from the cache are needed. Here,
the new entry is the materialization point selected by the cost model to materialize.
While for database buffers the new element must be added, possibly replacing an
existing one, for our materialization scenario a decision may be that the new en-
try must not evict an existing one. Hence, a materialization point selected by the
cost model may eventually not be materialized, because there is not enough space
available in the cache and no existing entry can be removed from the cache.

Straightforward cache replacement strategies are for example least recently used
(LRU) and least frequently used (LFU). The LRU will track the access times of
the cache entries, i. e., the timestamp when the respective materialized data of the
materialization point was loaded by a script. To make space for new data, this
strategy will remove those entries from the cache that have the oldest timestamp,
and thus have not been loaded recently. The LFU will count the number accesses
(reads) of the materialized data and remove those with the lowest access count
values.

The previous two strategies only consider the accesses to the materialization
points, but neither their benefit for the jobs nor their occupied space on disk. In
buffer pools of DBMSs, the entries are always of the same size (the page size). In the
materialization scenario, however, the cache entries typically have different sizes. A
replacement strategy must ensure to maximize the cumulative benefit of the con-
tained materialization points. Since a materialization point has a value (the benefit)
and a weight (storage space), this can be treated as the well-known Knapsack prob-
lem, which can be solved, e. g., with dynamic programming or with a greedy method
over the benefit–weight fraction.
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Figure 8.4: Architecture overview: (0) Transform script to DAG, (1) Insert LOAD for
existing data, (2) Insert STORE (based on statistics), (3) code instrumentation for
profiling, (4) execute as Spark job.

While the Knapsack helps keeping only those materialization points with high ben-
efits or benefit–weight relations, it does not include the actual number of reuses of
a materialization point.

Therefore, we also incorporate the access frequency into the value of an item in
the bag. The value v of a materialization point Mi is calculated as

v(Mi) = f ∗ tbenefit(Mi) (8.9)

where f is the number of reads of Mi.

8.4 Profiling Dataflow Programs in Piglet
Fig. 8.4 shows the general architecture overview of our approach. In step 0, the script
is parsed into an intermediate representation, the DataflowPlan representing the
DAG. Then, the optimizer component receives the DAG for the current job and after
applying general rule-based optimizations, the DAG will be modified for recycling.
We employ a cache that will store the materialized results. Ideally, the cache should
have access to HDFS for persistent storage. If materialized data exists for a part of
the current DAG, that part will be replaced by a LOAD operator that reads the cached
data. In step 2, the global operator graph that stores profiling information is checked
to determine if operators of the current DAG should be materialized and respective
STORE operators are inserted. After that in step 3, profiling operators are inserted
to collect runtime statistics of the operators in the graph. During execution on a
cluster (step 4), those operators will send information to the optimizer which will
update its statistics. If the optimizer decided in step 2 to materialize intermediate
results, those will be written to the cache by the inserted STORE operators.

We implemented the described cost-based decision model and profiler into our
Piglet project. However, we would like to emphasize that the model described in
this work is neither restricted to Piglet nor Spark and could be adopted into other
platforms. The details of the decision model that uses the information in the global
operator graph as well as the cache will be explained in more detail in the next
sections.

In order to gain the desired statistics information, there are two options: (1) The
optimizer is started separately to analyze the input file and create a profile. Before
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executing a job, the optimizer then tries to come to a decision based on the statistics
and selectivity estimations of the involved operators. (2) The job is instrumented
with code that collects the necessary statistics during execution and the runtime
or execution platform has to be extended by such an optimizer that manages and
utilizes the collected data. The first approach is more or less what traditional DBMS
do and is currently also being implemented in Apache Spark for SparkSQL.

However, the second approach has the advantage that execution time is mea-
sured as well as the result size, instead of relying on estimations that are based
on assumptions. In our evaluation we will show that the instrumentation does not
incur in any significant overhead.

Result Size To determine the total number of bytes in the result of an operator
and thus the size of the materialization point, we use Java’s built-in byte serializa-
tion capabilities to create a sequence of bytes for an object. The number of bytes
produced by this serialization is then assumed to be the result on disk. However,
experiments showed that there still is a discrepancy between the calculated and ac-
tual size on disk. Nevertheless, these calculated value are still a good estimate and
better than the estimates produced by Spark’s SizeEstimator.

We sample the result of the operator and pass each result tuple individually into
the our estimator. The information for each partition is accumulated using Spark’s
accumulator mechanism and sent to the optimizer. From the received information
the optimizer can calculate the average tuple size as well as the total number of
tuples in the result.

Execution Time per Operator. A more difficult task is to measure the ex-
ecution time of an operator. Spark comes with a SparkListener interface that
provides information about the status of the current execution including start and
completion time of the tasks and stages that form the job. However, relying on the
execution times of the stages is too coarse for our goal as possible materialization
points for recycling would be after a stage only. Thus, there would not be many
of such materialization points and, more importantly, we would lose most operators
that are shared among different jobs, because they are hidden inside a stage and
thereby reducing the usefulness of the idea.

We therefore implemented our own approach to measure the execution duration
of an operator per partition based on code instrumentation. On the logical level,
timing operators are inserted between all other operators in the plan, as depicted in
Fig. 8.5(a). The task of the timing operators is to send a message to the profiling
manager component of the optimizer with the current system time, when they are
executed3. The profiling manager will receive a timestamp and the lid of the operator
for each partition and calculates the average execution time of the operators based
on this information.

The realization of this concept needs to deal with Spark’s lazy evaluation as well
as the data parallelism. Thus, for each timing operator we inject code to report the
current time when a partition is processed (using mapPartitions). The partitions

3This requires that the clocks on all nodes are synchronized, of course. For example via NTP.
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Figure 8.5: Measuring operator execution time in a shared nothing cluster.

that an operator instance in each task processes can be of different sizes, although
the platforms try to keep them balanced to avoid skewed workload on the nodes.
Thus, the operator instances require different times to process their input. For n
partitions, it results in n different execution time information, from which we have
to derive an overall execution time for an operator (cf. Fig. 8.5(b)). In our approach
we use the average of these n collected times. Other strategies (min, max, median),
however, are also possible and min or max could be used to implement an optimistic
or pessimistic behavior. Since an RDD has information about its parents, it is enough
to only insert this code after the operator and let the profiling manager calculate the
execution duration, based on the received times of the respective parent operator.

The values produced by this profiling are sent to the optimizer which collects
and aggregates this information and eventually uses it for its decisions. We will
evaluate the effectiveness of the decision model in the evaluation in Section 9.3.
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Chapter 9
Performance Evaluation

In this evaluation we will analyze the performance of the spatial and spatio-temporal
vector and raster data processing operators as well as the impact of partitioning,
indexing, and recycling intermediate results. We will compare the different aspects
and alternative approaches for the discussed operators in STARK, but also compare
them with other frameworks designed for this type of data processing.

In the following experiments, we first concentrate on the STARK framework and
the related projects and perform a benchmark test to analyze their performance. Af-
ter that, we demonstrate the impact of the transparent and automatic intermediate
result materialization on the general query performance.

Although Apache Spark is used for processing large amounts of data, users often
run interactive ad hoc queries and want to see the results immediately. Therefore,
the goal of this benchmark is to study how well the here considered frameworks
perform in such a workload setting. For benchmarking, we use the experiences
from our proposal in [46] as well as queries and data from Pandey et al. in [79].
Unless otherwise stated, time measurements include the complete processing pipeline
consisting of loading data from HDFS until the last tuple has been consumed.

As Sidlauskas and Jensen pointed out in [92], comparing frameworks is com-
plicated, because differences in implementation details of the same algorithm in
different systems might have a significant impact on the execution performance.
Thus, in the following, when we compare STARK with other systems, we compare
the implementations as well as the algorithms and approaches of them.

After the performance evaluation of the spatial data processing frameworks, we
perform tests that show how the execution time of dataflow programs is reduced
by recycling materialized intermediate results. Here, we inspect the overhead that
the profiling and rewriting cause and also analyze the impact of the three different
selection strategies to decide which intermediate result to materialize.

