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Abstract

Many clustering techniques have been proposed for the analysis of gene expression
data obtained from microarray experiments. However, choice of suitable method(s)
for a given experimental dataset is not straightforward. Common approaches do not
translate well and fail to take account of the data profile. This review paper surveys
state of the art applications which recognise these limitations and addresses them.
As such, it provides a framework for the evaluation of clustering in gene expression
analyses. The nature of microarray data is discussed briefly. Selected examples are
presented for clustering methods considered.
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1 Introduction

Searching for meaningful information patterns and dependencies in gene ex-
pression (GE) data, to provide a basis for hypothesis testing is non-trivial. An
initial step is to cluster or “group” genes, with similar changes in expression.
Lack of a priori knowledge means that unsupervised clustering techniques,
where data are unlabeled (un-annotated), are common in GE work. These are
an exploratory techniques and assume that there is an unknown mapping that
assigns a group “label” to each gene, where the goal is to estimate this map-
ping. However, common clustering approaches do not always translate well to
GE data, and may fail significantly to account for data profile.
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Many excellent reviews of GE analysis, using clustering techniques, are avail-
able. Asyali et al. [1] provide a synopsis of class prediction and discovery
(respectively, supervised pattern recognition and clustering), while Pham et
al. [2] provide a comprehensive literature review of the various stages of data
analysis during a microarray experiment. In a landmark paper Jain et al. [3]
provide a thorough introduction to clustering, and give a taxonomy of clus-
tering algorithms, (used in this review). Reviewing the state of the art in GE
analysis is complicated by the high level of interest in the field, and the many
techniques available. This review aims to evaluate modifications to currently-
used techniques which address shortcomings of conventional approaches and
special properties of GE data.

GE data are typically presented as a real-valued matrix, with row objects cor-
responding to GE measurements over a number of experiments, and columns
corresponding to the pattern of expression of all genes for a given microarray
experiment. Each entry, z;;, is the measured expression of gene 7 in experi-
ment j. Dimensionality of a gene refers to the number of its expression val-
ues recorded (number of matrix columns). A gene/gene profile x is a single
data item (row) consisting of d measurements, x = (1, s, ..., Z4). An exper-
iment/sample y is a single microarray experiment corresponding to a single
column in the GE matrix, y = (21, 79, ..., 7,,)T where n is the number of genes
in the dataset.

Accuracy of GE data strongly depends on experimental design and minimi-
sation of technical variation, whether due to instruments, observer or pre-
processing [4]. Image corruption and/or slide impurities may led to incom-
plete data [5]. Many clustering algorithms require a complete matrix of input
values, so imputation, (missing data estimation), techniques need to be con-
sidered before clustering. GE data is intrinsically noisy, resulting in outliers,
typically managed by: (i) robust statistical estimation/testing, (when extreme
values are not of primary interest), or (ii) identification, (when outlier informa-
tion is of intrinsic importance, [6]. As cluster analysis is usually exploratory,
lack of a priori knowledge on gene groups or their number, K, is common.
Arbitrary selection of this number may undesirably bias the search, as pat-
tern elements may be ill-defined unless signals are strong. Meta-data can guide
choice of correct K, e.g. genes with common promoter sequence are likely to be
expressed together and thus are likely to be placed in the same group. Methods
for determining optimal number of groups, K, are discussed in [7] and [§].

Clustering a GE matrix can be achieved in two ways: (i) genes can form a
group which show similar expression across conditions, (ii) samples can form
a group which show similar expression across all genes. Both (i) and (ii) lead
to global clusters, where a gene or sample is grouped across all dimensions.
However, genes and samples can be clustered simultaneously, with their inter-
relationship represented by bi-clusters. These are defined over a subset of genes



and a subset of samples thus capturing local structure in the dataset. This is a
major strength of bi-clustering as cellular processes are understood to rely on
subsets of genes, which are co-regulated and co-expressed under certain con-
ditions and behave independently under others, [9]. Justifiably, this approach
has been gaining much interest of late. For an excellent review on bi-clusters
and bi-clustering techniques see [10].

Additionally, clustering can be complete or partial, where the former assigns
each gene to a cluster, and the latter does not. Partial clustering tends to be
more suited to GE, as the dataset often contains irrelevant genes or samples.
This allows: (i) “noisy genes” to be left out, with correspondingly less impact on
the outcome and (ii) genes to belong to no cluster - omitting a large number of
irrelevant contributions. This is important as microarrays measure expression
for the entire genome in one experiment, but genes may change expression
independent of the experimental condition (e.g. due to stage in the cell cycle).
Forced inclusion, (as demanded by complete clustering), in well-defined but
inappropriate groups, may impact final structure found for the data. Partial
clustering thus avoids the situation where an interesting sub-group in a cluster
is obscured through forcing membership of unrelated genes.

