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Abstract: Proper management of solar energy as an effective renewable source is of high importance 
toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting 
solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic tech-
nique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural net-
work. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network 
parameters. To suggest an optimal configuration, five influential parameters of the EFO are opti-
mized by an extensive trial and error practice. Analyzing the results showed that the proposed 
model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Further-
more, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, 
namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-super-
vised neural network can be a promising tool for the early prediction of SIr in practice. The findings 
of this research may shed light on the use of advanced intelligent models for efficient energy devel-
opment. 

Keywords: solar irradiance; solar energy; solar power; electrical power modeling; metaheuristic; 
machine learning; artificial neural networks; artificial intelligence; big data; deep learning; photo-
voltaic   
 

1. Introduction 
Today, solar energy (SE) is considered a promising renewable source because of its 

advantages, such as inexhaustible supply, environmental friendliness, universality, and 
high capacity [1,2]. Indeed, the term artificial intelligence is known as intelligence 
demonstrated by machines (i.e., unlike natural intelligence, which involves emotionality 
and consciousness shown by animals and humans). In this sense, intelligence approaches 
have provided a high degree of suitability for undertaking complicated and nonlinear 
simulations [3–5]. Most recently, a number of innovative artificial-intelligence-based 
examples have been studied, such as in the subjects of environmental concerns [6–14], 
sustainability [15], soil precipitation and pan evaporation prediction [16–21], energy 
systems optimization [22–34], energy efficiency [35], natural gas consumption [36–39], 
water and groundwater supply chains [9,40–49], image classification and processing, 
computer vision, and target tracking [50–58], structural damage detection [59], building 
and structural design analysis [54,60–64], quantifying climatic contributions [65], 
measurement techniques [50,66–68], the behavior of structural materials [65,69–71], and 
signal processing and feature analysis [72–78]. Many decision-making issues have been 
proposed for engineering modelings [54,79,80]. As a mimic of human brain operations, 
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the artificial neural network (ANN) is founded on a set of algorithms aiming to recognize 
underlying correspondence among a group of input–output data [81–85]. In another 
sense, the ANN represents a sophisticated nonlinear approach that has been proposed as 
a popular tool for different modeling tasks [86]. Among various notions of the ANNs, 
multi-layer perceptron (MLP) [87,88] is an important one composed of (at least) three 
layers. Each layer contains one or more neurons that handle the computation tasks [89–
94]. As some medical applications of machine learning, scholars like Xia, et al. [95], Hu, et 
al. [96], Wang, et al. [97], and Chen, et al. [98] have achieved satisfying solutions. 

Having a reliable forecast of solar irradiance (SIr) is of great importance, due to its 
effect on the design of photovoltaic systems and measuring solar energy production 
[99,100]. Figure 1 shows solar radiation on a photovoltaic module installed on the Earth. 
Up to now, scholars have suggested various methods (e.g., empirical [101] and remote 
sensing [102] approaches) for analyzing the SE parameter. However, recent advances in 
soft computing have led to the utilization of diverse machine learning tools for this 
purpose. These modes have gained a lot of attention for renewable energy analysis like 
feature selection [103]. 

 

 

Figure 1. A schematic view of solar radiation and solar energy (SE) production. 

Artificial neural network (ANN), for example, is a flexible type of machine learning 
that has been broadly used for prediction tasks. Barrera, et al. [104] proposed an ANN 
model developed with open data sources for analyzing SE and also the effect of environ-
mental factors on this parameter. The used model was found to be more accurate than 
previous methods (with a mean square error (MSE) of 0.040 vs. 0.055). Yaïci, et al. [105] 
demonstrated the effectiveness of ANN for simulating the SE systems. They also investi-
gated the effect of the problem dimension (i.e., the number of inputs) on the accuracy, and 
after testing the model using real-world (Ottawa, Canada) data, they professed that the 
accuracy falls gradually with reducing the dimension. Yadav, et al. [106] conducted a com-
parison among different ANN models, namely radial basis function neural network 
(RBFNN), fitting tool (nftool), and generalized regression neural network (GRNN), for 
analyzing the potential of SE resources in India. They reported the superiority of the 
nftool, as it could nicely predict the desired parameter for many locations. 

