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ABSTRACT

The data explosion in the past decade is in part due to the widespread use of rich sensors

that measure various physical phenomenon – gyroscopes that measure orientation in phones

and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical

application requires inferring the underlying physical phenomenon from data, which is done

using machine learning. A fundamental assumption in training models is that the data

is Euclidean, i.e. the metric is the standard Euclidean distance governed by the `2 norm.

However in many cases this assumption is violated, when the data lies on non Euclidean

spaces such as Riemannian manifolds. While the underlying geometry accounts for the

non-linearity, accurate analysis of human activity also requires temporal information to be

taken into account. Human movement has a natural interpretation as a trajectory on the

underlying feature manifold, as it evolves smoothly in time. A commonly occurring theme in

many emerging problems is the need to represent, compare, and manipulate such trajectories

in a manner that respects the geometric constraints. This dissertation is a comprehensive

treatise on modeling Riemannian trajectories to understand and exploit their statistical

and dynamical properties. Such properties allow us to formulate novel representations for

Riemannian trajectories. For example, the physical constraints on human movement are

rarely considered, which results in an unnecessarily large space of features, making search,

classification and other applications more complicated. Exploiting statistical properties

can help us understand the true space of such trajectories. In applications such as stroke

rehabilitation where there is a need to differentiate between very similar kinds of movement,

dynamical properties can be much more effective. In this regard, we propose a generalization

to the Lyapunov exponent to Riemannian manifolds and show its effectiveness for human

activity analysis. The theory developed in this thesis naturally leads to several benefits

in areas such as data mining, compression, dimensionality reduction, classification, and

regression.
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Chapter 1

INTRODUCTION

The last few years have seen a proliferation of sensors in every day life. More than ever, we

monitor our health using wearable health trackers, we rely on security cameras to keep our

homes safe, we interact with computing systems and play games using only our gestures

and movements. In all of these scenarios, a sensor is able to record rich data about its

environment which is used to make inferences using machine learning algorithms. Typically,

application specific features are extracted from the sensor data, before deploying inference

algorithms for tasks such as classification, recognition, detection etc. In many situations

the extracted features naturally lie on Riemannian manifolds, which means that traditional

inference algorithms need significant generalization by taking the geometry into account,

which is often not trivial.

For example, in image analysis features such as contours of objects [60], skeletons from

depth sensors [125], the space of d × d covariance matrices or tensors which appear both

in medical imaging [82] as well as texture analysis [120] etc. and in video analysis, video

modeling by linear dynamic systems [119], and tensor decomposition [75] etc. For human

activity and movement analysis - including recognition, search, exploration and visualization

of common everyday activities, some of the popular manifold valued features are include

shape silhouettes on the Kendall’s shape space [124], pairwise transformations of skeletal

joints on SE(3) × SE(3) · · · × SE(3) [125], linear dynamical system on the Grassmann

manifold [118], and histogram of oriented optical flow (HOOF) on a hyper-sphere [31].

In many of these cases, typically a feature is extracted per frame (‘skeleton’, ‘shapes’,

or ‘ texture covariances’) which has a natural geometric interpretation. Further, since the

real world phenomenon observed often vary smoothly, the resulting features vary smoothly

on the manifold, enabling us to interpret the collection of time varying features as a smooth
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curve or a time-series on the Riemannian space. A commonly occurring theme in many

applications is the need to represent, compare, and manipulate such curves in a manner

that respects the geometric constraints. Any computations on these trajectories can easily

become overwhelming depending on the sampling-rate (or frame-rate for videos). The task

is further complicated by the fact that for data lying on manifolds, standard notions of

distance, statistics, quantization etc. need significant modification to account for the non-

linearity of the underlying space. As a result, basic computations such as geodesic distance,

finding the sample mean etc. are highly involved in terms of computational complexity,

and often result in iterative procedures further increasing the computational load making

them impractical. Another problem that arises for computations on human movement and

activities, is the need for metrics that are invariant to speed of the movement. That is, the

distance between two similar movements or actions is expected to be small irrespective of

the speed of the subject performing the action. Operating with such complex data can easily

become overwhelming for any of the existing machine learning tools, due to the increased

computational complexity. Moreover, many of the existing tools cannot work directly with

manifold valued data without introducing unwanted artifacts.

In this dissertation, we present a framework to study such high dimensional non-linear

trajectories, in the context of human movement and activity analysis. We propose algo-

rithms and tools to efficiently represent, compare, and explore human activities represented

as Riemannian trajectories. We first describe these methods briefly, followed by a summary

of contributions.

Symbolic Approximation for Riemannian trajectories First, we propose a frame-

work that generalizes a popular indexing technique used to mine and search for vector space

time series data known as Symbolic Aggregate Approximation (SAX) [71] to Riemannian

manifolds. To the best of our knowledge, we are the first to propose such an indexing

scheme for Riemannian trajectories. The main idea is to replace Riemannian trajectories

with abstract symbols or prototypes, that can be learned offline. Symbolic approximation

2



is a combination of discretization and quantization on manifold spaces, which allows us to

approximate distance metrics between trajectories in a quick and efficient manner. Another

advantage is extremely fast searching that is possible because the search is limited to the

symbolic space. Further, to enable efficient searching techniques, we develop prototypes

or symbols which divide the space into equiprobable regions by proposing the first mani-

fold generalization of a conscience based competitive learning algorithm [36]. Using these

prototypes, we demonstrate that signals or trajectories on manifolds can be approximated

effectively such that the resulting metric remains close to the metric on the original feature

space, thereby guaranteeing accurate recognition and search. While this framework is ap-

plicable to general high-dimensional feature sequences, we demonstrate its utility on a few

common video-analysis problems such as activity analysis and dynamic texture modeling.

Functional codes for human actions Next, we employ a functional interpretation of

Riemannian trajectories to obtain metrics that are invariant to temporal re-parameterization

(or warping) which can distort distance measures significantly, especially in the context of

human actions. The most common way to solve for the mis-alignment problem is to use

dynamic time warping (DTW) which originally found its use in speech processing [19].

However, DTW behaves as a similarity measure instead of a true distance metric in that it

does not naturally allow the estimation of statistical measures such as mean and variance of

action trajectories. We seek a representation that is highly discriminative of different classes

while factoring out temporal warping to reduce the variability within classes. Learning such

a representation is complicated when the features extracted are non-Euclidean (i.e. they do

not obey conventional properties of the Euclidean space). Finally, typical representations

for action recognition tend to be extremely high dimensional in part because the features

are extracted per-frame and stacked. Any computation on such non-linear trajectories can

become very easily involved.

3



Dynamical analysis of Riemannian trajectories Finally we introduce a new algo-

rithm to extract a Lyapunov feature to understand the dynamical properties of such tra-

jectories. Such features of the dynamical systems have proven to be successful in many

applications that require distinguishing between very similar kinds of actions. For example,

in movement quality assessment, the level of chaos can be a good proxy for the quality of

movement. The proposed algorithm enables the computation of such chaotic measures for

Riemannian trajectories.

A summary of contributions

1. We first present a geometry based data-adaptive strategy for indexing Riemannian

sequences. We demonstrate the effectiveness on three manifolds namely the hyper-

sphere, the Grassmann manifold and the product space of SE(3)× · · · × SE(3).

2. We propose the first generalization of competitive learning algorithms to Riemannian

manifolds for this task, such that they are able learn prototypes which enable efficient

searching.

3. The resulting framework allows the comparison between two manifold sequences at

speeds nearly 100× faster than geodesic based comparisons in applications such as

activity recognition and discovery. The speed up can be achieved with minimal loss

of accuracy as compared to the original features.

4. By altering the competitive learning bias, a new algorithm is proposed for online

diverse sampling for video summarization that more efficient in terms of memory and

speed than exisiting methods.

5. Next, we present the extension of the TSRVF representation for human actions by

modeling trajectories on the Grassmann manifold and the product space of SE(3)×

· · · × SE(3), and the space of SPD matrices.
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6. We propose the first embedding of Riemannian trajectories to lower dimensional spaces

in a warp invariant manner which enables faster computations and lower storage.

Using multiple different embedding algorithms – PCA, KSVD, LCKSVD, we show

how high dimensional Riemannian trajectories can be cast into low dimensional vectors

without loss of recognition accuracy, and speed invariance.

7. The embedded features outperform many state-of-the-art approaches in action recog-

nition on three benchmark datasets. Their effectiveness is also demonstrated in action

clustering and diverse action sampling.

8. A detailed stability analysis, robustness to factors such as noise, sampling rate etc.

are studied for the TSRVF.

9. A new algorithm to extract the Lyapunov feature for Riemannian trajectories is pro-

posed. The computed feature is shown to be a good measure of the amount of chaos

within a Riemannian trajectory.

Organization of the dissertation Chapter 2 begins with a formal study of Riemannian

geometry, including the exponential and logarithmic maps of manifolds that are dealt with

in this dissertation - Grassmann, Hypersphere, and the product space of SE(3). Next in

chapter 3, the symbolic approximation strategy to efficiently compute distances on manifold

sequences is presented. The conscience based competitive learning algorithm for Rieman-

nian manifolds is described in section 2.2 and algorithm 1. Next, the problem of latent

variable models for human actions is introduced in chapter 5. The procedure to perform

mfPCA is described in algorithm 4, following which experiments demonstrate its effective-

ness in activity analysis. In section 6, a dictionary learning based approach to obtain a

generative model for human activities is described, which models the subspace of human

actions effectively. Chapter 8 concludes the dissertation, presents a proposal for the fur-

ther study of questions raised here. This includes presenting several future directions of

research ideas and experimental work. This dissertation combines material from several
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peer-reviewed publications and manuscripts under review (at the time of writing) by the

author, these are listed next for clarity and convenience. Chapter 3 from [9], Chapter 4

from [10], Chapter 5 from [11, 13, 14], and finally Chapter 7 from [15].
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Chapter 2

MATHEMATICAL PRELIMINARIES

A topological space is a set M, with a specified class of subsets or neighborhoods φ such

that 1) φ &M are open, 2) The intersection of any two open sets is open and 3) The union

of any number of open sets is open. A topological space is called Hausdorff if any distinct

two points of M possess non-intersecting neighborhoods. A function f : M→ S is said to

be continuous if the inverse image of every open set in S, that may or may not be the same

as M. If the function f has an inverse that is also continuous then M & S are said to be

homeomorphic.

Finally, a real manifold M of dimension N , is a topological - Hausdorff space that is

locally homeomorphic to RN and is second countable. That is, for each p ∈M, there exists

an open neighborhood U of p and a mapping φ : U → Rn such that φ(U) is open in Rn and

φ : U → φ(U) is a diffeomorphism [22]. The pair (U, φ) is called a coordinate chart for the

points that fall in U .

The Euclidean space Rd is studied as a manifold using the identity chart. The complex

coordinate space Cn becomes a real 2n-dimensional manifold via the chart Cn → R2n

replacing every complex coordinate zj by a pair of real coordinates Re zj , Im zj . The

sphere Sn = {x ∈ Rn+1 :
∑n

i=0 x
2
i = 1} is made into a smooth manifold of dimension n,

by means of the two stereographic projections onto Rn ∼= {x ∈ Rn+1 : x0 = 0}, from the

North and South poles (±1, 0, . . . , 0). The corresponding change of coordinates is given by

(x1, . . . , xn) → (x1/|x|2, . . . , xn/|x|2). In computer vision, the Grassmann and the Stiefel

manifolds are used in several applications as described earlier. The Grassman manifold is the

space of d-dimensional subspaces in Rn and the Stiefel manifold is the space of orthonormal

d-frames in Rn.
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Figure 1: Features are extracted on each image/frame of a video depicting human activity resulting
in a sequence of features evolving over time, or a manifold valued time series. The idea is shown
here using sample data from the Wiezmann Data set for human action [48]

Manifold Sequences As shown in fig 1, like in Euclidean space, a sequence of points

that evolve over time on the manifold can be studied as a time series. To analyze sequences

or curves on manifolds, one needs to take recourse to understanding tangent-space and

exponential mappings. A tangent-space at a point of a manifold M is obtained by consid-

ering the velocities of differentiable curves passing through the given point. i.e. for a point

p ∈ M, a differentiable curve passing through it is represented as β : (−δ, δ) → M such

that β(0) = p. The velocity β̇(0) refers to the velocity of the curve at p. This vector has

the same dimension as the manifold and is a tangent vector to M at p. The set of all such

tangent vectors is called the tangent space to M at p. The tangent space Tp(M) is always

a vector-space.

Riemannian Metric The distance between two points on a manifold is measured by

means of the ‘length’ of the shortest curve connecting the points. The notion of length is

formalized by defining a Riemannian metric, which is a map 〈·, ·〉 that associates to each
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point p ∈M a symmetric, bilinear, positive definite form on the tangent space Tp(M). The

Riemannian metric allows one to compute the infinitesimal length of tangent-vectors along

a curve. The length of the entire curve is then obtained by integrating the infinitesimal

lengths of tangents along the curve. i.e. given p, q ∈ M, the distance between them is the

infimum of the lengths of all smooth paths on M which start at p and end at q:

d(p, q) = inf
{β:[0,1]7→M|β(0)=p,β(1)=q}

L[β],where, (2.1)

L[β] =

∫ 1

0

√(〈
β̇(t), β̇(t)

〉)
dt (2.2)

IfM is a Riemannian manifold and p ∈M, the exponential map expp : Tp(M)→M,

is defined by expp(v) = βv(1) where βv is a specific geodesic in the direction of the tangent-

vector v. The inverse mapping exp−1
p : M → Tp called the inverse exponential map at a

‘pole’, takes a point on the manifold and returns a point on the tangent space of the pole.

Figure 2: Exponential, Inverse exponential maps and the Tangent Space.

In this section we will outline the geometric properties of the manifolds considered in

this work, namely the Grassmannian, hyper-sphere and the space of SE(3)× . . . SE(3). For
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an overview on Riemannian geometry and topology, we refer the readers to useful resources

on the topic [3, 22]. Next we describe the different features and their respective geometric

spaces.

1 Grassmann Manifold As A Shape Space

We represent a shape as a m × 2 matrix L = [(x1, y1);(x2, y2); . . . ; (xm, ym)], of the set

of m landmarks of the zero-centered shape. The affine shape space [47] is useful to remove

the effects of small variations in camera location or small changes in the pose of the subject.

Affine transforms of the base shape Lbase can be expressed as Laffine(A) = Lbase ∗ AT ,

and this multiplication by a full-rank matrix on the right preserves the column-space of

the matrix Lbase. Thus, the 2D subspace of Rm spanned by the columns of the matrix

Lbase is an affine-invariant representation of the shape. i.e. span(Lbase) is invariant to

affine transforms of the shape. Subspaces such as these can be identified as points on a

Grassmann manifold, G [119].

An equivalent definition of the Grassmann manifold is as follows: To each k-plane, ν in

Gk,m−k corresponds a unique m×m orthogonal projection matrix, P which is idempotent

and of rank k. If the columns of a tall m× k matrix Y spans ν then Y Y T = P . Then the

set of all possible projection matrices P, is diffeomorphic to G. The identity element of P is

defined as Q = diag(Ik, 0m−k,m−k), where 0a,b is an a× b matrix of zeros and Ik is the k×k

identity matrix. The Grassmann manifold G(or P) is a quotient space of the orthogonal

group, O(m). Therefore, the geodesic on this manifold can be made explicit by lifting it to

a particular geodesic in O(m) [103]. Then the tangent, X, to the lifted geodesic curve in

O(m) defines the velocity associated with the curve in P. The tangent space of O(m) at

identity is o(m), the space of m ×m skew-symmetric matrices, X. Moreover in o(m), the

Riemannian metric is just the inner product of 〈X1, X2〉 = trace(X1X
T
2 ) which is inherited

by P as well. This metric topology is induced by the Hilbert-Schmidt norm on the space of
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matrices.

d2(P1, P2) = tr(P1 − P2)T (P1 − P2) (2.3)

The distance metric defined in (2.3) is closely related to the Procrustes measure on the

Grassmann manifold which has previously been used in [26].

The geodesics in P passing through the point Q (at time t = 0) are of the type α :

(−ε, ε) 7→ P, α(t) = exp(tX)Qexp(−tX), where X is a skew-symmetric matrix belonging to

the set M where

M =




0 A

−AT 0

 : A ∈ Rk,n−k

 ⊂ o(m) (2.4)

Therefore the geodesic between Q and any point P is completely specified by an X ∈M

such that exp(X)Qexp(-X) = P . We can construct a geodesic between any two points

P1, P2 ∈ P by rotating them to Q and some P ∈ P. Readers are referred to [103] for more

details on the exponential and logarithmic maps of Gk,m−k.

The projection Π : Rm×m → Pm,d is given by:

Π(M) = UUT (2.5)

where M = USV T is the d-rank SVD of M .

Given a set of sample points on the Grassmann manifold represented uniquely by pro-

jectors {P1, P2, ...PN}, we can compute the mean [117] by first computing the mean of the

Pi’s and then projecting it to the manifold as follows :

µext = Π(Pavg),where Pavg =
1

N

N∑
i=1

Pi (2.6)

2 Histograms On The Hypersphere

As described in [31], optical flow is a natural feature for motion sequences. Directions of

optical flow vectors are computed for every frame, then binned according to their primary
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angle with the horizontal axis and weighted according to their magnitudes. Using magni-

tudes alone is susceptible to noise and can be very sensitive to scale. Thus all optical flow

vectors, v = [x, y]T with direction θ = tan−1( yx) in the range

−π
2

+ π
b− 1

B
≤ θ < −π

2
+ π

b

B
(2.7)

will contribute by
√
x2 + y2 to the sum in bin b, 1 ≤ b ≤ B, out of a total of B bins. Finally,

the histogram is normalized to sum up to 1. Each frame is represented by one histogram

and hence a sequence of histograms are used to describe an activity. The histograms ht =

[ht;1, . . . , ht;B] can be re-parameterized to the square root representation for histograms,

√
ht = [

√
ht;1, . . . ,

√
ht;B] such that

∑B
i=1(

√
ht;i)

2 = 1. The Riemannian metric between

two points R1 and R2 on the hypersphere is d(R1, R2) = cos−1(RT1 R2). This projects every

histogram onto the unit B-dimensional hypersphere or SB−1. From the differential geometry

of the sphere, the exponential map is defined as [104]

expψi(υ) = cos(||υ||ψi)ψi + sin(||υ||ψi)
υ

||υ||ψi
(2.8)

Where υ ∈ Tψi(Ψ) is a tangent vector at ψi and ||υ||ψi =
√
〈υ, υ〉ψi = (

∫ T
0 υ(s)υ(s)ds)

1
2 . In

order to ensure that the exponential map is a bijective function, we restrict ||υ||ψi ∈ [0, π].

The truncation of the domain of the the exponential map is made in accordance to the

injectivity radius, which is the largest radius for which the exp map is a diffeomorphism.

For the sphere, the injectivity radius is π. Points that lie beyond the injectivity radius have

a shorter path connecting them to ψi, which determines their geodesic distance incorrectly.

The logarithmic map from ψi to ψj is given by

−−→
ψiψj = logψi(ψj) =

u

(
∫ T

0 u(s) u(s)ds)
1
2

cos−1 〈ψi, ψj〉 , (2.9)

with u = ψi − 〈ψi, ψj〉ψj .

For action recognition, we represent a stick figure as a combination of relative trans-

formations between joints, as proposed in [125]. The resulting feature for each skeleton

is interpreted as a point on the product space of SE(3) × · · · × SE(3). The skeletal rep-

resentation explicitly models the 3D geometric relationships between various body parts
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using rotations and translations in 3D space [125]. These transformation matrices lie on

the curved space known as the Special Euclidean group SE(3). Therefore the set of all

transformations lies on the product space of SE(3)× · · · × SE(3).

