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Introduction

The study of the possible motions in an astrophysical system has always attracted lots of attention
from the point of view of different branches of science. In particular, this dissertation is devoted to the
analysis of the motion of small bodies, like asteroids, in the neighbourhood of the Earth-Moon system
from a celestial mechanics approach. This analysis will give an insight of some transport phenomena
that takes place in the system in a natural way and that can be also profitable for designing space
missions, looking for reducing costs and increasing the efficiency on the manoeuvres.

The motion of a small particle of negligible mass subjected to the gravitational fields created by
massive bodies is an extensive area of research. Many simplified mathematical models have been
proposed and employed over the years, each of them focusing on different features of the real systems
they attempt to describe. Simplified models allow us to describe the dynamics in the system of interest
through the analysis of the invariant objects present on them, that are known to organise the dynamics
of the system and hence, they provide meaning to the phenomena appearing on it.

Most widely studied dynamical systems are usually autonomous systems, since their independence
on time makes them convenient for their analysis. However, considering any system as independent
on time is generically a simplification, that eventually is tried to be addressed. The simplest way
to introduce the time dependence in an autonomous system is through a time-periodic forcing. In
this way, time can be regarded as an angular variable, θ ∈ T, and the perturbed system acquires one
basic frequency. As consequence, the dimension of the dynamical system as well as the dimension
of the invariant objects on it, increases by one, in such a way that the system under a time-periodic
perturbation and its phase space inherits the main structures of the unperturbed system from which
it comes.

The main objective of this dissertation is to study the dynamical transport in the Earth-Moon system
and to develop tools that allow to understand it. Probably, the most extended simplified mathemati-
cal model employed in the analysis of these kind of systems is the well-known Restricted Three-Body
Problem (RTBP), an autonomous model that describes the motion of an infinitesimal particle sub-
jected to the gravitational fields of two punctual massive bodies, called the primaries, that are assumed
to revolve in circular motion, see [Sze67].

Several modifications of this simplified model have been proposed, like introducing the eccentricity of
the primaries, the accurate modelisation of the potential force in the vicinity of the massive bodies
or adding other massive bodies that interact between them and affect the motion of the infinitesimal
particle to create a restricted (N + 1)-body problem,... among these modifications the Bicircular
Problem (BCP) is found, [Hua60, CRR64]. In this model a third punctual massive body is considered
to revolve in circular motion around the original set up of the RTBP. Hence, the BCP can be under-
stood as a RTBP plus a time-periodic forcing that affects the motion of the particle but not that of
the primaries.

Since in the vicinity of the Earth-Moon system the gravitational effect of the Sun is too important to
be negligible, we want to take it into account in our analysis and one of the simplest ways of doing
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INTRODUCTION

so is through a BCP that models the motion of a particle in the Earth-Moon system including the
gravitational effect of the Sun as a time-periodic perturbation. Therefore, the Sun-Earth-Moon BCP
as we consider it, has a basic frequency that accounts for the relative motion between the Earth-Moon
barycenter and the Sun. The vast majority of this thesis is developed within the framework of this
model.

To a lesser extent, this dissertation also deals with systems subjected to several time-dependent
perturbations. Like the Simplified Solar System Models (SSSM) introduced in [GMM02, Mon01],
where the Earth-Moon system is considered to be subjected up to five basic frequencies that account
for the gravitational effect of the Sun over the particle and the primaries (Earth and Moon), the lunar
eccentricity, the inclination between the orbital plane of the Moon and the ecliptic plane, and also the
inclination between the orbital and equatorial planes.

In the case in which a system is subjected to any d̃ ≥ 1 time-periodic perturbations, the dimension
of the system as well as the dimension of the invariant objects on it, increases by d̃, meanwhile the
frequencies of the perturbations are non-resonant.

The simplest invariant objects that one can find in these time-dependent systems have the same
dimension as the vector of basic frequencies of the system. For example, in the BCP the simplest
invariant objects are periodic orbits, meanwhile in the case of the SSSM with 5 basic frequencies,
the simplest invariant object is a five-dimensional quasi-periodic solution. Nevertheless, it must be
noticed that other invariant objects of higher dimension than the simplest ones can be also found on
these systems.

The persistence of quasi-periodic solutions present on Hamiltonian autonomous systems when the
perturbations are introduced is one of the main questions to which KAM theory is devoted. This theory
was originated in the 50’s by Kolmogorov [Kol54], and continued by Arnold [Arn63a, Arn63b] and
Moser [Mos62]. The outcome of their works was that most of the quasi-periodic solutions survive under
the perturbation. The reason why some of the quasi-periodic solutions do not survive is concerned
to their basic frequency vectors, such that one or more of their components are resonant with one or
more of the frequencies introduced by the perturbation. In this case, it is said that the quasi-periodic
solution is destroyed, leaving a space where chaotic motion takes place.

A common way to treat time-periodic (or quasi-periodic) dynamical systems is to take recurrent
temporal sections by application of stroboscopic maps. Stroboscopic maps are a kind of temporal
Poincaré maps obtained by the evaluation of the flow of the system at a time equal to the period of
one of the basic frequencies of the system. Consequently, a continuous dynamical system becomes a
discrete dynamical system where the dimension of its phase space is reduced by one.

On the Poincaré map, a dynamical system like the BCP, that only has one basic frequency, becomes
autonomous and the simplest invariant solution that can be found on it is a fixed point. As mentioned,
higher dimensional objects can be found. In particular, we are interested in the two-dimensional quasi-
periodic solutions (2D invariant tori) of the flow that are seen as one-dimensional invariant curves in
the suitable defined stroboscopic map. Computing and analysing the stability of invariant curves on
maps is a covered topic. There are different methods for doing so, we especially highlight the works
[CJ00, GJ04], where a Newton method is applied to find the parametrization of the invariant curves
in terms of Fourier series, and [Jor01] where the linearised normal behaviour around these objects is
treated.

The methods introduced in those works are suitable for invariant curves or invariant tori of relatively
low dimension, since they involve not-sparse linear systems of dimension proportional to the dimension
of the phase space and to the number of harmonics used to approximate the invariant curve or torus.
Therefore, as the dimension of the torus increases, also does the dimension of the systems to work
with and hence, the computational effort, sometimes up to an unaffordable point.
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When the dimension of the invariant torus is high we can rely on other methods. The thesis of E.
Olmedo, [Olm07], is focused on obtaining invariant tori of stroboscopic maps of any dimension equal
or higher than 1 along with their stability at the same time. The process presented there requires the
torus to be reducible, such that the system we need to solve to find the high dimensional quasi-periodic
solutions is a sparse linear system of large dimension, that can be decoupled into many independent
small dimensional linear systems, what is very suitable for parallelising the computations.

Under generic conditions, if the invariant torus (or invariant curve) is hyperbolic, it has stable and
unstable invariant manifolds associated. Stable manifolds approach the quasi-periodic solutions for-
ward in time, meanwhile unstable manifolds do it backward in time. Therefore they constitute the
skeleton for the dynamical transport phenomena that we are interested in analyse.

The linear approximation to the stable and unstable invariant manifolds of a quasi-periodic solution
can be found as eigenfunctions of a suitable operator. For many scientific objectives, the linear
approximation of these manifolds is enough, however sometimes it is necessary to resort to a higher
order approximation. The parametrization method allows to write an approximation of invariant
objects up to any order, however, this involves high order derivatives of the system, whose computation
may suppose a delicate and burdensome task. In [GJJC+21], J. Gimeno et al. develop an automatic
differentiation method for computing the derivatives of a system on Poincaré maps leaning on the
jet transport technique. They apply this tool to compute the parametrization of the stable/unstable
invariant manifolds associated with fixed points of maps. In the present dissertation, we rely on the
tool developed by these authors to introduce and carry out a computational method to obtain the
high order parametrization of the invariant manifolds associated with invariant curves, as well as with
reducible invariant tori of high dimension, that are approximated as formal Taylor-Fourier expansions.

As announced, most of the effort of the present work is addressed to the analysis of the Earth-Moon
Bicircular Problem, where the system only has one perturbing frequency and where we focus on
invariant curves of a stroboscopic autonomous map. Besides, following the results of [Olm07] we
introduce a method to compute in parallel the high order parametrization of the stable/unstable
invariant manifolds of reducible tori of high dimension. Therefore, in spite of most of the contents are
devoted to a simpler case, we give the general basis of dynamical systems subjected to any number of
forcing frequencies, since we will need it for the last part of the dissertation.

Then, in Chapter 1 we aim to introduce all the definitions needed for the analysis of the dynamical
systems subjected to any number of quasi-periodic perturbations. It contains some basic definitions
and properties of quasi-periodic systems, including the treatment of temporal Poincaré maps, the
quasi-periodic solutions (or invariant tori) present on these maps and the high order parametrization
of the stable/unstable invariant manifolds associated with those tori that are partially hyperbolic.
This chapter finishes with the collection of all the computational details for finding invariant curves
and their hyperbolic invariant manifolds in autonomous maps. In particular we introduce the idea
of the fundamental cylinders, that are fundamental domains of the stable and unstable invariant
manifolds associated with invariant curves. These manifolds, in the map, can be parametrized by only
two parameters, what allows to visualise in a relatively simple way the general dynamics governed by
these manifolds.

Chapter 2 is devoted to the description of the Bicircular Problem for the Earth-Moon system under
the solar gravitational field perturbation. This model has been employed in previous works, then
we will summarise what is done so far and what are some of the uncovered topics. More precisely,
we have extensively treated the neighbourhood of the collinear unstable equilibrium point L3. Then,
in this chapter the horizontal and vertical families of quasi-periodic solutions around this point are
presented. Besides, we will talk about the quasi-periodic solutions near the triangular points since we
aim to extend the knowledge about them.

This general chapter about the Earth-Moon BCP also includes a detailed description of a non-
autonomous change of coordinates to translate the coordinates of a particle in the BCP into a more
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INTRODUCTION

realistic model. This will be very useful when making comparisons between the simplified and realistic
models.

The applications to the Earth-Moon BCP constitute the most extensive part of this dissertation and
they are presented in the following three chapters.

Chapter 3 is focused on the dynamical transport that takes place in this model through L3. It is
found that diverse trajectories connecting the Earth, the Moon and the outside Earth-Moon system
are governed by L3 dynamics. Big attention is paid to the trajectories coming from the Moon towards
the Earth, since they may give an insight of the travel that lunar meteorites perform before landing
in our planet. These results have been translated and compared with those of a realistic model based
on JPL (Jet Propulsion Laboratory) ephemeris. The comparisons indicate that the BCP is capable
of reproducing to a good extent the dynamics of the more realistic system. Also, we have found the
possible explanations of some appearing discrepancies between the results of the two models.

Chapter 4 is devoted to the study of the capture of a Near Earth Asteroid (NEA) using the stable
invariant manifolds of the horizontal family of quasi-periodic orbits around L3. A general strategy
involving the high order parametrization of the stable/unstable invariant manifolds is defined. Then
its application is carried out for the NEA 2006 RH120 arising promising results, including a possible
capture manoeuvre of the order of 20 m/s.

In Chapter 5, we present two other contributions to the BCP. The first one has the objective of studying
the unstable behaviour near the triangular points, meanwhile the second is devoted to a family of stable
invariant curves around the Moon that are close to a resonance, what aids the appearance of chaotic
motion. This chapter finishes our analysis in the framework of the BCP.

Chapter 6 is devoted to the study of dynamical systems under several time-periodic perturbations.
Here we explain how to effectively compute in parallel the high order parametrization of the stable and
unstable invariant manifolds associated with reducible invariant tori of any dimension. In addition,
the methods presented in this chapter are combined with multiple shooting techniques to accurately
compute highly unstable invariant objects. This chapter is a joint work with Dr. Gimeno and Dr.
Olmedo.

Finally, some conclusions and further work are discussed.
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Chapter 1

Invariant objects and stroboscopic
maps

This chapter is devoted to the concepts and some theoretical aspects we need to analyse dynamical
systems that depend on time in a quasi-periodic way. This kind of temporal dependence admits a
reformulation of the dynamical system in terms of angular variables instead of in terms of the time.

Once the dynamical system is expressed in terms of angular variables, the period associated with one
of them can be used to define a temporal Poincaré map that corresponds to a discretization of the
dynamical system that depends on one angular variable less.

Then, Section 1.1 describes the steps towards the discretization of the dynamical system. Section 1.2 is
focused on the quasi-periodic solutions, usually called invariant tori, that are present in those systems
and how to analyse the linear behaviour around them. For those quasi-periodic solutions that are
hyperbolic, the description of the high order parametrization of their stable and unstable invariant
manifolds is given in Section 1.3. There we talk about a computational tool known as “jet transport”,
that is really helpful for obtaining the high order derivatives of the map, required by the computation
of the high order parametrization.

Since most of the present dissertation concerns about two-dimensional invariant tori, that are seen as
one-dimensional invariant curves in the temporal Poincaré map, Section 1.4 contains all the details
for the computation of those quasi-periodic orbits as well as for their associated hyperbolic manifolds.
This section is the basis for the computations and analysis presented in Chapters 2, 3, 4 and 5.

The computational details for the case of reducible invariant tori of any high dimension are presented
at the end of the dissertation, in Chapter 6. For this reason, the first sections of the present chapter,
that constitutes the theoretical basis for both situations are developed for the most general case, i.e.
a dynamical system that depends on several angular variables.

1.1 Discretizing a quasi-periodic dynamical system

Let us consider a dynamical system defined by a differential equation,

ẋ = f(x, t), (1.1)

5



CHAPTER 1. INVARIANT OBJECTS AND STROBOSCOPIC MAPS

where t ∈ R denotes the time, x ∈ Rn denotes a n-dimensional vector and

f : Rn × R 7→ Rn, (1.2)

is a smooth enough function.

Definition 1.1.1. A function f as in (1.2), is said to be quasi-periodic if there exits a natural
number d ≥ 0 and a function F (x, θ) with θ ∈ Td+1,

F : Rn × Td+1 7→ Rn, (1.3)

such that F is periodic on each angular variable θj, with j = 0, ..., d and

f(x, t) = F (x, ωt), (1.4)

being ω = (ω0, ..., ωd) ∈ Td+1 the vector of basic frequencies of the system, whose components are
considered to be linearly independent over the rationals.

Then, assuming the function f to be quasi-periodic, the dynamical system can be expressed as{
ẋ = F (x, θ),

θ̇ = ω,
(1.5)

where θ = (θ0, ..., θd) ∈ Td+1. The simplest quasi-periodic solutions present on a system like this are
defined by the same frequencies than the vector of basic frequencies of the system, therefore they are
of dimension d + 1. Moreover, other quasi-periodic solutions of dimension higher than d + 1 can be
found on a dynamical system like this.

Let us consider a quasi-periodic solution of the continuous dynamical system with frequencies equal
to those of the vector of basic frequencies of the system. Then, there exists a function Ψ : Td+1 7→ Rn
that is a quasi-periodic solution, or invariant torus, of the dynamical system (1.5) and that has d+ 1
angular dimensions and basic frequency vector ω ∈ Td+1. Then, it must satisfy

φt
∗

t0 (Ψ(θ), θ) = Ψ(θ + (t∗ − t0)ω), (1.6)

where φt
∗

t0 denotes the flow of the system (1.5) from time t = t0 to t = t∗.

Since function F is periodic on each θj with j = 0, ..., d, one angular dimension can be reduced
by imposition of a suitable temporal Poincaré map that makes one of these angular variables to be
constant on the map. Then, applying this map as many times as we want to the continuous dynamical
system, it allows to show a discrete dynamical system of one angular dimension less. These kind of
temporal Poincaré maps are also known as stroboscopic maps.

Let P̃ be a diffeomorphism of an open set U ⊂ Rn,

P̃ : U 7→ U , (1.7)

such that
P̃ (x, θ) := φt0+δt0 (x, θ),

also written as
P̃ (x, θ0, ..., θd) := φt0+δt0 (x, θ0, ..., θd), (1.8)

where φt0+δt0 is the flow of the system (1.5) from time t = t0 to time t = t0 + δ, being δ = 2π
ω0

, that is
the period of the angular variable θ0. Then, when this map is applied to a quasi-periodic solution of
the system (1.5), Ψ with d+ 1 dimensions,

P̃ (Ψ(θ0, ..., θd), θ0, ..., θd) = Ψ(θ0, θ1 + ρ1, ..., θd + ρd), (1.9)
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1.2. INVARIANT TORI

the solution Ψ is rotated a certain quantity, called rotation number ρj =
2πωj

ω0
for j = 1, ..., d, on each

of its angular variables except on one, θ0, that has become constant over the map.

