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Abstract: The application of artificial intelligence in everyday life is becoming all-pervasive and
unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for
multiparameter optimization, which find their use in a large number of areas. Novel methods and
advances are being published at an accelerated pace. Because of that, in spite of the fact that there are
a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep
pace with the current developments. In this review, we first consider a possible classification of bio-
inspired multiparameter optimization methods because papers dedicated to that area are relatively
scarce and often contradictory. We proceed by describing in some detail some more prominent
approaches, as well as those most recently published. Finally, we consider the use of biomimetic
algorithms in two related wide fields, namely microelectronics (including circuit design optimization)
and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic
configurations and metamaterials). We attempted to keep this broad survey self-contained so it
can be of use not only to scholars in the related fields, but also to all those interested in the latest
developments in this attractive area.

Keywords: bio-inspired computation; multiparameter optimization; metaheuristic algorithms;
genetic algorithms; artificial intelligence; deep learning; microelectronics; nanoelectronics;
nanophotonics; metasurfaces

1. Introduction

Nowadays, we are witnessing an enormous popularity and a literal avalanche of bio-
inspired algorithms [1] permeating practically all facets of life. Procedures using artificial
intelligence (AI) [2] are being built into a vast number of different systems that include
Internet search engines [3], cloud computing systems [4], Internet of Things [5], autonomous
(self-driving) vehicles [6], AI chips in flagship smartphones [7], expert medical systems [8],
robots [9], agriculture [10], architectural designs [11] and data mining [12], to quote just a
tiny fragment. AI can chat with humans and even solve problems stated in the common
human language [13], generate paintings and other artworks at a textual prompt [14],
create music [15], translate between different languages [16], play very complex games
and win them [17], etc. AI artworks have been winning art competitions (and creating
controversies at that) [15]. Questions are even posed as to whether AI can show its own
creativity comparable to that of humans [18]. Many AI functionalities are met in ordinary
life, and we may not even recognize them. All of the mentioned applications and many
more are exponentially multiplying, becoming more powerful and more spectacular. The
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possibilities, at least currently, appear endless. Concerns have been raised for possible
dangers for humanity as a whole with using AI, and some legislations have already brought
laws limiting the allowed performances and uses of artificial intelligence [19].

Scientific breakthroughs behind all of this are nothing short of astounding. Behind
each result we see—and behind those that we may not even be aware of—there is an
accelerating landslide of publications including at least hundreds of dedicated science
journals with a vast number of articles, numerous books and an uncounted number of all
possible kinds of intellectual property. Currently, a renaissance of biomimetic computing is
in full swing—and it is still spreading, engulfing more and more different areas.

Not all results in the field of biomimetic computing are so spectacularly in the spotlight
and followed by hype as those that mimic human behavior or even our creativity. However,
maybe the most important achievements are hidden among the results that do not belong
to this group. They include handling big data, performing time analysis or performing
multi-criteria optimization. Such intelligent algorithms that are mostly “invisible” to the
eyes of the general public are causing a silent revolution not only in engineering, physics,
chemistry, medicine, healthcare and life sciences, but also in economics, finance, business,
cybersecurity, language processing and many more fields.

Our attention in this text is dedicated to bio-inspired optimization algorithms. They
are extremely versatile and convenient for complex optimization problems. The result
of such wide applicability is their overwhelming presence in diverse fields—there are
practically no areas of human interest where they do not appear. As an illustration of
their ubiquity, we mention here just some selected fields where their applications have
been reported. They encompass various branches of engineering, including mechanical
engineering (automotive [20,21], aerospace [22], fluid dynamics [23], thermal engineer-
ing [24], automation [25], robotics [26], mechatronics [27], MEMS [28,29], etc.), electrical
engineering [30] (including power engineering [31], electronics [32], microelectronics [33]
and nanoelectronics [33], control engineering [34], renewable energy [35], biomedical en-
gineering [36], telecommunications [36], signal processing [37]), geometrical optics [38],
photonics [39], nanophotonics and nanoplasmonics [40], image processing [41] including
pattern recognition [42], computing [30], [43], networking (computer networks [44] in-
cluding Internet and Intranet [45], social networks [46], networks on a chip [47], optical
networks [48], cellular (mobile) networks [49], wireless sensor networks [50], Internet of
things [51], etc.), data clustering and mining [52], civil engineering [53,54], architectural
design [55], urban engineering [56], smart cities [57], traffic control and engineering [58],
biomedicine and healthcare [59,60], pharmacy [61,62], bioinformatics [63], genomics [64],
computational biology [60], environmental pollution control [65] and computational chem-
istry [66]. Other optimization fields where biomimetic algorithms find application include
transportation and logistics [67], industrial production [68], manufacturing including pro-
duction planning, supply chains, resource allocation and management [69], food production
and processing [70], agriculture [71], financial markets [72] including stock market pre-
diction [73], as well as cryptocurrencies and blockchain technology [74], and even such
seemingly unlikely fields as language processing and sentiment analysis [75]. The cited
applications are just a tip of an iceberg, and there is a vast number of other uses not even
mentioned here.

According to the 1997 paper by Wolpert and Macready titled “No free lunch theorems
for optimization”, if an algorithm finds the best solutions in one field, chances are that
it will not perform so well in others [76]. This means that no algorithm will always find
the optimum solutions in all fields. Because of that, there is an enormous number of
different algorithms and algorithm modifications or improvements that excel in some areas,
and some of them even in many, but each one of them will have its own peculiarities,
advantages and disadvantages. Thus, a logical consequence of such a situation is the
existence of a large number of review papers attempting to sort out the state of affairs
among the numerous different algorithms. The situation is not facilitated by the fact that
some of the metaheuristic algorithms actually overlap with others and are similar, or in
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some cases are literally identical among themselves, the main differences being in the
algorithm names [77]. In addition, some algorithms that had been very popular some years
ago fell out of use while others rose to fame. Due to the mentioned reasoning, there is a
constant need for updated reviews. Another problem is related to the enormous extent of
the field. While excellent and exhaustive in-depth critical reviews naturally do appear, the
majority only cover some particular subjects, out of the sheer impossibility of encompassing
everything, while many do not even attempt to achieve a comprehensive coverage and
focus on assorted bits instead.

To render this work, we analyzed 108 review papers and monographs on bio-inspired
optimization algorithms (not all of which are cited here) plus numerous contributed re-
search articles which contain review sections, each typically a few pages long. We believe
we created a unique survey that covers a number of topics that none of the above-mentioned
sources considered and which, to the best of our knowledge, cannot be found in a single
place. In other words, we attempted to offer a synthesis of different subjects that contains
updated information and offers as wide an overview as we were able to create. With this
work, we tried to write a self-contained and comprehensive material covering the main
fields from among multitudinous and often redundant (and in some cases even conflicting)
bio-inspired optimization algorithms in a form accessible to as wide a multidisciplinary
scientific audience as possible.

We attempted to include some of the most recent results (years of publication 2022
or 2023) that could not have possibly been mentioned in a vast majority of the previous
review papers due to the simple fact that these results did not exist at the time. Obviously,
such publications were not present for a sufficient time to allow a confident measure of the
degree of their acceptance by the scientific community. Thus, our choice had to be partly
subjective. We also took care to include the topics that in our opinion are of high importance
now and for which we anticipate even higher impact in the future (some examples being
multi-objective and hybrid optimization algorithms). At the same time, we strived not to
omit older but still significant and widely used methods. We are well aware that in today’s
rapidly expanding and branching field of biomimetic AI optimization algorithms, we may
have overlooked and omitted some important sources, but this is almost inevitable in the
current environment.

Another contribution of this text is related to the systematization and taxonomy of
some topics in the field. There are contradictory reports in the literature on classification
and even on some definitions, and we tried to present our point of view on it. We offered
some modifications to the classification that we hope could serve at least a bit better than
some of those previously published. We also attempted to clarify a few conflicting pieces
of information from prior works.

Further, as an example, we dedicated a part of our review to two partially intercon-
nected fields, namely microelectronics and nanophotonics. We are unaware of encountering
that combination in a single comprehensive text, and even less one written in this manner.
The importance of this inclusion is also reflected in the fact that optimization algorithms
are rarely included in the typical curricula of the researchers in these two fields and are
mostly related to the profiles of mathematicians and computer scientists.

We made efforts to keep the writing style as simple and clear as possible, yet exact
and with correct nomenclature. At the same time, we tried to avoid excessive in-depth
handling of any narrowly specialized field. This was done to ensure the usefulness of the
manuscript to a range of researchers at different levels, from beginners to experts in the
field, as well as to casual readers, i.e., to make it accessible to the widest circle of scientific
audience. Our hope was that the present work could become handy as a kind of user-
friendly one-stop all-purpose manual and a comprehensive overview of the main points to
ensure simpler navigation through the enormously vast body of literature, especially for
such a multidisciplinary-oriented audience as that gathered around the Biomimetics journal.

The landscape of biomimetic optimization algorithms is rapidly evolving, and new
advances are being introduced daily. This means that any reviews of the state of the art
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will necessarily become dated relatively quickly. Thus, it is essential to bring as updated
information about the existing techniques as possible. This broad survey, while the authors
are well aware of the enormity of the task and the inevitable shortcomings and incomplete-
ness of the work that stem from the pure impossibility of being all-encompassing, strives to
offer its modest contribution to staying updated at least for the time being. This work may
be thus seen as a partial snapshot of an explosively spreading and evolving field.

The manuscript is structured as follows: Section 2 presents a possible taxonomy of
different bio-inspired optimization algorithms and considers the redundancy of some of
the existing procedures. The following sections briefly present some of the most important
and well known ones, such as heuristic procedures including biology-based metaheuristic
algorithms and hyper-heuristics, neural networks and hybrid methods. As an illustration,
a section is dedicated to the advances in the application of bio-inspired multi-criteria
optimization in microelectronics, and another section is dedicated to the recent applications
in nanooptics and nanophotonics. These are followed by some conclusions and an outlook.
Due to their relative complexity, an overview of the topics presented in this work is
schematically shown in Figure 1.
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Figure 1. Schematic overview of the topics presented in this broad survey of bio-inspired optimization
algorithms (BOAs).

2. A Possible Taxonomy of Bio-Inspired Algorithms

In this section, we present one possible hierarchical classification of bio-inspired
algorithms. The consideration has been made without taking into account any specific
targeted applications of the algorithms. Generally, taxonomies of bio-inspired algorithms
are relatively rarely considered in the literature. The majority of papers simply skip the
topic altogether or handle it casually, presenting only the methods that are of immediate
interest to the subject of the paper or, even more often, giving only a partial and non-
systematic picture and denoting it as a classification. This is not to say that exhaustive and
systematic papers on the subject do not exist. However, it appears that no consensus has
been reached about the taxonomy of at least some bio-inspired algorithms yet.

Some quality papers dedicated to the topic and published within the last few years
include [78–80]. In this article, we present our view of the subject that includes many
elements of the previously proposed classifications, but also incorporates novel ones, as
well as updated information on some approaches proposed within the last few years, which
could not be included previously since they were presented after the quoted papers ap-
peared. We do not claim the generality of our taxonomy, although we did try to incorporate
as much available data as we were able.

A problem when attempting to define a categorization in this field is that some
approaches, although having different names, actually present algorithms very similar or
even basically identical to those previously published. Often they offer only incremental
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advances, such as somewhat better results at benchmarks of precision or computing speed.
This is a very slippery ground, however, since according to the previously mentioned No
Free Lunch Theorem [76], no algorithm is convenient for all purposes, and while one of
them may offer a fast and accurate solution to one class of optimization problems, there is
no guarantee that it will not perform drastically worse with other problems, become stuck
in a local optimum, never even reaching a global optimum, or even fail completely to give
a meaningful solution. For this reason, it is very difficult to decide which procedures merit
inclusion in the classification and which do not.

A number of benchmarks have been proposed to compare different optimization
procedures, and the most recent publications in the field use them to prove the qualities and
advantages of their proposals over the competing ones. A systematic review of methods to
compare the performance of different algorithms has been published by Beiranvand, Hare
and Lucet [81]. A more recent consideration of that kind dedicated to metaheuristics has
been presented by Halim, Ismail and Das [82], who offered an exhaustive and systematic
review of measures for determining the efficiency and the effectiveness of optimization
algorithms. A benchmarking process for five global approaches for nanooptics optimization
has been described by Scheider et al. [83].

One can find various taxonomy proposals in the literature, each with its own merits
and disadvantages. Figure 2 represents the scheme of a possible classification of bio-
inspired optimization methods.
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3. Heuristics

Heuristics can be briefly described as problem solving through approximate algo-
rithms. The word stems from the Ancient Greek ε
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3. Heuristics
Heuristics can be briefly described as problem solving through approximate algo-

ί  ver”). It in-σκω (meaning “to discover”). It
includes approaches that do not mandatorily result in an optimum solution and are actually
imperfect, yet are adequate for attaining a “workable” solution, i.e., a sufficiently good
one that will probably be useful and accurate enough for a majority of cases. On the
other hand, they may not work in certain cases, or may consistently introduce systematic
errors in others. The methods used include pragmatic trade-offs, rules of thumb (use of
approximations based on prior knowledge in similar situations), a trial and error approach,
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the process of elimination, guesswork (“educated guesses”) and acceptable/satisfactory
approximations. The main benefit is that heuristic approaches usually have vastly lower
computational cost, and their main deficiencies are that they are usually dependent on a
particular problem (i.e., not generally applicable in all situations) and their accuracy may be
quite low in certain cases, while inherently they do not offer a way to estimate that accuracy.

Heuristic approaches include common heuristic algorithms, metaheuristic algorithms
and hyper-heuristic algorithms. All of these approaches are considered to represent the
foundations of AI.

“Basic” Heuristic Algorithms

The heuristic algorithms represent the oldest approximate approach to optimization
problems, from which metaheuristics and hyper-heuristics evolved. They include a number
of approximate goal attainment methods. While there is no universally accepted taxonomy
of common heuristic algorithms, a possible classification is presented in Table 1. Meta-
heuristic and hyper-heuristic algorithms are not included in this subsection, since these
are covered separately in the next two sections. This is a short overview only, presented
for the sake of generality, since the quoted algorithms are mostly unrelated to bio-inspired
methods. The comprehensiveness of the table is not claimed, and some quoted methods
may overlap more or less, thus appearing in multiple categories at the same time.

Table 1. Selected heuristic algorithms, excluding metaheuristics or hyper-heuristics.

Algorithm Name The Main Properties of the Algorithm Ref.

Divide and Conquer Algorithm
The problem is decomposed into smaller, manageable sub-problems that are first
independently solved in an approximate manner and then merged into the
final solution.

[84]

Hill Climbing The algorithm explores the neighboring solutions and picks those with the best
properties, so that the algorithm constantly “climbs” toward them. [85]

Greedy Algorithms
Immediate local improvements are prioritized without taking into account the
effect on global optimization. The underlying assumption is that such “greedy”
choices will result in an acceptable approximation.

[86]

Approximation Algorithms
Solutions are searched for within provable limits around the optimal solution.
The aim is to achieve the maximum efficiency. This is convenient for difficult
nondeterministic polynomial time problems.

[87]

Local Search Algorithms
An initial solution is assumed, and it is iteratively improved by exploring the
immediate vicinity and making small local modifications. No completely new
solutions are constructed.

[88]

Constructive Algorithms
Solutions are built part-by-part from an empty set by adding one building block
at a time. The procedure is iterative and uses heuristics for the choice of the
building blocks.

[89]

Constraint Satisfaction Algorithms A set of constraints is defined at the beginning. The solution space is then
searched locally, each time applying the constraints until all of them are satisfied. [90]

Branch And Bound Algorithm
The solution space is systematically divided into smaller sub-problems, the
search space is bounded according to problem-specific criteria, and branches
that result in suboptimal solutions are pruned and removed.

[91]

Cutting Plane Algorithm

An optimization method solving linear programming problems. It finds the
optimal solution by iteratively adding new, additional constraints (cutting
planes), thus gradually tightening the region of possible solutions and
converging towards the optimum.

[92]

Iterative Improvement Algorithms

Here the goal is to iteratively improve an initially proposed problem solution.
Thus, systematic adjustments and improvements are made to the initial set by
targeting the predefined objectives. The values may be reordered, retuned or
swapped until the desired optimization is complete.

[93]
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4. Metaheuristics

Metaheuristics represent a conceptual generalization and enhancement of the heuristic
approach. While the literature usually does not appear to provide a clear and consistent
definition of metaheuristics and there seems not to be a consensus about it, it does offer var-
ious descriptions, among which is that metaheuristic algorithms represent iterative global
optimization methods that make use of some underlying heuristics by making an intelligent
combination of various higher-level strategies for exploring the search space, seeking to
avoid local optima and to find an approximate solution for the global optimum [94,95].
The mentioned approaches are typically inspired by natural phenomena and mimic them.
These phenomena may be for instance animal or human collective behavior, physiological
processes or plant properties, but they also include some non-biological processes such as
physical, astrophysical or chemical phenomena and mathematical procedures [96] (these
non-biomimetic algorithms are not covered by this treatise).

The methods in metaheuristics are sometimes denoted as metaphor-based since their
naming and design are more or less inspired by actual biological and other processes. The
metaheuristics are the best known, most popular and by far most often applied among
the heuristic methods, and the papers dealing with them are the most numerous group of
publications on nature-based optimization algorithms.

Many new procedures that belong to this group are constantly being proposed, almost
on a daily basis. A paper by Ma et al. [97] presented an exhaustive list of more than
500 metaphor-based metaheuristic algorithms and their benchmark basis. While many of
the proposed methods simply represent reiteration or sometimes even literal renaming of
known methods, some newly described approaches do show relevance and usability and
introduce new levels of sophistication and performance. As mentioned before in this text,
the existing tsunami of metaphor-based algorithms has been heavily criticized by some
researchers, who have been arguing that the approach is fundamentally flawed and that a
new taxonomy should be introduced since it would expose the essential similarity among
many of the newly proposed methods [98].