The special Euclidean group, denoted by SE(3) is a Lie group [78], containing the set

of all 4× 4 matrices of the form

P (R,−→v ) =


R −→v

0 1

 , (2.10)

where R denotes the rotation matrix, which is a point on the special orthogonal group

SO(3) and −→v denotes the translation vector, which lies in R3. The 4 × 4 identity matrix

I4 is an element of SE(3) and is the identity element of the group. The tangent space of

SE(3) at I4 is called its Lie algebra – denoted here as se(3). It can be identified with 4× 4

matrices of the form 1

ξ̂ =

ω̂ −→v
0 0

 =


0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0

 , (2.11)

where ω̂ is a 3 × 3 skew-symmetric matrix and −→v ∈ R3. An equivalent representation is

ξ = [ω1, ω2, ω3, v1, v2, v3]T ∈ R6. For the exponential and inverse exponential maps, we use

the expressions provided on p. 413-414 in [78], we reproduce them for completeness here.

The exponential map is given by

exp ξ̂ =

I −→v
0 1

 ω = 0 and exp ξ̂ =

eω̂ A−→v
0 1

 ω 6= 0, (2.12)

where eω̂ is given explicitly by the Rodrigues’s formula – = I+ ω̂
‖ω‖sin‖ω‖+

ω̂2

‖ω‖2 (1−cos‖ω‖),

and A = I + ω̂
‖ω‖2 (1− cos‖ω‖) + ω̂2

‖ω‖3 (‖ω‖ − sin‖ω‖).

1We are following the notation to denote the vector space (ξ ∈ R6) and the equivalent Lie algebra

representation (ξ̂ ∈ se(3)) as described in p. 411 of [78].
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The inverse exponential map is given by

ξ̂ = log

R −→v
0 1

 =

ω̂ A−1−→v
0 0

 , (2.13)

where ω̂ = logR, and

A−1 = I − 1

2
ω̂ +

2 sin‖ω‖ − ‖ω‖(1 + cos‖ω‖)
2‖ω‖2sin‖ω‖

ω̂2 ω 6= 0,

when ω = 0, then A = I.

Parallel transport on the product space is the parallel transport of the point on com-

ponent spaces. Let TO(SO(3)) denote the tangent space at O ∈ SO(3), then the parallel

transport of a W ∈ TO(SO(3)) from O to I3×3 is given by OTW . For more details on the

properties of the special Euclidean group, we refer the interested reader to [78].

3 The Space Of Symmetric Positive Definite (SPD) Matrices

We utilize the covariance features for the problem of Visual Speech Recognition (VSR).

These features first introduced in [120] have become very popular recently due to their ability

to model unstructured data from images such as textures and scenes. A covariance matrix

of image features such as pixel locations, intensity and their first and second derivatives is

constructed to represent the image. As described in [82], for a rectangular region R, let

{zk}k=1...n be the d-dimensional feature vector of the points inside R. The sample covariance

matrix for R is given by CR = 1
n−1

∑n
k=1(zk − µ)(zk − µ)T . The Riemannian structure of

the space of covariance matrices is studied as the space of non-singular, symmetric positive

definite matrices [82]. Let P̃(d) be the space of d × d SPD matrices and P(d) = {P |P ∈

P̃(d) and det(P ) = 1}. The space P(d) is a well known symmetric Riemannian manifold, it

is the quotient of the special linear group SL(d) = {G ∈ GL(d)|det(G) = 1} by its closed

subgroup SO(d) acting on the right and with an SL(d) invariant metric [61]. Although

several metrics have been proposed for this space, few qualify as Riemannian metrics, we use

the metrics defined in [109] since the expression for parallel transport is readily available.

The Lie algebra of P(d) is TI(P(d)) = {A|AT = A and trace(A) = 0}, where I denotes
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the d× d identity matrix and the inner product on TI(P(d)) is 〈A,B〉 = trace(ABT ). The

tangent space at P ∈ P(d) is TP (P(d)) = {PA|A ∈ TI(P(d))} and 〈PA,PB〉 = trace(ABT ).

The exponential map is given as P ∈ P(d) and V ∈ TP (P(d)), expP (V ) =
√
Pe2(P−1)V P .

The inverse exponential map: For any P1, P2 ∈ P(d), expP1
(P2) = P1log

(√
P 1
−1P 2

2P 1
−1
)
.

Finally, for any P1, P2 ∈ P(d), the parallel transport of V ∈ TP (P(d)) from P1 → P2 is

P2T
T
12BT12, where B = P−1

1 V, T12 = P−1
12 P

−1
1 P2 and P12 =

√
P−1

1 P 2
2P
−1
1 .
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Chapter 3

SYMBOLIC APPROXIMATION FOR FAST SEARCH, COMPARISON, AND

COMPRESSION

In this chapter we consider the problem of fast comparison of sequences of structured

visual representations, which have non-Euclidean geometric properties. Examples of such

structured representations include shapes [63, 106], optical flow [31], covariance matrices

[120] where underlying distance metrics are highly involved and even simple statistical

operations are usually iterative. Generally speaking, the ideal symbolic representation is

expected to have two key properties: (1) be able to model the data accurately with a low

approximation error, and (2) should enable the efficient use of existing data structures and

algorithms, developed for string searching.

1 Related Work

Indexing static points on non-Euclidean spaces Not surprisingly, many standard

approaches for sequence modeling and indexing which are designed for vector-spaces need

significant generalization to enable application to non-Euclidean spaces. Indexing of static

data on manifolds has been addressed recently with hashing based approaches [30]. For

data points lying on the space of Symmetric Positive Definite (SPD) matrices, [51] present

a dimensionality reduction technique that is geometry aware. Our interest lies in indexing

sequences directly instead of individual points. Signal approximation for manifolds using

wavelets [85] is a related technique. However, it is non-adaptive to the data and requires

observing the entire signal before it can be approximated, while the proposed framework

allows for easy real time implementation once the symbols are learned. Recent work also

dealt with modeling human activity as a manifold valued random process [141] where the

proposed techniques are theoretically and computationally involved due to the requirement
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of second-order properties such as parallel transports. Another related line of work in recent

years has been advances in Riemannian metrics for sequences on manifolds [106]. These

approaches consider a sequence as an equivalent vector-field on the manifold. A distance

function is imposed on such vector-fields in a square-root elastic framework. This is applied

to the special case of curves in 2D, nD, and non-Euclidean spaces [106, 60, 110]. While

such a distance function could be utilized for the purposes of indexing and approximation of

sequences, it is offset by the computational load required in computing the distance function

for long sequences.

Computationally efficient representations of images and video In the past decade,

there has been significant progress in efficient retrieval and indexing techniques [33] for very

large image datasets. There have also been extensions to video retrieval [86] from very

large databases. These techniques have made it possible to search accurately through large

image and video data bases, but most methods are for high dimensional Euclidean points

or time-series, and their generalization for manifold valued data is unclear.

Euclidean time-series indexing A successful approach to tackle the problem of fast

indexing of scalar sequences has been to discretize and quantize the sequence in a way

such that the obtained symbolic form contains most of the information of the original

sequence, yet enabling much faster computations. This class of approaches are broadly

termed as Symbolic Aggregate Approximation (SAX) [71]. Several problems of indexing

and motif discovery from time series have been addressed using this framework [71, 77],

however the extension from 1D to multidimensional and non Euclidean spaces is not trivial.

Multidimensional extensions to SAX have also been proposed such as [121], but these are

trivial extensions which perform SAX on every dimension individually without considering

the geometry of the ambient space.

Further, for manifolds such as the Grassmannian or the function-space of closed curves,

there is no natural embedding into a vector space, thus motivating the need for a geometry-
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based intrinsic approach [102, 106]. We show that this class of approaches can be generalized

to take into account the geometry of the feature space resulting in several appealing char-

acteristics, as they enable us to replace highly non-linear distance function computations

with much faster and simpler symbolic distance computations.

Efficient string searching The biggest advantage of using the proposed indexing method

is the the representation of complex feature types using abstract symbols, that are learned

offline. This enables the use of string searching algorithms, allowing one to search through

very high dimensional, non-linear spaces with a O(m + n) complexity or better, where

m and n are the length of a query, and the size of a activity database respectively. A

known result in data mining is that the computational complexity can be further reduced

to O(m+n(log|Σ|m)/m), for an alphabet of size Σ, when the symbols are independent and

equiprobable [7]. Other lower bounds have been proposed when symbols are equiprobable

[139], and it is known the height of suffix trees is optimized with equiprobable symbols

[38]. The vector space SAX [71] proposed to generate symbols by partitioning the Gaussian

distribution into bins of equal probability. However, it is not trivial to partition the data

space into equiprobable regions on manifolds hence we use a conscience based competitive

learning algorithm to learn the codebook.

2 Symbolic Approach For Manifold Sequences

In this section, we describe the proposed representation for manifold sequences which

allows efficient algorithms to be deployed for a variety of tasks such as motif discovery,

low-complexity activity recognition. We focus on the piece-wise aggregate and Symbolic

approximation (PAA, SAX) [27, 71] formulation, and present an intrinsic method to extend

it to non Euclidean spaces like manifolds. Briefly, the PAA and SAX formulation consist

of the following principal ideas - A given 1D scalar time-series is first divided into windows

and the sequence in each window is represented by its mean value. This process is referred

to as piece-wise aggregation. Then, a set of ‘break-points’ is chosen which correspond to

18



dividing the range of the time-series into equi-probable bins. These break-points comprise

the symbols using which we translate the time series into its symbolic form. For each

window, the mean value is assigned to the closest symbol, this step is referred to as symbolic

approximation. This representation has been shown to enable efficient solutions to scalar

time-series indexing, retrieval, and analysis problems [71].

For manifolds, to enable us to exploit the advantages offered by the symbolic repre-

sentation of sequences, we need solutions to the following main problems - a) piece-wise

aggregation: which can be achieved by appropriate definitions of the mean of a windowed

sequence on a manifold, and b) symbolic approximation: which requires choosing a set of

points that are able to represent the data well. Here, we discuss how to generalize these

concepts to manifolds.

2.1 Piece-wise Aggregation

Denote the manifold of interest by M, given a sequence γ(t) ∈ M, we define its piece-

wise approximation in terms of local-averages in small time-windows. To do this, we first

need a notion of a mean of points on a manifold. Given a set of points on a manifold,

a commonly used definition of their mean is the Riemanian center of mass or the Fréchet

mean [49], which is defined as the point µ that minimizes the sum of squared-distance to

all other points:

µ = arg min
x∈M

N∑
i=1

dM(x, xi)
2, (3.1)

where dM is the geodesic distance on the manifold.

Computing the mean is not usually possible in a closed form, and is unique only for

points that are close together [49]. An iterative procedure is popularly used in estimation

of means of points on manifolds [81]. Since in local time windows, points are not very far

away from each other, the algorithm always converges. Thus, given a manifold-valued time

series γ(t), and a window of length W , we compute the mean of the points in the window

and this gives rise to the piece-wise aggregate approximation for manifold sequences. When

we consider vectors in Rn, this reduces to finding the standard mean of W n-dimensional
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vectors.

2.2 Symbolic Approximation

As discussed above, one of the key-steps in performing symbolic approximation for

manifold-valued time-series is to obtain a set of discrete symbols. An established theoretical

result within the data mining literature is that the efficiency of string searching is optimized

when the elements of the codebook are equiprobable [7, 38]. The authors of SAX [71]

emphasize on using equi-probable symbols because they achieve optimal results for fast

searching and retrieval using suffix trees, hashing, and Markov models. However, standard

clustering approaches do not necessarily result in equiprobable distributions of their centers

[143, 65, 87]. It is also known that when symbols are not equiprobable, there is a possibility

of inducing a probabilistic bias in the process [72]. We outline the methods to obtain

symbols next.

Geometry Aware K-means For Learning Symbols

As a baseline, we chose K-means because it is the most widely used clustering approach

and its extension to non Euclidean spaces is well understood. For a set of points D =

(U1, U2, . . . , Un) we seek to estimate clusters (C) = (C1, C2, . . . , CK) with centers (µ1, µ2, . . . , µK)

such that the sum of geodesic-distance squares, ΣK
i=1ΣUj∈Cid

2(Uj , µi) is minimized. Here

d2(Uj , µi) = |exp−1
µi (Uj)|2, where exp−1 is the inverse exponential map as described in sec-

tion 2. We later show that one does not obtain equiprobable symbols using K-means.

Conscience Based Competitive Learning On Manifolds

To generate symbols or prototypes that divide the feature manifold into equiprobable re-

gions, we extend ideas from Desieno’s competitive learning mechanism [36] to make it

adaptive to the geometry of the space and generate equiprobable symbols. It has been

observed that a ‘conscience’ based competitive learning approach does result in symbols

that are much more equiprobable than those obtained from clustering approaches. How-
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ever, the algorithm described in [36] is devised only for vector-spaces. Here, we present a

generalization of this approach to account for non-Euclidean geometries.

The conscience mechanism starts with a set of initial symbols/prototypes. When an

input data-point is presented, a competition is held to determine the symbol closest in

distance to the input point. Here, we use the geodesic distance on the manifold for this

task. Let us denote the current set of K symbols as {S1, S2, . . . , SK}, where each Si ∈ M.

Let the input data point be denoted as X ∈ M. The output yi associated with the ith

symbol is described as

yi = 1, if d2(Si, X) ≤ d2(Sj , X),∀j 6= i (3.2)

yi = 0, otherwise

where, d() is the geodesic distance on the manifold. Since this version of competition

does not keep track of the fraction of times each symbols wins, it is modified by means of

a bias term to promote more equitable wins among the symbols. A bias bi is introduced

for each symbol based on the number of times it has won in the past. Let pi denote the

fraction of times symbol i wins the competition. This is updated after each competition as

pnewi = poldi +B(yi − poldi ) (3.3)

where 0 < B << 1. The bias bi for each symbol is computed as bi = C( 1
K − pi),

where C is a scaling factor chosen to make the bias update significant enough to change the

competition (see below). The modified competition is given by

zi = 1, if d2(Si, X)− bi ≤ d2(Sj , X)− bj ,∀j 6= i (3.4)

zi = 0, otherwise.

Finally, the winning symbol is adjusted by moving it partially towards the input data

point. The key extension of this algorithm from vector space to non Euclidean spaces lies
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in this step. In the vector-space version this step is achieved by Snewi = Soldi + α((X) −

Soldi )zi.The partial movement of a symbol towards a data-point can be achieved by means

of the exponential and inverse-exponential map as

Snewi = expSoldi
[α exp−1

Soldi
(X)zi]. (3.5)

The proposed algorithm for conscience based equi-probable symbol learning is summarized

in algorithm 1.

Algorithm 1 Equiprobable Symbol Generation on Manifolds.

Input: Dataset {X1, . . . , Xn} ∈ M. Initial set of symbols {S1, . . . , Sk}.
Parameters: Biases bi = 0, learning rate α, win update factor B, conscience factor C.
while iter ≤ maxiter do

for j = 1→ n do
ĩ← mini d

2(Xj , Si)− bi
zĩ = 1, zi = 0, i 6= ĩ

Si ← expSi [α exp−1
Si

(Xj)zi]

pi ← pi +B(zi − pi)
bi ← C(1/k − pi)

end for
end while

Algorithm 2 Symbolic Approximation for Feature Sequences in Euclidean & Non Eu-
clidean Spaces.

Input: Feature sequence {β1, . . . , βN} ∈ M, Learned dictionary {D1, . . . , DK}, Metric
dM defined on M
Parameters: Size of aggregating window W (<< N),
Output: Symbolic approximation, S.
M ← dNW e.
n = 1
for m = 1→M do

Am ← intrinsic mean{βn, βn+1 . . . βn+W−1}
S(m)← argmin

1≤j≤K
dM(Am, Dj).

n = n+m×W
end for

Next, we illustrate the strength of this approach in obtaining equiprobable symbols on

manifolds. For this experiment we chose the UMD human activity dataset [123] and pre-

processed it such that we obtain the outer contour of the human. A detailed discussion of
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Figure 1: Probability density functions of the labels generated using (a) K-Means clustering,
(b) Affinity Propagation and (c) Equi-Probable Clustering are shown, the feature space in
this case was the Grassmann manifold as described in the text. As seen above, equiprobable
clustering assigns all clusters with almost equal probability.

the dataset, processing, choice of shape metrics etc. appears in the experiments section.

Here, we performed clustering of 2000 shapes from the dataset into 10 clusters. We show the

histograms of the symbols in fig 1. As seen, both K-means and affinity propagation result in

symbols that are far from equiprobable. The proposed approach results in symbols which
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are much closer to a uniform distribution. The entropy defined as −
∑N

i=1 pilog2(pi), is

shown for three different datasets in fig 2. It is seen that the algorithm converges quickly in

all cases. Once the symbols are obtained, transforming the feature sequence to its symbolic

form is performed using algorithm 2.
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Figure 2: Convergence for the algorithm 1 on different feature manifolds to obtain 10 sym-
bols - Grassmannian (UMD), Hypersphere (Weizmann) and SE(3)× ..×SE(3)(UTKinect).
Entropy is plotted as a measure of equiprobability, higher the better.

In practice, while K-means minimizes approximation error it does not have the favorable

property of equiprobability, and competitive learning gives us symbols which are equally

likely, while compromising on approximation error. In order to find a trade-off between the

two, we use a hybrid approach that first uses K-means and then competitive learning from

which equiprobable symbols can be obtained in a two stage process. In the first stage we

cluster the data using K-means into a small number of clusters, this ensures most data points

are adequately represented. Each of these clusters is further split into smaller, equiprobable

sub-clusters in the second stage using conscience learning. The number of clusters in the

first stage is an empirical choice, we used values in the range of 5 to 10 for each data set.

The number of sub-clusters in the second stage varies according to the probability of their

parent cluster. For example, if ps was the probability of the smallest cluster and we decide

to split it into r smaller sub-clusters, then the ith cluster with probability pi would be split
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into d pips×re clusters. The parameter r indirectly controls the size of the final set of symbols,

we used values of r in the range of 1 to 5. We chose these values to obtain a codebook of

size(∼ 40 − 50). The training phase is expected to be computationally intensive, however

this needs to be done only once and can be performed offline and does not affect the speed

of comparisons during testing.

2.3 Limitations And Special Cases

Here, we discuss the limitations and some special cases of the proposed formulation.

The overall approach assumes that a training set can be easily obtained from which we can

extract the symbols for sequence approximation. In the 1D scalar case, this is not an issue,

and one assumes that data distribution is a Gaussian, thus the choice of symbols can be

obtained in closed-form without any training. If data is not Gaussian, a simple transforma-

tion/normalization of the data can be easily performed. In the manifold case, there is no

simple generalization of this idea, and we are left with the option of finding symbols that are

adapted for the given dataset. For the special case ofM = Rn, the approach boils down to

familiar notions of piece-wise aggregation and symbolic approximation with the additional

advantage of obtaining data-adaptive symbols, this ensures that the proposed approach is

applicable even to the vast class of traditional features used in video analysis. For the case

of manifolds implicitly specified using samples, we suggest the following approach. One can

obtain an embedding of the data into a Euclidean space and apply the special case of the

algorithm for M = Rn. The requirement for the embedding here is to preserve geodesic

distances between local pairs of points, since we are only interested in ensuring that data in

small windows of time are mapped to points that are close together. Any standard dimen-

sionality reduction approach [115, 91] can be used for this task. However, recent advances

have resulted in algorithms for estimating exponential and inverse exponential maps nu-

merically from sampled data points [73]. This would make the proposed approach directly

applicable for such cases, without significant modifications. Thus the proposed formalism

is applicable to manifolds with known geometries as well as to those whose geometry needs

25



to be estimated.