Finally, clustering can be categorised as ezclusive (hard), or overlapping. Ex-
clusive clustering requires each gene to belong to a single cluster, whereas
overlapping clusters permit genes simultaneously to be members of numer-
ous clusters. An additional qualification is crisp and fuzzy membership. Crisp
membership is boolean - either the gene belongs to a group or not. In the
case of fuzzy membership, each gene belongs to a cluster with a membership
weight between 0, (definitely excluded), and 1, (definitely included). Cluster-
ing algorithms, which permit genes to belong to more than one cluster are
typically more applicable to GE since: (i)impact of “noise” is reduced - the
assumption is that “noisy” genes are unlikely to belong to any one cluster but
are equally likely to be members of several, (ii) this supports the underlying
principle that genes, with similar change in expression for a set of samples, are
involved in a similar biological function. Typically, gene products are involved
in several such biological functions and groups need not be co-active under
all conditions. Thus gene groups are fluid and constraining a gene to a single
group (hard cluster) is counter-intuitive.

Cluster analysis includes several basic steps [3]. Initially, the data matrix is
represented by number, type, dimension and scale of the GE profiles. Some fea-
tures are set experimentally, others are controllable, (e.g. scaling, imputation,
normalisation etc.). An optional step of feature selection or feature extraction
may also be carried out. The former refers to selecting, from the original fea-
tures, a subset, which is most effective for clustering, while the latter refers
to transformation of the input features to form a new set that may be more
discriminatory in clustering, e.g. through Principal Component Analysis.



Pattern proximity assessment is needed, usually provided by a “distance” mea-
sure between pairs of genes. (Alternatively, “conceptual” measures can be used
to characterise similarity of gene profiles e.g. Mean Residue Score of Cheng
and Church, (see Section 2)). The next step is to apply a clustering algorithm
to determine structure in the dataset. Methods can be broadly categorised
according to taxonomy, [3].

Those structures are then described by data abstraction. For GE data, the
context is usually direct interpretation by a human, so abstraction should ide-
ally be straightforward (for follow up analysis/experimentation). Required is
usually a compact description of each cluster, through a prototype or repre-
sentative selection of points, such as the centroid. Clusters are valid if they
can not reasonably be achieved by chance or as an artefact of the clustering al-
gorithm. Validation requires formal statistical testing, and can be categorised
as: (i) Internal, (ii) External or (iii) Relative. The focus here is on proximity
measures and clustering algorithms, within the wider analysis context.

2 Clustering Methods

Analysis of large GE data-sets is a relatively new task, although pattern recog-
nition of complex data is well-established in a number of fields. Many common
generic algorithms have, in consequence, been adopted for GE data, (e.g. Hier-
archical [11], SOM’s [12], and others), but not all perform well. A good method
must deal with noisy high dimensional data, be insensitive to the order of in-
put, have moderate time and space complexity, (i.e. allow increased data load
without breakdown or requirement of major changes), require few input para-
meters, incorporate meta-data knowledge, (an extended range of attributes)
and produce results, which are interpretable in the biological context.

2.1 Pattern Proximity Measures

The choice of proximity measure, needed to evaluate degree of expression
coherence in a group of gene vectors, is as important as choice of clustering
algorithm, and is based on data type and context of the clustering. Many clus-
tering algorithms either employ a proximity matrix directly (e.g. hierarchical
clustering) or use one to evaluate clusters during execution (e.g. K-Means).
Proximity measures are calculated between pairs (e.g. Euclidean distance) or
groups of genes (e.g. Mean Residue Error).

Distance functions between two vectors include the so-called Minkowski mea-
sures, (Euclidean, Manhattan, Chebyshev, [13]), useful when searching for



exact matches between two profiles in the dataset. These tend to find globular
structures and work well when these are compact and isolated. A drawback
is that the largest feature dominates, so measures are sensitive to outliers
[3]. However more sophisticated variants, such as Mahalanobis distance, also
account for correlations in the dataset and are scale-invariant, [13]. Differ-
ent distance measures produce clusters of different shape, (e.g Euclidean are
spherical, while Mahalanobis’ are ellipsoidal). Alternatively, [14] describe an
adaptive distance norm (the Gaustafson-Kessel method). Here co-variances are
estimated for the data in each cluster, (based on eigenvalue calculations), to
obtain structure. Each cluster is then created using a unique distance measure.

Distances based on correlations reflect degree of similarity of changes in expres-
sion across samples, for two GE profiles, without regard to scale. For example,
if, for a set of samples, gene X is up-regulated, and gene Y is down-regulated,
i.e. are correlated, then X and Y would form a cluster. This would clearly not
be the case if Minkowski distances were used, since the average absolute dis-
tance between the points would be large. Correlation coefficients include both
parametric (standard Pearson , cosine), and non-parametric (Spearman’s rank
and Kendall’s T), the latter used when outliers and noise are present, [13]. In
general, distance = 1 — correlation?, if sign is unimportant.

