1,863 research outputs found

    A new bi-parametric family of temporal transformations to improve the integration algorithms in the study of the orbital motion

    Get PDF
    One of the fundamental problems in celestial mechanics is the study of the orbital motion of the bodies in the solar system. This study can be performed through analytical and numerical methods. Analytical methods are based on the well-known two-body problem; it is an integrable problem and its solution can be related to six constants called orbital elements. To obtain the solution of the perturbed problem, we can replace the constants of the two-body problem with the osculating elements given by the Lagrange planetary equations. Numerical methods are based on the direct integration of the motion equations. To test these methods we use the model of the two-body problem with high eccentricity. In this paper we define a new family of anomalies depending on two param- eters that includes the most common anomalies. This family allows to obtain more compact developments to be used in analytical series. This family can be also used to improve the efficiency of the numerical methods because defines a more suitable point distribution with the dynamics of the two-body problem.This research has been partially supported by Grant P1-1B2012-47 from Universidad Jaume I of Castell ́on and Grant AICO/2015/037 of Generalitat Valenciana

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Characterising population variability in brain structure through models of whole-brain structural connectivity

    No full text
    Models of whole-brain connectivity are valuable for understanding neurological function. This thesis seeks to develop an optimal framework for extracting models of whole-brain connectivity from clinically acquired diffusion data. We propose new approaches for studying these models. The aim is to develop techniques which can take models of brain connectivity and use them to identify biomarkers or phenotypes of disease. The models of connectivity are extracted using a standard probabilistic tractography algorithm, modified to assess the structural integrity of tracts, through estimates of white matter anisotropy. Connections are traced between 77 regions of interest, automatically extracted by label propagation from multiple brain atlases followed by classifier fusion. The estimates of tissue integrity for each tract are input as indices in 77x77 ”connectivity” matrices, extracted for large populations of clinical data. These are compared in subsequent studies. To date, most whole-brain connectivity studies have characterised population differences using graph theory techniques. However these can be limited in their ability to pinpoint the locations of differences in the underlying neural anatomy. Therefore, this thesis proposes new techniques. These include a spectral clustering approach for comparing population differences in the clustering properties of weighted brain networks. In addition, machine learning approaches are suggested for the first time. These are particularly advantageous as they allow classification of subjects and extraction of features which best represent the differences between groups. One limitation of the proposed approach is that errors propagate from segmentation and registration steps prior to tractography. This can cumulate in the assignment of false positive connections, where the contribution of these factors may vary across populations, causing the appearance of population differences where there are none. The final contribution of this thesis is therefore to develop a common co-ordinate space approach. This combines probabilistic models of voxel-wise diffusion for each subject into a single probabilistic model of diffusion for the population. This allows tractography to be performed only once, ensuring that there is one model of connectivity. Cross-subject differences can then be identified by mapping individual subjects’ anisotropy data to this model. The approach is used to compare populations separated by age and gender

    Contributions in computational intelligence with results in functional neuroimaging

    Get PDF
    This thesis applies computational intelligence methodologies to study functional brain images. It is a state-of-the-art application relative to unsupervised learning domain to functional neuroimaging. There are also contributions related to computational intelligence on topics relative to clustering validation and spatio-temporal clustering analysis. Speci_cally, there are the presentation of a new separation measure based on fuzzy sets theory to establish the validity of the fuzzy clustering outcomes and the presentation of a framework to approach the parcellation of functional neuroimages taking in account both spatial and temporal patterns. These contributions have been applied to neuroimages obtained with functional Magnetic Resonance Imaging, using both active and passive paradigm and using both in-house data and fMRI repository. The results obtained shown, globally, an improvement on the quality of the neuroimaging analysis using the methodological contributions proposed

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Modified Theories of Gravity and Cosmological Applications

    Get PDF
    This reprint focuses on recent aspects of gravitational theory and cosmology. It contains subjects of particular interest for modified gravity theories and applications to cosmology, special attention is given to Einstein–Gauss–Bonnet, f(R)-gravity, anisotropic inflation, extra dimension theories of gravity, black holes, dark energy, Palatini gravity, anisotropic spacetime, Einstein–Finsler gravity, off-diagonal cosmological solutions, Hawking-temperature and scalar-tensor-vector theories