Let ϕ : Td 7→ Rn be a quasi-periodic solution on the map P̃ . It has d dimensions since it does not
depend on θ0:

ϕ(θ1, ..., θd) = Ψ(0, θ1, ..., θd). (1.10)

By defining a new map that also depends on an angle less

P (x, θ1, ..., θd) := P̃ (x, 0, θ1, ..., θd), (1.11)

and denoting with an upper bar (¯ ) the image under P , the system in (1.5) can be written as the
following discrete dynamical system {

x̄ = P (x, θ),

θ̄ = θ + ρ,
(1.12)

where now θ = (θ1, ..., θd) ∈ Td and ρ is also a d-dimensional vector where each component j = 1, ..., d,
corresponds to ρj =

2πωj

ω0
and satisfies that 〈κ, ρ〉 6= 2πk for κ 6= 0, where 〈·, ·〉 denotes the scalar

product, κ ∈ Zd and k ∈ Z.

1.2 Invariant tori

A quasi-periodic solution on the map (1.12), ϕ with dimension d, must satisfy the invariance condition
over the map

ϕ(θ + ρ) = P (ϕ(θ), θ). (1.13)

If d > 0 no fixed points can be found in a system like (1.12), and then the simplest invariant set that
can be found in that system is an invariant torus of dimension d, parametrized by the angle θ ∈ Td and
that must satisfy invariant condition (1.13). Besides, as already mentioned, other invariant objects of
dimension higher than d may be also found in this system.

Observation 1.2.1. If d = 0, the case of a dynamical system (1.5) that only depends on one angular
variable, the simplest solutions of the flow are one-dimensional (periodic orbits), that are seen as fixed
points of the map P , that in this case becomes autonomous. Then, the system can be written as

x̄ = P (x). (1.14)

Note that apart from the periodic orbits, one can find in this system quasi-periodic solutions of higher
dimension. For example, let us consider a two-dimensional torus of the flow, such that in the map
P it is seen as an invariant curve, torus of dimension one, ϕ : T 7→ Rn, that also must satisfy an
invariance condition over the autonomous map

ϕ(θ + ρ) = P (ϕ(θ)), (1.15)

with θ ∈ T and ρ ∈ T. This case is discussed in Section 1.4.

Let us continue with the exposition for the general case with d ≥ 0. In order to study the linear
behaviour around a quasi-periodic solution ϕ : Td 7→ Rn, it is usual to take a small displacement,
h ∈ Rn, from a point on the torus ϕ(θ) and apply the map:

P (ϕ(θ) + h(θ), θ) = P (ϕ(θ), θ) +DxP (ϕ(θ), θ)h(θ) +O(||h||2), (1.16)
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CHAPTER 1. INVARIANT OBJECTS AND STROBOSCOPIC MAPS

where P (ϕ(θ), θ) = ϕ(θ+ρ) and A(θ) = DxP (ϕ(θ), θ) is the Jacobian of the Poincaré map on ϕ, such
that h(θ) 7→ DxP (ϕ(θ), θ)h(θ).

Renaming h as x, the linear normal behaviour around the quasi-periodic solution can be expressed by
the linear skew-product {

x̄ = A(θ)x,

θ̄ = θ + ρ.
(1.17)

Definition 1.2.2. The system (1.17) is said to be reducible if and only if there exists a continuous
change of variables (real or complex) of the form x = C(θ)y such that (1.17) becomes{

ȳ = By,

θ̄ = θ + ρ,
(1.18)

where the matrix
B = C−1(θ + ρ)A(θ)C(θ), (1.19)

does not depend on θ. The matrix B is called the Floquet matrix and x = C(θ)y is the Floquet
transformation.

Notice that the Floquet matrix B is a constant matrix that contains the dynamical information of the
system in (1.17), and then, its eigenvalues give the linear stability around the quasi-periodic solution.

Remark 1.2.3. Analogously, the linearisation of the system around the quasi-solution Ψ : Td+1 7→ Rn
is written as

ẋ = a(Ψ, t)x (1.20)

where a(Ψ, t) = Dxf(Ψ(t), t). We will say that Ψ is a reducible quasi-periodic solution of (1.1) if there
exists a change of variables x(t) = c(Ψ, t)y(t) that transforms (1.20) into

ẏ = by, (1.21)

where b is a constant matrix.

Then, Floquet matrix B for transforming the system (1.17) into (1.18) corresponds to

B = exp{δb} (1.22)

where δ denotes the time used to define the temporal section P and b is the Floquet matrix for trans-
forming (1.20) into (1.21).

In [Jor01] a characterisation of the reducibility is introduced. This characterisation is based on the
analysis of the generalised eigenvalue problem to find couples of eigenvalue, λ, and eigenfunction, ψ,
(λ, ψ) ∈ C× (C(Td,Cn)/ {0}) that satisfy

A(θ)ψ(θ) = λTρψ(θ). (1.23)

Definition 1.2.4. Tρ is an operator that applies a rotation corresponding to the rotation vector,

Tρ : ψ(θ) ∈ C(Td,Cn) 7→ ψ(θ + ρ) ∈ C(Td,Cn).

It is said that two eigenvalues λ1 and λ2 of (1.23) are ρ-unrelated iff λ1 6= exp(iκρ)λ2, ∀κ ∈ Zd.
Then, the statement made in [Jor01], and proved there, is the following: if there exits n ρ-unrelated
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eigenvalues λ1, ..., λn for the generalised eigenvalue problem (1.23), then the system (1.17) can be
reduced to (1.18), where the n eigenfunctions are used to construct the matrix for the Floquet change.

If the quasi-periodic solution is reducible, the system to find it can be written in a diagonal form,
what makes it very suitable for its computational implementation in parallel, as it is described in
[Olm07, JO09] and as we will summarise in Chapter 6.

If on the contrary, we do not wish to (or we can not) use the reducibility of the quasi-periodic solution,
it is necessary to work with the system in (1.23) as a whole, that may or may not be of large dimension.
This case will be explained in detail for invariant curves in Section 1.4.2.

Besides, it may happen that some part or parts of the system may be reducible meanwhile others may
not. In this case it is possible to divide the system into different systems and apply the reducibility
only when it is convenient to do so, see [HdlL06a, HdlL07].

In any case, given a particular torus of the map, the analysis of (1.23) leads to a set of n ρ-unrelated
eigenvalues.

• If all the eigenvalues have modulus equal to 1, the torus is said to be totally elliptic.

• If all the eigenvalues have modulus different from 1 the torus is said to be totally hyperbolic.

• If some eigenvalues have modulus equal to 1 and others different from 1, the torus has centre
parts and saddle parts, respectively.

This dissertation is focused on those tori that have one real saddle part, i.e. a pair of real eigenvalues
(λs, λu) such that λs < 1 is a stable eigenvalue and λu > 1 is an unstable eigenvalue. Besides, if the
system is Hamiltonian, the relation λs = λ−1u holds.

For these partially hyperbolic tori, a stable (and an unstable) invariant manifold grows from the torus
in the stable (or unstable) eigendirection. They represent ways of approaching the invariant torus
and of getting away from it, generating a structure to study the dynamical transport through those
quasi-periodic solutions, what is of great interest for many applications.

1.3 High order parametrization of invariant manifolds

In this section we introduce the parametrization of stable and unstable invariant manifolds associated
with invariant tori that have a saddle part. Stable invariant manifolds, Ws, are defined by the set of
points that are sent towards the invariant tori forward in time, while unstable invariant manifolds,
Wu, are defined by the set of points that are sent towards the tori backward in time.

The pairs of stable or unstable eigenvalue and eigenfunction (λs,u, ψs,u) of (1.23) give the linear
approximation of the stable or unstable invariant manifolds, respectively. For a given θ ∈ Td, taking
a small displacement σ ∈ R (positive or negative) from the point on the torus ϕ(θ),

(θ, σ) 7→ ϕ(θ) + σψs,u(θ), (1.24)

gives the parametrization of the linearisation of the manifolds of the torus. This is an approximation
of the true invariant manifolds with an error of the order of |σ|2.

In order to improve the approximation of the invariant manifolds we make use of the well-known
parametrization method. C. Simó used this method in the 80’s to numerically compute approximation
of the invariant manifolds of equilibrium points of ODEs and of fixed points of maps (see also [FR81]).

9
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A salient feature of this method is that it can be used to prove the existence of invariant manifolds,
as shown by X. Cabrè, E. Fontic and R. de la Llave [CFdlL03a, CFdlL03b, CFdlL05]. In [HdlL06b],
authors consider the parametrization of stable and unstable invariant manifolds of an invariant curve
on a quasi-periodic map. Recent book [HCL+16] gives a very good exposition on the topic and collects
the main results.

The particular interest in the present dissertation regarded to the parametrization method is focused
on effective computation of the approximation of stable and unstable invariant manifolds associated
with invariant tori on quasi-periodic maps. High order derivatives of the map are involved in this task,
and to write their expressions by hand may not be feasible or at least, burdensome. To address this
problem, we follow the ideas introduced in [GJJC+21] developed an algorithm for the automatic differ-
entiation of Poincaré maps based in the commonly called “jet transport technique” [BM98, AFJ+08].
Some details about this tool are given at the end of this section, in Section 1.3.1. To stress the utility
of the combination of the parametrization method with the jet transport, [GJJC+21] includes some
examples for the invariant manifolds of fixed points of maps.

For a better understanding of the subsequent explanations about the parametrization of invariant
manifolds associated with invariant tori of stroboscopic maps, we briefly show the equivalent procedure
for the case fixed points of maps. Remember that we can only find fixed points of stroboscopic maps
in the case of autonomous maps (that is when d = 0), see Observation 1.2.1.

Invariant manifolds of fixed points of maps

Let us consider a hyperbolic fixed point, x0, of an autonomous map, P . We assume that there exists
a one-dimensional invariant manifold, that is C∞, associated with this fixed point and that it can be
written as a Taylor power expansion:

W (σ) = a0 + a1σ + a2σ
2 + a3σ

3 + ... =
∑
k≥0

akσ
k, (1.25)

where σ ∈ R.

Notice that, the dimension of the parameter σ is given by the number the hyperbolic directions
considered for the manifold. In this dissertation, only the case in which σ is one-dimensional is
considered. The case of invariant manifolds with several hyperbolic directions associated with fixed
points of Poincaré maps is detailed in [GJJC+21]. Notice that in that case, k is a multi-index.

When applying P to the invariant manifold, it must satisfy the invariance condition:

P (W (σ)) = W (λσ), (1.26)

being λ a hyperbolic eigenvalue of x0 to which eigenvector v ∈ Rn is associated.

Solving (1.26) order by order we find the expressions for the coefficients ak:

• Order 0: being W0 the truncated expansion up to order 0, we have that P (W0(σ)) = P (a0) =
a0 +O(σ) and W0(λσ) = a0. Then a0 corresponds to the fixed point, x0.

• Order 1: being W1 the truncated expansion up to order 1, we have that P (W1(σ)) = P (a0 +
a1σ) = a0 +DxP (a0)a1σ +O(σ2) and W1(λσ) = a0 + a1λσ.
Neglecting high order terms, and taking into account the eigenvalue problem for a fixed point
DxP (x0)v = λv, then a1 corresponds to the eigenvector of DxP (x0) of eigenvalue λ.

Assuming a0, ..., am−1 are known, we search for am. Then, being Wm the truncated expansion of the
manifold up to order m,

Wm(λσ) = Wm−1(λσ) + amλ
mσm, (1.27)
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must be equal to

P (Wm(σ)) = P (Wm−1(σ) + amσ
m)

= P (Wm−1(σ)) +DxP (Wm−1(σ))P (amσ
m) +O(σm+1)

= Wm−1(λσ) + bmσ
m +DxP (a0)amσ

m +O(σm+1),

where bm is the coefficient of the term of order m that comes from the evaluation of manifold up to
order m−1, Wm−1, over the map. Substituting this expression in (1.27) and neglecting terms of order
higher than m, the function am that we are looking for must verify

(DxP (a0)− λmId)am = −bm. (1.28)

This system has a solution meanwhile λm /∈ Spec(DxP (x0)).

Besides, in order to solve (1.28) it is necessary to know the vectors bm, for each order m ≥ 2. Here
is where the jet transport technique plays a crucial role to provide their value through automatic
differentiation of the map, see Section 1.3.1.

Invariant manifolds of invariant tori of maps

Now we want to extend these ideas to the parametrization of an invariant manifold (stable or unstable)
of a d-dimensional invariant torus ϕ of a temporal Poincaré map P , that has associated a hyperbolic
eigenvalue and eigenfunction pair (λ, ψ).

Therefore, let us write the parametrization of the invariant manifold of an invariant torus as a formal
Taylor power expansion:

W (θ, σ) = a0(θ) + a1(θ)σ +
∑
k≥2

ak(θ)σk, (1.29)

where ak are the functions at order k that depend on the angles along the torus, θ ∈ Td.

The invariant manifolds must satisfy an invariance condition under the map P :

P (W (θ, σ), θ) = W (θ + ρ, λσ). (1.30)

It is clear that the Taylor expansion of the invariant manifold under the map application can be
written as

W (θ + ρ, λσ) = a0(θ + ρ) + a1(θ + ρ)λσ +
∑
k≥2

ak(θ + ρ)(λσ)k.

Again, we obtain order by order the functions ak that are given by imposing the invariance condition
at each order k of the parametrization:

• Order 0: W0(θ, σ) = a0(θ), when applying to it the map:

P (W0(θ, σ), θ) = P (a0(θ), θ) = a0(θ + ρ) +O(σ) = a0(θ + ρ) +O(σ).

On the other side of the equality (1.30):

W0(θ + ρ, λσ) = a0(θ + ρ).

So it is clear that the parametrization function at order zero is the invariant curve itself, a0 = ϕ.

• Order 1: W1(θ, σ) = a0(θ) + a1(θ)σ, when applying to it the map:

P (W1(θ, σ), θ) = P (a0(θ) + a1(θ)σ, θ) = a0(θ + ρ) +DxP (a0(θ), θ)a1(θ)σ +O(σ2).
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On the other side of the equality (1.30):

W1(θ + ρ, λσ) = a0(θ + ρ) + a1(θ + ρ)λσ.

Neglecting the terms of order higher than 1 in σ, we have that

DxP (a0(θ), θ)a1(θ) = λTρa1(θ),

where Tρa1(θ) = a1(θ + ρ), recall Definition 1.2.4 for the operator Tρ. Looking at the Equa-
tion (1.23) we have that the function of the parametrization at order one corresponds to the
eigenfuntion: a1 = ψ.

• Order 2: W2(θ, σ) = a0(θ) + a1(θ)σ + a2(θ)σ2, when applying to it the map:

P (W2(θ, σ), θ) = P (a0(θ) + a1(θ)σ + a2(θ)σ2, θ)

= P (a0(θ) + a1(θ)σ, θ) +DxP (a0(θ) + a1(θ)σ, θ)a2(θ)σ2 +O(σ3)

= P (a0(θ), θ) +DxP (a0(θ), θ)a1(θ)σ + b2(θ)σ2 +DxP (a0(θ), θ)a2(θ)σ2 +O(σ3)

= a0(θ + ρ) + λTρa1(θ)σ + b2(θ)σ2 +DxP (a0(θ), θ)a2(θ)σ2 +O(σ3).

where b2 denotes a function of the term of order 2 appearing in the evaluation up to order 2
of the manifold at order 1, W1, under the Poincaré map and that depends on the angle vector
θ ∈ Td. On the other side of the equality (1.30):

W2(θ + ρ, λσ) = a0(θ + ρ) + a1(θ + ρ)λσ + a2(θ + ρ)λ2σ2.

Neglecting the terms of order higher than 2 in σ, we have that

b2(θ) +DxP (a0(θ), θ)a2(θ) = λ2Tρa2(θ).

