
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2014

Digital provenance - models, systems, and
applications
Salmin Sultana
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Sultana, Salmin, "Digital provenance - models, systems, and applications" (2014). Open Access Dissertations. 370.
https://docs.lib.purdue.edu/open_access_dissertations/370

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/370?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By Sultana, Salmin

Entitled
Digital Provenance - Models, Systems, and Applications

For the degree of Doctor of Philosophy

Is approved by the final examining committee:

ARIF GHAFOOR
Chair

ELISA BERTINO

NINGHUI LI

SONIA A. FAHMY

 XIAOJUN LIN

To the best of my knowledge and as understood by the student in the Research Integrity and Copyright
Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue
University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): Elisa Bertino

 Elisa Bertino

Approved by: Michael R. Melloch 09-22-2014

Head of the Graduate Program Date

DIGITAL PROVENANCE - MODELS, SYSTEMS, AND APPLICATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Salmin Sultana

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2014

Purdue University

West Lafayette, Indiana

ii

To my parents, Md. Abu Siddique and Sayeda Parvin, and my late aunt, Rahima

Khatun.

iii

ACKNOWLEDGMENTS

For me, the PhD life was not all about pursuing a degree, it was a journey that

helped me grow up in all the academic, professional, personal, and social aspects of

life. I would like to take this opportunity to convey my gratitude to all the people

who positively influenced me throughout this journey. At first, I would like to thank

my advisor, Professor Elisa Bertino, for her support, encouragement, and guidance

over the years. She extended her help and thoughtful advice to me, whatever it was

about an academic or personal matter. Nonetheless, she always inspires me through

her wisdom, intelligence, passion, accomplishments, leadership, and contributions to

the scientific community. I also thank my committee members: Dr. Arif Ghafoor, Dr.

Sonia Fahmy, Dr. Ninghui Li, and Dr. Xiaojun Lin for their valuable comments and

feedback on my research. My labmates, who I supervised, collaborated with, or had

small talk with every now and often, have been an important part of my academic

development. Special thanks to Aditi Gupta, who I shared with the same struggle of

the PhD life. We used to exchange views on various issues and cheered each other up

with hope and aspiration from time to time. I am also thankful to the ECE graduate

o�ce sta↵s, Matt Golden and Michelle Wagner, who were readily available for any

help with the paperworks and necessary resources.

My summer internships at Intel labs played a significant role in my graduate study

as the experience, on one hand, boosted my confidence and on the other hand, gave

me exposure to the real-world security problems and industry research. I came to

realize the immense scope and necessity of security research that widened my research

views. I want to thank the group manager David Durham for o↵ering me two summer

internships, my mentors Ken Grewal and Ravi Sahita, my colleagues Michael Lemay,

Prashant Dewan, and Rekha Bachwani for their cooperation towards making the

iv

summers more productive and enjoyable. I would especially thank Scott Robinson

for all those hour-long conversations on the various aspects of security research.

I must thank my friends for being there whenever I needed and listening to me.

Special thanks go to Rezwana Karim, Sadia Afroz, and Samira Khan for all the

LOL conversations and intellectual discussions we had, which helped me de-stress

and get rid of boredom. I was inspired by the positive attitude and passion for

work of my friend Susmita Dash. My deepest gratitude goes to her for sharing some

wonderful moments during a summer internship and making me a delicious cup of tea

every afternoon. I am also grateful to the vibrant and extremely helpful Bangladeshi

students (too many to list here) at Purdue, who will make a newcomer feel like home

in this foreign land. I will cherish the beautiful moments we spent together in the

parties, hangouts, rehearsals of various cultural events we organized, and Bangla

music concerts. I particularly recognize the graciousness of Enamul vai and Leena

apu, who picked me up from the airport when I first came here, welcomed with warm

heart, and hosted me for the next few days despite their very critical situation which

I was not aware of. And their a↵ectionate support to me never phased out. I also

acknowledge the love and support from Aizaz Bhuiyan and Samina Shams Khan,

who cooked us delicious meals every time we were coming back from an internship or

Bangladesh. Not to mention, they opened their door to us anytime we were in need.

I would not have made it this far without the continuous love, support, and

encouragement from my family. I feel privileged to be born to the parents who

valued me as a human being, not just as a girl, raised me as an independent person

with self-esteem, believed in me, and inspired me in all of my pursuits. My mother

is my greatest inspiration in life, who always regarded education highly and often

walked the extra mile for our better development. My father is the coolest person

who supported me through thick and thin and encouraged me to work hard. My

younger sister has been my best friend who always believed in me and took great care

of me. My younger brother has grown up as a reliable person who I can share and

discuss with any problem. I always want to get back the good times, laughter, and

v

joy I had with my siblings. My maternal grandparents, uncles, and aunts have always

been a source of motivation for pursuing my dreams and achieving success. Almost

every day since my youngest aunt, Rahima Khatun, died in 2000, I remember her.

Her morale, compassion, attitude to life, and struggles encourage me to get focused

and attain the best. I am also grateful to my mother- and father-in-law who always

consider my academic success a top priority and wish all the best for my health and

career.

Finally, I cannot thank enough my husband and best friend over the last few years,

S M Iftekharul Alam. All the everyday details, research problems, books/movies,

recent incidents, or any random questions that we shared, discussed on or fought over

have helped me see things from di↵erent perspectives, and think more critically. I

am also deeply moved by his confidence, focus, intellectual ability, and achievements

that inject confidence and positive energy in me. He never fails to uplift me and make

me smile when I go through a rough patch. I truly thank my husband for sticking to

my side, even when I was irritable and frustrated. Last but most importantly, I am

grateful to the almighty Allah for all the favors He bestowed upon me.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

ABBREVIATIONS . xiii

ABSTRACT . xiv

1 Introduction . 1

1.1 Provenance Model . 3

1.2 Provenance Capture and Storage 4

1.3 Provenance Communication . 5

1.4 Provenance Usage . 6

2 Related Works . 8

2.1 Provenance Model . 8

2.2 File Provenance System . 10

2.3 Secure Provenance Communication 11

2.3.1 Secure Network Provenance 11

2.3.2 Time based Flow Watermarking 12

2.3.3 Applications of iBF . 13

2.4 Detection of Packet Dropping Attack 13

2.5 Incident Response and Prevention System 14

3 A Comprehensive Provenance Model . 17

3.1 Design Goals . 17

3.2 The Model . 18

3.3 Use Case . 21

3.4 Provenance Records . 23

3.5 Supported Queries . 27

vii

Page

4 A File Provenance System . 29

4.1 Design Goals . 29

4.2 FiPS - The Proposed Provenance Framework 30

4.2.1 Provenance Model . 30

4.2.2 Provenance Collector . 31

4.2.3 Provenance Log . 34

4.2.4 Provenance Processor . 35

4.2.5 Provenance Storage . 35

4.3 Prototype Implementation . 36

5 Lightweight Secure Provenance Schemes for Wireless Sensor Networks . . 37

5.1 Background and System Model . 38

5.2 Watermarking based Provenance Scheme 44

5.2.1 Provenance Encoding . 45

5.2.2 Provenance Decoding . 49

5.2.3 Decoding Threshold Evaluation 51

5.2.4 Security Analysis . 53

5.2.5 Experimental Evaluation . 58

5.3 Bloom Filter based Provenance Scheme 61

5.3.1 Provenance Encoding . 62

5.3.2 Provenance Decoding . 64

5.3.3 Performance Analysis . 67

5.3.4 Security Discussion . 70

5.3.5 Simulation Results . 71

6 Provenance Usage . 74

6.1 Detection of Data Exfiltration . 74

6.1.1 Training Phase . 74

6.1.2 Detection Engine . 75

6.2 Packet Dropping Adversary Identification in WSNs 76

viii

Page

6.2.1 Performance Analysis . 80

6.2.2 Simulation Results . 81

7 A Security Incident Response and Prevention System for Wireless Sensor
Networks . 83

7.1 Background and System Model . 85

7.1.1 Network Model . 85

7.1.2 Threat Model and Security Objectives 85

7.1.3 Intrusion Detection System (IDS) 87

7.2 Design Overview of Kinesis . 87

7.3 Kinesis System Details . 89

7.3.1 State Information . 89

7.3.2 Response Policy Specification 89

7.3.3 Policy Matching and Response Selection 91

7.3.4 Response Computation and Optimization 96

7.3.5 Execution of a Response Action 98

7.3.6 Response Feedback . 100

7.3.7 Secure Policy Storage and Dissemination 100

7.3.8 Implementation and Configuration 101

7.4 Simulation Results . 102

7.4.1 Simulation Setup . 102

7.4.2 Performance Metrics . 103

7.4.3 Grid Network Experiments 104

7.5 Testbed Evaluation . 114

7.5.1 Experimental Setup . 115

7.5.2 Kinesis Performance . 115

7.6 Discussion . 118

8 Future Research Directions . 121

8.1 Recovery of Local Fault and Security Attacks at Sensor Nodes . . . 121

ix

Page

8.2 Secure Provenance Management in Untrusted Systems 121

9 Conclusion . 123

LIST OF REFERENCES . 124

VITA . 132

x

LIST OF TABLES

Table Page

3.1 Mapping between the entities in OPM and our model 20

3.2 Comparison between our model and existing provenance models. 21

4.1 Typical Provenance Metadata . 33

7.1 Response Policy Language . 90

7.2 Response Policy Example . 91

7.3 Taxonomy of Response Actions . 91

7.4 Possible impacts of WSN anomalies and attacks 94

7.5 Considered Response Policies . 103

7.6 Aggregated energy cost of the WSN without and with Kinesis + IDS . 113

7.7 Testbed performance of Kinesis on SF attack 116

7.8 Testbed performance of Kinesis on sinkhole 117

xi

LIST OF FIGURES

Figure Page

1.1 Provenance Framework for Virtualized Environment 4

3.1 Proposed Provenance Model . 19

3.2 Usecases for Provenance Modeling . 22

3.3 Class Diagram of the Provenance Model 24

3.4 Provenance Records for workflow in Fig 3.2(b). 26

4.1 Provenance graph representation and example 31

4.2 Proposed Provenance Framework . 32

4.3 An example provenance graph stored in provenance database 36

5.1 Provenance graph for a sensor network. 39

5.2 A Bloom filter with n = 4, m = 16 and k = 3. 43

5.3 Stages of Provenance Encoding at a Sensor Node and Decoding at the
Base Station . 44

5.4 Decoding Threshold Evaluation for Provenance Watermarking Scheme 53

5.5 Performance of provenance watermarking scheme 59

5.6 Resilience to fixed-(↵, �) and random-(↵, �) alter attacks 61

5.7 iBF based provenance scheme . 62

5.8 Performance of the iBF based provenance scheme 71

5.9 Space complexity and energy consumption of the provenance scheme . 73

6.1 Architecture of Data Exfiltration Detection System using File Provenance 75

6.2 Extended provenance framework to detect packet dropping attack and
identify the malicious link . 77

6.3 Packet loss detection and faulty link identification using provenance. . 78

6.4 Performance of Provenance Scheme Detecting Packet Dropping Attack 82

7.1 Attack Graph . 86

xii

Figure Page

7.2 Overview of the Kinesis Architecture 88

7.3 Security State Diagram of a Monitored Node 96

7.4 Example of an Attack Precedence Graph 97

7.5 Kinesis Performance for data loss incidents with rate 0.1 in grid networks
of various sizes . 105

7.6 Kinesis Performance for data loss incidents of various rates in a 10 ⇥ 10
grid network . 106

7.7 A segment of the attacker’s neighborhood in the simulation topology . 106

7.8 Kinesis Performance for selective forwarding (SF) attacks in grid networks
of various sizes . 109

7.9 Kinesis performance for sinkhole attack 110

7.10 Kinesis performance for data loss + data alteration incidents with various
rates in a 10⇥ 10 grid network . 111

7.11 Kinesis performance for sinkhole + SF attacks in grid networks of various
sizes . 112

7.12 Kinesis Performance for data loss for various % of attackers (with rate
0.1) in a 10⇥ 10 grid network. 113

7.13 Coe�cient configuration for Action Timer 114

7.14 Node placement in an indoor 6⇥ 6 grid WSN 115

7.15 Testbed performance of Kinesis for data loss incidents of various rates in
a 6⇥ 6 grid WSN. 116

8.1 Conceptual Architecture of Provenance Framework in Untrusted Systems 122

xiii

ABBREVIATIONS

WSN Wireless Sensor Network

BS Base Station

IPD Inter-packet Delay

BF Bloom Filter

iBF In-packet Bloom Filter

IDS Intrusion Detection System

IRPS Incident Response and Prevention System

OS Operating System

VFS Virtual File System

FiPS File Provenance System

SAO Security Aware Object

SEE Secure Execution Environment

xiv

ABSTRACT

Sultana, Salmin Ph.D., Purdue University, December 2014. Digital Provenance -
Models, Systems, and Applications. Major Professors: Elisa Bertino and Arif
Ghafoor.

Data provenance refers to the history of creation and manipulation of a data object

and is being widely used in various application domains including scientific experi-

ments, grid computing, file and storage system, streaming data etc. However, existing

provenance systems operate at a single layer of abstraction (workflow/process/OS) at

which they record and store provenance whereas the provenance captured from di↵er-

ent layers provide the highest benefit when integrated through a unified provenance

framework. To build such a framework, a comprehensive provenance model able to

represent the provenance of data objects with various semantics and granularity is

the first step. In this thesis, we propose a such a comprehensive provenance model

and present an abstract schema of the model.

We further explore the secure provenance solutions for distributed systems, namely

streaming data, wireless sensor networks (WSNs) and virtualized environments. We

design a customizable file provenance system with an application to the provenance

infrastructure for virtualized environments. The system supports automatic collec-

tion and management of file provenance metadata, characterized by our provenance

model. Based on the proposed provenance framework, we devise a mechanism for

detecting data exfiltration attack in a file system. We then move to the direction of

secure provenance communication in streaming environment and propose two secure

provenance schemes focusing on WSNs. The basic provenance scheme is extended in

order to detect packet dropping adversaries on the data flow path over a period of

xv

time. We also consider the issue of attack recovery and present an extensive incident

response and prevention system specifically designed for WSNs.

1

1. INTRODUCTION

Data provenance refers to the genesis and evolution of a data object as it is processed

in and across systems. The most common forms of provenance describe relationships

between the input and output data in the form of why, where, and how provenance.

Where provenance identifies what pieces of input data contributed to the output data,

Why provenance tracks the processes and inputs that created or transformed the data

whereas How provenance describes in detail how the output data was produced.

The concept of provenance has been extensively studied for a long time, and

widely used in the archival community to denote the chain of ownership and the

manipulation history of a document which support document viability, authenticity,

and identity in preservation contexts [1]. In digital systems, provenance has had its

widest adoption in the scientific and grid computing applications in order to document

workflows, data generation and processing which are su�cient to enable reproduction

and validation of results [2]. Recording provenance for GIS data helps the user to

decide if the data meets the requirements of their applications [18]. The database

community has recently explored how to support provenance collection in database

records and streams with a view to assuring the accuracy and currency of data. Oth-

ers have examined the usage of provenance for social networks, general information

retrieval processes, operating and storage systems. A more recent area of focus is

cloud computing systems where provenance can be used for resource usage and cost

optimization, data reliability, fault detection, etc.

In addition to facilitating data reproducibility, rights protection, regulatory com-

pliance, and authentication of information, provenance can be considered as a useful

tool in data and systems security. Recent research works manifest the key contri-

bution of provenance in evaluating the trustworthiness of data streams, for example,

sensor data [3], location data [4], and multi-hop network [5], etc. Systems security

2

can be benefited by the forensics facility of provenance which helps expose the depen-

dencies between various components (e.g. processes, pipes, files etc.) in a system or

cross-correlate events on di↵erent machines and gives system administrators a more

complete picture of component interactions thus easing the troubleshooting. Under-

standing the provenance of polymorphic malware strains can lead to new techniques

for detecting and classifying unknown attacks [6]. Possibilities of other security func-

tionalities include performing intrusion detection [7], identifying data exfiltration [8],

etc.

While data provenance has been gaining interest as a desideratum in various do-

mains, supporting provenance in current information systems poses several technical

challenges. The contents of provenance verily depend on the context and the goals

of its usage, and thus has implications on the provenance collection and management

model. Existing provenance systems mostly operate at a single level of abstraction

at which they record and store provenance. Provenance techniques for experimental

systems, such as Chimera [9], ESSW [10], record provenance at the semantic level of

application. Other application level provenance systems capture provenance at the

level of business objects, lines of source code or other units with semantic meaning to

the context. Service oriented workflow systems record provenance at workflow stages

and data/message exchange points. System-call based systems such as ES3 [11],

PASS [12] operate at the level of system processes and files. While the provenance

collected at each level of abstraction is useful in its own right, the integration of

provenance captured from di↵erent layers achieves the highest benefit of the data

provenance. Moreover, most of these systems have their own proprietary protocols

for managing provenance, leading to the lack of interoperability at the syntactic level

between provenance records generated by heterogeneous systems. Without a unified

provenance infrastructure, provenance generated by individual components cannot re-

late to each other across di↵erent layers and systems. To build a unified provenance

infrastructure, an expressive provenance model able to represent the provenance of

data objects with various semantics and granularity is the first crucial step. In this

3

thesis, we propose a comprehensive provenance model that can encapsulate the data

provenance captured at di↵erent stages of a physical/computational process. The

model captures the characteristics of standard provenance models (e.g. OPM) and

ensures the inter-operability of provenance across di↵erent systems.

We then explore the secure provenance solutions for various distributed systems

and investigate the utility of a unified provenance model in addressing provenance

issues. Our focus is on secure and flexible yet scalable provenance collection, manage-

ment, communication, and usage in streaming data systems, wireless sensor networks

and virtualized environments. Provenance records can grow significantly over time,

adding data storage, transmission, and processing costs. Hence, such provenance sys-

tems must be vigilant in managing data. Security issues, such as integrity, access

control, reliable dissemination, etc. also add significant challenges to making prove-

nance service available and trustworthy. Although provenance modeling, collection,

and querying have been investigated extensively for workflows and curated databases,

provenance for the considered applications has not been properly addressed. More-

over, existing provenance collection mechanisms fail to achieve su�cient breadth or

fidelity to address the challenges mentioned above. In this context, the contributions

of this thesis can be summarized as follows:

1.1 Provenance Model

We propose a comprehensive provenance model that is (i) generic enough to record

the provenance of any data object, (ii) unified to capture and integrate both the

application and system level metadata, and (iii) tailored to fine grained access control

and originator preferences on provenance. The expressive nature of the model enables

a wide range of provenance queries. We also illustrate the utility of our model in real

world data processing systems.

4

1.2 Provenance Capture and Storage

With the emergence of distributed services (cloud computing, virtualization tech-

niques) and electronic exchanges, the need to identify data origin and its lifecycle

history becomes more intense with respect to ensuring full transparency and account-

ability. In this context, we pursue the design and implementation of a provenance

collection system for virtualized environments. Fig. 1.1 shows the provenance frame-

work we consider for this work. As the initial step, we focus on local file provenance

system and present the design of such a system, named as FiPS. It is a file sys-

tem that not only manages files but also transparently captures, stores and manages

file provenances. FiPS autonomically collects su�cient metadata, conforming to our

provenance model discussed earlier, in order to recreate a file.

Centralized Provenance
Store

Provenance Collection Provenance Query
Provenance

Integration and
Upload

File
Provenance

System

Local
Provenance

Store

VMM
File

Provenance
System

Local
Provenance

Store

VMM…

Fig. 1.1.: Provenance Framework for Virtualized Environment

We design FiPS as a thin layer operating between the Virtual File System (VFS)

and the underlying file system. In contrast to a system-call based provenance ap-

proach [7], we intercept file system calls passed through the VFS layer and then

generate provenance records. System call level approaches often fail to see how a

system call activity is translated into multiple actions in the lower layers of the OS.

Memory-mapped I/O can only be traced at the file system level. In addition, server-

side operations of network file system (NFS) are performed directly in the kernel, not

5

through system calls. The system allows provenance output to a local or networked

storage.

1.3 Provenance Communication

Data outsourcing and sharing in distributed services introduce the problem of

provenance communication amongst disparate systems. We direct our research on

secure and e�cient provenance communication to an emerging class of distributed

computing applications, namely the stream processing systems (focusing on sensor

networks). Here, important challenges arise due to the ephemeral data, and tight

storage, energy and bandwidth constraints of the sensor nodes. Therefore, it is neces-

sary to devise a light-weight provenance solution which does not introduce significant

overhead. Furthermore, sensors often operate in an untrusted environment, where

they may be subject to attacks. Hence, it is necessary to address security require-

ments such as confidentiality, integrity and freshness of provenance. Our goal is to

design a provenance encoding and decoding mechanism that satisfies such security and

performance needs.

We propose a framework that transmits provenance along with the sensor data

by hiding it over the inter-packet delays (IPD) (i.e. the delay between sensor data

packets). The provenance of a data packet includes the identities of nodes in the data

flow path. Each node in the path encodes one bit of provenance information over

each IPD. Hence, the provenance can be decoded by processing the IPDs required to

encode all the provenance bits. The embedding of provenance within a host medium

makes our technique reminiscent of watermarking [13]. However, since the IPDs are

used as watermark carrier, there is no data degradation due to watermarking. We

ensure the scalability of the scheme by adopting a spread spectrum based technique

which supports multi-user communication over the same medium [14].

An underlying assumption for this solution is the provenance remains same for at

least a flow of packets. The assumption is reasonable since a routing path does not

6

change too often. Once the path is constructed, it is stable for a good amount of time

until there is any link or node failure. However, some sensor network applications need

to last a long time with more stringent energy requirements requiring the network

operate at a very low duty cycle. Such low-duty-cycle operation significantly reduces

node communication, sensing duty cycles, and hence data transmission. For such low

data rate WSNs, we propose a fine-grained per-packet provenance encoding strategy

whereby each node on the path securely embeds provenance information within a

Bloom filter(BF), that is transmitted along with the data. Upon receiving the data,

the Base Station extracts and verifies the provenance. While traditional provenance

security solutions use intensively cryptography and digital signatures [15], and employ

append-based data structures to store provenance, leading to prohibitive costs, our

solutions make e�cient usage of bandwidth and yield very low error rates in practice.

1.4 Provenance Usage

We further investigate how to utilize provenance information for security enhance-

ment of various systems. For a file system, we design a provenance based mechanism

for the detection of a data exfiltration attack. The provenance graph of a file repre-

sents data flow that shows which processes wrote to the file, which files were used to

modify the file, etc. and provides us with the knowledge of legitimate access patterns

to a file. Thus, the file provenance graphs built during a training period help us later

on, during regular operation time, to detect an anomalous access pattern to a file if

the access pattern cannot be found in the stored provenance graph of the file.

In the domain of WSN, we focus on the intrusion detection capabilities of the

WSNs and propose a provenance based mechanism to address a critical security attack

named packet dropping attack. We extend the BF based provenance solution to detect

the attack and to identify the source of the attack i.e. the malicious node. A packet

loss is detected at the BS based on the provenance extracted from the BF. The

presence of the attack is determined by comparing the empirical average packet loss

7

rate with the natural packet loss rate of the data ow path. To isolate the malicious

link, we check the consistency among the information encoded by the nodes in the

path.

However when dealing with attacks and failures it is not su�cient to detect them,

one has to react as soon as possible. Today, the intrusion detection systems (IDSes)

are not equipped with response tool that would enable automatic responses and re-

covery actions. Hence, we move a step ahead and present a systematic design of an

incident response and prevention system (IRPS) for WSNs. The system reacts not

only after an attack has occurred but also on anomalous events so that the WSN

is still functional while the attack progresses. The system is dynamic as it selects

the actions in a response policy based on the severity of the event. It is distributed

since it does not require any central management for triggering the actions. The fine

grained analysis and response set optimization facilities help reducing the processing

overhead of the system. The simple yet flexible design of the response policies make

the system easily extensible to handle newer attacks.

The remainder of the thesis describes our work in detail. The outline can be

summarized as follows. We begin with a state-of-the-art summary of related work

in Chapter 2. Chapter 3 presents the proposed provenance model. Chapter 4 de-

scribes the detailed architecture of the FiPS file provenance system. We elaborate

the secure provenance transmission mechanisms for WSNs in chapter 5, followed by

chapter 6 explaining the provenance based attack detection schemes. In chapter 7, we

present an extensive incident response and prevention system for WSNs which helps

attack recovery while maintaining the WSN services. We conclude the dissertation

in Chapter 9.

8

2. RELATED WORKS

In this chapter, we review the existing works in the areas related to our research.

2.1 Provenance Model

Existing provenance systems can be discussed under three categories depending on

their underlying data systems: (i) Workflow-based, (ii) Process-based, and (iii) OS-

based systems. In this section, we review a selection of these provenance systems and

their models and then discuss their lacking in providing a generic, unified framework.

Workflow based provenance systems [9] [16] [17] collect provenance for data-

centric workflows in a service oriented architecture. Chimera [9] defines a Virtual

Data Language (VDL) to explicitly represent the workflows. VDL conforms to a

logical data schema that represents data as abstract typed datasets and describes

provenance as relationships among datasets, procedures, calls to procedures, and zero

or more physical invocations of a specific call. Upon execution, workflows automat-

ically create invocation objects for each derivation and collects provenance as anno-

tations about the runtime process information. In myGrid, the information model of

the provenance logs contain the services invoked, their parameters, the start and end

times, the data products used and derived, and ontology descriptions. Karma collects

provenance at 11 activities transpired at 3 di↵erent levels, namely {Workflow, Ser-

vice, Application} ⇥ {-Started, -Finished, -Failed}, Data -Produced, and -Consumed.

However, all workflow based provenance models are tightly coupled to a specific sys-

tem and capture provenance only at a file granularity. Cohen et al. [18] provide a

generic and expressive formal model of provenance for scientific workflows.

Process based provenance systems [19] rely on individual services to record

their own provenance in the form of assertions that reflect the relationships between

9

represented services and data. In PreServ [19], a service invocation generates three

types of assertions: interaction that records the source and sink of the service; Actor

State with the list of input and output data of the interaction; and two Relationship

assertions that associate the Interaction assertion with the produced and consumed

data in the Actor State assertion.

PASS [12] and ES3 [11] are examples of the OS-based provenance approach.

PASS operates at the level of shared storage system and records information about

which programs are executed, their inputs, and any new files created as output. ES3

captures provenance metadata including data object identifier, domain name, input

and output files. However, none of these systems provides a formal structure for

provenance metadata.

From the above discussion, it is obvious that existing provenance models apply

only to a particular application/domain and do not support security. Open Prove-

nance Model (OPM), designed by a community e↵ort to address interoperability,

meets the following objectives: (i) to define provenance in a precise technology-

agnostic manner; (ii) to allow provenance exchange across systems; (iii) to allow

developers to build and share tools that operate on such provenance model; (iv) to

allow multiple levels of description to coexist. However, OPM is a high level rep-

resentation of provenance entities and does not consider security and granularity

requirements.

Perhaps the provenance model by Ni et al. [20] is the most comprehensive model.

However, this model documents provenance data at a granularity of operation which

basically indicates functions. This fact makes it di�cult to fit the model in workflow

systems - composed of services with many underlying processes or in a large organiza-

tion where there are multiple computing domains. Since the model does not support

user specified granularity policies, the execution of a workflow will always generate a

large volume of provenance records. In addition, the model does not help generating

separate data dependency and process dependency graphs at a fast speed.

10

2.2 File Provenance System

The Lineage File System (LinFS) [7] is a file system that automatically tracks

provenance at the file system level, focusing on the executable, command line argu-

ments and input files of a process as the source of provenance. Apparently, LinFS

cannot capture the complete system level provenance as it ignores the hardware and

software environment in which the process runs. LinFS modifies the Linux Kernel

to log all process creation and file related system calls in the printk bu↵er. A user

level daemon wakes up periodically to read the bu↵er and write provenance records

to an external database. This user level writing delays provenance collection and also

threatens the provenance security at LinFS.

The Provenance-aware Storage System (PASS) [12] is a file system oriented ap-

proach that automatically collects, stores, manages, and provides search capabilities

for provenance. The system collects provenance for every process and maintains

provenance information in both memory and disk. PASS intercepts system calls,

translating them into in-memory provenance records, which are then attached to key

kernel data structures. It also maintains the ancestry graph for in-memory objects

and finally maps the in-memory graph to the on-disk provenance that is then passed

to the storage layer. The storage layer PASTA, composed of a stackable file system,

uses in-kernel Berkeley DB (KBDB) [21] to store and index provenance. However,

the PASS architecture has a few limitations. Since PASS operates above the Vir-

tual File System (VFS) layer in Linux, it does not know what events pertain to the

PASS file systems. Hence, it ends up collecting data for all files on all volumes and

then discarding it. Besides, PASS does not provide security and access control for

provenance.