3 Speed Up In Sequence To Sequence Matching Using Symbols
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Figure 3: The trade-off between piece-wise aggregation and symbolic approximation is
depicted here comparing the error in approximating the distance between two sequences
from the Weizmann dataset. A symbol dictionary size of at least 40 and a approximation
window size of up to 3 has negligible approximation error.

The applications considered in this dissertation are recognition and discovery of hu-

man activities. For recognition, a very commonly used approach involves storing labeled

sequences for each activity, and performing recognition using a distance-based classifier,

a nearest-neighbor classifier being the simplest one. When activity sequences involve

manifold-valued time-series, distance computations are quite intensive depending on the

choice of metrics. We explore here the utility of the symbolic approximation as an alter-

native way for approximate yet fast recognition of activities that can replace the expensive

geodesic distance computations during testing. As we will show in the experiments, this

is especially applicable in real-time deployments and in cases where recognition occurs re-

motely and there is a need to reduce the communication requirements between the sensor

and the analysis engine. Before getting into the details of our experiments and distance

metrics used, we define some of the terms used here:
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1. Activity - We will consider an activity to be a high dimensional time series consisting

of N data points such that each data point is a feature extracted per frame of the

original video. The features can be either Euclidean or belong to abstract spaces such

as Riemanian manifolds. We consider cases where all activities may not be of equal

lengths by using DTW as a distance metric.

2. Subsequence - A subsequence is defined as a contiguous subset of the larger time

series, i.e. for a time series T = (t1, t2, . . . , tn) a subsequence of length n is Ti,n =

(ti, ti+1, . . . , ti+n−1).

3. Motif Discovery - a pattern that repeats often within a larger time series is known

as a motif. We say two patterns within the time series are similar if they are at a

distance smaller than some threshold.

4. Trivial Match - Within a time series T , we say two subsequences P at position p and

Q at position q are a trivial match if, p ∈ (q−m+ 1, . . . , q, . . . , q+m− 1) i.e p and q

are different and within the neighborhood (as specified by m) of each other.

For an Activity of length N , we extract a symbolic representation in windows of size W

(where typically W << N). To replace geodesic distance computations for recognition,

we will consider subsequences in their symbolic representations to calculate the distance

between activities. Let psub (eg: ‘bccdea’) and qsub (eg: ‘afffec’) be two such subsequences

of length l, then the distance metric dsymbol, defined on symbols, is:

dsymbol(psub, qsub) =
l∑

i=1

dM

(
D
(
psub(i)

)
, D
(
qsub(i)

))
(3.6)

where dM is the metric defined on the manifold, D is the set of symbols or dictionary that

is previously learned and D(a) is the point on the manifold corresponding to the symbol a.

Here we assume that the two sequences are of the same length, in other cases we use DTW

as a metric or learn a dynamical model for each sequence and use the distance between

them as a metric. Since the symbols are known apriori, the distance between them can
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be computed offline as part of training and stored as a look-up table of pairwise distances

between symbols. This allows us to compute distances between sequences in near constant

time, which is much faster than computing distances each time using DTW on actual

features.

Before considering applications for the simplified distance measure, one must consider

the trade-off between piecewise aggregation, number of symbols versus the error of approx-

imation, this is shown in figure 3.

For activity discovery, we consider the problem as one of mining for motifs in time-series.

In finding motifs, it is important to consider only non-trivial matches, for every such match

we store its location and find the top k motifs. For each of the k motifs, we define a center

for the motif as the sequence which is at minimum distance to all the sequences similar to

it. These centers are the k most recurring patterns in the multidimensional time series. We

use the brute-force algorithm given in [80] to extract our motifs.

4 Experimental Evaluation

In this section, we demonstrate the utility of the proposed algorithms for symbolic

approximation and its application to activity recognition and discovery. We also study the

complexity advantage in using these symbols as compared to original feature sequences. We

first describe the datasets and choice of features.

UTKinect dataset [136] contains 10 activities by 10 subjects, where each activity is

repeated twice. There are a total of 199 action sequences. Here we use the feature proposed

recently in [125], which models each skeleton as a point on the cross product space of

SE(3)× · · · × SE(3).

The UMD database consists of 10 different activities like bend, jog, push, squat

etc.[124], each activity was repeated 10 times, so there were a total of 100 sequences in the

dataset. The background within the UMD Dataset is relatively static which allows us to

perform background subtraction. From the extracted foreground, we perform morphological

operations and extract the outer contour of the human. We sampled a fixed number of points
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Figure 4: Sample images from the various data sets used for validation. The UTKinect
[136], UMD [124], the Wiezmann [48], and the UCSD traffic [29] data sets are shown here
from top to bottom in that order.

on the outer contour of the silhouette to yield landmarks, which are represented as points

on the Grassmann manifold.

The Weizmann Dataset consists of 93 videos of 10 different actions each performed

by 9 different persons [48]. The classes of actions include running, jumping, walking, side

walking etc. Here, the HOOF features [31] are represented as points on a hyper-spherical

manifold.

The UCSD traffic database consists of 254 video sequences of daytime highway

traffic in Seattle in three patterns i.e. heavy, medium and light traffic [29]. It was collected

from a single stationary traffic camera over two days.

4.1 Speed Up And Compression Achieved Using Symbols

A theoretical complexity analysis of the algorithm is shown in table 1. We also con-

sider three metrics to study the time-complexity of the proposed framework. Namely 1)
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Step Complexity

Exponential map for M (manifold specific) O(ν)

Inverse exponential map forM (manifold spe-
cific)

O(χ)

Intrinsic K-means clustering O((NK + K2)χ+Kν) Γ)

Equi-probable clustering O((NKχ+Nν)Γ)

Approximation of N-length activity to M sym-
bols

O(M(wχ+ν)Γ+MKχ)

Symbolic DTW O(M2δ), δ is the look up time

Geodesic distance DTW O(M2χ), χ >>> δ

Table 1: Theoretical complexity analysis for the proposed algorithms. Notations used: N -
number of data points, K - number of symbols, with O(δ) the time required to read from
memory, Γ maximum number of iterations, M and w are as defined in algorithm 2 and are
usually much lesser than N. It can be seen that a huge complexity gain is achieved in using
symbols over original features.

Time complexity of matching using symbols vs original feature sequences, 2) Time required

to transform a given activity into a symbolic form, and 3) Number of bits required to

store/transmit symbols as compared to feature sequences. Ideally, we require that the

matching time be several orders of magnitude faster than using the original sequences, the

transformation time to be small enough to enable real-time approximation, and very small

bit-rate/storage requirement compared to original feature sequences. We show in the fol-

lowing that the proposed framework successfully satisfies all these criteria. We performed

the experiments using MATLAB, on a PC with an i7 processor operating at 3.40Ghz with

16GB memory on Windows 7.

KNN Search And Sequence Matching Time Analysis

In this experiment we show the gain in speed and compression achieved using symbols

compared to using the original high-dimensional features with accompanying metrics. For

the gain in speed, we measured the run-time of matching sequences using DTW on symbols

vs geodesic DTW. As shown in fig 5a, the time taken to match two activity sequences

using symbols is just 3.1ms which is two orders of magnitude faster than 100ms that it
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Skeleton feature 4,617 Kb 111.67 Kb 97.58%
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Figure 5: Comparison of histograms for matching times when using symbolic v/s original

feature sequences are shown in fig 5a for the UCSD traffic dataset. The times are shown

in milliseconds on a log scale. As it can be seen, using symbols speeds up the process

by nearly two orders of magnitude. Fig 5b shows a histogram of times taken to translate

entire activities of 50 frames into symbols from the UCSD dataset. Table 5c shows the

improvements in performing a k-NN search on different feature manifolds. Finally table 5d

shows the reduced storage requirements for different features.
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takes using the actual features. Next, we compare the times taken to perform a k-nearest

neighbor (kNN) search on different manifolds in table 5c. Similar to the sequence matching

speed, the search speed is improved by nearly two orders of magnitude.

Analysis Of Approximation Time

Fig 5b shows the distribution of times taken over various activities to transform them into

their respective symbolic forms. The average conversion time for an entire activity video

is about 107ms. In other words, we can process the video at a speed of 445 frames per

second (fps) which allows for easy real time implementation since most videos are recorded

at 10-30fps.

Bit-rate Analysis

Next, to demonstrate the gain in compression we compared our representation to a baseline

using the original feature sequence. Assuming each dimension of the feature is coded as

a 32-bit float number, we calculated the bits it would take to represent each feature and

its symbolic representation. As shown in table 5d, on nearly all the feature types, the

compression ratios are 97% or higher. For a dictionary of size K, the number of bits

required to represent each symbol is Log2(K). This provides enough flexibility for the user

to choose the size of the codebook and pick features of their choice without significantly

affecting the bit-rate.

4.2 Activity Discovery Experiment

Having learned the symbols, we test their effectiveness in activity discovery. For this

experiment, we randomly concatenated 10 repetitions of 5 different activities of the UMD

dataset to create a sequence that was 50 activities long. Each activity consists of 80 frames

which were sampled by a sliding window of size 20 frames with step size of 10 frames. After

symbolic approximation, this resulted in 6 symbols per activity, chosen from an alphabet

of 25 symbols. The motifs or repeating patterns, in five activities - Jogging, Squatting,
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Bending Knees, Waving and Throwing were discovered automatically using the proposed

method. Each of the discovered motifs was validated manually to obtain a confusion matrix

shown in table 2. As can be seen, it shows a strong diagonal structure, which indicates that

the algorithm works fairly well. Even though all executions of the same activity are not

found, we do not find any false matches either.

Activity Type 1 2 3 4 5

1 7 0 0 0 0

2 0 7 0 0 0

3 0 0 8 0 0

4 0 0 0 9 0

5 0 0 0 0 8

Table 2: Confusion matrix for the discovered motifs on the UMD database using the man-
ifold SAX representation of the shape feature. Due to the symbolic representation, search
can be performed very quickly. Actions discovered are - jogging, squatting, bending, waving
and throwing respectively.

4.3 Activity Recognition Using Symbols

Symbolic approximation plays a significant role in reducing computational complexity

since it allows us to work with symbols instead of working with high dimensional feature sets.

In this experiment, we test the utility of the proposed symbolic approximation method for

fast and approximate recognition of activities over three datasets. For each data set picking

the number of symbols, K is an empirical choice, typically we picked K = Kmin where,

for all K > Kmin the recognition performance shows no improvement. We also picked

a window size of W = 1 in our recognition experiments to achieve best performance. A

detailed comparison between the window size, number of symbols and performance is seen

in figure 3, which shows the the error in the geodesic distance vs symbolic distance. To

effectively demonstrate the quality of the approximation, we use the classifiers that were

reported in the papers that proposed the features. For example, for the shape and the

HOOF features, we use the nearest neighbor classifiers, and for the LARP features, we use

the SVM. As a baseline, we compare the recognition accuracy of principal geodesic analysis
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(PGA) [44], for diffenrent manifolds.

Activity Accuracy (%) Relative bit budget

Shape + manifold SAX 98 1

Shape + PGA [44] 90 6.012

Shape [124] 100 1202.6

Table 3: Recognition experiment for the UMD database with a shape silhouette feature.
Here we see the performance achieved with symbolic approximation compared to an oracle
geodesic distance based nearest neighbor classifier.

For the UMD dataset, we learned a dictionary of 60 symbols using algorithm 1. Then,

we performed a recognition experiment using a leave one-execution-out test in which we

trained on 9 executions and tested on the remaining execution, the results are shown in

Table 3. It can be seen that the recognition performance using symbols is very close to

that obtained by using an oracle geodesic distance DTW based algorithm. We achieve this

performance with matching times that are significantly faster, as will be described in section

4.1.

For the UTKinect dataset, we learn a codebook of size 20 symbols for all the relative

joints from actions corresponding to the training subjects. The approximated LARP fea-

tures are then mapped to their corresponding Lie algebra and classified using a one-vs-all

SVM classifier following the protocol of [125]. Here, our results are reported without any

post-processing using Fourier Temporal Pyramids (FTP) as done in [125], which improves

performance further by providing robustness to noise. Results show that even with a small

codebook, the approximated features perform extremely well in action recognition, while

drastically reducing the search speed 5c by a factor of nearly 50. Even though we approx-

imate the actions, we obtain a better recognition performance than the original features

which is explained by the fact that the Lie algebra, se(3) ∈ R6, which is much lower than

the other features considered here and therefore can be appropximated much better with

fewer symbols. The approximated LARP features also provide robustness to noise, which

is common in features extracted using Kinect.

For the Weizmann dataset, we demonstrate the flexibility of the approximation strategy
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Feature Accuracy(%) Relative bit budget

LARP+ manifold SAX 94.77 1

LARP+PGA [44] 92.46 20.428

LARP [125] 92.97 40.856

HOJ3D [136] 90.92 NA

Table 4: Results on the UTKinect Dataset.

by learning linear dynamical models over the approximated sequences, which also serves as

a fair comparison to the state of the art techniques. We performed the recognition exper-

iment on all the 9 subjects performing 10 activities each with a total of 90 activities. The

dictionary learned had 55 symbols which were used to map the activities to the approxi-

mated sequences. Next, we fit a linear dynamical model to the approximately reconstructed

actions and perform recognition with a nearest neighbor classifier using the Martin metric

on LDS parameters [101]. The results for the leave-one-execution-out recognition test are

shown in Table 5 and it can be seen there is almost no loss in performance in comparison

to state of the art techniques. Better results have been reported on this dataset by Gorelick

et al. [48] etc., but there are no common grounds between their technique or feature and

ours for it to be a fair comparison.

Feature Accuracy(%) Relative bit budget

LDS+ manifold SAX 92.22 1

HOOF+DTW+manifold SAX 88.87 1

HOOF+DTW+PGA [44] 74.44 10.67

HOOF+DTW [31] 90.00 160

χ2-Kernel [31] 95.66 160

Chaotic measures [6] 92.60 NA

Table 5: Recognition Performance for the Weizmann Dataset.

Finally we show that the proposed framework can be used easily with Euclidean features

on the Traffic Database. We stack every other pixel in the rows and columns of each frame

to form our feature vector. We learned 45 symbols from the training set using these features.
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Manifold SAX (%) CS LDS(%) Oracle LDS(%)

Expt 1 84.13 85.71 77.77

Expt 2 82.81 73.43 82.81

Expt 3 79.69 78.10 91.18

Expt 4 79.37 76.10 80.95

Average 81.50 78.33 83.25

Table 6: Recognition performance for UCSD traffic data set. The results for Oracle LDS
and CS LDS are from [93].

We performed the recognition experiment on 4 different test sets which contained 25% of

the total videos. We used a 1-NN classifier with a DTW metric on the symbols. The results

are shown in Table 6. We compare our results to [93], which also performed recognition

using lower dimensional feature representation using compressive sensing. As it can be

seen, recognition performance is clearly better when the feature is in its symbolic form as

compared to when it was compressively sensed, given that both are significantly reduced

versions of the original feature. We also perform nearly as well as the performance achieved

using the original feature itself.

5 Discussion And Future Work

In this chapter we presented a formalization of high dimensional time-series approx-

imation for efficient and low-complexity activity discovery and activity recognition. We

presented geometry and data adaptive strategies for symbolic approximation, which en-

ables these techniques for new classes of non-Euclidean visual representations, for instance

in activity analysis. The results show that it is possible to significantly reduce Rieman-

nian computations during run-time by an intrinsic indexing and approximation algorithm

which allows for easy and efficient real time implementation. This opens several avenues

for future work like an integrated approach of temporal segmentation of human activities

and symbolic approximation. A theoretical and empirical analysis of the advantages of the

proposed formalism on resource-constrained systems such as robotic platforms would be
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another avenue of research.

Finally, the framework in this paper is general enough to deal with more abstract forms

of information such as graphs [59] or bag-of-words [45]. In fact, any system that is sequential

can be used within this framework, the key is to have a good understanding of metrics on

these abstract models. Existing works have defined kernels for data on manifolds [66], for

graphs [128] and a good starting point would be to use these to develop a kernel version of

this framework that would allow us to learn symbols.
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Chapter 4

COMPETITIVE LEARNING FOR DIVERSE SAMPLING

In the previous chapter, we noted how introducing a ‘conscience’ bias into the competitive

learning framework can influence the algorithm to pick samples that can divide the feature

space into equally likely regions. The choice of a bias can give rise to interesting sampling

mechanisms. In this chapter we will look at one such sampling algorithm that is obtained

by introducing a diversity bias. Smart sampling algorithms are useful in applications where

computational or memory resources are limited. In such scenarios, a small number of well

chosen samples can be used to generalize properties of an entire dataset for training [96],

labeling [12], or other learning problems [98, 138]. We are interested in video summarization,

which can be broadly defined as the problem of picking the K best frames/shots/segments

of a video. The challenge in summarizing a video is to define an appropriate cost function,

since it can be very subjective based on the application. Almost all video summarization

algorithms today work after the fact, i.e. they assume access to the entire video at a

time. However, there are many emerging applications with high definition streaming video,

where there is a need to perform summarization with little or no memory overhead such

as videos on mobile platforms etc. In this work we propose a online generalization of the

video summarization problem so that it can work while accessing a single frame at a time,

as shown in figure 1. We formulate summarization as a diverse sampling problem, which

picks the most diverse set of samples from a dataset. This approach is inspired by Video

Precis [98], a batch-mode algorithm, that modifies the K-means clustering cost to include

the diversity of centers in addition to the standard `2 clustering error. The additional

diversity term improves sampling by making the algorithm less sensitive to large and dense

clusters, unlike K-means. In the context of summarization, this results in a summary that

samples from all key events. An effective video summarization algorithm trades-off between
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Figure 1: Overview of our system for online video summarization.

representing most of the video and picking unique and/or interesting frames that may occur

sparsely. Our algorithm has memory requirements in the order of O(K), where K is the

length of the summary, typically in the range of 10-100. This is much better than existing

approaches, which require at least O(N), the computational complexity is also linear in N ,

compared to quadratic complexity for comparable approaches.

Existing approaches for batch-mode summarization have used different strategies to define

importance scores for events in a video. For example, the work in [46] focuses on ego-centric

video and uses visual cues that humans often use such as the position of the object within

the frame. As a result, any object in the focus of the user is given high importance. The

idea of important objects from a single view point, has also been generalized for generic

videos [64]. In many videos, there is a lot of content in video transitions, which can be

omitted using priors learned from the web [64]. Adaptive or dynamic video summarization

does not enforce a fixed summary length and adapts the length of the summary based

on the information within the video [28]. Online summarization for videos has remained

largely unexplored – the work in [8] proposes to use a user-customizable summarization

which allows the user to specify quality of the summary and also the time available for the

process. This technique enhances the user experience and speeds up the process by creating
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the summary as an online task, saving time. In contrast, we propose an online algorithm

that can work with any kind of image/video features, while having access to a single frame

at a time. We propose a generalization to the online K-means clustering algorithm, that also

includes a diversity bias. This ensures that each sample is assigned to a center that is close

to it while also satisfying the diversity constraint. In a special case, our algorithm reduces

to the online K-medoids clustering algorithm. We show that the proposed algorithm is able

to summarize videos significantly better than several comparable baselines, at significantly

lesser computational cost. We show extensive evaluation on a dataset of 50 videos [1, 35]

and perform a comparison with human-user generated summaries.