So, function a2 satisfies the following system:

(DxP (a0(θ), θ)− λ2Tρ)a2(θ) = −b2(θ).

Now, let us assume that we know the parametrization up to order m − 1, Wm−1, i.e. we assume we
know the functions a0,...,am−1, we look for the function am involved in Wm

Wm(θ, σ) = Wm−1(θ, σ) + am(θ, σ)σm.

For this, we apply the Poincaré map to Wm

P (Wm(θ, σ), θ) = P (Wm−1(θ, σ), θ) +DxP (Wm−1(θ, σ), θ)am(θ)σm +O(σm+1)

= P (Wm−1(θ, σ), θ) +DxP (a0(θ), θ)am(θ)σm +O(σm+1)
(1.31)

The Taylor expansion of the invariant manifold Wm−1 under the Poincaré map is

P (Wm−1(θ, σ), θ) = Wm−1(θ + ρ, λσ) + bm(θ)σm +O(σm+1), (1.32)

where bm is a θ-dependent function at order m that comes from the image under P of the invariant
manifold at order m − 1. Now we insert this expression in (1.31) and impose invariance condition
(1.30) at order m:

bm(θ)σm +DxP (a0(θ), θ)am(θ)σm = am(θ + ρ)λmσm, (1.33)

or equivalently,
(DxP (a0(θ), θ)− λmTρ)am(θ) = −bm(θ). (1.34)

This is an equation that, under generic conditions of non-resonance, uniquely determines the function
am.
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If the dimension of the torus is low, functions ak can be found by solving a (may be large dimensional)
linear system in which the matrix DxP (a0(θ), θ) is involved. However, as the dimension of the torus
is higher, solving this system as a whole may not be feasible.

For this reason, when the dimension of torus is high it is very convenient to use the reducibility of
the system in order to look for expressions of the parametrization functions in terms of the constant
Floquet matrix B. We will show in Chapter 6 that once the system (1.34) is written in terms of B,
it offers a high degree of parallelism in its computational implementation.

1.3.1 Jet transport

Jet transport is a computational technique to compute high order derivatives of the flow of an ODE
with respect to initial data and/or parameters ([BM98, AFJ+08, AFJ+09, ADLBZB10, WZ12]). It is
based on using automatic differentiation [Gri00] on a numerical integrator of ODEs.

The main idea is to replace the basic arithmetic of the integrator by an arithmetic of (truncated)
formal power series in several variables. The formal power series codifies the value of a function, that
corresponds to the constant term, and their derivatives, that correspond to the coefficients of each
monomial up to the truncation order of the series. In [GJJC+21] it is shown that the propagation
of these power series through the numerical integration produces exactly the same results as the
integration of the corresponding high order variational equations of the ODE.

Since we aim to use this technique to obtain the high order derivatives of the stroboscopic map applied
to the invariant manifolds, that we express as truncated Taylor series

W (θ, σ) =
∑
k≥0

ak(θ)σk, θ ∈ Td,

we need to compute P (W ) also as a truncated Taylor series,

P (W (θ, σ), θ) =
∑
k≥0

bk(θ)σk, θ ∈ Td.

Then, to handle with ak and bk, we make use of the equivalence between trigonometric polynomials
and tables of values.

Notice that we will work at a prescribed order. For example, if we have the truncated invariant
manifold Wm−1 and we apply the jet transport up to order m, the algorithm computes the terms bk
up to order m.

Different numerical integrators can be modified to operate on power series and construct this compu-
tational tool. In particular, in this dissertation we make use of the numerical integrators implemented
by the authors of [GJJC+21], that used two basic integrators; the Taylor method [JZ05] and the
Runge-Kutta-Verner 8(9) [Ver78]. To be more precise, the Taylor integrator with the jet transport is
used in Chapters 4, 5 and 6 and the Runge-Kutta-Verner 8(9) with the jet transport is employed in
Chapter 6.

1.4 Computations in an autonomous map

This section is devoted to the case referred in Observation 1.2.1, that is, when the time dependence of
the system can be written in terms of just one angular variable and the system becomes autonomous
in the stroboscopic map P . This case usually corresponds to a time-periodic perturbation of an
autonomous system. Let us assume this is the situation. Then, the simplest invariant object of the
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flow that one can find is a periodic orbit that comes from an equilibrium point of the unperturbed
system. In particular, we are specially interested in the two-dimensional tori of the perturbed flow
that come from periodic orbits of the flow of the unperturbed dynamical system.

One of the two frequencies of the 2D-torus is used to define the stroboscopic map, P , such that under it
the invariant torus is seen as an one-dimensional invariant curve that satisfies the invariance condition

ϕ(θ + ρ) = P (ϕ(θ)), θ ∈ T,

as pointed in Observation 1.2.1.

This section starts with the explanations about the numerical methods followed for the computation
of invariant curves of stroboscopic maps and of the normal modes that give the linear stability around
them, Sections 1.4.1 and 1.4.2, respectively. This is a topic already covered in many works, hence
there are several procedures for these aims. In this dissertation we follow the ideas presented in
[CJ00, Jor01, GJ04], since the methods presented there do not require any particular property of the
invariant curve for their implementation; nor to belong to a Hamiltonian system, neither to satisfy
any symmetry, for example. Then we think they are robust enough to be implemented in the search
for any invariant curve.

In Section 1.4.3, we introduce the computation of a high order parametrization of hyperbolic invariant
manifolds associated with invariant curves of a stroboscopic map. In the stroboscopic map, these
manifolds are seen as two-dimensional invariant objects, since in this case θ ∈ T and we consider
σ to be one-dimensional. With these two parameters (θ, σ) a fundamental domain of the invariant
manifold can be defined. These domains are cylinder shaped for which we refer to them as Fundamental
Cylinders (FC). An interesting property of the FC is that they allow to give a generic view of the
dynamics governed by these manifolds in a relatively simple way, as we will explain in Section 1.4.4
and for this reason, they will be extensively used in the applications presented in this dissertation.

Finally, Section 1.4.5 is devoted to give some tests to check that the computations carried out are
correct and an analysis of the validity of the approximations.

Notice that for many steps of the computations presented here, the evaluation of the Poincaré map
is required, what is done by means of numerical integration. In particular, the computations in
autonomous maps presented here have been performed by means of a Taylor method [JZ05].

1.4.1 Invariant curves

Here we assume that the stroboscopic map has a smooth invariant curve, ϕ, parametrized by an angle
θ as θ ∈ T 7→ ϕ(θ) ∈ Rn and that satisfies the invariance equation (1.15). For this, the function
ϕ must be discretized. There is not an unique way of doing this, in the references we follow, this
discretization is done by means of a real (truncated) Fourier series in terms of the angle θ ∈ [0, 2π],

ϕ(θ) ≈ ϕ(0) +

N∑
κ=1

ϕ(c)
κ cos(κθ) + ϕ(s)

κ sin(κθ), (1.35)

being ϕ(0), ϕ(c)
κ , ϕ(s)

κ with κ = 1, ..., N the Fourier modes and N is the order of truncation of the series,
such that 2N + 1 is the total number of Fourier coefficients considered for each of the n dimensions
of the phase space.

Let us now define the function F as

F = P (ϕ(θ))− ϕ(θ + ρ) ≡ 0, (1.36)

and we look for the set of coefficients ϕ(0), ϕ(c)
κ , ϕ(s)

κ of ϕ that verifies this expression. This is done
by application of a Newton method.
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Known rotation number

As a first case, we assume that we know the rotation number of the invariant curve we want to
compute. Then, we have m = (2N + 1)n unknowns corresponding to the Fourier coefficients, 2N + 1,
needed for each of the n coordinates, and hence, we need m equations to find the unknowns. For this,
we evaluate each of the n dimensions of the equation (1.36) in a mesh of 2N + 1 angles,

θs =
2πs

2N + 1
, with s = 0, ..., 2N, (1.37)

such that, without loss of generality, the function F is considered to be the set of evaluations of (1.36)
on θs with s = 0, ..., 2N , this is F = {Fs}. Therefore it has dimension m and its Jacobian DF is an
m×m matrix that contains the derivatives of the function F with respect to the Fourier coefficients

∂Fs

∂ϕ(0)
= DxP (ϕ(θs))

∂ϕ(θs)

∂ϕ(0)
− ∂ϕ(θs + ρ)

∂ϕ(0)
= DxP (ϕ(θs))− Id,

∂Fs

∂ϕ
(c)
κ

= DxP (ϕ(θs))
∂ϕ(θs)

∂ϕ
(c)
κ

− ∂ϕ(θs + ρ)

∂ϕ
(c)
κ

= DxP (ϕ(θs)) cos(κθs)− Id cos(κ(θs + ρ)),

∂Fs

∂ϕ
(s)
κ

= DxP (ϕ(θs))
∂ϕ(θs)

∂ϕ
(s)
κ

− ∂ϕ(θs + ρ)

∂ϕ
(s)
κ

= DxP (ϕ(θs)) sin(κθs)− Id sin(κ(θs + ρ)),

(1.38)

where Id is the identity matrix of dimension n× n.
Observation 1.4.1. Notice that here we have a problem of lack of uniqueness, since given a
particular parametrization ϕ(θ) of an invariant curve, and being α any angle, ϕ(θ + α) is also a
parametrization of the same curve.

A way to avoid this lack of uniqueness situation is to fix the value of one component of ϕ at a specific
angle θ ∈ [0, 2π]. For this, we add an extra equation to the system, that is typically set for θ = 0,
such that the Fourier series discretizing the curve is reduced to

ϕ(θ = 0) = ϕ(0) +

N∑
κ=1

ϕ(c)
κ ,

and their derivatives with respect to the Fourier coefficients (1.38) are as simple as ones and zeros.

Note that this extra equation implies that the linear system to solve is rectangular, of dimensions
(m+ 1)×m, instead of square. In other words, we have one more equation than unknowns. To solve
this system we use Gaussian elimination with partial pivoting. Therefore, the last (extra) equation
should be redundant so it is ignored for the backward substitution process.

Unknown rotation number

In the case the rotation number is unknown, the number of unknowns is increased by one, m+ 1, and
we need the derivatives of F with respect to ρ:

∂F

∂ρ
= −∂ϕ(θ + ρ)

∂ρ
=

N∑
κ=1

[
ϕ(c)
κ κ sin(κ(θ + ρ))− ϕ(s)

κ κ cos(κ(θ + ρ))
]
. (1.39)

To solve the lack of uniqueness here, it is necessary to add another extra equation, typically one that
fixes the value of another component of ϕ at some angle θ.

In this case, the dimensions of the system are (m + 2) × (m + 1), since it is composed by the m
equations for Fs plus the two equations devoted to fix two coordinates, and the number of unknowns
is m+ 1. Notice that the derivatives of the extra equations are needed, not only with respect to the
Fourier coefficients but also with respect to the rotation number.
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Seed for the Newton method

In order to start the numerical method we need some approximate values of the Fourier coefficients
(ϕ(0), ϕ

(c)
κ , ϕ

(s)
κ ) for κ = 1, ..., N that discretize the invariant curve and an approximate value of ρ if it

is not known.

Here, we distinguish between two situations:

• When the invariant curve grows from an elliptical fixed point p of the map P , we use the point
p and its elliptical eigenvector, vr + ivi with i being the imaginary unit, to give the seed for ϕ as

ϕ(θ) = p+ δ(vr cos θ + vi sin θ), (1.40)

where δ is a small value corresponding to the distance from the point p to the invariant curve.
In this case, the approximation to the rotation number, if needed, is given by the argument of
the elliptical eigenvalue.

• If we aim to compute an invariant curve coming from a periodic orbit in the unperturbed system,
we can use the discretization of the periodic orbit as seed for the invariant curve and take its
frequency as the frequency of the invariant curve, that needs to be scaled according to the
temporal Poincaré map defined. Sometimes the perturbation acts so strongly on this invariant
curve that we can not go directly from the unperturbed system to the perturbed one, and then
we make a continuation between both systems, as we will see in Section 5.2.

Continuation of the family of invariant curves

When the dynamical system is Hamiltonian, it is usual that the quasi-periodic solutions present on
them appear in families. In this case, it may be of interest to compute the family of invariant solutions
and for this, a continuation method is usually employed.

Again, there is not a unique way of performing the continuation of the family of invariant curves. The
procedure we have follow consists on using the aforementioned methods to obtain the parametrizations
of two close invariant curves, and employ them to compute by linear extrapolation a precise seed for
the parametrization of a new invariant curve. If the rotation number is unknown, the seed for the new
one is obtained likewise. Let us assume it is not known in order to describe a more generic procedure.

As usual in a continuation scheme, we refer to each single curve as a point in the family of invariant
curves. Then, in order to have a uniform distribution of points in the continuation curve, we ask to
the new point in the continuation curve, ϕj , to be at some distance δ of the previous point, ϕj−1,

δ2 = ||ϕj − ϕj−1||2 + (ρj − ρj−1)2

= |ϕ(0)
j − ϕ

(0)
j−1|

2 +

N∑
κ=1

(
|ϕ(c)
κ,j − ϕ

(c)
κ,j−1|

2 + |ϕ(s)
κ,j − ϕ

(s)
κ,j−1|

2
)

+ (ρj − ρj−1)2.
(1.41)

This condition replaces one of the extra equations used for fixing one component of ϕ, so that the
dimensions of the linear system do not vary for the continuation problem. Notice that if the rotation
number of the invariant curve is known, the term corresponding to the difference between rotation
numbers is not needed in Equation (1.41).

Then, with the seed and the set of equations m+ 2 for m+ 1 unknowns (or m+ 1 for m unknowns),
we look for zeros of Equation (1.36) and the extra equations added. If more than 3 or 4 steps of
Newton method are required to achieve a certain tolerance, for example 10−12 or 10−10, the step of
continuation δ is decreased.
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Every time a new invariant curve is obtained, the error of its parametrization as a Fourier series is
estimated by checking the invariance condition (1.15) on a much finer mesh, say 20 or 100 times finer
than the mesh used to solve (1.36). The maximum difference gives an estimation of the error of the
computed curve,

E(ϕ, ρ) = max
θ∈T
|ϕ(θ + ρ)− P (ϕ(θ))|.

If this value is bigger than a prescribed threshold, again something like 10−12 or 10−10, the number
of Fourier modes (i.e., the value of N) is increased and the invariant curve is computed again.

1.4.2 Stability of invariant curves

Once we have an approximation of an invariant curve, we want to compute an approximation of
its normal modes. As explained in Section 1.2, this is done by looking for pairs of eigenvalue and
eigenfunction (λ, ψ) ∈ C× (C(T,Cn)/ {0}) that satisfy the generalised eigenvalue problem (1.23). For
the numerical resolution of said problem, it is rewritten as

T−ρA(θ)ψ(θ) = λψ(θ), (1.42)

where in this case of an autonomous map, A(θ) = DxP (ϕ(θ)), and T−ρ is the inverse of the operator
Tρ, that is, it applies a rotation equal to −ρ, see Definition 1.2.4. Therefore, in order to study the
linear behaviour around the invariant curve, we have to analyse the spectrum of the matrix T−ρA(θ).

Remember that the invariant curve is approximated by a Fourier series, and notice that the eigenvalue
problem can be also solved in terms of the Fourier coefficients, so that the obtained eigenfunctions are
also approximated by Fourier series truncated at order N .

The discretization of the matrix A has dimensionsm×m, recall thatm = n(2N+1), and it corresponds
to the derivative of the following composition:

ϕ(0)

ϕ
(c)
1

ϕ
(s)
1

...

ϕ
(c)
N

ϕ
(s)
N


M−→



ϕ(θ0)

ϕ(θ1)

ϕ(θ2)

...
ϕ(θ2N−1)

ϕ(θ2N )


P−→



P (ϕ(θ0))

P (ϕ(θ1))

P (ϕ(θ2))

...
P (ϕ(θ2N−1))

P (ϕ(θ2N ))


M−1

−−−→



ϕ̄(0)

ϕ̄
(c)
1

ϕ̄
(s)
1

...

ϕ̄
(c)
N

ϕ̄
(s)
N


. (1.43)

Such that, in the practice, A = DM−1 ·DxP ·DM , whereM denotes the evaluation of the parametriza-
tion of the invariant curve on a mesh of angles θs like (1.37), and M−1 the inverse Fourier transfor-
mation.