Story Book [22] is a file system that implements provenance file system in user

space and treats provenance events as a generic event log. A provenance source

intercepts user interaction events with application data and sends these events to

application specific extensions which interpret them and generate provenance inserts

11

into one of storage backends. Queries are handled by Story Book API. Story Book

relies on external libraries to implement each of its modules. FUSE [23] and MySQL

intercept file system and database events. Extensions to Story Book’s FUSE file sys-

tem, such as the .txt and .docx modules, annotate events with application-specific

provenance. These provenance records are then inserted into either Stasis [24] or

Berkeley DB [25]. Although the user space design of Story Book simplifies its imple-

mentation, it incurs significant delay overhead to the file system operations. Also the

user level components can tamper with the provenance information.

2.3 Secure Provenance Communication

In this section, we review the state of the art related to our work on secure prove-

nance transmission for WSNs. The related works fall into three classes: secure prove-

nance for networking environment, time based flow watermarking, and applications

of in-packet Bloom filter (iBF).

2.3.1 Secure Network Provenance

Pedigree [26] captures provenance for network packets in the form of per packet

tags that store a history of all nodes and processes that manipulated the packet.

However, the scheme assumes a trusted environment which is not realistic in sensor

networks. ExSPAN [27] describes the history and derivations of network state that

result from the execution of a distributed protocol. This system also does not address

security concerns and is specific to some network use cases. SNP [28] extends network

provenance to adversarial environments. Since all of these systems are general purpose

network provenance systems, they are not optimized for resource constrained WSNs.

Hasan et al. [15] propose a chain model of provenance and ensure integrity and con-

fidentiality through encryption, checksum and incremental chained signature mecha-

nism. Syalim et al. [29] extend this method by applying digital signatures to a DAG

model of provenance. However, these generic solutions are not aware of the sensor net-

12

work specific assumptions, constraints etc. Since provenance tends to grow very fast,

transmission of a large amount of provenance information along with data will incur

significant bandwidth overhead, hence low e�ciency and scalability. Vijaykumar et

al. [30] propose an application specific system for near-real time provenance collection

in data streams. Nevertheless, this system traces the source of a stream long after

the process has completed. Close to our work, Chong et al. [31] propose a scheme for

embedding the provenance of data source within the dataset. While it reflects the

importance of issues we addressed, it is not intended as a security mechanism, hence,

does not deal with malicious attacks. Besides, practical issues like scalability, data

degradation, etc. have not been well addressed.

2.3.2 Time based Flow Watermarking

There exists a lot of work regarding active-timing based watermarking for network

flow [32–35]. Our watermarking scheme significantly di↵ers from these approaches in

various aspects. (i) All of these schemes embed a single watermark message over the

IPDs of a flow. On the contrary, we allow multiple nodes to watermark provenance

over the same set of IPDs. (ii) Our decoding process is completely di↵erent since it

does not retrieve the embedded provenance by inferring bits from each IPD. Instead,

we use a unique approach based on a cross-correlation and threshold based mechanism

(iii) Several mechanisms (e.g. [32]) watermark a bit by controlling the data throughput

for a certain amount of time whereas we prolong the IPD by a small amount of time.

Though Wang et al. [34], Kiyavash et al. [36] insert a watermark by delaying the

transmission of some packets, the first scheme is subject to detection and recovery

attack [37]. As described earlier, our scheme is resilient to this attack. While Kiyavash

et al. use spread-spectrum technique to make watermark delays much smaller, their

decoding process is non-blind and requires the unwatermarked IPDs to be stored in

a database.

13

2.3.3 Applications of iBF

While BFs are commonly used in networking applications, iBF s have only re-

cently gained more attention being utilized in applications such as credential based

data path security [38], IP traceback [39], source routing and multicast [40, 41] etc.

The basic idea in these works is to encode the link identifiers constituent to the packet

routing path into an iBF. However, the encoding of the whole path is performed by

the data source, whereas the intermediate routers check their membership in the iBF

and forward the packet further based on this decision. This approach is infeasible

for sensor networks where the paths may change due to several reasons. Moreover,

an intermediate router only checks it own membership which may leave several in-

tegrity attacks such as all-one attack, random bit flips etc., undetected. Our approach

resolves these issues by encoding the provenance in a distributed fashion.

2.4 Detection of Packet Dropping Attack

The mechanisms to detect packet dropping attacks in WSNs can be classified into

following categories: multipath routing protocols, acknowledgement based mecha-

nisms, protocols using specialized hardware.

The multipath routing protocols [42,43] first discover multiple paths for data for-

warding and then uses these paths to provide redundancy in the data transmission

from a source. The data is encoded and divided into multiple shares and then sent

to the BS via di↵erent routes. However, these methods can not identify the mali-

cious node. They increase the network ow significantly, hence are not suitable for

the resource constrained sensor networks. Additionally, these mechanisms could be

vulnerable to route discovery attacks that prevent the discovery of non-adversarial

paths. Examples of protection mechanisms that require specialized hardware in-

clude [44], and [45]. The authors in [44] introduce a scheme called packet leashes that

uses either tight time synchronization or location awareness through GPS hardware.

14

The work in [19] relies on hardware threshold signature implementations to prevent

one node from propagating errors or attacks in the whole network.

The acknowledgement based protocols [46, 47] expect the authenticated acknowl-

edgement from the intermediate nodes and the BS within a certain time. This method

would render malicious packet dropping detectable at the end points (data source or

the BS). However, the method incurs high communication overhead and in some cases

has to be augmented with other techniques for diagnosis and isolation of the attackers.

2.5 Incident Response and Prevention System

We discuss the work related to Kinesis in following categories: intrusion detection

and/or response system for wireless networks, policy specification, daemon selection.

Intrusion detection and response system: A number of IDSes have been pro-

posed for wireless and mobile ad-hoc networks (MANET) and WSNs. The majority

of these IDSes just raise an alarm or take simple response actions without following

any systematic approach. In a pioneering work, Zhang et al. propose a distributed

and cooperative IDS for MANET [48]. Each mobile node runs a local IDS agent that

monitors local activities, detects intrusions, and may trigger responses. Neighboring

IDS agents cooperate in global intrusion detection when there is inconclusive evidence.

The architecture is similar to Kinesis but is more focused on intrusion detection and

does not provide a well-designed response framework. Marti et al. propose a mecha-

nism to improve throughput in MANETs in the presence of compromised nodes [49].

They use a watchdog to identify misbehaving nodes and a trust based routing path

rating scheme to help routing protocols avoid these nodes. The CONFIDANT pro-

tocol aims at detecting and isolating misbehaving nodes, thus making it unattractive

to deny cooperation [50]. Trust relationships and routing decision are based on expe-

rienced, observed, or reported routing and forwarding behavior of other nodes. The

responses in these systems, however, are limited to rerouting data or isolating the

misbehaving node.

15

Ma et al. [51] propose a self adaptive IDS (SAID) for WSN, where three agents,

namely monitor, decision, and defense agents, cooperate to defend from intruders in

networks. However, the response system in SAID does not follow a systematic ap-

proach and the responses are only limited to revoking or suspending a node. Also,

the agents need to update a central knowledge base continuously to update the node

reputations and to choose response agents accordingly. Hsieh et al. [52] propose an

adaptive security design to secure cluster communication via neighbor node authen-

tication, secure link establishment, and send alarms to the BS upon an intrusion.

The mechanism proposed by Younis et al. [53] adapts the security provision to the

need of the application and the trust of the nodes in the routing path. These mecha-

nisms heavily depend on cryptographic operations and the counterattack is limited to

routing path rotation or raising alarms. Taddeo et al. [54] propose a self-adaptation

method of security mechanisms. They always start with the highest security level,

which may be unnecessary and costly for sensor nodes.

Asim et al. [55] propose an architecture that organizes the WSN nodes in a virtual

grid of cells. Each cell has a manager responsible for anomaly detection and recovery.

Their approach is not fully distributed and focuses on network failures and energy

related issues, rather than on malicious behaviors or attacks. MALADY is a machine

learning-based system that enables nodes to use gathered data to make real-time de-

cisions [56]. However, MALADY aims at the detection and learning process rather

than response to attacks. Mamun et al. [57] propose a policy based intrusion detec-

tion and response system with a four level hierarchy architecture. Their intrusion

response system has a general scope based on customizable policies. However, their

only responses are suspend or revocation of the suspect node, and are only applicable

to the hierarchical architecture they consider. To the best of our knowledge, Kinesis

is the first complete system able to manage automated responses not only to attacks,

but also to anomalies with an aim to minimize disruption to WSN services while

natural error or an attack progresses.

16

Policy specification: A number of policy languages have been proposed for

the specification of policies for quality-of-service management within a network [58],

privacy management for web users [59], access control in database systems [60], etc.

However, these languages serve specific purposes and do not consider the context

of WSNs or IRPSes, required to optimally express the response policies. Hence,

the resource constrained nature of sensor devices makes it challenging to utilize the

typical policy languages used in general purpose networks, database systems, and

other domains. We propose a simple and lightweight policy language considering the

IRPS specific requirements for WSNs.

Daemon selection: Leader election is a fundamental and well studied prob-

lem in fault-tolerant distributed computing. Garcia-Molina [61] first proposed leader

election protocols for distributed systems in order to elect a coordinator node which

reorganizes the active nodes after a crash failure and helps them continue the de-

sired tasks. In the context of wired and wireless networks, leader election has a

variety of applications such as key distribution, routing coordination, general control,

etc. and a considerable number of leader election protocols [62] has been proposed

over the years. In a similar context, many clustering algorithms [63] have been pro-

posed for WSNs to group sensor nodes into network clusters and to elect a leader

for each cluster for cluster management and data aggregation. However, these leader

election protocols require multiple rounds of group communication and often time

synchronization among the participants. In contrast, we propose a daemon selection

mechanism that selects a node for executing response action in a neighborhood via a

self-organized competition among the neighbors. Each node in a neighborhood com-

petes independently using a locally managed action timer. We do not need any

time synchronization or message exchanges among the neighbors.

17

3. A COMPREHENSIVE PROVENANCE MODEL

In this section, we present our proposed provenance model that is well comprehensive

to represent the provenance of data objects with various semantics and granularity.

We start by discussing the goals that shaped our design and also present an abstract

schema of the model. We also compare the capabilities of our provenance model with

other major models from various aspects.

3.1 Design Goals

In order to provide a generic provenance structure for all kinds of data objects,

the provenance model must meet the following requirements:

Unified Framework: The model must be able to represent metadata provided by

the various provenance systems. Although a number of system-call based provenance

architectures [11] [12] have been proposed to capture file provenance, there is no well

defined model to represent and organize such low level metadata. One important goal

for any comprehensive provenance model is to bridge this gap and provide a unified

model able to represent provenance for any kind of data at any abstraction layer. To

this end, it is crucial to identify a comprehensive set of features that can characterize

the existing provenance systems and systemize provenance management.

Provenance Granularity: Provenance may be fine-grained, e.g. provenance of

data tuples in a database [64], or coarse-grained, such as for a file in a provenance-

aware file system [12] or for collections of files generated by an ensemble experiment

run [17]. The usefulness of provenance in a certain domain is highly related to the

granularity at which it is recorded [65]. Thus, the provenance model should be flex-

ible enough to encapsulate various subjects and details of provenance based on user

specifications.

18

Security: The model must support provenance security. Access control and

privacy protection are primary issues in provenance security [66]. The problem of

access control for provenance is complicated by the fact that di↵erent access control

policies, possibly from di↵erent sources, may have to be enforced. Moreover, the data

originators may specify personal preferences on the disclosure of particular provenance

information. To meet these requirements, the provenance model must support the

specification of privacy-aware fine grained access control policies and user preferences.

Interoperability: A data object can be modified by and shared among multiple

computing systems and so is the provenance. To support provenance exchange, the

model must support interoperability among provenance models and integration of

provenance across di↵erent systems. Thus the model must conform to the Open

Provenance Model (OPM) which provides a high level representation of provenance

focusing on interoperability.

Provenance Queries and Views: The model should support various types of

provenance queries. Historical dependencies as well as subsequent usages of a data

object should be tracked easily. If a data is processed in multiple system domains, an

administrator might want to see a high level machine, system or domain view of the

provenance graph. In addition, to find relevant information from large provenance

graphs, one should be able to filter, group or summarize all/portions of provenance

graphs and to generate tailored provenance views. Thus, the model should be able

to distinguish the provenance generated from di↵erent systems and facilitate queries

for constructing specialized views of provenance graphs.

3.2 The Model

Fig. 4.1(a) shows the proposed provenance model consisting of entities and the

interactions among them. To characterize our model, we define the provenance as:

Definition (Provenance). The provenance of a data object is the documented his-

tory of the actors, process, operations, inter-process/operation communications, envi-

19

ronment, access control and other user preferences related to the creation and modifi-

cation of the object. The relationships between provenance entities form a provenance

graph (DAG) for the data object.

Fig. 3.1.: Proposed Provenance Model

Data creation or manipulation is performed by a sequence of operations initi-

ated by a process. A process, consisting of a sequence of operations, may be a ser-

vice/activity in a workflow, a user application, or an OS-level (e.g. UNIX) process.

An operation executes specific task(s) and causes manipulation to some system or

user data. Thus, the operations do not only generate/modify persistent data but also

generate intermediate results or modify system configurations. Communication rep-

resents the interaction (e.g. data flow) between two processes or two operations in a

process. Communication between two operations in a process means the completion of

an operation following the start of another operation. When the preceding operation

results in data, the communication may involve data passing between the operations.

The communication may also contain triggers, specific messages, etc. However, in

most of the cases there might be no explicit message (i.e. communication record) ex-

change between two operations. Web service, user application, and UNIX process are

examples of processes; statements within an executable, function, command line, etc.

exemplify the operations; while data flow, copy-paste, inter-process communication

in UNIX, etc. represent the communication between operations or processes.

An operation may take data as input and output some data. Each data object

is associated with a lineage record which specifies the immediate data objects that

20

have been used to generate this data. Lineage is particularly helpful for producing

the data dependency graph of a data object.

Processes, operations, and communications are operated by actors that can be

human users, workflow templates, etc. Where data provenance is used to detect

intrusion or system changes, the knowledge of a user role or the workflow template

may be helpful. Environment refers to the operational state, parameters, system

configurations that also a↵ect the execution of an operation and thus output data.

This additional provenance information is crucial for understanding the performance

of the operation and the nature of the output [66].

Security and privacy of provenance are crucial since data or provenance may con-

tain sensitive or commercially valuable information. The nature of this confidential

information is specific to the applications and hence the protection policies and the

access control can be handled by the involved actors. To address these requirements,

access control policies by actors are included in the provenance model. These access

control policies specify whether and how other actors may utilize process, operation,

communication and lineage records.

Since our provenance model can capture the very details of an operation, it might

by preferable to allow users to specify the desired level of provenance details. For

example, in a scientific workflow, it may su�ce to capture the provenance information

in a service/activity whereas in a command line (e.g. sort), it may be required to

record the OS level operations, system configuration etc. The granularity policies

allow the users to specify how detailed provenance data they want to be captured

and stored.

Table 3.1: Mapping between the entities in OPM and our model

Property OPM Entity Entity in our Model

Physical or digital data object Artifact Data Object

Action(s) performed on or by ar-
tifacts

Process Process consisting of Opera-
tions and Communications

Contextual entity controlling
process execution

Agent Actor, Environment

21

Our model conforms to the OPM representation. Provenance in OPM is described

using a directed graph consisting of entities with connecting edges [67]. OPM entities

are of three types, namely artifact, process, agent. There are five types of edges

which represent the causal dependencies amongst entities. Table 3.1 shows how our

provenance model complies with the OPM by listing the OPM entities and their

counterparts in our model. Table 3.2 shows a comparison of our provenance model

with other major models from various design aspects.

Table 3.2: Comparison between our model and existing provenance models.

Our
Model

Qun Ni
Model

Chimera myGrid Karma PReServ ES3 PASS

Target
System

Any Any Workflow Workflow Workflow Service Workflow File
System

Data
Granularity

Any data
object

Any data
object

Abstract
dataset

Abstract
resources

Data in a
workflow

Process File File

Inter-
operability

Yes No No No No No No Yes

Security Yes Yes No No No No No No
Level of
Granularity

Flexible Rigid Rigid Rigid Rigid Rigid Rigid Rigid

Representation
Scheme

Any Any VDL XML
/RDF

XML XML XML Berkeley
DB

Abstraction Yes No Yes No Yes No No No
Query
Language

Any Any VDL XML XQuery Custom
query
tool

XML Custom
query
tool

3.3 Use Case

To illustrate the utility of our provenance model, we consider some use cases and

identify the provenance entities in these contexts. Figure 3.2(a) shows a workflow

example from the field of functional MRI research [68], where brain images of some

subjects are spatially aligned and then averaged to produce a single image. The

workflow contains the automated image registration (AIR) process that operates on

a collection of anatomy images and produces an averaged brain image. An actor

(e.g. an administrator of the experiment system) specifies a granularity policy for

automated provenance collection to capture provenance at the process granularity.

In this context, the provenance for ‘Atlas image’ and ‘Atlas header’ contains the

22

(a) Workflow for ‘Automated Image

Registration’ (AIR) process

(b) Break down of AIR process into

operations and data flows between

them

(c) A shell script

representing a user

program and corre-

sponding OS-level

process

Fig. 3.2.: Usecases for Provenance Modeling

AIR process with anatomy and references images & headers as the input lineage

data. Since no details about the AIR process are captured, we assume the process

consists of a single operation named as AIR. Figure 3.2(b) presents the breakdown

of the AIR process into operations and interactions between them. If a user defined

policy requires to capture operation level provenance, the provenance graph for ‘Atlas

image’ will contain the AIR process with operation hierarchy align warp -> reslice

-> softmean. The data flow between operations represents their communication;

for example the transfer of Warp param 1 indicates the communication between

align warp and reslice operations. However, the data dependency graph of ‘Atlas

image’ contains the input images as well as all the intermediate results.

Finally, we consider a UNIX shell script - ‘pattern.sh’, shown in Figure 3.2(c) to

show the applicability of our model to provenance aware file/storage systems, oper-

ating systems, etc. The script uses the ‘grep’ command to extract all the patterns

starting with ‘Alam’ from the ‘data.txt’ file and sends the output to the ‘awk’ com-

mand through a pipe. The ‘awk’ command then extracts particular information from

the input data and writes the information in the output file ‘Alam.txt’. The exe-

cution of the script (namely ‘pattern’ process) may be assigned a unique process ID

23

by the system. The process consists of two operations, ‘grep’ and ‘awk’. Thus, the

provenance of ‘Alam.txt’ contains the operation dependency grep -> awk and the

data dependency on ’data.txt’ and the intermediate pipe (identified by an ID).

3.4 Provenance Records

Data provenance is stored as a set of provenance records in a provenance repos-

itory [20]. Provenance storage, manipulation and query can be implemented using

data management systems characterized by di↵erent data models such as the relation

model, XML, and RDF. Since our provenance model is generic, we do not specify

implementation details here. We represent our model as the relationships among the

following provenance records (see Fig 3.3): (i) Process (ii) Operation (iii) Commu-

nication (iv) Actor (v) Environment (vi) Lineage (vii) Access Control Policy (viii)

Granularity Policy.

Each record consists of several attributes some of which are optional based on the

provenance capturing granularity. Each data object and provenance record is uniquely

identified by an ID attribute. Since provenance information may be exchanged across

di↵erent systems, we use domain to specify the scope of the provenance records i.e.

the system where the executions and data manipulations occur. The domain value

may include a particular application, a workflow, a machine, a system domain, or

any combination of these. This attribute is extremely useful when customizing the

provenance graph to e�ciently generate an abstract domain view. Some records

contain a timestamp attribute for supporting time-sensitive provenance queries and

access control policies.

We describe a process with the base class process and di↵erentiate between the

high level and the system process by creating two inherited classes of process. Each

process is executed by an actor in a certain computational environment and may

generate output data. If the process is part of a scientific workflow, web service,

etc., it is distinguished by the subclass Application Process which also contains the

24

Fig. 3.3.: Class Diagram of the Provenance Model

workflow ID. The System Process class describes the OS level processes and possesses

workflow ID as well as the host application process ID.

Operation record attributes include ID, process ID, actor ID, environment ID,

description, input and output ID. Depending on the applications, the description

attribute may contain a statement or a block of statements, a function defined by

pseudo-code or source code, but it can also be only a function name. The output of

an operation may be not only the persistent data but also intermediate results for

which the user might not be interested to store the provenance.

A communication record is the provenance of a real or virtual message implement-

ing the interaction between two operations in a process or two di↵erent processes.

Specific details of its description attribute depend on applications. The carrier at-

tribute includes the message transferring channel, e.g. email, which may be sensitive

and useful in some cases, e.g. digital forensics.

25

Lineage record attributes include lineage ID, corresponding data ID, the process

& operation ID that produced this data operating on a list of data objects (described

by List <Lineage ID>). The attributes of Actor record include actor ID, name,

and role. Actors usually have names and roles. A role is a job function of the

actor. Someone may argue why not use the actor information from human resource

databases. A human being may have di↵erent roles during the career time. Thus

he/she may have di↵erent versions of actor records with di↵erent roles for di↵erent

process/operation/preference records. This is the reason why we cannot rely only on

the information from the actor records stored in human resource databases. Such

a record usually only stores the latest actor information, but an actor record in a

provenance store needs to record complete historical actor information.

The content of the Environment record heavily depends on the application do-

main. Usually each operation, sometimes a process, has at most one environment

record. We choose to separate this record from the process/operation record because

of two reasons. First, the schema and size of environment records vary with respect

to di↵erent process/operation records. Some process records do not have an environ-

ment record; however others may have a complex environment. Second, it is possible

that two di↵erent process records may share the same environment record. Environ-

ment records do not need timestamps because their timestamps are determined from

the parent process/operation records.

Access Control Policy record attributes include policy ID, actor ID, subject, con-

dition, e↵ect, obligations. This record is used to specify the access preferences of the

actor. Sometimes it is also useful to record the preferences expressed by the subject

of the operation/communication, for example a patient in the case of health care ap-

plications. The actor ID logs the author of the record. The subject attribute is used

to specify the record(s) at which the access control aims. The subject of an access

control policy record only refers to a process, operation or a communication record.

Granularity Policy record comprises of policy ID, actor ID, subject, condition and

policy attributes. This record allows the users to specify the level of details desired for

26

provenance metadata and is applicable when capturing provenance. For example, an

actor may define policies to capture provenance only at the process level or to exclude

the lineage information for a particular application. The subject attribute states the

targeted record at which the granularity policy applies based on the condition value.

Data Objects Provenance Records
ID Name Process

1
Anatomy
 header 1

ID Domain Actor ID Environment
ID

Description Input ID Executable
 ID

2
Anatomy
 image 1 3 victor 1 null

Automated
Image

Registraion
1, 2, 3, 4, 5,

6 AIR

3
Anatomy
 header 2 Operation

4
Anatomy
image 2

ID Domain Actor ID Process ID Environment
 ID

Description Input
Data ID

Output
Data ID

5
Reference
 header 1 1 victor 1 3 null align warp 1,2 7

6
Reference
image 1 2 victor 1 3 null align warp 3,4 8

7 Warp param 1 3 victor 2 3 null reslice 7 9,10
8 Warp param 2 4 victor 2 3 null reslice 8 11,12

9 Reslice headr 1 5 victor 2 3 null
soft

mean
9,10,
11,12 13, 14

10 Reslice image 1 Lineage
11 Reslice headr 2 ID Data ID Domain Operation ID Lineage IDs
12 Reslice image 2 1 1 victor 1 null
13 Atlas header … … … … …
14 Atlas image 7 7 victor 1 1,2

Actor 8 8 victor 2 3,4
ID Name Role 9 9 victor 3 7

1 Jame user 10 10 victor 3 7
2 Katty admin 11 11 victor 4 8

12 12 victor 4 8
13 13 victor 5 9,10,11,12
14 14 victor 5 9,10,11,12

Granularity Policy
ID Domain Actor ID Subject Condition Policy

1 victor 2 process

process.
executabl ID =

AIR Collect ALL

Fig. 3.4.: Provenance Records for workflow in Fig 3.2(b).

It is important to mention that a provenance graph is maintained as a DAG. In

case of write operation to an existing file, a cycle may be introduced. To preserve

the DAG property, we allow the versioning of data objects where manipulating an

existing data object takes the existing object as an input and outputs a latest version

of the data object. Another relevant issue is to allow actors to rationally change their

access control/granularity policies on their own records. Since a provenance store

is immutable, in order to support such selective updates, we use policy versioning

27

and time stamping. Given a query, if multiple access control policies from the same

actor apply, the most recent one will take precedence. Such an approach preserves

the previous policies and the associated data provenance records. To illustrate the

application of provenance records to the use cases from section 3.3, we consider a

RDBMS implementation of the provenance storage. Figure 3.4 shows the data objects

and related provenance records generated from the workflows in 3.2(b). For simplicity,

we do not show some attributes e.g. timestamp.

3.5 Supported Queries

Having defined a comprehensive provenance model, we can use any standard query

language to query the entities in the model. The wide range of queries supported by

our model can facilitate the users in many di↵erent respects, such as scientific repro-

ducibility, script generation, anomaly detection, etc. We discuss below the various

queries supported by our provenance model:

Fundamental Queries on Entity Attributes: These queries retrieve infor-

mation about the fundamental entities of the provenance model. Examples of such

queries are: find processes by namespace, find all the operations belonging to a pro-

cess, generate the sequence of processes/operations in a workflow. These queries can

help in detecting anomalies by comparing the expected output of an operation in the

recorded environment with the actual result. Users that have executed anomalous

operations can also be identified by finding out the actors that invoked the operations.

Queries on Invocations: These queries retrieve the set of commands involved

in the manipulation of a selected data object. Users can set various filters while

retrieving the provenance, such as remove commands that occurred before or after a

given point of time. We also support lookup queries that allow users to search for

data objects based on arguments to the processes that modified them. These queries

facilitate users in using provenance for reproducing a data object, detecting system

28

changes or intrusions, finding out the system configuration during process invocation,

understanding system dependencies, etc.

Queries on Lineage: The historical dependencies of a data object can be de-

termined by traversing the provenance graph backward whereas data usage can be

traced by forward traversal of the graph. A simple query is of the form: find the

ancestor data objects to data d. More complex queries may refer to patterns within

the derivation graph. The basic approach is to match specific patterns of processes

consisting of operations and communications and enabling the composition of flow-

pattern objects. The flowpattern graphs can match either a fixed or varying number

of nodes of their corresponding types in any workflow defined in the database. Pos-

sible queries include:find the data objects that are result of a specific flowpattern, and

find all operations in a workflow whose inputs have been processed by a specific flow

pattern.

Provenance View: Since provenance grows fast, it might be convenient (often

required) to compress or summarize the provenance graph for e�cient querying and

navigation. For example, instead of keeping track of how di↵erent processes and

people modified a document five years ago, we can replace the part of the provenance

with the end result of the modification. Since our provenance model has a modularized

structure, we support queries to generate any abstraction of a provenance graph.

The domain attribute in the provenance records greatly helps in writing a quick and

e↵ective abstraction function for an intended purpose.

29

4. A FILE PROVENANCE SYSTEM

In this chapter, we discuss the design objectives for an e�cient file provenance sys-

tem and then present the modular design of a low-overhead file provenance system,

called FiPS. The system supports the automatic collection and management of file

provenance metadata, characterized by our provenance model proposed in chapter 3.

4.1 Design Goals

Based on the features of the existing file system provenance solutions and their

limitations, we outline the following design goals required to build a robust file prove-

nance system:

Portability: The file provenance system should capture provenance for any file

system, without modifying the OS or the provenanced file system. FiPS is designed as

a stackable filesystem and thus can be layered on top of any conventional file system.

In addition, FiPS is to be implemented as a kernel module which requires no kernel

modification in order to collect provenance.

E�ciency: It is essential that provenance capture and management do not add

too much overhead to the file system operations with respect to space and time.

The provenance system should provide fast, high-throughput provenance operations

in order to avoid impacting operating system and application performance. The

system must record enough provenance metadata to serve the desired purpose but

not any unintended information. Hence, it should distinguish between data objects

that are required to be provenanced and data objects that are not. On the other

hand, capturing provenance information by intercepting system calls often misses

information about how a system call activity is translated into multiple actions in the

lower layers of the OS. Also NFS servers cannot work with system call level logging

30

since they operate directly in kernel, not through system calls. Finally, it is more

natural to manage file system provenance in terms of file system instead of system

calls. We design FiPS as a thin layer between the Virtual File System (VFS) and any

other file system which results in space and time e�ciency.

Security: The system must capture and store provenance in a way so that the

information is kept secure against attacks and subversion. Besides, the provenance

information may require access control to be protected from unauthorized user access.

Our in-kernel system design provides stronger security. Moreover, the provenance

processor can be implemented in a way to apply appropriate security mechanisms

(e.g. encryption, signature) while sending provenance to persistent storage.

