413 research outputs found

    Co-simulation techniques based on virtual platforms for SoC design and verification in power electronics applications

    Get PDF
    En las últimas décadas, la inversión en el ámbito energético ha aumentado considerablemente. Actualmente, existen numerosas empresas que están desarrollando equipos como convertidores de potencia o máquinas eléctricas con sistemas de control de última generación. La tendencia actual es usar System-on-chips y Field Programmable Gate Arrays para implementar todo el sistema de control. Estos dispositivos facilitan el uso de algoritmos de control más complejos y eficientes, mejorando la eficiencia de los equipos y habilitando la integración de los sistemas renovables en la red eléctrica. Sin embargo, la complejidad de los sistemas de control también ha aumentado considerablemente y con ello la dificultad de su verificación. Los sistemas Hardware-in-the-loop (HIL) se han presentado como una solución para la verificación no destructiva de los equipos energéticos, evitando accidentes y pruebas de alto coste en bancos de ensayo. Los sistemas HIL simulan en tiempo real el comportamiento de la planta de potencia y su interfaz para realizar las pruebas con la placa de control en un entorno seguro. Esta tesis se centra en mejorar el proceso de verificación de los sistemas de control en aplicaciones de electrónica potencia. La contribución general es proporcionar una alternativa a al uso de los HIL para la verificación del hardware/software de la tarjeta de control. La alternativa se basa en la técnica de Software-in-the-loop (SIL) y trata de superar o abordar las limitaciones encontradas hasta la fecha en el SIL. Para mejorar las cualidades de SIL se ha desarrollado una herramienta software denominada COSIL que permite co-simular la implementación e integración final del sistema de control, sea software (CPU), hardware (FPGA) o una mezcla de software y hardware, al mismo tiempo que su interacción con la planta de potencia. Dicha plataforma puede trabajar en múltiples niveles de abstracción e incluye soporte para realizar co-simulación mixtas en distintos lenguajes como C o VHDL. A lo largo de la tesis se hace hincapié en mejorar una de las limitaciones de SIL, su baja velocidad de simulación. Se proponen diferentes soluciones como el uso de emuladores software, distintos niveles de abstracción del software y hardware, o relojes locales en los módulos de la FPGA. En especial se aporta un mecanismo de sincronizaron externa para el emulador software QEMU habilitando su emulación multi-core. Esta aportación habilita el uso de QEMU en plataformas virtuales de co-simulacion como COSIL. Toda la plataforma COSIL, incluido el uso de QEMU, se ha analizado bajo diferentes tipos de aplicaciones y bajo un proyecto industrial real. Su uso ha sido crítico para desarrollar y verificar el software y hardware del sistema de control de un convertidor de 400 kVA

    VLSI Architectures and Rapid Prototyping Testbeds for Wireless Systems

    Get PDF
    The rapid evolution of wireless access is creating an ever changing variety of standards for indoor and outdoor environments. The real-time processing demands of wireless data rates in excess of 100 Mbps is a challenging problem for architecture design and verification. In this paper, we consider current trends in VLSI architecture and in rapid prototyping testbeds to evaluate these systems. The key phases in multi-standard system design and prototyping include: Algorithm Mapping to Parallel Architectures – based on the real-time data and sampling rate and the resulting area, time and power complexity; Configurable Mappings and Design Exploration – based on heterogeneous architectures consisting of DSP, programmable application-specific instruction (ASIP) processors, and co-processors; and Verification and Testbed Integration – based on prototype implementation on programmable devices and integration with RF units.Nokia Foundation FellowshipNokia CorporationNational InstrumentsNational Science Foundatio

    SCATTER PHY : an open source physical layer for the DARPA spectrum collaboration challenge

    Get PDF
    DARPA, the Defense Advanced Research Projects Agency from the United States, has started the Spectrum Collaboration Challenge with the aim to encourage research and development of coexistence and collaboration techniques of heterogeneous networks in the same wireless spectrum bands. Team SCATTER has been participating in the challenge since its beginning, back in 2016. SCATTER's open-source software defined physical layer (SCATTER PHY) has been developed as a standalone application, with the ability to communicate with higher layers through a set of well defined messages (created with Google's Protocol buffers) and that exchanged over a ZeroMQ bus. This approach allows upper layers to access it remotely or locally and change all parameters in real time through the control messages. SCATTER PHY runs on top of USRP based software defined radio devices (i.e., devices from Ettus or National Instruments) to send and receive wireless signals. It is a highly optimized and real-time configurable SDR based PHY layer that can be used for the research and development of novel intelligent spectrum sharing schemes and algorithms. The main objective of making SCATTER PHY available to the research and development community is to provide a solution that can be used out of the box to devise disruptive algorithms and techniques to optimize the sub-optimal use of the radio spectrum that exists today. This way, researchers and developers can mainly focus their attention on the development of smarter (i.e., intelligent algorithms and techniques) spectrum sharing approaches. Therefore, in this paper, we describe the design and main features of SCATTER PHY and showcase several experiments performed to assess the effectiveness and performance of the proposed PHY layer