Notice that following the same discretization for the operator Tρ, Definition 1.2.4, it can be written
as a block diagonal matrix where each block, (Tρ)κ, is just a 2 × 2 matrix whose role is to apply a
rotation equal to ρ to each pair of coefficients (ϕ

(c)
κ , ϕ

(s)
κ ),

(Tρ)κ =

(
cos(κρ) sin(κρ)

− sin(κρ) cos(κρ)

)
. (1.44)

Since Tρ is orthonormal, its inverse (involved in (1.42)) corresponds to its transpose.

Generally, one-dimensional invariant curves do not involve very large linear systems, since the dimen-
sions of these systems just depend on the dimension of the phase space n and the number of Fourier
coefficients, 2N + 1. For this reason, it is feasible to look directly for the normal modes of the matrix
T−ρA. The solution of this system involve m eigenfunctions associated with m eigenvalues, that are
disposed in concentric circles around the origin in the complex plane.
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On the accuracy of the normal modes

The m pairs of eigenvalue and eigenfunction (λj , ψj) with j = 1, ...,m obtained from the resolution
of (1.42) in terms of Fourier series, do not have the same accuracy. In fact there is a maximum of n
pairs of accurate eigenvalues and eigenfunctions and the rest of the pairs correspond to rotations of
accurate ones. As a result of this, the m obtained eigenvalues are disposed in at most n concentric
circles with centre at the origin of the complex plane.

Let us write the eigenfunction ψ of the eigenvalue λ like ψ(θ) to stress its dependence on the angle
θ. As shown in [Jor01], exp(−iκθ)ψ(θ) is also an eigenfunction of eigenvalue exp(iκρ)λ of the same
system, being i the complex unit. Then, considering ψ to be the set of m possible versions of the same
eigenfunction ψ(θ) =

∑
j ψj exp(ijθ), the p-norm || · ||(p)

||ψ||(p) =
∑
j∈Z
|ψj ||j|p, (1.45)

seems to be a good indicator of the decay of the Fourier series for some p ∈ N, typically p = 1 or
p = 2.

Since the last terms (or tails) of a Fourier series gives an estimation of the error in the discretization
of a function, we can use this norm to study the tails of the m eigenfunctions obtained as truncated
Fourier series and with this, we can identify the most accurate eigenpairs.

1.4.3 Invariant manifolds

As introduced in Section 1.3, the approximation of the hyperbolic invariant manifold associated with
a torus, in this case with an invariant curve, can be written as a truncated formal Taylor expansion:

WK(θ, σ) ≈
K∑
k=0

ak(θ)σk, (1.46)

where K denotes the maximum order considered for the parametrization. Therefore, the error in the
approximation of the invariant manifold written this way depends on the first term neglected, i.e. it
is of the order of |σ|K+1.

Observation 1.4.2. Notice that, for the linear approximation of the invariant manifold, K = 1,
only the invariant curve and its associated eigenfunction are needed:

W1(θ, σ) ≈ ϕ(θ) + σψ(θ), (1.47)

since a0 = ϕ and a1 = ψ. Then, given a small value of σ, positive or negative, this expression leads
to an approximation of the invariant manifold with an error of order |σ|2.

The practical interest of the high order approximation of these manifolds is that, the higher is the
order K, the larger may be the value chosen for σ that ensures a good enough approximation of the
manifold. Consequently, the globalisation of the invariant manifolds through numerical integration
can start further away from the torus, reducing significantly the integration time.

Therefore, if we are interested in computing the approximation of an invariant manifold up to any
order K ≥ 2, and assuming that the approximations to the invariant curve and to its eigenfunctions
are known, the parametrization functions ak for 2 ≤ k ≤ K have to be computed. In Section 1.3 we
reach the following expression to find ak assuming the functions a0, ..., ak−1 are known

bk(θ)σk +DxP (a0(θ))ak(θ)σk = ak(θ + ρ)λkσk,
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which can be rewritten as
(DxP (a0(θ))− λkTρ)ak(θ) = −bk(θ). (1.48)

We recall that the θ-dependent function bk corresponds to a term of order k that arises from the
evaluation under the Poincaré map of the invariant manifold up to order k− 1. Then this function is
unknown and must be computed in order to find the corresponding function ak.

The jet transport algorithm applied to an invariant manifold up to order k−1 gives the coefficients of
order equal and higher than k. Therefore, we will use this tool to numerically compute each function
bk at order k and once we have it, we face a linear system that can be again discretized and solved in
terms of the Fourier coefficients, so that each function ak is approximated by a real truncated Fourier
series. For this reason, we refer sometimes to expansion (1.46) as truncated formal Taylor-Fourier
expansion.

Since this particular technique to compute the high order approximations of the invariant manifolds of
invariant curves of a Poincaré map is a new procedure, we give the details of the numerical algorithm.

Our algorithm for computing the parametrization functions ak for k ≥ 2 of an invariant manifold of
an invariant curve up to order K starts by defining a mesh of angles along the curve: θj = 2πj/`,
being ` the number of points of the mesh such that j ∈ [0, `] and θj ∈ [0, 2π], and to apply the jet
transport to each of these points in order to obtain the values bk(θj). Notice that, the jet transport
algorithm applied to an invariant manifold up to order k− 1 could give the coefficients of order equal
and higher than k, but only order k is of interest at each application.

Once we have the table of values (bk(θj), θj), we compute the corresponding Fourier series for the bk
function, and solve one linear system (1.48) in terms of Fourier coefficients to find ak as Fourier series.

For convenience we start the computations with ` = 2N + 1, so that functions bk and ak are approxi-
mated using the same number of modes than for discretizing the invariant curve and its eigenfunction.
However, it may happen that this number, that is good enough for approximating the invariant curve
and the eigenfunction, does not approximate accurately some of the ak for k ≥ 2, and therefore it is
necessary to add modes to the Fourier series in order to improve the approximation of the invariant
manifold.

To avoid solving the linear system that gives the function ak with low precision, we note that the
accuracy of each ak is related to the accuracy of corresponding bk. Then, when we compute the
Fourier series of bk we check the euclidean norm of its last two modes to be below some tolerance. If
it is not, we re-compute the table of values (bk(θj), θj) for a larger number of points (higher value of
`) such that the number of modes employed in the approximation of bk is increased, as well as the
number of modes employed in the approximation of ak.

Let us now summarise our numerical implementation. The starting point is a truncated Fourier
series that approximates the invariant curve (ϕ) and a truncated Fourier series that approximates
the eigenfunction (ψ), a0 and a1, respectively, what gives the linear approximation to the manifold.
Moreover, we need the (2N + 1)n × (2N + 1)n matrix that contains the matrix flow DxP (a0) (this
is the same matrix that appears in the Newton method and in the stability computation (1.23)). As
before, 2N + 1 is the number of Fourier coefficients and n the dimension of the dynamical system.

Note that at each step we have to evaluate P (Wm), where Wm is a Taylor-Fourier series truncated
at order m. As the jet transport technique only allows to evaluate P on power series, we compute
{W (θj , σ)}j being θj a suitable equispaced mesh of values of θ. Each W (θj , σ) is now a power series
so we can compute P (W (θj , σ)) and, using a Fourier transform, we obtain P (Wm).

The computation of the coefficients ak, k ≥ 2, is done recurrently order by order. Let us assume that
we know Wm−1 and we want to compute Wm. Also, assuming that we have computed and stored
the matrix (of size (2N+1)n×(2N+1)n) DxP (a0(θ), we summarise the algorithm in a schematic way:
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Algorithm 1.4.3 (High order parametrization of the invariant manifold of an invariant curve).

1. Evaluate Wm−1(θj , σ) on a mesh {θj}`−1j=0 of ` points (θj = 2πj/`, ` = 2N + 1), to obtain `
polynomials of degree m− 1.

2. Apply the jet transport algorithm (working with polynomials of degree up to m) to each of the `
polynomials Wm−1(θj , σ) to obtain the table of values (θj, bm(θj)) from the function of degree
m.

3. Apply a Fourier transformation to obtain bm. We use as an estimate of the error the size of the
last terms of these Fourier coefficients. If this estimate is not small enough, we repeat steps 1
and 2 with a larger value of `.

4. Solve the linear system in (1.48) to obtain am, and then Wm = Wm−1 + amσ
m.

These steps are applied up to the desired degree for the invariant manifold.

Stable invariant manifold computation

This algorithm is valid for computing both stable and unstable invariant manifolds. However, it must
be taken into account that when the stroboscopic map is applied forward in time to a stable manifold,
it approaches the invariant curve and also the unstable invariant manifold, affecting the accuracy
of its computation. Then, in order to minimise the error propagation in the computation of the
approximation of the stable invariant manifold, it is convenient to find its parametrization functions
by application of the inverse map P−1.

The reason for this better numerical behaviour is that the stable manifold is a repelling manifold
under the stroboscopic map applied forward in time, P , but it is not repelling under its application
backward in time P−1. Likewise, the unstable manifold is repelling under P−1 and not repelling under
P .

The procedure to find the parametrizating functions ak of the stable manifold when applying the
inverse Poincaré map is basically the same as the one already explained. In this case, we impose that
invariant manifolds satisfy the invariance condition under P−1:

P−1(W (θ, σ)) = W (θ − ρ, σ
λ

), (1.49)

at each order k.

Obviously, order zero of the parametrization is, as before, the invariant curve and the order one
corresponds to the stable eigenfunction. In general, assuming that we already know the functions up
to order m− 1, we look for the function am(θ) that satisfies the system given by:

(DxP
−1(a0(θ))− λ−mT−ρ)am(θ) = −b−m(θ) m ≥ 2, (1.50)

where DxP
−1(a0) is the Jacobian matrix corresponding to apply the inverse of the Poincaré map to

the invariant curve and b−m denotes the function at order m of the evaluation of the manifold up to
order m− 1 under the inverse Poincaré map, that is obtained through the jet transport technique as
in the previous case.

The whole algorithm to follow is exactly the same as the detailed in previous section, but now integra-
tions backwards in time, the operator T−ρ and Equation (1.50) are involved instead of the integrations
forward in time, Tρ and Equation (1.48).
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1.4.4 Fundamental cylinders

Invariant manifolds are composed by trajectories that may behave differently, although they belong
to the same invariant object. This happens with the invariant manifolds associated with fixed points,
periodic orbits or invariant tori. For this reason, it is usual to use a fundamental domain for the
invariant manifolds in order to have a complete representation of the manifold.

Due to their nature, an invariant manifold associated with an invariant curve can be seen as a cylinder,
parametrized by the same angle as the invariant curve (θ) and a parameter to move along the manifold
(σ). Looking at these parameters, the dynamics on this cylinder is very simple: the point corresponding
to the parameter values (θ, σ) is mapped to (θ + ρ, λσ) through P . Therefore, we can define a
fundamental domain of the approximation of the invariant manifold as the image of T× [σ0, λσ0], such
that the parametrization of the manifold that generates, under iteration of the map P , the complete
manifold. We refer to such set as Fundamental Cylinder (FC).

Remark 1.4.4. For sake of reducing numerical errors, the FC corresponding to the unstable invariant
manifold is defined by application of the direct map P , covering values for σ ∈ [σ0, λuσ0]. Meanwhile,
for the stable invariant manifold, we consider that the point with parameter values (θ, σ) is mapped
to (θ − ρ, λ−1σ) through P−1, so that, for the definition of the FC of the stable manifold, we impose
σ ∈ [σ0, λ

−1
s σ0]

For simplicity, we continue the discussion focusing ourselves on the unstable manifold. An approxi-
mation for a curve of the fundamental cylinder is given by WK(θ, σ0), where K is the order of the
approximation and σ0 is a sufficiently small value. If we choose this curve as the “lower part” of the
cylinder, then the “upper part” is given by WK(θ, λuσ0). Note that neglecting the rotation of the
angle for the upper curve does not affect to the definition of the fundamental domain. We write the
parametrization of the fundamental cylinder for the unstable invariant manifold,

Wu
K(θ, σ) =

K∑
k=0

auk(θ)σk,

as the following expression:

(θ, τ) ∈ [0, 2π]× [0, 1] 7→ Zu(θ, τ) =

K∑
k=0

auk(θ)((1 + τ(λu − 1))σ0)k, (1.51)

where τ ∈ [0, 1] is a parameter such that when τ = 0, Zu(θ, τ) parametrizes the lower curve,Wu
K(θ, σ0),

and when τ = 1, it parametrizes the upper curve, Wu
K(θ, λuσ0).

The FC is used as starting place for the numerical integrations used to extend the manifold as much
as needed. The points in the FC of the unstable manifolds are globalized by numerical integration
forward in time meanwhile the points in the FC of the stable manifolds are globalized by numerical
integration backward in time.

Note that the value σ0 has to be chosen small enough such that this representation of the FC is accu-
rate, but large enough to minimise the integration time needed to extend the manifold by numerical
integration. The choice of σ0 is discussed in the next section.

For the fundamental cylinder of the stable invariant manifold,

W s
K(θ, σ) =

K∑
k=0

ask(θ)σk,

we use

(θ, τ) ∈ [0, 2π]× [0, 1] 7→ Zs(θ, τ) =

K∑
k=0

ask(θ)((1 + τ(1/λs − 1))σ0)k. (1.52)
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Again, Zs(θ, τ) parametrizes the lower curve, W s
K(θ, σ0), when τ = 0, and when τ = 1 it parametrizes

the upper curve, W s
K(θ, λ−1s σ0).

Once we have the parametrization of the fundamental cylinders in terms of the two parameters, we
can make plots of meshes on (θ,τ) and colour each point according to some magnitude of interest. For
example, according to their fate. This allows to visualise in an easy way the origin of the trajectories
in the stable FC before approaching the invariant curve, of the destination of the trajectories in the
unstable FC after leaving that same curve. This idea will be very helpful in Chapters 3, 4 and 5.

1.4.5 Accuracy and tests

In this section we discuss about the estimation of the domain of validity of the computed parametriza-
tion for a given the degree K, and about a test used to check the correctness of the results. We recall
that, applying the Algorithm 1.4.3 we approximate the functions ak, up to some order K, as a trun-
cated Fourier series,

ak(θ) ≈ a(0)k +

N∑
κ=1

a
(c)
k,κ cos(κθ) + a

(s)
k,κ sin(κθ),

where a(0)k , a(c)k,κ and a
(s)
k,κ with κ = 1, ..., N denote the Fourier coefficients of the parametrization

function at order k, ak.

As a general rule, we have that the higher the degree of the parametrization K and the number of
Fourier modes N , the more accurate is the approximation of the parametrization of the invariant
manifold W (θ, σ) =

∑K
k=0 ak(θ)σk. However, when K is large enough, the gain of domain of validity

provided by a new degree K + 1 of the parametrization does not compensate the computational cost
needed to obtain this new degree.

To fix the discussion, let us focus on the unstable manifold (a similar discussion is valid for the stable
one), and let us also assume that the value N has already been chosen to have the required accuracy,
may be depending on K (see the discussion in Section 1.4.3). A fast error estimate for the truncated
expansion of the manifold follows from the size of the last computed term (the one of degree K),

||aK ||1 |σ|K ≈ ε, ||aK ||1 = |a(0)K |+
N∑
κ=1

|a(c)K,κ|+ |a
(s)
K,κ|.

We have to choose a value σ0 > 0 such that the parametrization of a fundamental domain as in (1.51)
is accurate up to λuσ0. Hence, from the previous formula we obtain that

σ̄0 ≈
1

λu

(
ε

||aK ||1

)1/K

. (1.53)

Therefore, given an accuracy ε, we compute the value of σ̄0 and use some σ0 ≤ σ̄0 for computing the
approximation to the FC. Notice that, in the presence of symmetries, checking only the last order of
the parametrization may cause problems since it could vanish depending on its parity. In this case
the last two terms of the expansion have to be used.

