637 research outputs found

    Timed Hierarchical Object-Oriented Petri Net

    Get PDF

    Simulating Train Dispatching Logic with High-Level Petri Nets

    Get PDF
    Railway simulation is commonly used as a tool for planning and analysis of railway traffic in operational, tactical and strategical level. During the simulation, a typical problem is a deadlock, i.e. a specific composition of trains on a simulated section positioned in such a way that they are blocking each other\u27s paths. Deadlock avoidance is very important in the simulation of railways because deadlock can stop the simulation, and significantly affect the simulation results. Simulation of train movements on a single track line requires implantation of additional rules and principles of train spacing and movement as train paths are more often in conflict than on a double track line. A High-level Petri Nets simulation model that detects and manages train path conflicts on a single track railway line is presented. Module for train management is connected to other modules on a hierarchical High-level Petri net. The model was tested on a busy single track mainline between Hrpelje-Kozina and Koper in south-western Slovenia

    Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review

    Get PDF
    YesSystem safety, reliability and risk analysis are important tasks that are performed throughout the system lifecycle to ensure the dependability of safety-critical systems. Probabilistic risk assessment (PRA) approaches are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to, Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). Growing complexity of modern systems and their capability of behaving dynamically make it challenging for classical PRA techniques to analyse such systems accurately. For a comprehensive and accurate analysis of complex systems, different characteristics such as functional dependencies among components, temporal behaviour of systems, multiple failure modes/states for components/systems, and uncertainty in system behaviour and failure data are needed to be considered. Unfortunately, classical approaches are not capable of accounting for these aspects. Bayesian networks (BNs) have gained popularity in risk assessment applications due to their flexible structure and capability of incorporating most of the above mentioned aspects during analysis. Furthermore, BNs have the ability to perform diagnostic analysis. Petri Nets are another formal graphical and mathematical tool capable of modelling and analysing dynamic behaviour of systems. They are also increasingly used for system safety, reliability and risk evaluation. This paper presents a review of the applications of Bayesian networks and Petri nets in system safety, reliability and risk assessments. The review highlights the potential usefulness of the BN and PN based approaches over other classical approaches, and relative strengths and weaknesses in different practical application scenarios.This work was funded by the DEIS H2020 project (Grant Agreement 732242)

    A new paradigm for uncertain knowledge representation by Plausible Petri nets

    Get PDF
    This paper presents a new model for Petri nets (PNs) which combines PN principles with the foundations of information theory for uncertain knowledge representation. The resulting framework has been named Plausible Petri nets (PPNs). The main feature of PPNs resides in their efficiency to jointly consider the evolution of a discrete event system together with uncertain information about the system state using states of information. The paper overviews relevant concepts of information theory and uncertainty representation, and presents an algebraic method to formally consider the evolution of uncertain state variables within the PN dynamics. To illustrate some of the real-world challenges relating to uncertainty that can be handled using a PPN, an example of an expert system is provided, demonstrating how condition monitoring data and expert opinion can be modelled

    Evaluation and extracting factual software architecture of distributed system by process mining techniques

    Get PDF
    The factual software architectures that are actually implemented of distributed systems do not conform the planned software architectures (Beck 2010). It happens due to the complexity of distributed systems. This problem begets two main challenges; First, how to extract the factual software architectures with the proper techniques and second, how to compare the planned software architecture with the extracted factual architecture. This study aims to use process mining to discover factual software architecture from codes and represents software architecture model in Petri Net to evaluate model by the linear temporal logic and process mining. In this paper, the applicability of process mining techniques, implemented in the ProM6.7 framework is shown to extract and evaluate factual software architectures. Furthermore, capabilities of Hierarchical Colored Petri Net implemented in CPN4.0 are exploited to model and simulate software architectures. The proposed approach has been conducted on a case study to indicate applicability of the approach in the distributed data base system. The final result of the case study indicates process mining is able to extract factual software architectures and also to check its conformance

    Engineering framework for service-oriented automation systems

    Get PDF
    Tese de doutoramento. Engenharia Informática. Universidade do Porto. Faculdade de Engenharia. 201

    Mathematics in Software Reliability and Quality Assurance

    Get PDF
    This monograph concerns the mathematical aspects of software reliability and quality assurance and consists of 11 technical papers in this emerging area. Included are the latest research results related to formal methods and design, automatic software testing, software verification and validation, coalgebra theory, automata theory, hybrid system and software reliability modeling and assessment

    A critical review on modelling formalisms and simulation tools in computational biosystems

    Get PDF
    Integration of different kinds of biological processes is an ultimate goal for whole-cell modelling. We briefly review modelling formalisms that have been used in Systems Biology and identify the criteria that must be addressed by an integrating framework capable of modelling, analysing and simulating different biological networks. Aware that no formalism can fit all purposes we realize Petri nets as a suitable model for Metabolic Engineering and take a deeper perspective on the role of this formalism as an integrating framework for regulatory and metabolic networks.Research supported by PhD grant SFRH/BD/35215/2007 from the Fundacao para a Ciencia e a Tecnologia (FCT) and the MIT-Portugal program

    Deliberative architecture for smart sensors in the filtering operation of a water purification plant

    Get PDF
    The increase of applications for industrial smart sensors is booming, mainly due to the use of distributed automation architectures, industrial evolution and recent technological advances, which guide the industry to a greater degree of automation, integration and globalization. In this research work, an architecture for deliberative-type intelligent industrial sensors is proposed, based on the BDI (Belief Desire Intentions) model, adaptable to the measurement of different variables of the filtering process of a water purification plant. An intelligent sensor with functions of signal digitalization, self-calibration, alarm generation, communication with PLC, user interface for parameter adjustment, and analysis with data extrapolation have been arranged. For decision making, the use of fuzzy logic techniques has been considered, which allows imprecise parameters to be appropriately represented, simplifying decision problem solving in the industrial environment, generating stable and fast systems with low processing requirements. The proposed architecture has been modelled, simulated and validated using UML language in conjunction with Petri nets, which facilitate the representation of discrete system events, presenting them clearly and precisely. In the implementation and testing of the prototype, C/C ++ language has been used in an 8-bit microcontroller, experimentally corroborating the operation of the device, which allowed evaluating the behavior of a pseudo-intelligent agent based on the requirements of the water treatment plant, and also through comparisons with similar works developed by other researchers
    corecore