Meenal and Selvakumar [107] studied and demonstrated the accuracy of a popular 
machine learning system called support vector machine (SVM) for solar radiation model-
ing. This method, when implemented with an optimal dataset, outperformed the ANN 
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and empirical approaches for this purpose. Mohammadi, et al. [108] performed a feature 
analysis using another well-known processor, namely the adaptive neuro-fuzzy inference 
system (ANFIS) for global solar radiation modeling. Quej, et al. [109] compared the po-
tential of ANN, SVM, and ANFIS for simulating daily solar radiation. Concerning the re-
spective average correlations of 0.652, 0.689, and 0.645 obtained for the best models, the 
SVM emerged as the most reliable predictor. 

Metaheuristic algorithms have paved the way for more powerful forecasting models 
that are using the skeleton of conventional tools like ANN and ANFIS. These algorithms 
have been popularly used for renewable energy analysis [110,111] like wind energy 
[112,113], solar power energy [114], and, more particularly, the SE-related simulations 
[115,116]. In such methodologies (i.e., metaheuristic-based hybrids) optimal parameters 
are provided for the basic predictive method to avoid issues like local minima [117]. Many 
scholars investigated proposing hybrid metaheuristic algorithms that intend to improve 
the level of algorithm performance. Some of these hybrid algorithms are the whale opti-
mization algorithm [118,119], grey wolf optimization [120,121], the many-objective opti-
mization model [122–125], moth-flame optimization [126–128], Monarch Butterfly optimi-
zation [129], harris hawks optimization [130,131], bacterial foraging optimization [132], 
global numerical optimization [133], the grasshopper optimization algorithm [134], fruit 
fly optimization [135], data-driven robust optimization [136], topology optimization [137], 
multiobjective 3-d topology optimization [138], and the fuzzy optimization strategy [139]. 

Abedinia, et al. [140] designed a forecast engine based on a metaheuristic optimizer 
called shark smell optimization combined with ANN for approximating solar power. Due 
to the better performance of this model in comparison with conventional predictors like 
conventional ANN, RBFNN, GRNN, and their wavelet versions (normalized root mean 
square errors (RMSEs) around 11 vs. those above 14), they introduced it as a capable en-
gine. Galván, et al. [141] benefitted from a multi-objective particle swarm optimization 
(PSO) technique for optimizing the intervals of the SE modeling. They built a nonlinear 
method using ANN, and their findings revealed the high applicability of the PSO opti-
mizer for the mentioned objective. Zhao, et al. [142] employed two metaheuristic tech-
niques, namely shuffled complex evolution (SCE) and Teaching–Learning-Based Optimi-
zation (TLBO), to predict the compressive strength of concrete. Likewise, Halabi, et al. 
[143] could effectively use this algorithm coupled with an ANFIS system for monthly solar 
radiation approximation. Vaisakh and Jayabarathi [144] suggested a hybrid of two meth-
ods, namely the deer hunting optimization algorithm and grey wolf optimization, for tun-
ing the structure of various ANNs applied to SIr forecast. Their results showed a promis-
ing improvement attained by the proposed optimizer. Louzazni, et al. [145] showed the 
competency of the firefly algorithm for analyzing the parameters of the photovoltaic sys-
tem under different conditions. Compared to previously used metaheuristic techniques, 
the firefly algorithm achieved reliable and valid results in tuning the photovoltaic param-
eters. The efficiency of the PSO and genetic algorithm (GA) for a similar objective was 
demonstrated by Bechouat, et al. [146]. Wind-driven optimization was successfully used 
by Abdalla, et al. [147] to deal with the optimal power tracking of photovoltaic systems. 
This algorithm performed more efficiently than several optimization techniques, such as 
PSO, the bat algorithm, and cuckoo search. 

According to the explained literature, metaheuristic algorithms can yield promising 
solutions to complex issues like SIr prediction. However, a gap in knowledge has emerged 
as earlier studies have mostly used well-established strategies like PSO [148], GA [149], 
and the imperialist competitive algorithm [150]. Furthermore, these techniques take a no-
ticeable time to reach stable optimization. This study, therefore, focuses on a novel me-
taheuristic strategy, namely electromagnetic field optimization (EFO), for the optimal pre-
diction of the SIr. A significant advantage of this algorithm is its fast convergence relative 
to other existing techniques. The EFO supervises a nonlinear problem through an ANN 
framework. Moreover, two other quick algorithms, shuffled complex evolution (SCE) and 
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the shuffled frog leaping algorithm (SFLA), are considered benchmark methods to com-
paratively validate the efficiency of the EFO. 