In order to check the final accuracy of the approximation of the invariant manifold we compare the
error of the invariance condition for the parametrization of the invariant manifold, W (θ, σ), at a given
angle θ, but at two different values of σ, say σ1 and σ2 = σ1/2. Obviously, if the parametrization of
the manifold has been computed up to order K, the truncation error depends on the power K + 1 of
the parameter σ. Then, for σi with i = 1, 2, we would have that

εi = |P (WK(θ, σi))−WK(θ + ω, λσi)| ≈ cσK+1
i ,
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where c denotes a constant. The relation between the two errors is

ε1
ε2
≈ σK+1

1

(σ1

2 )K+1
≈ 2K+1.

Therefore, we compute the quantity
log(ε1/ε2)

log(2)
,

and check that the result is close to K + 1. This test has been passed for the manifolds used in this
dissertation.
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Chapter 2

The Bicircular Problem

The main objective of this dissertation is to contribute to the study of the motion of a particle
in the Earth-Moon system and to develop tools for its proper understanding. As explained in the
Introduction, there are several simplified models for describing the motion of a small particle in an
astrodynamical system, being the most extended one the Restricted Three-Body Problem (RTBP).
This model describes the motion of an infinitesimal particle subjected to the gravitational fields of
two punctual massive bodies, called the primaries, that are assumed to revolve in circular motion.

Among the modifications of this simplified model, we are interested in the Bicircular Problem (BCP).
This model assumes that there is a third punctual massive body revolving in circular motion around
the original set up of the RTBP, such that the gravitational field of this third body affects the motion
of the particle but not the motion of the primaries. For this, the BCP can be understood as a
time-periodic perturbation of the RTBP.

As far as we are concerned, in the neighbourhood of the Earth-Moon system the gravitational effect
of the Sun is too important to be negligible. For this reason we want to take this effect into account
and probably the easiest way of doing so is through a BCP that considers the Earth and Moon as
primaries and the Sun as the forcing body.

Besides, a typical issue with any simplified model is the reliance on them to know if the insight about
the dynamics they provide is close enough to the dynamics in real systems. Here, we have particular
interest in making comparisons between the simplified model that we use and a realistic one. Then, we
must notice an interesting peculiarity of the Sun-Earth-Moon BCP as we consider it. Its dependence
on time gives a relation between the relative positions of the three massive bodies at any particular
epoch, as we will detail. Since we are going to implement a non-autonomous change of coordinates,
the BCP time-dependence will help us to choose the right epoch at which to apply the change.

Before delving into the BCP, let us give some preliminary concepts and general information about the
RTBP in order to make the explanations clearer. It is well-known that in the RTBP there are five
equilibrium points Li with i = 1, ..., 5, where in a few words, collinear points L1 and L2 are highly
unstable, collinear point L3 is moderately unstable and the triangular points, L4 and L5, are linearly
stable for the Earth-Moon mass parameter.

Stable invariant objects in dynamical systems always attracts lots of attention because of the proper
and simple interest on the dynamics around them and also because of the stable regions that are
usually found in their vicinities, that are target for many applications. In particular, the stable
regions around the triangular points in the RTBP have been studied in different works, we highlight
[GDF+89, Sim89, CG91]. Under the perturbation introduced by the solar gravity field of the Earth-
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Moon BCP, L4 and L5 become slightly unstable, [SGJM95], as we will see. In spite of this, [Jor00]
showed how effective stable regions can still be found in their neighbourhoods and also how these
regions can also be found in a realistic model based on JPL (Jet Propulsion Laboratory) ephemeris.

Unstable invariant objects are of great interest too, since their stable and unstable invariant manifolds
suppose mechanisms for approaching these objects and getting away from them. Due to its strong
instability and low energy level, the dynamics in the neighbourhoods of L1 and L2 have been objective
of many research works since in the frame of the RTBP, only an object with such low energy levels can
enter or leave the system, see the structure of the forbidden regions in Section 4.7 in [Sze67]. Therefore,
many studies have pointed out the role of L1 and L2 and their associated invariant manifolds to explain
the behaviour of Near Earth Objects (NEOs), or Asteroids (NEAs). Hou et al. explain in [HXSW15]
that the typical way for a NEO to enter the Earth-Moon system is first through Sun-Earth L1 and L2,
and secondly, through Earth-Moon L1 and L2 for low energy trajectories, or directly without passing
through any equilibrium point for high energy trajectories. Many other authors have also analysed
these two collinear points for this purpose, for example, [LRMG14, SNU18]. However, as far as we
know, none of them have pointed to L3, in spite of having the same kind of stability. It is known that
the L3 equilibrium point in the RTBP has stable and unstable manifolds associated that approach the
small primary giving rise to a horseshoe structure [BO06]. In [BMO09] the homoclinic connections of
Lyapunov orbits around L3 are computed numerically. Concerning to this family of Lyapunov periodic
orbits around L3, it was proved that their related invariant manifolds have transversal intersections,
see [SSST13] for more details.

In the frame of the BCP Earth-Moon system, collinear equilibrium points L1 and L2 have also been
extensively studied. For the case of L1 we remark [JJCR20] and for the case of L2, due to the
appearance of a 2:1 resonance between the natural frequency of Lyapunov orbits around L2 and the
frequency of the Sun, it was required a major effort to understand its dynamics in the BCP so we
can find many references, from the earlier works of M.A. Andreu [And98, And02] to recent ones
[JCFJ18, RJJC21]. Nevertheless, no major attention has been paid to L3 dynamics in the Earth-
Moon BCP frame until now. Therefore, this dissertation is mainly focused on the L3 dynamical
role in the Earth-Moon system under the gravitational effect of the Sun. In addition, some other
contributions to the BCP devoted to analyse the instability of the triangular points and a family of
stable quasi-periodic solutions around the Moon are also presented in this dissertation.

The structure of this chapter is as follows, Section 2.1 describes the Restricted Three-Body Problem,
applied to the Earth-Moon system, that introduces the basis for the Earth-Moon Sun-perturbed Bi-
circular Problem, detailed in Section 2.2. Section 2.3 and 2.4 are devoted to the dynamical substitutes
of L3 and of the triangular equilibrium points in the BCP, as well as to the families of quasi-periodic
solutions around them, respectively. Finally, Section 2.5 is focused on the translation of time and
coordinates between the BCP and the real system.

2.1 Restricted Three-Body Problem

In the Restricted Three-Body Problem (RTBP), the primaries are considered to move in circular
motion around their common centre of masses, where the origin is set. The assumption of the circular
motion leads to the distance between the primaries to be constant. It is usual to take this distance,
3.8440×105 km in the Earth-Moon system, as the unit of length, the sum of the masses of the primaries,
6.0457× 1024 kg, as the unit of mass and to normalise their period of revolution, 27.321577 days, to
2π, so that the gravitational constant is 1. Another common consideration is to define a rotational
(synodic) reference frame, such that the x-axis is set on the line connecting the primaries, the z-axis
is set on the direction of their angular momentum and the y-axis is taken such that the system is
positively oriented, [Sze67].
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2.1. RESTRICTED THREE-BODY PROBLEM

In this reference frame, the primaries are seen as fixed, the Earth, with mass 1−µ, placed at (x, y, z) =
(µ, 0, 0) and the Moon, with mass µ, placed at (x, y, z) = (µ− 1, 0, 0). Being µ = mM

mM+mE
≈ 0.01215

the mass parameter of the Earth-Moon system and mE and mM the masses of the Earth and the
Moon respectively.

Then, the equations of motion for a massless particle in the Earth-Moon RTBP synodical reference
frame are: 

ẍ = 2ẏ + x− 1−µ
r3PE

(x− µ)− µ
r3PM

(x− µ+ 1),

ÿ = −2ẋ+ y − 1−µ
r3PE

y − µ
r3PM

y,

z̈ = − 1−µ
r3PE

z − µ
r3PM

z,

(2.1)

where (ẋ, ẏ, ż) are the velocities of the particle, (ẍ, ÿ, z̈) its accelerations and rPE = ((x− µ)2 + y2 +
z2)1/2 and rPM = ((x− µ+ 1)2 + y2 + z2)1/2 are the distances from the Earth and from the Moon to
the particle, respectively.

This system can be written in the Hamiltonian formalism as

HRTBP =
1

2
(p2x + p2y + p2z) + ypx − xpy −

1− µ
rPE

− µ

rPM
, (2.2)

being (px, py, pz) = (ẋ− y, ẏ + x, ż) the momenta of the particle.

The RTBP is an autonomous Hamiltonian system, with three degrees of freedom and for which the
energy is conserved. The existence of this integral of motion is very convenient, since it enables to
identify regions where the movement of the infinitesimal particle is allowed or forbidden, [Sze67]. In
addition, this conserved quantity is commonly used to reduce one degree of freedom in the analysis of
the system.

The equations of the motion included in (2.1) satisfy the following symmetries when inverting the
sense of the time,

(t, x, y, z, px, py, pz)→ (−t, x,−y,−z,−px, py, pz),

(t, x, y, z, px, py, pz)→ (−t, x,−y, z,−px, py,−pz).
(2.3)

This means that if the set of coordinates on the left of these expressions is a particular solution of the
system, also is the set of coordinates on the right.

Another well-known characteristic of the RTBP is that, in synodical coordinates, it presents five
equilibrium points, also known as Lagrangian points. Three of them, called collinear points (L1, L2

and L3), are disposed along the horizontal axis and the other two are called equilateral or triangular
points (L4 and L5) and are located in the third vertex of the two equilateral triangles formed by taking
the primaries as vertices, see Figure 2.1.

Collinear points are unstable while triangular equilibrium points are linearly stable for values of the
mass parameter smaller than the critical Routh mass µR = 1

2

(
1−

√
23
27

)
≈ 0.0385, as it happens

for the Earth-Moon mass parameter. According to the classical Lyapunov Centre Theorem, see for
example [MHO09], under generic non-resonance and non-degeneracy conditions, from each linearly
stable direction of an elliptic equilibrium point of a Hamiltonian system, a one-parametric family of
periodic orbits emerges.

In particular, the collinear points are unstable of the form centre × centre × saddle, such that, in
the vicinity of each of them, there is a family of periodic orbits tangent to the (z, pz) plane, known
as vertical family, and another one inside the (x, y, px, py) plane, known as horizontal family. Due to
the saddle part, each of these periodic orbits has stable and unstable invariant manifolds that grow
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L4

L5

L1L2 L3

Moon Earth

Figure 2.1: Schematic of the Earth-Moon Restricted Three-Body Problem, including the positions
of the equilibrium points.

tangent to their hyperbolic eigendirections. Concerning the triangular equilibrium points for the mass
parameter of the Earth-Moon system, they are linearly stable of the form centre × centre × centre.

These families of periodic orbits have been computed extensively in the literature due to their interest
in space science for plenty of examples. For the Earth-Moon system it is remarkable the early work
of R. Broucke [Bro68].

2.2 The effect of the Sun’s gravity

As mentioned at the beginning of this chapter, the Bicircular Problem (BCP) is a modification of
the circular Restricted Three-Body Problem (RTBP) in which the gravitational effect of a fourth
body (three punctual massive bodies in total) is introduced as a time-periodic perturbation, [Hua60,
CRR64]. Therefore the initial set up, units and reference frame is the same one as in the RTBP,
detailed in previous section.

In our particular case, we consider the Earth-Moon system as in the RTBP and assume its barycentre
to be rotating in circular motion around the Sun, that plays the role of the additional perturbative
massive body. Since the origin of coordinates is placed at the Earth-Moon barycentre and the reference
frame is such that rotates with Earth and Moon, the Sun is seen as moving around the Earth-Moon
system, see Figure 2.2.

The equations of motion for the massless particle in the Earth-Moon Sun-perturbed BCP in the
synodical reference frame are written as:

ẍ = 2ẏ + x− 1−µ
r3PE

(x− µ)− µ
r3PM

(x− µ+ 1)− ms

r3PS
(x− as cosϑ)− ms

a2s
cosϑ,

ÿ = −2ẋ+ y − 1−µ
r3PE

y − µ
r3PM

y − ms

r3PS
(y + as sinϑ) + ms

a2s
sinϑ,

z̈ = − 1−µ
r3PE

z − µ
r3PM

z − ms

r3PS
z,

(2.4)

where ms is the mass of the Sun, rPS is the distance from the Sun to the particle such that

r2PS = (x− as cosϑ)2 + (y − as sinϑ)2 + z2,
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L4
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L1L2 L3

Moon Earth

Sun

ϑ

Figure 2.2: Schematic of the Bicircular Problem. Note that distance to Sun is not in scale.

µ ms ωs as
0.012150582 328900.55 0.925195985 388.811143023

Table 2.1: Parameters of the Bicircular model for the Earth-Moon system, in RTBP units.

and as is the distance from the Sun to the origin, set in the Earth-Moon barycentre, and that responds
to Kepler’s third law of planetary motion

1 +ms = n2sa
3
s, (2.5)

being ns the angular velocity of the Sun, such that ωs = 1−ns is the angular velocity of the Sun with
respect to the angular velocity of the Earth-Moon system, that has been normalised to 1. The angle

ϑ = ωst+ ϑ0, (2.6)

specifies the position of the Sun at each time t in the BCP synodic reference frame, see Figure 2.2.
The angle ϑ0 denotes a possible initial phase for the position of the Sun, that it is usually taken as 0.

Table 2.1 contains the values of the parameters for Earth-Moon-Sun BCP in the RTBP units. Notice
that, in the Earth-Moon BCP model, the period of revolution of the Sun with respect to the Earth-
Moon system, T = 2π/ωs, corresponds to the synodic period of the Moon in the real system (about
29.53 days).

The BCP also admits to be written in Hamiltonian formalism, but now the Hamiltonian function is
non-autonomous, since it depends on time. It can be expressed in two parts

HBCP = HRTBP + ĤBCP , (2.7)

where HRTBP is the Hamiltonian function of the RTBP, see (2.2), and ĤBCP contains the terms due
to the gravitational effect of the Sun on the massless particle,

ĤBCP = − ms

rPS
− ms

a2s
(y sinϑ− x cosϑ), (2.8)

consisting in a gravitational potential term and a Coriolis one.

Remark 2.2.1. It is worth to mention that, in spite of the perturbation, the Hamiltonian func-
tion (2.7) preserves the same symmetries when inverting the sense of the time as in the RTBP,
(2.3). These symmetries are helpful in the analysis of the system as we will see.
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CHAPTER 2. THE BICIRCULAR PROBLEM

Looking at the perturbative part of the Hamiltonian, expression in (2.8) or at the equations of motion
(2.4), it is clear that BCP is not coherent since the third massive body acts only on the infinitesimal
particle, but not on the primaries. This might seem a weak point of the model, however it has
been proved to give a good insight of the real dynamics of the Earth-Moon system, [SGJM95]. It is
remarkable that some results obtained using the BCP model have been checked successfully using a
realistic model based on the JPL ephemeris [GLMS01, Jor00], and as we will see in Chapter 3 of the
present dissertation.

A system like the one described by the BCP in which the variation in time is regarded to a simple
angular variable, ϑ, corresponds to the case of the Observation 1.2.1 made in the first chapter. Then,
the time dependence can be removed by imposition of a temporal Poincaré map at time T , let us call
it P , transforming the system in an autonomous map.

Due to the perturbation, no fixed points may appear in the flow of the BCP as they do in the RTBP.
Under generic conditions, the equilibrium points of the RTBP are replaced by periodic orbits in the
BCP, with the same period as the period of the perturbation, T . They are usually called dynamical
substitutes. In particular, for the Earth-Moon system under solar perturbation, each of the three
collinear points, L1, L2

1 and L3, is replaced by one unstable periodic orbit and each of the triangular
equilibrium points, L4 and L5 (that are linearly stable in the RTBP) is replaced by three periodic
orbits; two of them stable and the other one, linearly unstable, see [SGJM95, Jor00]. In those works,
authors named the unstable periodic orbit as PO1 and the two linearly stable ones as PO2 and PO3.

