1,616 research outputs found

    Secure Data Provenance in Home Energy Monitoring Networks

    Get PDF
    Smart grid empowers home owners to efficiently manage their smart home appliances within a Home Area Network (HAN), by real time monitoring and fine-grained control. However, it offers the possibility for a malicious user to intrude into the HAN and deceive the smart metering system with fraudulent energy usage report. While most of the existing works have focused on how to prevent data tampering in HAN's communication channel, this paper looks into a relatively less studied security aspect namely data provenance. We propose a novel solution based on Shamir's secret sharing and threshold cryptography to guarantee that the reported energy usage is collected from the specific appliance as claimed at a particular location, and that it reflects the real consumption of the energy. A byproduct of the proposed security solution is a guarantee of data integrity. A prototype implementation is presented to demonstrate the feasibility and practicality of the proposed solution

    A Review of the Enviro-Net Project

    Get PDF
    Ecosystems monitoring is essential to properly understand their development and the effects of events, both climatological and anthropological in nature. The amount of data used in these assessments is increasing at very high rates. This is due to increasing availability of sensing systems and the development of new techniques to analyze sensor data. The Enviro-Net Project encompasses several of such sensor system deployments across five countries in the Americas. These deployments use a few different ground-based sensor systems, installed at different heights monitoring the conditions in tropical dry forests over long periods of time. This paper presents our experience in deploying and maintaining these systems, retrieving and pre-processing the data, and describes the Web portal developed to help with data management, visualization and analysis.Comment: v2: 29 pages, 5 figures, reflects changes addressing reviewers' comments v1: 38 pages, 8 figure

    A Survey of Provenance Leveraged Trust in Wireless Sensor Networks

    Get PDF
    A wireless sensor network is a collection of self-organized sensor nodes. WSNs have many challenges such as lack of a centralized network administration, absence of infrastructure, low data transmission capacity, low bandwidth, mobility, lack of connectivity, limited power supply and dynamic network topology. Due to this vulnerable nature, WSNs need a trust architecture to keep the quality of the network data high for a longer time. In this work, we aim to survey the proposed trust architectures for WSNs. Provenance can play a key role in assessing trust in these architectures. However not many research have leveraged provenance for trust in WSNs. We also aim to point out this gap in the field and encourage researchers to invest in this topic. To our knowledge our work is unique and provenance leveraged trust work in WSNs has not been surveyed before. Keywords:Provenance, Trust, Wireless Sensor Networks  

    Enforcement and Spectrum Sharing: Case Studies of Federal-Commercial Sharing

    Get PDF
    To promote economic growth and unleash the potential of wireless broadband, there is a need to introduce more spectrally efficient technologies and spectrum management regimes. That led to an environment where commercial wireless broadband need to share spectrum with the federal and non-federal operations. Implementing sharing regimes on a non-opportunistic basis means that sharing agreements must be implemented. To have meaning, those agreements must be enforceable.\ud \ud With the significant exception of license-free wireless systems, commercial wireless services are based on exclusive use. With the policy change facilitating spectrum sharing, it becomes necessary to consider how sharing might take place in practice. Beyond the technical aspects of sharing, that must be resolved lie questions about how usage rights are appropriately determined and enforced. This paper is reasoning about enforcement in a particular spectrum bands (1695-1710 MHz and 3.5 GHz) that are currently being proposed for sharing between commercial services and incumbent spectrum users in the US. We examine three enforcement approaches, exclusion zones, protection zones and pure ex post and consider their implications in terms of cost elements, opportunity cost, and their adaptability

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Provenance-enabled Packet Path Tracing in the RPL-based Internet of Things

    Full text link
    The interconnection of resource-constrained and globally accessible things with untrusted and unreliable Internet make them vulnerable to attacks including data forging, false data injection, and packet drop that affects applications with critical decision-making processes. For data trustworthiness, reliance on provenance is considered to be an effective mechanism that tracks both data acquisition and data transmission. However, provenance management for sensor networks introduces several challenges, such as low energy, bandwidth consumption, and efficient storage. This paper attempts to identify packet drop (either maliciously or due to network disruptions) and detect faulty or misbehaving nodes in the Routing Protocol for Low-Power and Lossy Networks (RPL) by following a bi-fold provenance-enabled packed path tracing (PPPT) approach. Firstly, a system-level ordered-provenance information encapsulates the data generating nodes and the forwarding nodes in the data packet. Secondly, to closely monitor the dropped packets, a node-level provenance in the form of the packet sequence number is enclosed as a routing entry in the routing table of each participating node. Lossless in nature, both approaches conserve the provenance size satisfying processing and storage requirements of IoT devices. Finally, we evaluate the efficacy of the proposed scheme with respect to provenance size, provenance generation time, and energy consumption.Comment: 14 pages, 18 Figure