Queries on Provenance: Collecting data provenance is not useful unless the

provenance can be accessed and utilized easily. Hence, the file provenance system

must provide support for a structured storage of provenance which in turn will facili-

tate provenance queries. The management system should also respond quickly to the

relationship queries leading to the generation of ancestry or descendancy graphs.

4.2 FiPS - The Proposed Provenance Framework

In this section, we present the provenance framework we propose. Our prove-

nance framework consists of the following components: (i) Provenance Collector, (ii)

Provenance Log, (iii) Provenance Processor, and (iv) Provenance Storage. Below, we

provide more details on the various provenance components.

4.2.1 Provenance Model

FiPS is designed to collect and store provenance for the data objects at a file gran-

ularity. We define the provenance of a data object (file) as the documented history of

the actors, process, operations, inter-process/operation communications, input/output

data, and OS environment related to the creation and modification of the object. The

input data may contain references to data objects which are also provenanced. Thus,

31

the complete provenance of a data object is the transitive closure over all such ref-

erences which form a directed acyclic graph (DAG), referred to as the provenance

graph.

To represent provenance graph, we use a subset of entities from our provenance

model, which includes controlling Actor, executing Process, and data File as node

types. The edges between nodes are characterized by the relationships that relate

which process wasControlledBy which actor, which file wasGeneratedBy which pro-

cess, which process used which file, which process wasTriggeredBy which other pro-

cess, and which file wasDerivedFrom which other file. Figure 4.1(a) illustrates the

graph representation of various types of nodes, whereas the edges are annotated with

the relationship type. Figure 5.1 shows an example provenance graph where process

P writes to a file F .

Agent Process File

(a) Graph representation
of various types of nodes in
a provenance graph

P F
wasGeneratedBy

(b) Example of a prove-
nance graph

Fig. 4.1.: Provenance graph representation and example

More formally, a provenance graph for a file can be represented as g = (V,E),

where V is a set of vertices and E is a set of directed edges connecting the vertices,

and we use g.root to represent the root node of graph g (i.e., the file). A vertex can

either represent a process, user agent or file object. An edge between two vertices

v1 and v2 is introduced when a dependency (of any of the above mentioned types) is

created from the entity that corresponds to v1 to the entity that corresponds to v2.

4.2.2 Provenance Collector

We design the provenance collector as a stackable file system [69] that can work

on top of any underlying file system. Figure 4.2(b) shows how the collector is placed

32

between the Virtual File System (VFS) and any other file system. In a traditional

file system, the system calls related to file operations invoke VFS calls which in turn

invoke underlying file system procedures. When integrated, the provenance collector

intercepts the VFS calls, extract arguments and other necessary information from

kernel data structures, constructs a log entry and writes it to an in-memory bu↵er.

At the end, the collector sends the in-memory log entries to the userspace as a log

file.

 Capture
Provenance Metadata

In-memory
Buffer

… …

Logger

Logger

Write to Provenance
Log

… …

Writer

Writer

Provenance Processor

Provenance Log

User space

Kernel space

Provenance Collector

(a) Architecture of the provenance management sys-
tem

User Application

GNU C Library

System Call Interface

Individual File System (Ext3, NFS)

Provenance Collector

Virtual File System

File System
Operation

System Call

ioctl

(b) Provenance Collector as a stackable
file system

Fig. 4.2.: Proposed Provenance Framework

Figure 4.2(a) shows the detailed architecture of the provenance collector. The key

components are: the provenance logger which captures the provenance metadata and

translates them into in-memory log entries, and the provenance writer that stores in-

memory entries into an userspace log file. Below, we briefly discuss the components

of the provenance collection infrastructure:

Logger: The role of a logger is to observe provenance generating events, to capture

relevant metadata from kernel for each event, and then to write one or more entries

to an intermediate storage. Our design supports multiple logger threads where the

intercepted VFS calls pertaining to an application or process will be handled by

33

one logger. Such a design will increase the speed of the provenance tracking for

simultaneous processes and make it easier to deal with the granularity policies.

All files and processes in our system are considered provenanced kernel objects.

To generate provenance records, the logger intercepts the following process and file

related system calls: fork(), clone(), exit(), read(), write(), rename(), truncate, sym-

link(), readlink(), unlink(). By intercepting the system calls, the logger can capture

a wide variety of events:

• Reads and writes to file descriptors, including regular files, device files, and

pipes.

• File operations: renaming, changing permissions, etc.

• Inter-process communication, such as shared memory, message queues, and

UNIX domain sockets.

• Network communication between provenanced hosts.

• Program execution with full arguments and environment.

On each event, a logger thread collects provenance metadata, creates a log entry

and stores the entry in an in-memory First In, First Out (FIFO) bu↵er. The typical

information included in a log entry is shown in Table 4.1.

Table 4.1: Typical Provenance Metadata

Field Explanation
provid Provenance identifier
name Name of the file/process executable
pid OS assigned process identifier
ppid Parent process identifier
uid OS assigned user id
argv The command line
env The process environment, i.e., OS version, etc.
input Name or inode number of the input files

For the purposes of recording provenance, each log entry is assigned an identifier,

referred to as provid. All the log entries related to the activity of a process in a single

34

session are assigned the same and an unique provid. The provid is generated as a

small unique integer.

Writer: A writer dequeues a log record from the in-memory FIFO and writes

out the record in a userspace log file, referred to as Provenance Log. The system also

activates multiple writers, like loggers, in order to fasten the performance.

4.2.3 Provenance Log

The provenance log is a medium of communicating provenance from kernel to user

space. Since provenance collection generates a large volume of data [70], we need an

e�cient and reliable mechanism for making large quantities of kernel data available

to userspace. Existing systems have accomplished this by using an expanded printk

bu↵er [7], writing directly to on-disk log files [71], using FUSE [23] or relayfs [72], a

specially designed mechanism to e�ciently transfer data from kernel to user space.

None of these methods but relayfs is appropriate for our system design. Hence, we

follow [72] to use relayfs for our purpose.

A relay [73] is a kernel ring bu↵er made up of a set of preallocated sub-bu↵ers.

Once the relay has been initialized, the collector writes provenance data to it using

the relay write function. This data then appears in userspace as a regular file, which

can be read by the provenance processor. Since the relay is backed by a bu↵er, it

retains provenance data even when the processor is not running, as is the case when

the processor crashes and must be restarted. Since the number and size of the sub-

bu↵ers in the relay are specified when it is created, the relay has a fixed size. Although

the collector can act accordingly if it is about to overwrite provenance which has not

yet been processed by the processor, it is better to avoid this situation altogether.

To this end, we allow the relays size parameters to be specified when the provenance

system is started.

35

4.2.4 Provenance Processor

The responsibility of the provenance processor is to interpret, process, and store

the provenance data after it is collected. In our design, we decouple the provenance

processor from the collection process in order to allow the system administrator to

implement the processor to support the need of the system. For example, a system

may want to process the provenance information in a specific way, aggregate/truncate

provenance information before sending to persistent storage or even may use di↵erent

storage mechanism.

Such a modular design also keeps complex algorithms out of the collector. Existing

systems have devoted considerable e↵ort to dealing with problems in provenance

representation, such as compact storage or graph cycles [74]. Our design simply

allows the processor to address these problems in whatever way is most appropriate.

4.2.5 Provenance Storage

To facilitate collecting large volumes of provenance metadata and primarily ini-

tiating graph queries, we use graph database as the provenance storage. A graph

database stores data in a graph, the most generic of data structures, capable of el-

egantly representing any kind of data in a highly accessible way. The fundamental

units that form a graph are nodes and relationships. Both nodes and relationships

can contain properties, a record that has named values. Relationships organize Nodes

into arbitrary structures, allowing a Graph to resemble a List, a Tree, a Map, or

a compound Entity any of which can be combined into yet more complex, richly

inter-connected structures. Apart from properties and relationships, nodes can also

be labeled with zero or more labels. Labels are a means of grouping the nodes in

the graph. They can be used to restrict queries to subsets of the graph, as well as

enabling optional model constraints and indexing rules.

After reading and processing a log entry from the provenance log, the provenance

processor creates appropriate provenance entities and relationships. The module then

36

File

•  name = F
•  inode no = 160

Process

•  name = P
•  argv = …

wasGeneratedBy

Agent

•  uid = 1

wasControlledBy

Fig. 4.3.: An example provenance graph stored in provenance database

stores these entities and relationships in a graph database, referred to as provenance

database. An example provenance graph, for the event when process P writes to a

file F , stored in the provenance database is shown in Fig. 4.3.

4.3 Prototype Implementation

We implement our system in Ubuntu 12.04 LTS. To layer our provenance collec-

tor on top of any conventional file system, we implement our functionalities on the

stackable wrapper file system Wrapfs [69]. As we discussed in Sec., we use kernel ring

bu↵er, relay, to present provenance records as userspace Provenance Log file. We im-

plement provenance processor as a Java application which processes Provenance Log

file and also interacts with Provenance Database. The graph database Neo4j provides

us with the facility to store provenance information as a graph and to perform graph

queries. It guarantees us e�ciency while searching for a given access graph in the

provenance database, and thus ensures the scalability of the system.

37

5. LIGHTWEIGHT SECURE PROVENANCE SCHEMES

FOR WIRELESS SENSOR NETWORKS

In this chapter, we embark on an exploration into provenance management for stream-

ing data focusing on WSNs. Specifically, we examine a secure mechanism to form and

transmit the provenance graph of a data packet in a distributed setting where a source

node generates the data and the intermediate node(s) towards the BS may process

the in-transit data. A possible approach to the problem could be based on traditional

security solutions like encryption, digital signature, and message authentication code

(MAC). In a digital signature (or MAC) based mechanism, each party involved in the

data processing would append its information to data and sign it (or compute and

attach the MAC) to ensure authenticity. In addition, encryption and an incremen-

tal chained signature based approach for secure document provenance [75] could be

adapted for use in sensor networks. However, such approaches are not applicable in

resource constrained WSNs, because provenance information tends to grow very fast,

often becoming several magnitudes in size larger than the original data [75]. Such

a characteristic thus would force the transmission of a vast amount of provenance

information along with data. Encryption/signature/MAC based mechanisms cannot

help in reducing such size even after compaction. Hence, traditional security means

incur significant bandwidth overhead and impact e�ciency and scalability. Address-

ing the above challenges, we propose two techniques - (i) a watermarking scheme for

per-flow provenance encoding and decoding over the inter-packet delays (IPD), (ii) a

per-packet provenance scheme using iBF. Di↵erent WSN applications may prefer one

solution over the other depending on the network data rates.

38

5.1 Background and System Model

In this section, we introduce the network, data and provenance models used. We

also present the threat model and security requirements. Finally, we provide brief

primers on digital watermarking, spread-spectrum watermarking and fundamental

fundamental properties and operations of Bloom filters.

Network Model. We consider a multihop wireless sensor network, consisting of

a number of sensor nodes and a base station (BS) that collects data from the network.

The network is modeled as a graph G(N,L), where N = {n
i

|, 1  i  |N |} is the

set of nodes, and L is the set of links, containing an element l
i,j

for each pair of

nodes n
i

and n
j

that are communicating directly with each other. Sensor nodes are

stationary after deployment, but routing paths may change over time, e.g., due to

node failure. Each node reports its neighboring (i.e. one hop) node information to

the BS after deployment. The BS assigns each node a unique identifier nodeID, a

symmetric cryptographic key K
i

, and a unique pseudo noise (PN) sequence, denoted

as pn
i

= pn
i

[1] pn
i

[2] ... pn
i

[L
p

], where L
p

, an integer greater than 0, is the length

of the PN sequence. In addition, a set of hash functions H = {h1, h2, ..., hk

} are

broadcast to the nodes.

Data Model. We assume a multiple-round process of data collection. Each sensor

node generates data periodically, and individual values are routed and aggregated

towards the BS using any existing hierarchical (i.e., tree-based) dissemination scheme,

e.g., [76]. A data path of p hops is represented as < n
l

, n1, n2, ..., np

>, where n
l

is

a leaf node representing the data source, and node n
i

is i hops away from n
l

. Each

non-leaf node in the path aggregates the received data and provenance with its own

locally-generated data and provenance.

Each data packet contains (i) a unique packet sequence number (ii) a data value,

(iii) timestamp, and (iv) provenance. The sequence number is attached to the packet

by the data source, and all nodes use the same sequence number for a given round [77].

39

BS

nl

n1

n2

n3

n4

(a)

BS

d

nl1 n l2 n l3

n1
d1

d4

n2

n3

n l4

d2 d3

(b)

Fig. 5.1.: Provenance graph for a sensor network.

Depending on the solution approach considered, the timestamp/sequence number

integrity is ensured through message authentication codes (MAC).

Provenance Model. We consider node-level provenance, which encodes the

nodes that are involved at each step of data processing. This representation has

been used in previous research for trust management [78] and for detecting selective

forwarding attacks [79].

Given a data packet d, its provenance is modeled as a directed acyclic graph

G(V,E) where each vertex v 2 V is attributed to a specific node HOST (v) = n

and represents the provenance record (i.e. nodeID) for that node. Each vertex in the

provenance graph is uniquely identified by a vertex ID (VID) which is generated by

the host node using cryptographic hash functions. The edge set E consists of directed

edges that connect sensor nodes.

Definition 5.1.1 (Provenance) Given a data packet d, the provenance p
d

is a di-

rected acyclic graph G(V,E) satisfying the following properties: (1) p
d

is a subgraph of

the sensor network G(N,L); (2) for v
i

, v
j

2 V, v
i

is a child of v
j

if and only if HOST

(v
i

) = n
i

participated in the distributed calculation of d and/or forwarded the data to

HOST (v
j

) =n
j

; (3) for a set U = {v
i

} ⇢ V and v
j

2 V, U is a set of children of v
j

if and only if HOST (v
j

) collects processed/forwarded data from each HOST(v
i

2 U)

to generate the aggregated result.

40

Figure 5.1 shows two provenance examples in sensor networks. In Figure 5.1(a),

the leaf node n
l

generates a data packet d and each intermediate node aggregates

its own sensory data with d then forwards it towards the BS. Hence, the provenance

corresponding to d is < v
l

, v1, v2, v3 >, which can be represented as a simple path. In

Figure 5.1(b), the internal node n1 generates the data d by aggregating data d1 , ...,

d4 from n
l1 , ..., n

l4 and then passes d towards the BS. Here, n1 is an aggregator and

the aggregated provenance < {v
l1 , vl2 , vl3 , vl4}, v1, v2, v3 > is represented as a tree.

Threat Model and Security Objectives. We assume that the BS is trusted,

but any other arbitrary node may be malicious. An adversary can eavesdrop and

perform tra�c analysis anywhere on the path. In addition, the adversary is able

to deploy a few malicious nodes, as well as compromise a few legitimate nodes by

capturing them and physically overwriting their memory. These malicious nodes

might collude to attack the system. If an adversary compromises a node, it can

extract all key materials, data, and codes stored on that node. The adversary may

drop, inject or alter packets on the links that are under its control. We do not

consider denial of service attacks such as the complete removal of provenance, since

a data packet with no provenance records will make the data highly suspicious [15]

and hence generate an alarm at the BS. Instead, the primary concern is that an

attacker attempts to misrepresent the data provenance. Our objective is to achieve

the following security properties:

• Confidentiality: An adversary cannot gain any knowledge about data prove-

nance by analyzing the IPDs or the contents of a packet. Only authorized

parties (e.g., the BS) can process and check the integrity of provenance.

• Integrity: An adversary, acting alone or colluding with others, cannot add or

remove non-colluding nodes from the provenance of benign data (i.e. data

generated by benign nodes) without being detected.

• Freshness: An adversary cannot replay captured data and provenance without

being detected by the BS.

41

However, an adversary may increase network jitter in a way that the recorded IPD

at the BS is much larger than the desired value. Such an attack is intended to destroy

the embedded provenance. As we discuss later, our scheme can recover provenance if

the IPD is altered within a certain limit. In any case, the BS can detect such malicious

activity and may utilize some auxiliary mechanism to identify the attacker and take

necessary actions. Moreover, the attacker can inject or drop data packets which also

alters the IPDs and interfere with the embedded provenance. We successfully recover

provenance against the insertion attack but survive the deletion attack to a certain

extent.

Digital Watermarking. The key idea of digital watermarking is to hide a

secret information (watermark) related to a digital content within the content itself

thereby ensuring the movement of the watermark along with the content. Thus,

digital watermarking involves the selection of a watermark carrier domain and the

design of two complementary processes:

(1) An embedding process E that utilizes the watermark carrier A, the water-

mark message w, and, possibly, a key K to generate the watermarked data AW as

E(A,w,K) = AW

(2) A detector process that determines the existence of a watermark within the

received signal (with the key, if applicable) and extracts it.

Spread Spectrum Watermarking. Spread spectrum is a transmission tech-

nique by which a narrowband data signal is spread over a much larger bandwidth

so that the signal energy present in any single frequency is undetectable [14]. In

our context, the IPD is the communication channel and the provenance is the signal

transmitted through it. Provenance is spread over many IPDs such that the infor-

mation present in one IPD (i.e. container of information) is small. Consequently, an

attacker needs to add high amplitude noise to all of the containers in order to destroy

the provenance. Thus, the use of the spread spectrum technique for watermarking

provides strong security against di↵erent attacks. We have adopted the direct se-

quence spread spectrum (DSSS) technique which is widely used for enabling multiple

42

users to transmit simultaneously on the same frequency range by utilizing distinct

pseudo-noise (PN) sequences [14]. The intended receiver can extract the desired user’s

signal by regarding the other signals as noise-like interferences. The components of a

DSSS system are:

Input:

• The original data signal d(t), as a series of +1, -1.

• A PN sequence px(t), encoded like the data signal. N
c

is the number of bits per

symbol and is called PN length.

Spreading : The transmitter multiplies the data with the PN code to produce spreaded

signal as s(t) = d(t) px(t)

Despreading : The received signal r(t) is a combination of the transmitted signal and

noise in the communication channel. Thus r(t) = s(t) + n(t), where n(t) is a white

Gaussian noise. To retrieve the original signal, the correlation between r(t) and the

PN sequence pr(t) at the receiver is computed as R(⌧) =
1

N
c

P
T+N

c

t=T

r(t) pr(t + ⌧).

If px(t) = pr(t) and ⌧ = 0 i.e. px(t) is synchronized with pr(t), then the original

signal can be retrieved. Otherwise, the data signal cannot be recovered. So, a receiver

without having the PN sequence of the transmitter cannot reproduce the originally

transmitted data. This fact is the basis for allowing multiple transmitters to share a

channel. In this paper, we refer to R(0) as cross-correlation.

In case of multiuser communication in DSSS, spreaded signals produced by multi-

ple users are added and transmitted over the channel. To retrieve the signal for j-th

user, the cross-correlation between r(t) and px
j

(t) is computed. Multi-user commu-

nication introduces noise to the signal of interest and interfere with the desired signal

in proportion to the number of users. The condition for error free communication in

DSSS can be derived from Shannon’s channel-capacity theorem

C = B log2 (1 +
S

N
) (5.1)

43

s1 s2 s3 s4

1 0 0 1 0 0 1 0 0 10 0 0 0

bit 0 bit 15

h1 (s1)

h1 (s2)

h3 (s1)

0 1

h2 (s1) h2 (s2) h3 (s2)

Fig. 5.2.: A Bloom filter with n = 4, m = 16 and k = 3.

where C is the amount of information allowed by the communication channel, B is the

channel bandwidth, and S/N is the signal-to-noise ratio. As S/N is usually ⌧1 for

spread-spectrum applications, the expression becomes
C

B
⇡ S

N
. Thus to propagate

error-free information for a given noise-to-signal ratio in the channel, the bandwidth

should be increased to an appropriate level.

Bloom Filters (BF). A Bloom filter is a space-e�cient data structure for prob-

abilistic representation of a set of items S = {s1, s2, ..., sn} using an array of m bits

with k independent hash functions h1, h2, ..., hk

. The output of each hash function h
i

maps an item s uniformly to the range [0, m-1] and is interpreted as an index point-

ing to a bit in a m-bit array. Hence, the BF can be represented as {b0, . . . , bm�1}.

Initially each of the m bits is set to 0.

To insert an element s 2 S into a BF, s is hashed with all the k hash functions

producing the values h
i

(s)(1  i  k). The bits corresponding to these values are

then set to 1 in the bit array. Figure 5.2 illustrates an example of BF insertion. To

query the membership of an item s0 within S, the bits at indices h
i

(s0)(1  i  k) are

checked. If any of them is 0, then certainly s0 62 S. Otherwise, if all of the bits are set

to 1, s0 2 S with high probability. There exists a possibility of error which arises due

to hashing collision that makes the elements in S collectively causing indices h
i

(s0)

being set to 1 even if s0 62 S. This is called a false positive. Note that, there is no

false negative in the BF membership verification.

The cumulative nature of BF construction inherently supports the aggregation of

BFs of a same kind, by performing bitwise-OR between the bitmaps.

44

5.2 Watermarking based Provenance Scheme

Fig. 5.3 shows an overview of the distributed approach we propose to watermark

provenance over the delay between consecutive data packets. For a data packet,

provenance encoding refers to generating the vertices in the provenance graph and

watermarking them over IPDs. Each vertex originates at a node in the data path and

represents the provenance record of the host node. A vertex is uniquely identified by

the vertex ID (VID). The VID is represented by the PN sequence (of L
p

bits) of a

node and requires a number of (L
p

+ 1) packets for encoding. Due to the adoption

of DSSS based watermarking, all nodes in the provenance use the same medium

for transmitting their PN sequences. Hence, only L
p

bits of digital information are

required for watermarking the provenance. Since we utilize the IPDs, L
p

IPDs (in

other words, a sequence of L
p

+1 packets) are required for embedding and transmitting

the provenance of a data packet. We assume that, at least for such number of packets,

the provenance (i.e. data flow path) of the packets generated by a source node would

be the same. Below we discuss the provenance encoding mechanism by the sensor

nodes and decoding at the BS:

Generation of
delay perturbations

Selection of a
Delay Perturbation

Provenance Embedding

SiV i

Data set D
with IPD set

DS

i

i

Random i Secret (K i

Provenance
iP

Attacker
Channel

DS i
w

DS
w

D i
with

Provenance Encoding

Reordering the
Inter-packet Delays

Threshold
Comparison

DS w

Di
with

’

Timestamp of
a data item

Threshold
T *

Provenance Decoding

Pi

))
{K1 n, K2 , K. . . }

{S1 n, S 2 , S. . . }

(

Fig. 5.3.: Stages of Provenance Encoding at a Sensor Node and Decoding at the Base
Station

45

5.2.1 Provenance Encoding

After generating a data packet, the source node marks it with the generation time

and ensures the integrity of the timestamp with a MAC. The MAC is computed using

the node specific secret keyK
i

. The next L
p

data packets generated by the node, more

specifically, the sequence of L
p

IPDs is the medium where we hide the provenance of

the packets. We denote the set of IPDs by DS = {�[1],�[2], ...,�[L
p

] }, where �[j]

represents the IPD between j-th and (j+1)-th data packet. The data source encodes

a bit of its PN sequence over each IPD. Throughout the transmission of a packet

towards the BS, each intermediate node also encodes 1-bit of provenance information

over the associated IPD. Hence, an IPD recorded at the BS carries the sum of 1-bit

information from each node in the path. The process also uses the secret K
i

and a

locally generated random number ↵
i

(known as impact factor). The BS only knows

the distribution of the ↵
i

’s. The process a node n
i

follows to encode a bit of PN

sequence over an IPD is summarized below:

1. Generation of Delay Perturbations: n
i

generates a set of delay pertur-

bations by using the PN sequence pni and impact factor ↵
i

. ↵
i

is a random (real)

number generated according to a normal distribution N(µ, �). µ and � are pre-

determined and known to the BS and all the nodes. Thus, the BS only knows the

distribution of ↵
i

’s, but not their exact values. However, n
i

generates the set of delay

perturbations V
i

as a sequence of real numbers as follows

V
i

= ↵
i

⇥ pni

= ↵
i

⇥ { pn
i

[1], pn
i

[2], ... , pn
i

[L
p

] }

= { (↵
i

⇥ pn
i

[1]), ..., (↵
i

⇥ pn
i

[L
p

]) }

= {v
i

[1], v
i

[2], ..., v
i

[L
p

]} (5.2)

46

Note that, v
i

[j] corresponds to the provenance bit pn
i

[j]. However, the node may

perform the computation o✏ine since it is independent of any packet specific infor-

mation.

2. Selection of a Delay Perturbation: On the arrival of any (j + 1) � th

data packet, n
i

records the IPD �[j] and assigns a delay perturbation v
i

[k
j

] 2 V to

it. To ensure the robustness of the scheme, the delay perturbations are not assigned

sequentially to the IPDs i.e. v
i

[j] is not assigned to�[j]. Instead, a delay perturbation

v
i

[k
j

] is selected using the secret K
i

and the packet timestamp. The algorithm uses

the following formula

selection(�[j]) = H(ts[j + 1] kK
i

) mod L
p

(5.3)

Here, H is a lightweight, secure hash function, k is the concatenation operator, and

ts[j + 1] represents the packet timestamp. Since secure hash functions generate uni-

formly distributed message digests, each execution of the selection mechanism will

result in a unique integer in the range [0, L
p

� 1]. The resulting integer can be used

to index a distinct element in V
i

.

As part of the provenance encoding process, each node executes the algorithm once

for each of the L
p

IPDs returning a set of indices as the permutation of integers from 0

to L
p

�1. The indices are used to point the elements in V
i

. Thus, the order according

to which each node embeds the delays from V
i

over the IPDs forms a permutation

of the elements di↵erent from the sequential order. This sequence is denoted as

S
i

= {s
i

[1], s
i

[2], ... s
i

[L
p

]} = {v
i

[k1], vi[k2], ..., vi[kL
p

]}. Note that, given an IPD, the

algorithm will select di↵erently indexed delays for di↵erent nodes based on the keyK
i

.

Thus, an attacker cannot predict the IPD-to-Delay Perturbation assignment without

the knowledge of secrets K
i

and L
p

. Keeping the provenance length secret is not a

requirement but keeping it secret makes it harder for an attacker to regenerate the

selections.

47

3. Provenance Embedding: In this step, n
i

delays the packet transmission by

v
i

[k
j

] time unit. As v
i

[k
j

] corresponds to the provenance bit pn
i

[k
j

], through this step

a provenance bit is embedded over an IPD. This notion makes our scheme reminiscent

of watermarking. we present the provenance embedding algorithm into two steps:

(i) Simple Provenance Embedding: As shown in Fig. 5.1(a), the simple prove-

nance is represented as a simple path. Each node in the path watermarks its PN

sequence over a set of L
p

IPDs i.e. (L
p

+ 1) packets are utilized. Intuitively, the first

packet in a data flow does not experience any delay due to provenance embedding.

For any other (j +1)� th data packet (sent/forwarded), each node in the path hides

a provenance bit over the associated IPD �[j]. Interchangeably, a node n
i

uses the

IPD �[j] to accommodate a delay perturbation v
i

[k
j

](= s
i

[j]). Using s
i

[j], the delay

to be added to �[j] is computed as:

�
i

[j] = s
i

[j]⇥ T (5.4)

where T is the value of a time unit. If s
i

[j] > 0, the resulting �
i

[j] > 0 and then we

can perform watermarking by simply adding �
i

[j] to �[j]. But if s
i

[j] < 0, the delay

to be added to an IPD is negative. To avoid this situation, we introduce a constant

o↵set when calculating �
i

[j], which ensures that �
i

[j] is always positive. The o↵set

may be any constant leading to �
i

[j] > 0. We use (µ + const ⇤ �) in our scheme,

where const is any constant that makes �
i

[j] greater than 0 i.e. const >
�(s

i

[j] + µ)

�
.

Thus, the final equation is

�
i

[j] = (s
i

[j] + (µ + const ⇤ �))⇥ T (5.5)

48

n
i

then performs watermarking by adding �
i

[j] to �[j] i.e. delaying the packet

transmission by �
i

[j] time. Thus, n
i

formulates the watermarked IPD �w[j] and

transmission time of the (j+1)-th packet t0
i

[j + 1] as follows

�w[j] = �[j] + �
i

[j] (5.6)

t0
i

[j + 1] = t
i

[j + 1] + �
i

[j] + c (5.7)

where c is a constant > 0 corresponding to the delay added by a sensor node, including

processing and any other delay. After watermarking, n
i

sends the (j +1)� th packet

towards the BS at instant t0
i

[j + 1]. Throughout the transmission, all other nodes in

the provenance embed one bit of provenance information over the IPD following the

same procedure.