1 Problem Formulation

The summarization problem can be stated as follows: given a set of frames from a video

X = {x1, x2, . . . , xn}, xi ∈ RD, pick the most representative K points, µ = {µ1, µ2, . . . , µK}

from the set. We will refer to these representatives as exemplars. The xi’s can be a feature

or a set of features extracted per frame from the video. Summarization or diverse sampling

is similar to clustering in many ways, and the clustering analogy is useful to illustrate

our algorithm. For example, K-means (or K medoids) is a sampling algorithm when the

centers are the samples, chosen by minimizing the `2 clustering error. In online K-means, a

competition is held between centers to determine who ‘wins’ the current sample, determined

by which center is the closest to the current sample in the sense of the Euclidean norm.

The winning center is moved in the direction of the sample, by a small amount governed

by the learning rate, α ∈ [0, 1]. That is, for a winning center µk and the ith point xi, the

updated center is given by µ̂k = µk + α (xi − µk).

However K-means can be very biased towards larger clusters, leading to poor summaries.

To overcome this, we modify the clustering error term to include a notion of diversity bias

which forces the centers apart, instead of having several centers in a single large cluster.

The diversity bias is similar to the conscience bias [36] that can be used to generate equi-

probable clusters, where the bias discourages a center from winning too often. Instead, the
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diversity bias promotes updating centers that improve the overall diversity. The modified

cost function resembles the one used in Video Precis [98] for batch-mode summarization.

In our algorithm the criterion to determine the winning center for the ith round is given by

k̂ = arg mink d(k), where d(k) is given by:

d(k) = β ||xi − µk||2 + C(1− β) divscore(µk←i)− ζ, (4.1)

where (µk←i) denotes the set of centers, when the kth center is replaced by the current

data point xi, C is a normalizing factor that ensures all data points are given the same

importance, and ζ is the previous maximum diversity score computed using the function –

divscore( ).

1.1 Diversity Measure

The choice of the function divscore( ), in equation (4.1) is important since it signifi-

cantly influences the final summary. Diversity can be measured using dispersion measures

such as the sample variance of the centers, as in [98]. However, we observed that it can

encourage a grouping behaviour, where a pair of centers is close to each other but far away

from the rest of the centers.

Volume of the convex hull: We propose to use the volume of the convex polytope formed

by the centroids, as our diversity score. A convex polytope P is the convex hull conv(µ)

for a finite set of centers. Computing the volume is hard in general and computationally

expensive [24], especially when the points are in higher dimensions [16]. Fortunately in

lower dimensions its time efficient, and there are several standard implementations. We use

the qHull,convexhulln functions in MATLAB [16]. For high dimensional features, we

map the centers to Rd, d << D. and then compute the volume of the convex-hull in Rd.

Although this may not reflect the true volume, it is an approximation that works well in

practice.

Algorithm 3 describes the procedure to generate diverse samples in an online fashion.

We initialize the exemplars with the first K data points. Following this, we compute the

diversity score for the current set of exemplars, denoted as divscore(µ) in algorithm
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Algorithm 3 Online Diverse Sampling

1: Input: Currrent frame xi ∈ RD, Number of exemplars K
2: Output: Exemplars µ = {µ1, µ2, . . . , µK}
3: if i < K then
4: µ(i) = xi // Initialization
5: exemplar idx(i) = i
6: else
7: C = 10 i //normalizing factor
8: ζ = divscore(µ)) (see sec 1.1)
9: for k ← [1 . . .K] do

10: div(k) = divscore(µk←i)− ζ
11: d(k) = β ‖xi − µk‖2 − 1−β

C (div(k))
12: end for
13: j = arg mink d(k)
14: if div(j) > ζ then
15: exemplar idx(j) = i,µ(j) = xi //update
16: ζ = div(idx)
17: divcost(i) = ζ
18: end if
19: end if

3. Next, we begin the competition to find out which center has won the current round.

Here winning is determined by a modified cost function that includes a diversity cost. The

importance given to clustering error versus the diversity cost is governed by β, which is a

user defined parameter. When β = 1, this expression reduces to the cost used in the online

K-means algorithm. The effect of β is shown in figure 2, the right choice of β can vary

depending on the dataset and the features. Finally, we update the winning center only if

it improves the overall diversity compared to the previous set. In some cases the centers

may get stuck in local minimas, which can lead to poor exemplars. To avoid such cases, we

add some noise, by updating centers even when they do not meet the diversity criterion in

1− 10% of the samples.

Complexity: One of the main advantages of an online algorithm is that it can function

with very low memory and computational resources. For the task of picking K exemplars

from dataset of N points, our algorithm requires O(K) for storage, compared to at least

O(N) for batch-mode summarization algorithms such as Precis [98]. Typically, N can be

of the order of 105 frames for an hour long video, whereas K is typically around 10− 50. In

terms of computational complexity, our algorithm takes O(NK) as compared to Precis [98],
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Figure 2: Effect of the β parameter: on summarization performance. It is interesting to note
that when we make β = 1, there is a significant drop in the score since diversity is not considered
at all. See algorithm 3 for more details. Here results for 5 different users at different βs are shown.
The average is also depicted in bold.

O(N(N −K)T ) for T iterations. When N >> K, which is typical in summarization, the

computational complexity of our algorithm approximates to O(N) while Precis increases to

O(N2T ). As a result, we are able to process features extracted from a video at about 14.3

fps, in MATLAB on a standard Intel i7 PC.

2 Experiments

We perform experiments on the VSUMM dataset [35], which contains 50 videos in

MPEG-1 format (30 fps, 352 x 240 pixels), distributed across several genres (documentary,
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educational, ephemeral, historical, lecture) and their duration varies from 1 to 4 minutes

and approximately 75 minutes of video in total [1]. The dataset also contains 5 different

user evaluations per video, which are what human users have considered the best summary

for the video. In order to exaggerate the advantage of using summarization over traditional

sampling, we skew the dataset by replacing the last 500 frames of the video with a single

frozen frame. Such artifacts can be expected to occur, but more importantly they demon-

strate the effectiveness of summarization.

Feature Extraction: The video summarization problem is to pick the K best exemplars
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(a) Diversity score for online K-medoids

and the proposed algorithm, over 3 dif-

ferent videos. It is evident that our algo-

rithm promotes diversity between exem-

plars much better than K-medoids.

(b) Sample summaries generated for two different videos, the matches

are marked in yellow.

from a set of N points, X = {x1, x2, . . . , xN} ∈ RD. The choice of xi is open to the appli-

cation and the proposed algorithm can work with any kind of Euclidean features. We used

deep features from the penultimate layer of a pre-trained neural network – the VGG “very

deep” network [100] trained on the ImageNet dataset [92]. These pre-trained networks are

available through the MatConvNet toolbox [122].

Defining a match: In order to accurately obtain the match score, we first filter the

exemplars to remove similar frames. This is done by computing the K×K similarity matrix
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a set of exemplars, followed by picking only those points that have a distance greater than

a fixed threshold, γ. The value for γ needs to be chosen heuristically, and depends on the

feature space. In our experiments with the deep features, we found that γ = 70, worked

effectively in removing redundant exemplars. A weakness of using a fixed γ is it may result

in false positives and false negatives and better schemes maybe used to choose γ. To make

a fair comparison, we use the same value of γ across all our baselines.

Evaluation: Evaluating a summary is hard in general because there is no ground truth. In

many cases, the evaluation is done in comparison to human user generated summaries to

find the highest “matching” score. In VSUMM [35], a new evaluation metric is proposed

that measures the number of matching frames, and the number of non matching frames.

The user generated summaries are of arbitrary lengths, as deemed suitable by the user.

However, since our algorithm requires K, the number of desired exemplars as an input

we modify the evaluation score to simply be the number of matches between each user

generated summary and the summary generated by our algorithm. We choose K to be

equal the length of the largest summary set generated by a user per video, if K < 5, then

we set K := 2 ∗K. This can be easily automated and chosen to be relative to the size of

each video without affecting the results. Finally, we normalize the number of matches by

the length of that user’s summary.

2.1 Alternative Sampling Strategies And Results

As a comparison to the proposed approach, we perform sampling using the following

different baselines.

Batch-mode Video Precis: [98] Our main comparison is with the Video Precis algorithm

that optimizes between the representational error of the chosen samples and the diversity

cost between any set of samples. The proposed algorithm can be considered an online

version of Precis.

Online K-medoids clustering: We use the competitive learning algorithm used for on-
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line K-means (see 1), as another comparison with comparable computational and memory

complexity. Here, we set α = 1, which is expected to be noisy since the learning rate is

high. An alternative formulation could involve computing centers using a smaller α, then

assigning each center to the nearest data point. However, this violates the assumption of

an online algorithm that does not have access to the entire dataset.

In addition we also report results using batch-mode K-medoids, random sampling and uni-

form sampling. Random and uniform sampling require knowledge of the number of frames

or length of a video, which is unrealistic for streaming video. The performance of different

sampling algorithms are reported in table 1, and it can be seen that the proposed diversity

sampling performs better than batch mode summarization algorithm Precis. We are also

significantly better than the online K-medoids algorithm and other baselines. Sample sum-

maries are shown in figure 3b, and the diversity score for our algorithm is compared to the

diversity score obtained by the online K-medoids algorithm in figure 3a.

Sampling Algorithm U1 U2 U3 U4 U5 Online?

K-medoids 0.191 0.199 0.179 0.199 0.193 7

Random 0.173 0.165 0.176 0.186 0.179 7

Uniform 0.190 0.196 0.188 0.200 0.193 7

Precis [98] 0.227 0.219 0.225 0.240 0.245 7

Online K-medoids 0.141 0.129 0.131 0.146 0.143 3

Proposed 0.240 0.224 0.234 0.253 0.232 3

Table 1: Average mean scores denoting the percentage match with 5 different users across
50 videos. The proposed online sampling scheme performs as well if not better than batch-
mode Precis, and significantly outperforms comparable baselines.

3 Conclusion & Future Work

We presented the a novel online algorithm to perform streaming video summarization

which can work with access to just a single frame at a time and does not need to know in

advance the number of frames to allocate memory. We showed that the proposed online

diverse sampling algorithm performs summarization as well as its batch-mode counter-parts,
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while being significantly more efficient. By generalizing aspects of competitive learning[36],

and Video Precis [98], we are able to force the exemplars to be as diverse as possible.

We used PCA to map the centers to a lower dimensional space and then measured the

volume of the convex hull in the PCA space as a measure of diversity. In the future, the

dimensionality reduction step can be replaced with more advanced tools, that preserve

topological properties and can potentially improve the robustness of the diversity measure.

Another interesting extension is to generalize this algorithm to non Euclidean spaces such

as Riemannian manifolds.
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Chapter 5

ELASTIC FUNCTIONAL CODES FOR REPRESENTATION AND RECOGNITION

There have been significant advances in understanding differential geometric properties of

image and video features in vision and robotics. Examples include activity recognition

[118, 31, 125], medical image analysis [44], and shape analysis [105]. Some of the popular

non-Euclidean features used for activity analysis include shape silhouettes on the Kendall’s

shape space [124], pairwise transformations of skeletal joints on SE(3)×SE(3) · · · ×SE(3)

[125], representing the parameters of a linear dynamical system as points on the Grassmann

manifold [118], and histogram of oriented optical flow (HOOF) on a hyper-sphere [31]. A

commonly occurring theme in many applications is the need to represent, compare, and

manipulate such representations in a manner that respects certain constraints.

One such constraint is the geometry of such features, since they do not obey conventional

Euclidean properties. Another constraint for temporal data such as human actions is the

need for speed invariance or warping, which causes two sequences to be mis-aligned in time

inducing unwanted distortions in the distance metric. Figure 1 shows the effects of ignoring

warping, in the context of human actions. Accounting for warping reduces the intra-class

distance and improves the inter-class distance. Consequently, statistical quantities such

as the mean sequence are distorted as seen in figure 1 for two actions S1 and S2. Such

effects can cause significant performance losses when using building class templates, without

accounting for the changes in speed. The most common way to solve for the mis-alignment

problem is to use dynamic time warping (DTW) which originally found its use in speech

processing [19]. For human actions, [123, 146] address this problem using different strategies

for features in the Euclidean space. However, DTW behaves as a similarity measure instead

of a true distance metric in that it does not naturally allow the estimation of statistical

measures such as mean and variance of action trajectories. We seek a representation that
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(a) Row wise from top – S1, S2, Warped action S̃2, Warped mean, Unwarped mean

(b) Unwarped actions (c) Warped actions

Figure 1: Row wise from top – S1, S2, Warped action S̃2, Warped mean, Unwarped mean. The TSRVF

can enable more accurate estimation of statistical quantities such as average of two actions S1, S2.

is highly discriminative of different classes while factoring out temporal warping to reduce

the variability within classes, while also enabling low dimensional coding at the sequence

level.

Learning such a representation is complicated when the features extracted are non-

Euclidean (i.e. they do not obey conventional properties of the Euclidean space). Finally,

typical representations for action recognition tend to be extremely high dimensional in part

because the features are extracted per-frame and stacked. Any computation on such non-

49



Euclidean trajectories can become very easily involved. For example, a recently proposed

skeletal representation [125] results in a 38220 dimensional vector for a 15 joint skeletal

system when observed for 35 frames. Such features do not take into account, the physical

constraints of the human body, which translates to giving varying degrees of freedom to

different joints. It is therefore a reasonable assumption to make that the true space of

actions is much lower dimensional. This is similar to the argument that motivated mani-

fold learning for image data, where the number of observed image pixels maybe extremely

high dimensional, but the object or scene is often considered to lie on a lower dimensional

manifold. A lower dimensional embedding will provide a robust, computationally efficient,

and intuitive framework for analysis of actions. In this paper, we address these issues by

studying the statistical properties of trajectories on Riemannian manifolds to extract lower

dimensional representations or codes. We propose a general framework to code Riemannian

trajectories in a speed invariant fashion that generalizes to many manifolds, the general idea

is presented in figure 2. We validate our work on three different manifolds - the Grassmann

manifold, the product space SE(3)× · · · × SE(3), and the space of SPD matrices.

Elastic representations for Riemannian trajectories is relatively new and the lower di-

mensional embedding of such sequences has remained unexplored. We employ the transport

square-root velocity function (TSRVF) representation − a recent development in statis-

tics [110], to provide a warp invariant representation to the Riemannian trajectories. The

TSRVF is also advantageous as it provides a functional representation that is Euclidean.

Exploiting this we propose to learn the low dimensional embedding with a Riemannian

functional variant of popular coding techniques. In other words, we are interested in pa-

rameterization of Riemannian trajectories, i.e. for N actions Ai(t), i = 1 . . . N , our goal is

to learn F such that F(x) = Ai where x ∈ Rk is the set of parameters. Such a model will

allow us to compare actions by simply comparing them in their parametric space with re-

spect to F , with significantly faster distance computations, while being able to reconstruct

the original actions. In this work, we learn two different kinds of functions using PCA and
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Figure 2: Dimensionality Reduction for Riemannian Trajectories

dictionary learning, which have attractive properties for recognition and visualization.

Broader impact: While one advantage of embedding Riemannian trajectories into a lower

dimensional space is the low cost of storage and transmission, perhaps the biggest advan-

tage is the reduction in complexity of search and retrieval in the latent spaces. Although

this work concerns itself primarily with recognition and reconstruction, it is easy to see

the opportunities these embeddings present in search applications given that the search

space dimension is now ∼ 250× smaller. We conclusively demonstrate that the embeddings

are as discriminative as their original features, therefore guaranteeing an accurate and fast

search. The proposed coding scheme also enables visualization of highly abstract properties

of human movement in an intuitive manner. We show results on a stroke rehabilitation

project which allows us to visualize the quality of movement for stroke survivors. These
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ideas present a lot of opportunity towards building applications that provide users with

feedback, while facilitating rehabilitation. We summarize our contributions next.

Contributions

1. An elastic vector-field representation for Riemannian trajectories by modeling the

TSRVF on the Grassmann manifold, the product space of SE(3)× ..×SE(3) and the

space of symmetric positive definite matrices (SPD).

2. Dimensionality reduction for Riemannian trajectories in a speed invariant manner,

such that each trajectory is mapped to a single point in the low dimensional space.

3. We present results on three coding techniques that have been generalized for Rieman-

nian Functionals (RF) - PCA, KSVD [4] and Label Consistent KSVD [58].

4. We show the application of such embedded features or codes in three applications -

action recognition, visual speech recognition, and stroke rehabilitation outperforming

all comparable baselines, while being nearly 100 − 250× more compressed. Their

effectiveness is also demonstrated in action clustering and diverse action sampling.

5. The low dimensional codes can be used for visualization of Riemannian trajectories to

explore the latent space of human movement. We show that these present interesting

opportunities for stroke rehabilitation.

6. We perform a thorough analysis of the TSRVF representation testing its stability

under different conditions such as noise, length of trajectories and its impact on con-

vergence.

1 Related Work

1.1 Elastic Metrics For Trajectories

The TSRVF is a recent development in statistics [110] that provides a way to represent

trajectories on Riemannian manifolds such that the distance between two trajectories is
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invariant to identical time-warpings. The representation itself lies on a tangent space and

is therefore Euclidean, this is discussed further in section 2. The representation was then

applied to the problem of visual speech recognition by warping trajectories on the space of

SPD matrices [111]. A more recent work [144] has addressed the arbitrariness of the ref-

erence point in the TSRVF representation, by developing a purely intrinsic approach that

redefines the TSRVF at the starting point of each trajectory. A version of the representa-

tion for Euclidean trajectories - known as the Square-Root Velocity Function (SRVF), was

recently applied to skeletal action recognition using joint locations in R3 with promising

results [37]. We differentiate our contribution as the first to use the TSRVF representa-

tion by representing actions as trajectories in high dimensional non-linear spaces. We use

the skeletal feature recently proposed in [125], which models each skeleton as a point on

the space of SE(3)× · · · × SE(3). Rate invariance for activities has been addressed before

[123, 146], for example [123] models the space of all possible warpings of an action sequence.

Such techniques can align sequences correctly, even when features are multi-modal [146].

However, most of the techniques are used for recognition which can be achieved with a

similarity measure, but we are interested in a representation which serves a more general

purpose to 1) provide an effective metric for comparison, recognition, retrieval, etc. and 2)

provide a framework for efficient lower dimensional coding which also enables recovery back

to the original feature space.

1.2 Low Dimensional Data Embedding

Principal component analysis has been used extensively in statistics for dimensional-

ity reduction of linear data. It has also been extended to model a wide variety of data

types. For high dimensional data in Rn, manifold learning (or non-linear dimensionality

reduction) techniques [115, 91] attempt to identify the underlying low dimensional manifold

while preserving specific properties of the original space. Using a robust metric, one could

theoretically use such techniques for coding, but the algorithms have impractical memory

requirements for very high dimensional data of the order of ∼ 104−105, they also do not pro-
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vide a way of reconstructing the original manifold data. For data already lying on a known

manifold, geometry aware mapping of SPD matrices [51] constructs a lower-dimensional

SPD manifold, and principal geodesic analysis (PGA) [44] identifies the primary geodesics

along which there is maximum variability of data points. We are interested in identifying

the variability of sequences instead. Recently, dictionary learning methods for data lying

on Riemannian manifolds have been proposed [57, 53] and could potentially be used to code

sequential data but they can be expected to be computationally more intensive. Coding

data on Riemannian manifolds is still a new idea with some progress in the past few years,

for example recently the Vector of Locally Aggregated Descriptors (VLAD) has also been

extended recently to Riemannian manifolds [43]. However, to the best of our knowledge,

coding Riemannian trajectories has received little or no attention, but has several attractive

advantages.

