2,751 research outputs found

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    A novel neural network approach to cDNA microarray image segmentation

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier.Microarray technology has become a great source of information for biologists to understand the workings of DNA which is one of the most complex codes in nature. Microarray images typically contain several thousands of small spots, each of which represents a different gene in the experiment. One of the key steps in extracting information from a microarray image is the segmentation whose aim is to identify which pixels within an image represent which gene. This task is greatly complicated by noise within the image and a wide degree of variation in the values of the pixels belonging to a typical spot. In the past there have been many methods proposed for the segmentation of microarray image. In this paper, a new method utilizing a series of artificial neural networks, which are based on multi-layer perceptron (MLP) and Kohonen networks, is proposed. The proposed method is applied to a set of real-world cDNA images. Quantitative comparisons between the proposed method and commercial software GenePix(Âź) are carried out in terms of the peak signal-to-noise ratio (PSNR). This method is shown to not only deliver results comparable and even superior to existing techniques but also have a faster run time.This work was funded in part by the National Natural Science Foundation of China under Grants 61174136 and 61104041, the Natural Science Foundation of Jiangsu Province of China under Grant BK2011598, the International Science and Technology Cooperation Project of China under Grant No. 2011DFA12910, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Copasetic analysis: a framework for the blind analysis of microarray imagery

    Get PDF
    The official published version can be found at the link below.From its conception, bioinformatics has been a multidisciplinary field which blends domain expert knowledge with new and existing processing techniques, all of which are focused on a common goal. Typically, these techniques have focused on the direct analysis of raw microarray image data. Unfortunately, this fails to utilise the image's full potential and in practice, this results in the lab technician having to guide the analysis algorithms. This paper presents a dynamic framework that aims to automate the process of microarray image analysis using a variety of techniques. An overview of the entire framework process is presented, the robustness of which is challenged throughout with a selection of real examples containing varying degrees of noise. The results show the potential of the proposed framework in its ability to determine slide layout accurately and perform analysis without prior structural knowledge. The algorithm achieves approximately, a 1 to 3 dB improved peak signal-to-noise ratio compared to conventional processing techniques like those implemented in GenePixÂź when used by a trained operator. As far as the authors are aware, this is the first time such a comprehensive framework concept has been directly applied to the area of microarray image analysis

    A systematic review of data quality issues in knowledge discovery tasks

    Get PDF
    Hay un gran crecimiento en el volumen de datos porque las organizaciones capturan permanentemente la cantidad colectiva de datos para lograr un mejor proceso de toma de decisiones. El desafĂ­o mas fundamental es la exploraciĂłn de los grandes volĂșmenes de datos y la extracciĂłn de conocimiento Ăștil para futuras acciones por medio de tareas para el descubrimiento del conocimiento; sin embargo, muchos datos presentan mala calidad. Presentamos una revisiĂłn sistemĂĄtica de los asuntos de calidad de datos en las ĂĄreas del descubrimiento de conocimiento y un estudio de caso aplicado a la enfermedad agrĂ­cola conocida como la roya del cafĂ©.Large volume of data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through knowledge discovery tasks, nevertheless many data has poor quality. We presented a systematic review of the data quality issues in knowledge discovery tasks and a case study applied to agricultural disease named coffee rust

    Feature Selection Algorithm for High Dimensional Data using Fuzzy Logic

    Get PDF
    Feature subset selection is an effective way for reducing dimensionality removing irrelevant data increasing learning accuracy and improving results comprehensibility This process improved by cluster based FAST Algorithm and Fuzzy Logic FAST Algorithm can be used to Identify and removing the irrelevant data set This algorithm process implements using two different steps that is graph theoretic clustering methods and representative feature cluster is selected Feature subset selection research has focused on searching for relevant features The proposed fuzzy logic has focused on minimized redundant data set and improves the feature subset accurac

    Cancer prediction using graph-based gene selection and explainable classifier

    Get PDF
    Several Artificial Intelligence-based models have been developed for cancer prediction. In spite of the promise of artificial intelligence, there are very few models which bridge the gap between traditional human-centered prediction and the potential future of machine-centered cancer prediction. In this study, an efficient and effective model is developed for gene selection and cancer prediction. Moreover, this study proposes an artificial intelligence decision system to provide physicians with a simple and human-interpretable set of rules for cancer prediction. In contrast to previous deep learning-based cancer prediction models, which are difficult to explain to physicians due to their black-box nature, the proposed prediction model is based on a transparent and explainable decision forest model. The performance of the developed approach is compared to three state-of-the-art cancer prediction including TAGA, HPSO and LL. The reported results on five cancer datasets indicate that the developed model can improve the accuracy of cancer prediction and reduce the execution time
    • 

    corecore