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Abstract—The rapid evolution of wireless access is creating [10] are important to the design process. Many algorithms in
an ever changing variety of standards for indoor and outdoor signal processing systems which exhibit synchronous dataflow
environments. The real-time processing demands of wireless properties [11], [12], benefit from multi-processor implemen-

data rates in excess of 100 Mbps is a challenging problem fort fi Due to th iation i lleli that i ident i
architecture design and verification. In this paper, we consider ations. Due 1o the vanation in paralielism that IS evident in

current trends in VLSI architecture and in rapid prototyping ~ many of these embedded systems, processor configurability

testbeds to evaluate these systems. and customized field programmable co-processors are increas-
The key phases in multi-standard system design and prototyp- ing in importance [13]-[15].

ing include: Algorithm Mapping to Parallel Architectures- based General Purpose and DSP ProcessofEhe need for mul-

on the real-time data and sampling rate and the resulting area, .. | dard algorith Vi d h
time and power complexity; Configurable Mappings and Design UPIe standard algorithm analysis and heterogeneous system

Exploration — based on heterogeneous architectures consistingPartitioning is due to the fact that wireless algorithms present
of DSP, programmable application-specific instruction (ASIP) a high data rate yet unbalanced real-time workload. General

processors, and co-processors; anderification and Testbed Inte- purpose processors (GPP) do have potential for use in wireless
g;ﬂ'g:s‘aggsiﬁ?egpagé?]t(\’la/tﬂegrlfE’J'ﬁit”;e”tat'on on programmable gy stems however, their power consumption and cost are serious
' limitations. These “software radio” systems consist of mainly
Index Terms—Rapid prototyping, application-specific archi-  general-purpose processors and are therefore completely flex-
tectures, reconfigurable computing, digital baseband processing. ible and adaptable. However, the flexibility comes at the cost
of reduced data-rate, even in the prototyping design phase, and
significantly higher power consumption compared to the ASIC
) ) ~ solution. DSP chips have been successful in current second
N this paper, we focus on strategies to explore, design aggheration wireless devices, however, 3G and 4G processing
implement advanced architectures for new and multip eatly exceeds the capabilities of DSP chips [16]-[18].
stand_ards for wireless c!evices. The main focus will be_ oN Application Specific Instruction Processors (ASIR):new
the digital baseband which recovers packets of transmitcjass of expandable media processors and co-processors are
ted information from noise corrupted received radio signalgmerging that have enormous potential for wireless networks,
An approach for enabling high-performance multi-standatg; example the “Imagine” stream architecture [19] and the
wireless access [1] is to exploit fundamental commonalitiqqansport Triggered Architecture [20]. These programmable
in wireless baseband modules in various standards thro%a"d processors have a Very Long Instruction Word (VLIW)
the creation of Application Specific Instruction Processokgrycture and the associated simulation tools to support archi-
(ASIPs). tectural extensions and custom functional units to crédte-
Table | shows a representative set of standards to highlighgs application-Specific Instruction Processors (ASIBs)e
the differences in data rates and application domain. Thethe increased costs for design, test and fabrication of ASICs,
last column in Table | considers a block common to aflacent related research is focusing on design methodologies,
the standards, modulation, to show that each standard us§gzgnine description languages, and functional unit selection
different modulation technology. Though seemingly differenp the ASIP design flow [21] along with integration of ASIPs
in their details, these wireless standards have several kg¥, poth FPGA and System on a Chip [22] architectures.
similarities to enable efficient reconfiguration, (see Figure Ipower reduction and power control through functional unit
that can be exploited ip new processor architectures. Te;tbﬁgﬁng is an important factor in ASIP system [23] design. The
to explore these multiple antenna systems are emerging,gk of ASIP architectures and hardware power-reduction pro-
many universities including Rice Univ., the 4G Lab at thgjge a unigque compromise between a general programmable
Univ. of Oulu with Elektrobit [2], UCLA [3], the Univ. of processor and fixed function ASIC.