Swarm intelligence (SI) algorithms (mostly based on the collective behavior of animals)
are by far the largest of the metaheuristic procedures and biomimetic computation ap-
proaches generally. They encompass the largest part of bio-inspired algorithms, amounting
to about 67.12% of all of them. The article [80] calculates that about 49% of all nature-based
methods belong to this class; however, if we do not take into account those of non-biological
origin, a simple recalculation brings us to a percentage of more than 67%.

4.1. Evolutionary Algorithms (EAs)

The group of evolutionary algorithms (EAs) includes different population-based
metaheuristic optimization algorithms. They are inspired by the processes of Darwinian
evolution of species, including the procreation of offspring, genetic mutations, recombi-
nation and natural selection. They are not related to any particular specificities of any
concrete optimization problem and thus are applicable to a very wide variety of different
scenarios. They have a predefined objective (fitness) function determining the desired
quality of the solution, and the candidate solutions are individuals in the population. There
are numerous metaheuristic procedures that belong to the EA group.

Table 2 shows a few selected basic EAs. It quotes the name of the algorithm first, then
its standard abbreviation, the names of its proposers or key proponents and the year when
the proposal was first presented (or the main popularization event occurred), and finally
an important reference related to the topic (either the original publication that proposed
the algorithm or a comprehensive survey or review). In the subdivisions following Table 2,
short descriptions of the selected algorithms are given.
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Table 2. Selected evolutionary algorithms.

Algorithm Name Abbr. Proposed by, Year Ref.

Genetic Algorithm GA Holland, 1975 [99]
Memetic Algorithm MA Moscato, 1989 [100]
Differential Evolution DE Storn, 1995 [101]

4.1.1. Genetic Algorithms (GAs)

Genetic algorithms (GAs) (Holland, 1975) [102] are a class of optimization algorithms
belonging to the evolution-based bio-inspired metaheuristics that mimic the Darwinian
process of natural selection and genetic evolution.

A GA is a population-based optimization algorithm. The potential solutions to an op-
timization problem are represented as individuals within a population. These individuals
are denoted as a genotype of chromosomes and represent potential solutions to the opti-
mization problem, regardless of the field to which they belong (in our case microelectronics
and nanophotonics). Their data are encoded as a string of binary digits that can be further
manipulated and processed.

An initial population of chromosomes/individuals is randomly generated, based
on the properties of the optimization problem to be solved by the GA. The fittest chro-
mosomes/individuals are then selected as a subset of the chromosome population. The
strategies for the assessment of the fittest individual can be rank-based, or some kind of pro-
cedure for the choice of the fittest may be applied. These procedures include roulette wheel
selection and tournament selection. In this manner, candidate members of the population
are compared among themselves, and the fittest ones are chosen as the parents for the next
generation. Crossover and mutation operators are applied to them in each iterative cycle to
ensure variety, and the process is repeated until the optimum or near-optimum solution
is found or, alternatively, until the number of iterations exceeds the predefined value.
In this manner, the quality of solutions gradually improves over successive generations.
Genetic operations guard the diversity of the solutions. In this way, the algorithm is able
to investigate different areas of the search space and reach the global optimum, avoiding
being trapped in local optima.

Figure 3 shows a simplified flowchart of a genetic algorithm. The important Darwinian
steps (selection, crossover and mutation) are performed after each evaluation is performed
among the members of the subset of the fittest. This procedure is repeated iteratively, each
iteration representing a single generation of the genetic evolutionary process.

4.1.2. Memetic Algorithms (MAs)

Similarly to GAs, memetic algorithms (MAs) [100] are optimization algorithms be-
longing to the evolutionary bio-inspired algorithms, but they combine the Darwinian
process of natural selection and evolution with the behavior of a meme, as conceptualized
by Dawkins [103]. The Darwinian part is reflected in the application of the principles of
evolutionary computation, i.e., population-based evolutionary processes, while the meme
represents local search operations that enhance the exploration performance of the algo-
rithm. In other words, memetic algorithms represent an extension/enhancement of the
genetic algorithm that improves the convergence speed and the overall search quality. The
local search component (meme) utilizes the promising regions of the search space through
the iterative improvement of individual solutions.
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Typically, memetic algorithms consist of five steps:

1. Initializing the Population: Random generation of candidate solutions.
2. Evaluation: The fitness of each candidate solution is assessed according to the prob-

lem’s fitness criterion (objective function).
3. Evolutionary Process: Genetic operators are applied (selection, crossover and muta-

tion) according to the standard evolutionary algorithm rules; thus, the population
evolves through generations.

4. Local Search: In addition to the evolutionary processes, local search techniques
(memes) are applied to refine or improve individual solutions. This local search often
utilizes problem-specific knowledge or heuristics to locally explore the solution space
more accurately.

5. End: The algorithm terminates when the ending criterion is met—achieving a satisfac-
tory solution or reaching the maximum set number of iterations.

A possible flowchart of a memetic algorithm is shown in Figure 4.

4.1.3. Differential Evolution (DE)

The differential evolution algorithm [101] is probably the most frequently published
and analyzed of all bio-inspired algorithms, having appeared as the main topic of more
than 86,500 publications as of May 2023 (see Figure 1 in [97]). It includes a population of
candidate solutions (also denoted as vectors or agents) and objective vectors. Basically,
this algorithm is generally similar to a genetic algorithm; however, there are significant
differences. The main dissimilarity is related to the choice of parents for offspring. While
in a genetic algorithm, the candidates are compared among themselves, usually through
some selection procedure (choice of the fittest, roulette wheel or tournament selection), here
they are selected by comparison of the trial agents (candidate solutions) with the objective
vectors (the target).
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Mutations proceed by forming a mutant vector by randomly picking two individuals
from the existing population (base vectors), calculating their difference and adding its
weighted value to the objective (target) vector. This is denoted as differential mutation. The
mutant vectors are recombined with the target vectors, and the results of this operation
are trial vectors. The recombination or crossover proceeds with each component of the
trial vector being either chosen from the mutant vector or from the target vector. This
is accomplished according to the crossover rate (recombination rate), which represents a
predefined probability. In this way, the Darwinian survival of the fittest is replaced by the
combination with the target vector. The trial vectors are then compared to target vectors
according to the fitness evaluation. If a trial vector represents an improvement over the
corresponding target vector, it replaces the target vector. If not, the target vector is not
replaced. In this way, the selection is accomplished and evolution continues.

Figure 5 shows a flowchart of the DE algorithm. The iterative procedure proceeds
until the set objective is reached or the maximum number of iterations is exceeded.

The DE method is extremely popular due to its advantages such as simplicity, ability
to work with difficult functions and robustness. Since DE does not require its functions to
be differentiable because it does not need any calculations of gradients, it is convenient for
discontinuous problems, as well as time-variable problems, cases with high levels of noise
and other optimization tasks related to complex problems. All of these properties make it
suitable for a wide range of different complex problems, which is the explanation for its
overwhelming popularity and widespread use.
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4.2. Swarm Intelligence (SI) Algorithms

Swarm intelligence algorithms are a huge group of nature-inspired metaheuristic
methods dealing with complex optimization problems for which exact mathematical or
traditional approaches are difficult or even impossible to implement. They are based on
the social behavior of large collectives of animals (flocks of birds, schools of fish, swarms
of insects, herds of large mammals) and their ways of attaining their goals. This is also
the main part of our taxonomy consideration, and some of the most-used and best-known
algorithms belong to it.

In the following part, some illustrative examples of swarm intelligence algorithms are
briefly outlined. The criterion of their inclusion was either their acceptance by the scientific
and engineering community, as seen through the number of publications investigating
a particular algorithm and the number of citations, or their novelty—some quite recent
algorithms are also presented, and the inclusion criterion was the number of citations (if
some very recently proposed methods gathered a relatively large number of citations in a
short time, they probably merit inclusion). The authors of this text are aware that such an
approach may have inherent issues with subjectivity and the choice of criteria. In addition,
the number of existing swarm intelligence methods is overwhelming (and growing daily),
and it is difficult to estimate if some particular omitted cases were to be preferred over
those chosen. Thus, some important methods may have been skipped, while some other
less important ones may have been taken into account. We strived to keep such situations
at a minimum.

Table 3 shows some selected swarm intelligence algorithms. The Table 1 description
is valid for its contents. In the subdivisions following, Table 3 some selected algorithms
quoted in it are described in more detail.
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Table 3. Selected swarm intelligence algorithms.

Algorithm Name Abbr. Proposed by, Year Ref.

Particle Swarm Optimization PSO Eberhart, Kennedy, 1995 [104]
Whale Optimization Algorithm WOA Mirjalili, Lewis, 2016 [105]
Gray Wolf Optimizer GWO Mirjalili, Mirjalili, and Lewis, 2014 [106]
Artificial Bee Colony Algorithm ABCA Karaboga, 2005 [107]
Ant Colony Optimization ACO Dorigo, 1992 [108]
Artificial Fish Swarm Algorithm AFSA Li, Qian, 2003 [109]
Firefly Algorithm FA Yang, 2009 [110]
Fruit Fly Optimization Algorithm FFOA Pan, 2012 [111]
Cuckoo Search Algorithm CS Yang and Deb, 2009 [112]
Bat Algorithm BA Yang, 2010 [113]
Bacterial Foraging BFA Passino, 2002 [114]
Social Spider Optimization SSO Kaveh et al., 2013 [115]
Locust Search Algorithm LS Cuevas et al., 2015 [116]
Symbiotic Organisms Search SOS Cheng and Prayogo, 2014 [117]
Moth-Flame Optimization MFOA Mirjalili, 2015 [118]
Honey Badger Algorithm HBA Hashim et al., 2022 [119]
Elephant Herding Optimization EHO Wang, Deb, Coleho, 2015 [120]
Grasshopper Algorithm GOA Saremi, Mirjalili, Lewis, 2017 [121]
Harris Hawks Optimization HHO Heidari et al., 2019 [122]
Orca Predation Algorithm OPA Jiang, Wu, Zhu, Zhang, 2022 [123]
Starling Murmuration Optimizer SMO Zamani, Nadimi-Shahraki, Gandomi, 2022 [124]
Serval Optimization Algorithm SOA Dehghani, Trojovský, 2022 [125]
Coral Reefs Optimization Algorithm CROA Salcedo-Sanz et al., 2014 [126]
Krill Herd Algorithm KH Gandomi, Alavi, 2012 [127]
Gazelle Optimization Algorithm GOA Agushaka, Ezugwu, Abualigah, 2023 [128]

4.2.1. Particle Swarm Optimization (PSO)

PSO is the most popular swarm intelligence (SI) algorithm, with about 66,000 publica-
tions as of May 2023 [97]. In the same way as the SI approach in general, PSO is inspired
by the collective behavior of large groups of social animals (insects, fish, birds, mammals).
It is a population-based metaheuristic algorithm, especially convenient for continuous
search spaces.

Each particular social animal in the swarm is regarded as a single “particle” or point in
the search space, defined by its location and velocity, which approaches the ideal solution
according to an objective function (for a social animal, that solution can be the food location,
mating pair location or another goal). Every particle typically changes its velocity v toward
its target by using its own experience of the position, plus the experience of its neighbors
(the location of the particles in the nearby surroundings), the location data of all the particles
searching for the solution with a predefined inertia w. Each particle’s motion is defined by
four variables:

1. Its current position in the search space;
2. Its best position in the past—past best (Pbest);
3. The best position in its direct proximity—local best (Lbest);
4. The ideal position for all particles combined—global best (Gbest).

Using these parameters, every particle will update its data and will follow the relation

Current [i] = current [i] + v [i] (1)

where i denotes the number of the concrete particle in the swarm. The velocity of the
particle is updated according to

vi = w × vi + c1 × rand () × (Pbesti − xi) + c2 × rand () × (Gbesti − xi) (2)
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where c1 and c2 are acceleration coefficients, predefined inertia is w and rand () is a random
number function that generates any arbitrary number in the range [0, 1]. c1 is connected
to the best solution of each particle, while c2 is associated with the best solution of all the
localities. The flowchart for the basic PSO algorithm is shown in Figure 6.
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In the swarm initialization step, the swarm population size is defined, as is the dimen-
sionality of the search space; random positions and velocities are assigned to each particle.
During the evaluation, the algorithm determines the fitness (in this case, the position with
regard to the objective function) of each particle. The update of the personal best (cognitive
component) starts from the best position attained so far for that concrete particle (personal
best), and if its current position has achieved a fitness that exceeds the personal best, its
data are updated with the newly attained best position in the search space. The global best
(social component) update is based on the information shared by each particle with its
locally surrounding neighboring particles. The update is completed by the best position in
search space attained by any particle in the local neighborhood. Velocity is updated based
on the inertia component w, the personal best of the particle and the global best. In this
way, the trade-off between exploitation and exploration is controlled. The desired end is
reached if the targeted fitness value is attained.

However, PSO can become trapped in a local optimum because of specific constraints
in the exploration phenomena, especially when functions have multiple local optima. Over
the years, numerous PSO modifications and upgrades have been put forth by researchers
as solutions to this problem. Among them are PSO with time-varying acceleration coeffi-
cients [129], in which the rates of social and cognitive learning varied over time; human
behavior-based PSO [130], which imitates human behavior by incorporating negative traits
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in humans by using the term “Gworst”; and PSO with aging leaders and challengers
(ALCPSO) [131], where a leader is initially assigned, and as the leader ages, a new particle
challenges its dominance. When coping with unimodal problems, these algorithms work
well, but as the algorithm is moved toward more intricate and multimodal functions, the
performance starts to deteriorate.

4.2.2. Ant Colony Optimization (ACO)

ACO is the second most popular swarm intelligence algorithm, with more than
16,000 publications as of May 2023 [97]. This bio-inspired metaheuristic algorithm is based
on the foraging behavior of ants in ant colonies.

It is known that ants as a collective find the shortest paths between their nest and the
food sources due to worker ants leaving pheromone trails behind themselves and the rest
of the legion of workers simply following these trails.

Each ant (k) in the ant colony mimicked by ACO will arbitrarily select a route, creating
a graph structure and generating pheromones at the edges of the graph as it does so. The
probability of choosing the route is calculated as

Pk
ij =


(τij)

α
(ηij)

β

∑lεJk
i
(τij)

α
(ηij)

β j /∈ Jk
i

0 j /∈ Jk
i

 (3)

Here, Jk
i is the set of neighbors of vertex i of the kth ant, τij represents the amount

of pheromone trace on the edge (i, j), α and β are the weight factors that influence the
pheromone trail and ηij is the visibility value. In contrast to the other paths, where the
pheromone evaporation rate is such that pheromones are partially evaporated, the route
providing the minimal objective function has its evaporation rate spike in each iteration (4).

Pk
ij =

{
(1− ρ)τij +

m

∑
k=1

∆τij
k

}
(4)

where m is the number of ants, ρ is the pheromone evaporation rate and ∆τij
k is the quantity

of pheromone laid on the edge (i, j) by ant k.
The pseudocode of the ACO procedure is shown in Figure 7. The flowchart of the

ACO is presented in Figure 8.
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As shown in the flowchart, during the initialization step, a colony of ants is generated,
where each individual ant represents a potential solution to the optimization problem and
the initial pheromone levels are defined. During the individual ant movement step, each ant
moves from one position (node) to another. The target node is chosen by its attractiveness,
which is heuristically determined. The solution is built for each individual ant by selecting
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the node and by the ant moving along the node edges based on the pheromone level
and the attractiveness of the node (again heuristically determined). A pheromone update
to strengthen the trails is performed after every ant reaches its individual solution, the
pheromone amount being proportional to the fitness of the individual solution. The global
update is related to the pheromone levels, and it is performed according to the best solution
found until that moment. The procedures are iteratively repeated until the desired solution
is attained or the maximum number of iterations is exceeded.
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4.2.3. Whale Optimization Algorithm (WOA)

This swarm intelligence algorithm is based on the social behavior of humpback whales.
More concretely, it mimics their peculiar method of hunting fish schools for food. These
highly intelligent creatures developed their own hunting strategy: after their leader (alpha)
encounters the target fish school, it starts circling around it, at the same time blowing
bubbles that create a kind of net around the fish, preventing them from escaping it. The
circling is a spiral and closes in on the prey. Another whale, supporting the leader, emits a
call for the others to make a formation behind the leader, assume their attack positions and
prepare to lunge at the prey. This rather complex maneuver is called bubble-net hunting.

A simplified procedure mimicking the bubble-net foraging attacks used by humpback
whales when they are hunting their prey is used in the WOA optimization algorithm. The
algorithm was proposed by Mirjalili and Lewis in their highly cited paper from 2016 [105].
This algorithm is population-based. It consists of three stages—exploration, exploitation
and convergence (spiraling—local search).

The algorithm proceeds as follows: At the beginning, a population of “whales” is
initialized in a random manner. Each individual whale represents a potential solution to
the optimization problem, The whale is regarded as a particle; i.e., it is described solely by
its position in the search space. In the exploration stage, the whales modify their position
according to their current location and the best solution found until that stage. The aim of
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exploration is to diversify the search by the whales approaching the promising regions of
the search space. Their position change is described by the following equations [105]:

During encircling the prey,

→
D =

∣∣∣∣→C .
→
Xbest(t)−

→
X(t)

∣∣∣∣. (5)

Updating the position of the current whale towards the best solution by encircling is
accomplished as

→
X(t + 1) =

→
Xbest(t)−

→
A
→
D, (6)

where
→
D is the distance vector, t is the current iteration number,

→
A is a coefficient and point

(.) denotes element-by-element multiplication;
→
X represents the position vector.

For spiral position updating, the following is valid:

→
X(t + 1) =

→
D′ exp(bl) cos(2πl) +

→
Xprey(t), (7)

where
→
D =

∣∣∣∣→C →Xbest(t)−
→
X(t)

∣∣∣∣ is the distance between the ith whale and the targeted prey

and represents the best solution encountered until that moment, b is a constant parameter
that defines the spiral shape and l is a random number in the [−1, 1] interval.

→
X(t + 1) =

→
Xrand −

→
A
→
D. (8)

If p denotes the probability of whales choosing encircling or spiraling, then Equation (6)
is valid for, e.g., p > 0.5, and Equation (7) is valid for p < 0.5.