The experiments were executed on our Hadoop cluster of 15 nodes, where each
node has an Intel Core i5 processor (3 GHz), 16GB RAM, and a 1 TB HDD. The
nodes run on Ubuntu 14.04 with Hadoop 2.7, Scala 2.11, and Java 1.8.0u102. The
jobs for the experiments were submitted to the cluster with master set to YARN
and deploy mode client. The latter causes the driver to run in the local machine,
which is a desktop PC with 16 GB RAM and an Intel Core i7-2600 CPU with
3.40 GHz. All machines are connected via a 1 GiB/s LAN. In the experiments,
we use the data sets briefly described in Table 9.1. Note, the weather, taxi, and
block dataset do contain spatial and temporal information. Though, we did not
use them for spatio-temporal query processing and therefore mark them with “–” in
the overview.
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Table 9.1: Datasets used in the evaluation.

Name geometry
type

temporal
values No. objects Filesize

point points no 200 mio. 4 GB
linestring linestrings no 72 mio. 17.5 GB
rectangle rectangles no 114 mio. 13.3 GB
polygon polygons no 114 mio 18.2 GB
sentinel points & polygons yes 2 mio. 5.3 GB
gdelt points yes 127 mio. 48 GB
weather – – 180 mio. 34.7 GB
taxi – – 550 mio. 90 GB
block – – 38000 18 MB

9.1 Impact of Spatio-temporal Partitioning and
Indexing

In this section we analyze the impact of the partitioners and indexes on the query
performance. The goal is to identify cases when partitioning and/or indexing must
be applied and when the overhead of their creation becomes too heavy.

9.1.1 Partitioning
Strategies In Section 5.2.2 we discussed three different partitioner strategies:
fixed grid, cost-based, and R-tree partitioning. The partitions they create as well
as the number of elements inside each partition greatly varies among the strategies,
but also for different parameter values. The generated partitions, in turn, have an
impact on the execution time of operators.

We first analyze the partitions generated by STARK’s partitioning strategies
in Fig. 9.1. For each strategy, three different parameter values are used and we
count the number of objects assigned to each partition. As input data, we exem-
plary used the point data set. The more elements a partition contains, the more
intense/saturated its color is displayed. White areas are empty and no partition
covers them. As we discussed earlier, the goal of partitioning is to create parti-
tions with (almost) equal number of elements. Therefore, for a good and balanced
partitioning, the generated partitions should all have the same color.

For the FixedGrid partitioner, we divided each dimension into 16, 32, and 48
segments, respectively. For the BSP, we used a cell size of 1 and max cost of 200.000,
100.000, and 10.000. The R-tree partitioning was set to create 512, 1024, 2048
partitions.

110



(a) FixedGrid ppd=16. (b) FixedGrid ppd=32. (c) FixedGrid ppd=48.

(d) BSP max cost=200.000. (e) BSP max cost=100.000. (f) BSP max cost=10.000.

(g) RTree num=512. (h) RTree num=1024. (i) RTree num=2048.

Figure 9.1: Partitioning results for STARK’s partitioners with three different pa-
rameters each. Number of generated partitions increases from left to right.

Figures 9.1(a) to 9.1(c) show the results of the FixedGrid partitioning. One can
clearly see that with the increased number of partitions, the more accurately the
actual data distribution is modeled. Though, that is not a quality criterion. There
are many partitions with light-red color (containing few elements) and also lots of
dark-red partitions with a large number of elements. As a consequence, worker nodes
might be overloaded when they need to collect all elements into memory, e. g., to
build an index, as we encountered for the kNN search below.

For BSP, the number of elements per partition is influenced by the max cost
parameter. The larger this value is set, the fewer partitions are generated. In Fig-
ure 9.1(d) all partitions have almost equal number of elements and only in Europe,
some small partitions with more elements than the others were created. However,
with the decrease of max cost, the number of partitions increases, because the algo-
rithm needs to further split partitions exceeding this value. This results in equally-
sized partitions in sparse areas, but partitions with more elements in dense areas.
These high-load partitions exist because their extent equals to a cell and cannot be
further split. To achieve an even more balanced partitioning, the cell size would
need to be decreased. This, however, results in longer times needed to compute the
histogram and the partitions bounds.

For the R-tree partitioning, all partitions are also of almost equal size, even in
the dense areas. However, note that this partitioning was computed on a sample of
the input data, while the fixed grid and BSP were created on the full input data set.
The reason is that the tree is constructed in the driver and therefore, all objects have
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Table 9.2: Partitioning characteristics. StdDev is the standard deviation over the
number of objects per partition, tcomp is the time to compute partitions bounds,
trepart is the to repartition the data set.

Partitioner Parameter No.
Partitions

Avg. No.
Objects StdDev tcomp trepart

FixedGrid ppd = 16 224 892857 4173843 0.03 42
ppd = 32 695 287770 1311427 0.03 38
ppd = 48 1343 148920 709907 0.03 42

BSP max = 200.000 1147 174368 132401 28 90
max = 100.000 1954 102354 116735 23 133
max = 10.000 6628 30175 75128 47 504

R-Tree num = 512 529 378072 214997 0.7 70
num = 1024 1056 189394 116375 0.6 112
num = 2048 2070 96618 60273 0.7 317

to be transferred to this node. This causes long data transfers, computation time,
and huge memory consumption on this node. A dedicated R-tree for partitioning
could just store the extent of the leaf nodes without the actual objects to save space.

Table 9.2 shows some characteristics of the generated partitionings. The fixed
grid partitioner removes empty partitions, so that No. Partitions does not neces-
sarily match ppd2. This can also be seen in Fig. 9.1 where the white areas are not
covered by any partition. Furthermore, the standard deviation of the number of
elements per partitions ranges from 700.000 to more than 4 million. Thus, there are
extremely large partitions which causes problems when the content of a partitions
needs to be completely fetched into the executors memory e. g., to build an index.
For BSP, the average number of objects per partition matches the desired maximum
number quite well. Discrepancies arose due to extremely dense areas that cannot
be further split (due to the selected cell size). This is also one reason for the stan-
dard deviation of the number of objects per partition. The R-tree partitioning also
created the desired number of partitions with an acceptable variance in the number
of objects per partition.

The time tcomp in the table represents the time required to compute the partition
bounds from a cached data set, but not to repartition it. For the FixedGrid strategy,
the time is independent of the number of partitions, since the grid is statically
generated and only the bounds have to be calculated. The R-tree partitioner works
on a sample of the data. To create the sample, we instructed Spark to randomly
collect a sample with a fraction of 0.001. Thus, the sample contains around 200000
elements in a local array, making the very fast computation times possible. Only
the BSP completely scans the input data to create the histogram and compute the
partitions based on this histogram.

Although the BSP needs some more time than the R-tree partitioner, it does
not have to sample the data and therefore eases the computation of the partitions
extent information. Furthermore, as already mentioned, the R-tree is created locally
in the driver. Depending on the sample size, the required resources might exceed
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the drivers capacities and result in errors (which cause restarts and even extend the
execution time). We therefore use, unless stated otherwise, the BSP in the following
experiments.

Hypothesis 1. The overhead incurred by repartitioning data according to the spa-
tial or spatio-temporal key can be amortized when expensive operations benefit from
the partitioning information. Though, this overhead cannot be amortized when the
partitioning is used only for a single query.

To show that the costs for repartitioning can be amortized, we can consider the
example of the spatial or spatio-temporal join. Without a spatial or spatio-temporal
partitioning, all native partitions generated by Spark would have to be checked
against each other, resulting in, regarding the partitions, a Cartesian product. We
experimentally ran this join on a reduced point dataset (10 million points) with the
polygon dataset and had to terminate it after 90 minutes. As we will show later, a
join on partitioned (and indexed) data sets finishes within a few seconds.

However, there are cases where the partitioning incurs so much overhead, that
it cannot be amortized during query evaluation. The spatio-temporal filter is an
example for a quite cheap operation that can easily be executed without a spatial
partitioning.

Range queries In a typical use case, users load a spatio-temporal dataset from
HDFS and apply a filter with a query range to find all objects of the dataset within
this range. In Fig. 9.2(a), the execution times of six spatial ranges on the four input
data sets are shown. The time includes reading the dataset from storage and apply
the filter without any spatial partitioning. The selectivities of the query ranges are
as follows: range1: 0.001%, range2: 0.01%, range3: 1%, range4: 10%, range5: 50%,
range6: 100%. Range 1 has the highest selectivity (smallest region) and Range 6
selects the complete data set. One can easily see that the runtimes in this figure
are much shorter than the times required alone for partitioning the datasets shown
in Fig. 9.2(b), regardless of the used strategy.