Regarding to the families of Lyapunov periodic orbits present in the RTBP, under a periodic per-
turbation and meanwhile non-degeneracy and non-resonance conditions hold, each periodic solution
increases its dimension becoming a quasi-periodic solution with two basic frequencies; one frequency
comes from the unperturbed system and the other one from the perturbation. From a geometrical
point of view, each of these quasi-periodic solutions fills densely a torus of dimension two, that is the
reason why they are commonly called two-dimensional invariant tori. If the frequency of one periodic
orbit in the RTBP is nearly resonant with the frequency of the perturbation, i.e. it does not satisfy
the corresponding Diophantine condition, it is destroyed and it can not be found in the perturbed sys-
tem, leaving gaps in the family of surviving quasi-periodic solutions. Therefore, in each of the centre
directions of each of the dynamical substitutes, a one-parametric Cantorian family of quasi-periodic
motion emanates, [JV97b]. The gaps in these Cantorian families of tori appear due to the resonances
and their size was proved to be exponentially small with the distance to the unperturbed invariant
object they come from. In particular, in the BCP, the size of the possible gaps is so small that they
are not detected when working with double precision and consequently the families of quasi-periodic
orbits can be considered as effectively continuous.

Since the periodic orbits substituting the collinear points in the BCP, as well as the periodic orbit
PO1, are linearly unstable, of centre × centre × saddle type, in each of the centre directions of each of
these dynamical substitutes, there is a one-parametric family of quasi-periodic orbits with hyperbolic
behaviour, [JV97a]. This means that there is one horizontal family and one vertical family of quasi-
periodic orbits emanating from each dynamical substitute, where each quasi-periodic solution has a
stable and an unstable invariant manifold associated. The invariant manifold that belongs to a two-
dimensional torus is of dimension three. Taking into account the effective continuity of the family,
the union of the (stable or unstable) invariant manifolds of one family of invariant tori constitutes a
four-dimensional invariant object.

The analysis of the horizontal families of invariant tori, contained in the plane (x, y, px, py), can be
performed in the planar BCP, where the dimension of the phase space is n = 4 (since z = 0 and pz = 0)
plus the dependence on time. Therefore, the aforementioned four-dimensional object separates the
fifth dimensional phase space of the planar BCP and hence, it organises the flow around the invariant
object that creates the family.

1At the begining of this chapter we briefly talked about the special case of L2.
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2.3. L3 COLLINEAR POINT IN THE BCP

This is different in the case of the vertical families of invariant tori, two-dimensional tori tangent to the
(z, pz) plane, since the analysis needs to be done in the spatial BCP, that involves a seven-dimensional
phase space.

In order to compute the invariant objects around these equilibrium points we make use of the afore-
mentioned temporal Poincaré map at time T , such that the dynamical substitutes of the equilibrium
points are seen as fixed points in the map and the two-dimensional tori are seen as one-dimensional
invariant curves, therefore we will rely on the explanations and details presented in Section 1.4 for
their numerical computation and analysis.

As introduced at the beginning of this chapter, our main concern is on the dynamics related with
the invariant objects in the neighbourhood of L3. In addition, we are also interested in showing the
unstable behaviour near the triangular points. Then, the following two sections are devoted to the
invariant objects that are found in their vicinities.

2.3 L3 collinear point in the BCP

First of all, we need to find the dynamical substitute of L3 equilibrium point in the BCP. For this, it
is usual to apply a continuation method in terms of a parameter, let us call it ε, that is added to (2.7)
allowing to move from the RTBP when ε = 0 to the BCP when ε = 1,

Hε = HRTBP + εĤBPC . (2.9)

Let us denote by Pε the Poincaré map defined by the flow at time T , the period of the BCP, for this
ε-dependent Hamiltonian function Hε. It is clear that the L3 point of the RTBP is a fixed point of
the map Pε for ε = 0. We continue this fixed point of the map Pε for ε going from 0 to 1, and no
bifurcations occur, see the plot on the left of Figure 2.3. On the right of the same figure, the resulting
periodic orbit for ε = 1 is shown, this is the dynamical substitute of L3 in the BCP. Note that the
dynamical substitute of L3 in the map P is seen as a point, let us call it pL3 , whose coordinates
(x, y, z, px, py, pz) are

pL3 = (0.997186694046419, 0, 0, 0, 1.015787603690979, 0). (2.10)

In order to understand why the dynamical substitute of L3, at the right of Figure 2.3, goes around
twice we can write the Taylor expansion of the solar gravitational potential as the authors did in
[JCFJ18], it starts as

1

as

(
1 +

x cosϑ− y sinϑ

as

)
, (2.11)

and then, they realised that the Coriolis acceleration is compensated by the linear order of the gravi-
tational potential of the Sun. With this, the first non-autonomous contributing term is of order 2, for
this reason, it is at second time that the periodic orbit crosses in positions that it closes.

It is important to mention that the reason for performing the continuation was to clarify that no
bifurcation of the periodic orbit takes place, as it happens for L4 and L5, [SGJM95, JCFJ18] and we
will see in Section 2.4. Actually, in the case of L3 the computation of its dynamical substitute in the
BCP could have been simply performed by directly imposing ε = 1 in (2.9) and looking for the fixed
point of the Poincaré map by means of a Newton method.

The type of stability of the orbit remains the same as for the equilibrium point L3 in the RTBP, centre
× centre × saddle. Where one centre belongs to the (x, y, px, py) plane and the other is tangent to the
(z, pz) plane, referred as Horizontal centre and Vertical centre, respectively, in Table 2.2. This
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Figure 2.3: Left, continuation of the fixed point of L3 on Pε in terms of ε. Right, periodic orbit
replacing L3 in the BCP, i.e. when ε = 1.

Re(λ) Im(λ) modulus argument
Horizontal centre 0.863703727358484 0.503999872368095 1.0000 0.5282236213808816
Vertical centre 0.841136691142219 0.540822583491406 1.0000 0.5714147449967407

λu λs

Saddle 3.372815841682823 0.296488170993962

Table 2.2: Eigenvalues of the dynamical substitute of L3 in the BCP. The two centres are imaginary
of modulus one and the hyperbolic pair corresponding to the saddle part is real and satisfies λu = λ−1s
due to the Hamiltonian structure.

table includes the eigenvalues of the two centres, that are imaginary and have modulus equal to 1.
Also their arguments are shown since they will be used in the computation of the families of invariant
curves. In the last row, the table contains the hyperbolic eigenvalues corresponding to the Saddle
part, that are real, where λu denotes the unstable eigenvalue and λs the stable one. Note that, due
to the Hamiltonian structure λu = λ−1s .

2.3.1 Horizontal family of quasi-periodic orbits

The horizontal family of quasi-periodic orbits growing from L3 is contained in the (x, y, px, py) plane,
therefore their computation and analysis can be performed in the planar BCP, i.e. taking z = 0 and
pz = 0 in (2.7). Besides, in order to reduce the angular dimension introduced by the perturbation of
the solar gravitational field, we make use of the temporal Poincaré map defined at time T , P . With
this, the dimension of the phase space to work with in this section is n = 4.

As announced, the BCP corresponds to the case in which the Poincaré map becomes autonomous
(Observation 1.2.1). Therefore, we follow the steps detailed in Section 1.4 for the computation of the
invariant objects in the BCP.

The first thing we need to do is to compute an invariant curve very close to the point that occupies
the periodic orbit L3 in the map, pL3 . Following Section 1.4.1, to find this curve, ϕ, we discretize it
in terms of Fourier series, see (1.35), in this case with N = 25 Fourier modes, and look for zeros of
the invariance condition (1.36),

F = P (ϕ(θ))− ϕ(θ + ρ) ≡ 0,
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by means of Newton method.

In this case the rotation number of the invariant curve, ρ, is not known, therefore the linear system to
solve is composed by m+ 2 equations for m+ 1 unknowns, recall that m = n(2N + 1). Consequently,
we need to fix two coordinates to have a unique solution. In particular, we fix the components x and
y of ϕ when θ = 0,

ϕx(θ = 0) = pL3,x − δ,
ϕy(θ = 0) = 0,

(2.12)

where pL3,x denotes the x component of the point that L3 occupies in the map P , pL3 in (2.10). Note
that pL3,y = 0.

The value of δ is the same as in the circle equation given in (1.40). We use that equation for the seed of
the Fourier coefficients, starting with δ = 10−3. As seed for the rotation number we use the argument
of the complex eigenvalue associated to the centre in the horizontal plane shown in Table 2.2.

Solving the system described in Section 1.4.1 with this information we obtain an invariant curve at a
distance of 10−3 from pL3

. Repeating the same procedure for some other small value of δ, for example
δ = 2× 10−3, we compute another invariant curve. With these to invariant curves we proceed to the
continuation of the family of invariant curves growing from L3 using the sphere equation (1.41), as
detailed at the end of Section 1.4.1.

Note that with an imposition like (2.12), the invariant curves are parametrized such that they always
cut the x-axis at the left of point occupied by L3 in the map when θ = 0, given by pL3

in (2.10).
Therefore let us introduce the following definition.

Definition 2.3.1. We call distance to L3 to the distance between the x component of the point L3

in the map, pL3 in (2.10), and the x component of the invariant curve at θ = 0.

The computed family of invariant curves around L3 in the horizontal plane is shown in Figure 2.4. We
have computed the continuation until a distance to L3 of 0.8, that corresponds to a distance of around
0.2 from the centre of the Earth, quite close to the Earth. For this reason the invariant curves, that are,
roughly speaking, circular close to pL3

, start to deform when approaching the Earth. Consequently
more and more Fourier modes are needed for their computations, see Figure 2.5, requiring N = 211
modes for the last computed curve. Recall that the number of Fourier modes is increased according
with the error estimates introduced in Section 1.4.1. Then, for our purposes we have not continued
the family of these invariant curves further from 0.8, since it already covers a considerable area and
the increasingly number of Fourier modes difficult its numerical computation. Nevertheless, if there
is an interest in the future for continuing this family as it approaches the Earth, this can be done by
applying the reducibility (and parallelization) methods introduced in [JO09] that we will use at the
final part of this dissertation.

As the invariant curves grow far away from L3 their rotation number varies, in Figure 2.6 the variation
of this magnitude along the family is shown. Note that a maximum in the rotation number is achieved,
therefore at this point of the family the twist condition is not satisfied and the curve that occupies
that position is a degenerated curve, sometimes called “meandering” curves [Sim98].

Normal behaviour of the family

Once computed the family of invariant curves, we analyze their linear behaviour. To accomplish this
task we follow Section 1.4.2 and look for pairs of eigenvalue and eigenfunction (λ, ψ) that satisfy
(1.42).

As explained in that section, for each curve m = 4(2N + 1) pairs of eigenvalue and eigenfunction
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Figure 2.4: Horizontal family of invariant curves growing from L3 dynamical substitute in the map
P and projected in the (x, y) plane.
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their distance to L3 increases.
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Figure 2.6: Variation of the rotation number as the distance of the invariant curves to L3 increases.

are found. The eigenvalues are disposed in the complex plane in circles of radius {λs, 1, λu}, where
the subindex s means stable and u, unstable. Again, due to the Hamiltonian structure, we have that
λs = λ−1u . See some examples in Figure 2.7, where the eigenvalues of some of the invariant curves are
plotted along with three circles of radius equal to the eigenvalues of the dynamical substitute of L3,
see Table 2.2.

It was also mentioned in Section 1.4.2 that not all the eigenvalues are equally accurate, therefore we
must keep the most accurate ones basing our search on the expression of the p-norm introduced for
the eigenfunctions, (1.45), in particular we use p = 2.

It is clear that the most accurate hyperbolic eigenvalues should be those that lie on the real axis,
see Figure 2.7. Looking at these images, it is also clear that as further is the invariant curve to pL3

,
its hyperbolic eigenvalues get apart from those associated to the dynamical substitute of L3. The
variation of these stable and unstable eigenvalues associated to each invariant curve according to the
distance to L3 is shown in Figure 2.8. It is appreciated how the instability of the family becomes
weaker as the distance to L3 increases.

2.3.2 Vertical family of quasi-periodic orbits

The procedure is almost the same as in the previous section but now the family of invariant curves
is tangent to the (z, pz) plane and consequently, its computation and analysis require to work in the
spatial phase space, n = 6.

Now we use the stability information of the Vertical centre in Table 2.2 and impose conditions on
the z and pz coordinates to compute the first two curves of this family. Analogously to (2.12), for the
vertical family we impose

ϕz(θ = 0) = −δ,
ϕpz (θ = 0) = 0,

(2.13)

Note that the z and pz coordinates of pL3
are zero, see (2.10). Then with the imposition above, the
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(a) (b)

(c) (d)

Figure 2.7: Graphs of the eigenvalues obtained from solving the generalised eigenvalue problem
(1.42) for four invariant curves at distances to L3 equal to 6.0505 × 10−3 (a), 1.3073 × 10−1 (b),
4.3616× 10−1 (c) and 6.8953× 10−1 (d). The eigenvalues of the invariant curves are plotted as black
stars along with three circles of radius corresponding to the eigenvalues (λu, 1, λs) of the dynamical
substitute of L3 appearing in Table 2.2; in particular, the circle in green has radius equal to λu, the
one in blue equal to 1 and the one in orange has radius equal to λs.
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Figure 2.8: Variation of the hyperbolic eigenvalues, stable (λs < 1) and unstable (λu > 1), as the
distance of the invariant curves of the horizontal family to L3 increases.

curves are parametrized such that at angle θ = 0 they have zero vertical momentum and cut the z-axis
on the negative part according to the value of δ.

Definition 2.3.2. We call vertical distance to L3 to the distance between the z component of the
point L3 in the map, pL3 in (2.10), and the z component of the invariant curve at θ = 0.

It is worth to mention that, since there is no massive body or any other invariant object significantly
close to this family, its growth is easily continued up to high values of the vertical amplitudes, see the
plot at the left of Figure 2.9. In fact we compute invariant curves up to almost a vertical distance
of 1 from pL3

(more precisely up to z ≈ 0.9663) using only N = 25 Fourier modes for each curve all
over the family. Reaching a vertical distance of 1 has not been feasible. The reason may be in the
bifurcations that the vertical family of periodic orbits around L3 suffers in the Earth-Moon RTBP,
see [GM01]. It is known that it suffers three bifurcations, where the third one implies the termination
of the family into a planar orbit that surrounds the two primaries and the three collinear equilibrium
points. Since the vertical family of invariant curves around L3 in the BCP comes from the one of
periodic orbits in the RTBP, the bifurcation in latter may explain the termination of the former. In
the BCP case the last invariant curve obtained does not surround the two primaries, but it approaches
the Earth, as it is shown in the plot at the right of Figure 2.9, that corresponds to the projection in
the (x, y) plane of the family of invariant curves in the Poincaré map.

In Figure 2.10 a spatial view of the family, in (x, y, z) coordinates, is given. It is clear the symmetry
between the solutions passing through positive or negative values of z, one of the symmetries presented
in Equation (2.3). It is also appreciated that, as the value of z gets apart from zero, be it positive or
negative, these invariant curves approach the position of the Earth in the x coordinate.

The variation of the rotation number of the invariant curves in the vertical family with respect to the
vertical distance to L3 does not present any maximum or minimum, see Figure 2.11 left.

Once we have the invariant curves, we study their linear behaviour as explained in Section 1.4.2. We
find that the invariant curves in the vertical family growing from L3 are also hyperbolic, as the curves
in the horizontal family, with real eigenvalues for each torus shown in Figure 2.11 right. As it happens
in the horizontal family, here we can also observe how the instability of the family becomes weaker as
the distance to L3 increases.
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Figure 2.9: Vertical family of invariant curves growing from L3 dynamical substitute in the map P .
Left, projected in the (z, pz) plane. Right, projected in the (x, y) plane.
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Figure 2.10: Spatial view, in (x, y, z) coordinates, of the vertical family of invariant curves growing
from L3 dynamical substitute in the map P .
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Figure 2.11: Left, variation of the rotation number as the vertical distance of the invariant curves
to L3 increases. Right, variation of the real eigenvalues of the invariant curves.

2.4 Triangular points in the BCP

In this section we talk about the family of quasi-periodic orbits around one of the dynamical substitutes
of the triangular points. The study of these dynamical substitutes in the BCP for the case of the
solar-perturbed Earth-Moon system has been the target of many works [SGJM95, JCFJ18] and the
families of invariant curves at their neighbourhoods can be found in [Cas03]. In this dissertation we
have repeated some of these computations with the aim of extending the knowledge about the unstable
behaviour around them, this will be presented in Chapter 5.