As an alternative to measures of distance, “conceptual” measures of similar-
ity can be used. Models are based on constant rows, columns and coherent
values, (additive or multiplicative), [10] (Fig. 1). A “good fit” indicates high
correlation within a sub-matrix, (thus a possible cluster). These models are
common to several clustering algorithms. For example, Cheng and Church
[15] and FLOC [16], use the additive model (Fig. 1(C)), to evaluate biclus-
ters obtained by determining the Mean Residue Score. Given a GE matrix A,
the residue of an element a;; in a sub-matrix (7, J) is given by the difference
rij = (ai; — a;; — ar; + ary), where a;;, a;y, ar; and ay; are the sub-matrix
value, the row, column and group mean respectively. The “H-score” of the
sub-matrix is then the sum of the residues, given by:

1
H(I,J)= WZiteeJ(nj)Q (1)

A perfect bi-cluster gives a H-score equal to zero, (corresponding to “ideal”
GE data, with constant additive matrix rows and columns).

The Plaid Model [17] bi-cluster variant builds the GE matrix as a sum of

layers, where each layer corresponds to a bi-cluster. Each value a;; is modelled
K

by a;; = Z Oiikpirkjr where K is the layer (bi-cluster) number, and p;; and

Kji are biﬁary variables representing membership of row i and column j in
layer k. The value of an element in the GE matrix can be modelled as a linear
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Fig. 1. Models for bi-clusters: (A) Bi-cluster with constant rows. Each row is ob-
tained from a typical value p and row offset «;, (B) Constant columns. Each value
is obtained from a typical value p and column offset §;, (C) Additive model. Each
value is predicted from g, and a row and column offset, o; + 3;. Similar model
constructs apply for the multiplicative case with (A(i)) p x «a;, (B(i)) p x 85 and
(CH) 1 x i x 6,

function of the contributions of the different bi-clusters to which the row i
and the column j belong, (Fig. 2),[17]. For layer k, expression level 6,;; can

be estimated using the general additive model, 0;;;, = i + aur + Bji, n layer
k, (Fig. 1 (C)).
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Fig. 2. Plaid Model GE values at overlaps are seen as a linear function of different
bi-clusters.

For the Coherent Evolutions model the exact values of z;; are not directly taken
into account, but a cluster is evaluated to see if it shows coherent patterns
of expression. In simplest model form, each GE value can have three states:
up-regulation, down-regulation and no change. Thresholds between states are
crucial and additional complexity results from extending model definitions to
include further states such as “slightly” up-regulated, “strongly” up-regulated
and so on, e.g. SAMBA [18].

Other measures used to evaluate coherency of a group of genes include condi-

tional entropy: H(C|X) = — [ p(cj|z)logp(c;|x)p(z)dz (the average uncer-
=1

tainty of the random variable C' (cluster category), when a random variable X

(GE profile) is known). The optimal partition of the GE dataset is obtained



when this entropy is minimised i.e. a partition where each gene is assigned
with a high probability to only one cluster, [19]. This requires the estimation
of the a posteriori probabilities p(c;|x), usually by non-parametric methods,
as this avoids assumptions on the distribution of the underlying GE data),
[19].

Pattern proximity measures described so far make no distinction between time-
series data and those obtained from expressions of two or more phenotypes.
Applying similarity measures to time series data is not straightforward. Gene
expression time series have non-uniform intervals and are usually very short
(4-20 samples while classically even 50 observations is low for statistical infer-
ence), further data are not independently, identically distributed data. Sim-
ilarity in time series should be viewed only in terms of similar patterns in
the direction of change across time points, while robust measures must allow
for non-uniformity, in addition to scaling and shifting problems, and shape
(internal structure of clusters), [20].

Each algorithm described below by definition, relies on some choice of prox-
imity measure and inherits the limitations of that choice.

2.2 Agglomerative clustering

All agglomerative techniques naturally form a hierarchical cluster structure in
which genes have a crisp membership. Eisen et al. [11] studied GE in the bud-
ding yeast, Saccharmyces Cerevisiae, using hierarchical methods which have
been popularised due to ease of implementation, visualisation capability and
availability. Methods vary with respect to choice of distance metric, decision
on cluster merging, (linkage), as well as parameter selection affecting struc-
ture and relationship between clusters. Options include: single linkage (cluster
separation as distance between two nearest objects), complete linkage (as pre-
viously, but between two furthest objects), average linkage (average distance
between all pairs), centroid (distance between centroid’s of each cluster) and
Ward’s method, (which minimises ANOVA Sum of Squared Errors between
two clusters)[21].

Distance and linkage determine level of sensitivity to noise: Ward’s and Com-
plete method are particularly affected, (due to the ANOVA basis and out-
lier importance respectively, since clustering decisions depend on maximum
distance between two genes). Single linkage forces cluster merger, based on
minimum distance, regardless of other gene contributions to the cluster, so
noisy or outlying values are among the last to be considered. Consequently,
the “chaining phenomenon” may arise, [13]. For commonly used Average and
Centroid linking this problem is avoided as no special consideration is given



to outliers and clusters are based on highest density.