Texas at Austin [4], and at Dresden Univ. of Technology and cystom FPGA / VLSI Architecturedn order to support

I. INTRODUCTION

Signalion [3]. the high data rates in wireless systems, a number of key
) . subsystem blocks have been implemented as fixed ASICs
A. High Data Rate Embedded System Architectures [24], [25]. These ASICs offer benefits from advances in VLSI

As communications algorithms transition to wireless endensity. For example, architectural transformations, such as
bedded systems, a number of key issues and challenges ae&@l and parallel functional unit configurations, are utilized to
based on algorithm partitioning, scheduling, and hardware edapt complex decoder algorithms to various physical system
source allocation. Methodologies for embedded system desigmstraints [26]—[28].
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TABLE |
MAJOR MOBILE WIRELESS STANDARDS COMMUNICATION RANGE, PEAK DATA RATES AND BASEBAND MODULATION.

Network Range Data rates Modulation
Personal Area (IEEE 802.15 [6] 10 m 55 Mbps Frequency-hopping (FH)
Local Area (IEEE 802.11a [7]) 100 m 54+ Mbps | FH, DS-CDMA or OFDM
Wide Area (3G, CDMA2000 [8])| 2+ miles 2+ Mbps DS-CDMA
Wide Area 4G [9] up to 2 miles| 100+ Mbps MC-CDMA or OFDM
.
.
cdlua +  Wirdess
.
3G, 4G * Application
; ific Mobile Host
High | \p-----"-""" ! Specif
/I—'\ Instruction (I
| Multi-Antenna Speed . Processor GPP
apC |\ PAN s —/
) . RISC
RF interface DAC |  f--=-=----- i ASIP DSP
WLAN
.

Fig. 1. Wireless communication system testbeds can be modified to support various emerging standards through heterogeneous processing with FPGA ¢
DSP components programmed for the application specific algorithms.

A traditional approach is the creation of multiple fixedo the RF transmitter. At Rice, we have developed algorithms
ASICs to support each of the wireless standards. The fuliynd real-time ASIC architectures for these wireless system
ASIC solution leads to a complicated system with a higalgorithms [28], [32]-[36], One of our current focus areas
part count. More importantly, ASIC based systems cannot kseon design exploration for ASIP architectures for efficient
readily expanded to accommodate future wireless standandepping of these high data rate algorithms. The important
Although FPGA systems are playing a major role in systerssue for system design is that the data rate and corresponding
design and prototyping by allowing flexibility, the highercomputational workload increases as the signal approaches the
power levels are inappropriate for volume mobile battetyansmitter due to the redundant error correcting information

powered devices. added.
WLAN systems are being introduced in high data rate
I1. APPLICATION-SPECIFICVLSI| ARCHITECTURES demand “hot spots” in cellular networks, especially in schools,

. . feren nter nd airports. There is gr ner -
The focus of many research testbeds is in addressing no(\:/%lﬁ1 ere CE centers, a”dl a ponWL:Ne S great sfy ergy de
schemes for fourth generation systems that will contain ml)ll? oping e(;ween ce u;\r ?I.r;] kev bl s;liste_msl dor ne:'t\-/l
. . : . generation data networks. The ke ocks include:

tiple antennas and multi-carrier W-CDMA systems to provid y Q

bevond 100 Mbps wireless access. There are manv challen odulation before the FFT blocks surrounded by serial to
y P X y SggPalleI (S/P) and parallel to serial (P/S) converters for high

to applying 3G to 4G [9], [29}-[31] which are the topic data rate transmission, along with cyclic prefix (CP) insertion

of current research. A main goal in rapid prototyping is thgnd removal, and Viterbi decoding to correct for channel

close integration of algorithm analysis, design exploration, and _ ,...