Manifold learning of Trajectories: Dimensionality reduction for high dimensional time

series is still a relatively new area of research, some recent works have addressed the is-

sue of defining spatial and temporal neighborhoods. For example, [69] recently proposed

a generalization of Laplacian eigenmaps to incorporate temporal information. Here, the

neighborhoods are also a function of time, but the final reduction step still involves map-

ping a single point in the high dimensional space to a single point in the lower dimensional

space. Next, the Gaussian process latent variable model (GPLVM) [67] and its variants,

are a set of techniques that perform non-linear dimensionality reduction for data in RN ,

while allowing for reconstruction back to the original space. However, its generalization to

non-linear Riemannian trajectories is unclear, which is the primary concern of this work.

Quantization of Riemannian trajectories has been addressed in [9], which reduces dimen-

sionality but does not enable visualization. Further, there is loss of information which can

cause reduction in recognition performance, whereas we propose to reduce dimensionality

by exploiting the latent variable structure of the data. Comparing actions in the latent vari-

able space is similar in concept to learning a linear dynamical system [118] for Euclidean
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data, where different actions can be compared in the parametric space of the model.

1.3 Visualization In Biomedical Applications

A promising application for the ideas proposed here, is in systems for rehabilitation of

patients suffering from impairment of their motor function. Typically visual sensors are

used to record and analyze the movement, which drives feedback. An essential aspect of

the feedback is the idea of decomposing human motion into its individual components. For

example, they can be used to understand abstract ideas such as movement quality [34],

gender styles [42] etc. Troje [42] proposed to use PCA on individual body joints in R3,

to model different styles of the walking motion. However, they work with data in the

Euclidean space, and explicitly model the temporality of movement using a combination of

sinusoids at different frequencies. More recently, a study in neuroscience [34] showed that

the perceived space of movement in the brain is inherently non-linear and that visualization

of different movement attributes can help achieve the most efficient movement between two

poses. This efficient movement is known to be the geodesic in the pose space [20]. The

study was validated on finger tapping, which is a much simpler motion than most human

actions. In this work, we generalize these ideas by visualizing entire trajectories of much

more complicated systems such as human skeletons and show results on the movement data

of stroke-patients obtained from a motion-capture based hospital system [32].

2 Rate Invariant Sequence Comparison

In this section we describe the Transport Square Root Velocity Function (TSRVF),

recently proposed in [110] as a representation to perform warp invariant comparison between

multiple Riemannian trajectories. Using the TSRVF representation for human actions, we

propose to learn the latent function space of these Riemannian trajectories in a much lower

dimensional space. As we demonstrate in our experiments, such a mapping also provides

some robustness to noise which is essential when dealing with noisy sensors.

Let α denote a smooth trajectory onM and let M denote the set of all such trajectories:
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M = {α : [0, 1] 7→ M|, α is smooth}. Also define Γ to be the set of all orientation preserving

diffeomorphisms of [0,1]: Γ = {γ 7→ [0, 1]|γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}. It

is important to note that γ forms a group under the composition operation. If α is a

trajectory on M, then α ◦ γ is a trajectory that follows the same sequence of points as α

but at the evolution rate governed by γ. The group Γ acts on M, M×Γ→M, according to

(α, γ) = α◦γ. To construct the TSRVF representation, we require a formulation for parallel

transporting a vector between two points p, q ∈ M, denoted by (v)p→q. For cases where p

and q do not fall in the cut loci of each other, the geodesic remains unique, and therefore

the parallel transport is well defined.

The TSRVF [110] for a smooth trajectory α ∈ M is the parallel transport of a scaled

velocity vector field of α to a reference point c ∈M according to:

hα(t) =


α̇(t)α(t)7→c√
|α̇(t)|

∈ Tc(M), |α̇(t)| 6= 0

0 ∈ Tc(M) |α̇(t)| = 0

(5.1)

where | . | denotes the norm related to the Riemannian metric onM and Tc(M) denotes the

tangent space ofM at c. Since α is smooth, so is the vector field hα. Let H ⊂ Tc(M)[0,1] be

the set of smooth curves in Tc(M) obtained as TSRVFs of trajectories inM, H = {hα|α ∈

M}.

Distance between TSRVFs: Since the TSRVFs lie on Tc(M), the distance is measured

by the standard L2 norm given by

dh(hα1 , hα2) =

(∫ 1

0
|hα1(t)− hα2(t)|2

) 1
2

. (5.2)

If a trajectory α is warped by γ, to result in α ◦ γ , the TSRVF of the warped trajectory is

given by:

hα◦γ(t) = hα(γ(t))

√
˙γ(t) (5.3)

The distance between TSRVFs remains unchanged to warping, i.e.

dh(hα1 , hα2) = dh(hα1◦γ , hα2◦γ). (5.4)
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The invariance to group action is important as it allows us to compare two trajectories

using the optimization problem stated next.

Metric invariant to temporal variability: Next, we will use dh to define a metric

between trajectories that is invariant to their time warpings. The basic idea is to partition M

using an equivalence relation using the action of Γ and then to inherit dh on to the quotient

space of this equivalence relation. Any two trajectories α1, α2 are set to be equivalent

if there is a warping function γ ∈ Γ such that α1 = α2 ◦ γ. The distance dh can be

inherited as a metric between the orbits if two conditions are satisfied: (1) the action

of Γ on M is by isometries, and (2) the equivalence classes are closed sets. While the

first condition has already been verified (see Eqn. 5.4), the second condition needs more

consideration. In fact, since Γ is an open set (under the standard norm), its equivalence

classes are also consequently open. This issue is resolved in [110] using a larger, closed set

of time-warping functions as follows. Define Γ̃ to the set of all non-decreasing, absolutely

continuous functions, γ : [0, 1] → [0, 1] such that γ(0) = 0 and γ(1) = 1. This Γ̃ is a semi-

group with the composition operation. More importantly, the original warping group Γ is a

dense subset of Γ̃ and the elements of Γ̃ warp the trajectories in the same way as Γ, except

that they allow for singularities [110]. If we define the equivalence relation using Γ̃, instead

of Γ, then orbits are closed and the second condition is satisfied as well. This equivalence

relation takes the following form. Any two trajectories α1, α2 are said to be equivalent, if

there exists a γ ∈ Γ̃ such that α1 = α2 ◦ γ. Since Γ is dense in Γ̃, and since the mapping

α 7→ (α(0), hα) is bijective, we can rewrite this equivalence relation in terms of TSRVF

as α1 ∼ α2, if (a.) α1(0) = α1(0), and (b.) there exists a sequence {γk} ∈ Γ such that

limk 7→∞ hα1◦γk = hα2 , this convergence is measured under the L2 metric. In other words two

trajectories are said to be equivalent if they have the same starting point, and the TSRVF

of one can be time-warped into the TSRVF of the other using a sequence of warpings. We

will use the notation [α] to denote the set of all trajectories that are equivalent to a given

α ∈M. Now, the distance dh can be inherited on the quotient space, with the result ds on
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M/ ∼ (or equivalently H/ ∼) given by:

ds([α1], [α2]) ≡ inf
γ1,γ2∈Γ̃

dh((hα1 , γ1), (hα2,γ2))

= inf
γ1,γ2∈Γ̃

(∫ 1

0

∣∣∣hα1(γ1(t))
√
γ̇1(t)− hα2(γ2(t))

√
γ̇2(t)

∣∣∣2 dt) 1
2

(5.5)

The interesting part is that we do not have to solve for the optimizers in Γ̃ since Γ is dense

in Γ̃ and, for any δ > 0, there exists a γ∗ such that

|dh(hα1 , hα2oγ
∗)− ds([hα1 ], [hα2 ])| < δ. (5.6)

This γ∗ may not be unique but any such γ∗ is sufficient for our purpose. Further, since

γ∗ ∈ Γ, it has an inverse that can be used in further analysis. The minimization over

Γ is solved for using dynamic programming. Here one samples the interval [0, 1] using T

discrete points and then restricts to only piecewise linear γ that passes through the T × T

grid. Further properties of the metric ds are provided in [110].

Warping human actions: In the original formulation of the TSRVF [110], a set of trajec-

tories were all warped together to produce the mean trajectory. In the context of analyzing

skeletal human actions, several design choices are available to warp different actions and

maybe chosen to potentially improve performance. For example, warping actions per class

may work better for certain kinds of actions that have a very different speed profile, this

can be achieved by modifying (5.5), to use class information. Next, since the work here is

concerned with skeletal representations of humans, different joints have varying degrees of

freedom for all actions. Therefore, in the context of skeletal representations, it is reasonable

to assume that different joints require different constraints on warping functions. While

it may be harder to explicitly impose different constraints to solve for γ, it can be easily

achieved by solving for γ per joint trajectory instead of the entire skeleton.

3 Riemannian Functional Coding

A state of the art feature for skeletal action recognition – the Lie Algebra Relative

Pairs (LARP) features [125] uses the relative configurations of every joint to every other
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joints, which provides a very robust representation, but also ends up being extremely high

dimensional. For example, for a 15 joint skeletal system, the LARP representation lies in

a 182× 6 dimensional space, therefore an action sequence with 35 frames has a final repre-

sentation that has 38220 dimensions. Such features do not encode the physical constraints

on the human body while performing different movements because explicitly encoding such

constraints may require hand tuning specific configurations for different applications, which

may not always be obvious, and is labor intensive. Therefore, for a given set of human

actions, if one can identify a lower dimensional latent variable space, which automatically

encodes the physical constraints, while removing the redundancy in the original feature

representation - one can theoretically represent entire actions as lower dimensional points.

This is an extension to existing manifold learning techniques to Riemannian trajectories.

It is useful to distinguish the lower dimensional manifold of sequences that is being learned

from the Riemannian manifold that represents the individual features such as LARP on

SE(3) × .. × SE(3) etc. Our goal is to exploit the redundancy in these high dimensional

features to learn a lower dimensional embedding without significant information loss. Fur-

ther, the TSRVF representation, provides us speed invariance which is essential for human

actions, this results in an embedding where trajectories that only differ in their rates of ex-

ecution will map to the same point or to points that are very close in the lower dimensional

space.

We study two main applications of coding - 1) visualization of high dimensional Rie-

mannian trajectories, and 2) classification. For visualization, one key property is to be

able to reconstruct back from the low dimensional space, which is easily done using princi-

pal component analysis (PCA). For classification, we show results on discriminative coding

methods such as K-SVD, LC-KSVD, in additional to PCA, that learn a dictionary where

each atom is a trajectory. More generally, common manifold learning techniques such as

Isomap [115], and LLE [91] can also be used to perform coding, while keeping in mind that

it is not easy to obtain the original feature from the low dimensional code. Further, the
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trajectories tend to be extremely high dimensional (of the order of 104 − 105), therefore

most manifold learning techniques require massive memory requirements.

Next we describe the algorithm to obtain low dimensional codes using PCA and dictio-

nary learning algorithms.

Algorithm 4 Riemannian Functional Coding

1: Input: α1(t), α2(t) . . . αN (t) ∈M
2: Output: Codes C ∈ Rd×N , in a basis B ∈ RD×d, d << D
3: Compute the Riemannian center of mass µ(t), which also aligns α̃1(t), α̃2(t) . . . α̃N (t) [110].
4: for i← [1 . . . N ] do
5: for t← [1 . . . T ] do
6: Compute shooting vectors v(i, t) ∈ Tµ(t)(M) as v(i, t) = exp−1µ(t)(α̃i(t))

7: end for
8: Define V (i) = [v(i, 1)T v(i, 2)T . . . v(i, T )T ]T

9: end for
10: [C,B] = F(V ). // F can be any Euclidean coding scheme

3.1 Representing An Elastic Trajectory As A Vector Field

The TSRVF representation allows the evaluation of first and second order statistics on

entire sequences of actions and define quantities such as the variability of actions, which we

can use to estimate the redundancy in the data similar to the Euclidean space. We utilize

the TSRVF to obtain the ideal warping between sequences, such that the warped sequence

is equivalent to its TSRVF. To obtain a low dimensional embedding, first we represent the

sequences as deviations from a reference sequence using tangent vectors. For manifolds such

as SE(3) the natural “origin” I4 can be used, in other cases the sequence mean [110] by

definition lies equi-distant from all the points and therefore is a suitable candidate. In all

our experiments, we found the tangent vectors obtained from the mean sequence to be much

more robust and discriminative. Next, we obtain the shooting vectors, which are the tangent

vectors one would travel along, starting from the average sequence µ(t) at τ = 0 to reach the

ith action α̃i(t) at time τ = 1, this is depicted in figure 3. Note here that τ is the time in the

sequence space which is different from t, which is time in the original manifold space. The

combined shooting vectors can be interpreted as a sequence tangent that takes us from one

point to another in sequence space, in unit time. Since we are representing each trajectory
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as a vector field, we can use existing algorithms to perform coding treating the sequences as

points, because we have accounted for the temporal information. The algorithm 4 describes

the process to perform coding using a generic coding function represented as F : RD → Rd,

where d << D. In the algorithm, C represents the low dimensional representation in the

basis/dictionary B that is learned using F .

Complexity: Computing the mean trajectory and simultaneously warping N trajectories

for a single iteration can be done in O(N(T 2 + ν)), where the cost to compute the TSRVF

is O(ν). If we assume the cost of computing the exponential map is O(m), algorithm 4 has

a time complexity of O(mNT ). This can be a computational bottle neck for manifolds that

do not have a closed form solution for the exponential and logarithmic maps. However, the

warping needs to be done once offline, as test trajectories can be warped to the computed

mean sequence in O(T 2 +ν). Further, both the mean and shooting vector computation can

be parallelized to improve speed.

Reconstructing trajectories from codes: If the F is chosen such that it can be easily

inverted, i.e. we can find an appropriate F−1 : Rd → RD, then the lower dimensional

embedding can be used to reconstruct a trajectory on the manifold, M, by traveling along

the reconstructed tangents from the mean, µ(t). This is described in algorithm 5.

Algorithm 5 Reconstructing Non Euclidean Trajectories

1: Input: C ∈ Rd×N , d << D, B ∈ RD×d, µ(t).
2: Output: α̂(t) ∈M
3: for i← [1 . . . N ] do

4: V̂i = F−1(B,C)

5: Rearrange V̂i as an m× T matrix, where T is the length of each sequence.
6: for t← [1 . . . T ] do

7: α̂i(t) = expµ(t)(V̂i(t), 1)
8: end for
9: end for

3.2 Choices Of Coding Techniques

Since the final representation before dimensionality reduction lies in a vector space, any

Euclidean coding scheme can be chosen depending on the application. We focus on two
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Figure 3: Representing the warped trajectories on a manifold as a vector field, allows us to

use existing algorithms to perform dimensionality reduction efficiently, while also respecting

the geometric and temporal constraints.

main techniques to demonstrate the ideas. First we perform principal component analysis

(PCA) since it can be computed efficiently for extremely high dimensional data, it allows re-

construction by which we can obtain the original features, and it also provides an intuitive

interpretation to visualize the high dimensional data in 2D or 3D. This version of Rie-

mannian Functional PCA (RF-PCA, previously referred to as mfPCA in [13]), generalizes

functional PCA to Riemannian manifolds, and also generalizes principal geodesic analysis

(PGA)[44] to sequential data. Next, we use dictionary learning algorithms, allowing us

to exploit sparsity. K-SVD [4] is one of the most popular dictionary learning algorithms

that has been influential in a wide variety of problems. Recently, label consistent - KSVD

(LCKSVD) [58] improved the results for recognition. K-Hyperline clustering [55] is a special
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case of K-SVD where the sparsity is forced to be 1, i.e. each point is approximated by a

single dictionary atom. It is expected that since K-SVD relaxes the need for the bases to be

orthogonal, it achieves much more efficient codes, that are much more compact, have the

additional desirable property of sparsity and perform nearly as well as the original features

themselves.

Eigenvalue decay using RF-PCA: To first corroborate our hypothesis that Rieman-

nian trajectories are often far lower dimensional than the feature spaces in which they are

observed, we show the eigenvalue decay in figure 4, after performing RF-PCA on three com-

monly used datasets in skeletal action recognition. It is evident that most of the variation in

the datasets is captured by 10-20 eigenvectors of the covariance matrix. It is also interesting

to note that that RF-PCA does a good job of approximating the different classes in the

product space of SE(3) × · · · × SE(3). The MSRActions dataset [70] contains 20 classes

and correspondingly the eigenvalue decay flattens around 20. In comparison the UTKinect

[136] and Florence3D [95] datasets contain 10 and 9 classes of actions respectively, which is

reflected in the eigenvalue decay that flattens closer to around 10. Features in the RF-PCA

tend to be lower dimensional and more robust to noise, which is helpful in reducing the

amount of pre/post processing required for optimal performance.

4 Experimental Evaluation

We evaluate our low dimensional Riemannian coding approach in several applications

and show their advantages over conventional techniques that take geometry into account

as well as other Euclidean approaches. First we address the problem of activity recogni-

tion from depth sensors such as the Microsoft Kinect. We show that a low dimensional

embedding can perform as well or better than the high dimensional features on benchmark

datasets. Next we evaluate our framework on the problem of visual speech recognition

(VSR), or also known as lip-reading from videos. We show that, all other factors remaining

the same, our low dimensional codes outperform many baselines. Finally, we also address
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Figure 4: Eigenvalue decay for MSRActions3D [70], UTKinect [136], and Florence3D [95]

datasets obtained with RF-PCA. UTKinect and Florence3D have 10 and 9 different classes

respectively, as a result the corresponding eigenvalue decay saturates at around 10 dimen-

sions. MSRActions consists of 20 classes and the decay saturates later at around 20.

the problem of movement quality assessment in the context of stroke rehabilitation with

state-of-the-art results. We also show that low dimensional mapping provides an intuitive

visual interpretation to understand quality of movement in stroke rehabilitation.

4.1 Action Recognition

We use a recently proposed feature called Lie algebra relative pairs (LARP) [125] for

skeleton action recognition. This feature maps each skeleton to a point on the product

space of SE(3) × SE(3) · · · × SE(3), where it is modeled using transformations between

joint pairs. It was shown to be very effective on three benchmark datasets - UTKinect [136],

Florence3D [95], and MSR Actions3D [70]. We show that using geometry aware warping

results in significant improvement in recognition. Further, we show that it is possible to do

so with a representational feature dimension that is 250× smaller than state-of-the-art.
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Florence3D actions dataset [95] contains 9 actions performed by 10 different subjects

repeated two or three times by each actor. There are 15 joints on the skeleton data collected

using the Kinect sensor. There are a total of 182 relative joint interactions which are encoded

in the features.

UTKinect actions dataset [136] contains 10 actions performed by 10 subjects, each

action is repeated twice by the actor. Totally, there are 199 action sequences. Information

regarding 20 different joints is provided. There are a total of 342 relative joint interactions.

MSRActions3D dataset [70] contains a total of 557 labeled action sequences consist-

ing of 20 actions performed by 10 subjects. There are 20 joint locations provided on the

skeletal data, which gives 342 relative joint interactions.

Alternative Representations

We compare the performance of our representation with various other recently proposed

related methods:

Lie Algebra Relative Pairs (LARP): Recently proposed in [125], this feature is shown

to model skeletons effectively. We will compare our results to those obtained using the LARP

feature with warping obtained from DTW and unwarped sequences as baselines.