(ii) Aggregate Provenance Embedding: Figure 5.1(b) shows the aggregate

provenance, represented as a tree. Assume that in an aggregate provenance tree, n
a

is

the aggregator possessing U children n
l1 , nl2 , ..., nl

U

. At any (j+1)�th sensing interval

(1  j  L
p

), the child nodes send data to n
a

embedding their provenance information

over the locally managed IPDs. Watermark delays of the children are denoted by

�
l1 [j], ...,�l

U

[j] respectively. n
a

computes the aggregated data, attaches authenticated

timestamp from one of its children, and also maintains the corresponding IPD in such

a way that this delay represents the provenance embedding for the aggregator and

its children. Intuitively, we could accomplish this by adding a delay of �
A

[j] =
UX

i=1

�
l

i

[j] + �
a

[j] to the unwatermarked IPD, where �
a

[j] represents the watermark

delay computed by the aggregator. The �
l

i

[j]’s can be approximated by the aggregator

from the IPD observations while data is being received from the corresponding child.

However, this scheme would impose a major delay to the aggregated data which would

abruptly reduce data throughput. To address this problem, we propose a di↵erent

solution based on some mathematical tricks.

49

Let the watermark delays for a child node n
l

i

average to ⇤
l

i

. Utilizing the ⇤
l

i

’s

of child nodes, n
a

computes the watermark delay (denoted as �
A

[j]) for aggregated

provenance as follows:

�
A

[j] = �
a

[j] +
X

i

(�
l

i

[j]� ⇤
l

i

) (5.8)

�
A

[j] in Eq. (5.8) may also be negative. So, we also add the constant o↵set to make

�
A

[j] always positive. The reason why this solution works is explained in sec. 5.2.2.

By following the above procedure, each node in the flow path encodes its 1-bit

information. Consequently, the provenance bits are watermarked over the L
p

IPDs

by manipulating them with corresponding delay perturbations, termed as watermark

delay. This way, DS is transformed into the watermarked version DSw. However,

data packets may also experience di↵erent propagation delays or attacks aimed at

destroying the provenance information. At the end, the BS receives the dataset along

with watermarked IPDs DSw, which can be interpreted as the sum of delays imposed

by the intermediate nodes, the attackers, and the di↵erence between consecutive

propagation delays along the data path. Thus, DSw represents the DSSS encoded

signal in our context.

5.2.2 Provenance Decoding

The provenance retrieval algorithm recovers provenance using the secret parame-

ters including the keys {K1, K2, ..., Kn

}, the PN length L
p

, and the optimal threshold

T ⇤. The threshold, corresponding to the network diameter and PN length, is cal-

culated once after the deployment of the network. The way how to calculate this

decoding threshold is described below in section 5.2.3.

The BS records the watermarked IPDs and executes the retrieval process whenever

it collects a number of L
p

IPDs denoted by the set DSw. Since the BS does not know

which nodes embedded their identities in the provenance, it executes the process for

all of the nodes in the network and tries to identify the desired nodes. For each

50

node, the BS generates a node specific sequence of real numbers by reordering the

IPDs in DSw according to the bit selection algorithm. We denote such a sequence

by CSi = {cs
i

[1], cs
i

[2], ... , cs[L
p

]}. Any element (i.e. IPD) in this sequence can

be interpreted as the sum of delays added by the nodes in provenance, the di↵erence

of propagation delay between two consecutive data packets, and possibly any delay

added due to malicious attacks. Thus,

cs
i

[j] =
X

k,m

�
k

[m] +
X

k,m

�tr(k , k+1)[m] +D[m] (5.9)

where�tr
k , k+1 is the di↵erence between the propagation delays of two consecutive

data packets from k-th intermediate node to (k+1)-th node and D[m] is any delay

added due to attacks. We can expand the equation as

cs
i

[j] =
X

k,m

s
k

[m]⇥ T +
X

k

(µ + const ⇤ �)⇥ T

+
X

k

�tr(k , k+1)[m] +D[m] (5.10)

As (µ + const ⇤ �) ⇥ T is a constant, the sum over this constant can be denoted

as another constant Tc. To determine whether a node contributes to a data flow,

the cross-correlation between CSi and provenance information pni is computed as

follows

R
i

= CSi .pni =
X

j

cs
i

[j]⇥ pn
i

[j]

=
X

j

X

k,m

(s
k

[m]⇥ T)⇥ pn
i

[j] +
X

j

Tc⇥ pn
i

[j]

+
X

j

X

k,m

�tr(k , k+1)[m]⇥ pn
i

[j] +
X

j

D[m]⇥ pn
i

[j] (5.11)

As pni has an equal number of 1’s and -1’s,
P

j

pn
i

[j] becomes 0 resulting in
P

j

Tc⇥

pn
i

[j] = 0. Due to this special property of pni, any constant delay added during

watermarking will contribute a 0 to the cross-correlation. For the same reason, adding

51

a delay of (�
l

i

[j]� ⇤
l

i

) during aggregation instead of �
l

i

[j] has the same e↵ect. The

constant ⇤
l

i

, if added, would have been eliminated from the cross-correlation.

Note that, the last two terms, representing di↵erence in propagation delays and

attacker induced delays, are negligible compared to the first term i.e. ideal cross-

correlation value. So, the inclusion of the node in provenance can be decided correctly

by a comparison of R
i

with T ⇤. If R
i

� T ⇤, the identity of this node was embedded i.e.

the node contributed to data flow. Otherwise, the node did not participate. After

successfully retrieving the provenance information, the BS resets DSw and starts

collecting IPDs for future provenance retrievals.

The decoding error can be reduced further by embedding the provenance, i.e.

each v[j] 2 V , multiple times. The number of repetitions is called redundancy factor.

At the BS, the provenance is extracted multiple times and the decision about the

presence of a node in the provenance is taken based on a majority voting technique.

Thus, the e↵ect of any unusual propagation delay or malicious attacks is mitigated.

Besides, the knowledge of diameter H of the sensor network can be used to determine

the nodes in the data flow path more accurately by selecting H nodes with the highest

cross-correlation values.

5.2.3 Decoding Threshold Evaluation

This section presents the evaluation of an optimal threshold T ⇤ that minimizes the

probability of decoding error which is defined as the probability of retrieving prove-

nance incorrectly. Let P
err

, P1, and P0 represent the probability of decoding error,

probability that a node embeds its identity (i.e. PN sequence) in the provenance and

probability of not embedding, respectively. Variables p
e

and p
r

denote the probabil-

ity of embedding and retrieval of a node’s PN sequence, respectively (p
e

= 1 implies

that the PN sequence of a node was embedded, p
r

= 1 implies the PN sequence

52

was retrieved). f(r) is the probability density function of cross-correlation. P
err

is

calculated as:

P
err

= P (p
r

= 0, p
e

= 1) + P (p
r

= 1, p
e

= 0)

= P (p
r

= 0|p
e

= 1)P1 + P (p
r

= 1|p
e

= 0)P0

= P (r < T |p
e

= 1)P1 + P (r > T |p
e

= 0)P0

= P1

Z
T

�1
f(r|p

e

= 1)dr + P0

Z 1

T

f(r|p
e

= 0)dr (5.12)

To minimize the probability of decoding errors (P
err

), we take the first order derivative

of P
err

with respect to T to locate the optimal threshold T ⇤ as follows:

@P
err

@T
= P1

@

@T

Z
T

�1
f(r|p

e

= 1)dr + P0
@

@T

Z 1

T

f(r|p
e

= 0)dr

= P1f(T |pe = 1)� P0f(T |pe = 0) (5.13)

The distributions f(r|p
e

= 0) and f(r|p
e

= 1) are estimated from the statistics of

sets R0
e

and R
e

, respectively. The experimental observations of cross-correlation for

the nodes present in the provenance are stored in a set R
e

and for those that are

not present are stored in R0
e

. The values of R0
e

and R
e

show that the distributions

f(r|p
e

= 0) and f(r|p
e

= 1) can be estimated as Gaussian distributions N(µ0, �0) and

N(µ1, �1) respectively. However, the following analysis can still be performed with

other types of distributions. P0 could be estimated by
|R

e

|
|R

e

|+ |R
e

0 | and P1 = 1� P0.

Substituting the Gaussian expressions for f(r|p
e

= 0) and f(r|p
e

= 1) in Eq. 5.13

and equating it to zero we get the following quadratic equation

�

2
0��

2
1

2�2
0�

2
1
T ⇤2 + µ0�

2
1�µ1�

2
0

�

2
0�

2
1

T ⇤ + ln
⇣

P0�1
P1�0

⌘
+ µ

2
1�

2
0�µ

2
0�

2
1

2�2
0�

2
1

= 0 (5.14)

The roots of this equation give the optimal threshold T ⇤ that minimizes P
err

. The

second order derivative of P
err

is evaluated at T ⇤ to ensure that the second order

necessary condition (@
2
P

err

(T ⇤)
@T

2 > 0) is met. To show the high dependency of the

53

probability of decoding errors on the choice of decoding threshold T ⇤, we conducted

experiments with a sensor network of diameter 12 and PN Length = 240 bits. The

histograms and the Gaussian estimates of R
e

and R0
e

obtained from the experiment

are reported in Fig. 5.4(a). The optimal computed threshold T ⇤ is indicated by the

dotted vertical line. As we can see from Fig. 5.4(a), the two distributions are far

apart which is a direct result of using the competing objects for b
i

equal to 1 and

0. Fig. 5.4(b) shows the probability of decoding error for di↵erent values of the

threshold, which in turn shows the presence of an optimal threshold that minimizes

the probability of decoding error.

−3 −2 −1 0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

CrossïCorrelation (R)

C
on

di
tio

na
l p

df

f(x|pe=1)
f(x|pe=0)

(a) f(x|p
e

= 0), f(x|p
e

= 1) and the optimal

threshold T

⇤ = 0.0303

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Decoding Threshold (T)

Pr
ob

ab
ili

ty
 o

f E
rro

r (
P)

(b) Experimental values of P
err

for dif-

ferent decoding threshold (T) values

Fig. 5.4.: Decoding Threshold Evaluation for Provenance Watermarking Scheme

5.2.4 Security Analysis

In this section, we discuss the security and resiliency of our provenance scheme

against various outside and inside attackers.

Outside Attacker

With the capability of capturing data packets and inter-packet timing character-

istics, an outside attacker may try to disrupt provenance security in di↵erent ways.

54

Provenance detection and retrieval: An attacker might want to identify and

extract the provenance embedded by a node. Several attacks have been devised to

detect and corrupt the active timing-based watermark in network flows. Cabuk et

al. implement a covert network timing channel which transmits one packet in a time

interval to encode the bit ’1’ and stays silent for a ’-1’ bit [32]. Such a static encoding

of messages leads to a highly regular behavior in the inter-packet delays, whereas

overt tra�c arrives anytime, resulting in an irregular pattern. Cabuk et al. show how

to detect the covert channel by identifying a regular pattern in the IPDs. However,

in our scheme, the watermarked IPDs do not follow any regular pattern, rather the

IPDs appear random in nature and it is hard to distinguish the patterns generated

by the watermarking from natural variation in tra�c rates. Hence, our scheme can

evade detection based on regularities in data tra�c [32].

Peng et al. develop an attack technique [37] to detect, recover, duplicate or re-

move a message, watermarked in a flow according to the scheme proposed in [34].

The attacker tries to infer important watermarking parameters (such as quantization

step used to compute watermark delay, proportion of watermarked IPDs etc.) using

packet timestamps at each intermediate host and achieves the attack goals utiliz-

ing these parameters. Since our watermarking recovery process uses every IPD for

watermarking purpose, this attack process does not help an attacker in extracting

the provenance, embedded according to our scheme. Moreover, the lack of clock

synchronization between nodes will weaken this attack.

Luo et al. propose an approach to detect and autonomously remove spread spec-

trum flow watermarks (SSFW) [80]. Since the encoder needs to throttle the flow’s

throughput to a low value for a given period T
c

for embedding a ’-1’ and spreading

the watermark using PN codes increases the number of such low-throughput peri-

ods significantly, the SSFW causes an abnormal sequence of low-throughput periods

(large delays) in the flow. Hence, the attacker can detect the SSFW by identifying

the presence of anomalous sequences of low-throughput periods. Kiyavash et al. have

devised a multi-flow attack to detect the SSFW [36] based on the observation of long

55

low-throughput period on several flows compared to a trained model. Compared to

existing SSFW techniques, our scheme uses low amplitude watermarks i.e. much

smaller delays (on the order of few milliseconds) that appear close to natural network

jitter. It makes the provenance invisible to attackers and thus prevents the attackers

from detecting and removing the provenance. In our system, each node possesses

unique provenance information that is watermarked in the flow and also the em-

bedding position of the provenance bits is changed continuously. Thus, a multi-flow

attack cannot defeat our scheme.

It is important to notice that these attacks mainly focus on detecting whether

a data flow has a secretely embedded watermark and, if present, then on recov-

ering/removing it. On the contrary, the attacker in our context might have prior

knowledge about the fact that a timing-based provenance watermarking scheme is

applied in the sensor network. Also we are not considering the complete removal

of provenance as well. Therefore, attacks conducted to only detect the existence of

provenance will not help the attacker anyway, unless the attacker can retrieve the

provenance information of a node. In addition, most of these attacks are addressed

to specific watermarking techniques and hence cannot be generalized to disrupt any

watermarking scheme. However, the following claim shows that our scheme can evade

such detection and retrieval attacks

However, a statistical test, based on the assumption that IPDs of covert tra�c

center on limited numbers of distinct values instead of being randomly distributed [81],

can detect the presence of provenance in the time domain. The reason is that the mean

of watermark delays for ’1’ and ’-1’ bits converges to two separate values in our scheme.

Still, an attacker cannot retrieve the provenance information of a node by observing

the IPDs of flows from/to that node. The embedding positions of provenance bits

are changed in every round of embedding based on the packet timestamp and they

also di↵er from node to node. Hence, given a sequence of L
p

IPDs, the attacker has

to try all combinations of these numbers to get the order of bits in the provenance

information. For example, given 120 delays for a 120 bit provenance information

56

(with equal number of 1’s and -1’s), the attacker has to try
�
120
60

�
combinations to get

the original sequence of provenance bits.

Replay Attack: An adversary may replay previously heard data packets (trans-

mitted by legitimate nodes) to give a false idea about the sensed environment [82]. For

an IPD based provenance transmission system (like ours), the attacker also observes

the timing characteristics in order to maintain them during packet replay. To make

the replayed data appear as fresh, the attacker will update the packet timestamp to a

recent value. Nevertheless in our scheme, the selection of provenance bit for any j-th

IPD depends on the timestamp of (j+1)-th packet and thus changes with the varying

timestamp. So, sustaining the old time observations while marking the packet with

a new timestamp does not allow the BS to extract provenance successfully. Conse-

quently, the provenance integrity check fails and the data is discarded.

Inside Attacker

An inside attacker may want to generate fake data and construct the provenance

including some innocent nodes {n
i1 , ni2 , ..., ni

U

} in order to mark them as untrust-

worthy by making them responsible for false data. However, this attack will fail since

the provenance embedding process requires node-specific secrets, like the PN code,

the secret key, and the impact factor, and the attacker does not know these for the

uncompromised nodes.

Provenance Modification Attack: An attacker, acting alone or colluding with

others, may want to add or remove nodes from the provenance of data generated by

benign nodes. Assume that n
e

and n
m

are compromised nodes and collude to execute

the attack. A benign data item d, with provenance p
d

= {n
i1 , ni2 , ..., ni

U

}, is routed

through n
e

which wants to remove n
i2 from p

d

and replace it with n
m

. To remove n
i2

from provenance, n
e

has to remove the delays added by n
i2 from IPDs. Since negative

delays cannot be added, n
e

will adjust the j-th IPD by delaying the j-th packet which

decreases the delay introduced to the (j + 1)� th packet for provenance embedding.

57

The amount of delay to be added can be found by observing the timing characteristics

of packets to and from n
i2 . Note that ne

has to adjust the IPDs in reverse order, from

j = L
p

to 1. To achieve this, n
e

has to accumulate all the (L
p

+ 1) packets, adjust

their IPDs, and then transmit these packets towards the BS maintaining the adjusted

timings. Such an attack scheme will add too much delay to the packets, which will

definitely be detected at the BS. Regarding the addition of a node, n
e

can easily add

n
m

in the provenance if they collude. However, the provenance integrity check at the

BS will fail and detect an attack.

Forgery: Our scheme can also detect provenance forgery i.e. given the valid

provenance for a data packet, the attacker cannot associate this provenance with a

data packet with a di↵erence provenance. A malicious routing node n
e

can perform

two types of attack:

Forgery attack 1. Suppose that the data packet d belongs to a data flow generated

by a benign node n
s

. The provenance of d is p
d

= {n
s

, n
i1 , ..., ni

U

}. n
e

might want

to associate p
d

with a fake packet d
e

. To achieve this, n
e

tries to insert d
e

in the

flow while maintaining the observed timing characteristics. However, to certify that

d
e

is a part of the flow generated by n
s

, n
e

must generate the MAC of the data value

and timestamp by using the secret key of n
s

. Being unaware of the secrets of n
s

, n
e

cannot generate the MAC.

Forgery attack 2. d1, d2 belong to two di↵erent data flows generated by n
s1 and

n
s2 , respectively. n

e

swaps the data value of these packets. Hence, the BS will now

identify n
s2 as a part of the provenance for d1 whereas d1 contains the MAC generated

by n
s1 .

Hence, the data integrity check will detect the provenance forgery in both cases.

Unauthorized Access: Only authorized parties can access and check the in-

tegrity of provenance. This follows from the provenance decoding process which re-

quires the PN sequences and secret keys of all nodes in the network (at least for nodes

in the provenance). Only the authorized party (the BS in our case) that has access

to these information can retrieve the provenance and thereafter check the integrity.

58

From the above security analysis it follows that an adversary cannot access or

modify the provenance without being detected. However, modifications may destroy

the provenance and impact the robustness of the scheme. The strength of our scheme

is that, with some redundancy and detection mechanism, it can recover the provenance

upto a great extent. We consider the following attacks by compromised nodes:

Deletion Attack: A compromised node can destroy the information carried out

by the IPDs by dropping data packets routed through it. Dropping any j-th data

packet consumes the (j-1)th and j-th IPD. However, we can mitigate this attack by

embedding the provenance multiple times and employing the majority voting tech-

nique when retrieving the provenance, as discussed in sec. 5.2.2. The impact and

e↵ectiveness of the redundancy factor (i.e. how many times the provenance is embed-

ded) on provenance recovery is evaluated and reported in Fig. 5.5(c)

Alteration Attack: This attack perturbs the IPDs with the goal of moving the

cross-correlation values from above the threshold T ⇤ to below the threshold T ⇤ and

vice versa, leading the erroneous retrieval of provenance. As in the deletion attack,

embedding provenance multiple times will reduce the impact of this attack. However,

the attacker may try to change the IPDs within a safe range, since an alteration to

an IPD beyond a certain limit would be recognized by the BS as an attack. Such a

modification, however, would a↵ect the cross-correlation value negligibly, thus leaving

the provenance decoding process undisturbed.

Insertion Attack: A malicious routing node may insert fake data in the data

flow generated by a legitimate node. Through the MAC verification or using some

standard detection mechanism, the BS can detect such false data packets and discard

them. Thus, an insertion attack will have almost no e↵ect on the provenance decoding.

5.2.5 Experimental Evaluation

We evaluate the scalability and robustness of our scheme. For the experiments,

we simulate the sensor network as a tree with diameter H. The network consists

59

of 1000 nodes with default values of H = 8, and L
p

= 160 bits. Other parameters

include µ = 5, � = 0.005, const = 100, time unit = 5 ms, and redundancy factor = 1.

Sensor data is generated every 5 seconds. For each experiment, the simulations were

run 100 times.

0 2 4 6 8 10 12
5

5.05

5.1

5.15

5.2

5.25

5.3

5.35

Diameter of the Sensor Network (H)

In
te

rï
Pa

ck
et

 D
el

ay
s (

se
c)

Provenance Embedded Delays
Regular Communication Delay

(a) Delays incurred due to provenance em-
bedding

32 48 64 80 96 112 128 144 160 176 192 208 224 240
0

0.2

0.4

0.6

0.8

1

1.2

1.4

PN Length (bits)

D
ec

od
in

g
Er

ro
r (

%
)

H = 6

H = 4

H = 8

H = 12

H = 10

H = 1
H = 2

(b) Decoding error

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Deleted IPDs (%)

D
ec

od
in

g
Er

ro
r (

%
)

Redundancy Factor = 3
Redundancy Factor = 10

(c) Resilience to Deletion attack

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Inserted IPDs (%)

D
ec

od
in

g
Er

ro
r (

%
)

Redundancy Factor = 1
Redundancy Factor = 10

(d) Resilience to Insertion attack

Fig. 5.5.: Performance of provenance watermarking scheme

Scalability

The scalability of our solution is evaluated by quantizing the impact of H on

the overall delay due to provenance embedding. The reason why we investigate the

relationship of delay to the network diameter instead of the number of nodes is that

the provenance length increases linearly with the diameter. In comparison, the e↵ect

60

of the total number of nodes is much lower. Fig. 5.5(a) shows a comparison of natural

IPDs with the watermarked IPDs. The watermarked IPD increases from natural

IPD by a maximum of 6%.The graph also shows that the watermarked IPD linearly

increases with H though the increasing rate is not high.

As the diameter of sensor network has a direct influence on the PN length, one has

to determine the optimal PN length for a particular H that ensures a low decoding

error. Fig. 5.5(b) reports the percentage of the provenance decoding error for di↵erent

PN lengths with varying network diameters. Predictably, an increase in the PN length

results in a decrease of the decoding error for a particular diameter as well as the

increase in diameter imposes a higher error rate for a particular PN length.

Provenance Recovery

These experimental results show how well the decoding process can recover the

provenance against various attacks discussed in sec. 7.1.2.

Deletion Attack: The adversary randomly drops ↵ data packets (of a data flow)

routed through it. The provenance is then decoded and the decoding error is measured

for di↵erent ↵ values as reported in Fig. 5.5(c). We evaluated the performance of our

scheme for various redundancy factors. The decoding error decreases with increasing

values of the redundancy factor.

Alteration Attack: We evaluated the performance of our decoding technique against

two types of alteration attacks namely, fixed and random (↵, �) alteration attacks.

In the fixed-(↵, �) alteration attack, the attacker randomly selects ↵

2 data packets

and delays them by multiplying the corresponding IPDs by (1 + �). Consequently,

each following IPD (total ↵

2) is decreased by (1� �). Here, � is a fixed value. In the

random-(↵, �) attack, the IPDs are multiplied by (1 + x), where x is a uniform ran-

dom variable 2 [0, �]. Figures 5.6(a)(b)(c) show the behavior of our scheme against

the fixed-(↵, �) alteration attack. In Fig. 5.6(a), as the percentage of IPDs altered

and the alteration factor increases, so does the decoding error. However, our solution

61

0
20

40
60

80
100

0

5

10
0.2

0.4

0.6

0.8

1

Altered IPDs(%)`(%)

D
ec

od
in

g
 E

rr
or

(%
)

(a) Fixed-(↵,�) alter attack:
Decoding errors cors. to vari-
ous ↵,�

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

`(%)

D
ec

od
in

g
 E

rr
or

(%
)

50% Altered IPDs
80% Altered IPDs

(b) Fixed-(↵,�) alter attack:
Decoding errors against �

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Altered IPDs(%)

D
ec

od
in

g
 E

rr
or

(%
) ` = 5%

` = 2%

(c) Fixed-(↵,�) alter attack:
Decoding errors cors. to the
rate of IPD alterations

0
20

40
60

80
100

0

5

10
0.2

0.4

0.6

0.8

1

Altered IPDs(%)`(%)

D
ec

od
in

g
 E

rr
or

(%
)

(d) Random-(↵,�) alter attack:
Decoding errors cors. to various
↵,�

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

`(%)

D
ec

od
in

g
 E

rr
or

(%
)

50% Altered IPDs
80% Altered IPDs

(e) Random-(↵,�) alter attack:
Decoding errors against �

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Altered IPDs(%)

D
ec

od
in

g
 E

rr
or

(%
)

` = 5%

` = 2%

(f) Random-(↵,�) alter attack:
Decoding errors cors. to the
rate of IPD alterations

Fig. 5.6.: Resilience to fixed-(↵, �) and random-(↵, �) alter attacks

seems surprisingly resilient. The provenance decoding error shows low increases for

increasing percentages of altered IPDs (b) or the alteration factor (c). Similar results

were experienced for the random-(↵, �) attack as shown in Figures 5.6(d)(e)(f).

Insertion Attack: In this experiment, we insert ↵ data packets in the flow i.e.

add ↵ IPDs. Utilizing our detection mechanism, we can achieve an almost constant

decoding error while varying the percentage of inserted IPDs. Fig. 5.5(d) shows the

robustness of our solution against the insertion attack.

5.3 Bloom Filter based Provenance Scheme

To enable per-packet provenance transmission for sensor data, we propose a light-

weight distributed scheme relying on in-packet Bloom filters [83] to encode prove-

nance. In addition, we introduce e�cient mechanisms for provenance verification and

62

(a) Provenance encoding scheme (b) Provenance processing work-
flow at the BS upon receiving a
packet

Fig. 5.7.: iBF based provenance scheme

reconstruction at the BS. Each packet consists of a unique sequence number, data

value, and an iBF which holds the provenance. We focus on transmitting provenance

graph vertices over an iBF.

We emphasize that our focus is on securely transmitting provenance to the BS. In

an aggregation infrastructure, securing the data values is also an important aspect,

but that has been already addressed in previous work (e.g., [84]). Our secure prove-

nance technique can be used in conjunction with existing work to obtain a complete

solution that provides security for data, provenance and data-provenance binding.

5.3.1 Provenance Encoding

For a data packet, provenance encoding refers to generating the vertices in the

provenance graph and inserting them into the iBF. Each vertex originates at a node

in the data path and represents the provenance record of the host node. A vertex is

uniquely identified by the vertex ID (VID). The VID is generated per-packet based

on the packet sequence number (seq) and the secret key K
i

of the host node. We use

a block cipher function to produce this ID in a secure manner. Thus for a given data

63

packet, the VID of a vertex representing the node n
i

is computed with a secure block

cipher (such as, AES, etc) E as follows:

vid
i

= generateV ID(n
i

, seq) = E
K

i

(seq) (5.15)

Whenever a source node generates a data packet, it also creates a BF (referred

to as ibf0), initialized to all 0’s. The source then generates a vertex according to

Eq. 5.15, inserts the VID into ibf0 and transmits the BF as a part of the packet.

Upon receiving the packet, each intermediate node n
j

performs data as well as

provenance aggregation. If n
j

receives data from a single child n
j�1, it aggregates the

partial provenance contained in the packet with its own provenance record. In this

case, the iBF ibf
j�1 belonging to the received packet represents a partial provenance

i.e. the provenance graph of the sub-path from the source upto n
j�1. On the other

hand, if n
j

has more than one child, it generates an aggregated provenance from

its own provenance record and the partial provenance received from its child nodes.

At first, n
j

computes a BF ibf(j�1) by bitwise-ORing the iBFs received from the

children. ibf
j�1 represents a partial but aggregated provenance from all of the child

nodes. In either case, the ultimate aggregated provenance is generated by encoding

the provenance record of n
j

into ibf(j�1). To this end, n
j

creates a vertex using

Eq. 5.15, inserts the VID into ibf(j�1) which is then referred to as ibf
j

.

When the packet reaches the BS, the iBF contains the provenance records of all

the nodes in the path i.e. the full provenance. We denote this final record by ibf .

Example: We illustrate the encoding mechanism by using the example network in

Fig. 5.7(a). The data path considered is < 1, 4, 7 >, where node 1 is the data source.

We use a 10-bit BF and a set of 3 hash functions H = {h1, h2, h3} for BF operations.

When node 1 generates a data packet with sequence number seq, it creates the BF

ibf0 which is set to all 0’s. The node then creates a vertex corresponding to its

provenance record and computes the VID as vid1 = E
K1(seq). To insert vid1 into

ibf0, node 1 generates three indices as h1(vid1) = 1, h2(vid1) = 3, h3(vid1) = 8. The

64

VID is then inserted by setting ibf0[1], ibf0[3], and ibf0[8] to 1. The updated ibf0

along with the packet is then sent towards the BS.

Upon receiving the packet, node 4 performs data and provenance aggregation.

Since the node has one child, it only aggregates its own provenance record with ibf0.

For this purpose, the node generates a VID vid4; computes 3 indices as h1(vid4) = 3,

h2(vid4) = 6, h3(vid4) = 9; and inserts vid4 into ibf0 by setting bits 3, 6, 9 of the

iBF to 1. This updated iBF is referred to as ibf1. The data packet with ibf1 is then

forwarded to node 7 which repeats the provenance aggregation steps. At the end, the

BS receives the packet with the final iBF (ibf2 from node 7) and stores this iBF for

further processing.