As the algorithm progresses, the whales converge towards the global optimum. The
convergence is achieved by gradually reducing the search space according to the presented
procedure. For the whale optimization procedure in its basic form, a pseudocode may be
written as shown in Figure 9.
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A possible flowchart for the whale optimization algorithm is shown in Figure 10.
Numerous different versions of this algorithm exist, some of them generally improved,
some of them tuned for a particular application. Hybrid and multi-objective versions are
also encountered.
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4.2.4. Grey Wolf Optimizer (GWO)

The GWO algorithm is a swarm-intelligence-based metaheuristic procedure inspired
by the social behavior and hunting strategies of wolfs in packs. It is assumed that in
dependence on their roles in their packs, grey wolves are socially organized as a pyramidal
hierarchy, although that may not be so in reality in the wild, and some prestigious sources
have even described it as a myth [132].

Realistic or not, the often-described scheme is the source of the popular and very
useful optimization grey wolf optimizer algorithm that was proposed in 2014 by Mirjalili,
Mirjalili and Lewis. The metaheuristic optimizer can be presented as follows: At the top of
the pyramid is Alpha, and he is the leader of the pack and the decision maker. Beta is the
next in order; he helps Alpha in making decisions and disciplines the pack. He is also the
candidate for the next Alpha. Delta is an average wolf, a “soldier” following Alpha and
Beta in the hunt. Omega is the weakest in the pack and lowest in ranking.

According to the ranks of the grey wolves that execute the hunting process, the GWO
algorithm is also organized into four groups. These hunting categories are also called alpha,
beta, delta and omega, with alpha here denoting the most successful search strategy.

Similar to the previously described SI-based algorithms, the GWO search begins by
establishing a random population of grey wolves. The four wolf groups are then formed,
the positions of individuals are determined, and the distances to the intended prey are
calculated. During the search process, each wolf is a particle that symbolizes a potential
solution and is updated. In order to maintain exploration and exploitation and prevent the
local optimum from stagnating, GWO additionally uses operations that are controlled by
two factors. GWO just needs one vector of position; hence, it uses less memory than the
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PSO algorithm [21]. Additionally, while PSO preserves the best solution so far obtained
by all particles as well as the single best solution for every particle, GWO only retains the
three best solutions.

The standard GWO algorithm is initialized by setting the number of pack members to
n, the parameter a that gradually decreases its value from 2 to 0, the maximum number of

iterations tmax, and the search agents
→
Xi, where i = 1, 2, . . . , n for a fitness function f (

→
Xi).

The three best solutions are, according to the pack hierarchy, denoted as
→
Xα,

→
Xβ,

→
Xγ. The

distances to the target are described as

→
Dα =

∣∣∣∣→C1
→
Xα −

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→C2
→
Xβ −

→
X
∣∣∣∣

→
Dδ =

∣∣∣∣→C3
→
Xδ −

→
X
∣∣∣∣

, (9)

and the search agents (solutions) are

→
X1 =

∣∣∣∣→Xα −
→
A1
→
Dα

∣∣∣∣
→
X2 =

∣∣∣∣→Xβ −
→
A2
→
Dβ

∣∣∣∣
→
X3 =

∣∣∣∣→Xδ −
→
A3
→
Dδ

∣∣∣∣
. (10)

The next iteration step is calculated as

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
, (11)

where
→
A = 2

→
a ·→r 1·

→
a and

→
C = 2

⇀
r 2 are coefficients, while

→
r 1,

→
r 2 are random vectors with

intensities in the range from 0 to 1.
The pseudocode of the grey wolf optimizer is given in Figure 11. The flowchart of the

GWO is shown in Figure 12.
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4.2.5. Firefly Optimization Algorithm (FOA)

Fireflies emit bioluminescent light at night to communicate among themselves and
to attract mates. The attraction is based on the light intensity of an individual firefly (the
stronger it is, the stronger the allure) and on its position (the apparent brightness of nearer
fireflies is stronger).

A metaphor-based algorithm inspired by the attraction between fireflies was proposed
by Xin-She Yang in 2008 [110]. The main expression driving the movement of the fireflies is

xt+1
i = xt

i + β0e−γr2
ij
(

xt
j − xt

i

)
+ αεt

i, (12)

where xt+1
i is the updated position of an individual firefly (iteration step t + 1), xt

i is the
current position (iteration step t), β0 is the attractiveness between a pair of fireflies at zero
distance and γ denotes the light absorption coefficient (the bracketed term multiplied by
β0 represents a light intensity decrease due to distance and the light absorption of the
atmosphere). In the last term on the right, α denotes a scaling factor, and εt

i is a random
vector defining perturbation.

The algorithm in its basic form works as follows: First, a population of fireflies, each
representing a potential solution, is randomly initialized. They are considered as particles,
meaning that their position in search space actually defines a candidate solution. Their
movement is based on the attraction to other fireflies, which is larger if the bioluminescent
glow of a neighboring firefly is stronger or the neighboring firefly is nearer. The brightness
is defined by the objective function related to the individual’s position in the search space.
The firefly positions are updated according to Equation (12) which includes both the
distance and the real intensity of the glow. The firefly positions are iteratively updated. In
this way, the promising regions of the search space are exploited.

A pseudocode for the basic firefly optimization algorithm is given in Figure 13. A
flowchart of the algorithm is presented in Figure 14.
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4.2.6. Bat Optimization Algorithm (BOA)

The BOA is a global metaheuristic algorithm that simulates the echolocation of micro-
bats belonging to the zoological suborder Microchiroptera. To locate their prey, microbats
emit sound pulses typically in the range from 14 kHz to 200 kHz, i.e., for the most part far
from the human hearing range, constantly varying the pulse frequency, loudness and pulse
rate. The echo reflected from their prey enables them to locate, approach and catch it. The
bat optimization algorithm is based on that behavior. It was proposed by Xin-She Yang in
2010 [133].
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Despite its simple design, the BOA has proven itself to be effective. The bat optimiza-
tion algorithm can sometimes result in an imbalance between exploration and exploitation
in order to find the true global solution if the parameters utilized are not adjusted appropri-
ately. As a result, numerous studies have developed a variety of hybridized and modified
bat algorithms to boost their efficiency and find overall solutions to optimization prob-
lems [134]. Other varieties of BOA have been proposed as enhancements and adaptations
to many practical situations.

The optimization proceeds in the following manner: At an iteration number t, each
individual bat is allotted a velocity vt

i and a location xt
i in a multidimensional search space.

Here, i denotes the number of an individual microbat. There exists a specific best answer,
xbest, amongst all the bats. Equations (13)–(15) help in updating the positions and velocities:

fi = fmin + ( fmax − fmin)β, (13)

vt
i = vt−1

i + (xt−1
i − x∗) fi, (14)

xt
i = xt−1

i + vt
i , (15)

where β ∈ [0, 1] is an arbitrary vector obtained from a uniform distribution. Each bat is
initially given a frequency f that is randomly picked from the range [fmin, fmax]. Due to this,
the bat algorithm can be viewed as a frequency-tuning algorithm that offers a balanced
combination of exploitation and exploration [135].

A system for automatic control and auto-zooming into the area with potential options
is fundamentally provided by the loudness and pulse emission rates. BOA uses a simple
monotonic form for both loudness A and pulse emission rate r, although in reality, these
may have quite complex forms. They are defined as

At+1
i =∝ At

i , (16)

rt+1
i = rt

i
(
1− e−γt). (17)

The pseudocode of the BOA procedure is shown in Figure 15. It clearly shows the
iterative nature of the optimization process. Figure 16 shows the flowchart of the BOA.
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4.2.7. Orca Predation Algorithm (OPA)

The orca predation algorithm (OPA) is one of the more recent swarm intelligence algo-
rithms, being proposed in 2022 [123]. It should not be confused with some other similarly
named metaheuristics, including killer whale algorithm [136], ORCA optimization algo-
rithm (OOA) [137], orcas algorithm (OA) [138] and artificial orcas algorithm (AOA) [139]
(which all have a lower citation count per year, and some of them even have no citations
at all), or with some other programming systems totally unrelated to either optimization
algorithms or biomimetics. The OPA mimics the hunting behavior of killer whales (Orcinus
orca), creatures whose intelligence is comparable to that of humans. When they hunt
their prey, they do so in packs, using echolocation to find it and communicating among
themselves using their sonars to exchange information and coordinate their attacks. In-
stead of being based on a random feeding frenzy, their attacks are highly coordinated and
planned. This makes them formidable predators; actually, orcas are apex predators of the
ocean, preying even on sharks. The ruthless efficiency of their hunting skills motivated the
creation of the OPA.

The algorithm divides the procedure into three mathematical sub-models: (1) searching
for prey, (2) driving and encircling it and (3) attacking it. In order to introduce a balance
between the exploration and exploitation stages, different weight coefficients are assigned
to different stages of prey driving and encircling, and the algorithm parameters are adjusted
to achieve that goal. More concretely, the positions of those killer whales which are superior
are ascertained, as are the positions of those which are average and randomly chosen. In
this way, the optimal solutions are approached during the attack stage, while at the same
time, the diversity of individual killer whales is fully retained.

Different stages of the OPA can be described by the steps corresponding to the real-
world hunt of an orca pack. The first step is the establishment of the pack itself. It is
considered to be a population of N particles in the search space (potential solutions),
and the search space has D dimensions, so the orca pack population can be described as
X = [x1, x2, . . . xN ]. Here, xN denotes the position of the Nth individual orca in the pack.
The second step is searching for the prey, typically a school of fish. After one of the orcas
has spotted a school, the chasing phase begins. The orca pack disperses and starts the first
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stage of the chase—the driving, in which the whole school is driven by orcas towards the
water’s surface. The driving can proceed according to one of two different procedures, in
dependence on the size of the orca pack. The pack may be small (case 1) or large (case 2).
To describe this situation, a probability q from the interval [0, 1] is used. The algorithm
generates a random number rand, and if the orca pack is large, then rand > q, and the first
method of driving will be used; if the orca pack is small (rand ≤ q), the second method will
be used. The two methods are described by the equations

Vt
chase,1,i = a

(
d xt

best − 2 (b Mt + c xt
i
)
, (18)

Vt
chase,2,i = e xt

best − xt
i , (19)

where t is the number of the current iteration; Vchase is the chasing speed of orcas; a, b
and d are random coefficients from the [0, 1] range, and e is a random coefficient from
the range [0, 2]; the numbers 1 and 2 in the subscripts denote the first (18) or the second
(19) mentioned driving strategy; x is the position of ith orca particle; the subscript “best”
denotes the best solution for x; i is the number of the orca under consideration; and M is
the average location of the orca pack (solution population) defined as

Mt =
∑ N

i=1 xt
i

N
. (20)

The positions of orca particles during the driving procedure will be determined by

xt
chase,1,i = xt

i + Vt
chase,1,i rand > q, (21)

xt
chase,2,i = xt

i + Vt
chase,2,i rand ≤ q. (22)

After the driving has ended, the encircling stage begins. In that way, orcas force the
fish from the school to form a roughly spherical and tightly packed formation. If three orcas
are randomly selected, other orcas will follow them during encircling, and the position of
the ith orca will be determined according to their position as

xt
chase,3,i,k = xt

d1,k + 2 (rand− 1
2
)

tmax − t
tmax

(xt
d2,k − xt

d2,k) . (23)

The orca positions during encirclement are changing according to

xt
chase,i = xt

chase,i f (xt
chase,i) < f (xt

i ) , (24)

xt
chase,i = xt

i f (xt
chase,i) ≥ f (xt

i ) , (25)

where f is the objective function.
In the final, attacking stage, the algorithm chooses the four best-positioned orcas to

attack. Their positions and speeds are calculated as

Vt
attack,1,i = (xt

1 + xt
2 + xt

3 + xt
4)/4− xt

chase.i, (26)

Vt
attack,2,i = (xt

chase,d1 + xt
chase,d2 + xt

chase,d3)/3− xt
i , (27)

xt
attack,i = xt

chase,i + g1 Vt
attack,1,i + g2 Vt

attack,2,i, (28)

where V denotes speed; numbers 1 to 4 denote orcas in the best positions; d1, d2 and d3 are
randomly chosen orcas from the pack of N; and the subscript attack denotes that the value
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is valid for the attacking stage. The parameter g1 is a randomly generated number in the
range [0, 2], while g2 is a randomly generated number in the range [−2.5, 2.5].

The flowchart of the orca predation algorithm is shown in Figure 17. It is based on
the diagram from [123], but with some modifications. The parameter xlow represents the
lower boundary of the problem. Although complicated at first look, the algorithm is rather
simple in the mathematical sense, so its calculation speed is comparatively high [123].
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4.2.8. Starling Murmuration Optimizer (SMO)

Starling murmuration is a magnificent display of the collective behavior of starlings
(family Sturnidae) when huge flocks of countless birds swoop and swirl in intricately
synchronized shape-shifting living clouds, creating amazing visual spectacles [140] (see
Figure 18). The motive for the use of that behavior in optimization is that not a single bird
among the countless thousands of them flying in coordination ever collides with any other.
It is no wonder that among the first practical applications of the SMO algorithm was the
flight coordination of massive swarms of drones [141].

The starling murmuration optimizer (SMO) is a metaheuristic algorithm introduced
in 2022 by Zamani et al. [124]. It is a population-based algorithm utilizing a dynamic
multi-flock construction. It introduces three new search strategies: separating, diving
and whirling.

At the initial step of the algorithm, individual starlings are stochastically distributed.
The initial position of the ith starling in the group of N birds is described by

xid = xL
d + rand(0, 1)

(
xU

d − xL
d

)
, i = 1, 2, . . . N; d = 1, 2, . . . D, (29)

where N is the total number of starlings, D is the number of dimensions of the search space,
xid is the dth dimension of the starling si, xU

d is the upper bound of the search space and xL
d

is the lower bound of the search space. rand(0, 1) is a random function with a value in the
interval between 0 and 1.
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After initialization, some of the starlings separate from the flock to form a new flock
Psep that will explore the search space according to

Psep =
log(t + D)

2 log(tmax)
, (30)

where t is the number of the current iteration and tmax is the maximum number of allowed
iterations. The search strategy is defined by

Xi(t + 1) = XG(t) + Ξ1(y) [Xr′(u)− Xr(t)], (31)

where XG(t) is the global position obtained during the iterative step t, Xr’(t) is the position
selected from a proportion of the fittest starlings and the separated flock, and Xr(t) is
randomly selected from a population. The separation operator Ξ1(y) is a new operator
based on the standard quantum harmonic oscillator, in which y represents a random
number from the Gaussian distribution [124].

The starlings that remained after the separation dynamically construct the multi-flock
with members f 1, f 2, . . . , fk. The quality Qq(t) of the qth flock is calculated by

Qq(t) =
∑ k

i=1 ∑ n
j=1 s fij(t)

1
n ∑ n

i=1 s fqi(t)
(32)

to select either the diving (exploration) or the whirling (exploitation) search strategy. The
diving strategy explores the search space using a new quantum random dive operator, and
the whirling strategy exploits the neighborhood of promising regions using a new cohesion
force operator [124]. Here, sfij(t) is the fitness value of the ith starling from the jth flock fj; k
is the number of flocks in a murmuration M. The average quality of all flocks is denoted
as µq.

Figure 19 shows the flowchart of the starling murmuration algorithm. Mathematically,
the starling murmuration algorithm is rather complex because of the use of the new
quantum operators.

https://commons.wikimedia.org/wiki/File:Starlings_over_Gretna_-_geograph.org.uk_-_1069349.jpg
https://commons.wikimedia.org/wiki/File:Starlings_over_Gretna_-_geograph.org.uk_-_1069349.jpg


Biomimetics 2023, 8, 278 26 of 70
Biomimetics 2023, 8, x FOR PEER REVIEW 27 of 73 
 

 

 
Figure 19. Flowchart of starling murmuration algorithm. Modified from [124]. 

4.3. Metaheuristics Mimicking Human or Zoological Physiological Functions 
Physiological functions of humans or certain mammals have also served as 

bio-inspiration for some metaheuristic optimization methods. Table 4 shows just three 
such algorithms, and one of the most important and most often used ones among them, 
the artificial immune system (AIS), is presented in more detail in the subdivision that 
follows. 

Table 4. Selected algorithms mimicking human or zoological physiological functions. 

Algorithm Name Abbr. Proposed by, Year Ref. 
Artificial Immune System AIS Dasgupta, Ji, Gonzalez, 2003 [142] 
Neural Network Algorithm NNA Sadollah, Sayyaadi, and Yadav, 2018 [143] 
Human Mental Search HMS Mousavirad, Ebrahimpour-Komleh, 2017 [144] 

Artificial Immune Systems (AISs) 
Artificial immune systems (AISs) are a class of algorithms mimicking the function of 

the human and generally vertebrate immune system. They are among the most popular 
optimization algorithms, with the number of published papers about AISs being about 
22,000 as of May 2023 [97]. In dependence on how they are used, they can be classified 
both as metaphor-based metaheuristic algorithms [145,146] and machine learning tech-
niques [147]. They belong to metaheuristic algorithms because they perform optimization 
tasks, explore the search space and perform iterative improvements to find approxi-
mately optimal solutions [145,146]. On the other hand, they also belong to machine 
learning techniques because they involve rule-based learning from data and include 
adaptive mechanisms (utilizing feedback information) [147]. The fact that they are 
bio-inspired and metaphor-based is a trait that differentiates them from conventional 

Figure 19. Flowchart of starling murmuration algorithm. Modified from [124].

4.3. Metaheuristics Mimicking Human or Zoological Physiological Functions

Physiological functions of humans or certain mammals have also served as bio-
inspiration for some metaheuristic optimization methods. Table 4 shows just three such
algorithms, and one of the most important and most often used ones among them, the
artificial immune system (AIS), is presented in more detail in the subdivision that follows.

Table 4. Selected algorithms mimicking human or zoological physiological functions.

Algorithm Name Abbr. Proposed by, Year Ref.