2. Materials and Methods 
2.1. Data Provision 

For predicting the SIr, a publicly available dataset (provided by NASA and available 
at https://www.kaggle.com/dronio/SolarEnergy, accessed on 26/10/2020) is used in this 
work. Before this study, these data have been used for validating the performance of dif-
ferent developed models [151,152]. The SIr plays the role of the target parameter to be 
predicted with the inputs of temperature (T), barometric pressure (BP), humidity (H), 
wind direction (WD), and wind speed (WS). 

The used dataset contains 32,686 rows of meteorological records obtained from the 
Hawaii space exploration analog and simulation (HI-SEAS) weather station. At approxi-
mately 5 minute intervals, the records belong to the time between 23:55:26 29 September 
2016 and 00:00:02 1 December 2016. Figure 2 shows the variation of the SIr over one day 
(29 September 2016 taken as an instance). As expected, peak values are observed at mid-
day. Moreover, Figure 3 depicts the relationship between the SIr and each input factor in 
the form of scatter charts for the whole dataset. 

 
Figure 2. The variation of the solar irradiance (SIr) over 29 September 2016. 
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(c) 

 
(d) 

 
(e) 

Figure 3. Scattering plots of the SIr versus input parameters (a) T, (b) BP, (c) H, (d) WD, and (e) WS. 

Considering the R2 values calculated in Figure 3 (0.5402, 0.0142, 0.0512, 0.053, and 
0.0054 for the T, BP, H, WD and WS, respectively), it can be said that the most meaningful 
relationship (among these five inputs) is obtained for the T. In a general view, the values 
of SIr tend to increase with the increase in this factor. A detailed statistical description of 
the used dataset is presented in Table 1. As is seen, the SIr values range over [1.1, 1601.3] 
W/m2, while this extent is [34.0, 71.0] °F, [30.2, 30.6] Hg, [8.0, 103.0] %, [0.1, 360.0] degrees, 
and [0.0, 40.5] m/h for the T, BP, H, WD, and WS, respectively. 

Table 1. Descriptive statistics of the SIr and input parameters. 

Factor Unit 
Descriptive Indicator 

Mean Std. Error Std. Deviation Sample Vari-
ance 

Minimum Maximum 

T °F 51.1 0.0 6.2 38.5 34.0 71.0 
BP Hg 30.4 0.0 0.1 0.0 30.2 30.6 
H % 75.0 0.1 26.0 675.5 8.0 103.0 

WD Degree 143.5 0.5 83.2 6916.8 0.1 360.0 
WS m/h 6.2 0.0 3.5 12.2 0.0 40.5 
SIr W/m2 207.1 1.7 315.9 99,803.2 1.1 1601.3 

In artificial intelligence implementation, it is well-established that machines use some 
(the majority) of the instances for learning the existing input-target pattern. They then 
apply this pattern to the remaining instances for evaluating the prediction ability. For this 
study, the dataset (i.e., 32,686 instances) was randomly divided into two groups with 
26,149 and 6537 instances (80% and 20% of the whole) to generate the training and testing 
dataset, respectively. 

Since the data are randomly selected, there are samples from all over the dataset in 
both the training and tested boxes. However, the scattering and broadness of data (Figure 
3) indicate that the predictive models deal with a wide variety of data (e.g., an SIr value 
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with similar temperature and barometric pressure) that make the problem intrinsic. Thus, 
it can be another factor for evaluating the generalizability of the used models. 

2.2. Methodology 
2.2.1. The EFO 

Abedinpourshotorban, et al. [153] developed a physics-based optimization strategy 
and named it electromagnetic field optimization. Many scholars have benefited from this 
method for a wide range of problems [154,155]. It is a population-based technique in 
which each individual is represented by an electromagnetic particle (EMP). The EMPs are 
distinguished by different polarities. The attraction–repulsion rule is used to improve the 
solution by changing the position of the EMPs. 

The steps of the EFO can be explained as follows: 
Step 1: A set of EMPs are randomly generated and the fitness of each one is calcu-

lated. The particles are then sorted based on these fitnesses. Each particle is made of N_var 
electromagnets (tantamount to the number of problem variables). 