5.3.2 Provenance Decoding

When the BS receives a data packet, it executes the provenance verification pro-

cess, which assumes that the BS knows what the data path should be, and checks the

iBF to see whether the correct path has been followed. However, right after network

deployment, as well as when the topology changes (e.g., due to node failure), the path

of a packet sent by a source may not be known to the BS. In this case, the provenance

collection process is executed, which retrieves provenance from the received iBF and

thus the BS learns the data path from a source node. Afterwards, upon receiving a

packet, it is su�cient for the BS to verify its knowledge of provenance with that in

the packet. Below we discuss these two processes in more details:

Provenance Verification: The BS conducts the verification process not only to

verify its knowledge of provenance but also to check the integrity of the transmitted

provenance. Algorithm 1 shows the steps to verify provenance for a given packet. We

assume that the knowledge of the BS about this packets path is P . At first, the BS

initializes a Bloom filter BF
c

with all 0’s. The BF is then updated by generating the

VID for each node in the path P and inserting this ID into the BF. BF
c

now reflects

the perception of BS about the encoded provenance. To validate its perception, the

65

BS then compares BF
c

to the received iBF ibf . The provenance verification succeeds

only if BF
c

is equal to ibf . Otherwise, if BF
c

di↵ers from the received iBF, it indicates

either a change in the data flow path or a BF modification attack. The verification

failure triggers the provenance collection process which attempts to retrieve the nodes

from the encoded provenance and also to distinguish between the events of a path

change and an attack.

Algorithm 1 ProvenanceVerification

Input: Received packet with sequence seq and iBF ibf.
Set of hash functions H, Data path P 0 = < n0

l1
, ..., n0

1, ..., n
0
p

>

BF
c

 0 // Initialize Bloom Filter

for each n0
i

2 P do
vid0

i

= generateVID (n0
i

, Seq No)
insert vid0

i

into BF
c

using hash functions in H
endfor

if (BF
c

= ibf) then
return true // Provenance is verified

endif

return false

Provenance Collection: As illustrated in Algorithm 2, the provenance collection

scheme makes a list of potential vertices in the provenance graph through the ibf

membership testing over all the nodes. For each node n
i

in the network, the BS

creates the corresponding vertex (i.e. v
i

with VID vid
i

) using Eq. 5.15. The BS then

performs the membership query of vid
i

within ibf . If the algorithm returns true, the

vertex is very likely present in provenance, i.e., the host node n
i

in the data path.

Such an inference might introduce errors because of false positives (a node not on the

route is inferred to be on the route). However, as shown in Section 5.3.3, the false

positive probability obtained is very low.

Once the BS finalizes the set of potential candidate nodes S =< n0
l1
, ..., n0

1, n
0
2, ..., n

0
p

>,

it executes the provenance verification algorithm on this set. This step is required

to distinguish between the cases of a legitimate route change and that of malicious

activity. If the verification succeeds, we decide that there was a natural change in

66

the data path and we have been able to determine the path correctly. Otherwise, an

attack has occurred.

Algorithm 2 ProvenanceCollection

Input: Received packet with sequence seq and iBF ibf.
Set of nodes (N) in the network, Set of hash functions H

1. Initialize

Set of Possible Nodes S <>
Bloom Filter BF

c

 0 // To represent S

2. Determine possible nodes in the path and build the representative BF

for each node n
i

2 N do
vid

i

= generateVID (n
i

, seq)

if (vid
i

is in ibf) then
S S [n

i

insert vid
i

into BF
c

using hash functions in H
endif

endfor

3. Verify BF
c

with the received iBF

if (BF
c

= ibf) then
return S // Provenance has been determined correctly

else
return NULL // Indicates an in-transit attack

endif

A possible attack is the all-one attack where all bits in the provenance are set to

1, which implies the presence of all nodes in the provenance. To address the issue,

we use a density metric � introduced in [38]. � reflects the number of 1’s in the

provenance (i.e. the iBF) as a fraction of the total size. To consider the provenance

valid, we require that the density is equal or below a certain threshold: �  �
max

.

Such a requirement is reasonable since in a BF with n elements and k hash functions,

there may be at most kn bits marked as ’1’. Hence, we can always find an upper

bound for the number of 1’s in a BF. Thus, the maximum number of allowable 1’s

is m�
max

. Within this bound, an attacker may also randomly flip some bits to add

or delete a legitimate node. The chance of being successful in this attack is very

small since the attacker has to identify k bit positions corresponding to the node,

which again change for each packet. If each bit is guessed randomly, the probability

67

that the attacker guesses all of them correctly is given by 1
2m . Moreover, an attempt

of blindly altering some bits is detected since the verification process at the end of

the provenance collection phase does not succeed. A successful attack occurs when

the bits set by the attacker (limited by �
max

) make all the k bits corresponding to a

legitimate node turn out to be ’1’. If the data provenance includes n nodes, the kn

hash results may map to at least one and at most m�
max

bits. Thus a smart attacker

marks upto (m�
max

� 1) bits. The total number of bit patterns by (m�
max

� 1) hash

computations is

B =
(m�

max

� 1)X

i=1

✓
m

i

◆
(5.16)

Randomly guessing one of them has 1
B

chance of success. Hence, the success in

manipulation attack has a very small probability. The workflow shown in Fig. 5.7(b)

summarizes the provenance decoding process.

5.3.3 Performance Analysis

We present an analysis of the space and energy overhead of the proposed scheme.

To the best of our knowledge, no secure provenance scheme has been proposed for

sensor networks. Hence, we use the following two benchmarks:

(i) We adapt the generic secure provenance framework SProv [15] to sensor net-

works. In this lightweight version of the scheme, referred to as SSP , we simplify the

provenance record at a node n
i

as P
i

=< n
i

, hash(D
i

), C
i

>, where hash(D
i

) is a

cryptographic hash of the updated data, and C
i

contains an integrity checksum as

Sign(hash(n
i

, hash(D
i

)|C
i�1)).

(ii) We also consider a MAC-based provenance scheme, referred to as MP, where

a node transmits the nodeID and a MAC computed on it as the provenance record.

68

Space Complexity

To implement SSP, we use SHA-1 (160 bit) for cryptographic hash operations

and the TinyECC library [85] to generate 160-bit digital signatures (ECDSA). The

nodeID has length 2 bytes, thus the length of each provenance record is 42 bytes. For

MP, we use TinySec library [86] to compute a 4-byte CBC-MAC. Hence, a provenance

record has 6 bytes in this case. As each node in the path encodes its own provenance

record, the provenance size increases linearly with the number of hops. For a D-hop

path, the provenance is 42D bytes in SSP and 6D bytes in MP.

Since our approach is based on BF, the provenance length depends on parameter

selections for the BF. The false positive probability for a BF is defined as [87]

P
fp

=
n
a

� n

n
t

� n
(5.17)

where n
t

is the total number of distinct elements in the element space, n is the number

of elements actually encoded in the BF and n
a

is the number of elements retrieved by

querying the BF. Let m be the BF size, k the number of hash functions and D the

maximum number of nodes in any path. The false positive probability is equal to that

of getting 1 in all the k array positions computed by the hash functions while querying

the membership of an element that was not inserted in the BF. This probability is

P
fp

= (1� (1� 1

m
)kD)k ⇡ (1� e�

kD

m)k (5.18)

For a given m and D, the number of hash functions that minimizes the false positives

can be computed as

k
opt

=
m

D
ln2 (5.19)

69

Given D and a desired false positive probability P
fp

, the required number of bits

m can be computed by substituting the optimal value of k in Eq. (5.18) and then

simplifying it to

ln(P
fp

) = �m

D
⇤ (ln2)2) m =

�D ⇤ ln(P
fp

)

(ln2)2
(5.20)

This means that in order to maintain a fixed false positive probability, the length of a

BF should grow with the number of elements to be inserted. If we consider P
fp

= 0.02

and a 14-hop path, the BF size m is computed as 114 bits and k
opt

= 6. Thus, a

120-bit (15 byte) BF is su�cient to encode provenance while maintaining low false

positives. In practice, we bound P
fp

by a small constant � (> 0) such that P
fp

< �.

To find the appropriate value of m we have

ln(P
fp

) > ln�) �m

D
⇤ (ln2)2 > ln�) m <

Dln1
�

(ln2)2
(5.21)

Energy Consumption

For a D-hop path, SSP has to transmit 42⇤D bytes (= 336⇤D bits), MP transmits

6 ⇤ D bytes (= 48 ⇤ D bits) whereas our scheme requires m bits transmitted. SSP,

MP and our scheme consume a radio energy proportional to (336 ⇤D), (48 ⇤D) and
ln

1
�

(ln2)2 ⇤D, respectively. Although all of the terms are proportional to D, the constant

coe�cient in the first two terms are much larger than the last one. For example, if we

set � = 10�4 then the coe�cient in our scheme is 19.17 which is much smaller than

the coe�cients in SSP and MP. Another part of overhead comes from the signature,

MAC and hash computations. However, in sensor networks, usually computation

overhead is much smaller than that of communication and adds only marginal energy

consumption [88].

70

5.3.4 Security Discussion

Confidentiality. Provenance is encoded using BF hashing functions, and the

hashed value takes into account the secret key K
i

of each node as part of the vertex

VIDs (Eq. 5.15), as well as a unique sequence number. Hence, even if an attacker

collects a large sample of iBFs, it cannot perform a dictionary attack without knowing

the node secret key.

Integrity. First, an attacker cannot add legitimate nodes to the provenance of

data generated by the compromised nodes. Assume the attacker attempts to frame

some uncompromised nodes < n
l

, n1, n2, . . . , np

> to make them responsible for false

data. Provenance embedding requires the node secret key K
i

to compute the V ID
i

,

which the attacker does not have. Hence, the attack is not successful.

Second, an attacker cannot selectively add or remove nodes from the provenance

of data generated by uncompromised nodes. Assume that nodes n
e

and n
m

collude

to execute an attack. A benign packet with provenance < n
l

, ..., n1, n2, ..., np

> is

routed through n
e

, and n
e

attempts to remove n2 from the provenance and to replace

it with another legitimate node n2. When the packet reaches n
e

, it contains the

partial provenance < n
l

, ..., n1, ..., ne

> encoded in the iBF ibf
pp

. To remove n2

from provenance, at first n
e

has to construct the Bloom filter BF2 containing the

provenance record of n2. The bitwise-AND of the negated value of BF2 with ibf
pp

removes the information of n2 from the provenance. Assume the modified iBF is

ibf
pp

. To add n0
2 to the provenance after the removal of n2, the BF corresponding

to n2 should be built and then OR-ed with ibf
pp

. In both cases, the attackers are

unable to construct a BF representing uncompromised nodes, due to the absence of

the secret keys of legitimate nodes.

Freshness. Provenance replay attacks are detected by our proposed scheme, since

provenance is derived using a unique packet sequence number and the secret key of

the node. An attempt to change the sequence number of a packet without having the

key will be detected at the BS, according to the integrity property discussed above.

71

5.3.5 Simulation Results

We implemented and tested the proposed technique using the TinyOS simulator

(TOSSIM) [89], and we have used the micaz energy model. We consider a network

of 100 nodes and vary the network diameter from 2 to 14. All results are averaged

over 100 runs with di↵erent random seeds.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 2 4 6 8 10 12

V
er

ifi
ca

tio
n

Fa
ilu

re
 R

at
e

Number of Hops

BF Size=16 bytes
BF Size=20 bytes
BF Size=30 bytes

(a) Provenance VFR vs path length

 0.2

 0.4

 0.6

 0.8

 1

 1 200 400 600 800 1000

V
er

ifi
ca

tio
n

Fa
ilu

re
 R

at
e

Number of Packets

4-hop Path
8-hop Path

12-hop Path

(b) VFR variation with time as network stabi-
lizes

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14

Co
lle

ct
io

n
Er

ro
r (

%
)

Number of Hops

BF size=16 bytes
BF size=20 bytes
BF size=30 bytes

(c) Collection Error for various path lengths

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 2 4 6 8 10 12 14

Fa
lse

 P
os

iti
ve

 R
at

e

Number of Hops

BF Size=16 bytes
BF Size=20 bytes
BF Size=30 bytes

(d) False Positive Rate for various path lengths

 0

 10

 20

 30

 40

 50

 60

 70

 14 16 18 20 22 24 26 28 30

Co
lle

ct
io

n
Er

ro
r (

%
)

BF Size

4-hop path
8-hop path

12-hop path

(e) Collection Error for various BF sizes

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 14 16 18 20 22 24 26 28 30

Fa
lse

 P
os

iti
ve

 R
at

e

BF Size

4-hop path
8-hop path

12-hop path

(f) False Positive Rate for various BF sizes

Fig. 5.8.: Performance of the iBF based provenance scheme

72

Provenance Decoding Error

The provenance decoding process retrieves the provenance from the in-packet

Bloom filter, and consists of the verification and collection phases. To quantify the

accuracy and e�ciency of our provenance scheme, we measure decoding error in both

the above phases, i.e., verification and collection error.

Algorithm 1 shows that the verification fails when the provenance graph in the

packet does not match with the local knowledge at the BS. This may happen when

there is a data flow path change or upon a BF modification attack. Provenance

verification failure rate (VFR) measures the ratio of packets for which verification

fails. Fig. 5.8(a) shows the VFR for paths of 2 to 12 hops with various BF sizes. For

each path length, the VFR is averaged over 1000 distinct paths. The results show

that the provenance verification process fails only for a very small fraction of packets.

Thus, for most packets the lightweight verification process is su�cient to retrieve

the provenance. The more costly provenance collection process is executed only for a

very few packets when verification fails. As expected, VFR increases linearly with the

increase of the path length. On the other hand, VFR is not significantly influenced by

BF size, proving that even small BF sizes provide good protection. Fig 5.8(b) shows

the variation of VFR over time, as the number of packet transmissions increases. As

the network gets stable with time, the data paths do not change often, and hence the

VFR approaches 0.

Fig. 5.8(c) and 5.8(d) plot the percentage of provenance collection error for dif-

ferent number of hops and the corresponding false positive rates, respectively. Recall

that, the collection phase is executed when provenance verification fails. Fig. 5.8(e)

and 5.8(f) show the collection error corresponding to various BF sizes and the related

false positives, respectively. The number of hash functions used are determined using

Eq. (5.19). The resulting false positive rates vary from 0 ⇠ 0.013 and it is observed

that the collection error becomes negligible when the false positive rate drops at or

below 10�4. It is also seen that a BF size of 16 bytes is enough to ensure no decoding

73

error for up to 8-hop paths. The empirical BF size required is much less than the

theoretical one(⇠ 20 bytes for a 8-hop path).

Space Complexity and Energy Consumption

Fig. 5.9(a) shows a comparison among SSP, MP and our provenance mechanism

in terms of bytes required to transmit provenance. The provenance length in SSP and

MP increases linearly with the path length. For our scheme, we empirically determine

the BF size which ensures no decoding error. Although the BF size increases with

the expected number of elements to be inserted, the increasing rate is not linear. We

see that even for a 14-hop path, a 30 byte BF is su�cient for provenance decoding

without any error.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14

Pr
ov

en
an

ce
 L

en
gt

h
(b

yt
e)

Number of hops

SSP
MP

BFP

(a) Provenance length

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 3.5e+006

 4e+006

 0 2 4 6 8 10 12

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

Number of Hops

MP
BFP

(b) Aggregate energy consumption

Fig. 5.9.: Space complexity and energy consumption of the provenance scheme

We also measure the energy consumption due to provenance construction and

transmission for various hop counts. Note that, modern sensors use ZigBee specifi-

cation for high level communication protocols which allows upto 104 bytes as data

payload. Hence, SSP and MP can be used to embed provenance (in data

packet) for maximum 2 and 14 nodes, respectively. Figure 5.9(b) compares

the aggregate energy consumption of MP with that of our scheme over 100 packet

transmissions. The results confirm the energy e�ciency of our solution.

74

6. PROVENANCE USAGE

In this chapter, we demonstrate how the provenance systems designed by us can be

utilized to provide security solutions in various domains. First, we propose a mech-

anism for detecting potential data exfiltration attack, based on the file provenance

information collected by FiPS. Second, we present a provenance based mechanism for

detecting packet dropping adversary in WSNs, utilizing our iBF based provenance

solution. We extend the basic provenance scheme in order to detect packet dropping

activity on the data flow path over a period of time and then to identify malicious

link(s). It is assumed that the links on the path exhibit natural packet loss and several

(colluding) adversarial nodes may exist on the path.

6.1 Detection of Data Exfiltration

The key idea to the detection mechanism is to characterize data exfiltration by

detecting anomalous file access patterns. To distinguish cyber-insider mission actions

from legitimate file activities, we record file provenance, i.e. the history of which

processes wrote to the file, which files were used to modify the file, etc. Based on the

provenance graph built during a training period, we can find the legitimate access

patterns to a file, which help us later on to detect an anomalous access to the file.

Figure 7.2 shows the architecture of the proposed exfiltration detection mechanism.

6.1.1 Training Phase

Since we propose a data-centric approach towards the detection of data exfiltra-

tion, we establish a baseline for expected access patterns to a file during the training

75

Provenance
Collector

Detection
Engine

Response
Engine

Provenance
Storage

Process

file system
event

Kernel space User space

Provenance
Processor

Log

event
log

provenance

provenance

Fig. 6.1.: Architecture of Data Exfiltration Detection System using File Provenance

phase. In this phase, we assume there is no anomaly in the system and the files are

accessed in order to accomplish regular tasks.

As described earlier, the provenance collector gathers provenance metadata on

a provenance related event and sends o↵ the provenance records to the provenance

processor through a log file. During the training phase, the provenance processor

translates the log data to provenance records, generates appropriate provenance en-

tities and relationships and adds them to the provenance graph of the corresponding

file. The provenance graphs are stored in the provenance database. After the train-

ing period, we expect a robust knowledge of legitimate accesses to files through the

file provenance graphs, which will help us taking a pragmatic approach to detect

anomalous activities later on.

6.1.2 Detection Engine

During normal operation of the system, the provenance processor not only pro-

cesses and stores the provenance information, but also interacts with the detection

engine to detect any anomalous access. When a file is about to be modified, deleted,

etc., the provenance processor generates the access graph of the file in the current

session and reports it to the detection engine. The detection engine then searches for

the given access pattern within the provenance graph of that file, stored in the prove-

76

nance database. If the module cannot match the pattern, it indicates a suspicious

access path to the file, which might have been changed or created by an anomaly.

Thus the detection engine raises a flag in this case.

It is to be mentioned that, sensitive data leakage may happen in various ways,

such as, information transfer via USB media, ftp, telnet, email, etc. To be successful

in the mission, an insider attacker may make unauthorized write to OS files, scripts,

and executables, send suspicious outbound tra�c, make unauthorized modification

of data in databases, etc. Thus, we have to take care of suspicious writes to not

only regular files, but also many other medias like, USB, network, system file, etc.

The Linux system, however, treats all the peripherals as files. Thus when any write

is about to happen to any of these special purpose files, the detection engine, using

the detection mechanism, tracks the files that are being read and sent o↵ and checks

whether this is legitimate through access pattern search.

6.2 Packet Dropping Adversary Identification in WSNs

In this scheme, we use a packet-acknowledgement based approach which requires

the sensors to transmit more meta-data in the provenance record. For a data packet,

the provenance record generated by a node now consists of the node ID and the

sequence number of the lastly seen (processed/forwarded) packet belonging to that

data flow. If there is an intermediate packet drop, some nodes in the path do not

receive the packet. Hence during the next round of packet transmission, there will

be a mismatch between the acknowledgements (for the lastly seen packet) generated

by the nodes. We utilize this fact to detect the packet dropping attack and then to

localize the malicious link. The detection of a packet loss requires the data source

to securely transmit the sequence number of the packet it generated in the previous

round. The mechanism for detecting packet dropping attack is explained below. For

discussion, we consider the data flow path P =< n
l

, n1, ..., ni

, ..., BS}, where n
l

is the

77

only data source and n
d

= BS is the base station. For simplicity, we denote the link

between nodes n
i

and n(i+1) as li.

1. Provenance Encoding: Fig. 6.2 depicts the provenance encoding scheme,

which is a simple extension to the basic scheme. A provenance record here includes

node ID and an acknowledgement to the lastly observed packet of the flow. The

acknowledgement can be generated in various ways to serve the purpose. To keep the

solution simpler, we transmit packet sequence number to acknowledge a packet. For

any j-th packet, a node n
i

creates a vertex v
i

and the vertex ID as follows

vid
i

= generateV ID (n
i

, seq, pSeq
i

) (6.1)

= E
K

i

(seq || pSeq
i

)

where seq is the sequence number attached to the current packet and pSeq
i

is the

stored information at n
i

about the sequence number of the (j�1)-th packet. To update

the provenance graph of the packet, n
i

then inserts vid
i

into the associated iBF. To

Fig. 6.2.: Extended provenance framework to detect packet dropping attack and
identify the malicious link

be noted that, a node must maintain a per-flow record to store the previous packet

sequence for each data flow passed through it. Whenever a node processes/forwards

a packet, it updates the previous packet record of the appropriate data flow with the

recently process packet sequence. If a node receives packet from a data flow for which

it has no packet sequence information, then it may use a pre-specified special purpose

78

Fig. 6.3.: Packet loss detection and faulty link identification using provenance.

identifier, such as 0. It addresses the case of routing path change where a new node in

the path can use this special identifier for encoding provenance. Moreover, if a node

does not receive packets from a data flow for a long time, it can erase the previous

packet information for that flow to reduce space overhead. Anyway, the node can

get updated and maintain this record when it receives packets from that flow more

frequently.

2. Provenance Decoding at the BS: The BS also stores the sequence number

of the most recent packet processed for each data flow. Upon receiving a packet, the

BS retrieves the sequence of the last packet transmitted by the source node from the

packet header, fetches the previous packet sequence for the flow from its local storage

and then compares these two sequence numbers. If there is no packet dropping

attack, each node in the path as well as the BS receives all packets in the flow and

79

thus possesses the same previous packet sequence. Otherwise, if the BS observes a

di↵erence between these two sequence numbers, it infers about a possible packet loss

and then takes necessary actions to confirm the event and to localize the faulty link.

However, the provenance verification and/or collection are performed according to

the algorithms 1 and 2, respectively. The only di↵erence is that, the BS now creates

the vertex ID corresponding to a node according to the Eq. 6.1.

3. Faulty Link Identification using Provenance: Assume, a data packet d[j]

has been dropped at an intermediate node n
i

. Thus, the nodes n
l

, n1, ..., ni

received

d[j] and updated their lastly seen packet sequences to seq[j]. On the contrary, nodes

n
i+1, ..., np

as well as the BS did not observe d[j], They have no way to update the

preceding packet sequence but to retain the same old identifier seq[j � 1]. Upon

receiving the next packet in the flow, n
l

, n1, ..., ni�1 certainly include seq[j] in the

provenance metadata whereas n
i+1, ..., np

use seq[j � 1] for this purpose. However,

the malicious node n
i

may either (i) use seq[j], which leads the BS to detect l
i

as

faulty (ii) use seq[j � 1], in which case the link l(i�1) is identified as faulty. In any

case, an adjacent link to the malicious node is identified and held responsible for.

Without the loss of generality, we assume that the malicious node encodes seq[j� 1].

Figure 6.3 shows the algorithm to identify an earlier packet loss, to localize the

faulty link, and also to ensure that no other attack has been encountered on the

current packet. It uses the received iBF to identify the contributing nodes and to

collect their encoded provenance records. For this purpose, it checks the membership

of all nodes in the network within the iBF using a two step process. The first query is

performed with the previous packet identifier (pSeq) contained in the packet header

and the next one with the sequence number (pSeq
b

) recorded at the BS. Let, the set

of nodes found in the first and second step are respectively S1 = < n0
l

, n0
1, ..., n

0
(i�1) >

and S2 = < n0
i

, ..., n0
p

>. The BF constructed with S1 and S2 are BF1 and BF2,

respectively. The final Bloom filter BF
c

is constructed as a bitwise-OR of BF1 and

BF2. If BF
c

and the received iBF ibf completely matches, the event of a packet loss

is confirmed. In this case, the path constructed on the set of nodes S = S1 U S2 is

80

equivalent to the path P as well as S1 = < n
l

, n1, ..., n(i�1) > and S2 = < n
i

, ..., n
p

>.

Thus, we can conclude that the link l(i�1) is faulty and causes the packet loss.

4. Certification of Attack: To confirm that the faulty link l(i�1) is actually

malicious (i.e. causes packet dropping attack), the BS observes more packets. When-

ever the BS identifies a packet loss and the responsible link l(i�1), it updates the

empirical loss rate el(i�1) for the link. Assume, the drop rate threshold for a link is ↵,

where ↵ is greater than the natural loss rate of any link. If after a number of packet

transmissions, el(i�1) > ↵, then the BS convicts l(i�1) as a malicious link.

6.2.1 Performance Analysis

Provenance is used to detect a packet loss and to identify the faulty link. Thus the

faulty link detection error depends on the BF parameters and can be analyzed in a

similar way as in sec. 5.3.3. The only di↵erence is that the element space is larger now

due to considering an element as the concatenation of nodeID and a packet sequence.

Hence a larger BF is required to keep the false positive rate small.

Since packet dropping attack directly reduces the amount of legitimate data

throughput, we also analyze our scheme to provide the theoretical bounds for guaran-

teed end-to-end throughput under attacker’s control and also attack detection rate.

Let ⇢
i

be the natural packet loss rate of link l
i

, and ⇢
i

’s are i.i.d. random variables

with maximum value ⇢. Let ↵ denotes the per-link drop rate threshold. The theoret-

ical bounds are computed under the converged condition when the empirical loss rate

converges to its true value within a small uncertainty interval. The detection rate

of the proposed scheme i.e. the number of data packets transmitted by the source

before reaching the converged condition is computed in the following theorem

Theorem 1: Given the threshold ↵ = ⇢ + ✏ and the allowed false positive �, the

scheme requires the
ln 2

�

8✏2.(1�⇢)D
packets transmitted by the source to converge.

The following theorem provides a bound on the damage that an adversary can inflict

to the networks end-to-end throughput by the time of detection.

81

Theorem 2: Given a path of length D, an adversary in control of z intermediate

links can cause (at most) the z↵ end-to-end packet loss rates without being detected.

6.2.2 Simulation Results

We use simulations to further verify our analysis and to show the e↵ectiveness of

the proposed schemes. The scheme is implemented in TinyOS and the simulations

are conducted using the TinyOS simulator - TOSSIM. We consider a network of 100

nodes where the maximum number of hops vary from 2 to 14. For energy analysis,

PowerTOSSIM z [90] is used which utilizes the micaz energy model. Unless otherwise

stated, the simulation results are averaged over 100 runs.

Fig. 6.4(a) and 6.4(b) show the percentages of provenance collection error and

corresponding false positive rates for the provenance scheme to detect packet drop-

ping attack. Since the element space for the received iBF here increases compared to

the basic scheme, the error rates increase than earlier for the same BF sizes. Since

a very little fraction of packets change the data flow path, provenance verification

process succeeds most of the time and the collection process is executed so infre-

quently. Hence, the collection error does not a↵ect much the accuracy of the faulty

link identification process. The impact of the collection error can further be mini-

mized by getting the order of the nodes in the path using topology knowledge. We

have found that encoding edges greatly helps in this regard by providing the exact

topology information.

Fig. 6.4(c) shows the accuracy of the faulty link identification process over time

and how it leads to the detection of packet dropping attack. The figure plots the link

loss rates over packet transmissions in order to show the convergence of link statistics

to their actual values. For an uncompromised node, the link loss rate should converge

to the natural loss rate whereas for a malicious node the link statistics should tend

towards a significantly higher loss rate which would confirm the packet dropping

attack. For this experiment, we consider an arbitrary 6 hop path where n3 is the

82

malicious node and controls the link l3. Natural link loss rate ⇢ = 0.01, malicious

link loss rate ↵ is 0.03, and allowed false positive � = 0.003. The dynamics prove

that eventually the packet dropping attack is detected successfully. However, there

is probability of error since in earlier stage the loss rate of malicious link seems to be

much less than 0.03 while the loss rates of benign links seem high.

Fig. 6.4(d) presents the degradation of data throughput by the time the attack is

detected in case of 1 and 2 malicious nodes deployed. The fraction of dropped tra�c

are ⇠ 0.03 and ⇠ 0.055 for 1 and 2 intermediate malicious nodes, respectively. The

empirical results are bounded by the theoretical estimations.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 2 4 6 8 10 12 14

Co
lle

ct
io

n
Er

ro
r (

%
)

Number of Hops

BF size=16 bytes
BF size=20 bytes
BF size=30 bytes
BF size=35 bytes

(a) Collection Error for provenance scheme

detecting packet dropping attack

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 2 4 6 8 10 12 14

Fa
lse

 P
os

iti
ve

 R
at

e

Number of Hops

BF Size=16 bytes
BF Size=20 bytes
BF Size=30 bytes
BF Size=35 bytes

(b) False Positive Rate for provenance

scheme detecting packet dropping attack

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 200 400 600 800 1000 1200

Li
nk

 L
os

s R
at

e

Number of Packets

Benign Link 1
Benign Link 2

Malicious Link

(c) Accuracy of faulty link identification

and the detection of attack over time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 6 8 10 12 14

Fr
ac

tio
n

of
 P

ac
ke

t D
ro

pp
ed

Number of Hops

1 malicious node
2 malicious nodes

(d) End-to-end packet drop rate

Fig. 6.4.: Performance of Provenance Scheme Detecting Packet Dropping Attack

83

7. A SECURITY INCIDENT RESPONSE AND

PREVENTION SYSTEM FOR WIRELESS SENSOR

NETWORKS

Wireless Sensor Networks (WSNs) are susceptible to operational failures and security

attacks due to resource constraints, unattended operating environment, and com-

munication phenomena. However, WSN applications impose stringent requirements

on reliable and trustworthy data delivery, and service availability. It becomes more

challenging to satisfy these requirements when attackers exploit the insecure and vul-

nerable nature of sensor environments to falsify context, modify access rights, and, in

general, disrupt the system operation [91]. This can result in a wide area blackout, a

patient receiving the wrong treatment, or worse, facing a life risk [92]. Thus, WSNs

must be able to continuously provide their services despite anomalies or attacks and

to e↵ectively recover from attacks without significant interruption.