Results for agglomerative clustering may be intuitively presented by dendo-
grams but there are 2"~! different linear orderings consistent with tree struc-
ture, so care is needed in pruning. Dendrogram analysis, based on gene class
information from specialised databases is presented in [22], where optimal
correlations are obtained between gene classes and used to form clusters from
different branch lengths. In [23] authors present an agglomerative technique for
which each internal node has at most N children, allowing up to N genes (or
clusters) to be directly connected, (extending traditional hierarchical concepts
and reducing the effects of noise). Permutation is used to decide on the num-
ber of nodes (max N) to merge, based on a similarity threshold. Heuristically,
algorithm complexity is comparable to traditional hierarchical clustering, [23],
although the authors also present a “divide and conquer” approach for opti-
mal leaf ordering for small N, which has implications of increased time and
space complexity.

It should be stated that, such methods can not, in general, compensate for
the greedy nature of the traditional algorithm, where mis-clustering at the
beginning can not be corrected at a later stage and are magnified as the process
continues. Further, [24] and [25] note that hierarchical clustering performance
is close to random, despite its popularity and is poorer than other common
techniques such as K-means and Self Organising maps (SOM).

2.8 Partitive Techniques

Partitive clustering divides data by similarity measure, where typical methods
measure distance from a gene vector to a prototype vector representing the
cluster, and intra-cluster/inter-cluster distance are respectively maximised and
minimised. A major drawback is the need to specify the number of clusters in
advance. Table 2 summarises algorithms discussed here.

K-means produces crisp clusters with no structural relationship between these,
[26]. It deals poorly with noise, since outliers must belong to a cluster and
this distort the means. Equally, cluster inclusion is dependent on the cumula-
tive values of genes already present, so order matters. Results are dependent
on initial cluster prototype (which varies between clustering attempts); this
leads to instability and, frequently, to a local minimum solution. Incremental
approaches to refine local minima solutions close towards a global solution,
include the Modified Global K-means (MGKM) algorithm [27], which com-
putes k-partitions of the data using k& — 1 clusters from previous iterations.
A tolerance threshold must be set which determines the number of clusters
indirectly, and, as with regular K-means, returns spherical clusters. For the



six datasets reported [27], the MGKM algorithm showed slight improvement
over K-means, but at higher computational time cost.

The prevalence of local minima for K-means is linked to initial prototype
selection. Genetic algorithms (GAs), as an evolutionary approach, work well
for small datasets, (less than 1000 gene vectors and of low dimension), but have
prohibitive time constraints for anything larger, so are less desirable for GE
analysis. Although GA’s find the global optimum, they are sensitive to user
defined input parameters and must be fine tuned for each specific problem.
Studies which have combined K-means and GA include Incremental Genetic
K-Means Algorithm (IGKA), [28]. This is a hybrid approach which converges
to a global optimum faster than stand alone GA, and without the sensitivity
to initialisation prototypes. The fitness function for the GA is based on Total
Within Cluster Variance (TWCV), while the basis of the algorithm is to cluster
centroids incrementally, using a standard similarity measure. The GA method
requires the number of output clusters, K, to be specified, but is further
complicated by inherent GA parameters (mutation probability rate, number of
generations, size of the chromosome populations etc.), which influence time
taken by the algorithm to converge to a global optimum.

Fuzzy modifications of K-means include Fuzzy C-Means (FCM)[29] and Fuzzy
clustering by Local Approzimations of MEmberships (FLAME) [30]. In both,
genes are assigned a cluster membership degree indicating percentage associ-
ation with that cluster, but the two algorithms differ in the weighting scheme
used to determine gene contribution to the mean. For a given gene, FCM
membership value of a set of clusters is proportional to its similarity to clus-
ter mean. The contribution of each gene to the mean of a cluster is weighted,
based on its membership grade. Membership values are adjusted iteratively
until the variance of the system falls below a threshold. These calculations
require the specification of a degree of fuzziness parameter which is problem
specific [29]. As with K-Means, clusters are unstable, and considerably in-
fluenced by initial parameter values, while K, the number of clusters, must
be specified a priori. In contrast FLAME requires membership of a cluster,
7, to be determined by the weighted similarity of the gene to its K-nearest
neighbours, and their membership of cluster i. This density-based approach
further reduces noise impact, since genes with a density lower that a pre-
defined threshold are categorised as outliers, and grouped with a dedicated
‘outlier’ cluster. FLAME produces stable clusters, but the size of the neigh-
bourhood and the weighting scheme used affect K (as above) and clustering
achieved. For both FCM and FLAME, genes may have multiple and varied
degrees of membership, but interpretation differs. FCM and FLAME use av-
eraging, where each gene contributes to the calculation of a cluster centroid,
and its overall membership value set sums to 1, (i.e. gene-cluster probability).
Thus strong membership for a given gene does not indicate it to be more
typical of the cluster, but rather relative strength of its individual association,