Step 2: This is dedicated to dividing the EMP population into three field groups with 
negative, positive, and neutral polarities. The positive field group comprises the best-fit-
ted individuals tunable by a so-called “P_field” parameter, the negative field group com-
prises the worst-fitted individuals tunable by a so-called “N_field” parameter, and the 
rest lie in the third group. 

Step 3: Each repetition of the algorithm generates a new EMP. Once this EMP is better 
fitted than the weakest one, it is considered as a part of the population and confiscates the 
position of the weakest EMP. Figure 4 shows the generation process and determination 
on the polarity of the new member. 

 
Figure 4. The creation of a new electromagnetic particle (EMP). 

In this process, for j = 1 → N_var, an electromagnet belonging to the neutral field 
group is chosen. Next, a random value is considered and compared to a parameter called 
Ps_rate, which indicates the probability of choosing electromagnets of the created EMP 
from the positive field. Equation (1) is used for the situation random value < Ps_rate; oth-
erwise, Equation (2) expresses the generation process. 𝐸𝑀𝑃௝௡௘௪ ൌ  𝐸𝑀𝑃௝௉ிೕ, (1)

𝐸𝑀𝑃௝௡௘௪ ൌ  𝐸𝑀𝑃௝  ൅ ሺ𝐺𝑅 ∗ 𝑟𝑎𝑛𝑑ሻ ൈ ቀ 𝐸𝑀𝑃௝௉ிೕ −  𝐸𝑀𝑃௝ቁ ൅ ሺ𝑟𝑎𝑛𝑑ሻ ൈ ቀ𝐸𝑀𝑃௝ேிೕ −  𝐸𝑀𝑃௝ቁ, (2)
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where PF and NF symbolize positive and negative fields, GR gives the golden ratio, and 𝑟𝑎𝑛𝑑 is the random value 
inside [0, 1]. 

Step 4: A randomization operator is responsible for diversifying the new EMPs. An-
other random value is generated and compared to a parameter called R_rate, which indi-
cates the probability of replacing one electromagnet of the created EMP with a random 
electromagnet. If random value < R_rate, a new electromagnet replaces one electromagnet 
of the created EMP [155]. 

2.2.2. The Benchmarks 
The SCE and SFLA are efficient metaheuristic techniques that are used as compara-

tive methods in this work. While both algorithms are based on shuffle action, the SCE is 
an older optimizer. Duan, et al. [156] and Eusuff and Lansey [157] presented the SCE and 
SFLA in 1993 and 2003, respectively. Although this study is one of the first usages of the 
EFO for supervising an ANN, scholars like Zheng, et al. [42] and Ma, et al. [158] have 
reported successful performance of the SCE and EFO for this purpose. 

The SCE implements a combination of the Nelder–Mead simplex technique, genetic 
algorithm, complex shuffling, and controlled random search for doing the optimization. 
After creating the population, the individuals are grouped in some containers called com-
plexes. The algorithm uses competitive complex evolution for evolving these complexes. 
It then synthesizes evolved units to create a larger community. This step results in more 
interactive agents for better sharing of the obtained knowledge [159]. The pivotal idea of 
the SFLA is the relationship between frogs settled in some containers called memeplexes. 
It is known as a quick and efficient search scheme that synthesizes PSO with the memetic 
algorithm. The fitness of the frogs is a measure for classifying them as the memeplexes. 
The SFLA pursues updating the position of the frogs in these units, and also importing 
new ones instead of the worst individuals [160]. The benchmark algorithms are mathe-
matically detailed in earlier studies like [161,162] (for the SCE) and [163,164] (for the 
SFLA).  

Similar to the EFO, two separate ANNs are supervised by the benchmark algorithms 
to explore and predict the SIr. The performance of these three methods is compared in the 
following sections to return an optimal metaheuristic-based methodology for this pur-
pose. 

3. Results and Discussion 
3.1. Accuracy Assessment Measures 

The accuracy of SIr prediction is reported by well-known indices as follows. Given 𝐸𝑟𝑟𝑜𝑟௜ =  𝑆𝐼𝑟 ௜ೝ೐೎೚ೝ೏೐೏ −  𝑆𝐼𝑟 ௜೛ೝ೐೏೔೎೟೐೏ , the error of prediction for a total of N instances is cal-
culated by the RMSE and mean absolute error (MAE) indices. According to Equations (3) 
and (4), the RMSE gives a rooted value of the averaged squared errors, while the MAE 
releases an average of the absolute error values. 