Artificial Immune System AIS Dasgupta, Ji, Gonzalez, 2003 [142]
Neural Network Algorithm NNA Sadollah, Sayyaadi, and Yadav, 2018 [143]
Human Mental Search HMS Mousavirad, Ebrahimpour-Komleh, 2017 [144]

Artificial Immune Systems (AISs)

Artificial immune systems (AISs) are a class of algorithms mimicking the function of
the human and generally vertebrate immune system. They are among the most popular
optimization algorithms, with the number of published papers about AISs being about
22,000 as of May 2023 [97]. In dependence on how they are used, they can be classified
both as metaphor-based metaheuristic algorithms [145,146] and machine learning tech-
niques [147]. They belong to metaheuristic algorithms because they perform optimization
tasks, explore the search space and perform iterative improvements to find approximately
optimal solutions [145,146]. On the other hand, they also belong to machine learning
techniques because they involve rule-based learning from data and include adaptive mech-
anisms (utilizing feedback information) [147]. The fact that they are bio-inspired and



Biomimetics 2023, 8, 278 27 of 70

metaphor-based is a trait that differentiates them from conventional machine learning
procedures. It may be said that AISs inherently represent a combination of metaheuristic
algorithms with machine learning; i.e., the two areas overlap in them.

The function of an AIS algorithm is based on various functions of the immune system.
After encountering antigens (any agents that our immune system sees as foreign and
tries to fight off), immune cells trigger an immune response and produce antibodies or
activate themselves. In the AIS algorithms, the immune response corresponds to the
evolution-based adaptation of antibodies to improve their fitness or affinity to antigens
(e.g., through modification of the existing ones or generation of new ones by way of
mutation or recombination).

Since they represent a group of procedures, AISs include different algorithms. The
most widely used and popular ones among those are the clonal selection algorithm, the
artificial immune network algorithms, the negative selection algorithm, the dendritic cell
algorithm, the danger theory, the humoral immune response, the pattern recognition
receptor model and the artificial immune recognition system. Some of the mentioned types
of the AIS algorithm group themselves present groups rather than a single algorithm. In
further text, we give a short description of some of the most well known AIS algorithms.

Clonal selection algorithms (CSAs) are inspired by an acquired immunity mechanism
called clonal selection. According to the theory of clonal selection, T cells (lymphocytes that
attack and destroy foreign agents) and B cells (lymphocytes that make antibodies) achieve
improvements in their response to antigens (substances and other agents that trigger a
response of the immune system because the system does not recognize them and tries to
fight them off—bacteria, viruses, toxins, allergens, foreign particulate matter, etc.) through
the process of affinity maturation in which T-cell-activated B cells produce antibodies with
more and more increasing affinity for a particular antigen during an immune response to
exposures to that antigen. CSA algorithms focus on a “survival of the fittest” Darwinian
selection process applied to the immune cells. In that kind of time-maturation process,
the selection corresponds to the affinity of antigen-antibody interactions, reproduction
corresponds to the cell division and variation corresponds to the somatic hypermutation
(a mechanism at the cell level by which the immune system adapts to the new hostile
foreign elements such as pathogen microorganisms). Antibodies with improved affinities
are selectively cloned and mutated. Thus, a population of diverse improved solutions
is generated.

Artificial immune network algorithms are inspired by the interactions of the immune cells
within the immune system. The algorithm creates a network graph structure to represent
candidate solutions. Each graph node corresponds to a potential solution. The training
algorithm generates or removes the interconnections between the nodes on the basis of
affinity (which corresponds to the similarity in the search space). This leads to the network
graph evolution and promotes cooperation and competition among the network graph
nodes.

The negative selection algorithm is inspired by the negative selection mechanism where
the immune system identifies and kills self-reacting cells, i.e., the T cells that anomalously
target and attack the organism’s own cells, by the process of apoptosis—programmed cell
death. The algorithm establishes exemplary pattern “detectors” of self-components which
it trains on normal cells, evolving them to recognize non-self patterns, achieving a high
detection rate for anomalous patterns, while minimizing false positives. A population of
antigen patterns (non-self patterns) is generated in the process.

The dendritic cell algorithm is based on mimicking the functions of dendritic cells (a
type of phagocytes and a type of antigen-presenting cells that activate immune response
and orchestrate the behavior of T cells). In this algorithm, candidate solutions are repre-
sented as antigens, while the role of dendritic cells is to capture and disable antigens. The
algorithm implements a feedback system through which dendritic cells adapt themselves
in dependence on their interaction with antigens. This is a multi-scale process since it
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involves different levels, starting from the molecule networks within a single cell to the
whole population of cells.

An artificial immune recognition system combines various immune system elements,
including an artificial immune network, negative selection and clonal selection. In other
words, it combines different immune aspect-based algorithms to arrive at an improved and
robust optimization procedure.

As an illustration of the way the AIS algorithms function, we present here the flowchart
of one of the clonal selection algorithms. The flowchart is shown in Figure 20.
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The particular properties of various types of AISs are often further modified and
tailored since the algorithms from this group offer large and flexible customization possibil-
ities. Over the years, different variants and extensions of the AISs have been introduced to
adapt the algorithms to different specific applications and to improve their efficiency.

4.4. Anthropological Algorithms (Mimicking Human Social Behavior)

This subsection presents metaheuristic optimization algorithms inspired by human
social behavior. The description of the contents of Table 2 is also valid for Table 5. In the
single subdivision following Table 5, more details are given about the tabu search algorithm
(TSA), although there is disagreement among different research teams regarding which
metaheuristic group this algorithm actually belongs in. Our reasoning is that since tabu
(or, spelled alternatively, taboo) is a social phenomenon present in practically all human
societies and the algorithm draws its name from it, as well as its basic properties, it should
merit inclusion in this group.



Biomimetics 2023, 8, 278 29 of 70

Table 5. Selected anthropological algorithms (mimicking human social behavior).

Algorithm Name Abbr. Proposed by, Year Ref.

Imperialist Competitive Algorithm ICA Atashpaz-Gargari et al., 2007 [148]
Anarchic Society Optimization ASO Ahmadi-Javid, 2012 [149]
Teaching-Learning Base Optimization TLBO Rao, Savsani, and Vakharia, 2011 [150]
Society and Civilization Optimization SC Ray et al., 2003 [151]
League Championship Algorithm LCA Kashan, 2009 [152]
Volleyball Premier League Algorithm VPL Moghdani, Salimifard, 2018 [153]
Duelist Algorithm DA Biyanto et al., 2016 [154]
Tabu Search TS Glover, Laguna, 1986 [155]
Human Urbanization Algorithm HUA Ghasemian, Ghasemian, Vahdat-Nejad, 2020 [156]

Political Optimizer PO Askari, Younas, Saeed, 2020 [157]

Tabu Search Algorithm (TSA)

As mentioned above, there is contradictory information in the literature on the correct
classification of the tabu (taboo) search algorithm. Different researchers classified it in
different metaheuristic groups, even among the mathematics-based nature-inspired algo-
rithms [96]. However, since its main assumption is based on anthropological habits, it is
more often than not categorized among human social behavior-based algorithms [158].

The word “tabu” (or, in an alternative and more frequently used spelling, “taboo”) is a
Tongan expression for a sacred thing that is forbidden to be touched. Almost all human
societies have their taboos in one form or another.

Tabu search is a single-solution-based metaheuristic optimization algorithm [97],
contrary to all the other metaheuristics quoted here, which are population-based. It is
designed to perform combinatorial optimization utilizing local search methodology. When
searching for an improved potential solution, it checks the immediate neighboring solutions
in the search space. A peculiarity of this algorithm is that it utilizes memory to remember
the previously visited solutions and to prohibit their revisiting. In other words, these
solutions become tabu. Solutions that are undesirable according to a user-defined rule
or set of rules (the aspiration criteria) also become tabu. The algorithm makes a list of
forbidden solutions and thus remembers them. Another peculiarity of the algorithm is that
in situations when no improved solution exists (e.g., when stuck in a local minimum), the
algorithm allows for choosing a worse solution—i.e., it relaxes its basic requirement of local
search to always strive for a better solution. In this way, tabu search becomes a local search
method that is able to escape local minima and continue searching for a global optimum.

Figure 21 shows the pseudocode of the standard tabu search algorithm. Figure 22
shows the flowchart of the standard tabu search algorithm.

4.5. Plant-Based Algorithms

This subsection presents metaheuristic optimization algorithms inspired by plant
life properties. The Table 2 description is valid for the contents of Table 6. In the single
subdivision following Table 6, the most popular plant-based algorithm, flower pollination
algorithm (FPA), is described in more detail.

Flower Pollination Algorithm (FPA)

The clade of flowering plants (Angiospermae) represents the most advanced and most
diverse land plants on the earth, with currently more than 300,000 known species. Among
the reasons for such dominance in nature is their way of reproduction by pollination. They
bear male and female reproductive cells. The male cells, the pollen, are borne in the stamens.
The female cells are megaspores, and their division creates the egg cell. These are enclosed
in the carpel, where one or more carpels form the pistil. As an example, Figure 23 shows
the main reproductive parts of a flowering plant (a prickly pear flower).
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Table 6. Selected plant-based algorithms.

Algorithm Name Abbr. Proposed by, Year Ref.

Flower Pollination Algorithm FPA Yang, 2012 [159]

Invasive Weed Optimization IWO Mehrabian, Lucas, 2006 [160]

Plant Propagation Algorithm PPA Salhi, Fraga, 2011 [161]

Plant Growth Optimization PGO Cai, Yang, Chen, 2008 [162]

Tree Seed Algorithm TSA Kiran, 2015 [163]

Paddy Field Algorithm PFA Premaratne, Samarabandu, Sidhu, 2009 [164]
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Jakšić, 2023.

Flowering plants may be pollinated (i.e., their pollen brought to the egg cell) in abiotic
ways (by wind, rain or dew, or by sheer gravity) or biotic ways (i.e., by insects, birds
or mammals). If a plant is pollinated in a biotic way, it probably will have developed
a mechanism to attract its pollinator organisms. Most often, such plants form petals
that may be brightly colored (sometimes petals are denoted as tepals, if the petals are
indistinguishable from the protective sepals). Another way to attract biotic pollinators is
through smell, which can be, in dependence on the desirable pollinator, fragrance from
the human point of view or stench (e.g., resembling a rotten carcass, which attracts the
targeted pollinators, e.g., blowflies). In abiotically pollinated plants, the petals and sepals
may be completely absent (any appeal to animals being unnecessary). A flower may be
self-pollinated (the pollen of a single flower pollinating the egg cell of the same flower)
or cross-pollinated (two different flowers are needed for pollination). Such a system may
appear complex, but it ensured the dominance and diversity of flowering plants.

The flower pollination algorithm (FPA) is a metaheuristic algorithm based on the
pollination behavior of flowering plants. It was proposed by Xin-She Yang in 2012 in his
widely cited conference paper [165]. The FPA is the most widely published and cited of
all plant-based algorithms, having appeared in about 1000 dedicated publications as of
May 2023 [97]. In the basic version of the algorithm, it is assumed that each plant bears
a single flower, where each flower produces only one grain of pollen. In this way, the
candidate solution is the flower or its grain of pollen. The motion through the search
space is accomplished by biotic cross-pollination. The movement of each grain of pollen
is represented by Lévy flight (a type of random walk), a method that has spread to other
metaheuristics too [166]. The FPA allows exchange of information and the choice of
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improved solutions. In this way, it promotes the exchange of “knowledge” between
different flowers/candidate solutions and thus enhances the exploration stage.

A typical FPA procedure begins by initializing a starting flower/pollen grain popula-
tion, where the positions of the pollen grains represent the candidate solutions. Correspond-
ing to the natural pollination process, FPA allows the flowers to interact and exchange
information in a search for better solutions in several manners. A flower is selected for
reproduction according to its fitness/objective function value and becomes the pollinating
flower (the source). It then perturbs its position in the search space through a random
mechanism (controlled by a randomization factor) and generates a new solution. It can
be procreated by randomly choosing local or global pollination. The fitness of the solu-
tion (offspring) is compared to the pollinator flower. In dependence on their values of
fitness, the original flower is replaced or retained. These steps are repeated for the whole
flower population. Exploration is thus accomplished thorough random perturbations,
while the exploitation proceeds through the selection process based on the fitness criterion.
If a satisfactory solution is found, or a maximum number of iterations is reached, the
algorithm terminates.

A pseudocode for the FPA can be found in [159]. Equations describing the FPA,
including the procedure for the calculation of the best solution and those for Lévy flight,
can be found in the same article. Figure 24 presents a flowchart for the FPA.
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There are numerous improved variations and upgraded alternative versions of the FPA.
Among others, FPA procedures were written for multi-objective optimization [167]. Many
hybrids of the FPA with other metaheuristics were reported, as well as with mathematical
optimization methods and with machine learning methods [168].
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5. Hyper-Heuristics

The hyper-heuristic algorithms [169] were first introduced as “heuristics to choose
heuristics”, i.e., an approach to automate the selection or design (generation) of meta-
heuristic algorithms to be able to solve the most difficult optimization problems. The
term was coined by Cawling, Kendall and Soubeiga in 2000 [170]. Hyper-heuristics may
be a learning method or a search procedure. They use conventional heuristics or meta-
heuristics as their “base” and explore them, seeking strategies to combine them, select the
most convenient ones among them or generate the optimal ones. Thus, a hyper-heuristic
algorithm operates in the search space of heuristics/metaheuristics, in contrast to ordinary
heuristics/metaheuristics which operate in the search space of an optimization problem.
Its goal is to reach a generality instead of targeting a specific problem space. The goal of
hyper-heuristic algorithms is to find effective strategies through a high-level approach that
are adaptable to a range of different problems and problem domains. Regardless of the
methodology used, one can implement them as iterative procedures, where a sequence of
lower-level algorithms keeps reiterating, all the time attempting to improve the solution(s)
from the previous step. Reinforcement learning techniques [171,172] can be also utilized to
automatically learn and improve the hyper-heuristic procedure.

A possible workflow for hyper-heuristics includes the initialization step where a set of
base heuristics or their constitutive parts is selected or generated, followed by an iterative
exploration of the search space of possible heuristics/metaheuristics or their parts, adapting
or refining the available heuristics or generating new ones. The final step is the performance
evaluation of the obtained solutions in the meta-search space and, in dependence on its
results, arrival at the termination criteria. A few common hyper-heuristic approaches are
briefly presented below.

5.1. Selection Hyper-Heuristics

The selection of hyper-heuristic algorithms comprises a group of already existing and
available heuristic/metaheuristic algorithms that evaluate their performance within the
context of a current problem and select the most promising one among them according to
given criteria. These criteria may be based on a previous experience with the application of
pre-existing heuristics/metaheuristics on a similar type of optimization problem. Besides
that kind of history-based approach, a set of criteria may be based on the features that
are problem-specific. Besides the selection of a single existing algorithm that best fits the
current problem, there is a possibility to learn connections between partial stages of solving
a problem and the most convenient heuristics/metaheuristics for those stages.

The two main methodologies used for hyper-heuristic selection are (1) approaches
utilizing constructive low-level heuristics/metaheuristics (incrementally and intelligently
building a solution, starting from an empty set) and (2) approaches utilizing perturbative
low-level heuristics/metaheuristics (utilizing automatic selection and applying heuristics
to improve a candidate solution) [169].

5.2. Generation Hyper-Heuristics

During the optimization processes they perform, generation hyper-heuristics dynam-
ically generate new heuristics or modify pre-existing ones. Contrary to selection hyper-
heuristics that perform their search in a search space containing complete pre-existing
heuristics, generation hyper-heuristics perform their search in a search space consisting of
heuristic components. In this manner, generation hyper-heuristics create new heuristics
through the use of the algorithm components. This goal can be achieved in various manners,
such as using machine learning methodologies, genetic programming (an evolutionary
approach that “genetically breeds” a population of computer programs in an artificial,
evolution-like manner by transforming the existing ones in an iterative manner) [173] and
search-based techniques.
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5.3. Ensemble Hyper-Heuristics

The idea of ensemble hyper-heuristics is to make a combination of two or more
lower-level procedures or algorithms to generate a novel algorithm that will cover a
number of different strategies for finding the solution to the problem in a variety of
situations. Combining diverse heuristic/metaheuristic algorithms, i.e., using an ensemble
of optimization strategies, means uniting their strengths and combining their results to
arrive at a novel and improved method of solution. This approach is related to generation
hyper-heuristics.

The techniques used to combine outputs of such ensemble sets of algorithms include
the method of weighted averages, voting, artificial neural networks and some other machine
learning methods. In this way, a generalized intelligently combined procedure is obtained
that functions better than a sum of its parts (i.e., better than any of these sub-procedures or
sub-algorithms operating independently).

6. Hybridization Methods

One of the relatively often used approaches in bio-inspired optimization is the hy-
bridization of two or more different techniques, each with its own advantages and disad-
vantages, in order to boost their advantages and to lessen or even cancel disadvantages. In
order to belong to the main topic of this survey, at least one of them should be biomimetic.
Hybrid approaches make use of the complementary strengths of the combined methods. In
this way, the solution quality and accuracy are enhanced, and the efficiency and robustness
of the resulting strategies are improved over their constitutive blocks. In this way, an
effective and flexible and effective method to solve complex optimization problems is
obtained. The choice of hybridization type will be dependent on the particular problem, as
well as the required optimization objectives.

The subject of hybrid metaheuristics is almost a separate science field in itself. For an
excellent overview of its methods, taxonomy and approaches, see [174]. Figure 25 shows a
possible classification of the hybridization methods, based on the mentioned reference by
Raidl, but somewhat modified. The classification is by no means exhaustive, and it could
be extended to include more methods.
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Numerous treatises dedicated to hybridization methods have been written. For the
sake of completeness, we mention some selected details on them. However, we must
restrict ourselves here, being aware that we are only scratching the surface. The further
text gives a very short overview of the most pertinent bio-inspired hybridization methods.

6.1. Hybrids of Two or More Metaheuristic Algorithms

The most obvious method to perform hybridization is surely to combine two or more
metaheuristic algorithms into a single hybrid [175]. One of the possible approaches to this
task is switching between separate algorithmic methods at various points of the process of
bio-inspired optimization. For instance, a hybrid could commence using a global algorithm
for general exploration of the search space, and then switch to a local search algorithm
to explore the immediate vicinity of a solution discovered by the global algorithm and
thus refine that solution. In this way, merging of two metaheuristic results in a hybrid
that retains the advantages of both separate constituents. The applicable global search
algorithms for this purpose include particle swarm optimization and other globally oriented
swarm intelligence algorithms, or one may apply evolutionary algorithms such as a genetic
algorithm, memetic algorithm or differential evolution algorithm. Local search can be
then accomplished using some non-bio-inspired algorithms, e.g., hill climbing or the very
popular simulated annealing. In this way, both exploration and exploitation are boosted
compared to a single-algorithm case.