Hypothesis 2. While the overhead for partitioning is too large for a single spatial
range query, materializing the partitioning information and using it to reduce data
to load significantly improves the query execution time and throughput.

The current implementation in STARK for using materialized partitioning in-
formation is the logical near data processing as discussed in Sections 5.1.2 and 6.7.
Here, we first load the global index and apply the filter predicate to identify the
partitions containing result candidates. After that, only those partitions are loaded
and processed. This two step approach requires two accesses to HDFS. However,
loading only a few partitions has a significant impact as shown in Fig. 9.2(c). For
ranges 1 – 3 the execution times are around 1 second or even below and, therefore,
only a fraction of the values shown in Fig. 9.2(a). However, with the increased
range size and the decreased selectivity, more partitions with result candidates are
identified and need to be loaded. Naturally, the benefit of this near data processing
approach disappears when all partitions need to be loaded.
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(b) Runtimes of spatial partitioners for the four
datasets (t = tcomp + trepart.)
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Figure 9.2: Comparison of execution times for (a) range queries without spatial
partitioning, (b) raw runtimes for partitioner, (c) runtimes for range queries with
pushing down filter predicate into load function.

STARK is not only able to handle spatial, but also spatio-temporal data. We
therefore evaluate the logical near data processing of spatio-temporal range queries,
too. Since the datasets from the previous tests do not contain any temporal infor-
mation, we used two other real world data sets: sentinel is from the meta data
catalog of a satellite mission containing the areas covered by the measurements as
20 million polygons. The gdelt dataset contains 127 million events from 2013 to
2015. The values used in the query ranges are as follows:

• point: (39.961727, 84.47858) – randomly selected

• r1, r4: query ranges range1 and range4, from previous experiment

• instant: Sat., 10 August 1985, 9:53:47 AM GMT (timestamp: 492515627)

• small: one day interval: Sunday, 23 Oct. 2016, 7:16:51 PM to Mon., 24
October 2016, 7:17:05 PM GMT

• large: interval from instant to Mon-, 24 Oct. 2016, 7:17:05 PM GMT
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(a) Filter on gdelt dataset.
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(b) Filter on sentinel dataset.

Figure 9.3: Spatio-temporal filter operation with logical near data processing for
gdelt and sentinel data sets.

Figure 9.3 shows the throughput per second for the nine query ranges on the two data
sets. We executed this experiment in three ways: without applying any partitioning
(i. e., loading and filtering the data directly), with a spatial partitioning only (using
BSP with max cost 200000), and with a spatio-temporal partitioner that internally
also used the BSP as well as a fixed range temporal partitioner (numpartitions =
10). Prior to execution, the partitioning information was stored in the global index
for each data set. As before, one can see that the logical near data processing
in general has a great advantage over the variant without partition pruning (No
Partitioner in the figure). Furthermore, for the larger gdelt dataset, the spatio-
temporal partitioning achieves a much higher throughput than the other variants
in many cases. Only when the temporal range is large, not many partitions can
be excluded from being loaded based on their temporal characteristics. This leads
to the (almost) same number of partitions to load as in the variant with the BSP
partitioner. For r4-large, much more partitions than for the other query ranges had
to be loaded so that the difference does not become visible in this figure. Without any
partitioning, this query took around 30 seconds while with partitioning, execution
time was around 9 seconds for BSP and 12 seconds for spatio-temporal partitioning.
Note, the result size in this case did not play an important role as it was only 0 or
a few thousand at maximum.

For the sentinel dataset the results are similar. Though, due to the different
data distribution, the difference between spatial-only and spatio-temporal partition-
ing is not as high as for the gdelt dataset. For the r4-large query, the BSP variant
performed a bit better, for both, the gdelt and sentinel datasets, because it cre-
ated fewer partitions in general that needed scanned and probably because only
a spatial comparison had to be performed. Although, the latter only has only a
marginal influence on the execution time.

k Nearest Neighbor Search & Skylines Next, we compare the performance of
the discussed kNN search approaches. We chose three spatial positions as reference
points: a randomly selected point (39.961727, 84.47858) denoted as random, a point
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Figure 9.4: Throughput of the three discussed kNN implementations in STARK for
reference point ilm. The input dataset was cached in memory.

in Ilmenau (50.681815, 10.939779) denoted as ilm, and 00 located at (0, 0). We
loaded the input data sets, partitioned them using a spatial partitioner if applicable,
created partition-local indexes, and cached them in memory. Therefore, the values
presented in Fig. 9.4 show the raw performance of the kNN search.

The figure exemplary shows the throughput for the reference point ilm. For the
other two points the results are similar, with BoundedKNN achieving a significantly
higher throughput than the other two variants. The high throughput is achieved by
reducing the number of partitions to scan: If the reference point lies within a dense
region, its k nearest neighbors are likely to also lie within the same partition and
the result can be constructed by only processing one partition. This is important
if there exist much more partitions than executors, so that workers need to process
more than one partition. The Local variant is not much better than the Näıve
implementation. Managing the kNN struct as well as the frequent (de-)serialization
required during the merge of the local results incur too much overhead.

We additionally executed the experiment without caching the dataset first. The
results are similar to those in the previously described scenario, but with increased
execution times, of course.

Figures 9.5(a) and 9.5(b) show the execution time of the BoundedKNN using dif-
ferent partitioners, without caching the dataset first. Here, we encounter the draw-
back of the fast FixedGrid partitioner: It was not possible to run this experiment
for the polygon and rectangle dataset with the FixedGrid partitioner (ppd=32), be-
cause some partitions contained so many elements that building the index in memory
caused the executors to fail as they ran out of memory. Partitioning using the R-
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(a) Linestring dataset.
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(b) Polygon dataset.
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(c) Throughput for kNN with NDP for ilm.
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(d) Throughput for kNN with NDP for random.

Figure 9.5: Execution time of kNN search using different partitioners on (a)
linestring and (b) polygon datasets with reference point ilm as well as through-
puts for NDP in (c) and (d).

tree partitioner (num=2048) took very long time, because of the partitions being
created over a sample of the data. During the assignment of elements to partitions,
objects that do not lie within a partition need to be assigned to their nearest par-
titions, causing extra computational overhead. Additionally, it happened that the
BoundedKNN did not find the result objects in the current partition and therefore
had to scan more partitions than when BSP was used. Overall, the kNN search per-
forms good without a spatial partitioning. The best results with partitioning where
achieved by the BSP, which, however, was still two times slower than the kNN search
without additional spatial partitioning.

For kNN search, the near data processing can also be applied. A comparison
of Figs. 9.5(a) and 9.5(b) with Fig. 9.5(c) shows that even when no partitioning was
performed, the kNN search takes at least 25 seconds, while when the logical NDP
approach is used, multiple queries per second are possible. For the reference point
random in Fig. 9.5(d), the kNN search took longer than for ilm. The reason might
be that the BoundedKNN algorithm needed to load more partitions than for point
ilm in order to construct the final result.

Next, we analyze the performance of the different Skyline algorithms introduced
in Section 5.3.2 on the two input data sets we also used for the spatio-temporal range
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Figure 9.6: Runtime comparison of variants for Skyline computation.

queries above (gdelt and sentinel). Figure 9.6 shows the runtimes for computing
the Skylines for different reference points. Here, we used the three locations from
the previous kNN experiment and combined it with two temporal instants to form
six reference points. One instant is an arbitrary time1 called random and the other
one is the calculated middle point of the sentinel data set2. These time values do
not have a special meaning for this experiment. As the two graphs show, the actual
reference points do not have an impact on the execution times. For the Sentinel
data, the Skyline computation finishes in maximal 4 seconds, due to the relatively
small data set size. Though, the GridPart and Angular variants are much slower
than Aggregate and AngularNoPart, because the latter two do not require to re-
shuffle the data. The Aggregate method is 1 second faster than AngularNoPart.
The reason is that we simply exploit the full parallelism without too much complex
logic. In AngularNoPart, for every element in the current partition it is decided
to which logical angular partition it belongs to. Thus, multiple Skyline structures
need to be kept in memory, making the merging process more expensive. For the
larger gdelt data set, the difference between Aggregate and AngularNoPart is still
present, but smaller than for sentinel. With the increased data size, the drawbacks
of repartitioning the data becomes even more visible. While the Aggregate method
always finishes within 10 seconds, Angular is factor 10 slower and requires 100
seconds – even with their optimized pruning.