. . . . ; conditions.
simulation and integration to produce architectures structured_l_h K hall in algorith ing f irel
for wireless applications. The methodology is threefold: a e key challenge in algorithm mapping for wireless sys-

detailedalgorithm analysiscovering area and time and powelterr.]S re'atl‘?s t_o mb(?dell(lmgi of thhe complexity of thr?_ various ¢
complexity, is followed by exploiting possibilities f@aystem major application blocks. In an heterogeneous architecture o

configurability, leading to the use of a flexibkesearch plat- DSP, ASIP, and FPGA devices, the partitioning of the system,

formto investigate and evaluate system performance tradeoﬁg.d _the assignment of blocks to hardwar.e _a_nd soﬁvyarg devices
Is critical. Because of these challenges, initial partitioning may

_ _ _ not yield system improvements. Each major algorithm block is
A. Algorithm Mapping to Parallel Architectures characterized by data rate, latency, potential parallelism, and

The physica' |ayer of a typ|ca| communication System prleWer budget In addition, algorithm refinement and fixed-
cesses streams of data during both transmission and receptRétint wordlength analysis are key for reducing implementation
For example, in voice transmission in a cellular W-CDMA syscomplexity. The data communication between each major
tem the input source is first sampled and then passed througlgek also affects system performance.
source coder. Then the signal passes through a channel encodg&y Multi-Standard Operation and Configuration Chal-
and modulator before a spreading code (composed of chip)ges: Support for multi-standard operation is both difficult
is applied. The signal is then pulse shaped before being santl challenging for power efficient wireless systems. In this
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subsection, we describe configurable VLSI ASIC architecture§ the Imagine [19] media stream processor and the Transport
for channel estimation and decoding, and mention the opefaiggered Architecture (TTA) [20], [40] concept shown in
tional variations that motivate and challenge successful ASHRgure 2 adapted for a channel equalizer application [38].
architectures. The TTA architecture is a VLIW system and a multi-cluster
Example 1: Joint Channel Estimation-Detection and FFVersion of this system would be an interesting extension. Both
- ALU Parallelism: A major area of commonality between
these wireless standards is in the complexity of the channel
estimation and detection in W-CDMA compared with channel
estimation and FFT in WLAN. Here the functionality is differ-

data_out data_in

ent, but the use and amount of parallelism is highly related. A RN

major block in the W-CDMA structure is the channel estimator A [Aw ] [aw ] [omu] ’:“T‘

block that determines the delays and attenuations introduced RFs
in the wireless channel and then feeds this information to 8x12 int
the detector. Many of the algorithms for channel estimation, regs
channel equalization, and detection can benefit from a parallel

array of multipliers and adders for high data rate applications Ix1
[37], [38]. Similarly, for WLAN, a key block in the transmitter bool reg