An alternative approach to the hybridization of metaheuristic algorithms would be
to use ensemble methods that utilize two or more metaheuristic algorithms that would
function independently of each other. These independently determined solutions can be
combined by averaging or weighted aggregation. Such an approach offers the benefit of
diversity of the optimization search processes and thus contributes to increased accuracy.

Hybrids between two metaheuristic algorithms have been successfully applied in
microelectronics optimization [176] (whale optimization algorithm-particle swarm opti-
mization) and in nanophotonics optimization [177] (gravitational search algorithm-particle
swarm optimization).

6.2. Hybrids with Hyper-Heuristics

Hybridization of metaheuristics with hyper-heuristics enables automation or even
the generation of custom heuristics tailored for the investigated optimization case [178].
As said before, hyper-heuristics are able to adaptively choose or even create convenient
heuristics customized to a given optimization problem according to its properties and
performance. This ensures additional flexibility when optimizing a particular problem.

6.3. Hybrids with Mathematical Programming (MP)

Mathematical programming techniques can be incorporated into a biomimetic meta-
heuristic algorithm to ensure a fully accurate and precise solution of specific problems that
appear as subunits of the metaheuristic algorithm instead of using heuristic ones [179]. This
will boost the overall accuracy of the solutions since some parts/stages of the algorithm
will be solved using an exact approach instead of heuristics. In this manner, the strengths
of both approaches will be combined to offer a better solution.

An exact approach that can be used includes the utilization of linear programming or
integer programming to calculate a better initial solution. Thus, exact calculation is used
to improve initialization and in that manner to increase the chances of arriving at a better
final solution in a shorter time.

Other cases of the use of mathematical programming are hybrids of metaheuristic
algorithms with constraint programming which enable dealing with complex constraints,
because constraint programming enables one to perform modeling problems with con-
straints and to solve them [179]. In constraint programming, one declaratively states the
constraints to a set of decisive variables which determine the feasible solutions. Constraints
are defined as relations among multiple variables. These relations pose the limits to the
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values the said variables can have at the same time. While the metaheuristic algorithm
optimizes the objective function, the constraint programming deals with the constraints,
thus ensuring the feasibility of solutions, making them more robust.

Local search integration can be incorporated into metaheuristic exploration of the
search space during the stage of local search. In this way, mathematical programming is
used to calculate the neighbor solution. MP can be custom-written for specific problem
structures to exploit their properties that can lead to simpler or faster and more accu-
rate solutions.

Mathematical programming in general can be used to refine solutions already obtained
by metaheuristics and further optimize them. It could be accomplished for instance by
relaxing some constraints, introducing additional objectives or adjusting the variables for
decision making.

6.4. Hybrids with Machine Learning Techniques

There is a plethora of machine learning techniques, and many of them can be incorpo-
rated into metaheuristic frameworks to improve or guide the exploration of the solution
space. Machine learning itself [180] is a huge field of its own. Obviously, its many tech-
niques can boost and enrich metaheuristics. Machine learning can be used for training
that will be able to predict promising areas of the search space so that metaheuristics can
avoid a large part of the exploratory operation and concentrate instead on the zones where
the best solutions are already expected. Thus, the convergence speed can be improved.
The rest of this subsection handles some of the machine learning techniques most often
hybridized with metaheuristic algorithms. The interesting point relating this topic to the
main goal of this review is that these techniques themselves are loosely bio-inspired.

Artificial neural networks are one of the most important machine learning techniques
that are used to enhance metaheuristic algorithms. A separate subsection in this review is
dedicated to this type of improvement, and because of that, no further description will be
given here.

Support vector machines (SVMs) also belong to machine learning techniques that are
sometimes used hybridized with metaheuristics. SVMs represent a supervised learning
technique that incorporates learning procedures convenient for regression analysis and data
classification. Metaheuristics can be used to determine the optimum values of parameters
of support vector machines, such as their regularization factors or kernel parameters. In
this way, the optimum configuration within the SVM hyperparameter space is found, and
the support vector machine offers its maximum performance for the investigated dataset.

6.5. Hybrids with Fuzzy Logic

If the optimization problem contains uncertainties of vague elements, it is convenient
to incorporate fuzzy logic into the metaheuristic algorithm [181]. Fuzzy logic will be
able to guide the metaheuristic search process by providing membership functions and
linguistic rules which will serve to direct the search process in vague situations. Thus, both
exploration and exploitation can be improved.

7. Multi-Objective Optimization (MOO)

The vast majority of the algorithms presented so far in this text are single-objective
algorithms, meaning that they have a single objective function, their solution space is
unimodal (with a single optimal solution or a global optimum) and their algorithms tend
to be simpler and computationally less demanding. However, many practical problems
come with more than one objective function that should be optimized at the same time, typ-
ically with conflicting requests. The approach dedicated to their solving is multi-objective
optimization or multi-criteria optimization. Other names found in the literature for this
method are vector optimization, Pareto optimization and multi-attribute optimization.

Contrary to single-objective algorithms, MOO algorithms have two or more con-
flicting/competing objectives, and there are multiple objective functions that have to be
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simultaneously optimized. Their solution space is either non-unimodal or multimodal.
Since multi-objective optimization considers multiple objectives simultaneously, instead of
finding an optimal or near-optimal solution as in optimization related to a single-objective
function, it rather aims to find a set of solutions that achieve a trade-off between these objec-
tives. The set of solutions that represent the best possible trade-offs among the conflicting
objectives is called the Pareto front or Pareto set. A solution is considered Pareto-optimal
if there is no other solution that can improve one objective without worsening at least
one other objective, if there is no other feasible solution that dominates it (a solution A
dominates another solution B if it performs better in at least one objective without being
worse in any other objective). This means that the Pareto set is the set of all Pareto-optimal
solutions in the objective space, i.e., the set of all non-dominated solutions. The algorithm
aims to find a set of solutions that covers this front. Multi-objective algorithms are generally
more complex due to the need to handle multiple objectives and to explore the whole
Pareto front. In the case of MOO, the decision making is more complicated since there is
no single best solution. The decision maker must take into account all of the trade-offs
between conflicting objectives and make informed decisions based on personal preferences
or domain-specific criteria.

There are serious challenges with MOO. Among them is the problem of high dimen-
sionality. The mathematical and computational complexity of the problem exponentially
increases with the number of variables, and this becomes very serious for large-scale prob-
lems. Thus, a thorough exploration of the solution space becomes exceedingly difficult.
Finding and representing the Pareto front as accurately as possible is a significant challenge
in multi-objective optimization since it requires extensive exploration of the solution space.
This results in another closely connected challenge, that of large computational complexity:
the solutions of multi-objective algorithms are generally vastly more computationally de-
manding than those for single-objective ones. The main challenge of MOO lies in finding a
balance among numerous conflicting objectives and determining the right trade-offs. The
challenge is further aggravated because these both problems are subjective and depend on
the preferences of the decision maker, a situation that may be problematic, to say the least,
and is definitely difficult to quantify in any meaningful way. Yet another problem is the
need for tools and methods to help the decision maker in the decision, especially those for
the visual presentation of data in multidimensional spaces. Further, generation of a set of
different solutions that adequately and without redundancy covers the entire Pareto front
can be challenging. This generation usually requires special tweaking of algorithms and
even the generation of new ones, either customized to the problem at hand or created as
hybrids of two or more software approaches (see Section 6).

The question of choice between single- or multiple-objective (or hybrid) algorithms
reduces to the question of the number of conflicting objectives posed by the problem.
However, if there is an obvious, recognizable and relatively easily resolved trade-off among
multiple objectives, then the decision maker might decide to utilize a single-objective
approach in spite of the problem having more than one objective. This reduces to the
question of the complexity of the problem: if it is not possible to make a decision regarding
the trade-off, or if the structure of the problem is non-unimodal or multimodal, then
the MOO is more appropriate. Another decision factor is determined by the available
computational resources and the time constraints, bearing in mind that MOO is highly
demanding for both. Finally, the subjective personal preferences of the decision maker will
often tip the balance toward one of the available options.

Bio-inspired multi-objective optimization methods can be based on the application
of procedures such as metaheuristic algorithms or neural networks and generally AI. The
next three subsections consider the main groups of MOO methods.

7.1. Multi-Objective Metaheuristics

Commonly used in multi-objective optimization are metaheuristic evolutionary al-
gorithms such as genetic algorithms, memetic algorithms or differential evolution, but
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particle swarm optimization, artificial immune systems, ant colony optimization and other
metaheuristic algorithms are also used due to their ability to explore the solution space
and find diverse Pareto-optimal solutions, which represent the trade-off between different
objectives. Many single-objective metaheuristic algorithms can be adapted and extended to
solve multi-objective problems.

The area of metaheuristics-based multi-objective optimization is enormously vast.
In [182], it is mentioned that the EMOO repository (its web address is given in the refer-
ence quoted in the previous sentence), related solely to a single type of multi-objective
optimization (the evolutionary algorithms), contains over 12,400 bibliographic references
alone (publications and software).

A book on evolutionary algorithms for solving multi-objective problems by Coello
Coello, Lamont and Veldhuizen [183] offers a much deeper insight into the subject. It gives
a taxonomy of multi-objective optimization methods together with detailed descriptions of
each of them and a comprehensive coverage of applications.

Table 7 lists some metaheuristics-based multi-objective optimization algorithms used
for applications in the fields of microelectronics and photonics including sensorics, telecom-
munication and fog/cloud computing. The choice of algorithm depends on the problem
characteristics, available resources, and specific optimization requirements. Each algorithm
brings its own set of advantages, making it suitable for different problem domains and
optimization requirements.

Table 7. Bio-inspired multi-objective optimization algorithms and selected examples of their applica-
tions in microelectronics and photonics including sensorics and fog/cloud computing.

Algorithm Name Some Applications, References

Multi-Objective (MO) Genetic Algorithm

Improvement of photoelectric performance of thin film solar cells [184]
Optimization of nanosecond laser processing [185]
VLSI floor planning optimization regarding measures such as area, wire length and
dead space between modules [186]
Lifetime reliability, performance and power consumption of heterogeneous
multiprocessor embedded systems [187]

MO Particle Swarm Optimization Review of many applications of MO PSO in diverse areas [188]
Floor planning of the VLSI circuit and layout area minimization using MO PSO [189]

MO Ant Colony Optimization

A 3D printed bandpass frequency-selective surface structure with desired center
frequency and bandwidth [190]
Analog filter design [191]
Multi-criteria optimization for VLSI floor planning [192]

Artificial Bee Colony Area and power optimization for logic circuit design [193]
Design of digital filters [194]

Artificial Immune System Spectrum management and design of 6G networks [195]
Multi-objective design of an inductor for a DC-DC buck converter [196]

Differential Evolution Geometry optimization of high-index dielectric nanostructures [197]
Multi-objective synchronous modeling and optimal solving of an analog IC [198]

Firefly Algorithm Reducing heat generation, sizing and interconnect length for VLSI floor planning [199]
Secure routing for fog-based wireless sensor networks [200]

Cuckoo Search Multi-objective-derived energy-efficient routing in wireless sensor networks [201]
Parameter extraction of photovoltaic cell based on a multi-objective approach [202]

MO Grey Wolf Optimizer Electrochemical micro-drilling in MEMS [203]
Multi-objective task scheduling in cloud-fog computing [204]

Besides using metaheuristic algorithms, multi-objective optimization can be imple-
mented using machine learning techniques such as artificial neural networks (multi-layer
perceptrons), convolutional neural networks and recurrent neural networks.
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7.2. Machine Learning in Multi-Objective Optimization

The term “learning” does have its roots in biological behavior, and machine learning
(ML) does belong to the wider field of artificial intelligence. However, ML is a very broad
term, and besides some biomimetic procedures that it includes (e.g., neural networks), it
also encompasses a number of other methods that are not bio-inspired (a typical exam-
ple would be support vector machines). Most of the non-biomimetic methods are based
on mathematical approaches such as information theory, statistics or different exact opti-
mization techniques. We include general ML here briefly because it partially consists of
procedures that do belong to biomimetics, because it is a subfield of the much wider area
of AI and, finally, for the sake of completeness, comprehensiveness and self-containment of
this text.

The following subdivisions of this subsection very briefly outline some ML methods
most often met in multi-objective optimization. The list is illustrative, not exhaustive, and
the methods are presented in no particular order.

7.2.1. Neural Networks in Multi-Objective Optimization

Neural networks belong to biomimetic algorithms, especially artificial neural networks.
They have been used for multi-objective optimization [205]. Because of their importance in
both machine learning and multi-objective optimization, we describe them in more detail
in Section 8. The artificial neural networks themselves are dealt with in Section 8.1, which
is dedicated solely to them.

7.2.2. Surrogate Models in Multi-Objective Optimization

Also known as response surface models, emulators, metamodels or approximation
models, the surrogate models are designed to approximately mimic in a computationally
less expensive manner those parts of the optimization problem that are not easily deter-
mined. They are used in multi-objective optimization to approximate (make surrogates of)
the objective functions or constraints within an optimization problem. By training them
on a set of pre-determined solutions, one can utilize them to predict approximate values
of objectives in the parts of the search space that still remain unexplored. This can greatly
help to reduce the computational burden in complex multi-objective environments. Their
use in multi-objective optimization was considered in [206] for the case where there are
uncertainty problems.

7.2.3. Reinforcement Learning in Multi-Objective Optimization

Reinforcement learning algorithms represent a computational approach to learning
that encompasses methods of performance improvement using a trial-and-error approach
with resulting rewards or penalties; i.e., they represent learning without a training dataset
and only utilize training based on action. Based on experience from these actions, they
determine which action results in the greatest reward. Some authors [207] write that
their roots are in experimental psychology, which would make this algorithm basically
bio-inspired. Reinforcement learning algorithms learn to select those decision variables in
multi-objective problems that can perform optimization of multiple objectives at the same
time. Methods of reinforcement learning adopted for multi-objective optimization include
policy gradients, Q-learning, Monte Carlo and the temporal difference learning methods
(not to be further handled within this text). In such an action-based learning way, the search
for a Pareto-optimal solution is performed. Some publications related to reinforcement
learning in multi-objective optimization include [208,209]. Metaheuristic algorithms such
as evolutionary algorithms may be hybridized with reinforcement learning in order to
guide the exploration of the search space towards the Pareto-optimal solutions.
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7.2.4. Gaussian Processes in Multi-Objective Optimization

A Gaussian process (GP) is a stochastic process designated by its mean and covariance
functions. Gaussian processes generally represent probabilistic methods applicable, e.g.,
for regression problems.

Gaussian processes can be of great use in multi-objective optimization [210]. However,
it is important that they do not represent optimization algorithms by themselves. They
are actually modeling tools typically used to generate surrogate models. These surrogates
can then be incorporated into metaheuristic algorithms such as evolutionary algorithms
or particle swarm optimization algorithms. The usefulness of GPs in surrogate models is
reflected in their capability to capture nonlinear relationships. This makes them convenient
for modeling complex objective functions.

They constitute a probabilistic framework that gives estimates of the values of the
objectives and includes their uncertainties. By their nature, Gaussian processes are most
useful when handling noisy or limited datasets. This property makes them convenient for
quantifying uncertainty in multi-objective optimization procedures. In that manner, one
can assess the confidence in the prediction of the Pareto front or identify high-uncertainty
regions of the input space. This is very convenient for guiding exploration during the
search process and estimating the Pareto front.

Decision makers can readily incorporate their preferences (including constraints), thus
making GPs inclined towards the regions of search space that are desirable for decision
makers and targeted by them because they satisfy some specific requirements.

A GP can be are also used in reinforcement learning in several different manners. It
can be trained on observed state-action pairs and their corresponding next states (rewards),
and based on this it can be used to predict the following reward. Besides that, a GP can
also give estimated uncertainties for its predictions of reward, which is useful during
exploration as it can lead to exploring some uncertain regions and thus learning more about
the search space. The knowledge of uncertainties can be used to assess the robustness
of the overarching algorithm and its safety in situations where erroneous choices could
cause hazards or damages. Finally, a GP can be used in the traditional manner to calculate
approximations of functions used in reinforcement learning.

The application of Gaussian processes in multi-objective optimization is investigated
in [211]. The authors used GPs to generate a surrogate model and used it in further training.

8. Neural Networks and Multi-Objective Optimization

Most neural networks (NNs) are general computational models belonging to AI; as
such, they themselves do not belong to bio-inspired optimization algorithms, except in
name. However, even such types of NNs can be used together with bio-inspired optimiza-
tion algorithms as a combination or hybrid. Some types of neural networks do belong
to biomimetic procedures. Many of the NNs can be utilized in multi-objective optimiza-
tion, in situations where traditional approaches meet serious problems due to the high
dimensionality and the need to reach trade-offs, which is naturally followed by the vastly
increased computational complexity of the problems. The following text handles some
cases of neural networks being useful for multi-objective optimization.

8.1. Artificial Neural Networks

Artificial neural networks (ANNs) are computational models, biomimetic by their
structure and their modes of operation. They represent the foundational neural network
algorithms. They are inspired by the structure and function of the central nervous systems
of living organisms, in particular of biological networks of neurons in the brain. An
example is an ANN where a network of “synaptic-like” connections, “neurons” (nodes of
the network), is organized in layers, as shown in Figure 26.
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Depending on the number of layers, ANNs can be shallow (one layer hidden between
the input and output layer) or deep (more than one hidden layer). In the brains of living
organisms, neurons may not be organized in layers, and in the presented ANN structure
there are no “synaptic” connections between neurons in a single layer. However, analo-
gously to neural firing, signals from neurons positioned in one layer spread simultaneously
to neurons positioned in the subsequent layer. Such a system of interconnected nodes
(“neurons”) is capable of machine learning and pattern recognition.