Body Parts + SquareRoot Velocity Function (BP + SRVF) : A skeleton is a

collection of body parts where each skeletal sequence is represented as a combination of

multiple body part sequences, proposed in [37]. It is also relevant to our work because the

authors use the SRVF for ideal warping, which is the vector space version of the representa-

tion used in this paper. The representational dimension is calculated assuming the number

of body parts Njp = 10, per skeleton[37].

Principal Geodesic Analysis (PGA)[44]: Performs PCA on the tangent space of

static points on a manifold. We code individual points using this technique and concatenate

the final feature vector before classification.
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Feature Representational Dimension Accuracy

BP+SRVF [37] 30000 87.04

LARP [125] 38220 86.27

DTW [125] 38220 86.74

PGA [44] 6370 79.01

TSRVF 38200 89.50

RF-KSVD 45 (sparse) 88.55

RF- LCKSVD 60 (sparse) 89.02

RF-PCA 110 89.67

Table 1: Recognition performance on the Florence3D actions dataset [95] for different fea-
ture spaces.

Feature Representational Dimension Accuracy

BP+SRVF [37] 60000 91.10

HOJ3D [136] N/A 90.92

LARP [125] 151,848 93.57

DTW [125] 151,848 92.17

PGA [44] 25308 91.26

TSRVF 151,848 94.47

RF-KSVD 50 (sparse) 92.67

RF-LCKSVD 50 (sparse) 94.87

RF-PCA 105 94.87

Table 2: Recognition performance on the UTKinect actions dataset [136].

Evaluation Settings

The skeletal joint data obtained from low cost sensors are often noisy, as a result of which

post-processing methods such as Fourier Temporal Pyramid (FTP) [130] have been shown

to be very effective for recognition in the presence of noise. FTP is also a powerful tool

to work around alignment issues, as it transforms a time series into the Fourier domain

and discards the high frequency components. By the nature of FTP, the final feature is
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Feature Representational Dimension Accuracy

BP + SRVF [37] 60000 87.28± 2.99

HON4D [79] N/A 82.15± 4.18

LARP[125] 155,952 75.57± 3.43

DTW[125] 155,952 78.75± 3.08

PGA [44] 25,992 72.06± 3.12

TSRVF 155,952 84.62± 3.08

RF-KSVD 120 (sparse) 84.45± 3.15

RF-LCKSVD 50 (sparse) 83.60± 3.14

RF-PCA 250 85.16± 3.13

Table 3: Recognition performance on the MSRActions3D dataset [70] following the protocol
of [79] by testing on 20 classes, with all possible combinations of test train subjects.

invariant to any form of warping. One of the contributions of this work is to demonstrate

the effectiveness of geometry aware warping over conventional methods, and then explore

the space of these warped sequences, which is not easily possible with FTP. Therefore,

we perform our recognition experiments on the non-Euclidean features sequences without

FTP. We computed the mean on SE(3) extrinsically for the sake of computation, since the

Riemannian center of mass for the manifold is iterative. In general this can lead to errors

since the log map for SE(3) is not unique, however we found this to work well enough to

model skeletal movement in our experiments. This can easily be replaced with the more

stable intrinsic version, for details on implementations we refer the reader to [40]. For

classification, we use a one-vs-all SVM classifier following the protocol of [125], and set

the C parameter to 1 in all our experiments. For the Florence3D and UTKinect datasets

we use five different combinations of test-train scenarios and average the results. For the

MSRActions dataset, we follow the train-test protocol of [79] by performing recognition on

all 242 scenarios of 10 subjects of which half are used for training, and the rest for testing.
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Recognition Results

The recognition rates for Florence 3D, UTKinect, and MSRActions3D are shown in tables

1, 2 and 3 respectively. It is clear from the results that using TSRVF on a Riemannian

feature, leads to significant improvement in performance. Further, using RF-PCA improves

the results slightly, perhaps due to robustness to noise, but more importantly, reduces the

representational dimension of each action by a factor of nearly 250. Sparse codes obtained

by K-SVD, and LC-KSVD further reduce the data requirement on the features, where

LC-KSVD performs as well as RF-PCA while also inducing sparsity in the codes. The

improvements are significant compared to using DTW as a baseline; the performance is

around 3% better on Florence3D, 2% on UTKinect, and 7% averaged over all test train

variations on MSR Actions 3D. Although BP+SRVF [37] has higher recognition numbers

on the MSRActions3D, our contribution lies in the significant advantage obtained using the

LARP features with RF-PCA (over 7% on average). We observed that simple features in

RN performed exceedingly well on MSRActions3D, for example using relative joint positions

(given by −→v = J1 − J2, where J1 and J2 are 3D coordinates joints 1 and 2.) on the

MSRActions3D with SRVF and PCA we obtain 87.17± 3.08% by embedding every action

into R250×, which is similar to [37], but in a much lower dimensional space. The performance

of LCKSVD on MSRActions3D is lower than state-of-the-art because it requires a large

number of samples per action class to learn a robust dictionary. There are ∼ 20 action

classes in the dataset, but only 557 actions, therefore we are restricted to learn a much

smaller dictionary. In other datasets with enough samples per class, LCKSVD performs as

well as RF-PCA while also generating sparse codes.

We also show that performing PCA on the shooting vectors is significantly better than

performing PCA on individual time samples using Principal Geodesic Analysis. The di-

mensions for LARP features are calculated as 6× J × T , where J is the number of relative

joint pairs per skeleton, and T is the number of frames per video. We learn the RF-PCA

basis using the training data for each dataset, and project the test data onto the orthogonal
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basis.

4.2 Visual Speech Recognition

Next we evaluate our method Visual Speech Recognition (VSR) on the OuluVS database

[145] and show that the proposed coding framework outperforms comparable techniques at

a significantly reduced dimensionality. VSR is the problem of understanding speech as

observed from videos. The dataset contains audio and video clues, but we will use only the

videos to perform recognition, this problem is also known as automatic lipreading. Speech

is a dynamic process, and very much like human movement. It is also subject to significant

variation in speed, as a result of which accounting for speed becomes important before

choosing a metric between two samples of speech [111].

Figure 5: Samples from the OuluVS database [145], used to perform visual speech recogni-

tion (VSR) by extracting region covariance matrices which are symmetric positive definite

matrices (SPD).

OuluVS database [145]: This includes 20 speakers uttering 10 phrases: Hello, Excuse

me, I am sorry, Thank you, Good bye, See you, Nice to meet you, You are welcome, How

are you, Have a good time. Each phrase is repeated 5 times. All the videos in the database

are segmented, with the mouth regions determined by the manually labeled eye positions

in each frame. We compare our results to those reported in [111], who used covariance

descriptors on the space of SPD matrices to model the visual speech using TSRVF. There

are two protocols of evaluation for VSR typically, speaker independent test and speaker

dependent test (SDT). We report results on the latter following [111].
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Feature Descriptor And Evaluation Settings

We use the covariance descriptor [120] which has proven to be very effective in modeling

unstructured data such as textures, materials etc. We follow the feature extraction pro-

cess as described in [111], to show the effectiveness of our framework. For the covariance

descriptor, seven features are extracted including {x, y, I(x, y), | ∂I∂x |, |
∂I
∂x |, |

∂2I
∂x |, |

∂2I
∂x |}, where

x, y are the pixel locations, I(x, y) is the intensity of the pixel, and the remaining terms are

the first & second partial derivatives of the image with respect to x, y. This is extracted

at each pixel, within a bounded region around the mouth. These covariance matrices are

summed up to obtain a single 7 × 7 region covariance descriptor per frame. These form a

trajectory of such matrices per video, which we use to calculate its TSRVF and subsequently

the low dimensional codes.

We show improved results are achieved while also providing highly compressed feature

representations as shown in Table 4. We train a one-vs-all SVM similar to the previous

experiment, on the shooting vectors directly, by training on 60% of the subjects for each

spoken phrase, this is repeated for all train/test combinations. We obtain an accuracy of

74.05% on uncompressed shooting vectors, as compared to 66.0% using a 1-NN classifier on

all the 1000 videos proposed in [111]. The functional codes using different coding schemes

outperform even the SVM results by around 1.5%. While the improvement is not significant,

it is important to note that there is a reduction in the feature representation by a factor of

nearly 100×.

4.3 Movement Quality For Stroke Rehabilitation

Each year stroke leaves millions of patients disabled with reduced motor function, which

severely restricts a person’s ability to perform activities of daily living. Fortunately, the

recent decade has seen the development of rehabilitation systems with varying degrees of

automated guidance, to help the patients regain a part of their motor function. A typical

system is shown in figure 6, which was developed by Chen et al. [32]. The system uses
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Feature Representational Dimension Accuracy

Cov SPD [120] 2450 31.9

TSRVF + NN [111] 2450 66.0

Spatio-temporal[145] N/A 70.2 (800 videos)

PGA [44] 1000 72.42± 3.14

TSRVF + SVM 2450 74.05± 4.14

RF - LCKSVD 20 (sparse) 74.04± 3.5

RF - KSVD 20 (sparse) 75.63± 4.45

RF - PCA 30 75.3± 5.41

Table 4: Visual speech recognition performance on the OuluVS database [145] on 1000
videos using the subject dependent testing (SDT). Results show that the functional cod-
ing representation outperforms previous state-of-the-art with similar features, while signif-
icantly reducing dimensionality.

Figure 6: The stroke rehabilitation system [32], that uses a 14 marker configuration to

provide feedback on motor function for stroke patients. A typical evaluation protocol re-

quires a therapist to observe a specified movement to give a score indicating the quality of

movement.

14 markers to analyze and study the patient’s movement (eg. reach and grasp), usually in

the presence of a therapist who then provides a movement quality score, such as the Wolf

71



Motor Function Test (WMFT) [134].

Our goal in this experiment is to predict the quality of the stroke survivor’s movement as

well as the therapist, so that such systems can be home-based with fewer therapist interven-

tions. There are 14 markers on the right hand, arm and torso in a hospital setting. A total

of 19 impaired subjects perform multiple repetitions of reach and grasp movements, both

on-table and elevated (with the additional force of gravity acting against their movement).

Each subject performs 4 sets of reach and grasp movements to different target locations,

with each set having 10 repetitions.

Feature Description And Evaluation Settings

We choose 4 joints – back, shoulder, elbow, and wrist. This is used to represent them

in relative configurations to each other as is done in LARP [125] resulting in each hand

skeleton that lies in SE(3)×· · ·×SE(3) as earlier. The problem now reduces to performing

logistic regression on trajectories that lie in SE(3)×· · ·×SE(3). The stroke survivors were

also evaluated by the WMFT [134] on the day of recording, where a therapist evaluates the

subject’s ability on a scale of 1 - 5 (with 5 being least impaired to 1 being most impaired).

We use these scores as the ground truth, and predict the quality scores using the LARP

features extracted from the hand markers. The dataset is small in size due to the difficulty

in obtaining data from stroke survivors, therefore we use the evaluation protocol of [126],

where we train on all but one test sample for regression. We compare our results to Shape of

Phase Space (SoPS) [126], who perform a reconstruction of the phase space from individual

motion trajectories in each dimension of each joint.

Table 7b shows the results for different features. The baseline, using the features as it is,

gives a correlation score of 92.27 to the therapist’s WMFT evaluation. Adding elasticity

to the curves in the SE(3) product space improves the correlation score to 93.53. The

functional codes improves the score significantly to 97.84, while using only 70 dimensions

giving state of the art performance. We also compare our score to the kinematic based

features proposed by [126]. Visualizing quality: Next, figure 7a shows the different
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(a) Easily visualizing quality of movement in RFPCA space

Feature Dimension Score

SoPS* [126] 2100 88.6

KIM* [32] NA 85.2

LARP [125] 79200 92.27

LARP + TSRVF [110] 79200 93.53

RF-PCA 70 97.84

RF-KSVD 25 (sparse) 75.76

(b) Predicting the quality of movement in the rehabilita-

tion of stroke survivors.

Figure 7: The RF-PCA is able to accurately predict movement quality as compared to an

expert therapist which can improve home-based systems for stroke rehabilitation.

movements in the lower dimensional space. Visualizing the movements in RF-PCA space,

it is evident that even in R2, information about the quality of movement is captured.

Movements which are indicative of high impairment in the motor function appear to be

physically separated from the movements which indicate mild or less impairment. It is easy

to see the opportunities such visualizations present for rehabilitation, for example a recent
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study in neuroscience [34] showed that real-time visual feedback can help learn the most

efficient control strategies for certain movements.

4.4 Reconstruction And Visualization Of Actions

We also show results on visualization and exploration of human actions as Riemannian

trajectories. Since shapes are easy to visualize, we use the silhouette feature as a point on

the Grassmann manifold.

UMD actions dataset [123]: This is a relatively constrained dataset, which has a

static background allowing us to easily extract shape silhouettes. It contains 100 sequences

consisting of 10 different actions repeated 10 times by the same actor. For this dataset,

we use the shape silhouette of the actor as our feature, because of its easy visualization as

compared to other non-linear features.

RECONSTRUCTION RESULTS

Once we have mapped the actions onto their lower dimensional space using RF-PCA, we

can reconstruct them back easily using algorithm 5. We show that high dimensional action

sequences that lie in non-Euclidean spaces can be effectively embedded into a lower dimen-

sional latent variable space. Figure 8b shows the sampling of one axis at different points. As

expected, the “origin” of the dataset contains no information about any action, but moving

in the positive or negative direction of the axis results in different styles as shown. Note,

that since we are only using 2 dimensions, there is a loss of information, but the variations

are still visually discernible.

4.5 DIVERSE SEQUENCE SAMPLING

Next, we show that applications such as clustering can also benefit from a robust distance

metric that the TSRVF provides. Further, performing clustering is significantly faster in

the lower dimensional vector space, such as the one obtained with RF-PCA. We perform

these experiments on the UMD Actions data with actions as trajectories on the Grassmann
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Figure 8: Exploring the latent variable space of actions in the UMD actions dataset

using RF-PCA. Notice the “origin” contains no information about any action, and moving

along an axis provides different abstract style information.

manifold. K-means for data on manifolds involves generalizing the notion of distance to the

geodesic distance and the mean to the Riemannian center of mass. We can further generalize

this to sequences on manifolds by replacing the geodesic distance with the TSRVF distance
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and the mean by the RCM of sequences as defined in [110]. A variant of this problem is

to identify the different kinds of groups within a population, i.e. clustering diversly, which

is a harder problem in general and cannot be optimally solved using K-means. Instead we

use manifold Precis which is a diverse sampling method [99]. Precis is an unsupervised

exemplar selection algorithm for points on a Riemannian manifold, i.e. it picks a set of K

most representative points S from a data set X. The algorithm works by jointly optimizing

between approximation error and diversity of the exemplars, i.e. forcing the exemplars to

be as different as possible while covering all the points.

To demonstrate the generalizability of our functional codes, we perform an experiment

to perform K-means clustering and diverse clustering of entire sequences. In the experiment

on the UMD actions dataset, we constructed a collection of actions that were chosen such

that different classes had significantly different populations in the collection. Action centers

obtained with K-medoids is shown in figure 9b and as expected classes which have a higher

population are over represented in the chosen samples as compared to Precis (figure 9c)

which is invariant to the distribution. Due to the low dimensional Euclidean representation,

these techniques can be easily extended to suit sequential data in a speed invariant fashion

due to the TSRVF and at speeds ∼ 500× faster due to RF-PCA.

5 Analysis Of The Tsrvf Representation

In this section, we consider different factors that influence the stability and robustness

of the TSRVF representation, thereby affecting its coding performance. Factors such as (a)

it’s stability for different choices of the reference point, (b) the effect of noise on functional

coding, and (c) arbitrary length of a trajectory, are realistic scenarios that occur in many

applications.

5.1 STABILITY TO THE CHOICE OF REFERENCE POINT

A potential weakness in the present TSRVF framework is in the choice of the reference

point c, which may introduce unwanted distortions if chosen incorrectly. In manifolds such
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Figure 9: Diverse action sampling using Precis[99] by sampling in RF-PCA space ∈ R10 on
a highly skewed dataset. K-medoids picks more samples (marked) from classes that have
a higher representation, while Precis remains invariant to it. The K-medoids and diverse
clustering operations are performed ∼ 500× faster in the RF-PCA space. Figure 8b shows
a 2D axis sampled in the latent space. It’s clearly seen that even in only 2 dimensions, some
action information (”style”) is discernible.

as the SE(3) and SPD, a natural candidate for c is I4, however for other manifolds such

as the Grassmann, the reference must be chosen experimentally. In such cases, a common
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Figure 10: Robustness experiments for different factors as measured by their effect on
recognition accuracy. Experiments in table (10a) and figure (10b) are performed on the
Grassmann manifold, & figure (10c) shows results on the SE(3)×SE(3) . . . SE(3) manifold.
It can be clearly seen that the RFPCA representation is robust in the presence of noise,
and remains more robust to different sampling rates than unwarped trajectories.

solution is to choose the Riemannian center of mass (RCM), since it is equally distant from

all the points thereby minimizing the possible distortions. In our experiments we show

that choosing an arbitrarily bad reference point can lead to poor convergence when warping
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multiple trajectories. We test the stability of the TSRVF representation to the choice of

reference point by studying the convergence rate. We chose a set of 10 similar actions

from the UMD actions dataset and measured registration error over time. The registration

error is measured as Σjd(µ(t)− αj(t))2, where µ(t) is the current estimate of the mean as

described in algorithm 4. When c is chosen as the mean, the convergence occurs in about

35 iterations as seen in 10a. To generate an arbitrary reference point, we chose a point

at random from the dataset and travel along an arbitrary direction from that point. The

resulting point is chosen as the new reference point and the unwarped trajectories are now

aligned by transporting the TSRVFs to the new c. In order to account for the randomness,

we repeat this experiment 10 times and take the average convergence error. The distortion

is clearly visible in figure 10a, where there is no sign of convergence even after 80 iterations.

5.2 EFFECT OF NOISE

In the Euclidean setting, the robustness of PCA to noisy data is well known. We

examine the consequences of performing PCA on noisy trajectories for activity recognition

here. There are many different stages of adding noise to a trajectory in this context - a)

sensor noise which is obtained due to poor background segmentation or sensor defect that

causes the resulting shape feature to be distorted, b) warping noise that is caused by a

poor warping algorithm and c) TSRVF noise, which is obtained due to a poor choice of the

reference point, or obtained as a consequence to parallel transport. We have studied the

effect of the reference point previously, and the effect of poor warping is unlikely in realistic

scenarios. We consider the noise at the sensor level which is most likely, by inducing noise

in the shape feature. We perform this by perturbing each shape point on the Grassmann

manifold along a random direction, vr ∈ Tα(i)(G), for a random distance, k drawn from

a uniform distribution: k ∈ U(0, 1). We generate the random tangent and the random

distance to be traversed uniformly. Therefore, the ith point in a trajectory is transformed

as : α̂(i) = exp(α(i), k vr). We then perform a recognition experiment on the noisy datasets

using the RFPCA, TSRVF and unwarped representations. Figure 10b shows the results of
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the experiment on the UMD actions dataset, with k on the X-axis. As expected, the

RFPCA representation is least affected, while the TSRVF representation performs slightly

better than the unwarped trajectories. The different levels of noise indicate how far along

the random vector one traverses to obtain the new noisy shape.