Join Processing Partitioning has shown to be crucial for joins. Without a spatio-
temporal partitioning, the combinations of all partitions from the left and right input
have to be created. For each of these combinations, Spark spawns a task which has
to be managed. If the data sets to be joined contain 1000 partitions each, this results
in a million tasks, which showed to have too much overhead to proceed with the
actual work. The join processing in general is very expensive and time consuming,
so that for the cluster used for the experiments on we had to reduce the original
data sets as follows: 10 million points, 35 million linestrings, 57 million rectangles,
and 57 million polygons.

The experiments have shown that a join without spatial or spatio-temporal par-
titioning results in unfeasible execution times and those runs were canceled after

1Saturday, 10 August 1985, 9:53:47 AM GMT; Unix Epoch: 492515627
2Sunday, 23 October 2016, 7:16:51 PM GMT; Unix Epoch: 1477250211
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Figure 9.7: Throughput or raster range queries on two input data types.

90 minutes without any progress. Simply reducing the number of partitions is also
often not an option as this would increase the number of objects per partition, which
might cause problems during index creation.

Raster Data Processing STARK’s tile format can be either in plain text or as
byte serialized tiles. In Fig. 9.7, the influence of these two formats on the execution
times are shown. The figure furthermore shows the influence of pushing down the
filter range into the load operation. The dataset was queried with the six query
ranges that were also used for the range queries on vector data sets before. It can
be seen that without the logical NDP, the input format does not have a significant
impact on the throughput. Neither does the query range in this scenario, as we have
to load the complete file from storage and do not apply a partitioning which could
be used for pruning. Same as for vector data sets, pruning the partitions in the load
operator has an enormous effect on the execution time and throughput. Only when
the query range is so large that (almost) all partitions need to be loaded, the overhead
of identifying matching partitions cannot be amortized anymore. For range6, the
NDP approach was even slower than the traditional variant. This suggests that an
optimizer of system supporting declarative language could estimate a query range’s
selectivity and use this to decide how to load the data.

With NDP, the binary format showed to achieve a better throughput than when
using the textual tile representation, although the binary format occupied twice as
much space as the textual format (1.3 GB vs 652 MB). The reason is that the long
strings of the text format must be split and parsed to form the tiles, whereas the
with the binary format the tiles can directly be deserialized.

9.1.2 Indexing
Similar to repartitioning the data during query evaluation, indexes can be created
for a single query as well. Creating the partition-local indexes means to “touch”
every element and insert it into the index structure. For filter operations, this is an
extra step: instead of directly evaluating the filter predicate, the objects are first
inserted into the index, which is then queried.
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Figure 9.8: Range queries with online
index generation (without partitioning).
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Figure 9.9: Impact of persistent indexes
for range queries on point dataset with
NDP (in AWS).

Hypothesis 3. Although the online generation of indexes incurs some overhead,
the partition-local indexes significantly improve query execution time. Unlike joins,
spatio-temporal filter operations will not benefit from online index generation.

Creating the index online is an overhead which cannot be amortized during
evaluating the filter predicate, as Fig. 9.8 shows. Compared to the execution times
in Fig. 9.2(a), the execution time for the point data sets was doubled and for other
data sets it also increased by a few seconds. As we expected, this means that creating
the index online for filtering has a large negative impact and is impractical.

However, if the index is materialized with additional meta information, operators
can not only identify partitions to load, but also have an index available instantly.
Though, the Java object serialization creates very large objects, even with specialized
serialization frameworks, such as the Kryo serializer. Albeit STARK implements
specialized serializers for this framework, the created objects are still so large that
the time required to read them from HDFS when a hard disk is used exceeds every
other runtime: The point data set used in the experiments uses only 4 GB to
store the 200 million points, whereas the binary representation of the same dataset
with partition-local indexes occupies 43 GB. Reading these large data sets caused
extremely long execution times in our HDD-based cluster.

Thus, we repeated the experiment in a Hadoop cluster with SSDs attached to
the nodes. For this, we created an Amazon EC2 Elastic MapReduce cluster (emr-
5.27.0 with Amazon Hadoop 2.8.5 and Apache Spark 2.4.4). This cluster consists
of 5 worker nodes (m5.2xlarge), each with a 100 GB general purpose SSD and one
master node (m5.xlarge). The original datasets were loaded from S3, partitioned
and indexed, and finally materialized into the cluster-local HDFS.

We executed the range queries on these data sets and report their performance
in Fig. 9.9. For range1, the persistent index variant is already more than 0.5 seconds
slower than the plain text variant without indexes. The more partitions are loaded,
the more visible becomes the impact of the large binary objects of the indexes. For
range5 and range6 execution took around 60 and 80 seconds, respectively.

A similar behavior can be observed for the kNN search. The benefit that the
index brings is annihilated by the cost for online index creation. The experiments
without a spatial partitioning have shown that when an index was created and used,
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Figure 9.10: Overhead of indexes on kNN search.

it was around 5 seconds slower than when no index was used (Fig. 9.10(a), average
over all datasets for point ilm).

When the kNN operation was pushed into the load function and an index was
created online, it was minimally slower than when no index was used (Fig. 9.10(b),
average over all datasets for point ilm). Thus, in this setting the overhead for index
creation was not amortized during query evaluation. However, in clusters with more
powerful machines, larger partitions are possible. With the larger partitions, more
items would have to be scanned when no index is used. Hence, in such settings,
online index creation might be beneficial.
Hypothesis 4. Since the kNN search is more complex than plain filters and only
very few partitions need to be loaded with the logical NDP approach, using an already
created and persistent index results in better performance than using no index or
computing it online.

In order to test this hypothesis, we additionally ran the kNN search in the same
AWS cluster as for the range queries. The results for the point and rectangle
datasets and reference point ilm are shown in Figs. 9.10(c) and 9.10(d). The results
clearly refute this hypothesis. The large byte serialized indexes still require too
much time to read and deserialize, making this variant significantly slower than a
kNN search with online index generation. In all four cases in Fig. 9.10 computing
the kNN is fastest when no index is used.
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Hypothesis 5. The expensive spatial/spatio-temporal join operation must be per-
formed with partition-local indexes on large data sets in order to achieve reasonable
execution times.

In contrast to kNN and filters, in joins the index is not only queried once, but for
all m elements from the second relation. Thus, instead of performing a nested loop
join in O(n×m), the join can be performed in O(m× logM(n)) with n elements in
the left (indexed) input and M being the maximum capacity of a tree node. To show
the impact, we exemplary performed a self join of a data set with 10 million points.
Before the join, the partitioned dataset was cached into memory. With online index
creation, the join took ca. 5.1 seconds, whereas without using any index, the join
timed out after our 30 minutes limit.

We also investigated the impact of the persistent indexing on join query perfor-
mance on the example of the point–point and point–linestring combinations
using the AWS cluster.

When no index was available, we loaded the raw text files and created the index
online. In the variant with persistent index, we loaded the indexed data for one rela-
tion and used the textual data for the other one. For the point–point combination,
the join takes around 12 seconds in both cases. Only when the non-indexed relation
was loaded as binary data, the execution time slightly increased to ca. 16 seconds.
For the point–linestring combination the index exists on the linestings and
we found a clear advantage of the peristent index: In the variant with online index
generation, the join takes around 68 seconds, while with the persistent index, the
time was decreased to 44 seconds (or 48 when the points where loaded as binary
objects). Thus, there is a benefit gained from the index showing that the persistent
index should be used in joins.

9.1.3 Conclusion
Spatial and spatio-temporal partitioning can be extremely important to achieve
reasonable query response times. Especially for interactive applications, for example
in notebook systems like Jupyter, fast response times are mandatory. Often, the
input files are just present as raw text files that are loaded and processed again
and again. For spatial filters, repartitioning the data is not an option due to the
comparably high shuffling costs in Apache Spark. Also, creating indexes online
during query evaluation incurs too much overhead for the quite cheap evaluation of
a spatial range query and kNN search.

