1,007 research outputs found

    Adopting Jaya Algorithm for Team Formation Problem

    Get PDF
    This paper presents a simple and mighty metaheuristic algorithm, Jaya, which is applied to solve the team formation (TF) problem and it is a very fundamental problem in many databases and expert collaboration networks or web applications. The Jaya does not need any distinctive parameters that require comprehensive tuning, which is usually troublesome and inefficient. Among several optimization methods, Jaya is chosen for TFP because of its simplicity and it always avoids the worst solutions and moving towards the global best solution. This victorious nature makes Jaya Algorithm more powerful and significant as compared to any other contemporary optimization algorithms. To evaluate the efficiency of the Jaya Algorithm (JA) against another metaheuristic algorithm, Sine-Cosine Algorithm (SCA), both algorithms are tested and assessed for the TF problem solution using an ACM dataset containing experts and their skills. The experimental results validate the improved performance of the optimization solutions and the potential of JA with fast convergence for solving TF problems which are better than SCA

    Electrical power prediction through a combination of multilayer perceptron with water cycle ant lion and satin bowerbird searching optimizers

    Get PDF
    Predicting the electrical power (PE) output is a significant step toward the sustainable development of combined cycle power plants. Due to the effect of several parameters on the simulation of PE, utilizing a robust method is of high importance. Hence, in this study, a potent metaheuristic strategy, namely, the water cycle algorithm (WCA), is employed to solve this issue. First, a nonlinear neural network framework is formed to link the PE with influential parameters. Then, the network is optimized by the WCA algorithm. A publicly available dataset is used to feed the hybrid model. Since the WCA is a population-based technique, its sensitivity to the population size is assessed by a trial-and-error effort to attain the most suitable configuration. The results in the training phase showed that the proposed WCA can find an optimal solution for capturing the relationship between the PE and influential factors with less than 1% error. Likewise, examining the test results revealed that this model can forecast the PE with high accuracy. Moreover, a comparison with two powerful benchmark techniques, namely, ant lion optimization and a satin bowerbird optimizer, pointed to the WCA as a more accurate technique for the sustainable design of the intended system. Lastly, two potential predictive formulas, based on the most efficient WCAs, are extracted and presented

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    Multi-agent deep Q-network-based metaheuristic algorithm for Nurse Rostering Problem

    Get PDF
    The Nurse Rostering Problem (NRP) aims to create an efficient and fair work schedule that balances both the needs of employees and the requirements of hospital operations. Traditional local search-based metaheuristic algorithms, such as adaptive neighborhood search (ANS) and variable neighborhood descent (VND), mainly focus on optimizing the current solution without considering potential long-term consequences, which may easily get stuck in local optima and limit the overall performance. Thus, we propose a multi-agent deep Q-network-based metaheuristic algorithm (MDQN-MA) for NRP to harness the strengths of various metaheuristics. Each agent encapsulates a metaheuristic algorithm, where its available actions represent different perspectives of the problem environment. By combining their strengths and various perspectives, these agents can work collaboratively to navigate and search for a broader range of potential solutions effectively. Furthermore, to improve the performance of an individual agent, we model its neighborhood search as a Markov Decision Process model and integrate a deep Q-network to consider long-term impacts for its neighborhood sequential decision-making. The experimental results clearly show that an individual agent in MDQN-MA can outperform ANS and VND, and multiple agents in MDQN-MA even perform better, achieving the best results among metaheuristic algorithms on the Second International Nurse Rostering Competition dataset

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions
    • …
    corecore