GID Cluster 4 Cluster 21 Cluster 46
Centroid Dist. Mem. Centroid Dist. Mem. Centroid Dist. Mem.
A 10.691 | 0.002575 8.476 | 0.002002 3.864 | 0.482479
B 6.723 | 0.009766 3.855 | 0.009341 6.33 | 0.007381
C 6.719 | 0.007653 5.29 0.00515 8.024 | 0.005724
D 7.725 | 0.007609 3.869 0.01782 6.279 | 0.010249
Table 1

Membership of a gene and distance to cluster centroid, as calculated by Euclidean
distance.

31).

Table 1 illustrates for three clusters. For FCM carried out on published yeast
genomic expression data [32], results are available at http://rana.1lbl.gov/
FuzzyK/data.html. Membership values for genes B and D are very different
for cluster 21, although both are approximately equidistant from the centroid
of the cluster. Similarly genes C and D have comparable membership values
for cluster 4, but gene C is more typical (closer to the centroid) than gene D.
With similar centroid distances, membership values for gene B in cluster 21
is smaller than that of gene A in cluster 46. These anomalies arise from the
membership sum constraint, which decreases gene membership in one cluster
to increase it in another. Listing genes in a cluster based on membership val-
ues is therefore counter-intuitive and does not reflect their compatibility with
the cluster, but rather how they are shared between clusters. Similarly for
FLAME, as the memberships are weighted relative to the K-nearest neigh-
bours, so a low membership value indicates a high degree of cluster sharing
among these and not a more typical value og a given cluster. This interpre-
tative flaw was recognised by [33], who developed the possibilistic biclustering
algorithm, which removes the sum rule restriction. The authors used spectral
clustering principles [34] to create from the original GE matrix, a partition
matrix, Z, to which possibilistic clustering is applied. The resulting clusters
were evaluated using the H-Score, (Eq.1), and improved on traditional tech-
niques. The algorithm requires, inter alia, two specific parameters, namely
cutoff membership for (i) gene inclusion and a(ii) sample inclusion in a clus-
ter. In this case, these cutoffs are intuitively reasonable as membership does
indicate how typical a gene/sample is to a defined cluster, and not the degree
to which it is shared between clusters.

2.4 Neural Networks

Neural Networks (NN), loosely based on the biological parallel, can be mod-
elled as a collection of nodes with weighted interconnections. Only numerical
vectors are processed, so meta-information can not be included in the cluster-
ing procedure. Interconnection weights are adaptively learned i.e. features are
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Cluster Mem. | Input Proximity | Other

K-Means Hard Starting Proto- Pairwise Very Sensitive
types, Stopping Distance to input parameters
Threshold, K and order of input.

MGKM Hard Tolerance Thres- Pairwise Not as sensitive to
hold Distance starting prototypes.

K specified through

tolerance threshold.

IGKA Hard K, mutation prob. TWCV Time taken to
generation number, converge to global
population size influenced by parameters.

FCM Fuzzy Degree of fuzzi- Pairwise Careful Interpretation
ness, Starting Distance of membership values.
prototypes, Stop Sensitive to input para-
threshold, K metres and order of input.

FLAME Fuzzy Knn - Pairwise careful interpretation
number of Distance of membership
neighbours to Knn values. Output

neighbours determined by Knn.

Possibilistic | Fuzzy Cut-off memberships H-Score Number of biclusers
biclustering Max. residue, number of rows determined when quality
and number of columns function peaks by

re-running for different

numbers of eignevalues.

Table 2
Summary of Partitive techniques. With the exception of FLAME and Possibilistic
biclustering, all find complete global clusters.

selected by appropriate assignment of weights. In particular, Self Organising
Maps (SOMs), a type of NN, have proved popular for GE, [12, 35, 36]. A
kernel function, that defines the region of influence, (neighbourhood), for an
input gene, distinguishes SOM from K-means. Updating the kernel function
causes the output node and its neighbours, to track towards the gene vector.
The network is trained, (adjusting strengths of interconnections), from a ran-
dom sample of the dataset. Once training is complete, all genes in the dataset
are then applied to the SOM. Cluster members, represented by output node ¢
are the set of genes causing i to ‘fire’ (hard clustering).

SOMs are robust to noise and outliers, dependent on distance metric and
neighbourhood function used. As for K-means, a SOM produces a sub-optimal
solution if the initial weights for the interconnections are not chosen properly.
Convergence is controlled by problem-specific parameters such as learning rate
and neighbourhood function. A particular input pattern can fire different out-
put nodes at different iterations; )while this can be overcome by gradually
reducing the learning rate to zero during training, it can result in over-fitting,

11



which leads to poor performance for new data). In specifying K, based on the
number of output nodes, it should be noted that too few output nodes in the
SOM gives large within-cluster distance, while too many results in meaningless
diffusion.