It is well-known that in the case of triangular points, for the system we are treating, there exists a
bifurcation when performing the continuation of the L4 point from the RTBP to the BCP, a detailed
analysis of this bifurcation can be found in [JCFJ18]. The process for the continuation is like the one
performed in the previous section for L3 with the Equation (2.9). Said bifurcation gives rise to three
dynamical substitutes for each of the triangular points; three periodic orbits with the period of the
perturbation, two of them linearly stable and one unstable. This is detailed in [SGJM95], in which
authors gave the names PO1 to the unstable periodic orbit and PO2 and PO3 to the two stable ones.
The variation of the fixed point in Pε according to the value of ε for L4 can be found in the plot on
the left of Figure 2.12. On the right of same figure we show the three periodic orbits substituting L4

in the BCP, i.e. when ε = 1. It is clear that by the symmetry (2.3), also present in the BCP, the same
bifurcation occurs for L5.

These three periodic orbits near L4 are seen as fixed points in the temporal Poincaré map P . Let us
denote them, abusing notation, by pPO1, pPO2 and pPO3, with coordinates (x, y, z, px, py, pz),

pPO1 = (−0.489747046956582, 0.870531584107967, 0,

− 0.854843586317783, −0.489868573136372, 0),

pPO2 = (−0.718951017967613, 0.816712731336547, 0,

− 0.744398375648738, −0.517371635492186, 0),

pPO3 = (−0.090233783126090, 0.947699209500149, 0,

− 0.998675985923189, −0.262665745802195, 0).

(2.14)
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Figure 2.12: Left, continuation of the fixed point of L4 on Pε in terms of ε. Right, periodic orbits
replacing L4 in the BCP, i.e. when ε = 1.

Re(λ) Im(λ) modulus argument
Horizontal centre -0.4528721303074714 0.8915754783475778 1.0000 2.040780450260600
Vertical centre 0.8601576454180473 0.5100282590493204 1.0000 0.535217643292990

λu λs

Saddle 1.098639944378693 0.9102163134670177

Table 2.3: Eigenvalues of PO1, the unstable dynamical substitute of L4 in the BCP. The two centres
are imaginary of modulus one and the hyperbolic pair corresponding to the saddle part is real and
satisfies λu = λ−1s due to the Hamiltonian structure.

Periodic orbit PO1 is of type centre × centre × saddle, therefore from the point it occupies in the plane
P , there emanates a family of invariant curves in the horizontal plane and another family tangent to
the vertical one. Associated eigenvalues are shown in Table 2.3.

In spite of the appearance of an unstable periodic orbit, and since its instability is very weak (see
its hyperbolic eigenvalues, λu and λs, in Table 2.3), regions of effective stability around L4 can be
still found in the Bicircular Earth-Moon system, [Jor00], specially when the vertical coordinate is
different from zero. In that work the stable regions were translated to a realistic model, based on JPL
ephemeris, to verify that they are still present when the gravitational effect of the rest of the planets
of the solar system are also considered.

Most of the works devoted to the study of the triangular points are centred on the stable behaviour
since it is the dominant one in their regions and it is of interest for many applications. However, our
interest is focused on the unstable behaviour, more precisely the study of the periodic orbit PO1, the
families of invariant quasi-periodic orbits around it and in the stable and unstable invariant manifolds
associated to them.

2.4.1 Horizontal family of quasi-periodic orbits around PO1

The way to proceed is the same as in Section 2.3.1. Recall that for the horizontal families we work
with n = 4 dimensions of the phase space. Again, we follow the steps detailed in Section 1.4.1 for
computing the invariant curves. In this case we use the argument of the Horizontal centre in
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Figure 2.13: Horizontal family of invariant curves growing from the PO1 dynamical substitute of
L4 in the map P and projected in the xy-plane.

Table 2.3 and impose the following conditions:

ϕx(θ = 0) = pPO1,x,

ϕy(θ = 0) = pPO1,y − δ,
(2.15)

where pPO1,x and pPO1,y denote the x and y components of the dynamical substitute PO1 of L4 in
P , where it is seen as a point, see (2.14). With these conditions, each curve is parametrized such that
at θ = 0 they cut the line x = pPO1,x at different values of y.

Definition 2.4.1. We call distance to PO1 of L4 to the distance between the y component of the
point PO1 of L4 in the map P , (2.14), and the y component of the invariant curve at θ = 0.

The family of invariant curves growing from PO1 in the map is shown in Figure 2.13. The limitation of
the growth of this family and the wrinkle shape of these invariant curves is due to the effect the families
of invariant curves around PO2 and PO3. As the invariant curves are further away from the PO1 of
L4 more difficult is to compute them and more Fourier modes are needed for their parametrization,
see Figure 2.14, where it is easily observed how quickly increase the number of modes as the curves
grow further from the dynamical substitute.

Figure 2.15 shows the variation of the rotation number of these curves as they grow far away from
PO1 of L4 and the variation of their real eigenvalues. We can observe that although the invariant
curves around the PO1 of L4 are hyperbolic, its instability is extremely weak, specially close to the
periodic orbit PO1.

41



CHAPTER 2. THE BICIRCULAR PROBLEM

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

N

distance to PO1 of L
4

Figure 2.14: Variation of the number of Fourier modes needed to compute the invariant curves as
their distance to the PO1 of L4 increases.

 2.026

 2.028

 2.03

 2.032

 2.034

 2.036

 2.038

 2.04

 2.042

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

ρ

distance to PO1 of L
4

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

re
a
l 
e
ig

e
n
v
a
lu

e
s

distance to PO1 of L4

Figure 2.15: Left, variation of the rotation number as the distance of the invariant curves to PO1
of L4 increases. Right, variation of the real eigenvalues of the invariant curves.
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2.5 Change of coordinates and time

To finish this chapter about the Bicircular Problem, we include a section about the change of coordi-
nates and time needed to make comparisons between this simplified model and a realistic one.

The fact that the Bicircular Problem is a time-dependent model implies somehow a relation between
this simplified model and the real one, that allows to look for a correspondence between epochs in the
two different models and for a suitable change of coordinates involving the information of the bodies,
Sun, Earth and Moon, in the real system at the proper time.

First, the correspondence between times in the two models is introduced, Section 2.5.1. The change
is a little bit different depending on the sense of the translation, however both are based on the same
features of the model. Then, the translation of coordinates, positions and velocities, of an infinitesimal
particle is detailed in Section 2.5.2.

2.5.1 Time

The statement about the relation between the epochs in the BCP model and a real one is based on
two properties of the BCP. The first one is that, at time t = 0, the three massive bodies are placed on
the x-axis, see Figure 2.2, such that their relative positions correspond to a lunar eclipse. The second
property relies on the fact that time is a periodic variable in the BCP, as a result, at every period T ,
the Earth, the Moon and the Sun come back to their initial positions.

Time from BCP to real system

Due to the periodicity of time in the BCP, it is clear that any possible value for time, t ∈ R, in this
model can be re-scaled to t ∈ [0, T ] (or t ∈ [−T, 0] when the sense of time is inverted). Also, any
adimensional time can be measured in days, t̃, with the conversion unit of time,

t̃ = t
27.321577

2π
.

Since at t = 0 the massive bodies describe the set up of a lunar eclipse, it is easy to identify a real
lunar eclipse, such that t = 0 in the BCP is translated to the time of the eclipse, TECLIPSE in Julian
days. Therefore, any other adimensional time after (or before) t = 0 corresponds to some days after
(or before) the eclipse:

t (adimensional time)→ TECLIPSE + t̃ (Julian days). (2.16)

Time from real system to BCP

The basis is the same, but now the set of times to be translated is much wider. We can establish the
origin of time in the real system as

t0 = TECLIPSE + ST T̃ , with ST ∈ [0, 1), (2.17)

where
T̃ = T

27.321577

2π

is the period of the Sun with respect to the Earth-Moon system in days, since T = 2π
ωs

is defined
in adimensional RTBP units. Then, ST denotes the fraction of period after the lunar eclipse, what
corresponds to the temporal section t = STT in the BCP.
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Let NT be an integer number that accounts for the number of lunar periods after the origin of time.
Since time is a periodic variable in the BCP, any Julian epoch of the form

t = t0 +NT T̃ , (2.18)

corresponds to the same temporal section in the BCP. In a schematic way

t like in (2.18) (Julian days)→ STT (adimensional time). (2.19)

Note that, ST can be also defined with negative values, ST ∈ (−1, 0), such that it would denote the
fraction of period before the lunar eclipse. Likewise, subtracting NT T̃ to t0, we have a set of Julian
epochs that corresponds to the same BCP temporal section.

2.5.2 Positions and velocities

As usual, there is not a unique change of coordinates for translating the positions and velocities of an
infinitesimal particle between a simplified model and a realistic one. The change of coordinates that
we detail here and will be used in Chapters 3 and 4 is a non-autonomous change of coordinates that
was introduced in [GLMS85] and afterwards employed in some other works devoted as to the RTBP as
to the BCP, for example [GLMS01]. Concerning to its application to the BCP, we find [Jor00], where
the translation was performed at the time of an eclipse or [GJMS01], where the change was employed
covering a time span what lead the authors to observe that, in spite of the general good agreement
found in the comparison between BCP and realistic model, the goodness of the change of coordinates
depends on the epoch at which it is performed. This effect will be also observed in Section 3.2 where
we will give some explanations about its appearance.

The reference frame of the BCP consists on an adimensional synodical frame, with the origin of
coordinates placed at the Earth-Moon barycentre and where the distances between the three massive
bodies are taken as constant. Meanwhile the reference frame of the real system consists on an ecliptical
inertial one, with the origin placed at the solar system barycenter and where the distances between
the bodies are continuously changing.

Therefore, it is necessary to know the positions and velocities of the primaries and the Sun at the
time at which the change of coordinates is performed. For this, an ephemerides database is used.
In particular, we use the Jet Propulsion Laboratory (JPL) ephemeris, file DE405, that provides the
orbital information of the bodies by interpolating polynomials.

In the case of the change of coordinates, the translation between the systems is given by the same
expressions regardless the sense of the translation. Then, let us explain the change of coordinates
from the adimensional synodic reference frame of the BCP to the ecliptical inertial one.

Let a be the positions of an infinitesimal particle in the adimensional synodic reference frame of the
Bicircular model, and let e be its positions in the real ecliptic one. The relation between them is given
by a scale factor to change the unit of length, an ortoghonal matrix to move from a rotating frame to
a non-rotating one and a translation to the origin of coordinates of the ecliptic system:

e = kCa+ b, (2.20)

where k = ||RE − RM || is the scale factor, with || · || denoting the euclidean norm, and RE and
RM being the positions of the Earth and Moon in the ecliptic frame. Then, k is the instantaneous
distance between the primaries at the time of the conversion. The vector b points to the position of
the Earth-Moon barycentre from the barycentre of the solar system, see Figure 2.16.

Matrix C is an orthonormal matrix composed by three unitary column vectors,

c1 =
RE −RM
||RE −RM ||

, c3 =
(RM −RE) ∧ (VM − VE)

||(RM −RE) ∧ (VM − VE)||
, c2 = c3 ∧ c1,
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Figure 2.16: Scheme of the vectors RE , RM and b pointing to the Earth (E), the Moon (M) and
their barycenter from the solar system centre of mass in the ecliptic system.

where VE and VM are the velocities of the Earth and Moon in the ecliptic frame. This matrix is
in charge of changing between rotating and non-rotating reference frames, but it also includes the
modification of the relative positions of the primaries, that in the BCP are suppose to be coplanar
and separated by a constant distance at all times. Then, it is important to observe that the first
vector, c1, marks the direction between the two primaries, the expression of the third one, c3, is the
normalised angular momentum for their relative motion, so that it is positively oriented, and the
second one, c2, is positively defined perpendicular to the other two.

Be R = RM − RE and V = VM − VE , the position and the velocity of the Moon with respect to the
Earth. So, column vectors of matrix C are rewritten as:

c1 =
−R
k
, c3 =

R ∧ V
||R ∧ V ||

, c2 = c3 ∧ c1. (2.21)

The relation between the velocities in the adimensional system, ȧ, and the ones in the ecliptic system,
ė, is also needed. For getting it, it is necessary to derive expression (2.20) with respect to time:

ė = k̇Ca+ kĊa+ kCȧ+ ḃ, (2.22)

where ḃ is the velocity of the barycenter and k̇ = RV
k is the derivative of the scale factor.

Rotational matrix derivative is performed by deriving the three column vectors with respect to time:

ċ1 =
−kV + k̇R

k2
, ċ3 =

W (R ∧A)− Ẇ (R ∧ V )

W 2
, ċ2 = ċ3 ∧ c1 + c3 ∧ ċ1, (2.23)

where A = AM − AE is the relative acceleration of the Moon with respect to the Earth, and W =
||R ∧ V ||, so Ẇ = W−1(R ∧ V )(R ∧A).

Notice that, RE , RM , VE , VM and b are provided by the ephemeris database at the specific time of
the conversion. Equivalently to how the change of positions between the two systems involves the
velocities of the primaries, their accelerations are involved in the change of velocities. AE and AM
are not provided by the ephemeris database we use, but they are easily computed by with a N body
problem, making the balance of forces of all the planets of the solar system, the Sun and the Moon,
acting on them (application of Newton’s second law); whose positions and velocities are provided by
the ephemeris database.

In particular, the JPL database provides these magnitudes in dimensional units; astronomical unit
for length and day for time. Special attention must be paid to ȧ in Equation (2.22), since this
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quantity refers to the derivative with respect to the dimensional time of the adimensional position of
the particle. Therefore, it is necessary to multiply the velocities of the particle in the adimensional
system by 2π/27.321577 before introducing it into the expression (2.22). Also, let us remember that
in a synodic system, velocities and momenta do not coincide, then if we work with momenta in the
BCP, it is necessary to change to velocities before performing the change of coordinates:

ȧ = {ȧx, ȧy, ȧz} =
2π

27.321577
{ẋ, ẏ, ż} =

2π

27.321577
{px + y, py − x, pz}.

Finally in this section, let us briefly comment that the change of coordinates from the ecliptical
reference frame to the synodic adimensional one, given by the same expressions (2.20) and (2.22),
involve the inverse of the matrix C. Since this matrix is orthonormal, C−1 = CT , and there is no
need of computing the inverse.
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Chapter 3

Transport through L3 in the BCP

In Section 2.3 we show that there are two families of two-dimensional quasi-periodic orbits growing
from L3 in the BCP. These orbits are seen geometrically as tori defined by two frequencies, one coming
from the unperturbed system and the other one corresponding to the perturbation. In the stroboscopic
map, P , defined by the evaluation of the flow at time equal to the period of the solar perturbation,
T = 2π/ωs, each of these families is seen as a family of one-dimensional invariant curves, one family in
the horizontal plane and the other one tangent to the vertical plane, all details about these families,
computation and stability are found in Section 2.3.1 and Section 2.3.2, respectively.

We have also seen that the quasi-periodic orbits that constitute these families are partially hyperbolic,
therefore, each of them has a stable and an unstable invariant manifolds associated. Stable manifold
approaches the torus forward in time, while the unstable one gets apart from it. Consequently, they
represent a skeleton for connections through the invariant torus. Then, this chapter is focused on the
transport due to the families of Lyapunov quasi-periodic orbits around L3 in the BCP.

Recall that all conceptual and numerical details about hyperbolic invariant manifolds were introduced
in the first chapter. More precisely, in Sections 1.4.3 and 1.4.4 for the case of manifolds associated with
invariant curves in autonomous stroboscopic maps, that is the case of the present chapter. Therefore,
now we limit ourselves to brief comments on the theoretical aspects and focus on the application.

The invariant manifolds associated with two-dimensional quasi-periodic orbits have three dimensions,
two dimensions of the torus plus the hyperbolic direction. Therefore in the map P these manifolds
are two-dimensional and they can be defined through two parameters, the angle along the curve θ and
a parameter σ to move in the direction of the stable/unstable eigenfunction.