In order to further speed up query execution, the partitioning and indexing can
be computed once and information about the partitions can be materialized as meta
data. When this available information is used to decide which partitions of the data
set actually contain result candidates, the query execution time can be reduced by
a factor up to 10 – if the number of partitions to load is significantly smaller than
the overall number of partitions.

For joins, however, spatial (or spatio-temporal) partitioning must be applied
prior to the operation as otherwise all partitions combinations must be evaluated.

Furthermore, an index must be available in the join as the partition-local join
evaluation would otherwise be computed using a nested loop, which results in unac-
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Figure 9.11: Throughput for range query with six query ranges.

ceptable runtimes (experiments were set to time out after 30 minutes in this case).
With increased data size, i. e., number of objects, it showed that persistently stored
indexes help to improve the join performance. However, the large binary Java ob-
jects have a clear overhead for reading, compared to textual data.

9.2 Comparing STARK with Related Systems
In this section we compare STARK with three other Spark-based spatial data pro-
cessing frameworks. We chose GeoSpark3 (version 1.2.0) and LocationSpark (latest
version on GitHub4) as they both showed best results in the benchmark performed
in [79]. Additionally, we compare the performance for raster–vector operations of
STARK with RasterFrames5 (version 0.7.0).

We show that STARK can outperform all three systems by exploiting its global
and local indexes.

9.2.1 Spatial Range Queries
In Fig. 9.11 we report the throughput for range queries using the six ranges from
the previous experiments on the four data sets. For this setting we did not use a
partitioner and no indexing method. It can be seen that for points STARK and
GeoSpark perform much better than LocationSpark, which always repartitions data

3https://github.com/DataSystemsLab/GeoSpark
4https://github.com/purduedb/LocationSpark – Latest commit ee90d4b from Jan 6, 2017;

had to be compiled with Scala 2.10 and run with Spark 1.6
5https://github.com/locationtech/rasterframes
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(a) Range queries with NDP for points.
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(b) Range queries with NDP for polygons.

Figure 9.12: Throughput for range queries with six query ranges and STARK push-
ing down filter predicate into load function.

and builds local indexes, which in this case causes too much overhead. STARK
constantly performs a bit better than GeoSpark and achieves around one query
more per minute. For the other data sets, both frameworks perform equally well.
For every query range, the runtimes are almost equal, indicating that the actual
filter step is neglectable compared to the time needed to load (and prepare) the
input data. Both, STARK and GeoSpark internally use the JTS library and thus,
the actual spatial computation is performed by the same library in both systems,
resulting in the similar execution times.

LocationSpark was not able to answer the query for ranges 5, and 6: we con-
stantly received GC overhead limit exceeded errors after a few repetitions. This
means that there are so many objects created and need to be released by Java’s
garbage collector to make space for new objects. However, if so many objects are
created, the JVM spends more time in the garbage collector than in the actual
program logic and, therefore, the process is automatically terminated by Spark. A
reason might be that the operator returns the result in a local data structure on the
driver instead of keeping it in an RDD. This is a problem as the result size is too
large to fit into the memory of the driver. Furthermore, LocationSpark is only able
to handle range queries on point data sets.

Since filtering is a common task for spatial data analytics, we additionally com-
pare the performance of the logical NDP in STARK with the other systems. The
results in Fig. 9.12 clearly show that STARK outperforms the other systems in this
scenario. The execution time is decreased to only 0.5 – 0.8 seconds for ranges 1
– 3, so that the throughput increases to multiple queries per second6. This is an
improvement of factor 10 compared to the results in Fig. 9.11.

9.2.2 k Nearest Neighbor Search
Next, we compare the results of STARK with the other platforms in Fig. 9.13 for
kNN search. The first thing to note is that LocationSpark only supports kNN search
on a point dataset. Therefore, here we only show the kNN search results over points.

6Recall that data is not cached in memory, but has to be loaded from storage.
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Figure 9.13: Throughput for cached point data set (a) and execution time with
logical NDP (b).

STARK and LocationSpark achieve similar results and differ only in 0.1 – 0.2 sec-
onds as they both implement the same approach (BoundedKNN ). However, for the
reference point ilm, STARK performs better than LocationSpark. As shown in Ap-
pendix A, for the other points LocationSpark is a bit faster, though. Since both
systems implement the same approach, this difference results either from external
influences (another process disturbing on one of the nodes, network latency dur-
ing communication between nodes) or minor implementation details. For example,
STARK performs some additional checks to test if it has already found the final
result to avoid errors like we encountered for LocationSpark. Furthermore, the par-
tition size containing the reference point plays an important role. The more elements
it contains, the longer the total execution time of the kNN operator is. Even a this
small execution time difference results in a few queries more per second. In the case
of the reference point ilm shown in Fig. 9.13(a), the datasets were partitioned and
cached in memory. Here, STARK is faster than LocationSpark, resulting in more
queries per second.

In Fig. 9.13(b) we present the results for the kNN search, when the data is not
cached, but has to be loaded from storage. As for the range queries, with the logical
NDP approach much fewer partitions, than the data set actually is comprised of,
had to be loaded and processed. In Fig. 9.13(b), the y scale ends at 10 seconds, to
make the runtime of 0.3 seconds in STARK visible. In these cases, GeoSpark takes
around 30 seconds and LocationSpark around 40 seconds.

LocationSpark always assumes that it can construct a query range to find the k
nearest neighbors in. In our experiments we encountered a Java exception for k =
1 when LocationSpark tried to pull an element from an empty iterator.

For the sake of completeness, we show the results for both, the STARK internal
comparison as well as the comparison with the other platforms for the two other
reference points in Appendix A.
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Table 9.3: Comparison of execution times when loading data from storage.

Combination Platform Execution time [second]

point–point STARK w/ Online Index 12.9
STARK Persistent Index 12.0
GeoSpark 36.0

point–linestring STARK w/ Online Index 68.9
STARK Persistent Index 44.6
GeoSpark 94.5

9.2.3 Join Processing
The results of spatial joins are shown in Fig. 9.14. Here, we used the same reduced
data sets as previously when we studied the impact of partitioning and indexing
(10 mio. points, 35 mio. linestrings, and 57 mio. polygons and rectangles.) For
this experiment, data was partitioned and cached. The reported times include the
time for indexing creation and the actual join processing. Except for the polygon–
polygon case, where STARK is slightly slower than GeoSpark, STARK performs
significantly better than the other two systems in most cases. As for range queries,
LocationSpark solely supports point-rectangle join.

We additionally compare the execution times of the systems when reading data
is included. Again, these experiments were executed in the AWS cluster. Since
LocationSpark is quite old already, we had to setup a new cluster for this framework
with an appropriate Spark Version. We created an emr-4.9.3 cluster with Amazon
Hadoop 2.7.3, Spark 1.6.3 using m4.xlarge machines7. Though, we were not able
to produce results for LocationSpark as the process repeatedly crashed with Slave
lost messages.

Therefore, we can only compare STARK with GeoSpark here and exemplary use
the point–point and point–linestring combinations that we already also used
in Section 9.1.2. As before, the index was built on the linestring dataset. The
results are listed in Table 9.3. Again, STARK is clearly faster than GeoSpark – not
only when the index can be loaded from storage.

From a usability point of view, LocationSpark is highly limited as it only supports
the contained-by predicate on point data sets. GeoSpark is also quite limited as it
supports contains and intersects as predicates only. STARK allows any predicate
and is even able to apply user-defined functions as predicates.

9.2.4 Raster Data Processing
For raster data processing, we compare STARK with RasterFrames. For filtering,
we used a raster data set with temperature values from the earth in TIFF format for
RaterFrames and in our own tiled format for STARK. In Fig. 9.15 the raster–vector
filter in STARK and RasterFrames are compared. It shows that with this approach,
we can achieve a throughput up to three times as high as in RasterFrames.

7The m5 machines where not available in this configuration.
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Figure 9.14: Throughput for spatial joins
using contained-by predicate.
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Figure 9.15: Comparison raster–vector
filter in STARK and RasterFrames.

Joining a raster data set with a vector data set is not supported in RasterFrames
or GeoTrellis, i. e., it cannot even be expressed. Thus, we can only report the mea-
surements for STARK here: we joined the temperature data set with a data set
containing the borders of 224 countries (polygons) in the world. Because of the
partitioning and indexing opportunities in STARK, on average this join was com-
pleted in only 24 seconds, whereas without the spatial partitioning it degenerates to
a Cartesian product and we had to terminate this experiment after several minutes.