Besides the structure of ANNs being bio-inspired, the very manner in which ANNs
function/operate is also biomimetic. In every node, a function of a perceptron is performed
(weighted and biased sum of inputs, activated by some activation function-like step, linear
or sigmoidal). In the process of creating an ANN, the weights and biases of its nodes
are iteratively altered based on the network’s prediction errors; the network evolves, and
its evolution is called learning. It may be supervised, unsupervised or reinforcement
learning. The learning is supervised if the network is fed by examples aimed as a guide for
tracking the difference between the instantaneous values predicted by the network and
the correct values valid for the same set of input parameters. It is unsupervised otherwise.
Reinforcement learning, also called approximate dynamic programming or neuro-dynamic
programming [212], is learning where the focus is moved from examining the individual
examples to the effect of the decision outcome on the whole environment and the possibility
to gain the cumulative reward. Many network parameters, such as its architecture, biases,
weights and connections of neural network nodes, directly affect the network’s performance
metrics such as accuracy and convergence speed.

Apart from being biomimetic per se, artificial neural networks incorporate optimiza-
tion algorithms which are often biomimetic; i.e., they are used in hybridized solutions.
Some examples of the use of biomimetic optimization algorithms such as genetic algo-
rithms (GAs), ant colony optimization (ACO), differential evolution (DE) or particle swarm
optimization (PSO) for the optimization of performances of artificial neural networks are
reported in [213–215].

The principles of creating ANNs are based on using iterative processes to converge
to solutions that minimize an objective function. That means that ANNs can serve as
optimization algorithms themselves. As reported in [216], one variant of artificial neural
networks, the Hopfield network, can be used to solve a constrained least squares opti-
mization problem, which has been demonstrated in adjusting filter parameters in digital
signal processing.

Boltzmann machines, also a variant of artificial neural networks, have been integrated
in the estimation of distribution algorithms and used in solving combinatorial optimization
problems with a single objective [217]. In [218], a population of Boltzmann machines,
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along with the particle swarm optimization rule aimed to re-initialize the neuronal states
of Boltzmann machines upon their local convergence to escape from local minima toward
global solutions, was used for Boolean matrix factorization.

Another way of ANNs being a part of an optimization algorithm is when ANNs
are used as fitting functions. Many phenomena, including some related to the design of
microelectronic and nanophotonic devices, cannot be modeled by explicit mathematical
functions. Complex models can be optimized more easily if we employ ANNs obtained
by training on a subset of the objective function evaluations. ANNs can predict the
objective function value for unexplored regions of the search space. As surrogate models,
computationally efficient approximations of complex functions, ANNs enable faster and
more efficient exploration of the optimization landscape during the optimization process.

Similarly to training ANNs on examples related to objective functions that need
to be optimized, ANNs can be trained on various combinations of model performance
and parameter settings of other machine learning algorithms and used to optimize their
convergence and for hyperparameter tuning [219,220].

Table 8 summarizes the roles of ANNs within the context of bio-inspired optimization.
This also includes the optimization of ANN parameters by metaheuristic methods. Only
some cases of the latter are presented as an illustration, and the list is far from being
exhaustive. A review of the use of metaheuristics for ANN optimization can be found
in [221].

Table 8. ANNs within the context of bio-inspired optimization algorithms.

• Metaheuristic optimization algorithms (e.g., genetic algorithms (GAs), ant colony optimization (ACO), differential evolution
(DE) and particle swarm optimization (PSO)) can be used for the optimization of ANN parameters.

• ANNs themselves can serve as optimization algorithms (Hopfield networks, Boltzmann machines).

• ANNs can generate efficient approximations of complex objective functions subjected to optimization within metaheuristics.

• They can be used for hyperparameter optimization of other machine learning algorithms.

• They ensure extraction or simultaneous feature extraction with hyperparameter optimization

8.2. Convolutional Neural Networks (CNNs)

Convolutional neural networks represent one of the few basic architectures used
in deep learning. The primary fields of application of CNNs are image analysis and
recognition, segmentation and object detection. Their use in multi-objective optimization is
also known. Since CNNs are convenient for dealing with images and patterns, they can
be used in those multi-objective problems where objectives or decision variables resemble
images, i.e., whose structure is spatially variable. CNNs are convenient for recognizing
patterns in the input information.

Their applicability is high in image-based multi-objective optimization. Some opti-
mization problems include solutions or decision variables that are representable as images
or possibly grids of pixels varying in dependence on the region of the object. A CNN
can analyze these images in its usual manner, thus ensuring the recognition of differences
between various areas of the search space. Such problems are encountered, e.g., in layouts
of microelectronic and all-optical nanophotonic circuits, as well as in other related fields.
For example, in spatial optimization problems, the solutions can be represented as pixel
values corresponding to different regions or objects. CNNs can be applied to process and
analyze these images, enabling the optimization process to leverage the spatial information
and relationships between different regions or objects. This approach has been used in
applications such as land-use optimization, urban planning and material design.
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Other applications of CNNs in multi-objective optimization include their use as sur-
rogate models in order to approximate the objective functions, in extracting compact
representations of the decision variables that not only contain relevant information on
variables but also contain important correlations between them. This may reduce the
dimensionality of the search problem and thus speed up exploration. Another benefit is the
possibility to extract relevant features from complex datasets. Thus, extracted properties
can be then fed into standard multi-objective procedures and algorithms and thus further
improve the search. An example of the use of CNNs for multi-objective optimization is
given in [222].

8.3. Recurrent Neural Networks (RNNs)

RNNs are neural networks convenient for handling time-dependent or sequential data.
When utilized for multi-objective optimization, they can be applied to model dynamic
optimization problems or time-dependent problems. They are able to learn the history
of the optimization process and its context. Similar to CNNs, RNNs can be utilized as
surrogate models to be built into traditional multi-objective algorithms to facilitate the
exploration of the Pareto front. They utilize the recurrent connections in the learned map
between the input parameters and the objective values that correspond to them. In this
way, they form relationships between different time steps. They can also learn to generate
the next set of decisions based on the past decisions and their results. In this way, an RNN
makes use of the memory of the past decisions and their outcomes and helps improve the
exploration of the search space. RNNs tend to be oriented towards a particular problem,
and a versatile network of this kind that would be able to solve a wide range of optimization
problems represents a very difficult problem. The paper [223] described a recurrent neural
network aimed at the solution of a class of generalized convex optimization problems.

8.4. Radial Basis Function (RBF) Networks

RBF networks are built with an input layer, an output layer and one or more hidden
layers having radial basis function units. In multi-objective optimization, these neural
networks, similarly to a number of other NNs, are used to generate surrogate models that
can serve as approximations for objective functions. They are able to generate a nonlin-
ear mapping between the decision variables and the objectives. They can be combined
with metaheuristic algorithms such as swarm intelligence or evolutionary algorithms and
thus be used for the ensemble approach. RBF networks can be applied to generate new
candidate solutions, propose new configurations of parameters and approximate complex
relationships. In that manner, they help explore the decision space in multi-objective
optimization [224,225].

8.5. Generative Adversarial Networks (GANs)

These neural networks actually consist of two networks, a generator and a discrimina-
tor, that compete against each other. The generator network generates candidate solutions,
and the discriminator network evaluates the fitness of the solutions. When used for multi-
objective optimization, GANs generate Pareto-optimal solutions with high quality and
enhance their diversity.

GANs are also used to generate surrogate models: the generator maps the latent
space vectors to corresponding objective values, thus ensuring predictions for not-yet-seen
parameters and parameter configurations. Some subgroups of GAN are the original GAN
(unchanged, in the form as proposed for the first time in 2014, also sometimes called
the Vanilla GAN), Wasserstein GAN (a modified version of Vanilla, offering increased
training stability and avoiding mode collapse), conditional GAN (a modified Vanilla that
includes additional information, i.e., auxiliary attributes and constraints), deep convolu-
tional GAN (it introduces convolutional neural networks (CNNs) into both the generator
and discriminator, useful for image processing and optimization).
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The use of generative adversarial networks for the optimization of active metasurfaces
based on transparent conducting oxides was presented in [226]. It applied an approach
that represented a combination of the K-means clustering algorithm and a conditional
Wasserstein GAN.

8.6. Autoencoders

Standard autoencoder networks are unsupervised neural networks that are able to
learn compact representations of the input data by encoding them into a lower-dimensional
latent space. They consist of an encoder network that performed the mentioned compacting
and a decoder network that performs the opposite and reconstructs the input data from the
latent space. When used in multi-objective optimization, autoencoders utilize the reduced
dimensionality of the design space for the simplification of the optimization process. Their
other role is that they use the mentioned learned representations to enhance the optimiza-
tion procedure. They are also used to generate surrogate models based on the relationships
between the input data and the objective space. Besides the standard form, there are
several versions of autoencoder networks such as the adversarial autoencoder (includes
some properties of generative adversarial networks and, besides the encoder and decoder,
also contains a discriminator network), variational autoencoder (includes an additional
regularization objective, encodes the input data into a mean and variance parametrization),
denoising autoencoder (reconstructs data to clean them from noise and perturbations) and
sparse autoencoder (introduces sparsity constraints and thus activates a small number of
neurons in the latent representation). An application of a variational autoencoder network
in optimization is presented in [227] where the autoencoder is hybridized with a particle
swarm metaheuristic algorithm.

9. Applications in Microelectronics

One of the applications of bio-inspired methods is their use in the design of microelec-
tronic and nanoelectronic circuits. Various circuit parameters can be optimized, including
the properties of the single circuit elements, circuit floor plan, layout, routing of the intercon-
nects, sizing and many more. Since it is often necessary to simultaneously optimize more
than a single parameter, multi-objective bio-inspired methods are used in such situations.
Typical optimization tasks achievable by bio-inspired algorithms include the following:

• Circuit Element Parameters [228]: The properties of the components built into a micro-
electronic circuit can be optimized in order to achieve targeted circuit performance,
e.g., desired speed, power consumption, decreased heat dissipation and decreased
noise. The values of passive device parameters such as resistances, capacitances and
inductances [228] and also various parameters of active devices (different types of
transistors, amplifiers, analog-digital converters, etc.) are optimized.

• Floor Planning and Topology [229,230]: This crucial optimization step includes the
placement of the circuit elements on a chip and the routing of their interconnects. This
helps minimize crosstalk, avoid breakdowns, minimize leakage currents, ensure more
homogeneous heat dissipation, etc.

• Circuit Sizing [231]: Circuit area minimization is critical for practically all microelec-
tronic devices and systems, especially for implantable and wearable healthcare devices
and generally those where the area of the circuit is limited by design requirements.
Optimal circuit sizing is actually of interest for basically all microelectronic circuits
since it helps improve overall performance and enhance circuit reliability.

• Power Consumption [229]: Bio-inspired algorithms can be employed to optimize
power consumption by minimizing leakage current, optimizing voltage levels and re-
ducing dynamic power dissipation in circuits. This directly improves circuit reliability
by avoiding overheating, and it also helps in keeping the power consumption at its
minimum, which is of paramount importance for all battery-supplied circuitry.

• Sensitivity to Design Parameter Variations/Robustness [232]: Optimizing designs to
wider variations in process parameters (temperature, atmosphere, material choice and
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the tolerances of their properties, various technological uncertainties) can be used
to achieve the maximum performance robustness and insensitivity to variations in
external parameters.

• Production Yield [233]: Bio-inspired optimization can help decrease faults and increase
the percentage of successfully produced chips during planar technology fabrication.
By considering process variations, temperature variations and component tolerances,
bio-inspired algorithms can optimize circuit designs to achieve robust performance
and improve yield.

All of the above can be used for all types of microelectronic circuits, e.g., analog [234],
digital [235] and mixed-signal type [236]. Many of the quoted optimization tasks can be
also applied to microelectromechanical systems (MEMSs) as well [29,237]. The further two
subsections present two important optimization procedures as case studies in more detail.

9.1. Optimizing Analog Circuit Sizing

The design of analog integrated circuits, although it had its heyday some decades
ago, retained its secure place in various fields of microelectronics [238]. We consider here
the operational transconductances (OTAs) where the aspect ratio of their MOS transistors
should be appropriately sized to accomplish the required design. The sizing of transistors
manually is a tedious process that increases the complexity and is time-consuming. This
constraint demands a reliable method to attain the transistor sizing by balancing all the
desired parameters of the design. The use of metaheuristic optimization algorithms to
determine the transistor sizes can be a solution to this problem (e.g., [239,240]). The
minimization of the parameters can be accomplished by selecting one or more objective
functions and considering the rest of the parameters as a constraint. Wide research has
been performed on this topic, and researchers have proposed methods of optimization to
use in circuit designs for better sizing and biasing of the devices. PSO and its variations
have been largely utilized in automated circuit sizing over the years [236]. In analog design,
there is a trade-off among parameters, as seen from the analog design octagon [238] shown
in Figure 27.
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There are many quotations of bio-inspired techniques in the literature within the
context of microelectronic circuit optimization. For instance, Jassimet et al. [241] and
Fakhfakh et al. [242] used PSO to minimize power and for the optimization of both mono-
objective and multi-objective functions in a high-frequency low-noise amplifier with a
biasing network. Barari et al. [243] and Rojec et al. [244] used evolutionary algorithms
to design analog circuits. Barari et al. used a combination of the metaheuristic PSO and
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the evolutionary genetic algorithm (GA) to design a two-stage op-amp, with figure of
merit as the objective function. Rojec et al. proposed a novel approach to analog circuit
optimization capable of performing optimization not only in the parameter space, but also
in the topological space.

Even though the PSO and its variants have advantages over other algorithms in
analog circuit design, they are computationally inefficient and have a slow convergence
speed. Most of the variants have failed to find a global optimum solution to complex
mathematical and real-life problems, especially in the case of multi-objective functions,
where there are multiple local minima. Dendouga et al. [245] proposed a multi-objective
genetic algorithm for the minimization of the area and maximization of the unity gain
bandwidth in a two-stage op-amp.

There are other works implementing different algorithms with the same goal as
those quoted above. Kudikala et al. [246] used the harmony search algorithm (HS) and
differential evolution (DE) algorithm for the minimization of errors in a folded cascode OTA.
The convergence speed of the HS is comparatively higher, but it fails to converge to global
optima. Majeed et al. [247] used the grey wolf optimization (GWO) technique to minimize
the area offsets in two analog circuits, a CMOS differential amplifier and a two-stage CMOS
op-amp. They have proven that for these particular applications, their approach shows
superiority over some other competing algorithms such as the PSO and a non-bio-inspired
technique, the gravitational search algorithm (GSAPSO), the main advantage being a higher
GWO convergence speed over that of PSO and GSAPSO. Majeed et al. [248] also used a
hybrid approach, that of the whale optimization method and the grey wolf optimization, to
minimize the area of a two-stage op-amp.

The trade-offs in analog circuits which are considered multi-objective problems can
be solved with bio-inspired methods. Some examples include the publication of Bachir
et al. [249] where attempts were made to solve a multi-objective problem in a two-stage
operational amplifier using multi-objective ACO. The two objective functions taken into
consideration were the minimization of the die area and the power consumed. In a similar
work by Benhala [250] dedicated to the design of a two-stage op-amp with a minimized
area and a maximized common mode rejection ratio, the authors concluded that the use of
the ant colony optimization method shows a significantly lower convergence speed and
increased computing time in comparison to their proposed combination of the backtracking
search and ACO (BAACO) for the design of a two-stage op-amp with a minimized area
and a maximized CMRR. An exemplary flowchart for a particular complete circuit design
of a self-biased amplifier using metaheuristic methods is shown in Figure 28 [231].

9.2. Optimizing Circuit Routing

Researchers use techniques including the sequential A* method, Lee’s algorithm and
standard MCTS approaches to resolve circuit routing problems [251]. In building electronic
systems such as integrated circuits (ICs) and printed semiconductor boards (PCBs), circuit
routing is the key design challenge. Circuit routing creates patterns of lines for connecting
contacts or terminals of circuit components, akin to a way of establishing paths connecting
two places. It is a difficult task because a very vast search space is involved in locating
routes between the densely packed and relatively large electronic devices. Current remedies
have been deliberately created using domain expertise to certain design rules, making it
challenging to adjust them to newly emerging issues or design requirements. A universal
routing strategy is therefore greatly desirable [252]. Two-stage approaches, global routing
followed by detailed routing, force-directed routing, region-wise routing, and rip-up and
reroute [253–255], have been proposed to resolve complex large-scale circuit designs and to
analyze track congestion at the global routing stage.
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A deep Q-network (DQN) is used in a new study that analyzes worldwide routing as
a deep reinforcement learning (DRL) problem. The DQN makes a choice based solely on
the output of its policy, as opposed to the deep neural network (DNN)-based MCTS (Monte
Carlo tree search), which bases decisions on the outcomes of numerous simulations utilizing
an established policy. An unknown complicated circuit cannot necessarily be solved
satisfactorily by a trained DQN policy [256]. Given the outcomes of global routing, detailed
routing creates interconnects with the appropriate shapes and placements. The channel
routing algorithm is among the most widely used ones. The routing region is typically
divided into routing channels, and the wires are connected within these channels [257].

According to some researchers, global routing and detailed routing do not work
together well for complicated routing problems, and when this two-stage strategy is used,
it typically leads to complex software systems that are challenging to upkeep and to a
meandering workflow that hinders the creation of circuits. In contrast to the two-stage
method, in a method known as area routing, routes are typically built directly for the
designs with just a handful of layers of metal and a limited number of nets [258].

9.3. Future Directions

Challenges that define future directions of bio-inspired optimization algorithms in
research and practical implementation in microelectronics include the implementation of
multi-objective optimization and hybridization. These two fields are of general interest
since they are able to define the general directions of future development of biomimetic
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optimization algorithms. One of the important directions of future research is determined
by the challenge of how to ensure scalability of the optimization algorithms with ever-
increasing complexity and sophistication of microelectronic and nanoelectronic circuitry
and inclusion of multitudinous constraints. This is directly related to the need for computa-
tionally cost-effective optimization solutions, which are also one of the important general
challenges nowadays.

One of the likely directions of future research is the design of integrated circuitry for
hardware implementation of optimization algorithms. This should ensure facilitated and
accelerated implementation of complex optimization procedures. An important avenue of
future research in AI-optimized microelectronic circuitry is how to provide increasingly
robust solutions, able to tackle the dynamic and constantly evolving environment of mi-
croelectronics development. It is a known fact that hardware specifications permanently
evolve to keep up with Moore’s law. Similar things are happening with the system com-
plexity and sophistication of production technologies. Thus, the optimization algorithms
must be prepared for this. So far, the prospects appear bright in all of the quoted areas.