2

1

1 [ ]
N

i
i

RMSE Error
N =

=  , (3)

1

1
| |

N

i
i

MAE Error
N =

=  , (4)

A correlation index called Pearson correlation coefficient (R) is also defined to show 
the consistency between the recorded SIrs and the products of each network. Equation (5) 
formulates the R: 
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where 𝑆𝐼𝑟തതതത symbolizes the average of the SIr values. 

3.2. Optimization and Training 
A 5 × 45 × 1 MLP neural network (indicating 5 nodes in the input layer, 45 nodes in 

the middle layer, and 1 node in the output layer) is used to connect the SIr to its input 
factors. Due to a large number of data instances, this network is a complex system that is 
supposed to be supervised by the EFO algorithm. The main role of the EFO is to adjust 
the MLP internal parameters so that the SIr pattern is optimally established. 

After creating the EFO-MLP hybrid, it is trained by mining the training group. Since 
metaheuristic algorithms are population-based iterative techniques, optimum values 
should be considered for these two parameters, i.e., population size (NPop) and the number 
of iterations (NIt). Although many optimization algorithms reach a stable situation by 
around 1000 iterations, the EFO needs more effort. Based on experience and also evaluat-
ing the behavior of the model, the EFO-MLP was implemented by a total of 50,000 itera-
tions. The appropriate values for NPop, as well as four other parameters, were determined 
one by one by testing different values. The convergence curves of the tested EFO-MLPs 
are shown in Figure 5. First, the models with different NPops (25, 26, 27, 28, 30, 35, and 40) 
were tested (when R_rate = 0.01, Ps_rate = 0.01, P_field = 0.02, and N_field = 0.4). Figure 
5a shows that the NPop = 26 gives the lowest error. Thus, the subsequent models were 
tested with this NPop. Five R_rates of 0.01, 0.015, 0.02, 0.03, and 0.04 were similarly as-
sessed. According to Figure 5b, R_rate = 0.01 is the most suitable one. Next, investigating 
the effect of Ps_rate in Figure 5c revealed that the lowest error is obtained for Ps_rate = 
0.03. As is exhibited in Figure 5d, P_field experienced the values of 0.02, 0.03, 0.04, 0.05, 
and 0.06, and P_field = 0.02 remained as the best value. Lastly, the values considered for 
N_field, 0.1, 0.2, 0.3, 0.4, and 0.5, are depicted in Figure 5e, which demonstrates the lowest 
error for N_field = 0.4. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 5. Optimizing the effect of electromagnetic field optimization (EFO) parameters including (a) NPop, (b) R_rate, (c) 
Ps_rate, (d) P_field, and (e) N_field. 

A similar strategy was executed for the benchmark models (i.e., SCE-MLP and SFLA-
MLP). Table 2 denotes the values assigned to the used algorithms. As is seen, the SCE and 
SFLA were implemented with 1000 iterations. 

Table 2. Implementation parameters of the used algorithms. 

EFO SCE SFLA 
NPop = 26 

R_rate = 0.01 
Ps_rate = 0.01 
P_field = 0.02 
N_field = 0.4 
NIt = 50,000 

NPop = 10 
No. of offsprings = 3 
No. of complexes= 3 

NIt = 1000 

NPop = 25 
Step size = 1 

No. of offsprings = 3 
No. of memeplexes = 5 

NIt = 1000 

 
Assessing the RMSEs obtained for the EFO-MLP, SCE-MLP, and SFLA-MLP, which 

are 180.1228, 197.4813, and 208.1472, respectively, shows that the used hybrids could learn 
the SIr pattern with good accuracy. The corresponding MAEs are 117.8681, 138.5814, and 
156.2768, which, regarding the range of the observed SIrs (Table 1), indicate an acceptable 
level of error. Moreover, the correlation values of 0.82275, 0.78208, and 0.75431 demon-
strate a high agreement between the training products and expected SIrs. 

3.3. Testing Results 
As explained in Section 2, the second part of the dataset plays the role of unseen 

environmental conditions. The models use this data to evaluate their testing ability. In this 
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regard, the SIr is forecasted for the testing instances and these values are compared with 
the expected values. Since the model does not perform any analysis on these instances, it 
has to use the previously captured knowledge. Accordingly, the goodness of the results 
reflects the prediction capability of the intended model. 