9.2.5 Conclusion
As one result of this thesis we developed the STARK framework to efficiently process
spatial and spatio-temporal vector as well as raster data. In this part of the evalua-
tion, we have shown that STARK can outperform other platforms by making use of
an existing global index. This index is used in combination with query ranges or, in
case of kNN, reference points to reduce the amount of data to read from storage and
process at the worker nodes. However, STARK performs better than the compet-
ing systems not only when using this NDP approach. The efficient implementation
of operators, indexes, and the possibility of persistent partition-local indexes make
STARK superior in nearly all executed experiments.

LocationSpark implements a fast indexing and partitioning strategy which works
well especially when data is already cached in memory. However, when data is
loaded for filter or kNN search, the mandatory repartitioning and indexing incurs
an unnecessary overhead. GeoSpark performs well for range queries and joins, but
implements only a näıve kNN search strategy.

Currently, the logical near data processing works only partially for joins, as it
would require to load a file, that represents a spatio-temporal partition in STARK,
also as exactly one partition in Apache Spark. This is not possible yet and Spark
automatically decides to merge (parts of) files into one partition during load. The
resulting partitions, however, violate the spatio-temporal bounds stored in the global
index. Thus, in order to also apply this approach for joins, the native load functions
of Apache Spark and Hadoop would need to be modified. This is left as optimizations
in future work on this framework.
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Figure 9.16: Overhead of code instrumentation.

9.3 Reusing Intermediate Results
In this part of the evaluation we demonstrate the applicability and impact of the
transparent materialization approach. We use real world data from three use case
scenarios: weather contains sensor data from the SRBench [114] benchmark for
hurricane Katrina, taxi stores taxi trips in New York data8 (Yellow Cabs, 2013 –
2016) and is used in combination with New York block data9. We also use the
gdelt data from 2013 to 2016. We created several scripts for each use case scenario:
T1 – T5 for taxi scenario, W1 – W3 for weather scenario, and G1 – G3 for gdelt10.

Hypothesis 6. The code is instrumented with profiling code to gather operator
statistics. The injected profiling code only introduces a negligible overhead and does
not influence the actual operator execution.

In Fig. 9.16(a), the influence of the sample fraction is shown. It can be seen that
profiling incurs only a small overhead for a sample rate of 1/1 and 1/2 (meaning
100% or 50% respectively are selected) and runtimes only differ in less than 10
seconds or 5%. Thus, for our other experiments we selected a sample rate of 10%.
Figure 9.16(b) shows the execution time without profiling as well as with code
instrumentation for profiling for each of our test scripts. There are almost no runtime
differences in execution time.

The decision model is implemented as part of the optimizer. The optimizer as
well as the decision model cannot guarantee to always achieve the optimal result,
due to changes in the current overall cluster workload and other parameter changes.
Thus, it is important that the model and optimizer do not make bad decisions
and materialize wrong intermediate results where recycling them would increase the
execution time.

Hypothesis 7. The materialization decision always improves query execution time
and avoids bad decisions.

Fig. 9.17 shows runtimes for each script for three executions. Prior to the first
execution no statistics were available and thus are collected during this execution

8http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
9http://www1.nyc.gov/site/planning/data-maps/open-data.page

10The scripts can be found in Piglet’s GitHub repository.
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Figure 9.17: Three execution times for each script showing the benefit of loading
materialized results. Runtime in percent of the first execution.

(blue bars). In the second execution, previously generated statistics were used to
decide which operator to materialize (orange bars). Hence, this execution includes
also the writing of the intermediate result. For the last execution, the materialized
results were loaded (green bars) and thereby reduced the overall execution time of
the job.

As we argued in previous sections, scripts are often developed incrementally. In
this experiment we show the runtime differences for one script of each scenario for
incremental execution.11. (Fig. 9.18). We first ran the according script without
materialization support (dashed orange lines) and compared the runtimes to an ex-
ecution with materialization enabled (dotted blue lines). On the x-axis, step 0 is the
initial execution with a LOAD and a first FILTER operator and subsequent steps add
one or more operators. For the first few steps, both execution times are equal except
for some minimal discrepancies. At some point however, the optimizer recognizes a
materialization point for which a benefit will be achieved and writes the respective
result to disk (indicated by vertical lines). In this step, the execution time for with
materialization rises above the reference time without materialization. However,
since this is executed only once, the additional costs (clearly visible in Fig. 9.18(c))
will easily be amortized in subsequent executions that benefit from loading the ma-
terialized data. In fact, materialization reduced the cumulative execution time for
G1 from 7 to 5 minutes, for W2 from 30 to 20 minutes, and for T5 from 80 to 30
minutes.

In our experiments we saw that the estimated benefits often were close to real
measured speedups, but sometimes also deviated to some extent. We observed that
in almost all cases when a benefit could be achieved, we underestimated it – meaning
that a subsequent execution was even shorter than calculated. In our tests we never
encountered the situation that the optimizer calculated a benefit for a candidate ma-
terialization point which actually did not bring any benefit during execution. From
this we conclude that our cost model calculates executions costs well enough to se-
lect an appropriate materialization point and avoid candidate materialization points

11During the initial development of the scripts that we used in our evaluation, we already greatly
benefited from the materialization and saved much time by reusing the stored results.
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Figure 9.18: Incremental execution of one script for each scenario (different y scales).

that would cause longer execution times. However, if the parent partitions could not
be determined precisely the computation of the respective operator’s execution time
may assume a shorter or longer time. Writing always the last materialization point
will only bring benefits reliably in scenarios similar to the incremental development
of scripts.

Hypothesis 8. Scripts are created and developed and executed in various scenarios.
The best strategy for selecting a materialization point for writing depends on the
workload setting.

To test the impact of the selected strategy on the performance, we looked at two
cases: First, we used some additional scripts that all share the first six operators
and then diverge into their individual paths that all contain another five operations.
Strategy last did not materialize data as the last candidate materialization point of a
job will not be repeated and thus no job benefited from recycling and execution of all
scripts took around 420 seconds (7 minutes). For strategies maxbenefit and markov
intermediate results were recycled and execution time was around 160 secs (2:40
minutes) for both when results were loaded. In the second case we disassembled the
jobs from our three use case scenarios into a total of 132 jobs, executed them one
after the other in a random sort order.For strategy last the overall execution time
was 3:47 hours, while for maxbenefit and markov the total time was 2:52 hours and
2:48 hours, respectively. This shows that a selection strategy that takes the costs of
operators into account achieves good results. In this setting, maxbenefit and markov
created similar results, but markov strategy performed slightly better in this last
experiment as it sometimes chose other materialization point than maxbenefit, which
more subsequent jobs could recycle.
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Chapter 10
Conclusion &
Open Research Questions

10.1 Conclusion
In the era of Big Data, all kind of information is gathered and stored in order to
analyze and use it to create new knowledge with the ultimate goal to solve research
questions as well as to improve service quality and business strategies. Often, partic-
ularly spatial and spatio-temporal data is valuable and is generated, collected, and
analyzed in various application scenarios. One example are location-based services
retrieving location data from millions of users and provide service information such
as points of interest or nearby friends and events. Besides location data with and
without temporal information, raster data is another type of spatial data that re-
quires special handling in data management systems. In order to analyze the large
amounts of collected data, the Hadoop MapReduce and later the Apache Spark
platform have been established. The inherent data parallel execution of programs
allows to easily process terabytes of data. However, these platforms do not have na-
tive support for spatial data types and operations, resulting in inefficient jobs where,
e. g., joins degrade to cross products. Furthermore, when a group of scientists wants
to analyze the data sets, they often all run the same programs, or at least parts of
them. This results in the same operations being executed over and over again in
the cluster, wasting valuable computing resources that could be used otherwise, or
in the case of rented clusters, could be switched off to save money.

In this work, we analyzed the requirements for efficient processing of spatial and
spatio-temporal vector and raster data in data parallel cluster environments. We
developed the STARK framework that tries to solve the identified challenges and
discussed its main components in this thesis. STARK is a framework that integrates
into Apache Spark without modifying its source code. Figure 10.1 shows the main
contributions of this work categorized in different components.