10. Applications in Nanophotonics

Nanophotonics represents the investigation of materials and devices with the di-
mensions of their characteristic features or building blocks in the range of the order of
hundreds of nanometers or below, down to the dimensions of a few nanometers. A vast
number of such structures have been proposed, often exhibiting properties that appear
counterintuitive, such as negative or near-zero effective refractive index, cloaking prop-
erties (“invisibility cloaks”), perfect mirroring in 3D, superabsorption and resolution far
below the diffraction limit, to name just a few.

Optimizing nanophotonics has been traditionally accomplished using intuition-based
strategies. That is to say, new devices were developed in such a manner that first a new
physical effect would be observed in a nanophotonic structure, and then its properties
would be matched to convenient applications. Optimizations would be accomplished
by tuning a chosen subset of structural parameters, typically for the simplest geometries
and layouts. For that, the trial-and-error strategy and the parameter sweep method were
typically utilized.

The ever-increasing complexity of the targeted structures and devices demanded a new
approach that would be able to simultaneously optimize a larger number of parameters.
An approach to resolve this is the inverse design, where the designer starts from a desired
set of targeted properties of the final product and then returns to optimize the material and
structural parameters to achieve it.

This could be accomplished by applying topology optimization (which uses different
exact numerical procedures to optimize the layout or shape of a nanophotonic structure),
adjoint optimization (calculates the sensitivity of a targeted result to variations in the
nanophotonic structural parameters), stochastic optimization (e.g., iterated local search,
stochastic gradient descent or stochastic hill climbing, where the design space is explored
by random sampling of different configurations or introducing noise in the exploration
procedure), Bayesian optimization (uses probabilistic models and combines prior knowl-
edge with the observed data to sequentially optimize the nanophotonic design), convex
optimization (includes least squares and linear programming; all constraints are convex
functions, and the objective function is convex or concave if minimizing or maximizing,
respectively), machine learning and neural networks (described earlier in this text), and last
but not least, metaheuristic algorithms (such as evolutionary approaches, PSA, simulated
annealing and ant colony optimization). An excellent and very detailed review of the
approaches briefly summarized in this paragraph was published by Cai et al. in 2020
in Nature Photonics [259], which also presented a comparison between the conventional
intuitive design of a metalens and the inverse design by evolutionary optimization. A
review of equally high quality was published in the same journal by Molesky et al. [260],
dealing with inverse design methods. A critical review of the use of deep learning for
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inverse design in nanophotonics, dealing both with the state of the art at the time and with
perspectives and possible directions of that research that go “beyond inverse design”, was
published by Wiecha et al. in the same year [261].

Somewhat unexpectedly, Barry et al. observed [262] that the application of evo-
lutionary algorithms for the optimization of nanophotonic structures almost inevitably
leads to the convergence of these artificially created forms to the corresponding natural
structures. The authors remarked that both natural and artificial nanophotonic forms are
fundamentally modular and that each building block has a role that can be understood
almost independently from the rest of the complete structure. In their paper, this surprising
similarity between the synthetic and natural was called “in silico evolution”.

Our primary goal here is to consider bio-inspired methods as tools for exploring
the complex and high-dimensional design spaces encountered in nanophotonics. These
may include both metaheuristic algorithms and artificial neural networks as well as other
optimization techniques. The design spaces that need to be optimized are vast and include
a large number of optimization parameters, and the optimization processes can be very
demanding regarding computational time in case of complex problems. Some of the typical
optimization goals in nanophotonics are listed in the further subsections.

10.1. Optimization of Parameters of Nanophotonic Materials

Nanomaterials for nanophotonics are, in no particular order and without claims for
comprehensiveness, nanoparticles (including core-shell structures and quantum dots),
2D materials such as graphene or MXenes, atomically thin materials, and 1D materials
such as nanowires, as well as nanocomposites such as multilayer ultrathin-film structures,
plasmonic crystals, hypercrystals, meta-atoms and meta-molecules regarded as building
blocks for metamaterials and many more. The basic materials, out of which the above have
been designed, include conventional dielectrics, metals and semiconductors, encompassing,
e.g., transparent conducting oxides (TCOs), liquid crystals, ferroelectrics, phase change
materials and many more.

The nanomaterial effective parameters that can be optimized in a biomimetic manner
include complex relative dielectric permittivity, complex relative magnetic permeability,
spectral and spatial dispersions, spatial anisotropy, and nonlinear and quantum proper-
ties. Their optimization can be used to enhance light-matter interactions, tailor spectral
responses (transmissivity, reflectivity or absorptivity/emissivity), optimize the bandwidth
of nanophotonic building blocks and devices, etc. In 2018, Peurifoy et al. considered
the inverse design of multilayer photonic nanoparticles by training artificial neural net-
works [263]. Their nanoparticles were of the core-shell type with two to eight different
shells, and their goal was to start with any desired spectral dispersion and to determine
the nanoparticle geometry that reproduces that dispersion as closely as possible. Their
results were more accurate for more difficult problems with a higher number of shells and
with more parameters. The procedure they utilized required only a rather small number
of samples for effective ANN training, and the processing times of their calculations were
orders of magnitude shorter than those required for conventional numerical simulations.
Liu, Maier and Li considered the optimization of meta-atoms for enhanced light absorption
and coloration by metaheuristics (genetic algorithms) [264]. They extended the unit cell
to encompass more than a single meta-atom. The situation they arrived at was that the
problem became vastly more complex, but still solvable by a genetic algorithm. The gain
from such an approach was that the performance of the investigated nanophotonic system
was significantly enhanced compared to the single meta-atom unit cell, owing to a wider
search space and better opportunities for optimization. In [197], the authors performed the
optimization of high-refractive-index photonic material geometry using the differential
evolution metaheuristic algorithm. They optimized the design of nanostructured planar
Si dielectric antennas coupled to a Gd2O3 nano-matrix doped with Eu3+ emitters in order
to control their emission rate. For this purpose, they searched for global extrema of the
decay rate enhancements (Purcell factor) of the magnetic and electric dipolar transitions of
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their structure. A hybrid multi-objective optimization method has been used to simulta-
neously optimize materials and dimensions of multilayer nanophotonic structures using
Monte Carlo simulation with a continuous adaptive genetic algorithm and a pattern search
algorithm [265]. The authors demonstrated their method by designing an ultra-broadband
perfect absorber for visible and near-infrared wavelengths.

10.2. Optimization of Nanostructural Design of Basic Nanophotonic Building Blocks

The building blocks for nanophotonics encompass photonic bandgap materials (pho-
tonic crystals), metamaterials and their increasingly popular and widening subgroup of
metasurfaces, as well as different kinds of nanoplasmonic structures including plasmonic
crystals, extraordinary optical transmission (EOT) arrays and electromagnetically induced
transparency (EIT) structures. The boundaries between nanophotonic building blocks
and nanophotonic materials described in the previous subsections are blurred, and they
sometimes overlap, especially in the case of artificial nanocomposite materials.

Each of the above nanophotonic building blocks branches into a multitude of different
solutions. For instance, metamaterials and metasurfaces are further subdivided (some
of the subgroups may overlap) into left-handed materials, zero-index metamaterials, ar-
tificial dielectrics, very-high-index metamaterials, Huygens’ metamaterials, metasurface
holograms, plasmonic metamaterials, digital metamaterials, intelligent metasurfaces, cod-
ing metamaterials, reprogrammable metamaterials, time-varying (temporal-modulation)
metamaterials, etc.

Bio-inspired procedures such as neural networks or metaheuristic algorithms can
perform searches in design spaces for the optimal geometries, materials and arrangements
of the building blocks to achieve desired optical properties, including light confinement,
dispersion control, enhanced light-matter interactions, and tailored transmission or reflec-
tion characteristics.

Elsawy et al. [266] specifically considered the numerical optimization of metasur-
faces. They mentioned both direct and inverse design methodologies. Of metaheuristic
algorithms, they reviewed not only genetic algorithms and particle swarm optimization,
but also hybrid approaches such as the covariance matrix adaptation evolution strategy.
A part of their consideration was dedicated to deep learning using artificial neural net-
works. Other optimization methodologies, non-bio-inspired, were also analyzed, such as
gradient-based design, including topology optimization.

In their mini-review, Qiu et al. [267] described the perspectives of the future devel-
opments of metasurfaces within the context of machine learning. Abdelraouf et al. [268]
surveyed the latest advances in tunable metasurfaces, with a particular emphasis on AI-
based design and optimization methodologies, mostly machine learning and, within that,
mostly deep learning using artificial neural networks.

Li et al. [269] systematically reviewed intelligent metasurfaces, their applications and
their design using AI methods (namely deep learning using artificial neural networks). They
define intelligent metasurfaces as “smart platforms to manipulate the wave-information-
matter interactions” and consider their control using ANN.

A machine learning-based multi-objective metasurface design for high-efficiency
optimization of thermal emitters using a merging of topology optimization with generative
adversarial networks (adversarial autoencoders) was presented in [270] by Kudyshev,
Kildishev, Shalaev and Boltasseva. The authors reported an impressive 4900 times higher
optimization speed, proving the power of their AI-based hybrid approach.

10.3. Optimization of Nanophotonic Devices

Nanophotonic devices are very diverse and cover many different fields of nanooptics.
They include affinity-based plasmonic chemical, biochemical or biological sensors; light
receptors such as nanophotonic photodetectors, including nanostructured solar cells (e.g.,
plasmonic solar cells, nanostructured photovoltaics, etc.); nanoantennas; light sources such
as nanolasers, spasers (plasmonic lasers), quantum dot lasers and nanostructured LED
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diodes; super-resolution microscopes (e.g., stimulated emission depletion (STED), struc-
tured illumination microscopes (SIMs), spectral precision distance microscopes (SPDMs));
in-chip optical interferometers; and many more. More exotic nanophotonic devices in-
clude for instance superabsorbers, vector vortex beam generators, metalenses, hyperlenses,
polarization converters and metasurface holograms.

Parameters in search spaces for nanophotonic devices are their material properties:
complex relative index (real part, imaginary part (absorption coefficient or gain) and
spectral dispersion characteristics); the geometry: dimensions, shapes, and arrangements
of nanostructures, such as nanowires, nanoparticles, meta-atoms or metamolecules, 2D
materials and plasmonic building blocks; and their polarization parameters. In case a device
includes one or more optical waveguides, the targeted parameters may include waveguide
geometry (width, height, length and shape) and such waveguide optical parameters as the
refractive index contrast. If the device includes diffraction gratings, the targeted parameters
may include the grating period, duty cycle and shape.

Metaheuristic algorithms and ANN can perform a search in design space and op-
timization for a number of desired optical properties of nanophotonic devices. A list
may include transmission and reflection spectral dispersion characteristics (dispersion
management), absorption efficiency (maximizing light absorption in specific regions of
the spectrum for applications such as superabsorbers, photodetectors and solar cells),
waveguiding efficiency (e.g., achieving low-loss propagation), resonance behavior (at-
taining desired resonant modes/resonant frequencies), nonlinear effects (optimizing, e.g.,
second harmonic generation, four-wave mixing or optical switching), quantum effects,
directionality (controlling the directionality of light emission or scattering) and enhanced
light-matter interactions.

The paper [177] described a hybrid between two metaheuristic algorithms, particle
swarm optimization and gravitational search, for the optimization of the ultimate efficiency
of silicon nanowire-based solar cells. The numerical simulations of the structures were
performed using the finite-difference time-domain method. The final result of metaheuristic
optimization was an ultimate efficiency of 42.5%, vastly exceeding the Shockley-Queisser
limit for single p-n junction photovoltaics.

In their Nature Communications article, Nugroho et al. [271] reported the use of parti-
cle swarm optimization for the inverse design of hydrogen sensors based on plasmonic
metasurfaces consisting of ordered palladium nanoparticle arrays. These sensors show
sub-second speeds and are based on the intercalation of hydrogen atoms within the palla-
dium crystal lattice. The authors fabricated their metasurface sensors and achieved record
sensitivities of the order of parts per billion.

Differential evolution optimization of silicon-based dielectric nanoantennas ensuring
the emission rate control of magnetic or electric dipolar emitters was performed in [197]. In
that paper, the mentioned metaheuristic evolutionary algorithm was coupled to the green
dyadic method and finite element method simulations. Other publications dedicated to
evolutionary optimization include the design of plasmonic directional antennas by Wiecha
et al. [272] and the design of all-dielectric magnetic nanoantennas by Bonod et al. [273].

A biomimetic procedure based on an evolutionary algorithm for the optimization of
a metasurface-based flat metalens was described in [259]. Figure 29 shows a simplified
flowchart of the optimized design process.

The use of artificial neural networks for the design of integrated photonic devices
was investigated by Hammond and Camacho [274]. Among other things, they considered
as a case study ANN-assisted design of the photonic circuit building blocks such as strip
waveguides and chirped Bragg gratings.
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10.4. Optical Waveguide Optimization

Metaheuristic algorithms can perform searches in design spaces for the optimal design
of optical waveguides and their parameters. They can optimize their geometry, dimensions,
shapes of elements and spatial profiles of optical constants (e.g., refractive index). The
objectives can be optimization of modal confinement, minimization of wave propagation
losses and thus maximization of light transmission through the optical guide, improve-
ment of mode matching, etc. Among the main advantages of metaheuristic algorithms in
nanophotonic design is the possibility to adapt and tailor them to specific highly complex
problems and their applicability to very large search spaces with many parameters and con-
straints. Metaheuristic algorithms are also convenient for multi-objective optimization in
nanophotonics in the case of multitudinous conflicting objectives, such as maximizing light
extraction while minimizing scattering losses or achieving high-quality factor resonances
while maximizing bandwidth. Multi-objective metaheuristics applied to nanophotonics
can ensure the best trade-off solutions on the Pareto front.

Shiratori et al., from the group of Prof. Toshihiko Baba, reported the use of particle
swarm optimization for the design of photonic crystal waveguides for slow light coupling
with photonic integrated circuits [275]. PSO-based engineering of the arrangement of
holes in 2D photonic crystals ensured drastically reduced experimental coupling losses
of 0.21 dB (more than twice lower in comparison to dedicated tapered couplers), while
the theoretically achievable losses were 0.12 dB on average in the telecommunication
wavelength range of 1540–1560 nm. The optical waveguide design by way of ANN was
also considered in [274].

10.5. Optimization of Photonic Circuit Design

A bio-inspired approach can be applied to optimize the photonic circuit element
properties and the layout and routing of photonic circuits. It can optimize the spatial
arrangement of optical components, including optical waveguides, beam splitters, couplers
and modulators, to minimize losses and photonic circuit footprint and maximize signal
quality. The routing of optical interconnects can be optimized to avoid or minimize crosstalk
and interference. Multi-objective requirements can be also achieved, such as maximizing
light extraction while at the same time minimizing scattering losses. Photonic circuits
can be optimized in the sense of minimizing their sensitivity to variations or fluctuations
of their parameters caused by the design itself, by the choice of the building materials
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and their properties, or by fabrication technology-induced uncertainties and geometrical
“noises” [276], as well as the sensitivity to real operating conditions and signal fluctua-
tions. In this way, improved robustness of photonic circuits to parameter fluctuations can
be obtained.

The article by Dinc et al. [277] investigated the use of deep neural networks for the
design of photonic circuits. The emphasis was on novel 3D all-optical circuits because
of their promise for scalability. The authors considered transitions from 2D (data input)
to 3D (circuit) and back. To do so, they started from the knowledge base of tomography
techniques and used their conclusions.

In their Nature Photonics paper Shen et al. [278] described and experimentally demon-
strated the implementation of artificial neural network functionality by way of a silicon
photonic integrated circuit consisting of a cascaded array of 56 programmable Mach-
Zehnder interferometers. They demonstrated the usability of the all-optical chip-based
deep-learning ANN for vowel recognition. Thus, instead of using AI to optimize the
photonic circuit, they used a photonic circuit as a hardware implementation of AI.

A recent review of works investigating the use of all-optical computing for artificial
intelligence applications has been published in Nature by Wetzstein et al. [279]. The paper
discussed the promises of this approach, as well as its challenges. A hardware implementa-
tion of an all-optical diffractive deep neural network was presented in Science in the article
by Lin et al. [280]. In it, various applications of the proposed all-optical neural network
in feature detection, image analysis, advanced camera design and object classification
were described.

10.6. Future Directions

Challenges that define future directions of bio-inspired optimization algorithms in
research and practical implementation in nanophotonics include the general development
of multi-objective optimization and hybrid optimization methods (see Sections 6 and 7), the
integration of multiphysics into nanophotonics optimization (problems of coupling with
e.g., thermal or quantum phenomena), and further development of solutions of inverse
design problems, especially the highly complex ones. Another direction of future research
is related to biomimetic nanophotonics, where the best performance is expected from
nanophotonic systems mimicking and even upgrading the natural designs. As previously
mentioned in this section, some AI-optimized nanophotonic systems already spontaneously
exhibit biology-like features.

Future developments are also likely to include introducing real-world experimental
constraints into biomimetic optimization. We expect that this should bring optimized
practical implementations to a completely new level. One of the directions of future
research is surely the all-optical hardware integration of optimization algorithms, i.e.,
the development of dedicated optical integrated circuitry for facilitated and accelerated
implementation of complex optimization procedures. As mentioned previously in this
section, this research field is already starting to flourish. Ultimately, biomimetically AI-
optimized breakthroughs in both the design and the application of nanophotonics are
expected to revolutionize the whole field.