The Self Organizing Tree Algorithm (SOTA) [37], Dynamically Growing Self
Organizing Tree (DGSOT) algorithm [38] and, more recently, Growing Hierar-
chical Tree SOM (GHTSOM) [39] were developed to combine strengths of NN
(i.e. speed, robustness to noise) and hierarchical clustering (i.e. tree structure
output, minimum a priori requirement for number of clusters specification
and training) to deal with properties of GE data. Here the SOM network is
a tree structure, trained by comparing only leaf nodes to input GE profiles
(each graph node represents a cluster). SOTA and DGSOT result in a binary
and n-tree structure respectively, while in GHTSOM, each node is a trian-
gular SOM (3 neurons, fully connected), each having 3 daughter nodes (also
triangular SOMs), Fig. 3. Tree growth strategy determines K. At each itera-
tion of SOTA the leaf node with the highest degree of heterogeneity is split
into two daughter cells. In the DGSOT case, the correct number of daughters,
(ng > 2), is determined dynamically by starting off with two and continu-
ally adding one until cluster validation criteria are satisfied. To determine ng,
a method was proposed [38], based on geometric characteristics of the data
(specifically, cluster separation in the minimum spanning tree of the cluster
centroids). For this an empirical threshold, «, value must be specified; (the
authors propose 0.8)). In SOTA and DGSOT, growth of the tree continues
until overall heterogeneity crosses a threshold, 3, or until all genes map onto
a unique leaf node. The DGSOT method uses average leaf distortion to deter-
mine (3 for growth termination. While, for SOTA this threshold is determined
by re-sampling, with system variability defined to be the maximum distance
among genes mapped to the same leaf node. By comparing distances between
randomized data and those of the real dataset, a confidence interval and dis-
tance cut-off are obtained. In GHTSOT, growth occurs if a neuron is activated
if a sufficient number of inputs map to it, (i.e. at least 3 or a user defined num-
ber, 3) which determines the resolution of the system. Growth continues as
long as there is one neuron in the system which can grow. The advantage of
these methods over most partitive techniques is that K is not pre-determined,
but depends indirectly on the threshold, 3, which is data dependant.

SOTA, DGSOT and GHTSOM differ from typical hierarchical clustering al-
gorithms in terms of adaption. This occurs once a gene is mapped to a leaf
node, but the neighbourhood of the adaptation is more restrictive than for
SOM. DGSOT also overcomes the misclustering problem of the traditional hi-
erarchical algorithm, SOTA and GHTSOM, by specification of another input
parameter, L - the immediate ancestor level in the tree of a given node which
is growing. DGSOT then distributes all mapped values among the leaves of
the subtree rooted at the L ancestor. In GHTSOM, new nodes (after growth)

12



Structure Proximity | Input Other

SOM None Distance number of Careful consideration
output neurons, of initalisation weights

Learning rate

SOTA Binary Tree Distance Threshold 3
DGSOT N-ary Tree Distance Thresholds 3, « Corrects for
and L. misclusterings
GHTSOM | Each node Distance Minimal requirement
triangular SOM, arranged - learning rate

in Tree structure

Table 3
Summary of Neural Network techniques presented.

are trained using only those inputs which caused the parent node to fire. Any
neuron, which shows low activity, is deleted, and its parent is blocked from
further growth. This has the advantage that inputs mapping to leaf neurons
at the top of the hierarchy are usually noise, and clearly distinguishable from
relevant biological patterns.

Data
(A) SOTA (B) DGSOT (C) GHTSOM

Fig. 3. Self-Organising tree structures: (A) SOTA. A binary tree structure. Neigh-
bourhood of adaption indicated for (i) node with sibling, (ii) node with no sib-
ling, (B) DGSOT. N-ary tree structure. Neighbourhood of adaption indicated when
L =2, (C) GHTSOM. Each node represented by triangular SOM. Each layer indi-
cated with line styles, (3 layers shown).

2.5 Search Based

Solutions for a criterion function are found by searching the solution space
either deterministically or stochastically [3]. The former exhaustive search is
of little use for high dimensional GE analysis and, typically, heuristics are used.
Simulated Annealing is well-known and has been applied [40] using TWCV to
minimise the fitness function, F, and, [41],by minimising H-Score (Eq. 1). At
each stage of the process, gene vectors are randomly chosen and moved to a
new random cluster. E is evaluated for each move and the new assignment
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new _ pold
is accepted if F is improved or with a probability of e~ 7" otherwise.