Global Index

Spatio-temporal Vector & Raster Data
Data Types & Operations Analysis Operators

Declarative Language Support
SparkSQLPiglet
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Figure 10.1: Main components and contributions of this thesis.
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Declarative Languages: As interface, we provide a Scala-based DSL as well as ba-
sic integration into declarative languages. The supported languages currently
are SparkSQL and our Pig Latin dialect Piglet. The integration into Spark-
SQL is achieved by using user-defined types and functions as well as custom
rewriter strategies injected into the Catalyst optimizer. For Piglet, types as
well as operations thereon are natively added to the language and transpiler.

Raster & Vector Data Types: The spatio-temporal vector and spatial raster ob-
jects are represented using dedicated types. To accommodate for the dis-
tributed processing in a cluster, for raster data the tile type carries meta
information about the spatial location of the tile in addition to the actual
pixel values. This way, no centralized catalog is needed. We furthermore
augment the tiles with small materialized aggregates used during value-based
query processing to quickly decide if a tile contains result candidates.

Spatio-temporal Operations: We discussed several possible strategies for kNN
search and Skyline computation in the context of data parallel execution and
analyzed their performance in the evaluation in Chapter 9. We further inves-
tigated how these operators can benefit from the available partitioning and
indexing information. STARK implements several operators for processing
vector and raster data. Using filter operations, users can find subsets of the
input data set matching a spatial or spatio-temporal range according to a
given predicate. Besides filtering a vector data set with another vector object,
users can additionally use vector objects to filter for certain parts of a raster
data set. Joins are supported between two sets of vector objects, two raster
data sets as well as between a raster and a vector data set. In addition to
the filter and joins, STARK supports three other types of operators: a kNN
filter, a Skyline operator as well as a DBSCAN operator for spatio-temporal
clustering.

Partitioning & Indexes: To distribute work to executor nodes, Apache Spark
employs partitioners that partition the input data set based on certain crite-
ria. We developed spatial as well as spatio-temporal partitioners to support
query execution: The operators exploit the spatial and temporal extent of
the generated partitions to decide which partitions can contain filter results
or join partners, respectively. The extent information is additionally used to
find the starting point for the kNN search or dominance regions for Skyline
computation. In STARK, the partition information can be materialized and
used as a global index. This global index is used by the load function to iden-
tify partitions with result candidates for a query. Besides the global index,
partition-local indexes can be created to speedup the processing of a partition
on a worker node. We investigated when and how operators benefit from the
available partitioning and indexing information and found that especially the
logical near data processing based on the global index has a huge positive ef-
fect on query performance. Furthermore, we analyzed how persistent indexes
can be used to speed up processing. However, except for joins where indexing
has shown to be mandatory, the relatively large binary index objects have a
negative impact on execution time.
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Cost-based Recycling: Typically, multiple users work in a cluster accessing the
same files or run programs repeatedly. In order to save valuable cluster re-
sources, in this work we developed a cost-based decision model to materialize
intermediate results of jobs in the cluster. The model is based on the execution
time of operators as well as their result size. The goal of the decision model
is to maximize the benefit of the materialization. In this context, the benefit
is the time saved when reusing a previously materialized intermediate result
compared to the time needed to compute that result again. We implemented
the decision model into our Piglet project and instrumented the executed jobs
to gather the required parameters during execution. In Section 9.3 we have
shown that the model works and helps reduce job execution time in various
scenarios.

10.2 Open Research Questions

The STARK framework as well as the decision model for reusing intermediate results
in a job can already be useful in many scenarios. However, we believe that this thesis
can be used as a basis for further research. In the following, we will discuss four
possible directions that extend the contributions made in this thesis.

Near Data Processing and Hardware Support The near data processing as
discussed and implemented for now in STARK is performed in the load operator
itself. When a filter condition is provided to the load function and the global index
for the spatio-temporal partitioning is present, first the index is loaded and candidate
partitions are identified. After that, the identified partitions are loaded and returned
to the processing pipeline.

While this has shown good results for filter and kNN operations, this processing
could still be pushed deeper. On the one hand, since every partition is stored in
a separate file in the Hadoop platform, the global index for the partition could be
added on file system level. Here, file and directory attributes could be exploited to
store the meta information (MBR and enclosing interval, SMAs of tiles in partition).
During read, the candidate partitions can be identified reading the file attributes.

On the other hand, while the processing on file system level might result in some
performance gain compared to the current solution, a more interesting question is
the support of specialized hardware. Currently, in Hadoop and Spark a cluster
is assumed to consist only of commodity hardware, i. e., a CPU, disk, and some
RAM. However, [106] and [78] already have shown that specialized hardware, such as
FPGAs, can be used to reduce the amount of data significantly before it is transferred
to the CPU. Furthermore, a system could utilize the parallel computing power of
GPUs to perform spatial calculations and comparisons.

To be able to utilize such hardware in a transparent way, the queries need to be
analyzed and it has to be decided which parts of the query should be executed on
which device. Not only does this decision have to deal with the general capabilities
of the devices, but also with the costs for transferring the query as well as the data
objects to the GPU.
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Handling Uncertain & Imprecise Data Spatial and temporal data is produced
mainly in two fashions: by sensors like GPS devices that calculate the current position
or as mentions of location names and date/time periods in texts. Sensors may not
always function 100% accurately and often include some measurement errors. The
accuracy for GPS devices depends on the number of reachable satellites and is usually
a few meters for non-military usage.

Not only sensors produce inaccurate values. Information extracted from texts
like news articles or historical scripts is often imprecise, too. Mentions of locations
and dates often depend on the context of that article and therefore not always refer
to an exact location or time. The report “Metallica played in Germany in 2018”
might be sufficient for the purpose of some general information about a tour of the
band Metallica. However, the description of the location is imprecise as it does not
state in which city (actually, cities) and at which time they played. Such imprecise
information can often be found in articles about historic events as the exact location
and time is simply not known.

Algorithms to extract event information with the location and time from texts
extract these imprecise definitions and convert them into structured information,
e. g., the polygon definition of Germany and an interval from January 1st, 2018 to
December 31st, 2018. For technical devices, their inaccuracy is often known or can
be estimated from the surrounding conditions.

The imprecise definitions lead to uncertainties in the computations based on this
data. Thus, there is not a single location or instant where an object is located or
an event took place, but many of them. Additionally, an object/event occurred at
these possible locations and instant with some probability.

A research question is how to handle the uncertainties and imprecise information
as this impacts the operators and distance functions used within the operators. In
preliminary work [50], we discussed the data representation for imprecise events. In
future work, new distance functions as well as interpretations for, e. g., Skylines can
be developed that account for the imprecise and uncertain data. Here, the challenge
is to define the semantics of the dominance relationship. If it is not known where
exactly a point is located, how can we decide if it dominates another point, whose
location is also not known precisely.

Query Containment Currently, reusing intermediate results works only for ex-
actly the same operators, i. e., they must have the same filter conditions constants,
the same projected columns, etc. While this works well if the same script (or parts
of it) are executed repeatedly, it reduces the number of times intermediate results
can be reused by other scripts even if only slight changes are made.

To increase the applicability of materialized results for reuse in other scripts, the
equivalence check should be replaced by a containment check: If the result of an
operator o in the current script is a subset of an already materialized result m on
disk, it might be beneficial to read m from storage and use it as input for o.

As an example, consider two scripts/queries that load the same input file, e. g.,
position information sent by mobile devices and that are executed one after the
other. Both scripts may perform some pre-processing: the first script only needs to
process data with a timestamp before 13.09.2018, while the second script needs data
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only before 01.06.2018. After this filter, both scripts perform the same complex and
long running aggregation steps.

Since both scripts have the same operations until this timestamp-based filtering,
the result of the second script is a subset of the result of the first script. Yet,
the second script has to perform all the expensive operations again on the large
input dataset. Due to the fact that the lineage ID is based on the lineage ID of
the parent operator(s), the lineage IDs of the expensive operations differ in both
scripts. However, the result of the filter in the second script is a subset of the result
of the timestamp filter in the first script. Therefore, the materialized results of the
first script can be treated as candidates for the second script to load as well. As
a prerequisite, it must be decidable that the result of o is indeed a subset of the
materialized data on disk.