Over the recent years, Intrusion Detection Systems (IDSes) [49, 93, 94] have been

proposed specifically for WSNs, which cooperatively detect intrusions and report

possible attacks to a central authority. However, these systems are not equipped with

response tools that would enable automatic responses and recovery actions. The

intrusion response systems developed for other domains, such as database systems,

distributed systems, cannot be directly used in WSNs due to significant di↵erences in

their operations, resources, and communication. In the context of WSNs, we need an

intrusion response system that is lightweight in terms of computational cost, and

resource usage. To fulfill this objective, the system should use local and cooperative

strategies instead of heavy interactions with a central authority. Also the response

policies should be specified so not incur much overhead when selecting the appropriate

response actions. Nonetheless, the response system should respond in real-time, yet

execute the most e↵ective action for each anomaly or attack in a secure fashion.

84

In this section, we describe Kinesis - the first systematic approach to a security

incident response and prevention system (IRPS) for WSNs. We extend the concept

of traditional intrusion response systems to an extensive response framework that not

only recovers from attacks, but also reacts to anomalies in order to prevent service

disruptions and attacks. The system is lightweight, cooperative, and distributed in

design. According to our design, each sensor in the WSN is a watchdog monitor [49]

and hosts both an IDS, and the Kinesis system. Through the IDS, the monitor

observes neighbor behaviors, detects suspicious incidents (anomaly/attack) in the

neighborhood, and notifies Kinesis. However, Kinesis depends on the IDS only for

the notifications on good/bad neighbor behaviors which is the basic functionality of

an IDS. Upon being notified of an incident, Kinesis matches the appropriate response

policy from the set of response policies specified by the base station (BS).

To support the specification of response policies in Kinesis, we propose a WSN

specific lightweight policy language based on the Event-Condition-Action (ECA)

paradigm [95]. A response policy is defined on an incident and specifies di↵erent

actions based on security assessments of the suspect node. A monitor estimates the

security level of the suspect node based on the (i) incident detection confidence, (ii)

suspect’s behavior history, and (iii) incident impact on the WSN. This strategy helps

selecting the most e↵ective response action at any instant. We have surveyed the

various attacks in WSNs and created a taxonomy of attacks (Fig. 7.1) and a compre-

hensive set of response actions (Table 7.3). However, Kinesis can generate responses

against an unknown attack based on the anomalous behavior the attack manifests.

To trigger the response execution corresponding to an incident, Kinesis selects a

daemon node in a neighborhood via a self-organized competition among the neighbors.

The competition is controlled in a distributed fashion by a per-node action timer.

The node whose timer fires first wins the competition and executes the action. Most

of the actions involve a transmission which is overheard by the neighbors and then

allows the neighbors to stop their action timers and to refrain from taking redundant

actions. Thus, Kinesis does not require any message exchanges for the response action

85

synchronization and has no communication overhead. A node’s action timer value

is locally estimated based on: (i) neighborhood size, (ii) neighbor link qualities, (iii)

time since its last action. It reflects the e↵ectiveness of a node in executing the action

and ensures load distribution among the neighbors.

The distributed nature of Kinesis also enhances security. When a node is com-

promised, other legitimate nodes in the neighborhood can continue with the Kinesis

functionalities. Kinesis is secure in terms of policy dissemination and storage since

the BS specifies the policies, converts them to a binary code and disseminates the

binary throughout the network with a secure dissemination protocol [96].

7.1 Background and System Model

7.1.1 Network Model

We consider a multi-hop wireless sensor network, consisting of a number of sensor

nodes and a base station (BS) that collects data from the network. A node is assumed

to have more than one neighbor node which can monitor its behaviors. The BS is

secure and has a secure mechanism to broadcast authentic messages and to dissem-

inate code updates in the network. Sensor nodes are stationary after deployment,

but routing paths may change over time, e.g., due to node failure. Once after the

deployment, the BS assigns each node u a unique nodeID and a cryptographic key

K
u

. Each node also shares a pairwise key K
u,k

with each neighbor k and a group key

K
g

with all the neighbors.

7.1.2 Threat Model and Security Objectives

We consider the BS as trusted, but any other node may be malicious. We assume

a majority of honest nodes in a neighborhood. The WSN maintains the standard

layered architecture of protocol stack which enables typical as well as WSN specific

attacks to these layers. The attacks are directed to impair the following resources: (i)

86

Fig. 7.1.: Attack Graph

Network, (ii) Control and data message, (iii) Sensor device resources, e.g. memory,

power, etc. Below, we discuss these attacks with respect to the target resources.

Communication Network: Jamming disrupts a sub-network or even the entire

network. Attacks at the link layer include purposely introduced collisions, resource

exhaustion, and unfairness in medium access.

Messages: In a WSN, all the nodes act as routers. Hence, an attacker may spoof,

alter, or replay routing messages to disrupt network tra�c through creating routing

loops, changing routes, attracting or repelling tra�c from selected nodes, increasing

latency, etc. Examples include sinkhole, selective forwarding, blackhole, wormhole

attack. While these attacks can also be performed on data packets, additional attacks

like false data injection, and delayed forwarding may be conducted to degrade data

quality and utility.

Sensor Devices: Sensor devices come without tamper-resistant packaging, which

adds the risk of physical attacks, e.g., physical capture, tampering, etc. An adversary

can extract the secrets stored on captured sensors’ chip and cause substantial damage

by exploiting software vulnerabilities. The adversary can also replicate the captured

sensors and place them into network at chosen locations (replication attack). Once

these replicas gain the trust of others, they can launch a variety of insider attacks

87

described above. ID spoofing, e.g. Sybil attack, poses threat by enabling a malicious

node to present multiple false identities to the network.

To summarize, attacks may take place in many forms but they disrupt the WSN

by a↵ecting one or more of the above resources. Thus when an anomaly or attack

is detected, our objective is to issue and execute the most e↵ective response actions

in a secure manner so that the WSN su↵ers minimum impact on its resources and

recovers from the attack.

7.1.3 Intrusion Detection System (IDS)

A number of IDSes [49, 93, 94] have been proposed specifically for WSNs that

cooperatively detect intrusions. Due to the broadcast nature of wireless channels,

overhearing is a natural phenomenon in WSNs. Neighboring nodes overhear trans-

missions from each other, even if they are not the intended recipients [97]. Utilizing

this fact, Marti et al. [49] introduce the watchdog mechanism by which a node identi-

fies a misbehaving neighbor node by observing the neighbor behaviors. Such a node

is termed watchdog monitor (a.k.a monitor). Each monitor observes its neighbors,

collects audit data, and then performs behavioral analysis for each of them to detect

any suspicious activity. The intrusions are cooperatively detected by the monitors

based on their analyses, and a set of pre-defined or adaptive inference rules. The

relationships between the symptoms used by the IDSes and the various attacks are

shown in Figure 7.1.

7.2 Design Overview of Kinesis

In Kinesis, each monitor hosts a distributed IDS and the Kinesis system. Through

the IDS, a monitor observes neighbor behaviors, detects suspicious incidents in the

neighborhood, and notifies Kinesis for automated response action. However, as we see

in section 7.3.3, Kinesis depends on the IDS only for the notifications on good/bad

88

behaviors which is the basic functionality of an IDS. Hence, the design or any concern

specific to IDS are out of the scope of our work.

Sensor'node'
IDS'

Kinesis'

Ac#on&Selector&

Communicator&

Feedback&on&Responses&

Executor&

Neighbor&Observer&

ac#on&decision&

messages&
set&of&response&ac#ons&

anomaly&/aBack&
report&

neighbors&
behavior&

observa#ons&

fa
lse

&a
le
rt
&

Fig. 7.2.: Overview of the Kinesis Architecture

Figure 7.2 shows the architecture of Kinesis. The background process Neigh-

bor Observer, with the help of IDS observations, records recent behaviors for each

monitored neighbor and periodically updates the neighbor’s security status based

on this history. Upon detecting an incident, the IDS reports to Kinesis the possible

anomaly/attacks, suspect node(s), and alert confidence for each reported anomaly/attack.

The Action Selector then performs the security assessment of the suspect node based

on the alert confidence, the suspect behavior history, and the incident impact. Based

on the security assessment, the action(s) to be executed are selected dynamically from

the response policy matched on the incident. Due to the incident based approach,

Kinesis can handle unknown attacks based on the anomalous behaviors they manifest.

Given a set of response action(s), the Executor triggers and executes the actions.

A monitor competes to be the next daemon (i.e. one to take the response action)

by setting an action timer inversely proportional to its action e↵ectiveness and takes

the action when the timer fires. Note that some actions, such as log, analyze, etc.,

are executed by each node independently whereas for actions, like retransmit data,

redundant actions by the neighbors should be minimized. In the latter case, upon

hearing an action taken by a monitor, other monitors in the neighborhood stop their

89

action timers to refrain themselves from taking any further action for that incident.

Any communication related to response actions or with the BS is handled by the

Communicator module.

7.3 Kinesis System Details

7.3.1 State Information

Each node u maintains a list of its neighbors, N(u), and link quality, L(u, k),

with each neighbor k 2 N(u). Also, u retains: (i) Per-neighbor sliding window w
k

of size W to record the neighbor behavior observations. Using the behavior history,

u updates the security estimation and state of the neighbors. (ii) An action timer

value to indicate how long u waits before triggering the next action, if it wins the

competition.

7.3.2 Response Policy Specification

For modeling response policies in Kinesis, we propose a WSN specific lightweight

policy language based on the Event-Condition-Action (ECA) paradigm [95]. A re-

sponse policy is defined on an incident (equivalent to event in ECA) and specifies

actions for di↵erent security estimations, which combine the various conditions on

the incident and the suspect. We adopt the ECA paradigm since it is inline with our

incident-centric approach for response management and simplifies policy specification.

The response policies are specified as a set of rules, expressed with the grammar

in Table 7.1. The words within quotes ’ ’ are static tokens and the italics represent

functions. The main construct of the language is <rule> which defines the response

policy corresponding to an attack or anomaly.

90

Table 7.1: Response Policy Language

<rules> ::= ’Begin’ <rule-list> ’End’
<rule-list> ::= <rule> <rule-list> | <rule>
<rule> ::= ’on’ <incident> (<condition> <action-list>)+
<incident> ::= <anomaly> | <attack>
<anomaly> ::= data loss | data alteration | data replay | ...
<attack> ::= unknown | selective forwarding | jamming | ...
<condition> ::= <condition>*|’if’ <incident> ’then’

|’if’ severity(<suspect>,<incident>) <op> (<value>|<range>) ’then’
<op> ::= ’<’ | ’>’ | ’<=’ | ’>=’ | ’==’ | ’ !=’ | ’IN’
<action-list> ::= <action>, <action-list> | <action>
<action> ::= <conservative-action> (<suspect>)*

|<moderate-action> (<suspect>)*
|<aggressive-action> (<suspect>)*

<aggressive-action> :: = revoke | reauthenticate | rekey | ...
<moderate-action> ::= retransmit data | trigger data authentication | ...
<conservative-action> ::= nop | analyze | alert | ...
<suspect> ::= <digit>+ | <literal> (<literal>*<digit>*)*
<range> ::= (’[’|’(’) <value>–<value> (’)’|’]’)
<value> ::= <digit> | <digit>+. <digit>+
<digit> ::= [’0’-’9’]
<literal> ::= [’A’-’Z”a’-’z’]

Through a detailed analysis of the various attacks in WSNs and corresponding

remedies, we have identified a comprehensive set of response actions, listed in Ta-

ble 7.3. The actions are categorized into three classes based on the severity:

(i) Conservative: Low severity actions that may help a monitor in more precise at-

tack detection or in not executing erroneous responses, but cannot prevent or recover

from attacks.

(ii) Moderate: Actions intended to preserve the WSN services under failures or

attacks.

(iii) Aggressive: High severity responses which are executed to recover from an

attack and to prevent further malicious attempts. These actions may be executed at

local sensors or may require help from the BS to execute them.

An example policy for data alteration incident is shown in Table 7.2. Here,

nodeID refers to the suspect node identifier.

91

Table 7.2: Response Policy Example

on ’data alteration’
if severity(data alteration, nodeID) <= 0.3 then retransmit data

if severity(data alteration, nodeID) IN (0.3,0.6]
then retransmit data, trigger route change

if severity(data alteration, nodeID) > 0.6
then revoke nodeID

Table 7.3: Taxonomy of Response Actions

Actions Descriptions
CONSERVATIVE: Low Severity

nop No actions to take
log, analyze Record auxiliary information and analyze
alert Notify the suspicious node(s) or other neighbors/the BS about the misbehavior

MODERATE: Medium Severity
discard data Prevent forwarding false data
retransmit data Retransmits cached data
trigger reauthentication Re-authenticate the suspicious node
trigger route change Change route and notify others
trigger multipath routing Route data through multiple paths
suspend Temporarily block the suspect node

AGGRESSIVE: High Severity
revoke Black list/block the convicted node
re-program Re-program the malicious node
re-key Re-key the (sub) network
flood alerts Flood alert messages in the network

7.3.3 Policy Matching and Response Selection

Since response policies are defined specific to incidents, it is straightforward to

match the policy for an incident in Kinesis. However, the action to execute is selected

dynamically from the action set specified by the matched policy, based on the security

assessment of the suspect. This strategy ensures that Kinesis takes the most e↵ective

action at any incident.

The security assessment of a node is quantified by a Security Index (SI). In Kine-

sis, a monitor continuously updates per-neighbor security state records based on its

observations of the neighbor behaviors. The SI of a neighbor is also updated on each

observation. If a neighbor shows legitimate behavior, its SI is updated based on the

92

behavior observations only. Otherwise, if an incident is reported (i.e. a misbehavior

is observed), SI is updated based on three factors:

(i) Incident Confidence: The confidence with which an incident is detected, denoted

by a Confidence Index (CI).

(ii) Incident Impact: A numeric value of the impact of the incident on the WSN,

denoted by an Impact Index (II).

(iii) Neighbor behavior history: The continuous behavior observations and security

state of the neighbor, reflecting how much the monitor believes the suspect node.

In what follows, we discuss how Kinesis computes these indices and then selects

the response action based on SI.

Confidence Index (CI)

The IDS associates a confidence value with each incident reported to indicate

the likelihood of its occurrence. We utilize it to select a response action since it

measures how e↵ective the IDS is in detecting an incident and how severe the response

should be. However, if the IDS does not provide an in-built confidence value, Kinesis

computes CI as follows:

(i) For Anomalies, we consider CI = 1. This is reasonable since watchdog monitors

can correctly identify a failure or misbehaving event [49].

(ii) For Attacks, CI is computed as a false alarm rate based on the past performance

of the IDS about successfully detecting attacks. Thus, CI is computed as:

CI =
of true attacks

of attacks reported
(7.1)

The details of how Kinesis gets feedback about false alerts are discussed in

section 7.3.6.

93

Impact Index (II)

The II estimates the overall impact of an anomaly/attack and implies the urgency

and extremity of the response action Despite extensive work on vulnerability scoring

in enterprise networks [98], little attention is paid to WSNs. A few mathematical

risk models for WSNs have been proposed [99], but they do not provide a complete

framework considering the WSN specific practical concerns. In this work, we propose

a simple mechanism to estimate the impact of an incident.

Table 7.4 lists the consequences of incidents to the WSN services. Based on the

priority of the WSN, the BS assigns static scores to the impacts and configures the

nodes with the incident-impact mapping and impact scores. On receiving a report of

incident x, Kinesis computes the incident impact as:

Ik(x) =

P
n

j=0 impactk
x

[j]⇥ rk[j]
P

n

j=0 r
k[j]

(7.2)

where k is the type of impact, n is the total number of k-type impacts, impactk
x

is

an n-length array of k-type impacts for incident x where impactk
x

[j] = 1 means that

the incident has j-th impact, and rk is an array of impact scores associated with

the k-type impacts. Using Eq. 7.2, Kinesis computes the Data Impact (Id), Network

Impact (In), Node Impact (Is) of the incident and then the II as follows:

II(x) = �
d

⇥ Id(x) + �
n

⇥ In(x) + �
s

⇥ Is(x) (7.3)

where, the coe�cients �
d

, �
n

, �
s

� 0 are real numbers such that �
d

+ �
n

+ �
s

= 1.

Note that if the network administrator does not change the WSN priorities, the Impact

Indexes are static and need to be calculated only once after deployment.

94

Table 7.4: Possible impacts of WSN anomalies and attacks

Data Impact Data delay, unavailability, alteration, falsification
Network Impact Network unavailability, disruption; Path unavailability
Node Impact Node unavailability, misbehavior, malfunction

Neighbor Behavior Observations

The neighbor behaviors help a monitor assess how vulnerable the neighbor is

and how likely that it is going to make an attack. Hence, we consider the behavior

observations of the suspect node while determining the severity of the response action.

Usually IDSes maintain the behavior history and trust scores [100]. However to

conform with IDSes without such facilities, we provide a design to record the neighbor

behaviors and to utilize them in computing security score and state.

To justify the accuracy of the response action, we utilize the history of neighbor

behaviors rather than the latest single behavior. Kinesis maintains a per-neighbor

sliding window w
k

of size W to keep track of the neighbor’s most recent W behaviors.

When the IDS notifies about a behavior of neighbor k, Kinesis pushes out the oldest

behavior from w
k

and stores the recent one. We consider two types of behaviors:

(i) Service Behavior : How trustworthy a neighbor node is in providing WSN services,

e.g., in-time packet forwarding.

(ii) IPRS Behavior : How e�cient and honest the neighbor is in taking required and

desired actions.

Security Index and State Update

Amonitor u computes SI for each neighbor k 2 N(u) on each behavior observation

for k and updates the security state accordingly. A node is estimated to be in five

possible states: (i) Fresh, (ii) Suspicious, (iii) Secure, (iv) Malicious, and (v) Revoked.

Figure 7.3 shows the security state transition diagram. After the network deployment,

95

a monitor assigns to all its neighbors the Fresh state with SI = 0. For a pre-specified

amount of time t
f

, a neighbor is considered to be in Fresh state while its SI is updated

on behavior observations according to Eq. 7.6. The significance of Fresh state is that

a neighbor is given the benefit-of-doubt while being in this state. Although the SI

of a suspect node in Fresh state a↵ects the response selection, no aggressive action

is taken against the node, i.e., the node is not revoked, reprogrammed, etc. After

a time of t
f

, the neighbor moves to Suspicious or Secure state based on its SI. A

node in the Suspicious state moves to the Secure state if its SI decreases due to

legitimate behaviors. On the contrary, if a node in the Suspicious state continues

its anomalous behavior, its SI goes above a pre-defined threshold �2 and the node

moves to the Malicious state. When a neighbor goes to the Malicious state, the

monitor initiates an aggressive action against the node. A neighbor node can also be

revoked anytime due to the monitor’s own decision or action initiated by neighboring

monitors. In this case, the monitor enlists the suspect node as Revoked and discards

further request/data from the node.

We formulate the computation of SI of a neighbor k with two auxiliary functions

f(x) and g(SI), where f(x) computes the severity of an incident x and g(SI) returns

a coe�cient based on the current SI and security state of k.

g(SI) =

8
>>>>><

>>>>>:

1 ; SI  �1 i.e k is Fresh/Secure

1.5 ; �1  SI  �2 i.e k is Suspicious

2 ; SI > �2 i.e. k is Malicious

(7.4)

f(x) =

8
><

>:

0 ; x is good behavior

min(CI ⇥ II(x)⇥ g(SI), 1) ; otherwise

(7.5)

On each i-th behavior observation for neighbor k, its SI is computed at a monitor as

SI =

8
><

>:

P
i

j=1 f(wk

[j])

i

, if i  W
P

W

j=1 f(wk

[j])�f(w
k

[0]))

W

, if i > W
(7.6)

96

Fresh

Secure

Suspicious

time < tf time > tf ʌ SI > σ1

tim
e > tf ʌ SI < σ

1

Revoked

Malicious

σ1 < SI < σ2

Fig. 7.3.: Security State Diagram of a Monitored Node

7.3.4 Response Computation and Optimization

If the IDS reports a single anomaly/attack corresponding to an incident, Kinesis

computes the SI, matches the response policy and selects the SI based action(s) from

the matched policy. When multiple possible incidents are reported, we may follow

the same procedure to select the action(s) for each reported incident and compute

the final action set as a union of these actions. However, each individual action set

may be inclusive, overlapping, inconsistent with respect to the other sets. Moreover,

before considering new action(s) for execution, we should check the on-line actions to

find out the same relationships. To resolve this issue for a limited resource system,

we introduce the action precedence graph.

The Action precedence graph (APG) is a directed graph which describes the

precedence relationship between actions in terms of their e↵ectiveness. Here, (i)

each node a
i

is an action, (ii) an edge a
i

! a
j

denotes that the parent action a
i

invalidates the child action a
j

, and (iii) a black edge a
i

) a
j

denotes that a
i

and a
j

are contradictory actions and on conflict, a
i

is executed. Thus the execution of an

action a
i

invalidates all of its successors, and a
j

not reachable by a
i

means that they

are independent actions. Two actions a
i

, a
j

conflict if one can reach the other only

through a path of black edges. An example APG is shown in Figure 7.4 where the

reprogram action overrules all of its successors, {log, analyze, alert} are independent

97

of each other, and {retransmit data, reauthenticate data, discard data} conflict. We

assume that the BS pre-configures the nodes with all possible response actions and

the precedence relationships between them.

Algorithm 3 : cors() - Computation of Optimized Response Set

Input: Response sets A = {a
i

}, B = {b
i

}
Output: Optimized response set O

if A = B then
O A // A is equivalent to B

else if 8a
i

, 9b
j

, b
j

! a
i

then
O B // B covers A

else if 8a
i

, 8b
i

, a
i

) b
j

or Vice-versa then
O A (or B) // A contradicts B

else if 9a
i

, 9b
j

, a
i

! b
j

then
O A [(A\B) // A intersects B

else
O A [B // A is independent to B

end if

By utilizing the APG, Algo. 3 computes the equivalence, independence, intersec-

tion, and coverage relationships between two action sets. To compute the optimized

action set from n di↵erent action sets {A1, A2, . . . , An

} (each specific to an individ-

ual incident), Kinesis runs a recursive algorithm initialized with O1 = A1 and then

computing O
i

= cors(O
i�1, Ai

) for i = 2, 3, . . . , n.

discard datadiscard data

reauthenticate
data

reauthenticate
data

retransmit dataretransmit data

reprogramreprogram

revokerevoke

loglog

analyzeanalyze

trigger
authentication

trigger
authentication

Fig. 7.4.: Example of an Attack Precedence Graph

98

7.3.5 Execution of a Response Action

The response action executions are fully distributed in Kinesis. The low/medium

severity actions are executed by the monitors solely based on their own decisions. The

high severity actions against convicted nodes require consensus among the monitors

in the neighborhood. In the latter case, a selected monitor node (daemon) broad-

casts a message asking the decisions of other monitors, performs a majority voting

on the collected replies, and then executes the agreed upon action. Some aggressive

actions, such as reprogram, rekey, etc. cannot be completed at the sensors. In such a

scenario, the daemon node notifies the BS with an authenticated report and the BS

then performs the action. In addition, even though some actions like retransmit data,

alert others, etc. can be executed upon a monitor’s own decision, they require inter-

actions with other nodes. In all these cases, a monitor has to initiate the action

and take over all the related responsibilities. Kinesis dynamically selects the most

competent node as the daemon to ensure the action e↵ectiveness and to avoid the

same node doing all the job all the time.

Selection of the Daemon

A node is selected as the daemon via a self-organized competition among neigh-

boring monitors. The novelty of our scheme is that we do not need any message

exchange or special time synchronization among neighbors to manage the action ex-

ecutions. Each node in a neighborhood competes independently through a locally

managed back-o↵ timer, called action timer. The timer value of a node u depends

on the action e↵ectiveness, AE(u), of the node, which is estimated locally based on:

(i) neighborhood size, (ii) one-hop link qualities, and (iii) time since last action. In-

tuitively, if a node has more neighbors with good link qualities, it can interact with

more monitors and help minimize redundant actions. Again, if the node is idle for a

99

long time, it should take the action to ensure load distribution in the neighborhood.

Thus, the AE(u) is computed as follows:

AE(u) / c1 ⇥ t
l

+ c2 ⇥
X

k2N(u)
k2N(s)

L(u, k) (7.7)

Here, c1, c2 are real numbers, N(u), N(s) denote the neighbors of u and the

suspect node, respectively, L(u, k) is the link quality between u and the monitor k,

and t
l

is the time since last action by u. The higher the AE(u), the more e↵ective

u’s action is. u joins the competition to be next daemon by setting the timer value

inversely proportional to AE(u).

ActionT imer(u) / 1

AE(u)
(7.8)

Thus, a node with better AE has lower back-o↵ period and wins the daemon

selection competition. When the action involves a transmission and a neighbor k

overhears it, the node stops its running timer to avoid any redundant action for

the same incident and updates its t
l

and AE value. Kinesis could allow redundant

actions with a goal to enhance the system reliability. For example, suppose that node

u drops data packets and one of its monitors retransmits the dropped packets. If

another attacker v in the data flow path drops retransmitted packets, then redundant

transmissions by multiple neighbors of u may help mitigate data loss. However when

v drops data, its neighboring monitors retransmit the data, which invalidates the

necessity of redundant actions by u’s neighbors. Our experimental results also support

the design of minimizing redundant actions as we see very low data loss rate in the

presence of multiple attackers.

Consensus among the monitors

To execute high severity actions, the monitors consult with each other and decide

an action based on majority voting. After selecting a response action, the daemon

100

node broadcasts an authenticated status req msg in the neighborhood. The message

contains the (i) detected attack, (ii) the suspect node, (iii) the response decision, and

(iv) a Message Authentication Code (MAC) computed on the data using the group

key K
g

.

Upon receiving the message, each neighboring monitor replies with an authen-

ticated status reply msg, containing the local response decision. The daemon node

computes and broadcasts again the majority voting result. Based on the voting de-

cision, the daemon may execute the agreed upon action or notify the BS with an

authenticated report to trigger the action. The neighboring monitors also observe

each other to check whether they abide by the voting decision and otherwise records

a bad behavior for the misbehaving node.

7.3.6 Response Feedback

The majority voting decision gives a feedback to the monitors about their accuracy

in terms of detecting an incident and selecting the actions. If the severity of the agreed

upon action is lower than the locally determined action at a node, it implies a false

alarm and decreases the confidence of the monitor. Every monitor node keeps the

records of its false alarms and updates its CI. Note that we do not consider false

negatives here. Response feedback may also help assess the e↵ectiveness of the taken

action for an incident. However, we do not investigate the direction in this work.

7.3.7 Secure Policy Storage and Dissemination

A naive approach to store the policies is to use a file or database, which Ki-

nesis would read to select the response policy for an incident. Despite simplicity

and incremental update facility for policies, this approach has significant drawbacks.

Most of the operating systems for sensors do not support file or memory protection.

So, malicious modules can manipulate the policy file/database. Also reading the

101

file/database on each incident results in a large number of expensive operations for

resource constrained sensors.

To overcome these di�culties, Kinesis allows the BS to generate a binary from

the input policy file and to disseminate the binary throughout the WSN as standard

code dissemination. To implement new response actions or update response policies,

the BS generates a binary of the updated Kinesis implementation and disseminates

the updated binary. The binary dissemination is likely to be more expensive than an

incremental policy update as in the naive approach. However, we assume that action

or policy changes are infrequent and thus do not become a serious concern. It

also eliminates the need for expensive read of flash memory at run-time. To maintain

the integrity of policies, we utilize secure code dissemination protocols for WSNs [96].

Since policy dissemination is secure and a node only installs an authenticated binary

at any time, the policy integrity is ensured.

7.3.8 Implementation and Configuration

We implement Kinesis in TinyOS 2.x. We adapt the Skipjack encryption based

CBC-MAC implementation in TinySec [86] for TinyOS 2.x to compute a 4-byte MAC

while majority voting. The implementation is lightweight since it takes 0.38 ms for

Mica2 motes [86] and would take less time in TelosB platform since TelosB has higher

processing capability than Mica2 mote.