    Statistical and Dynamical Modeling of Riemannian Trajectories with Application to Human Movement Analysis

    Get PDF
    abstract: The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical application requires inferring the underlying physical phenomenon from data, which is done using machine learning. A fundamental assumption in training models is that the data is Euclidean, i.e. the metric is the standard Euclidean distance governed by the L-2 norm. However in many cases this assumption is violated, when the data lies on non Euclidean spaces such as Riemannian manifolds. While the underlying geometry accounts for the non-linearity, accurate analysis of human activity also requires temporal information to be taken into account. Human movement has a natural interpretation as a trajectory on the underlying feature manifold, as it evolves smoothly in time. A commonly occurring theme in many emerging problems is the need to \emph{represent, compare, and manipulate} such trajectories in a manner that respects the geometric constraints. This dissertation is a comprehensive treatise on modeling Riemannian trajectories to understand and exploit their statistical and dynamical properties. Such properties allow us to formulate novel representations for Riemannian trajectories. For example, the physical constraints on human movement are rarely considered, which results in an unnecessarily large space of features, making search, classification and other applications more complicated. Exploiting statistical properties can help us understand the \emph{true} space of such trajectories. In applications such as stroke rehabilitation where there is a need to differentiate between very similar kinds of movement, dynamical properties can be much more effective. In this regard, we propose a generalization to the Lyapunov exponent to Riemannian manifolds and show its effectiveness for human activity analysis. The theory developed in this thesis naturally leads to several benefits in areas such as data mining, compression, dimensionality reduction, classification, and regression.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    The Development And Application Of A Statistical Shape Model Of The Human Craniofacial Skeleton

    Get PDF
    Biomechanical investigations involving the characterization of biomaterials or improvement of implant design often employ finite element (FE) analysis. However, the contemporary method of developing a FE mesh from computed tomography scans involves much manual intervention and can be a tedious process. Researchers will often focus their efforts on creating a single highly validated FE model at the expense of incorporating variability of anatomical geometry and material properties, thus limiting the applicability of their findings. The goal of this thesis was to address this issue through the use of a statistical shape model (SSM). A SSM is a probabilistic description of the variation in the shape of a given class of object. (Additional scalar data, such as an elastic constant, can also be incorporated into the model.) By discretizing a sample (i.e. training set) of unique objects of the same class using a set of corresponding nodes, the main modes of shape variation within that shape class are discovered via principal component analysis. By combining the principal components using different linear combinations, new shape instances are created, each with its own unique geometry while retaining the characteristics of its shape class. In this thesis, FE models of the human craniofacial skeleton (CFS) were first validated to establish their viability. A mesh morphing procedure was then developed to map one mesh onto the geometry of 22 other CFS models forming a training set for a SSM of the CFS. After verifying that FE results derived from morphed meshes were no different from those obtained using meshes created with contemporary methods, a SSM of the human CFS was created, and 1000 CFS FE meshes produced. It was found that these meshes accurately described the geometric variation in human population, and were used in a Monte Carlo analysis of facial fracture, finding past studies attempting to characterize the fracture probability of the zygomatic bone are overly conservative