In addition to the containment check of filter results, projection plays an impor-
tant role: usually optimizers will try to execute projections as early as possible to
reduce the amount of data. Unfortunately, this also has a negative impact on the
possibilities of reuse since the according column might have been removed. Thus,
when implementing a containment check component, a trade-off has to be made
between early execution of projections and opportunities for reuse.

In general, a system using containment checks rather than exact equality greatly
increases the potential of a materialized result being reusable by another script and
therefore, improves the query response times of more jobs.

Cache strategy The transparent materialization of intermediate results bears
great potential for shared data centers executing thousands of queries [62, 84].

In Section 8.3.1 we discussed three questions needed to be answered to decide,
which candidate materialization point to actually store. One question was regarding
the cache size and which previously materialized result should be removed in order
to add the new one. As an answer, we proposed to use the well known LRU or LFU
algorithms or, to account also for the benefit, a Knapsack strategy.

As an additional improvement, new replacement strategies can be created that
account for both, the number of accesses (reuses) to a materialized result as well
as the benefit. Here, we envision a strategy inspired by ARC [68], maintaining two
lists: one that contains all not yet reused materialized objects managed by LRU
and a second list with materialization points that were accessed at least, e. g., one
time. The lengths of these lists as well as the movement from one list to another
can follow the general idea of the original ARC.

Furthermore, the cost model as well as the cache replacement strategies could
directly include the monetary cost of operators and occupied storage.
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Appendices

A More k Nearest Neighbor Search Results
In Section 9.2.2 we evaluated STARK’s different kNN implementations and also com-
pared them two the other selected platforms using three different reference points. In
the following, the results for the two reference points random and 00 are presented.

First, we show the results of the STARK internal comparison in Fig. 2.
It can be seen that the throughput, and therefore, also the execution time of the

operator, is independent from the value k in this case. Although the experiments
were repeated several times, still some fluctuations in the measured times were
encountered that reveal unexpected execution times in the figures. However, note
that these times differences as small as 0.1 second can have a visible impact in these
figures.

As we have already shown in the evaluation, the BoundedKNN achieves signifi-
cantly higher throughput than the other algorithms.

Next, we also present the results of the comparison of the selected platforms for
the two reference points in Fig. 3 For all three tested reference points, LocationSpark
was not able to to find results with k = 1. However, unlike for reference point ilm, for
these two points LocationSpark was faster. As we already mentioned in Section 9.2.2,
the reason are most likely implementation differences and the size of the partitions
containing the reference point.
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Figure 2: STARK internal comparison of kNN variants for reference points rand and
00.
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Figure 3: Comparison of the selected platforms for reference points random and 00.
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B More Examples of Piglet Scripts

Listing 4 Script G3
<%
def extractDomain(url: String): String = {

if(!url.startsWith("http"))
url

else {
val startPos = url.indexOf("//")+2
val endPos = if(url.indexOf("/",startPos) < 0) { url.size } else {

url.indexOf("/",startPos) }↪→

url.substring(startPos, endPos)
}

}
def diff(d1: Double, d2: Double): Double = {

math.abs(d1 - d2)
}
def isnum(s: String): Boolean = {

scala.util.Try {
s.toDouble

}.map(_ => true).getOrElse(false)
}
%>
gdelt = LOAD '$gdelt' using PigStorage();
fields = FOREACH gdelt GENERATE $26 as eventcode, (double)$34 as avgtone, $57 as

url;↪→

withURL = FILTER fields BY nonempty(eventcode) and isnum(eventcode) and
nonempty(url)↪→

domain = FOREACH withURL GENERATE extractDomain(url) as site, (int)eventcode as
ecode, avgtone;↪→

grp = GROUP domain BY (site, ecode);
avgtones1 = FOREACH grp GENERATE group as siteecode, avg(domain.avgtone) as

avgtone↪→

avgtones = FILTER avgtones1 BY avgtone != 0
f = FOREACH avgtones GENERATE siteecode.site as site,siteecode.ecode as code,

avgtone↪→

ordered = ORDER f BY site, code
dump ordered mute;
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Listing 5 Script T4
<%
def dateToMonth(date: String): Int = {

val formatter = java.time.format.DateTimeFormatter.ofPattern("yyyy-MM-dd
HH:mm:ss")↪→

java.time.LocalDate.parse(date,formatter).getMonthValue()
}
%>

raw = load '$taxi' using PigStorage(',',skipEmpty=true) as (vendor_id:chararray,
pickup_datetime:chararray, dropoff_datetime:chararray,
passenger_count:chararray, trip_distance:chararray,
pickup_longitude:chararray, pickup_latitude:chararray, rate_code:chararray,
store_and_fwd_flag:chararray, dropoff_longitude:chararray,
dropoff_latitude:chararray, payment_type:chararray, fare_amount:chararray,
surcharge:chararray, mta_tax:chararray, tip_amount:chararray,
tolls_amount:chararray,total_amount:chararray);

↪→

↪→

↪→

↪→

↪→

↪→

↪→

noHeader = filter raw by not STARTSWITH(lower(vendor_id),"vendor");
month_tip = FOREACH noHeader GENERATE dateToMonth(pickup_datetime) as month:int,

(double)tip_amount as tip↪→

grp = GROUP month_tip by month;
avg = FOREACH grp GENERATE group, AVG(month_tip.tip);
dump avg mute;
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Listing 6 Script W3
<%
def getHourPerDay(s: String): String = {

val t = s.replaceAll("\"","").split('ˆ')(0)
val dt = t.substring(0, t.lastIndexOf("-"))
val ldt = java.time.LocalDateTime.parse(dt)
s"${ldt.getYear}-${ldt.getMonthValue}-${ldt.getDayOfMonth}-${ldt.getHour}"

}
def getFloatValue(s: String): Double = {

val t = s.split('ˆ')(0)
t.replaceAll("\"","").toDouble

}
def hash(s: String): Int = { s.hashCode() }
%>

triples = RDFLOAD('$rdffile')
windObs = BGP_FILTER triples BY {

?obs "<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#procedure>"
?sensor.↪→

?obs "<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl
#observedProperty>"
"<http://knoesis.wright.edu/ssw/ont/weather.owl#_WindSpeed>".

↪→

↪→

?obs "<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#result>"
?resultSubj.↪→

?obs "<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl #samplingTime>"
?timeSubj↪→

}

obsSensor = FOREACH windObs GENERATE sensor, resultSubj , timeSubj;

triples2 = RDFLOAD('$rdffile')
resultsRaw = FILTER triples2 BY predicate ==

"<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#floatValue>"↪→

resultsWindAll = FOREACH resultsRaw GENERATE subject, getFloatValue(object) as
windspeed:double↪→

results = FILTER resultsWindAll BY windspeed >= 74

triples3 = RDFLOAD('$rdffile')
timesRaw = FILTER triples3 BY predicate ==

"<http://www.w3.org/2006/time#inXSDDateTime>"↪→

times = FOREACH timesRaw GENERATE subject, getHourPerDay(object) as
hour:chararray↪→

resultValues = join obsSensor by resultSubj, results by subject
r1 = FOREACH resultValues GENERATE sensor, timeSubj, windspeed;

timeResults = join r1 by timeSubj, times by subject;
fields = FOREACH timeResults GENERATE hash(CONCAT(sensor,hour)) as sensorHour,

windspeed;↪→

grp = GROUP fields BY sensorHour;
avgWind = FOREACH grp GENERATE group, AVG(fields.windspeed) as speed;
cnt = accumulate avgWind GENERATE COUNT(speed);
cntStr = FOREACH cnt GENERATE "results" as n1, $0;
dump cntStr
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[67] Jiamin Lu and Ralf Hartmut Güting. “Parallel SECONDO: A practical sys-
tem for large-scale processing of moving objects”. In: ICDE. IEEE Computer
Society, 2014, pp. 1190–1193.

[68] Nimrod Megiddo and Dharmendra S. Modha. “ARC: A Self-Tuning, Low
Overhead Replacement Cache”. In: FAST. USENIX, 2003.

[69] Sara Migliorini and Alberto Belussi. “A Balanced Solution for the Partition-
based Spatial Merge Join in MapReduce”. In: EDBT Workshops. Vol. 2578.
CEUR Workshop Proceedings. 2020.
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