The “temperature”, T, controls readiness of the system to accept the poorer
situation by chance, enabling the algorithm to avoid local minima. As the
search continues, 7', is gradually reduced according to an annealing schedule,
and ultimately achieves the global minimum, where the annealing schedule
parameters dictate performance and speed of the search. Choice of initial T;
governs convergence time and size of search space, (increased/decreased in
the case of high/low T respectively). Similarly for search termination, (final
effective T). The user must specify the rate at which 7" approaches T, which
must be slow enough to guarantee a global minimum, as well as the number
of swaps of gene vectors between clusters allowed in an iteration.

To determine K, a randomisation procedure is used, [40], to determine cut-off
threshold for the distance, D, between two gene vectors in a single cluster. It
is also necessary to determine P, the probability of accepting false positives,
(e.g. P = 0.05). Simulated annealing is then applied for different numbers
of clusters, until the weighted average fraction of incorrect gene vector pairs
reaches the P-value.

The algorithm of Cheng and Church [15] (adapted from Hartigan [42]) ob-
tains H-scores, (Eq. 1, Fig. 1) [10]) of the sub-matrices of the GE matrix. This
method is initialised for the entire GE matrix and considers a sub-matrix to be
a bi-cluster if H(I,J) < ¢ for some § > 0, (user defined). Each row and column
of the original matrix is thus tested for deletion. Once a sub-matrix is deter-
mined to be a bi-cluster, its values are “masked” with random numbers in the
initial GE matrix. Masking bi-clusters prevents the algorithm from repeatedly
finding the same sub-matrices, but there is a substantial risk that this replace-
ment will interfere with the discovery of future bi-clusters, [16]. To overcome
this problem of random interference, Flexible Overlapped biClustering (FLOC)
was developed - a generalised model of Cheng and Church incorporating null
values, [16]. FLOC constrains the clusters to both a low mean residue score
and a minimum occupancy threshold of a, 0 < o < 1 (user defined). Note:
this method does not require pre-processing for imputation of missing values.
Both, these bi-clustering algorithms find coherent groups (Section 2.1) in the
data and permit overlapping.

The Plaid Model [17] (Section 2.1) assumes that bi-clusters can be generated
using a statistical model and aims to identify the parameter distribution that
best fit the available data, by minimising the error sum of squares for the
k'™ bi-cluster assuming that k& — 1 bi-clusters have already been identified.

Explicitly, it seeks to minimise for the whole matrix: @) = %ZZ(Z” —
i=1j=1
Gijkpik/ijkﬂ where Z;; is the residual after deducting k£ — 1 previous layers,

14



Proximity Deterministic/ | Clusters Other
Stochastic
SA Depends on Stochastic Depends on Specification of
application application Annealing Schedule
ccC Additive Model | Deterministic Overlapping, partial | &,
bi-clusters random interference
FLOC | Additive Model | Deterministic Overlapping, partial | « and §
bi-clusters to specify. Overcomes
random interference,
allows missing values.
Plaid Additive Model | Deterministic Overlapping, partial | Values seen as sum of
bi-clusters contributions to bi-clusters
Table 4
Summary of search based techniques presented.
K-1
(Zij = aij — Z Oiikpirtir). Parameters 6,5, pi and ki, are estimated for each
k=0

layer and for each value in the matrix, and are updated iteratively, providing
refined estimates of puy, i, and By, (Fig: 1(C)) and pi and £, to minimise

Q, [17].

The importance of a layer is defined by 67 = 37, 30, pukjrb;;y.. To evaluate
the significance of the residual matrix, Z is randomly permuted and tested
for importance. If 67 is significantly better than 62, , . k is reported as a
bi-cluster. The algorithm stops when the residual matrix Z retains only noise,
with the advantage that the user does not need to specify the number of

clusters beforehand.
2.6 Graph Theoretic Methods

Graph theoretic approaches have recently gained ground in analysing large
complex datasets. The Cluster Affinity Search Technique (CAST), [43], mod-
els data as an undirected graph, G = (V,E), where {V,E} is the set of
{vertices, edges} representing {genes, similarexpression}. The model assumes
that there is an ideal clique graph, (a disjoint union of complete sub-graphs),
H = (U, F), which represents the ideal input gene expression dataset, while
data to be clustered is a “contamination” of the ideal graph H by random
errors. In a clique graph each clique represents a cluster. For a pair of genes in
G, the model assumes that an edge/non-edge was assigned incorrectly, with
a probability of a. The true clustering of G is assumed to be that which re-
quires fewer edge changes to generate H. CAST uses an affinity (similarity)
measure, either binary or real valued, to assign a vertex to a cluster. Affin-
ity to a cluster must be above a threshold, ¢ (user defined which determines
size and number of clusters). The affinity of a vertex v to a cluster, is the
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sum of affinities over all objects currently in the cluster, so v has high affinity
with ¢ if af finity(x) > t|i|, and low affinity otherwise. The CAST algorithm
alternates between adding high affinity elements and removing low affinity
elements, finding clusters one at a time. The result is dependent on the order
of input as once initial cluster structure is obtained, a vertex v is moved to
that cluster for which it has a higher affinity value.