11. Discussion

In this part of our review, we discuss and summarize some items of interest for the
practical implementation of biomimetic optimization algorithms. We also add some general
considerations of the algorithms. However, it is not only impractical but literally impossible
to consider each of the quoted algorithms separately. The number of possible combinations
within, e.g., hybrid methods is vast, so we could not possibly cover each and every one of
them. A similar consideration is valid for hyper-heuristics. Thus, we limit ourselves mostly
to metaheuristics and neural networks, while the hybrid methods and hyper-heuristics are
covered globally, each one of them being considered as a single item. Another warning
is related to the “No Free Lunch” theorem [76]—there is no global rule on the suitability
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of optimization algorithms. Our own experience is that some approaches may prove
excellent in one type of problem and very poor in another, sometimes unexpectedly so. One
such example out of many was our optimization of an analog preamplifier circuit area for
early epileptic seizure detection which was designed better by applying an ANN-assisted
goal attainment method than by attempting to independently apply several well-known
metaheuristic algorithms [231]. Useful tools regarding this problem are the existing sets of
benchmark tests which help uncover some advantages and disadvantages of algorithms, as
well as the publications that give results of their applications [81–83,97]. Even so, a lot of
trial and error work, skill and effort may still be necessary.

11.1. Comparative Advantages and Disadvantages of Selected Optimization Algorithms

Awareness of the advantages and disadvantages of bio-inspired optimization algo-
rithms could be useful to the readers in further understanding the situations and contexts
in which a chosen method would be optimally utilized. For a more profound insight into
the criteria of the choice of the most convenient algorithm, we direct the reader to the
above-quoted papers on algorithm benchmarking.

A caveat is due here: although bio-inspired algorithms generally are known for their
effectiveness in solving complex optimization problems, sometimes they may be out-
performed by traditional optimization algorithms, such as gradient-based optimization
methods. Because of that, to find the most suitable optimization algorithm, it is of crucial
importance to thoroughly assess the type of problem to be solved, to consider the character-
istics of the search space and to take into consideration the available computing resources.

In the following part of this paper, we present our view on the most important
advantages and disadvantages of different algorithms listed in the prior sections. The
presented data are valid for the algorithms in their basic form, not for enhanced, improved
or otherwise modified versions. We stress that hyper-heuristics and general hybrid methods
are each treated as a separate group. We give the pertinent information in tabular form since
it is the clearest and most evident way to present such data. These are general properties
only (Tables 9–16), and the concrete suitability of a particular algorithm will depend on the
specific problem characteristics, parameter settings and concrete implementation.

Table 9. Advantages and disadvantages of evolutionary algorithms.

Algorithm Advantages Disadvantages

Genetic Algorithm
(GA)

• convenient for a wide range of problems
• good for both discrete and continuous variables
• global search capabilities
• enables exploration of a diverse search space

• high computational cost
• computational cost scales with problem

complexity
• often needs additional techniques to

handle constraints

Memetic
Algorithm
(MA)

• combines global search with local search (meme)
• adaptable and customizable
• can incorporate problem-specific knowledge
• effective constraint handling
• fast convergence due to enhanced local search

• complex algorithm
• non-trivial and problem-specific design
• difficult parameter tuning
• computationally complex and demanding
• may become stuck in a local optimum

Differential
Evolution
(DE)

• good for continuous data
• low algorithm complexity
• minimal number of control parameters for tuning
• usable for noisy and non-differentiable

fitness functions
• robust
• user-friendly

• poor for discrete data
• performs worse with upscaled search spaces
• may become stuck in local optima
• lack of population diversity
• sensitive to control parameter tuning
• lower convergence speed
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Table 10. Advantages and disadvantages of swarm intelligence algorithms.

Algorithm Advantages Disadvantages

Particle Swarm
Optimization
(PSO)

• good for continuous data
• high efficiency at finding a single global optimum
• fast convergence for simple search spaces
• user-friendly

• struggles with discrete data
• lack of population diversity
• may become stuck in a local optimum
• poor performance with complex

search spaces

Ant Colony
Optimization
(ACO)

• good for handling discrete data
• good exploration and exploitation
• convenient for combinatorial search spaces
• robust to problem changes

• struggles with large-scale problems
• slow convergence
• may become stuck in a local optimum
• sensitive to parameter choice

Whale
Optimization
Algorithm
(WOA)

• good for global search
• simple and user-friendly
• handles both continuous and discrete problems
• low number of control parameters
• converges quickly in continuous search spaces

• may become stuck in local optima in
multimodal search spaces

• sensitive to parameter setting
• struggles with exploration in irregular

search spaces
• struggles with large-scale problems

Grey Wolf
Optimizer
(GWO)

• applicable to both discrete and continuous
problems

• good global search capabilities
• fast convergence
• simple parameter tuning
• overall simplicity and user-friendliness

• struggles with large-scale problems
• may become stuck in a local optimum
• limited exploration capabilities in irregular

search spaces
• sensitive to parameter tuning

Firefly
Optimization
Algorithm (FOA)

• good global search capabilities
• good for both continuous and discrete problems
• fast convergence in continuous search spaces
• good for large-scale problems (parallelizable)
• simple and user-friendly

• limited exploration capabilities in irregular
search spaces

• may become stuck in a local optimum
(premature convergence)

• poor population diversity
• sensitive to parameter tuning

Bat Optimization
Algorithm (BOA)

• good balance between exploration
and exploitation

• good for both continuous and discrete problems
• includes local search capabilities
• fast convergence in continuous search spaces
• simple and user-friendly

• limited exploration capabilities in irregular
search spaces

• may become stuck in a local optimum
• struggles with large-scale optimization

problems (poor scalability)
• sensitive to parameter tuning

Orca Predation
Algorithm (OPA)

• good exploration/exploitation balance
• ability to find multiple global solutions in

multimodal problems
• good for problems with constraints

• may struggle with global search
• may become stuck in a local optimum
• poor diversification
• may be prone to localization errors

Starling
Murmuration
Optimizer (SMO)

• good exploration/exploitation balance
• good diversity
• good for finding global optima, bypassing

local minima
• applicable to diverse search spaces
• fast convergence

• struggles with large-scale optimization
problems (poor scalability)

• computational cost increases with the
number of dimensions

• relatively complex
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Table 11. Advantages and disadvantages of artificial immune system algorithm.

Algorithm Advantages Disadvantages

Artificial Immune
System
(AIS)

• good for upscaled and complex
optimization problems

• parallelizable
• good for finding global optima while avoiding

becoming stuck in local optima
• able to learn from search space and

self-improve accordingly
• robust to noisy environments
• ensures diversity of solutions
• good for dynamic problems and

pattern recognition

• can be computationally complex
and expensive

• lack of solid theoretical foundation
• challenging understanding and analysis
• complex and time-consuming

parameter tuning
• applicable to a relatively narrow range

of problems

Table 12. Advantages and disadvantages of anthropological algorithms.

Algorithm Advantages Disadvantages

Tabu Search
Algorithm (TSA)

• good for both discrete and continuous
optimization

• good balance between exploration
and exploitation

• retains memory structure/tabu list, thus
escaping local optima

• robust against noisy environments
• simple parameter tuning

• requires additional memory for tabu list
• struggles with large-scale problems
• sensitive to parameter tuning
• sensitive to tabu list tenure choice
• problems with convergence in complex

search spaces

Table 13. Advantages and disadvantages of plant-based algorithms.

Algorithm Advantages Disadvantages

Flower Pollination
Algorithm (FPA)

• a good balance between exploration
and exploitation

• good global search capabilities
• good for both continuous and discrete

optimization problems
• fast convergence, especially in smooth and

continuous search spaces
• simple and user-friendly

• limited exploration in problems with
irregular search spaces

• poor diversity of the population
• struggles with large-scale optimization

problems (poor scalability)
• may become stuck in local optima
• sensitive to tuning of control parameters

Table 14. Advantages and disadvantages of the class of hyper-heuristics.

Algorithm Advantages Disadvantages

Hyper-Heuristic
Algorithms

• a general-purpose class of optimization methods
usable for a wide range of problems

• not dependent on the problem representation or
domain-specific knowledge

• able to smartly adapt search strategies
• able to learn from previous experience and use

the knowledge to further problems
• reduced need for manual interventions

• can be very complex to use and require
expert knowledge

• lack insight into the problem structure or
domain-specific knowledge

• can be computationally demanding
• may be bested by problem-specific

optimization algorithms
• lack a full adaptability to the problem at hand
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Table 15. Advantages and disadvantages of the class of hybrid algorithms.

Algorithm Advantages Disadvantages

Hybrid Algorithms

• a class of diverse algorithms, complementing
strengths of its constitutive parts

• improved solution quality
• improved robustness and adaptability
• improved convergence speed
• ability to exploit problem-specific knowledge
• applicable to an extended range of problems

• higher complexity compared to its
constitutive algorithms

• design, implementation and result analysis
require expert knowledge

• more complex tuning of parameters due to
their increased number

• computational cost may be high
• tends to overfit data

Table 16. Advantages and disadvantages of neural networks for optimization.

Algorithm Advantages Disadvantages

Artificial Neural
Networks (ANNs)

• excel in optimizing problems involving nonlinear
relationships among variables

• performance and problem optimization are
optimized in an adaptable way through learning

• able to generalize data never before seen by them
and use this for optimization

• convenient for handling huge amounts of data
• allow for massive parallelization of computing
• indispensable in accurately approximating

functions with any arbitrary
continuous relationship

• suffer from lack of transparency (black
box nature)

• difficult tuning of hyperparameters (number
of layers and nodes, learning rate, etc.)

• resource-intensive
• need huge amounts of data for

accurate training
• computationally demanding
• prone to overfitting (may fail to generalize

well for new datasets and search spaces)

Convolutional
Neural Networks
(CNNs)

• well suited for image-related optimization tasks
and sequential data with spatial hierarchies

• able to recognize patterns regardless of their
position in an image (translation invariance)

• automatic recognition and extraction of features
during optimization

• offers transfer learning (using training in one
search space for another)

• lower risk of overfitting thanks to parameter
sharing across spatial dimensions

• need huge amounts of data for
accurate training

• computationally demanding
• resource-intensive
• suffer from lack of transparency (black

box nature)
• minuscule perturbations of the input data can

result in incorrect predictions
• vulnerable to adversarial attacks, which

negatively reflects on security and robustness

The above data are by no means exhaustive and are more of an illustrative nature,
being included for the sake of completeness. The readers are advised to consult dedicated
analyses in the literature. For instance, in the case of metaheuristics, a good start could
be to consult the review of Ma et al. from 2023 [97] for additional information (it does not
cover the same aspects as the present paper and even completely skips some of its subjects,
but does an outstanding job with metaheuristics and their modifications, improvements
and hybrids).

11.2. Comparative Computational Costs of Selected Optimization Algorithms

Among the most important criteria for selecting a particular optimization algorithm
are surely its running speed and general computational costs. Again, the same warnings to
users are necessary—there are a lot of modifications of the basic optimization algorithms
which may exhibit totally different computational costs although stemming from the iden-
tical root. In addition, hybridizing algorithms or creating hyper-heuristics results in totally
different computational environments with vastly changed properties, and the differences
may be dramatic. Below, we consider only the basic algorithms, out of sheer impossibility
to cover each and every one of the countless special cases and modifications or combina-
tions. This time, we present a single table for all the algorithms under consideration. A
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qualitative partial overview is shown in Table 17. We take into account the time complexity
(running time), memory efficiency, possibilities to parallelize computations and to upscale
them to more complex search spaces and higher number of variables, and convergence and
accuracy of the algorithms. A warning to the readers is due here: the properties shown
in Table 17 are valid only for the basic forms of algorithms and represent qualitative and
averaged estimations only and should be approached with caution. The real computational
properties may vary widely in dependence on a particular problem and its details, as well
as on whether a particular algorithm is modified or upgraded.

Table 17. Computational advantages and disadvantages of bio-inspired optimization algorithms.

Algorithm Time Complexity Memory
Efficiency Parallelizability Scalability Convergence and

Accuracy

Genetic Algorithm Limited Good Good Good Moderate

Memetic
Algorithm Moderate Good Good Good Limited

Differential
Evolution Moderate Good Good Moderate Good

Particle Swarm
Algorithm Moderate Good Limited Moderate Moderate to good

Ant Colony
Optimization Moderate Good Limited Good Moderate to

limited

Whale
Optimization

Algorithm
Moderate Good Limited Good Moderate to good

Grey Wolf
Optimizer Moderate Good Limited Good Moderate to good

Firefly
Optimization

Algorithm
Moderate Good Limited Good Moderate to good

Bat Optimization
Algorithm Moderate Good Limited Good Moderate to good

Orca Predation
Algorithm Moderate to good Good Limited to

moderate Good Moderate

Starling Murmura
tion Optimizer Moderate Moderate to good Limited Limited Good

Artificial Immune
System Moderate Good Limited Good Moderate

Tabu Search
Algorithm Moderate Good Limited Good Moderate

Flower Pollination
Algorithm Good to moderate Good Limited Good Moderate

Hyper-Heuristics Moderate Good Limited Moderate to good Moderate to good

Hybrid Algorithms Moderate to good Good to moderate Limited to
moderate Moderate to good Moderate to good

Artificial Neural
Networks Moderate to good Moderate to good Limited to

moderate Moderate to good Moderate to good

Convolutional
Neural Networks Moderate Moderate Good Good Good
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12. Conclusions

In this article, we attempted to offer a broad systematic survey of bio-inspired opti-
mization methods, including the most recent information and the latest developments. We
presented a modified taxonomy of bio-inspired algorithms and gave short descriptions of
some prominent methods. We stressed selected heuristic, metaheuristic and hyper-heuristic
approaches, their inclusion being based on the choice of the most often published and cited
methods. Besides those, we also considered bio-inspired approaches such as ANNs that
are unrelated to the heuristic methods, yet are often used in conjunction with them. We
took care to include some newly proposed methods, the most recent ones among them
being less than a year old, the rule for their inclusion being their citation numbers and
their perceived importance. We also handled approaches such as hybridization of algo-
rithms and multi-objective analysis. We focused on two interrelated fields that are seldom
considered together in this kind of review, namely microelectronics and nanophotonics.
For microelectronic circuits, we considered the optimization of parameters of passive and
active circuit elements, floor planning and topology, circuit sizing, power consumption min-
imization, sensitivity to design parameter variations/robustness, production yield, and the
applicability to analog, digital and mixed-type microelectronic circuitry. For nanophotonics,
we considered the optimization of nanocomposite materials of interest, the design and opti-
mization of their effective optical parameters, inverse design of fundamental nanophotonic
building blocks such as photonic crystals, plasmonic structures, metamaterials including
metasurfaces, photonic circuit design including layout and routing, analysis of sensitivity
to parameter variations, and related robustness of design of photonic circuits and design of
optical waveguides. We attempted to profile our treatise towards experienced researchers
in the field who want to stay informed about the latest developments, to beginners and to
interested scientific readers outside the field.

Regarding the limitations of biomimetic optimization, they partly stem from the “No
Free Lunch” theorem. High skills but also guesswork are still often necessary to choose
the procedures/hybrids that are right for a specific problem. A difficulty also arises from
the huge number of existing metaheuristic algorithms, which is still increasing even now,
although at a slower pace, making the choice even more problematic. Depending on
a particular algorithm, the limitations may also include slow convergence, high com-
putational costs, especially when scaling up the search space to higher dimensionality,
premature convergence either due to becoming stuck in a local optimum instead of finding
the global or ineffectively exploring the search space, rather complex implementation
(especially in case of multi-objective optimization), cumbersome parameter tuning, “black
box” operation (lack of insight into the details of optimization process), inability to perform
optimization without domain-specific data, and sensitivity to noisy or discrete datasets
(lack of robustness).

Regarding the future prospects, we expect that the number of newly proposed meta-
heuristics will decrease, while journals will continue their trend of imposing more and
more stringent conditions on new proposals of metaphor-based algorithms. In the authors’
opinion, chances for a drastic modification of a metaheuristic classification that would
introduce some order and clearer criteria of algorithm novelty are currently slim, although
this would be highly beneficial. The scientific community is too dependent on the custom-
ary metaphor-based classification, in spite of its obvious shortcomings. On the other hand,
we expect large and significant developments in the fields of multi-objective procedures,
and even more so in the field of hybrid solutions. We also expect that novel procedures
will become more sophisticated, complex, transparent (with enhanced interpretability of
the solutions) and general—able to solve optimization problems in a wider range of prob-
lems simultaneously, including noisy or dynamically changing environments. Another
direction where we anticipate large advances is concrete, real-world applications which
we believe will become more numerous and used in an even wider circle of problems
and different fields. Finally, in some instance not far from today, we see the cumbersome
process of choosing and implementing an adequate and fully customized optimization
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procedure performed automatically, thus making room for using human efforts in a more
creative way. AI procedures in general will continue introducing a silent revolution in the
field of biomimetic optimization, in a manner similar to that in which they are acting in
uncountable fields at this very moment.

Author Contributions: Conceptualization, Z.J.; methodology, Z.J., S.D. and O.J.; validation, Z.J., S.D.,
K.G. and O.J.; formal analysis, Z.J., S.D. and O.J.; investigation, Z.J., S.D. and O.J.; resources, Z.J.;
writing—original draft preparation, Z.J., S.D. and O.J.; writing—review and editing, Z.J., S.D., K.G.
and O.J.; visualization, Z.J., S.D. and O.J.; supervision, Z.J.; project administration, Z.J.; funding
acquisition, Z.J. and O.J. All authors have read and agreed to the published version of the manuscript.

Funding: All authors except O.J. declare that no funds, grants or other support were received during
the preparation of this manuscript. O.J. declares that her work was supported by the Ministry of
Science, Technological Development and Innovations of the Republic of Serbia through the grant
451-03-47/2023-01/200026.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Alanis, A.Y.; Arana-Daniel, N.; López-Franco, C. Bio-inspired Algorithms. In Bio-Inspired Algorithms for Engineering; Alanis, A.Y.,

Arana-Daniel, N., López-Franco, C., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 1–14. [CrossRef]
2. Zhang, B.; Zhu, J.; Su, H. Toward the third generation artificial intelligence. Sci. China Inf. Sci. 2023, 66, 121101. [CrossRef]
3. Stokel-Walker, C. Can we trust AI search engines? New Sci. 2023, 258, 12. [CrossRef]
4. Gill, S.S.; Xu, M.; Ottaviani, C.; Patros, P.; Bahsoon, R.; Shaghaghi, A.; Golec, M.; Stankovski, V.; Wu, H.; Abraham, A. AI for next

generation computing: Emerging trends and future directions. Internet Things 2022, 19, 100514. [CrossRef]
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