5.3 ARBITRARY LENGTH & SAMPLING RATES

The choice of parameter T in algorithm 4, directly affects the resulting dimensionality

of the the trajectory before performing coding. Here we investigate its effect on coding

and recognition. We can generate different trajectory lengths by considering two factors

a)frame-rate, where α̂(t) = α(mt) where the factor is governed by m, and b) arbitrary end

point, where α̂(t) = α(1 : T ′), such that T ′ < T . The TSRVF is invariant to frame rate

or sampling rate, therefore for a wide range of sampling rates, the recognition accuracy re-

mains unchanged. To observe this, we perform a recognition experiment on the Florence3D

skeleton actions dataset. The results for both factors are shown in figure 10c, and it is seen

that in both cases the TSRVF warped actions are recognized better than the unwarped

actions with an average of 5% better accuracy.

Canonical length: Using the coding framework proposed in this paper, it is conceivable

that there is a close relationship between the true length of a trajectory and its intrin-

sic dimensionality. For example - a more complex trajectory contains more information

which naturally requires a higher dimensional RFPCA space to truly capture its variability.

However, determining the explicit relationship between the RF-PCA dimension and the

canonical length of a trajectory is out of the scope of this work.

6 Conclusion

In this chapter we introduced techniques to explore and analyze sequential data on

Riemannian manifolds, applied to human activities, visual speech recognition, and stroke

rehabilitation. We employ the TSRVF space [110], which provides an elastic metric be-

tween two trajectories on a manifold, to learn the latent variable space of actions, which
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is a generalization of manifold learning to Riemannian trajectories. We demonstrate these

ideas on the curved product space SE(3)× · · · ×SE(3) for skeletal actions, the Grassmann

manifold, and the SPD matrix manifold. We propose a framework that allows for the pa-

rameterization of Riemannian trajectories using popular coding methods – RF-PCA which

generalizes functional PCA to manifolds and PGA to sequences, sparsity inducing coding

RF-KSVD and discriminative RF-LCKSVD. The learned codes not only provide a compact

and robust representation that outperforms many state of the art methods, but also the

visualization of actions due to its ability to reconstruct original non-linear features. We

also show applications for intuitive visualization of abstract properties such as quality of

movement, which has a proven benefit in rehabilitation. The proposed representation also

opens up several opportunities to understand various properties of Riemannian trajectories,

including their canonical lengths, their intrinsic dimensionality, ideal sampling rates, and

other inverse problems which are sure to benefit several problems involving the analysis of

temporal data.

81



Chapter 6

A HETEROGENEOUS DICTIONARY MODEL FOR HUMAN ACTIONS

Previously, we studied methods that would allow us to generate new actions by sampling

the subspace learned using mfPCA. In this section, we will look at another way to learn a

generative model for actions, that is also able to discriminate effectively. Here, instead of

representing each action as a point, we will assume actions to be piecewise linear models

and attempt to represent them sparsely using dictionary learning. Sparse coding attempts

to represent data vectors using a linear combination of a small number of vectors chosen

from a ‘dictionary’. The dictionary that leads to an optimal sparse representation can be

either predefined or learned from the training samples themselves. It is now well known that

the latter can lead to improved representation and recognition results [4, 76]. If the data

is truly low-dimensional, sparse coding can effectively identify its low degrees of freedom,

and hence sparse models have proved successful in several inverse problems in signal/image

processing [4], and computer vision [135]. When compared to classical subspace methods

which are efficient only if the data lies in a single low-dimensional subspace, sparse coding

can recover data lying in a union of low-dimensional subspaces and hence provide a greater

flexibility in representation.

Traditionally, most sparse coding applications deal with static data such as images, but

there have been recent attempts to extend these concepts to videos [50, 84]. To this end,

problems of activity analysis have gained lot of attention where typically a dictionary is

learned either per class of actions or on the entire set of all actions and sparse codes are

generated per frame. Most human actions evolve over time where they usually begin with

a rest pose and end in an extreme pose. This transition is smooth resulting in smoothly

varying features. The geometric structure of these transitions is not known in general, but

attempts have been made to model this structure, e.g. actions have been considered to
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Figure 1: Here we show the feature evolution of Running, Talk on Phone and Waving. The
features are projected to a lower dimensional space for visualization. The top figure shows
the three actions on a common coordinate frame. It is seen that these structures can be
well approximated by piece-wise linear models.

trace out non-linear manifolds in feature spaces [41]. While such models are quite rich

and general, they are accompanied by difficulties in learning the model and coding data

using the model. However, as shown in fig 1, a simple piecewise linear model is sufficient

to represent most common activities such as Waving, Running and Talking on the phone.

In addition to the representational simplicity, this also affords solving the sparse-coding

problem efficiently.

In such cases, centered clustering approaches such as K-Means will not be able to effec-

tively model the underlying patterns which will result in a loss in performance. To cluster

data that lies along hyperlines, He et al. [56] proposed the K-hyperline clustering algorithm,

which is an iterative procedure that performs a least squares fit of K one dimensional linear

subspaces to the training data. The relation between K-hyperline clustering and dictionary

learning has been explored in [116]. Taking into consideration that cluster centers computed

by this algorithm are constrained to pass through the origin, we propose a new heteroge-
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neous dictionary model. The elementary features in this dictionary correspond to the 1D

affine subspaces that represent human activities and hence the dictionary is interpretable.

The proposed dictionary is learned with features that are extracted per frame from the

videos in an action dataset.

Although several dictionary learning approaches are known, only a few have been

proposed that consider the geometric structure along which activities evolve. A few re-

cent attempts have been made to generalize dictionary learning to Riemannian manifolds

[52, 53, 57], but none of them deal with sequences which is of interest here. Most of the

methods involve improving an initial dictionary, obtained using methods such as K-SVD

[4], by maximizing information between dictionary atoms [84], learning class specific dic-

tionaries [50] etc. The idea of features lying along lines has been used before - Taheri et

al. [113] modeled facial expressions as deviations along geodesics, which are generalizations

of high dimensional lines to non Euclidean spaces, from a “neutral expression”, and Troje

[42] showed that using simple PCA one can identify important directions in landmark data,

that are later used for applications like gender classification.

We present a dictionary model for human activities by considering piecewise linear

models of activities. Each dictionary atom consists of a tuple - a point and a direction in

space. We also introduce new constraints to the traditional sparse coding problem, and

adapt it to the heterogeneous dictionary. We show that this can be an effective generative

model for human actions. Furthermore, we demonstrate that using such a dictionary, one

can achieve state-of-the-art recognition results, and maintain very low reconstruction errors

for unseen test activities.

1 Proposed Dictionary Model

In this section, we will formulate our dictionary learning problem and present a method

to generate sparse codes using the proposed dictionary.
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1.1 Learning The Dictionary

When a dictionary is constructed using K-hyperline clustering, each atom corresponds

to a linear subspace. We generalize this dictionary to be a collection of affine subspaces,

where each atom is described by a point and an associated direction in space. To learn

such a dictionary, we propose a 1D affine subspace clustering algorithm. In this method,

we incorporate an additional step of calculating the sample mean µj of the jth cluster along

with the least-squares fit of a 1D subspace, dj , in K-hyperline clustering. The algorithm is

described in Table 1. To identify the cluster membership, we project a data sample onto

each dictionary atom and choose the one that results in the least representation error. The

projection is performed as

PH(x) = µ + β̂d, where β̂ = min
β
‖x− µ− βd‖22. (6.1)

Note that in this case, the least squares solution for β is dT (x− µ).

1.2 Sparse Coding

Let us assume that a test sample in Rn can be represented as a linear combination of

a small number of affine subspaces. Assuming that the set of dictionary atoms given by

{µj ,dj}Kj=1 is known, the generative model for a test sample x can be written as

x =
∑
j∈S

αjµj + βjdj . (6.2)

where S is the set of atoms that participate in the representation of x.

The solution to (6.2) can be obtained using convex programming. The key consideration

is that for a given j, µj and dj must be chosen together. Furthermore, it is also useful to

ensure that the new mean is in the convex hull of the means of S. This can be posed and

solved as group Lasso [142],

arg min
α,β

‖x− (Mα + Dβ)‖22 + λ
K∑
i=1

∥∥∥∥∥∥
 αi

βi

∥∥∥∥∥∥
2

s.t. αi ≥ 0,
∑
i

αi = 1,

(6.3)
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Input

Features {x1, · · · ,xT } and size of dictionary,
K.

Output

Affine subspaces {H1, · · · ,HK} represented
using the means {µ1, · · · ,µK} and the direc-
tions {d1, · · · ,dK}.
Membership classes, C1, · · · , CK .

Algorithm

Initialize: {µ1, · · · ,µK} and {d1, · · · ,dK}.

while convergence not reached

Compute memberships:

- For each sample xi compute the projection
of xi onto

each Hj , denoted by PHj
(xi).

- k = arg minj ||xi − PHj
(xi)||Kj=1 and Ck =

Ck ∪ {i}.

Update Hj : For each cluster j, compute
{µj ,dj} as the

sample mean and the first principal compo-
nent of all

samples indexed by Cj , respectively.

end

Table 1: The dictionary learning algorithm.

where M = [µj ]
K
j=1 and D = [dj ]

K
j=1.

2 Experimental Validation

In this section, we demonstrate the use of the dictionary model in representation and

recognition of human actions. First, we perform an experiment to validate the proposed

generative model, in comparison to a centered clustering approach. Following this, we show
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Figure 2: Actions generated by sampling along the learned lines on the UMD actions data
set [123]. Some generated actions such as wave, talk on phone, kick appear to be laterally
inverted as our representation is affine invariant.

that this dictionary can generalize well in representing unseen human actions. Finally,

we demonstrate that by aggregating the sparse codes in multiple temporal scales, we can

achieve the state-of-the-art performance in activity recognition.

2.1 Generative Model For Human Actions

In this experiment we show that the proposed dictionary can be used to parameterize

human actions, thereby demonstrating that the model is an intuitive choice. We perform

this experiment using a shape feature due to its obvious advantage in visualization. We use

the UMD Actions Dataset [123], as its background is relatively static and allows us to do

easy background subtraction. Having extracted the foreground, we perform morphological

operations and extract the contour of the human. We sampled a fixed number of points

on the contour to obtain the set of landmarks describing the shape. To represent these

landmarks, we used an affine invariant representation where the set of m landmark points

are given by the m × 2 matrix L = [(x1, y1), (x2, y2), . . . , (xm, ym)] for the centered shape.

However, shape features do not lie in the Euclidean space [106] and one must take into

account the non-linearity of the space while dealing with them. Since we are dealing with
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the vector space, we will use embedding approaches as they are conceptually simpler and

easier to implement. These allow us to work with these complex features while staying in

a Euclidean space. With each set of landmarks, we generate an m ×m projection matrix

that is P = UUT , where L = USV T is the rank-2 SVD. Let Pv be the vectorized form of

P , we use Pv as a feature to learn our dictionary. To recover the shape from this vector

we re-obtain the projection matrix P and perform a rank-2 SVD on it. Now the feature

corresponding to a shape at time t is generated as Pv(t) = µj + β(t)dj, parameterized by

β(t) which determines to what extent one must travel from µj along the direction dj. We

used different values of β for each action in the range −1 < β(t) < 1. In fig 2, we show the

generated silhouette in each action and compare it to the ground truth.

2.2 Reconstruction Of Unseen Actions

In this experiment, we test the efficiency of the proposed dictionary in modeling unseen

actions from test data. Since every action is modeled as a combination of means and

directions, an unseen action will typically have a mean that is different from any of the

previously learned actions. Hence, we model the new mean as a linear combination of

means and find its principal direction as a combination of the known directions. For our

experiments, we obtained activities from the Weizmann activity dataset [48] which consists

of 90 videos of 10 different actions, each performed by 9 different persons. The classes

of actions include running, jumping, walking, side walking etc. In order to evaluate the

performance of the proposed sparse coding model, we used the features of all subjects from

6 different activities in the Weizmann dataset for obtaining the dictionary and evaluated

the reconstruction error for features from the other 4 activities. The set of unseen testing

activities included jack, pjump, skip and wave1. For all our experiments on this dataset

we used the histogram of oriented optical flow (HOOF) feature that was introduced in [31].

This feature bins optical flow vectors based on their directions and their primary angle with

the horizontal axis, weighted by their magnitudes. Using magnitudes alone is susceptible

to noise and can be very sensitive to scale. Thus all optical flow vectors, v = [x, y]T with
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direction θ = tan−1( yx) in the range -π2 +π b−1
B ≤ θ < −

π
2 +π b

B will contribute by
√
x2 + y2

to the sum in bin b, where 1 ≤ b ≤ B, typically B = 30 is used. Finally, the histogram is

normalized to sum up to 1.

Using the training activities, we computed K (fixed at 20, 30 and 40) clusters to identify

the principal directions and their cluster centroids. For the test activities, we performed

sparse coding of the features using the computed centers and directions as the dictionary

atoms. Table 2 compares the average reconstruction error obtained for features from the

test activities using different coding schemes. Since more than one atom can be used

for representation, the reconstruction error in our model is significantly lower than those

obtained with K-means or K-hyperline clustering. The plot in Fig 3 shows the reconstruction

error obtained by varying the sparsity parameter λ.

2.3 Recognition Of Human Activities

In this experiment, we propose a method for performing recognition of human activities

from the Weizmann dataset using sparse codes obtained from the features of each activity.

Of the 9 subjects that performed the activities, we used 6 subjects from each class for

training and the rest for testing. Hence, we used a total of 60 activities for learning the

dictionary and training the classifier. Using the features described in the previous experi-

ment, the sparse codes are computed by setting λ = 0.1. We aggregate the sparse codes of

the training features, in multiple temporal scales, to create one overall feature vector per

activity. Given a set of sparse codes stacked in a matrix, aggregation is performed by finding

the value corresponding to the absolute maximum of elements in each row. Since aggre-

gation destroys temporal information, we divide each activity into 1, 2, 4, and 6 temporal

segments, and perform aggregation independently in each, in order to partially preserve the

temporal information. Hence, if each sparse code is of length K, we will obtain a overall

feature vector of length 13K. These overall feature vectors are used to train an SVM clas-

sifier. For a test activity, the overall feature vector is computed similarly and classification

is performed.
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Method
No. of clusters

K=20 K=30 K=40

K-means - µ 0.3295 0.3069 0.2985

K-Hyperline d 0.2657 0.2485 0.2399

(µ,d)
0.1171 0.1039 0.0956

Dictionary

Table 2: Comparison of Reconstruction Error Obtained using the Proposed Sparse Cod-
ing.
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Figure 3: Effect of Sparsity on Reconstruction Error.

Proposed dictionary 98.88

K-means dictionary 84.44

Guha et al., Multiple Dictionaries [50] 98.9

Guha et al., Single Dictionary [50] 96.67

Chaudhry et al. [31] 95.66

Table 3: Recognition Performance (%) using the Proposed Sparse Codes.

In order to improve the reliability of recognition results, we repeat the experiment 3 times

with randomly chosen training and test sets. Table 3 compares our average performance

to other methods reported in the literature. It can be seen that our method compares well

with Guha et al., where we are able to match their performance with just a single dictionary

as compared to learning a dictionary per class.
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3 Conclusion And Future Work

The proposed model opens up several interesting avenues of research, we outline a few

of them and conclude our work in this section.

We introduced a sparse representational model for human actions. We first showed that

in feature spaces, common actions are approximately piecewise linear. Using this idea, we

proposed a dictionary model where each atom is a 1D affine subspace described by a mean

and an associated direction in feature space. We show that the sparse codes generated us-

ing this dictionary perform well in applications of recognition and reconstruction of human

actions. Such a model also allows us to represent unseen actions accurately.

Extensions to non linear spaces: Features belonging to non linear spaces such as man-

ifolds have become increasingly popular in the image processing and computer vision com-

munities recently. An interesting extension to the proposed work could be to learn the

proposed dictionary model on manifolds. Incorporating the non-linearity of the ambient

space will lead to a model robust enough to work with these new features.

Compression of actions: With rising popularity of robots and intelligent surveillance

systems, low bandwidth transmission for activities or events could prove to be extremely

important. Using the proposed parametric form, extremely high compression ratios could

be achieved since only the parameter(s) need to be transmitted as compared to several high

dimensional features per action video.
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Chapter 7

DYNAMICAL PROPERTIES OF RIEMANNIAN TRAJECTORIES

Dynamic phenomena such as human activities are commonly observed through visual sen-

sors, typically resulting in feature trajectories sampled in time. Accurate metrics on such

trajectories are those that take its temporal nature into account. For example, in human ac-

tion recognition it is well known that accounting for temporal re-parametrization improves

the distance metric between two actions, resulting in significantly improved recognition per-

formance [123, 110]. For problems where the elasticity of the metric does not suffice, one

has to go a step further and study the properties of the dynamical system that generates

the trajectory. A diverse set of applications have benefited from dynamics based metrics

such as – human action recognition [6, 141], bio-mechanics [107], dynamics of crowds[5],

and dynamic scene recognition [93]. It has also been shown that such properties can help

in fine grained classification between similar kinds of human movement [127]. Exploiting

the dynamics is relatively easy when the concerned feature space is Euclidean, but the last

few years have seen an increased interest in modeling features that lie on non Euclidean

spaces such as Riemannian manifolds. Some examples of such features are – shapes on

Kendall’s shape space [63], Histogram features [31], skeletal features [125], and Covariance

features [120]. More recently, there has also been an interest in modeling trajectories on

such non-linear manifolds using elastic metrics [110, 13]. However, the study of dynamical

invariants has remained unexplored.

In this chapter, we address the problem of uncovering the properties of dynamical processes

evolving on Riemannian manifolds, for applications in human action analysis. While the

problem of modeling Riemannian trajectories is recent, to the best of the authors’ knowl-

edge there has not been a study to exploit Riemannian dynamics in computer vision. In

this regard, we propose the largest-Riemannian Lyapunov exponent (L-RLE), which is a
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generalization of the largest Euclidean Lyapunov exponent [133], a widely used feature

that measures chaos in a time series. Traditional chaotic invariant measures determine the

average rate of divergence (or convergence) between nearby states of a system over time.

We show that the proposed measure can be used to quantify the amount of chaos within

a Riemannian dynamical process. Further, we show that for human action analysis from

silhouettes on the Grassmann manifold and curves in SO(3), the representational mani-

fold itself is a good candidate for the phase space. Experiments indicate that the L-RLE

correlates well with the largest Lyapunov exponent extracted on Euclidean features for hu-

man action analysis, while also retaining the robustness advantages and invariances of the

manifold-valued features.

More broadly, the chaotic properties of time series data have been found useful in model-

ing temporal data in several applications. Measures such as the largest Euclidean Lyapunov

exponent (L-ELE) allow us to quantify the intrinsic dynamical nature of these phenomenon.

Existing methods to compute the L-ELE assume the time series is Euclidean, i.e., the under-

lying metric is the commonly used `2 - norm. Whereas many state-of-the-art representations

or features involve features that are non-Euclidean. We generalize the notion of a Lyapunov

exponent to two different manifolds - the special orthogonal group denoted as SO(3), which

is a lie group containing all 3×3 rotation matrices. These occur commonly in data collected

from smartphones, and fitness trackers, which measure orientation information. Next, we

represent shape silhouettes of humans performing different activities, and model the shapes

as affine invariant subspaces, which naturally lie on the Grassmann manifold [119]. This

shape representation provides invariance to affine transformations in addition to scale and

rotation changes - which is useful in modeling small camera viewpoint changes.

1 Related Work

Recent years have seen advancements in understanding different properties of Rieman-

nian trajectories, motivated by the increasing availability temporal data from videos. For
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example, [110] proposed a rate invariant representation known as the Transport Square

Root Velocity Function (TSRVF) for trajectories, such that the final metric remains un-

changed to identical time warping. Next, [13] showed that the TSRVF could be used to

exploit statistical properties of the trajectories to obtain a lower dimensional embedding.