    Digital provenance - models, systems, and applications

    Get PDF
    Data provenance refers to the history of creation and manipulation of a data object and is being widely used in various application domains including scientific experiments, grid computing, file and storage system, streaming data etc. However, existing provenance systems operate at a single layer of abstraction (workflow/process/OS) at which they record and store provenance whereas the provenance captured from different layers provide the highest benefit when integrated through a unified provenance framework. To build such a framework, a comprehensive provenance model able to represent the provenance of data objects with various semantics and granularity is the first step. In this thesis, we propose a such a comprehensive provenance model and present an abstract schema of the model. ^ We further explore the secure provenance solutions for distributed systems, namely streaming data, wireless sensor networks (WSNs) and virtualized environments. We design a customizable file provenance system with an application to the provenance infrastructure for virtualized environments. The system supports automatic collection and management of file provenance metadata, characterized by our provenance model. Based on the proposed provenance framework, we devise a mechanism for detecting data exfiltration attack in a file system. We then move to the direction of secure provenance communication in streaming environment and propose two secure provenance schemes focusing on WSNs. The basic provenance scheme is extended in order to detect packet dropping adversaries on the data flow path over a period of time. We also consider the issue of attack recovery and present an extensive incident response and prevention system specifically designed for WSNs

    Digital provenance - models, systems, and applications

    Get PDF
    Data provenance refers to the history of creation and manipulation of a data object and is being widely used in various application domains including scientific experiments, grid computing, file and storage system, streaming data etc. However, existing provenance systems operate at a single layer of abstraction (workflow/process/OS) at which they record and store provenance whereas the provenance captured from different layers provide the highest benefit when integrated through a unified provenance framework. To build such a framework, a comprehensive provenance model able to represent the provenance of data objects with various semantics and granularity is the first step. In this thesis, we propose a such a comprehensive provenance model and present an abstract schema of the model. ^ We further explore the secure provenance solutions for distributed systems, namely streaming data, wireless sensor networks (WSNs) and virtualized environments. We design a customizable file provenance system with an application to the provenance infrastructure for virtualized environments. The system supports automatic collection and management of file provenance metadata, characterized by our provenance model. Based on the proposed provenance framework, we devise a mechanism for detecting data exfiltration attack in a file system. We then move to the direction of secure provenance communication in streaming environment and propose two secure provenance schemes focusing on WSNs. The basic provenance scheme is extended in order to detect packet dropping adversaries on the data flow path over a period of time. We also consider the issue of attack recovery and present an extensive incident response and prevention system specifically designed for WSNs

    From Artifacts to Aggregations: Modeling Scientific Life Cycles on the Semantic Web

    Full text link
    In the process of scientific research, many information objects are generated, all of which may remain valuable indefinitely. However, artifacts such as instrument data and associated calibration information may have little value in isolation; their meaning is derived from their relationships to each other. Individual artifacts are best represented as components of a life cycle that is specific to a scientific research domain or project. Current cataloging practices do not describe objects at a sufficient level of granularity nor do they offer the globally persistent identifiers necessary to discover and manage scholarly products with World Wide Web standards. The Open Archives Initiative's Object Reuse and Exchange data model (OAI-ORE) meets these requirements. We demonstrate a conceptual implementation of OAI-ORE to represent the scientific life cycles of embedded networked sensor applications in seismology and environmental sciences. By establishing relationships between publications, data, and contextual research information, we illustrate how to obtain a richer and more realistic view of scientific practices. That view can facilitate new forms of scientific research and learning. Our analysis is framed by studies of scientific practices in a large, multi-disciplinary, multi-university science and engineering research center, the Center for Embedded Networked Sensing (CENS).Comment: 28 pages. To appear in the Journal of the American Society for Information Science and Technology (JASIST
    corecore