    Invariant manifolds and transport in a Sun-perturbed Earth-Moon system

    Get PDF
    [eng] This dissertation is devoted to the analysis of the motion of small bodies, like asteroids, in the neighbourhood of the Earth-Moon system from a celestial mechanics approach. This is an extensive area of research where probably, the most extended simplified mathematical model is the well-known autonomous Hamiltonian system the Restricted Three-Body Problem (RTBP). Many modifications to this model have been proposed, looking for a more accurate description of the system. One of the simplest ways of introducing additional physical effects is through time-periodic perturbations, such that such that the new non-autonomous system is close to the autonomous one, and it has many periodic or quasi-periodic solutions. If these solutions are hyperbolic, they have stable/unstable invariant manifolds, such that stable manifolds approach the quasi-periodic solutions forward in time, meanwhile unstable manifolds do it backward in time, constituting the skeleton for the dynamical transport phenomena we are interested in. Notice that one dimension can be reduced by defining a suitable temporal Poincar´e map. Therefore, our aim is to compute the quasi-periodic solutions and their manifolds in this map. Most of the effort of this dissertation is addressed to the Bicircular Problem (BCP), in which the Earth and Moon are treated as the primaries in the RTBP and the gravitational field of the Sun is introduced as a time-periodic forcing of the RTBP. In particular, we have extensively analysed the horizontal family of two dimensional quasi-periodic solutions in the neighbourhood of the collinear unstable equilibrium point L3. We found that diverse trajectories connecting the Earth, the Moon and the outside Earth-Moon system are governed by L3 dynamics. Big attention is paid to the trajectories coming from the Moon towards the Earth, since they may give an insight of the travel that lunar meteorites perform before landing in our planet. These results have been translated and compared with those of a realistic model based on JPL (Jet Propulsion Laboratory) ephemeris, showing a good agreement between the results obtained. We also have proposed and carried out a strategy for capturing a Near Earth Asteroid (NEA) using the stable invariant manifolds of the horizontal family of quasi-periodic orbits around L3 in the BCP. To this aim the high order parametrization of the stable/unstable invariant manifolds is introduced, for which computation we have employed the jet transport technique. Finally, the strategy is applied to the NEA 2006 RH120. The contributions to the BCP presented in this dissertation include two other applications. The first one is devoted to the study of the unstable behaviour near the triangular points, meanwhile the second is devoted to a family of stable invariant curves around the Moon that are close to a resonance, promoting the appearance of chaotic motion. The last part of the dissertation is focused on the effective computation of the high or- der parametrization of the stable and unstable invariant manifolds associated with reducible invariant tori of any high dimension. To this aim, we resort on the reducible system, that offers a high degree of parallelization of the computations. Besides, we explain how to com- bine the presented methods with multiple shooting techniques to accurately compute highly unstable invariant objects. Finally, we apply the developed algorithms to compute the high order parametrization of the manifolds associated to L1 and L2 in an Earth-Moon system that includes five time-periodic forcings regarded to four physical features of the system, besides the solar gravitational field.[spa] Esta tesis analiza el movimiento de pequeños cuerpos, como asteroides, en el sistema Tierra­ Luna desde el marco de la mecánica celeste. El modelo que hemos empleado en mayor profundidad es el Problema Bicircular (PBC), el cual se puede entender como una perturbación periódica en el tiempo del conocido Problema Restringido de Tres Cuerpos (PRTC), dado que en el PBC se incluye el campo gravitatorio de un tercer cuerpo masivo que rota en movimiento circular alrededor de la configuración del PRTC. El cuerpo que causa la perturbación es para nosotros el Sol de tal forma que los objetos invariantes del PRTC adquieren una dimensión angular debida a la frecuencia del movimiento relativo entre el Sol y el baricentro Tierra-Luna. En el marco del PBC hemos analizado los fenómenos de transporte gobernados por la familia horizontal de soluciones cuasi-periódicas dos dimensionales (toros 2D) alrededor punto inestable colinear L3. Estas soluciones tienen asociadas variedades invariantes estables e inestables que constituyen el esqueleto de los fenómenos que queremos estudiar. Las trayectorias encontradas conectan la Tierra y la Luna y también el exterior/interior del sistema Tierra-Luna. Hemos prestado especial atención a las trayectorias que van de la Luna a la Tierra ya que podrían explicar el viaje que realizan los meteoritos lunares encontrados en nuestro planeta. Estos resultados han sido testeados en un modelo más realista basado en las efemérides del JPL (Jet Propulsion Laboratory). Otra de las aplicaciones propuestas es la de capturar un asteroide cercano a la Tierra usando la parametrización a orden alto de las variedades invariantes asociadas a los toros 2D alrededor de L3. La parte final trata del desarrollo de algoritmos para el cálculo preciso de la parametrización a orden alto de variedades invariantes estables/inestables asociadas a toros reducibles de cualquier dimensión alta. Además, se explica cómo combinar dichos algoritmos con métodos de tiro múltiple para aquellos objetos invariantes que sean muy inestables. Finalmente, aplicamos la metodología al cálculo de las variedades asociadas a L1 y L2 de un sistema Tierra-Luna que incluye cinco perturbaciones periódicas en el tiempo

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science
    corecore