The modular design and implementation of Kinesis add flexibility to the system.

According to the policy language we define in Sec. 7.3, policy rules are implemented as

switch-case based on incident. This strategy optimizes the implementation. Security

state thresholds (�1, �2) are used to specify the severities in policies. To compute

�1, �2, we average over all the incident impacts, measure SI with this average impact

for various attack rates, and select the values based on the tolerance to attack rates.

The particular set of response actions used to specify the policies are determined

based on the security goals of the WSN application.

102

As Kinesis configuration, the WSN administrator configures the sensors with the

incident-impact mappings, impact scores, and the real coe�cients. The data, network,

or node impacts of an incident do not vary across di↵erent WSNs, hence the incident-

impact mappings are static. On the contrary, how severely an incident a↵ects the

WSN services may well depend on the network application. Thus, the impact scores

and � coe�cients, used to compute the II, should be set by the administrator ac-

cording to the application requirements. However, we assume that these configuration

parameters are changed infrequently over the network lifetime.

7.4 Simulation Results

In this section, we present simulation results to show the performance of Kinesis

under various network settings.

7.4.1 Simulation Setup

For simulation, we use the TinyOS simulator TOSSIM. The network topologies are

generated with symmetric links. As a routing protocol, we use the standard Collection

Tree Protocol (CTP). In the experiments, we consider the following application and

network layer anomalies and attacks: (i) data loss, (ii) data alteration, (iii) selective

forwarding, and (iv) sinkhole attack. The policies considered for these incidents are

shown in Table 7.5. To detect incidents, we implement a simple watchdog monitor

based IDS in TinyOS 2.x.

To configure Kinesis, we assign equal weight to the real coe�cients in Eq. 7.3, i.e.,

�
d

= 0.34, �
n

= 0.33, �
s

= 0.33. The size of the per-neighbor sliding window, W, is

set to 100. In Sec. 7.3.5, we have stated how we determine the values of �1, �2. A

data source periodically sends out data every 2 seconds. In each run of simulation,

the results are averaged over 3, 000 data transmissions. Unless otherwise stated, we

use the above default values in simulation.

103

Table 7.5: Considered Response Policies

on ’data alteration’
if severity(data alteration, nodeID) IN (0,0.2] then retransmit data
if severity(data alteration, nodeID) IN (0.2,0.4]

then trigger route change, retransmit data
if severity(data alteration, nodeID) > 0.4

then retransmit data, revoke nodeID

on ’data loss’
if severity(data loss, nodeID) IN (0,0.2] then retransmit data
if severity(data loss, nodeID) IN (0.2,0.4]

then trigger route change, retransmit data
if severity(data loss, nodeID) > 0.4

then retransmit data, revoke nodeID

on ’selective forwarding’
retransmit data, revoke nodeID

on ’inconsistent etx’
if severity(inconsistent etx, nodeID) IN (0,0.4]

then NOP
if severity(inconsistent etx, nodeID) > 0.4

then revoke nodeID

on ’sinkhole’
revoke nodeID

7.4.2 Performance Metrics

The metrics considered to evaluate Kinesis are:

(1) E↵ectiveness: Since our goal is to minimize the impact of data, network, etc.

failure, we show the e↵ectiveness of Kinesis from two aspects:

(i) Data Loss Rate at the BS : The frequency with which the BS experiences the

e↵ect of an incident i.e. the rate of reception failures at the BS. In this context, we

compare the performance of our system with (i) an attack free typical sensor

environment, and (ii) an under-attack network to show that Kinesis can get back

the WSN into a normally operating environment, even under anomalies or attacks.

(ii) Average Data Transmission Delay : On average, the amount of time a packet

104

takes to reach the BS since its transmission by the source. Here, we compare the

performance of Kinesis with an attack free scenario.

(2) Optimization of Redundant Actions: The average number of actions taken

per incident by the monitors in a neighborhood. We also measure the rate of redun-

dant actions per incident as a ratio of the number of monitors taking response actions

to the number of monitors that detected the incident. They justify our action timer

design based distributed scheme to trigger the response actions.

(3) Load Balance: How evenly the response action executions are distributed in

the neighborhood. This is indicated by the standard deviation among the number of

actions taken by the monitors in a neighborhood.

(4) Energy Consumption: The sum of energy usage by all the nodes when Kinesis

along with an IDS is in operation.

7.4.3 Grid Network Experiments

We place 16 to 100 nodes in grid topologies of dimensions from 4⇥ 4 to 10⇥ 10,

respectively. The nodes are spaced 1.5 meter apart. For each network, a data source

and an attacker are randomly selected and the results are averaged over 10 runs. The

attack rate is set to 0.1. For concurrent attacks, we place a second attacker both in

the same and di↵erent neighborhood than the first one. Both attackers are equally

likely to make an attack.

Single Attack

First, we show the performance of Kinesis in case of a single incident (anomaly/attack)

in the network.

data loss incident: In this case, a node may be faulty or malicious and drops

data packets intermittently instead of forwarding them to the BS. Fig. 7.5 shows the

performance of Kinesis under data loss incidents in WSNs of sizes from 16 to 100. As

105

shown in Fig. 7.5(a), Kinesis reduces the data loss rate of a network under attack from

[0.073, 0.103] to ⇠ 0.002, which is similar to the natural data loss rate (⇠ 0.0018)

in a network without attack. It proves the e↵ectiveness of Kinesis both in small and

large networks.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 20 30 40 50 60 70 80 90 100

D
at

a
lo

ss
 ra

te

Number of nodes

Ideal
data_loss

Kinesis + data_loss

(a) Data reception failure rate at

the BS

 0
 20
 40
 60
 80

 100
 120
 140

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + data_loss

(b) Average data transmission de-

lay

16 25 36 64 100
0

0.5

1

1.5

A
ct

io
n
s

p
e
r

e
ve

n
t

Number of nodes

(c) Average number of actions per

data loss incident

16 25 36 64 100
0

0.05

0.1

R
a
te

 o
f
re

d
u
n
d
a
n
t
a
ct

io
n
s

Number of nodes

(d) Rate of redundant actions per

data loss incident

16 25 36 64 100
0

1

2

3

4

5

6

7

8

9

S
td

.
d

e
v.

 o
f

n
u

m
b

e
r

o
f

a
ct

io
n

s

Number of nodes

(e) Load balance among neighbor

monitors

Fig. 7.5.: Kinesis Performance for data loss incidents with rate 0.1 in grid networks
of various sizes

Fig. 7.5(b) reveals the linearly increasing trend in average transmission latencies

with network sizes. However, the average latency Kinesis adds due to action execution

is almost invariant ([39.03, 41.607] ms) in di↵erent networks. The delay incurred by

Kinesis is mostly due to the action timer. According to Eq. (7.7) and (7.8), the action

timer value depends on the number of neighbors and the link qualities with them. In

the experiments, neighborhood sizes vary from 3 to 5 in di↵erent networks and the

link quality values lie in [0.8, 0.976]. The combined e↵ect of neighborhood size and

link qualities made the action timer values almost invariant in di↵erent networks.

Thus, the increasing trend in transmission delays is mainly due to the increase in

routing path length with network sizes.

106

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0.1 0.2 0.3 0.4 0.5 0.6

D
at

a
lo

ss
 ra

te

Attack Rate

Ideal
data_loss

Kinesis + data_loss

(a) Data reception failure rate at

the BS

 0
 50

 100
 150
 200
 250
 300
 350

 0.1 0.2 0.3 0.4 0.5 0.6

D
el

ay
 (i

n
m

s)

Attack Rate

Ideal
Kinesis + data_loss

(b) Average data transmission de-

lay

0.03 0.1 0.3 0.4 0.6
0

0.5

1

1.5

A
ct

io
n
s

p
e
r

e
ve

n
t

Packet drop rate

(c) Average number of actions per

data loss incident

0.03 0.1 0.3 0.4 0.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
a
te

 o
f
re

d
u
n
d
a
n
t
a
ct

io
n
s

Packet drop rate

(d) Rate of redundant actions per

data loss incident

0.03 0.1 0.3 0.4 0.6
0

2

4

6

8

10

12

14

S
td

.
d

e
v.

 o
f

n
u

m
b

e
r

o
f

a
ct

io
n

s

Packet drop rate

(e) Load balance among neighbor

monitors

Fig. 7.6.: Kinesis Performance for data loss incidents of various rates in a 10 ⇥ 10
grid network

Fig. 7.5(c) shows that Kinesis is not always able to take a single action per incident

as in ideal case. Occasionally, it triggered as high as 1.4 actions per incident on

average. However the rate of redundant actions, as shown in Fig. 7.5(d), is bounded

by 0.11. The phenomena of redundant actions may occur due to two reasons:

A. Hidden node problem: The problem occurs when the monitors of the source and

the attacker are not connected or weakly connected. We explain the scenario with

Fig. 7.7 - a segment of the attacker’s neighborhood found from a simulation topology.

Node 8 is the source, 18 is the attacker and others are the watchdog monitors.

Fig. 7.7.: A segment of the attacker’s neighborhood in the simulation topology

107

When node 18 drops a packet, all the monitors 7, 9, 29 start their action timers.

When the timer in one of the nodes 7 and 9 fires and for example 7 wins, it retransmits

the dropped data and 9 stops its timer upon overhearing the action. Since 29 does

not possess link to either 7 or 9, it cannot overhear whoever takes the action. Being

unaware of other actions on the same incident, 29 will execute the action when its

timer fires. This kind of redundancy is not a sole problem of Kinesis, but will

be a problem for any overhearing based solutions.

B. Action Timer Value: Action timer values at two monitors may be close when

the load balancing factor (i.e. time since last action) is same in both of them and

link qualities with the neighbors cannot make a big di↵erence, and vice versa. Thus,

a monitor may take redundant action if it does not get enough time to hear others’

actions by the time its action timer fires.

The small standard deviation ([1.93, 8.41]) in the number of actions by neighbor-

ing monitors, as shown in Fig. 7.5(e), indicates the high success of Kinesis in load

balancing.

To further analyze the scalability of Kinesis, we measure its performance under

various attack rates in a 100-node network and show in Fig. 7.6 how well Kinesis

survives, even for very high attack rates. As expected and consistent to earlier re-

sults, Kinesis counteracts the data loss attacks and gets the network back to normal

operating condition. Fig. 7.6(a) shows that Kinesis reduces the data loss rate of a

network under attack from [0.02, 0.52] to ⇠0.0001, which proves its e↵ectiveness and

scalability, even under higher attack rates. Fig. 7.6(b) reveals the linearly increas-

ing trend in average transmission latencies with higher rate attacks. Even average

latencies introduced by Kinesis with varying attack rates are negligible ([12,223] ms).

Fig. 7.6(c) shows that the average number of actions per incident is ⇠1.5. The

action redundancy per incident is bounded by 0.16. However, both numbers are

almost invariant with respect to attack rates. This is because the number of actions

depends on the link quality among the neighbors and the di↵erences in their action

timer values. Fig. 7.6(e) shows a small standard deviation in the number of actions

108

taken by the neighbors, which indicates the e↵ectiveness of the distributed scheme of

Kinesis in triggering action executions.

data alteration attack: In this attack, a malicious node selectively modifies the

data value in a data packet before forwarding it to the BS. We run simulations for

data alteration attacks and find similar trends in the results as in data loss incidents.

Later on, we show the performance of Kinesis for concurrent incidents of data loss +

data alteration, hence we do not report the graphs here.

selective forwarding attack: In a selective forwarding attack, the monitor

nodes initially observe data loss by the attacker and hence retransmit the dropped

data. Once they detect a selective forwarding attack, the daemon issues a state req msg

to the neighborhood. The neighboring monitors reply with their own action decision

about the suspect in a status reply msg. Based on the majority voting decision from

the replies, the daemon possibly issues a revocation request to the BS. The BS then

disseminates a revoke command to the network, upon receiving which all the nodes

exclude the attacker from the routing path.

Fig. 7.8 reports the performance of Kinesis under selective forwarding attacks in

networks of various sizes. In a selective forwarding attack, no matter whether the

attacker is revoked from the network or not, Kinesis retransmits the packet dropped

by the attacker. Hence, Kinesis reduces the data loss rate of a network under attack

to that of a network without attack. Fig. 7.8(a) supports the claim by showing that

the natural data loss rate and the loss rate of a network under attack with Kinesis

enabled are almost equal.

Fig. 7.8(b) shows an interesting and significantly di↵erent trend in transmission

delays with Kinesis under selective forwarding attack. In this case, the average trans-

mission delays are much lower compared to that of data loss incidents and quite close

to the natural data transmission delays. To analyze the performance better, we show

the average transmission delays over time in Fig. 7.8(c). Initially when the monitors

do not detect the selective forwarding attack yet but only observe data losses, they

retransmit dropped packets and thus add latencies to data transmissions. After the

109

-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 20 30 40 50 60 70 80 90 100

D
at

a
lo

ss
 ra

te

Number of nodes

Ideal
SF

Kinesis + SF

(a) Data reception failure rate at

the BS

 0
 20
 40
 60
 80

 100
 120

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + data_loss

(b) Average data transmission de-

lay

 0
 20
 40
 60
 80

 100
 120
 140
 160

 500 1000 1500 2000 2500 3000 3500 4000

D
el

ay
 (i

n
m

s)

Number of packets

Ideal
Kinesis w/o revoke

Kinesis with revoke

(c) Avg. transmission delays over

packets

16 36 49 64 100
0

1

2

3

4

5

6

7

C
o

n
tr

o
l p

a
ck

e
ts

 p
e

r
re

vo
ke

Number of nodes

(d) Average number of control

message exchanges in a neighbor-

hood on revoke

16 36 49 64 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
ct

io
n
s

p
e
r

e
ve

n
t

Number of nodes

(e) Average number of actions per

incident

16 36 49 64 100
0

0.05

0.1

0.15

0.2

0.25

R
a
te

 o
f
re

d
u
n
d
a
n
t
a
ct

io
n
s

Number of nodes

(f) Rate of redundant actions per in-

cident

16 36 49 64 100
0

1

2

3

4

5

6

7

8

9
S

td
.

d
e

v.
 o

f
n

u
m

b
e

r
o

f
a

ct
io

n
s

Number of nodes

(g) Load balance between neighbor

monitors

Fig. 7.8.: Kinesis Performance for selective forwarding (SF) attacks in grid networks
of various sizes

revocation of the attacker at packet 1755, there is no attack and hence no delay is

incurred due to response execution.

Fig. 7.8(d) shows the average number of control messages (state req msg + sta-

tus reply msg) exchanged in a neighborhood for majority voting. The state req msg

is of 27 bytes and state reply msg is of 35 bytes. The number of control messages per

majority voting is 6.2 packets. However, it is proportional to the neighborhood size

and thus does not vary with network sizes unless the number of neighbors varies.

110

Fig. 7.8(e) - 7.8(g) show that the average number of actions, action redundancy

and load distribution measurements are consistent with the earlier experiments and

can be explained in a similar way.

For the selective forwarding attacks, the monitors always agreed on the decision

to revoke the suspect node. The average time to perform the majority voting and

execute the decided action is ⇠ 96.4 ms, most of which is contributed by the action

timer value.

sinkhole attack: For sinkhole attack, we modify the CTP protocol to enable

the attacker advertising low cost routing path through it. Once the attacker attracts

all the data in the neighborhood, it drops data at a rate of 0.2.

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016

 20 30 40 50 60 70 80 90 100

D
at

a
lo

ss
 ra

te

Number of nodes

Ideal
sinkhole

Kinesis + sinkhole

(a) Data reception failure rate at

the BS

 0
 10
 20
 30
 40
 50
 60
 70
 80

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + sinkhole

(b) Average data transmission de-

lay

16 25 36 64 100
0

0.5

1

1.5

2

Ac
tio

ns
 p

er
 e

ve
nt

Number of nodes

(c) Average number of actions per

incident

16 25 36 64 100
0

0.05

0.1

0.15

0.2

0.25

R
at

e
of

 re
du

nd
an

t a
ct

io
ns

Number of nodes

(d) Rate of redundant actions per in-

cident

16 25 36 64 100
0

0.5

1

1.5

2

St
d.

 d
ev

. o
f n

um
be

r o
f a

ct
io

ns

Number of nodes

(e) Load balance between neighbor

monitors

Fig. 7.9.: Kinesis performance for sinkhole attack

In Kinesis, a monitor suspects a potential sinkhole attack upon hearing an in-

consistent path cost advertisement, which results in an update in SI for the suspect

but NOP as a response. During the subsequent packet drop observations, the mon-

itors retransmit the dropped data and eventually revoke the malicious node when

111

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6

P
ac

k
et

 l
o
ss

 r
at

e

Packet drop rate

Ideal
With attack

Kinesis with attack

(a) Data reception failure rate at the

BS

 0

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5 0.6

D
el

ay
 (

in
 m

s)

Packet drop rate

Ideal
Kinesis with attack

(b) Average data transmission delay

0.02 0.06 0.1 0.2 0.4 0.6
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

A
ct

io
n

s
p

e
r

e
ve

n
t

Attack rate

(c) Average number of actions per

incident

Fig. 7.10.: Kinesis performance for data loss + data alteration incidents with various
rates in a 10⇥ 10 grid network

the attack is confirmed. Fig. 7.9(a) shows that Kinesis reduces the data loss rate to

⇠ 0.0015. At the same time, it keeps the transmission delays closer to natural latency,

as shown in Fig. 7.9(b), due to the quick revocation of the attacker node. Note that

the sinkhole attack often created routing loop causing as high as 3.5% data loss. By

revoking the attacker, Kinesis made the WSN stable again.

Concurrent Attacks

In concurrent attack experiments, we consider two cases, (i) two simultaneous but

independent attackers, and (ii) two colluding attackers.

(i) In case of two concurrent but independent attackers, we consider an attacker

causing data loss and the other conducting data alteration at various rates in a 10⇥10

grid WSN. As we see in Fig. 7.10, Kinesis shows behaviors consistent with the single

attack scenario, in all the aspects. Thus, Kinesis is e↵ective under concurrent and

high rate attackers.

(ii) Next, we consider two colluding attackers performing sinkhole and selec-

tive forwarding (SF) attack. When the sinkhole attacker is revoked, routing path

changes enable data routing through the SF attacker which then drops data at a

rate of 0.5, and vice versa. Fig. 7.11 shows how Kinesis performs in such scenario.

112

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 20 30 40 50 60 70 80 90 100

D
at

a
lo

ss
 ra

te

Number of nodes

Ideal
sinkhole+SF

Kinesis + sinkhole+SF

(a) Data reception failure rate at the

BS

 0
 20
 40
 60
 80

 100
 120

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + sinkhole+SF

(b) Average data transmission delay

16 25 36 64 100
0

0.5

1

1.5

2

Ac
tio

ns
 p

er
 e

ve
nt

Number of nodes

(c) Average number of actions per

incident

16 25 36 64 100
0

0.05

0.1

0.15

0.2

0.25

R
at

e
of

 re
du

nd
an

t a
ct

io
ns

Number of nodes

(d) Rate of redundant actions per in-

cident

Fig. 7.11.: Kinesis performance for sinkhole + SF attacks in grid networks of various
sizes

The irregularity occurring when the number of nodes is equal to 16 is due to the

temporary routing instability after revocations.

Varying the Number of Attackers

To further show the scalability of Kinesis, we present its performance in a multi-

attacker environment. Here, we consider data loss incident and vary the number

of attackers from 2% to as high as 20% of the total nodes in a 100-node network.

Fig. 7.12(a) shows that Kinesis still keeps the data loss rate lower than 0.009. Due to

Kinesis, the average transmission latencies vary within [122.33,189.46] ms, as shown

in Fig. 7.12(b). The results are consistent to earlier results.

113

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 5 10 15 20

D
at

a
lo

ss
 ra

te

Percentage(%) of attackers

Ideal
data_loss

Kinesis + data_loss

(a) Data loss rate at the BS

 0

 50

 100

 150

 200

 5 10 15 20

D
el

ay
 (i

n
m

s)

Percentage(%) of attackers

Ideal
Kinesis + data_loss

(b) Average data transmis-
sion delay

Fig. 7.12.: Kinesis Performance for data loss for various % of attackers (with rate
0.1) in a 10⇥ 10 grid network.

Energy Consumption

We measure and compare the aggregated energy consumption of the WSN under

various incidents while Kinesis (as well as the IDS) is in operation and in an attack-

free scenario where Kinesis is not deployed (baseline). For energy measurement,

we consider MICAz platform and use PowerTOSSIM z [101] plugin. Due to the

scalability limit of PowerTOSSIM z, we consider a 6 ⇥ 6 grid WSN with one source

and one attacker.

In a Kinesis enabled system, overhearing does not incur overhead since it is in-

herent in WSNs. In TinyOS, the radio stack requires a node to receive and process

all the packets transmitted in a neighborhood to understand whether the packet is

destined to it or not. TinyOS also exposes the Receiver [102] interface that allows

one to perform actions upon overhearing a message in transit. Thus, the only energy

overhead imposed to the nodes is due to the IDS and Kinesis operations. The results

reported in Table 7.6 show that Kinesis system incurs only a maximum of 0.06%

energy overhead.

Table 7.6: Aggregated energy cost of the WSN without and with Kinesis + IDS

Baseline
Kinesis

— data loss SF sinkhole
Energy usage (⇥107 mJ) 1.320488 1.320482 1.321356 1.320480

114

Action Timer Configuration

Action timer design is crucial in Kinesis and its configuration impacts the per-

formance with respect to redundant actions and load balance. Hence, we vary the

coe�cient factors (c1, c2) in Eq. 7.7 and see the impact of timer values on Kinesis

performance. Since c1, c2 are weight coe�cients, c1 + c2 should be bounded to opti-

mize the timer value. If c1 + c2 is too small, the action timer fires frequently which

increases the number of actions. If c1 + c2 is too big, the latency increases. In our

experiment, we fixed c1 + c2 to 8. Fig. 7.13(a) shows that the optimum values of (c1,

c2) in terms of load balance are near (3,5). In Fig. 7.13(b) the optimum value is after

(4.5, 3.5). To optimize both the action redundancy and load balance, (c1, c2) should

be selected onwards (4.5, 3.5).

(1,7) (2,6) (3,5) (4,4) (5,3) (6,2) (7,1)
0

20

40

Timer coefficients (c
1
,c

2
)

L
o

ad
 b

al
an

ce

200

400

600

T
im

er
 v

al
u
e

(i
n

 m
s)

Timer value
Load balance

(a) Load balance vs Action timer

(1,7) (2,6) (3,5) (4,4) (5,3) (6,2) (7,1)
0.1

0.12

0.14

0.16

0.18

Timer coefficients (c
1
,c

2
)

R
at

e
o
f

re
d
u
n

d
an

ct
 a

ct
io

n
s

200

300

400

500

600

T
im

er
 v

al
u
e

(i
n

 m
s)

Timer value
Redundant actions

(b) Action redundancy vs Action timer

Fig. 7.13.: Coe�cient configuration for Action Timer

7.5 Testbed Evaluation

We ported the Kinesis implementation to the TelosB platform and placed battery-

powered TelosB motes in an indoor environment. Our motes have a 8 MHz TI MSP430

microcontroller, 2.4 GHz radio, 10 KB RAM, and 48 KB ROM. We ran experiments

for data loss, selective forwarding, and sinkhole attacks and use the same metrics as

115

in simulation for performance evaluation. The results of the experiments are averaged

over 1500 packets.

7.5.1 Experimental Setup

We build a 6 ⇥ 6 grid WSN, consisting of 36 TelosB motes, in a 160 ⇥ 200 cm2

indoor environment. Fig. 7.14 shows the coordinates of the network nodes, labeled

from 2 to 37. Node 10 is the source, which sends data every 1 second. We controlled

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

200

 2 3 4 5 6 7

 8 9 10 11 12 13

14 15 16 17 18 19

20 21 22 23 24 25

26 27 28 29 30 31

32 33 34 35 36 37

 1

X� D ist a n c e (in c m)

Y
�

D
ist

an
c

e
(in

 c
m

)

Fig. 7.14.: Node placement in an indoor 6⇥ 6 grid WSN

the transmission power of motes to ensure multi-hop communication. A special mote,

labeled as node 1, is set to the root node. For performance analysis, the root collects

statistics on the number of data and action packets transmitted, number of actions

per incident, transmission delays and passes these data to a laptop through serial

forwarder.

7.5.2 Kinesis Performance

Below, we present the testbed performance of Kinesis for data loss, selective forwarding,

and sinkhole incidents. For the first two incidents, we set node 16 as the attacker.

data loss incident: We evaluate the performance of Kinesis under various rates

of data loss incidents. Fig. 7.15(a) shows that Kinesis reduces the data loss rate of

116

the WSN under attack from [0.1, 0.51] to  0.0015, similar to the natural data loss

rate. The average transmission delays when Kinesis is in operation vary within [97.5,

260.4] ms, as shown in Fig. 7.15(b). Kinesis triggers on average [1.28, 1.97] actions per

incident. Thus the testbed performance of Kinesis is consistent to that in simulations

and justifies the simulation results.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0.1 0.2 0.3 0.4 0.5

D
at

a
lo

ss
 ra

te

Attack Rate

Ideal
data_loss

Kinesis + data_loss

(a) Data loss rate at the BS

 0
 50

 100
 150
 200
 250
 300
 350

 0.1 0.2 0.3 0.4 0.5

D
el

ay
 (i

n
m

s)

Attack Rate

Ideal
Kinesis + data_loss

(b) Average data transmis-
sion delay

Fig. 7.15.: Testbed performance of Kinesis for data loss incidents of various rates in
a 6⇥ 6 grid WSN.

selective forwarding (SF) attack: Table 7.7 summarizes the performance of

Kinesis under SF attack, where the attacker drops packets at a rate of 0.4. The

attacker is revoked at packet 604. Hence there is no attack and Kinesis actions

afterwards, which keeps the average transmission delays much lower compared to

that of data loss incidents.

Table 7.7: Testbed performance of Kinesis on SF attack

Ideal SF Kinesis + SF
Data loss rate 0.0008 0.064 0.0008
Avg. transmission delay (ms) 32.89 N/A 61.11
Avg. actions per incident N/A N/A 1.6875

sinkhole attack: We conduct two sets of sinkhole attack experiments, setting

two di↵erent nodes 21 and 22 as attackers. Once an attacker is able to attract

surrounding data packets, it drops data at a rate of 0.2. The performance results of

Kinesis are presented in Table 7.8.

117

Table 7.8: Testbed performance of Kinesis on sinkhole

Ideal sinkhole Kinesis + sinkhole
Exp 1 Exp 2 Exp 1 Exp 2 Exp 1 Exp 2

Data loss rate 0.011 0.086 0.015 0.20 0.011 0.086
Avg. transmission delay (ms) 71.17 113.03 N/A N/A 75.27 177.36
Avg. actions per incident N/A N/A N/A N/A 1 1.604

The results of experiment 1 are quite similar to simulation results. The attacker is

revoked at packet 158. It is to be noted that the sinkhole attack in this case created

routing loops due to low cost path advertisements by the attacker and thus resulted

in data loss. However, Kinesis took a quick response action to revoke the attacker,

which brought back the routing stability and helped keep the data loss rate minimal.

In experiment 2, we see comparatively higher data reception failure and trans-

mission delay at the BS. This is due to the routing instability created when Kinesis

revoked the attacker at packet 376. Consequently, some packets were lost while a few

others needed unusually longer time to reach the BS until a stable routing path was

re-established.

Energy consumption: Due to the di�culty of measuring energy directly on the

sensor hardware [103], we adopt the energy model proposed by Polastre et al. [104]

to estimate the energy cost in testbed. The energy cost of a node is estimated as a

sum of energy usage due to sensing, transmission, and reception. The energy for a

type of operation is computed by multiplying the battery voltage with the current

draw and time spent (according to the TelosB datasheet) for the operation. The ag-

gregated energy cost of the WSN in case of baseline, Kinesis+data loss, Kinesis+SF

are 4232.86, 4447.44, 4467.46 mJ, respectively. Thus, Kinesis (along with the IDS)

incurs a maximum of 5.5% energy overhead.

118

7.6 Discussion

In this section, we analyze the characteristics of Kinesis from various aspects and

discuss possible improvements.

False Positive: A false positive occurs if an attack is detected when there is none.

In Kinesis, when a monitor observes an anomalous activity by a neighbor node, it

does not immediately conclude that this is an attack. It continues to observe the node

while taking appropriate response action(s) (conservative or moderate) to mitigate

disruption to WSN services. Thus, as long as Kinesis can keep the WSN functional

(e.g., send data successfully to the BS) and minimize the disruption, our security goal

is achieved.

When the security estimation for the monitored node exceeds a threshold, spec-

ified in the matched response policy, the monitor may go for an aggressive action.