CLICK [44], builds on the work of [45], which uses a probabilistic model
for edge weighting. Pairwise similarity measures between genes are assumed
to be normally distributed: between ‘mates’ (N(ur,0%)), and between ‘non-
mates’ (N(up,0%)), where ur > pp. These parameters can be estimated
via Expectation Maximisation methods [46]. The weight of an edge is de-
rived from the similarity measure between the two gene vectors, and re-

flects the probability that i(€ V') and j(€ V) are mates, specifically that:

lO PmatesOF (Slj_;u'F)z _ (Slj :U'T)2
g 1 pmates)UT 20’ 20’

defined non-negative threshold are omitted from the graph. The graph is par-
titioned using a minimum weight cut algorithm [45].

Wi = . Edges with weights below a user

The Statistical Algorithmic Method for Bi-cluster Analysis (SAMBA) method
finds bi-clusters based on the coherent evolution model (Section 2.1) [18].
Firstly, the gene expression matrix is modelled as a bipartite graph, G =
(U,V, E), where U is the set of sample vertices, U NV = & and an edge
(u,v) only exists between v € V and u € U iff there is a significant change
in expression level of gene v, w.r.t. to its normal level, in sample u. Key to
SAMBA is the scoring scheme for a bi-cluster, corresponding to its statistical
significance, where a weight is assigned to a given edge, (u,v), based on the
log-likelihood of getting that weight by chance [18], (log5—— P e — > 0 for edges

and, log(l(1 Fe) ) < 0 for non-edges). The probability P, . is the fraction of

random blpartite graphs, with degree sequence identical to G, that contain
edge (u,v) (and can be estimated using Monte-Carlo methods). P, is a con-
stant probability > max v cvev Puw). Assigning these weights to the edges
and non-edges in the graph, the statistical significance of a subgraph H can
be calculated, and the K heaviest (largest weight) sub-graphs for each vertex
in G found. The authors, [18] present two ways to calculate the weight of the
resulting sub-graph. In the simpler model, bi-clusters, which reflect changes
relative to normal expression level, without considering direction of change
are sought. The second model, focuses on consistent bi-cliques, targeting those
samples which have the same or opposite effect on each of the genes.

16



Mode Proximity Search Other

CAST One Mode | Similarity Clique Parameters a and t. Finds global,

Graph complete, crisp clusters.

CLICK One Mode | Distribution | Minimum Stat. Sig. of clusters. EM to
based on weight cut | estimate parameters. Finds

distance global, partial, crisp clusters.

SAMBA | Bi-Partite | Probability Heuristic Stat. sig. of clusters. Input
search of P, difficult to define. Finds

neighbours | partial overlapping bi-clusters.

Table 5
Summary of performance criterion of Graph theoretic methods presented.

3 Discussion

Despite shortcomings, application of clustering methods to GE data has proven
to be of immense value, providing insight on cell regulation, as well as on
disease characterisation. Nevertheless, not all clustering methods are equally
valuable for high dimensional GE data. Recognition that well-known, simple
clustering techniques, such as K-Means and Hierarchical clustering, do not
capture complex local structure, has led to investigation of other options. In
particular, bi-clustering has gained considerable recent popularity. Indications
to date are that these methods provide increased sensitivity at local structure
level in discovery of meaningful biological patterns.

An inherent problem with exploratory clustering is ab initio knowledge of K,
the number of clusters. Consequently, those methods for GE analysis which do
not need K specified ab initio have an advantage. Most algorithms seek em-
pirically to determine this at run time, but derive complicated thresholds that
may not make sense in the context of gene expression data. There is a risk that
determination of these thresholds is not a one step process but requires testing
and validation of clusters produced. While space limits a comprehensive sur-
vey of robust cluster validation and evaluation methods here, their importance
is clear: (see [47] for a comprehensive review). A discipline of information-
driven clustering is emerging, which integrates cluster and meta-information,
[48, 49, 50, 51, 52]. These provide a basis for validation, independent of the
current problem and simplify interpretation of clustering results.

4 Conclusion

Cluster analysis applied to GE data aims to highlight meaningful patterns for
gene co-regulation. The evidence suggests that, while commonly applied, ag-
glomerative and partitive techniques are insufficiently powerful given the high
dimensionality and nature of the data. While further testing on non-standard
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and diverse data sets is required, comparative assessment and numerical evi-
dence, to date, supports the view that bi-clustering methods, although com-
putationally expensive, offer better interpretation in terms of data features
and local structure. While the limitations of commonly-used algorithms are
well documented in the literature, adoption by the bioinformatic community
of new (and hybrid) techniques developed specifically for GE analysis has
been slow , mainly due to the increased algorithmic complexity required. This
would be catalysed by more transparent guidelines and increased availability
in specialised software and public dataset repositories.
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