Considering the 𝐸𝑟𝑟𝑜𝑟௜ formula (Section 3.1), Figure 6 details the magnitude and sta-
tistics of error values calculated for the testing instances. In this phase, the RMSEs of 
177.9764, 195.0984, and 205.6091 indicated a reliable prediction by all three models. More-
over, the goodness of the testing results can be supported by the MAEs of 115.2678, 
136.2261, and 154.1603, as well as the R values of 0.82132, 0.78046, and 0.75212. 

Moreover, from a graphical point of view, the histogram charts in Figure 6 show that 
the small errors outnumber large values. This can be derived from the sharp shape of the 
diagram around zero and the vicinity. Regarding the overall trend of these charts, the 
magnitude of the error increases as the frequency falls. 
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Figure 6. The error analysis in terms of (a,c,e) magnitude and (b,d,f) frequency for the EFO-multi-layer perceptron (MLP), 
shuffled complex evolution (SCE)-MLP, and shuffled frog leaping algorithm (SFLA)-MLP, respectively. 

3.4. EFO vs. SCE and SFLA 
It was stated that this research pursues a novel time-efficient methodology for ana-

lyzing the SIr. The EFO was presented as the pivotal method, while the SCE and SFLA 
acted as benchmark algorithms. Earlier sections showed the competency of all three su-
pervised models. Hence, this section validates the performance of the EFO versus the SCE 
and SFLA. 

For both training and testing groups, the error indicators showed a lower error of 
prediction, and, at the same time, the R index manifested a higher correlation for the EFO-
trained model. Table 3 gives the accuracy improvements when the SCE and SFLA are 
replaced with the EFO. As is seen, in the case of EFO vs. SCE, the RMSE and MAE fall by 
nearly 10% and 18% in both phases, respectively. Additionally, a 4% enhancement re-
sulted for the R index. As for EFO vs. SFLA, the changes are more tangible. The RMSE 
and MAE of both phases degrade by around 16% and 33%, respectively. The R index in-
dicated a 7% better correlation, too. 

Table 3. Improvements achieved by the EFO algorithm vs. the benchmarks. 

Comparative Hybrid 
Improvements 

Training Phase Testing Phase 
RMSE (%) MAE (%) R2  RMSE (%) MAE (%) R2 

Vs. SCE 9.64 17.57 0.04  9.62 18.18 0.04 
Vs. SFLA 15.56 32.59 0.07  15.53 33.74 0.07 

4. Conclusions 
This research was dedicated to finding a fast yet reliable solution for predicting solar 

irradiance. Since this parameter is affected by different factors, the problem is a nonlinear 
complex one. Therefore, a potent metaheuristic strategy called electromagnetic field opti-
mization was considered for dealing with it. A neural network organized the general 
equations while the EFO tuned its parameters optimally. Moreover, this algorithm was 
compared with two shuffle-based metaheuristic techniques: the shuffled frog leaping al-
gorithm and shuffled complex evolution. While an adequate level of accuracy was ob-
served for all three hybrids, the EFO-MLP was significantly superior. For example, its er-
ror was around 10% and 16% below that of the SCE-MLP and SFLA-MLP, respectively. 
Referring to the R-value of 0.82132 for testing data, the proposed model can reliably pre-
dict the SIr for given environmental conditions. In comparison with other hybrid tech-
niques such as SCE and SFLA, the EFO showed better performance. The employed accu-
racy indices for the applied benchmark technique (i.e., RMSE, MAE, and R2) were 9.64, 
17.57, and 0.04 (vs. SCE) and 15.56, 32.59, and 0.07 (vs. SCE) for the used training dataset, 
and were 9.62, 18.18, and 0.04 (vs. SCE) and 15.53, 33.74, and 0.07 (vs. SCE) for the testing 
dataset. Having both in mind, the EFO algorithm could provide a more accurate predic-
tive network in predicting the outputs. Apart from the high implementation speed, an-
other advantage of the used EFO-MLP model lies in implementing optimized parameters 
(i.e., Npop, R_rate, Ps_rate, P_field, and N_field). Therefore, the findings of this study can 
be used for sustainable energy management. However, there may still be ideas for future 
works (e.g., using feature selection and filtrated data) for a more efficient methodology. 
Applying the developed method to other real-world sites can better reveal the advantages 
and drawbacks. Additionally, comparing the EFO with other capable optimizers or em-
ploying hybrids, ensemble and deep machine learning methods would be of high interest. 
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