and receiver is the FFT/IFFT that relates the serial data stream (o] ['aw ] [aw ] ['sae] [saw ] [mud]
with the parallel multiple RF carriers used for transmission.
Several key system parameters will determine the par§ig- 2. Transport Trigger Architecture ASIP for Channel Equalization [38].
lelism potential for the system. For W-CDMA, the spreading
code which can vary from 4 to 256 chips per data bit depen@lk these architectures are based on an extensible machine
on the user's data rate and system configuration. Since tH@Scription (number of ALUs, load-store units, and register
“spreading” or processing gain allows more users in ttfées) and retargetable compiler with accurate simulators and
cellular system while effectively multiplying the data ratdoower models. The TTA tools are also capable of VHDL
processing requirements, it determines system complexity. @&neration through the MoveGEN tools for synthesis and
WLAN systems based on OFDM, the number of carriers usedgtailed modelling on FPGAs or ASIC libraries.
typically 64, determines the number of points in the FFT to Design exploration is important for efficient use of the
be performed in real-time. hardware units (adders, multipliers, register files) to tailor to a
Example 2: Reconfigurable Decoding Architectures - Scalass of applications [41] as shown in Figure 3. As an example,
ing Interconnections:The Viterbi Algorithm is computation- from algorithm analysis of the underlying signal processing
ally demanding because a relatively simple set of operatiopguations, we determined the ALU workload for multiuser
must be applied to a large number of basic nodes or stag@annel estimation, multiuser detection and Viterbi decoding
at each discrete time step. The number of states gro@gorithms for a potential W-CDMA base-station. As can be
exponentially with constraint length. With the limitations ofeen from Figure 4, a 32-user system at 128 Kbps per user
present VLS| ASIC fabrication technology there has beenvéth spreading code length of 32 and a rate 1/2 decoding
great incentive to devise algorithms to constrain interprocesgdrconstraint length 9, needs around 15 multipliers and 15
communication such that the area necessary to wire proces¥@ders at 500 MHz to be kept busy every clock cycle doing
elements does not dominate the area required by the procesyggful work. Current single-processor DSP architectures do
themselves. In fact, the Viterbi Algorithm has benefited mudkpt contain enough functional units to meet these real-time
from research in the use of processor arrays, [27], [28] afefuirements.
these parallel array techniques are now being applied to Lowin order to investigate parallel ASIP architectures, we have
Density Parity Check Codes [39]. also extended a stream processor simuletion based on the
“Imagine” media processor architecture at Stanford [19]. The
simulator for the “Imagine” architecture is freely available
and allows for architecture extension and exploration. This
With the rapid advance in computer-aided design tools, vpeocessor simulator allows us to investigate multi-cluster ar-
are able to achieve better initial estimates of area, time, aclitectures with 10-1000’s of ALUs. The base architecture is
power, for example with the Xilinx FPGA placement andhown in Figure 5. Each cluster contains multiple functional
Xpower power analysis tools. units. A large general purpose stream register file (SRF) forms
ASIP architectures are emerging as candidate programmatie heart of the system and is connected to the clusters, the
processors in wireless communication and network processaemory system and the network. The stream register file
applications. These architectures derive from the customiia-program-controlled and serves as a storage area for data
tion of ASICs with the flexibility of general purpose orused by other units. The number of memory accesses are
DSP processors. In general, ASIPs are simpler, low-powminimized by keeping frequently used data in the SRF. The
processors with limited programmability focused on specifimagine memory system allows multiple streaming accesses
tasks. Several ASIP-like architectures and tools sets have bsgnultaneously and provides enough memory bandwidth for
proposed in the literature and we will focus here on extensiooesmputational units.

B. Configurable Mappings and Design Exploration
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Fig. 3. Design Exploration Methodology for ASIP processors.
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The testbed platform currently utilizes both the National
Instruments LabVIEW and Mathworks Simulink environments
Fig. 4. Data rates and workloads for W-CDMA under various operatingyr coordination and execution scheduling. The embedded
conditions. . . .

hardware/software partitioning strategies are implemented at
the design tool and algorithm level. Wireless algorithm design
and mapping to parallel architecture prototypes on the FPGA
boards is done via the LabVIEW FPGA and Xilinx System

The Rice Wireless Research Platform is reconfigurable afrgnerator design tools. The testbed uses the Nallatech Xilinx
consists of DSP and FPGA devices along with high spe&iremeDSP FPGA System. This configuration allows for rapid
analog to digital and digital to analog converters. The testb@gptotyping with the National Instruments 2.4 GHz radio units
in the Rice CMC-Lab also allows end to end performander end-to-end laboratory experiments.
characterization via an attached 2.4 GHz radio subsystem
using either antennas for a true wireless link or a wireless
channel emulator for controlled experiments in multipath IV. SUMMARY AND CONCLUSIONS
fading. Experiments on the testbed can be performed to allow
for algorithm and partitioning verification, identification of un- In this paper, we have presented the design challenges for
foreseen bottlenecks, and over the air bit and frame error rateS| architectures for beyond 3G MIMO systems. Algorithm
(BER/FER) determination. Figure 6 show the programmabtiesign and mapping to configurable application specific pro-
transceiver hardware which is connected to a general purpasssors can allow for support of multiple standards which is
host computer for control and interfacing. The Rice Wirelesmarticularly valuable in the design prototype phase. MIMO
Research Platform is being expanded to support multigiestbeds which combine programmable hardware with RF
antenna system (MIMO) algorithm prototyping [42]-[44] andinits are an active area of research at several universities
wireless mobility studies. worldwide.

Number of W-CDMA Cellular Users

I1l. V ERIFICATION AND TESTBEDINTEGRATION
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