The decision of an aggressive action, however, requires consensus among a minimum

number of neighboring monitors. It is highly unlikely that all of these monitors will

detect a false attack.

Hidden Node Problem: As discussed in Sec. 5.3.1, two disconnected monitors

monitoring the same node may take the same but redundant actions. Since our

security goal is to minimize WSN disruptions (e.g., data, network failure), occasional

redundant actions will not cause problem with respect to this goal.

If these two monitors, however, have di↵erent link qualities with respect to the

monitored node, i.e., one of the monitors has good connectivity, and the other does not

have so good connectivity and misses some activities of the node under consideration,

then the monitors may have di↵erent security evaluations for the monitored node at a

time instant and may decide to execute di↵erent actions. This may raise consistency

issues. If both actions are non-conflicting and are conservative or moderate (e.g.,

log and retransmit data), they will not cause any inconsistency. The only side e↵ect

would be some additional resource (computation, transmission, etc.) usage. The

same holds true when the two actions are conflicting but conservative or moderate,

119

for example, retransmit data and trigger route change. However, if at least one of the

actions is aggressive, the monitor node first sends a message to the BS, consisting

of the decision and authenticated agreements from at least a minimum numbers of

neighboring monitors. After verifying the agreements, the BS also checks whether

the action causes any redundancy or inconsistency. Only then, the BS executes the

aggressive action. Thus, the network nodes need not do anything to handle the

consistency issues, if there is any.

From the discussion, it is clear that even if nodes take di↵erent actions, Kinesis still

achieves its security goals. It is to be mentioned that in our experiments, we observe

redundant yet same actions, but no inconsistent actions. To address the hidden node

problem in future, we will investigate a scheme utilizing 2-hop topology knowledge.

We will also explore existing solutions in the context of distributed systems.

Majority Voting: A set of colluding attackers may mislead the majority voting

to decide on a wrong response action. If the attacker(s), replying with a low severity

action, can a↵ect the voting decision to be an action of lower severity than those

reported by honest monitors, it also makes them detecting a false positive and lowering

the monitor confidence. These attacks, however, will not succeed as we assume a

majority of honest nodes in a neighborhood.

A solution to deal with such attacks on majority voting is to set higher weights

on the local decisions of more trustworthy nodes. An alternative approach is to use

complementary methods with Kinesis to detect such attacks. For example, we may

use our previous work on lightweight provenance techniques that enables the BS to

detect a data dropping attack and identify the misbehaving node, based on the data

provenance, i.e., the identities of the source and routing nodes that processed or

forwarded the data towards the BS [105]. In case a number of colluding attackers

falsely report an honest node as a data dropping attacker and ask the BS to take

aggressive action (e.g., revoke) against it, the BS will find an inconsistency between

the reports of the colluding attackers and the data provenance. The reason is that,

based on the provenance information, the BS will not be able to detect any data

120

dropping attacks by the honest node. The BS may then conclude about a highly

probable collusion attack and respond accordingly. As part of future work, we will

extend our current implementation by integrating such an approach.

Jamming: An attacker may interrupt Kinesis operation by jamming a part of

the network and disabling data communication. We implemented a jamming attack

following the method described in [106]. This jamming attack, however, results in no

more than 20-30% data loss, which is the same as the data loss in data loss incidents.

As part of future work, we will implement stronger jammers able to block the channel

completely and will investigate whether Kinesis, in response, can send a top priority

message to the BS through the border nodes.

121

8. FUTURE RESEARCH DIRECTIONS

8.1 Recovery of Local Fault and Security Attacks at Sensor Nodes

While sensor nodes, through neighbor monitoring, can detect anomalous actions

by a compromised neighbor node and take recovery actions, it is an interesting ques-

tion whether a sensor node itself can predict operational failure or security attacks on

it and be proactive. A node may monitor its residual energy and be conservative in

energy usage by reducing the frequency of sensor operations and may inform the BS

or other nodes when it is about to die out of power. The node may also monitor the

local packet queue, memory write, etc. node properties and take response actions to

prevent failures and attacks, such as network congestion, node compromise through

over-the-air reprogramming, etc.

8.2 Secure Provenance Management in Untrusted Systems

With the emergence of distributed services (e.g. cloud computing, web services,

etc.), sensitive user data may move around multiple organizations and be processed

and stored outside the owner’s control. The problem is exacerbated by the security in-

cidents involving sensitive data leakage, unauthorized access, and integrity violations

which are a daily occurrence. In this context, recording all the operations performed

on a data (i.e. data provenance) is valuable to check the compliance of the data to

quality and trust. The questions to investigate include the (1) reliable provenance

collection in untrusted systems, and (2) secure provenance communication as the data

flows through various systems.

Recently, the notion of secure and self-contained data has been introduced [107]

in the context of building a deployable data protection system. This data object,

122

referred to as Security Aware Object (SAO), provides protection to sensitive data

by containing five key components: (1) authentication and authorization tools; (2)

self-enforcement policy engine; (3) security policies in executable form; (4) secure

connection manager; and (5) protected data. Utilizing the SAO capabilities, we

provide a conceptual architecture of the provenance framework in untrusted systems

in Fig. 8.1.

 Signed
 Sealed JAR Application

Executable Policies

Access Permission

Content + Provenance

SA
O

ApplicationProvenance
Collection

Secure Execution Environment

Unmodified OS

HyperVisor

HW

Authentication
Tool

Policy Engine

Trusted

Fig. 8.1.: Conceptual Architecture of Provenance Framework in Untrusted Systems

Every data object is encapsulated by a SAO containing the protected data and

provenance, access control policies on them, the trusted/untrusted application to per-

form operations on the data. A secure execution environment (SEE) in an untrusted

environment ensures the secure execution of untrusted applications and secure prove-

nance capture. The authentication tool and policy engine guarantee authorized access

to data and provenance. The most significant challenge implied by the conceptual ar-

chitecture is how to collect provenance at a fine granularity yet with high performance.

Design and implementation of the SEE is the core challenge to this work. Regard-

ing the provenance communication, the focus should be on low-overhead provenance

update and encapsulation on every data access.

123

9. CONCLUSION

In this thesis, we propose an extensive and inter-operable provenance model that can

encapsulate the provenance of data objects with various semantics and granularity.

We then explore the secure provenance collection, communication and usage for vari-

ous distributed systems and investigate the utility of the proposed provenance model

in these systems. We present the preliminary design of a low-overhead file prove-

nance system with an application to the provenance infrastructure for virtualized

environments. The system supports the automatic collection and management of file

provenance metadata, characterized by our provenance model. We then investigate

secure provenance communication in streaming environment and propose two secure

provenance schemes focusing on WSNs. The basic provenance scheme is extended

in order to detect packet dropping adversaries on the data flow path over a period

of time. We also consider the issue of attack recovery and present the design of an

extensive incident response and prevention system for WSNs.

LIST OF REFERENCES

124

LIST OF REFERENCES

[1] “Data dictionary for preservation metadata,” May 2005. Online at http://

www.oclc.org/research/projects/pmwg/premis-final.pdf.

[2] P. Buneman, S. Khanna, and W.-c. Tan, “Why and where: A characterization
of data provenance,” ICDT, vol. 1973, pp. 316–330, 2001.

[3] H. Lim, Y. Moon, and E. Bertino, “Provenance-based trustworthiness assess-
ment in sensor networks,” in Workshop on Data Management for Sensor Net-
works, pp. 2–7, 2010.

[4] C. Dai, D. Lin, E. Bertino, and M. Kantarcioglu, “An approach to evaluate
data trustworthiness based on data provenance,” in Proc. of SDM, pp. 82–98,
2008.

[5] X. Wang and P. Mohapatra, “Provenance based information trustworthiness
evaluation in multi-hop networks,” in Proc. of IEEE GLOBECOM, 2010.

[6] T. Dumitras and I. Neamtiu, “Experimental challenges in cyber security: A
story of provenance and lineage for malware,” in CSET, 2011.

[7] C. Sar and P. Cao, “Lineage file system,” January 2005. Online at http:

//crypto.stanford.edu/cao/lineage.html.

[8] S. Jones, C. Strong, D. D. E. Long, and E. L. Miller, “Tracking emigrant data
via transient provenance,” June 2011.

[9] I. Foster, J. Vckler, M. Wilde, and Y. Zhao, “Chimera: A virtual data sys-
tem for representing, querying, and automating data derivation,” in Proc. of
the Conference on Scientific and Statistical Database Management (SSDBM),
pp. 37–46, 2002.

[10] G. Janée, J. Mathena, and J. Frew, “A data model and architecture for long-
term preservation,” in Proc. of the conference on Digital libraries, pp. 134–144,
2008.

[11] J. Frew, D. Metzger, and P. Slaughter, “Automatic capture and reconstruction
of computational provenance,” Concurrency and Computation: Practice and
Experience, vol. 20, pp. 485–496, April 2008.

[12] K. Muniswamy-Reddy, D. Holland, U. Braun, and M. Seltzer, “Provenance-
aware storage systems,” in Proc. of the USENIX Annual Technical Conference,
2006.

[13] I. Cox and M. Miller, “Electronic watermarking: the first 50 years,” in IEEE
Workshop on Multimedia Signal Processing, pp. 225 –230, 2001.

125

[14] R. C. Dixon, Spread Spectrum Systems: With Commercial Applications. New
York, USA: John Wiley & Sons, Inc., 3rd ed., 1994.

[15] R. Hasan, R. Sion, and M. Winslett, “The case of the fake picasso: Preventing
history forgery with secure provenance,” in Proc. of the Conference on File and
Storage Technologies (FAST), pp. 1–14, 2009.

[16] J. Zhao, C. Goble, R. Stevens, and S. Bechhofer, “Semantically linking and
browsing provenance logs for e-science,” Semantics of a Networked World Se-
mantics For Grid Databases, pp. 158–176, 2004.

[17] B. Plale, D. Gannon, D. Reed, K. Droegemeier, B. Wilhelmson, and M. Rama-
murthy, “Towards dynamically adaptive weather analysis and forecasting,” in
Proc. of ICCS workshop on Dynamic Data Driven Applications, pp. 624–631,
2005.

[18] S. Cohen, S. Cohen-boulakia, and S. Davidson, “Towards a model of provenance
and user views in scientific workflows,” in Proc. of Data Integration in the Life
Sciences, pp. 264–279, 2006.

[19] P. Groth, S. Miles, and L. Moreau, “PReServ: Provenance recording for ser-
vices,” Translator, 2005.

[20] Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han, “An access control language
for a general provenance model,” in Proc. of the VLDB Workshop on Secure
Data Management, SDM, pp. 68–88, 2009.

[21] A. Kashyap and A. Kashyap, “File system extensibility and reliability using
an in-kernel database,” Tech. Rep. FSL-04-06, Master’s Thesis, Stony Brook
University, 2004.

[22] R. Spillane, R. Sears, C. Yalamanchili, S. Gaikwad, M. Chinni, and E. Zadok,
“Story book: An e�cient extensible provenance framework,” in Proc. of the
Usenix workshop on the theory and practice of provenance (TAPP), 2009.

[23] D. Morozhnikov, “Fuse: Filesystem in userspace,” 2006. http://fuse.

sourceforge.net/.

[24] R. Sears and E. Brewer, “Stasis: flexible transactional storage,” in Proc. of the
Symposium on Operating Systems Design and Implementation, pp. 29–44, 2006.

[25] M. Olson, K. Bostic, and M. Seltzer, “Berkeley db,” in Proc. of the USENIX
Annual Technical Conference, pp. 43–53, 1999.

[26] A. Ramachandran, K. Bhandankar, M. Tariq, and N. Feamster, “Packets with
provenance,” Tech. Rep. GT-CS-08-02, Georgia Tech, 2008.

[27] W. Zhou, M. Sherr, T. Tao, X. Li, B. Loo, and Y. Mao, “E�cient querying
and maintenance of network provenance at internet-scale,” in Proc. of ACM
SIGMOD, pp. 615–626, 2010.

[28] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. Loo, and M. Sherr, “Secure
network provenance,” in Proc. of ACM SOSP, pp. 295–310, 2011.

126

[29] A. Syalim, T. Nishide, and K. Sakurai, “Preserving integrity and confidentiality
of a directed acyclic graph model of provenance,” in Proc. of the Working Conf.
on Data and Applications Security and Privacy, pp. 311–318, 2010.

[30] N. Vijayakumar and B. Plale, “Towards low overhead provenance tracking in
near real-time stream filtering,” in Proc. of the Intl. Conf. on Provenance and
Annotation of Data (IPAW), pp. 46–54, 2006.

[31] S. Chong, C. Skalka, and J. A. Vaughan, “Self-identifying sensor data,” in Proc.
of IPSN, pp. 82–93, 2010.

[32] S. Cabuk, “IP covert timing channels: Design and detection,” in Proc. of ACM
Conf. on Computer and Communications Security (CCS), pp. 178–187, 2004.

[33] A. Houmansadr, N. Kiyavash, and N. Borisov, “Multi-flow attack resistant wa-
termarks for network flows,” in Proc. of the IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 1497–1500, 2009.

[34] X. Wang and D. S. Reeves, “Robust correlation of encrypted attack tra�c
through stepping stones by manipulation of interpacket delays,” in Proc. of
ACM Conf. on Computer and Communications Security (CCS), pp. 20–29,
2003.

[35] X. Wang, S. Chen, and S. Jajodia, “Network flow watermarking attack on low-
latency anonymous communication systems,” in Proc. of the IEEE Symposium
on Security and Privacy (SP), pp. 116 –130, 2007.

[36] N. Kiyavash, A. Houmansadr, and N. Borisov, “Multi-flow attacks against net-
work flow watermarking schemes,” in Proc. of the USENIX Conference on Se-
curity Symposium, pp. 307–320, 2008.

[37] P. Peng, P. Ning, and D. S. Reeves, “On the secrecy of timing-based active wa-
termarking trace-back techniques,” in Proc. of the IEEE Symposium on Security
and Privacy (SP), pp. 334–349, 2006.

[38] T. Wolf, “Data path credentials for high-performance capabilities-based net-
works.,” in Proc. of the ACM/IEEE Symposium on Architectures for Network-
ing and Communications Systems., pp. 129–130, 2008.

[39] R. Laufer, P. Velloso, D. Cunha, I. Moraes, M. Bicudo, M. Moreira, and
O. Duarte, “Towards stateless single-packet ip traceback,” in Proc. of IEEE
LCN, pp. 548–555, 2007.

[40] P. Jokela, A. Zahemszky, C. Esteve, S. Arianfar, and P. Nikander, “Lipsin:
line speed publish/subscribe inter-networking,” in Proc. of ACM SIGCOMM,
pp. 195–206, 2009.

[41] A. Ghani and P. Nikander, “Secure in-packet bloom filter forwarding on the
netfpga,” in Proc. of the European NetFPGA Developers Workshop, 2010.

[42] S.-J. Lee and M. Gerla, “Split multipath routing with maximally disjoint paths
in ad hoc networks,” in IEEE International Conference on Communications,
vol. 10, pp. 3201–3205, 2001.

127

[43] Y. Ming Lu and V. W. S. Wong, “An energy-e�cient multipath routing pro-
tocol for wireless sensor networks: Research articles,” International Journal of
Communication Systems, vol. 20, pp. 747–766, July 2007.

[44] Y.-C. Hu, A. Perrig, and D. Johnson, “Packet leashes: a defense against worm-
hole attacks in wireless networks,” in IEEE INFOCOM, pp. 1976–1986, 2003.

[45] C. Basile, Z. Kalbarczyk, and R. Iyer, “Neutralization of errors and attacks in
wireless ad hoc networks,” in International Conference on Dependable Systems
and Networks (DSN, pp. 518–527, 2005.

[46] X. Zhang, A. Jain, and A. Perrig, “Packet-dropping adversary identification for
data plane security,” in Proc. of the ACM SIGCOMM Intl. Conf. on emerging
Networking EXperiments and Technologies (CoNEXT), 2008.

[47] B. Carbunar, I. Ioannidis, and C. Nita-Rotaru, “Janus: Towards robust and
malicious resilient routing in hybrid wireless networks,” in ACM Workshop on
Wireless Security (WiSe), pp. 11–20, 2004.

[48] Y. Zhang and W. Lee, “Intrusion Detection in Wireless Ad-hoc Networks,” in
International Conference on Mobile Computing and Networking (MobiCom),
pp. 275–283, 2000.

[49] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbehavior in
Mobile Ad Hoc Networks,” in International Conference on Mobile Computing
and Networking (MobiCom), pp. 255–265, 2000.

[50] S. Buchegger and J.-Y. Boudec, “Performance Analysis of the CONFIDANT
Protocol,” in ACM International Symposium on Mobile Ad Hoc Networking
(MobiHoc), pp. 226–236, 2002.

[51] J. Ma, S. Zhang, Y. Zhong, and X. Tong, “SAID: A Self-adaptive Intrusion
Detection System in Wireless Sensor Networks,” in International Conference
on Information Security Applications, pp. 60–73, 2007.

[52] M.-Y. Hsieh, Y.-M. Huang, and H.-C. Chao, “Adaptive Security Design with
Malicious Node Detection in Cluster-based Sensor Networks,” Computer Com-
munications, vol. 30, no. 11-12, pp. 2385–2400, 2007.

[53] M. Younis, N. Krajewski, and O. Farrag, “Adaptive Security Provision for In-
creased Energy E�ciency in Wireless Sensor Networks,” in IEEE Conference
on Local Computer Networks, pp. 999–1005, 2009.

[54] A. Taddeo, L. Micconi, and A. Ferrante, “Gradual Adaptation of Security for
Sensor Networks,” in IEEE International Symposium on a World of Wireless
Mobile and Multimedia Networks (WoWMoM), pp. 1–9, 2010.

[55] M. Asim, H. Mokhtar, and M. Merabti, “A self-managing fault management
mechanism for wireless sensor networks,” CoRR, vol. abs/1011.5072, 2010.

[56] S. Krishnamurthy, G. Thamilarasu, and C. Bauckhage, “MALADY: A Machine
Learning-Based Autonomous Decision-Making System for Sensor Networks,” in
International Conference on Computational Science and Engineering - Volume
02, pp. 93–100, 2009.

128

[57] M. Mamun, A. Kabir, M. Hossen, and R. Khan, “Policy based intrusion
detection and response system in hierarchical WSN architecture,” CoRR,
vol. abs/1209.1678, 2012.

[58] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy Specifica-
tion Language,” in International Workshop on Policies for Distributed Systems
and Networks (POLICY), pp. 18–38, 2001.

[59] W3C, “A p3p preference exchange language 1.0 (appel1.0).”
http://www.w3.org/TR/P3P-preferences/, 2002.

[60] OASIS, “Oasis extensible access control markup language (xacml),” 2005.

[61] H. Garcia-Molina, “Elections in a Distributed Computing System,” IEEE
Transactions on Computers, vol. C-31, pp. 48–59, Jan 1982.

[62] S. Vasudevan, J. Kurose, and D. Towsley, “Design and Analysis of a Leader
Election Algorithm for Mobile Ad Hoc Networks,” in IEEE International Con-
ference on Network Protocols (ICNP), pp. 350–360, 2004.

[63] A. Abbasi and M. Younis, “A Survey on Clustering Algorithms for Wireless
Sensor Networks,” Computer Communications, vol. 30, no. 14-15, pp. 2826–
2841, 2007.

[64] A. Woodru↵ and M. Stonebraker, “Supporting fine-grained data lineage in a
database visualization environment,” in Proc. of the International Conference
on Data Engineering (ICDE), pp. 91–102, 1997.

[65] Y. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance in e-
science,” SIGMOD Record, vol. 34, pp. 31–36, 2005.

[66] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, and L. Moreau,
“An architecture for provenance systems,” Contract, no. D3.1.1, pp. 1–5, 2006.

[67] M. et al., “The open provenance model core specification (v1.1),” Future Gen-
eration Computer Systems, vol. 27, no. 6, pp. 743 – 756, 2011.

[68] S. Huettel, A. Song, and G. McCarthy, “Functional magnetic resonance imag-
ing,” 2004.

[69] E. Zadok and I. Badulescu, “A stackable file system interface for linux,” Tech.
Rep. CUCS-021-98, Columbia University, 1998.

[70] U. Braun, S. Garfinkel, D. A. Holland, K.-K. Muniswamy-Reddy, and M. I.
Seltzer, “Issues in automatic provenance collection,” in Proc. of the Interna-
tional Conference on Provenance and Annotation of Data (IPAW), pp. 171–183,
2006.

[71] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko, D. Maclean,
D. Margo, M. Seltzer, and R. Smogor, “Layering in provenance systems,” in
Proc. of the USENIX Annual Technical Conference, pp. 10–10, 2009.

[72] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-fi: Collecting high-
fidelity whole-system provenance,” in Proc. of the Annual Computer Security
Applications Conference (ACSAC), pp. 259–268, 2012.

129

[73] T. Zanussi, K. Yaghmour, R. Wisniewski, R. Moore, and M. Dagenais, “relayfs:
An e�cient unified approach for transmitting data from kernel to user space,”
in In Proceedings of the Ottawa Linux Symposium 2003, pp. 494–507, 2003.

[74] K.-K. Muniswamy-Reddy and D. A. Holland, “Causality-based versioning,” in
Proc. of the Conference on File and Storage Technologies (FAST), pp. 15–28,
2009.

[75] R. Hasan, R. Sion, and M. Winslett, “The case of the fake picasso: Preventing
history forgery with secure provenance,” in Proc. of the Conf. on File and
Storage Technologies (FAST), pp. 1–14, 2009.

[76] S. Madden, J. Franklin, J. Hellerstein, and W. Hong, “TAG: a tiny aggregation
service for ad-hoc sensor networks,” SIGOPS Operating Systems Review, Dec.
2002.

[77] K. Dasgupta, K. Kalpakis, and P. Namjoshi, “An e�cient clustering based
heuristic for data gathering and aggregation in sensor networks,” in Proc. of
Wireless Communications and Networking Conference, pp. 1948–1953, 2003.

[78] H. Lim, Y. Moon, and E. Bertino, “Provenance-based trustworthiness assess-
ment in sensor networks,” in Proc. of Data Management for Sensor Networks,
pp. 2–7, 2010.

[79] S. Sultana, E. Bertino, and M. Shehab, “A provenance based mechanism to
identify malicious packet dropping adversaries in sensor networks,” in Proc. of
ICDCS Workshops, pp. 332–338, 2011.

[80] X. Luo, J. Zhang, R. Perdisci, and W. Lee, “On the secrecy of spread-spectrum
flow watermarks,” in Proc. of the European Conference on Research in Com-
puter Security (ESORICS), pp. 232–248, 2010.

[81] V. Berk, A. Giani, and G. Cybenko, “Detection of covert channel encoding in
network packet delays,” tech. rep., Darmouth College, 2005.

[82] T. G. Roosta, Attacks and Defenses of Ubiquitous Sensor Networks. PhD thesis,
University of California, Berkeley, 2008.

[83] C. Rothenberg, C. Macapuna, M. Magalhaes, F. Verdi, and A. Wiesmaier, “In-
packet bloom filters: Design and networking applications,” Computer Networks,
vol. 55, no. 6, pp. 1364 – 1378, 2011.

[84] M. Garofalakis, J. Hellerstein, and P. Maniatis, “Proof sketches: Verifiable in-
netwok aggregation,” in Proc. of ICDE, pp. 84–89, 2007.

[85] A. Liu and P. Ning, “TinyECC: A configurable library for elliptic curve cryp-
tography in wireless sensor networks,” in Proc. of IPSN, pp. 245–256, 2008.

[86] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security Architec-
ture for Wireless Sensor Networks,” in International Conference on Embedded
Networked Sensor Systems (SenSys), pp. 162–175, 2004.

[87] B. Bloom, “Space/time trade-o↵s in hash coding with allowable errors,” Com-
munications of the ACM, vol. 13, pp. 422–426, 1970.

130

[88] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical en-route filtering of injected
false data in sensor networks,” in Proc. of INFOCOM, pp. 839–850, 2004.

[89] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and scalable
simulation of entire tinyos applications,” in Proc. of the Intl. Conf. on Embedded
networked sensor systems, pp. 126–137, 2003.

[90] E. Perla, A. Catháin, R. Carbajo, M. Huggard, and C. M. Goldrick, “Pow-
erTOSSIM z: realistic energy modelling for wireless sensor network environ-
ments,” in Proc. of the workshop on Performance monitoring and measurement
of heterogeneous wireless and wired networks, pp. 35–42, 2008.

[91] J. Ko, C. Lu, M. Srivastava, J. Stankovic, A. Terzis, and M. Welsh, “Wireless
Sensor Networks for Healthcare,” Proceedings of the IEEE, vol. 98, no. 11,
pp. 1947–1960, 2010.

[92] W. Alexander, “Barnaby Jack Could Hack Your Pacemaker and Make
Your Heart Explode.” http://www.vice.com/en ca/read/i-worked-out-how-to-
remotely-weaponise-a-pacemaker, June 2013.

[93] I. Krontiris, T. Giannetsos, and T. Dimitriou, “LIDeA: A Distributed
Lightweight Intrusion Detection Architecture for Sensor Networks,” in Inter-
national Conference on Security and Privacy in Communication Networks (Se-
cureComm), pp. 20:1–20:10, 2008.

[94] Y. Ponomarchuk and D.-W. Seo, “Intrusion Detection Based on Tra�c Analysis
in Wireless Sensor Networks,” in Annual Wireless and Optical Communications
Conference, pp. 1–7, 2010.

[95] U. Dayal, Active Database Systems: Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann Publishers Inc., 1994.

[96] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: Secure and DoS-Resistant Code
Dissemination in Wireless Sensor Networks,” in International Conference on
Information Processing in Sensor Networks (IPSN), pp. 445–456, 2008.

[97] K. Daabaj, M. Dixon, and T. Koziniec, “Tra�c Eavesdropping Based Scheme
to Deliver Time-Sensitive Data in Sensor Networks,” in IEEE International
Performance Computing and Communications Conference (IPCCC), pp. 302–
308, 2010.

[98] P. Mell, K. Scarfone, and S. Romanosky, CVSS: A Complete Guide to the
Common Vulnerability Scoring System Version 2.0, 2007.

[99] R. Falcon, A. Nayak, and R. Abielmona, “An Evolving Risk Management
Framework for Wireless Sensor Networks,” in Conf. on Computational Intel-
ligence for Measurement Systems and Applications, 2011.

[100] A. Hasswa, M. Zulkernine, and H. Hassanein, “Routeguard: An Intrusion Detec-
tion and Response System for Mobile Ad Hoc Networks,” in IEEE International
Conference on Wireless And Mobile Computing, Networking And Communica-
tions (WiMob), pp. 336–343, 2005.

131

[101] E. Perla, A. O. Catháin, R. S. Carbajo, M. Huggard, and C. Mc Goldrick,
“PowerTOSSIM Z: Realistic Energy Modelling for Wireless Sensor Network En-
vironments,” in ACM Workshop on Performance Monitoring and Measurement
of Heterogeneous Wireless and Wired Networks, pp. 35–42, 2008.

[102] P. Levis, “Collection.” http://www.tinyos.net/tinyos-
2.x/doc/html/tep119.html.

[103] V. Sundaram, P. Eugster, and X. Zhang, “Prius: Generic Hybrid Trace Com-
pression for Wireless Sensor Networks,” in nternational Conference on Embed-
ded Networked Sensor Systems (SenSys), pp. 183–196, 2012.

[104] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for Wire-
less Sensor Networks,” in International Conference on Embedded Networked
Sensor Systems (SenSys), pp. 95–107, 2004.

[105] S. Sultana, G. Ghinita, E. Bertino, and M. Shehab, “A lightweight secure
scheme for detecting provenance forgery and packet drop attacks in wireless
sensor networks,” IEEE Transactions on Dependable and Secure Computing
(TDSC), 2014.

[106] A. Chakraborty and P. Banala, “An Experimental Study of Jamming IEEE
802.15.4 compliant Sensor Networks (Progress Tracking).”

[107] A. Squicciarini, G. Petracca, and E. Bertino, “Adaptive data management for
self-protecting objects in distributed systems,” in International Conference on
Network and Service Management, 2012, CNSM 2012, (Las Vegas, NV, USA).

VITA

132

VITA

Salmin Sultana was born in a small beautiful green country, named Bangladesh. She

used to live in the capital of the country, Dhaka, and completed her high school

there in 2001. Afterwards, she went to the best engineering university of Bangladesh,

namely Bangladesh University of Engineering and Technology (BUET), and received

the degree of Bachelor of Science in Computer Science and Engineering in June, 2007.

In the following year, she was employed as a member of Research and Development

at Commlink Info Tech Ltd., Dhaka. In August, 2008, she started the PhD study

in Computer Engineering at Purdue University. She all join the Intel Labs, OR as a

security researcher soon after the graduation.

	Purdue University
	Purdue e-Pubs
	Fall 2014

	Digital provenance - models, systems, and applications
	Salmin Sultana
	Recommended Citation

	Blank Page