    Design, Modelling and Verification of Distributed Electric Drivetrain

    Get PDF
    The electric drivetrain in a battery electric vehicle (BEVs) consists of an electric machine, an inverter, and a transmission. The drivetrain topology of available BEVs, e.g., Nissan Leaf, is centralized with a single electric drivetrain used to propel the vehicle. However, the drivetrain components can be integrated mechanically, resulting in a more compact solution. Furthermore, multiple drivetrain units can propel the vehicle resulting in a distributed drive architecture, e.g., Tesla Model S. Such drivetrains provide an additional degree of control and topology optimization leading to cheaper and more efficient solutions. To reduce the cost, the drivetrain unit in a distributed drivetrain can be standardized. However, to standardize the drivetrain, the drivetrain needs to be dimensioned such that the performance of a range of different vehicles can be satisfied. This work investigates a method for dimensioning the torque and power of an electric drivetrain that could be standardized across different passenger and light-duty vehicles. A system modeling approach is used to verify the proposed method using drive cycle simulations. The laboratory verification of such drivetrain components using a conventional dyno test bench can be expensive. Therefore, alternative methods such as power-hardware-in-the-loop (PHIL) and mechanical-hardware-in-the-loop (MHIL) are investigated. The PHIL test method for verifying inverters can be inexpensive as it eliminates the need for rotating electric machines. In this method, the inverter is tested using a machine emulator consisting of a voltage source converter and a coupling network, e.g., inductors and transformer. The emulator is controlled so that currents and voltages at the terminals resemble a machine connected to a mechanical load. In this work, a 60-kW machine emulator is designed and experimentally verified. In the MHIL method, the real-time simulation of the system is combined with a dyno test bench. One drivetrain is implemented in the dyno test bench, while the remaining are simulated using a real-time simulator to utilize this method for distributed drivetrain systems. Including the remaining drivetrains in the real-time simulation eliminates the need for a full-scale dyno test bench, providing a less expensive method for laboratory verification. An MHIL test bench for verification of distributed drivetrain control and components is also designed and experimentally verified

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Algorithm-Directed Crash Consistence in Non-Volatile Memory for HPC

    Full text link
    Fault tolerance is one of the major design goals for HPC. The emergence of non-volatile memories (NVM) provides a solution to build fault tolerant HPC. Data in NVM-based main memory are not lost when the system crashes because of the non-volatility nature of NVM. However, because of volatile caches, data must be logged and explicitly flushed from caches into NVM to ensure consistence and correctness before crashes, which can cause large runtime overhead. In this paper, we introduce an algorithm-based method to establish crash consistence in NVM for HPC applications. We slightly extend application data structures or sparsely flush cache blocks, which introduce ignorable runtime overhead. Such extension or cache flushing allows us to use algorithm knowledge to \textit{reason} data consistence or correct inconsistent data when the application crashes. We demonstrate the effectiveness of our method for three algorithms, including an iterative solver, dense matrix multiplication, and Monte-Carlo simulation. Based on comprehensive performance evaluation on a variety of test environments, we demonstrate that our approach has very small runtime overhead (at most 8.2\% and less than 3\% in most cases), much smaller than that of traditional checkpoint, while having the same or less recomputation cost.Comment: 12 page

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    The Belle II DEPFET Pixel Vertex Detector : Development of a Full-Scale Module Prototype

    Get PDF
    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector

    Design and Testing of Electronic Devices for Harsh Environments

    Get PDF
    In this thesis an overview of the research activity focused on development, design and testing of electronic devices and systems for harsh environments has been reported. The scope of the work has been the design and validation flow of Integrated Circuits operating in two harsh applications: Automotive and High Energy Physics experiments. In order to fulfill the severe operating electrical and environmental conditions of automotive applications, a systematic methodology has been followed in the design of an innovative Intelligent Power Switch: several design solutions have been developed at architectural and circuital level, integrating on-chip selfdiagnostic capabilities and full protection against high voltage and reverse polarity, effects of wiring parasitics, over-current and over-temperature phenomena. Moreover current slope and soft start integrated techniques has ensured low EMI, making the Intelligent Power Switch also configurable to drive different interchangeable loads efficiently. The innovative device proposed has been implemented in a 0.35 μm HV-CMOS technology and embedded in mechatronic 3rd generation brush-holder regulator System-on-Chip for an automotive alternator. Electrical simulations and experimental characterization and testing at componentlevel and on-board system-level has proven that the proposed design allows for a compact and smart power switch realization, facing the harshest automotive conditions. The smart driver has been able to supply up to 1.5 A to various types of loads (e.g.: incadescent lamp bulbs, LED), in operating temperatures in the wide range -40 °C to 150 °C, with robustness against high voltage up to 55 V and reverse polarity up to -15 V. The second branch of research activity has been framed within the High Energy Physics area, leading to the development of a general purpose and flexible protocol for the data acquisition and the distribution of Timing, Trigger and Control signals and its implementation in radiation tolerant interfaces in CMOS 130 nm technology. The several features integrated in the protocol has made it suitable for different High Energy Physics experiments: flexibility w.r.t. bandwidth and latency requirements, robustness of critical information against radiation-induced errors, compatibility with different data types, flexibility w.r.t the architecture of the control and readout systems, are the key features of this novel protocol. Innovative radiation hardening techniques have been studied and implemented in the test-chip to ensure the proper functioning in operating environments with a high level of radiation, such as the Large Hadron Collider at CERN in Geneva. An FPGA-based emulator has been developed and, in a first phase, employed for functional validation of the protocol. In a second step, the emulator has been modified as test-bed to assess the Transmitter and Receiver interfaces embedded on the test-chip. An extensive phase of tests has proven the functioning of the interfaces at the three speed options, 4xF, 8xF and 16xF (F = reference clock frequency) in different configurations. Finally, irradiation tests has been performed at CERN X-rays irradiation facility, bearing out the proper behaviour of the interfaces up to 40 Mrad(SiO2)
    corecore