Another study [140] models human actions as Riemannian trajectories, by transporting all

the points in the trajectory to the starting point, this representation is used to learn a sub-

space that preserves geodesics. The development of such tools to manipulate, and represent

such non-linear trajectories provides a foundation to explore even higher order properties

such as dynamics.

While the idea of studying the dynamics of Riemannian trajectories remains to be ad-

dressed, the idea of using differential geometry to understand the phase space obtained

from Euclidean time series exists [23]. A closely related theoretical piece of work proposed

the generalization of the finite time Lyapunov exponent (FTLE) and Lagrangian coherent

structures (LCS) to Riemannian manifolds [68]. We differentiate our work by proposing

an algorithm to compute the largest Lyapunov exponent, a different measure of chaos than

FTLE. We also validate our work on real and synthetic data, with varying degrees of chaos.

Traditional dynamical modeling approaches for Euclidean space data include parametric

methods such as Hidden Markov Models (HMMs) and Linear Dynamical Systems (LDSs),

which have been used for computer vision applications like action recognition [137, 132]

and gait analysis [21, 62]. Recent work by Ali et al. proposed the use of nonparametric

modeling approach using ideas from chaos theory to model the dynamics in human actions

[6]. The authors use Rosenstein’s algorithm [88] to estimate largest Lyapunov exponent

from trajectories of action data as part of their feature representation. We propose an

extension of Rosenstein’s algorithm that computes it for Riemannian manifolds.
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2 Dynamical Systems On Geometric Spaces

Dynamical systems are mathematical models which simulate a physical phenomenon

of states evolving over time. Chaos theory studies the behavior of nonlinear dynamical

systems, that are highly sensitive to initial conditions. Any perturbation to the initial

conditions of such systems yield widely diverging dynamics. This behavior is known as

deterministic chaos. Convincing evidence for existence of deterministic chaos has been

provided from a variety of research experiments [90, 112]. Exponential divergence of closely

spaced trajectories is a signature of chaotic systems. Hence, quantifying divergence of

closely spaced trajectories has been a well-studied problem in the field of chaos theory.

Many natural systems showing chaotic behavior have been studied in the past [54, 94],

the most famous one being the weather. A detailed description of such systems was first

described mathematically by Lorenz [74]. He presented a system of 3 coupled differential

equations to demonstrate the chaotic behavior in such systems. This led him to his now

famous speculation that a butterfly flapping wings in Brazil (which is a small change in

the initial conditions in the atmosphere) might cause a tornado in Texas. Such depen-

dence of the evolution of a system on its initial conditions makes chaotic motion a complex

phenomenon.

Correlation dimension [2], largest Lyapunov exponent [133], and correlation sum [2] are

a few examples of invariant measures proposed in the literature to quantify complexity

of nonlinear dynamical systems. In comparison, largest Lyapunov exponent is a widely

used measure of chaos in various engineering applications, including computer vision and

biomechanics to model human movements and quantify chaos in the reconstructed phase

space [39, 83, 108, 114, 97].

Due to the inherent variability in human movement, tools from chaos theory have found

wide applications in the bio-mechanics community for analysis of human actions [107].

In the most general sense, a dynamical system is the tuple 〈M, f, T 〉, where M is a

manifold, T is non-negative time and f is a diffeomorphism that governs the evolution of

95



trajectories, defined as f :M×T →M. In the Euclidean space, one can learn the paramet-

ric representation of the function f . When it is difficult to estimate the function directly,

one can estimate properties of the function. One such property is the largest Euclidean

Lyapunov exponent (L-ELE), which has seen a lot of success for dynamical analysis of Eu-

clidean signals. There is currently no existing method to estimate f directly for trajectories

Riemannian manifolds, therefore we propose an algorithm to first generalize the L-ELE to

manifolds.

The largest Lyapunov exponent, denoted as λ, is a measure of average rate of divergence

(or convergence) of initially closely-spaced trajectories over time [2, 131]. A positive value

indicates orbital divergence and hence chaos in the system. A negative value indicates

orbital convergence and hence a dissipative system. A practical method for estimating

the largest Lyapunov exponent from a time series proposed by Rosenstein [88] quantifies

chaos by monitoring the rate of divergence of closely spaced trajectories over time. The

algorithm is fast, easy to implement and robust to changes in embedding dimension, size of

dataset, embedding delay and noise level. We refer to the Euclidean space largest Lyapunov

exponent as the largest Euclidean Lyapunov exponent (L-ELE) to differentiate it with

our measure, the largest Riemannian Lyapunov exponent (L-RLE). More formally, the

Lyapunov exponent is defined as follows:

dj(i) = dj(0)eλ1(i∆t), (7.1)

where dj(0) is the initial separation in the phase space and dj(i) is the separation after i

time steps of ∆t.

2.1 Largest Riemannian Lyapunov Exponent (L-RLE)

The L-ELE is computed as follows [88]: the embedding parameters lag and dimension

are estimated using the Fast Fourier Transform (FFT), which are used to construct the

phase space. Next, in the phase space the nearest neighbors are calculated constrained on
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temporal separation. This is used to estimate how far two points have diverged in the phase

space as the attractor evolves over time. In generalizing this to Riemannian manifolds, we

first describe how the manifold itself can be treated as the phase space next.

The manifold as a phase space: The phase space is defined as an approximation to the

high dimensional state space of the dynamic system that governs the observed time series.

Obtaining the phase space directly is challenging because we often do not have access to all

the information required to reconstruct it, instead many algorithms resort to reconstructing

the phase space. However, reconstruction of the phase space requires estimating the period

using the FFT, which do not generalize well to manifolds. On the other hand, action features

such as shape silhouettes and stick figures are already high dimensional, and contain a lot

of information. For example, the states in a action sequences may be closely related to

the poses of the human, which are naturally points on an appropriate high-dimensional

shape manifold. Therefore, we propose that the underlying manifold can be treated as the

phase space of the system, where each time sample behaves as a “state”. We show in our

experiments that the manifold behaves similar to the phase space, and therefore is a good

approximation.

Computing the L-RLE: In the phase space, the next step involves measuring how far

two nearby points have diverged over time. With the geodesic distance, we first perform a

k-nearest neighbor and then compute the quantities dj(0), dj(i) from (7.1) for a given point

and its nearest neighbor. To compute λ from (7.1), it is useful to rearrange as follows.

ln(dj(i)) ≈ ln(dj(0)) + λ(i ∆t) (7.2)

Equation (7.1) represents a set of approximately parallel lines for different points in the

phase space. The largest Lyapunov exponent is calculated as the slope of the “average”

line. The procedure to estimate the L-RLE is outlined in algorithm 6.
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Algorithm 6 Largest Lyapunov exponent on Manifolds

Input: α(t) ∈M, t = 1 . . . T
Assume the manifold is the phase space.
for j = 1→ T do

Find K Nearest neighbors constrained in time [88].
for i = 1→ K do
dj(i) = mink dM (α(j), α(i)),
ln(dj(i)) = ln(dj(0)) + λ1(i ∆t)

end for
Fit a line, Lj , for each set of djs, compute its slope mj .

end for
Average slope gives a robust estimate of L-RLE λ = 1

T

∑
jmj

3 Experimental Validation

To evaluate the proposed dynamical measure, we apply it to human actions to study

their dynamic properties. We use the UMD actions dataset [123] which contains 10 actions

such as walk, run, squat, throw a ball, talk on the cell phone, push an object, and batting.

These are performed 10 times, giving a total of 100 actions in the dataset. The relatively

static background allows us to extract the shape silhouettes easily, which we represent

as a subspace which is a point on the Grassmann manifold. This results in actions being

represented as trajectories on the Grassmann manifold. In our first experiment, we motivate

the manifold as the phase space, before computing the RLE. We show quantitative and

qualitative results indicating the advantage of the proposed measure. Apart from directly

working with the shape trajectories, we consider alternate representations to understand

and validate our measure.

Alternate Representations: We first motivate the idea of using the manifold itself as

the phase space before computing the Largest Lyapunov exponent. Since the alternative

representations are extracted from the same actions in the same dataset, and there is a

severe lack of “ground truth”, we make the assumption that the dynamics remains un-

changed across the features. That is, the dynamics of human actions remains unchanged

when represented using features that are Euclidean or non-Euclidean. To the best of our

knowledge, we are not aware of any work that can claim otherwise.
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Multivariate Embedding (MVE) – We compare with an established algorithm to

embed multivariate time series data in the Euclidean space, for time-delay reconstruction of

phase space known as the multivariate embedding [25]. This simple yet powerful extension

of univariate embedding as proposed by Cao et al. [25] has proven to be useful in computer

vision applications such as action synthesis and dynamic texture synthesis [17]. Recent

theoretical and empirical findings have demonstrated that multivariate embedding of time

series data by simple concatenation of individual univariate embedding vectors achieves

good state space reconstruction as evaluated by the shape and dynamics distortion measures

[129]. The embedding method only works with Euclidean time series data, and hence we

consider the 2D landmarks on the silhouette per frame as our feature for each action. This

results in each action being represented as an (N × 2) × T , where N is the number of

landmarks on each silhouette, and T is the total number of frames. Using this data, we

perform uniform multivariate embedding. Given multivariate time series data {xi,t}Tt=1,

i = 1, . . . , p, where p is the dimension of time series data, the reconstructed phase space

vector is of the form

zt = [x1,t, x1,t+τ1 , . . . , x1,t+(m1−1)τ1 ,

x2,t, x2,t+τ2 , . . . , x2,t+(m2−1)τ2 ,

. . . ,

xp,t, xp,t+τp , . . . , xp,t+(mp−1)τp ].

(7.3)

where mi and τi are respectively the embedding dimension and time delay for each of the

p-dimension in the multivariate time series data.

Vector Field Parallel Transport (VFPT) – We also use an intermediate repre-

sentation, where we represent each trajectory as a collection of tangents. For an action

j, Fj = {α̇t→t+1(t)|∀i = 1, . . . , T}, where α̇t→t+1(t) represents the tangent that goes from

α(t) to α(t + 1) in unit time. We perform a parallel transport on all the tangent vectors

and bring them to a common point at the Riemannian center of mass (RCM) [49]. We

treat the transported tangent bundle as the phase space in this case. This feature takes

the geometry into account while also giving us a Euclidean representation, which we can

exploit for visualizing the phase space. We use the largest Euclidean lyapunov exponent
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(L-ELE) algorithm [88] on this feature.

Viewpoint invariance: Figure 1a shows the phase space for the walking action, in 3D,

after performing dimensionality reduction using Laplacian Eigenmaps [18]. It is seen that in

both cases, the cyclic pattern of the action is captured even after dimensionality reduction.

Since the Grassmann manifold can afford us affine invariance, we artificially shear the

shapes to simulate minor camera viewpoint changes. Since the multivariate embedding

uses the coordinate locations in each frame, the phase space estimated from the sheared

data is significantly distorted. The phase space obtained from the Grassmann representation

remains unchanged, as shown in figures 1b.
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(a) Phase space estimates on shape data.
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(b) Phase space estimates after change in view-
point.

Figure 1: The Grassmann manifold for shapes, as the phase space for human activities
provides invariance to commonly observed problems such as viewpoint, scale and shift. The
resulting phase space is significantly distorted in the case of multivariate embedding, but
remains unchanged in our case. We perform dimensionality reduction to facilitate easy
visualization using the Laplacian-eigen maps [18].

We estimate the L-RLE on 100 actions in the UMD Actions dataset and report the corre-

lation between our measure and the Lyapunov from Multivariate Embedding on Euclidean

features in table 1. It is seen that our measure compares well with the vector space version

– indicating that for clean data the L-RLE is a good generalization of the L-ELE. Further,

when we artificially shear the data to simulate minor viewpoint changes, the multivariate

embedding algorithm and L-ELE algorithm fail severely due to the distortion in the data
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Phase space type Correlation

Landmarks + Multivariate Embedding + L-ELE [88] (reference) 1.00

Vector Field Parallel Transport + L-ELE 0.52

Shape feature + L-RLE 0.76

Landmarks + Multivariate Embedding + L-ELE [88] (sheared) 0.27

Vector Field Parallel Transport + L-ELE (sheared) 0.40

Shape feature + L-RLE (sheared) 0.763

Table 1: The proposed Riemannian Lyapunov exponent (RLE) on the Grassmann manifold
closely relates to the estimate obtained from the multivariate embedding on the landmarks of
the silhouette. It is also much more robust to affine transforms, compared to the Euclidean
measure. Here we assume the standard largest Euclidean Lyapunov exponent (L-ELE)
without any shearing to be the reference standard.

whereas the L-RLE remains robust to such changes.

3.1 Validation On Standard Attractors

A challenging aspect to generalizing the largest Lyapunov exponent to Riemannian

manifolds is validation. In the Euclidean space, a common way to evaluate a chaotic measure

is to test it on different attractors arising from closed-form dynamical equations such as the

Lorenz [74] and the Rossler [89] systems. Any chaotic measure must be as close to zero as

possible for perfectly periodic time series. Unfortunately, the Rossler and Lorenz systems

do not generalize easily to manifolds. We approximate these systems by generating them

on a tangent plane and wrapping them onto the manifold. Once again, we assume that the

wrapping action from the tangent space to the manifold does not affect the chaotic nature

of the time series. This maybe a restricting assumption in general, but is valid for small

deviations from the pole of the tangent space. We choose the special orthogonal group

SO(3), which is a Lie group, since it is 3-dimensional and allows us to naturally embed

a 3-D time series generated on its Lie algebra. The properties of the Largest Euclidean

Lyapunov Exponent (L-ELE) which we expect to observe here are the following: 1) The

value for periodic signals must be zero, 2) The L-ELE is direct measure of the chaotic nature
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of the signal, i.e. the higher the chaos within a signal, the higher its measured value. This

pattern is clearly observed in table 2, where a periodic signal gives us a value thats close

to zero. We also compare the L-ELE values as a reference, it is observed that even though

the values are not exactly the same, the trend is clear. A trajectory thats more chaotic has

a higher L-RLE value, similar to the Euclidean case.

Attractor L-Euclidean LE L-Riemannian LE

Lorenz [74] (higher chaos) 1.50 21.02

Rossler [89](lower chaos) 0.09 7.26

Periodic (zero chaos) 0 0.008

Table 2: Validating the L-RLE: We embed the standard attractors into the SO(3) lie
group and evaluate the L-RLE using the proposed algorithm. It is seen that the nature of
the L-RLE is consistent with the L-ELE, higher chaos implies a higher value, and periodicity
implies a very low value.

4 Discussion And Conclusion

We presented a formulation to study the invariant properties of dynamical systems evolv-

ing on Riemannian manifolds. Such systems occur frequently in problems such as human

movement analysis, action recognition, and crowd analysis in computer vision. The invari-

ant properties of Euclidean dynamical systems have been useful in characterizing temporal

events for such applications in computer vision. However, there is a lack of such methods

for dynamical systems on non-Euclidean spaces. To address this, we proposed a generaliza-

tion of the largest Lyapunov exponent, a classic chaotic measure, to Riemannian manifolds.

Towards this end, we use the ambient manifold as the phase space and compute the largest

Riemannian Lyapunov exponent (L-RLE). We show that it correlates well with the anal-

ogous measure for Euclidean dynamics. By estimating the L-RLE on standard attractors

such as the Lorenz and Rossler, we show that our L-RLE measures the chaotic properties

accurately. We have validated the L-RLE under the assumption that the dynamical latent

properties of temporal events remains unchanged when observed in different feature spaces.

A direction of future study could be to further investigate how the dynamical properties
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are preserved when the same event is observed in different modalities. While the presented

work is primarily empirical, a theoretical analysis of Riemannian dynamical invariants and

associated estimation algorithms, such as the proposed one, may be fruitful areas of future

work.
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Chapter 8

DIRECTIONS FOR FUTURE WORK

This dissertation presented tools and techniques to model Riemannian trajectories for ap-

plications in human movement analysis.

1 Potential Future Research Directions

In this section, a plan for the extensions of the works discussed in this dissertation and

possible future directions of work is laid out.

1.1 Generalized Symbolic Approximation

The framework for symbolic approximation is general enough to deal with more abstract

forms of information such as graphs [59] or bag-of-words [45]. In fact, any system that is

sequential can be used within this framework, the key is to have a good understanding of

metrics on these abstract models. A useful extension to further improve the compression

efficiency would be to utilize symbols that are sequences themselves. In this work, dis-

cretization of a manifold sequence is preceded by a Piece-wise Aggregate Approximation

(PAA) step, which collapses a series of points into a single point using the Riemannian

Center of Mass (RCM) [49], which is then assigned to the nearest pre-learned quantization

level. Instead, one can imagine eliminating the PAA step entirely, without sacrificing the

compression ratios, by learning a symbol set where each symbol is a short sequence. With

tools such as the TSRVF which allow us to compare Riemannian sequences in a speed-

invariant manner, such a symbol set can be learned using the competitive learning strategy

proposed in this work or any other clustering scheme. However, there will be a compu-

tational trade-off since each short windowed sequence will now have to be warped before

finding its true nearest neighbor.
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1.2 Sampling Techniques On Manifolds

The online sampling algorithm proposed in chapter 4, can be easily generlalized to work

with manifold valued data. Sampling is interesting in itself for a variety of problems like

computer graphics and machine learning. It is worth studying connections between a data-

driven sampling apprach such as the one proposed here, compared to directly sampling in

the ‘feature space’, which is the norm in computer graphics. Sampling can also add to

the rapidly growing set of tools that generalize machine learning to Riemannian manifolds.

Active learning uses sampling as a key step in picking the best training set.

1.3 Topology Meets Riemannian Geometry

In the recent few years topological data analysis (TDA) has become a useful tool to vi-

sualize and understand properties of high dimensional data. A natural progression for these

tools are to work with non Euclidean data – i.e., exploit topological properties of datasets

that lie on Riemannian manifolds. The chapter on dynamical analysis 7 for Riemannian

trajectories introduces notions of TDA implicitly by computing the Lyapunov exponent,

which is a topological feature.

Further, recent advances in quantifying topological properties of high dimensional data may

benefit from the tools developed in Riemannian geometry. The number of d-dimensional

holes are known as the Betti-d number. It corresponds to the rank of the d-dimensional

homology group. Persistent diagrams are a powerful new feature to represent the persis-

tence of Betti numbers across multiple scales of the data. However, metrics on persistence

diagrams tend to become a computational bottleneck because they need to solve for corre-

spondence between points. A Riemannian geometric interpretation for persistent diagrams

could help in addressing these issues.
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1.4 Dynamic Invariants

An interesting assumption in chapter 7 is the invariance of dynamical properties across

feature spaces. In other words – if a temporal phenomenon is measured in different feature

spaces with similar degrees of freedom, can we learn the same dynamical system or estimate

similar properties of the dynamical system across both of them? For example consider

gesture recognition, measured using the Microsoft Kinect depth sensor and a fitness device.

Assuming we are interested in single handed gestures that do not involve hand signs, both

the sensors are essentially observing and measuring the same information. Therefore a

reasonable question is if we can estimate the same Lyapunov feature from both of the

feature spaces independently, even though they live in different feature spaces. This can

be of great use in multi-model feature analysis, and inference problems involving multiple

sensors.
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tiotemporal descriptors. IEEE Transactions on Multimedia, 11(7):1254–1265, 2009.

[146] Feng Zhou and Fernando De la Torre. Generalized time warping for multi-modal
alignment of human motion. In (CVPR), 2012, pages 1282–1289. IEEE, 2012.

117