Taking into account that the stability of the families of invariant curves around L3 is hyperbolic but
neither very strong nor very weak (see Figure 2.8 and 2.11), the analysis of the transport given by the
linear approximation of the related invariant manifolds is enough for understanding their role. We
recall that such approximation of the manifolds of an invariant curve is given by the curve itself (ϕ)
and its stable and unstable eigenfunctions (ψs,u), see (1.47) in Section 1.4.3,

(θ, σ) 7→ ϕ+ σψs,u(θ). (3.1)

By evaluating last expression on a mesh of values for θ ∈ [0, 2π] and for σ ∈ [σ0, σ0λu] (for the unstable
manifold) or σ ∈ [σ0, σ0λ

−1
s ] (for the stable manifold), it generates a set of curves, displaced from the

invariant one in the direction of the eigenfunctions. Said set of curves constitutes a fundamental
domain of the manifold that we have called fundamental cylinder (FC), detailed in Section 1.4.4, that
by iteration under P (or P−1) spans the whole unstable (or stable) manifold. Recall the comments
about the convenience of using application of the stroboscopic map forward in time for the unstable
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manifolds and the backward in time for the stable ones, Remark 1.4.4.

When working with the linear approximation of the invariant manifolds the value of the displacement
σ0 must be small enough for the approximation to be accurate. In particular we have used σ0 = 10−5.
Note that, in order to have both “sides” of the manifold, parameter σ0 must also take a negative value.
Then, in order to globalise the manifold, we have defined an equispaced mesh of M1 values of θ, and
mesh of M2 equispaced values of σ to construct a mesh of M1M2 points on the manifold that we
propagate forward to span the unstable manifold and backwards to span the stable manifold.

During the propagation of the orbits in the manifolds, we check at every step of the numerical in-
tegration (that is performed again by means of a Taylor method [JZ05]) if they have reached some
of the primaries or if they have left the system. Leaving the system has been defined as being at a
distance from the Earth-Moon barycentre larger than 10 Earth-Moon distances, since at this distance
we consider the particle to be orbiting around the Sun. At the moment that some orbit reaches the
Earth or Moon, a Newton method is applied to refine the coordinates at which the orbit reaches their
surfaces. Throughout the text we talk about lunar and terrestrial surfaces for simplicity, however
keep in mind that when we study the planar case, trajectories that reach the primaries are analysed
at their equators.

Before following with the invariant manifolds, let us give a scheme of this chapter. In Section 3.1
we show the results and general behaviour found for the invariant manifolds associated with the
invariant curves of the horizontal family. Special attention is paid to the behaviour of trajectories
that may explain the travel of lunar meteorites towards the Earth, the analysis of this phenomenon
and its translation to a realistic model are collected in Section 3.2. These first two sections are mostly
presented in [JN20]. Section 3.3 is devoted to some comments about the trajectories that starting at a
parking orbit of the Earth can reach some other locations of interest, like the Moon or the vicinities of
other Lagrangian points. This section contains a summary of the joint work with Dr. Yuying Liang,
[LNJ21], devoted to the design of a transfer to L4 from a low orbit of the Earth, passing through that
same horizontal family of L3. Finally, in Section 3.4 we present the invariant manifolds associated
with the vertical family of invariant curves around L3.

This chapter is developed using the linear approximation of the invariant manifolds, we will present
in the next chapter the high order approximation of these manifolds, that is needed to purposes in
which a higher accuracy on the fundamental domain is required.

3.1 Transport through the horizontal family

It is well known that the invariant manifolds of L3 in the RTBP approach the small primary giving
rise to horseshoe-like motions [BO06, SSST13]. As we will see, in the BCP the invariant manifolds
of the tori near L3 display a shape that reminds that of the RTBP, but with important differences.
In particular, in the BCP the motion is not restricted to an energy level so that the manifolds fill a
larger region of configuration space and even they move far away from the Earth-Moon system.

In Figure 3.1, invariant manifolds corresponding to two invariant tori (one at distance 1.3974× 10−3

from L3, and another one at 5.5857 × 10−3) are shown together to illustrate the shape of the man-
ifolds for different tori. The “distance to L3” is given according to Definition 2.3.1. As natural, the
trajectories correspond to the flow, not to the Poincaré map. For reference, Earth and Moon are also
included in the figure as black circles of proportional radius.

As expected, it takes some Earth-Moon revolutions to leave L3 neighbourhood. This is shown in
Figure 3.2, where the manifolds of the curve at 1.3974 × 10−3 from L3 are plotted for different
integration times. Images on the right column are the same as those on the left, but making a zoom
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Figure 3.1: Stable (green) and unstable (red) invariant manifolds corresponding to two invariant
curves, in the xy-plane. See the text for more details.

around the primaries in order to show how some of the orbits reach them. The integration time for the
first (upper) image is meaningless since it depends on the initial distance to the invariant torus. The
following images are separated in time just by one Earth-Moon revolution. Note that the manifolds
reach not only the Moon, but also the Earth. As a side comment, the reversing symmetry of the BCP
mentioned in Section 2.2, see Remark 2.2.1, is now easy to observe: therefore, the stable manifold can
be obtained from the unstable one by changing y by −y and px by −px.

Next we perform massive numerical simulations to explore the evolution of the invariant manifolds
for the computed family of invariant tori. The results show that most of the computed trajectories
on the unstable manifolds (43.27%) leave the Earth-Moon system, a big amount of them (21.69%)
collide with the Moon and a smaller number (2.67%) collide with the Earth. Due to the reversing
symmetry, a 43.27% of trajectories on the stable manifold come from outside the Earth-Moon system,
a 21.69% come from the Moon and a 2.67% come from the Earth. The remaining trajectories keep
moving around the system without colliding with the primaries or escaping for the whole simulation.

In order to display the rich dynamics given by these invariant manifolds, we use the fundamental
cylinders introduced. In particular, we have used a mesh of M1 = 1000 equispaced points on [0, 2π]
and M2 = 1000 equispaced points on [σ0, λuσ0] to produce 106 initial conditions for each piece of
each unstable manifold (and similarly for the stable manifolds). We have coloured each couple (θi, σj)
according to the fate of the orbit that they generate: yellow colour corresponds to escaping the Earth-
Moon system, purple to collision with the Earth, red to collision with the Moon and black to those
trajectories that move along the system without neither crashing nor escaping during the simulation
time. Horizontal axis is taken as the angle along the curve θ ∈ [0, 2π] and the vertical one corresponds
to the height of the fundamental domain, that is different for each curve, so we have scaled it to
τ ∈ [0, 1], see Section 1.4.4.
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Figure 3.2: Invariant manifolds in the xy-plane of the curve at 1.3974× 10−3 from L3 for different
times.
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Figure 3.3: Fundamental cylinder of the invariant manifolds for an invariant curve at a distance
3.3351× 10−2 from L3. Up, unstable manifolds. Down, stable manifolds. Left, positive piece. Right,
negative piece. See text for more details.

Figure 3.3 shows the colour maps of the fundamental cylinders corresponding to the four pieces of the
manifolds of an invariant curve close to L3 (at 3.3351×10−2 from L3). The existence of the symmetry
when inverting the time is easily recognisable, which means that from now on we will only plot, say,
unstable invariant manifolds. Figures 3.4, 3.5, 3.6 and 3.7 show colour maps for several invariant
curves at different distances from L3. Note that the left side of each plot coincides with the right side,
due to the periodicity of θ. The upper side of the fundamental cylinder is the result of applying the
Poincaré map to the bottom side, so they coincide except for a shift equal to the rotation number of
the invariant curve (ρ).

Looking at Figures from 3.3 to 3.7 we can see how the aspect of the colour maps evolves with the
invariant curve. In general, in the first images, red and yellow colours seem to predominate, while
for the last images quantity of purple and black colours has clearly increased; except for those curves
very close to L3 (see Figures 3.3 and 3.4), where purple regions are well defined. This means that it
is more likely for the Earth to be origin or destiny of the trajectories passing close to the invariant
curves near L3, or far away from it, than for intermediate curves. The opposite effect is observed
for the Moon. However, both primaries have connections with invariant curves at any distance from
L3. In order to give quantitative support to this qualitative explanation drawn from the colours of
the maps, for each of the curves we have counted how many initial conditions on the fundamental
cylinder reach the Earth, the Moon, escape the system, or none of these. The results are summarised
in Table 3.1 for the unstable manifolds, where the two columns in each category correspond to the
two sides of the manifold (σ0 > 0 and σ0 < 0). Due to the symmetries mentioned before, an identical
table is obtained for the stable manifold. It is clear that there is a large piece of the manifolds that
enters/leaves the system and a significant number of trajectories connecting the two bodies.
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Figure 3.4: Fundamental cylinders for the two directions of the unstable manifolds of curves at
distances to L3, from up to down, 1.3974 × 10−3, 2.1585 × 10−2, 6.9987 × 10−2 and 8.2112 × 10−2.
Notice that cylinders in Figure 3.3 fit between the second and third row.
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Figure 3.5: Fundamental cylinders for the two directions of the unstable manifolds of curves at
distances to L3, from up to down, 1.3079× 10−1, 1.6494× 10−1, 1.9607× 10−1 and 2.2528× 10−1.
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Figure 3.6: Fundamental cylinders for the two directions of the unstable manifolds of curves at
distances to L3, from up to down, 3.0902× 10−1, 3.9200× 10−1, 4.3616× 10−1 and 4.9936× 10−1.
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Figure 3.7: Fundamental cylinders for the two directions of the unstable manifolds of curves at
distances to L3, from up to down, 5.7020× 10−1, 6.4418× 10−1, 6.8953× 10−1 and 7.4214× 10−1.
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Distance to L3 Earth (%) Moon (%) Exterior (%) Neither (%)
1.3974×10−3 1.93 6.93 12.17 0.19 49.63 92.20 36.27 0.68
1.3036×10−2 1.72 5.81 19.19 1.10 42.40 85.77 36.69 7.32
2.1585×10−2 1.73 4.62 21.27 4.14 42.85 80.02 34.14 11.22
3.3351×10−2 1.73 3.75 26.85 5.09 39.11 77.23 32.30 13.93
4.5581×10−2 1.41 2.99 36.81 5.97 33.99 75.17 27.78 15.87
6.9987×10−2 1.14 2.55 43.27 7.25 28.96 75.06 26.63 15.15
8.2112×10−2 1.14 2.88 41.63 10.93 29.58 69.37 27.66 16.82
9.4396×10−2 1.22 2.30 39.81 14.84 32.10 63.36 26.87 19.51
1.0661×10−1 1.27 2.04 37.14 22.73 33.29 56.10 28.30 19.13
1.3079×10−1 1.23 1.72 39.25 34.08 30.93 46.17 28.59 18.03
1.6494×10−1 1.59 1.70 35.53 32.74 36.25 42.70 26.63 22.86
1.9607×10−1 1.68 1.76 31.19 29.08 41.72 43.54 25.42 25.63
2.2528×10−1 1.56 1.70 28.46 27.54 44.47 44.09 25.51 26.68
3.0902×10−1 1.50 1.92 22.35 24.25 53.50 45.68 22.65 28.16
3.5299×10−1 1.83 1.86 21.95 20.78 52.21 45.62 24.01 31.73
3.9200×10−1 2.03 1.84 25.02 20.22 44.84 43.07 28.12 34.87
4.1505×10−1 2.19 1.89 24.98 19.78 39.83 43.53 33.00 34.80
4.3616×10−1 2.66 1.99 25.02 19.34 36.26 42.33 36.06 36.34
4.8488×10−1 2.32 2.02 20.53 19.94 36.70 40.93 40.45 37.11
4.9936×10−1 2.55 1.88 18.71 20.04 39.04 39.19 39.71 38.89
5.3657×10−1 2.80 2.19 16.82 18.45 36.76 39.07 43.62 40.28
5.7020×10−1 2.57 2.19 15.42 18.78 36.20 37.93 45.82 41.10
6.1431×10−1 3.12 2.50 14.00 19.11 37.31 38.26 45.57 40.12
6.4418×10−1 3.46 3.11 13.44 18.22 38.95 37.99 44.15 40.68
6.6872×10−1 3.88 3.39 12.54 17.97 40.87 37.22 42.72 41.41
6.8953×10−1 4.21 3.84 13.46 16.91 41.56 38.07 40.78 41.17
7.1879×10−1 4.94 3.83 13.87 17.91 36.89 36.75 44.30 41.52
7.4214×10−1 5.61 3.89 12.56 14.71 35.52 39.53 46.31 41.87
7.7146×10−1 6.87 4.99 10.60 14.53 32.76 35.49 49.77 44.99
7.9720×10−1 8.79 6.89 10.04 12.93 30.38 31.29 50.80 48.89

Table 3.1: Percentages of the trajectories starting at fundamental cylinders that go to the Earth,
Moon, outside system or neither, through the two directions of the unstable invariant manifolds for
some invariant curves.

The mix of colours in the maps in Figure 3.3 shows that a single invariant curve can be reached from
several places and, starting at this quasi-periodic orbit, there are several possible destinations. These
manifolds are the skeleton that organises the dynamics near L3, and they provide multiple connections
between Earth and Moon, and also allow to enter and exit the Earth-Moon system. In particular, it is
remarkable that an asteroid entering the Earth-Moon system near these manifolds has more chances
to impact on the Moon than on the Earth.

3.1.1 Leaving/entering trajectories

Due to Sun gravitational attraction, when a particle reaches a distance far enough from the Earth-
Moon barycentre, it is captured by the Solar gravitational field. Consequently, unstable manifolds
that overcome this distance are said to leave the Earth-Moon system, and stable ones, are said to
enter in the system, both led by L3 dynamics. To analyse the kind of trajectories that enter and
leave the system, their orbital elements with respect to the Sun are computed. As the trajectories
considered here belong to manifolds of the horizontal family, they are treated in the planar BCP
and then only semi-major axis and eccentricity are obtained. Before computing the orbital elements,
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Figure 3.8: Horizontal axis corresponds to semi-major axis (in astronomical units), and vertical to
eccentricity. Orbital elements for orbits entering (left) and leaving (right) the Earth-Moon system.

synodic coordinates are translated to inertial ones, with the origin set at Sun position.

In Figure 3.8 semi-major axis and eccentricity are shown. Due to the time reversibility of the system,
it is quite natural that the orbital elements corresponding to trajectories that escape the Earth-Moon
system are similar to those corresponding to trajectories that enter the system. Notice that in this
model, the Earth-Moon system describes a circular trajectory with respect to the Sun, therefore its
orbital elements are semi-major axis equal to 1AU and zero eccentricity. Then, considering that
the trajectories enter or leave the system when they are at a distance of 10 Earth-Moon distances
from their barycentre leads to the well-defined “peak” shape of the graph for very low values of the
eccentricity.

Granvik et al., [GVJ12], computed the capture probability for NEOs according to their orbital ele-
ments. If we compare their results with the orbital elements obtained with the Bicircular Problem, we
check that the graphs of the orbital elements (semi-major axis vs. eccentricity) presented in [GVJ12]
display the same shape and range values that the ones obtained through L3 in the planar BCP, shown
in Figure 3.8. Therefore, it seems that trajectories entering and leaving the Earth-Moon system de-
scribed by BCP, are probably to happen in the real system. We will rely on these results to partially
motivate our analysis for the capture of an asteroid via L3 in Chapter 4.

Our results show that these entering manifolds connect, near L3, with manifolds that go towards the
Moon or the Earth, and viceversa. Moreover, we have observed trajectories that enter in the Earth-
Moon system after orbiting the Sun in an orbit outer than the one of the Earth (i.e., with semi-major
axis larger than 1AU) and then leave the system to orbit around the Sun in an inner orbit than the
Earth (semi-major axis smaller than 1AU). In the same way, the opposite transfer (from an inner
orbit around the Sun to an outer one) can be led by L3 dynamics. This behaviour reminds that of
the quasi-satellites except for the fact here there is no inclination for the trajectories, [MIW+06].

3.1.2 On the existence of heteroclinic connections

We would like to show a phenomenon we have observed among the trajectories on the manifolds of
the invariant curves belonging to the horizontal family of L3. It seems that there exist intersections
among manifolds of different quasi-periodic orbits near L3. In Figure 3.9 (left) we can see an orbit
that goes from the Moon surface to the outside system through a torus close to L3, but it also seems
to spin around a second torus. In Figure 3.9 (right), we can observe the opposite effect, for an orbit
that goes from the Moon to the Earth. The study of these connections is left for another work.
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Figure 3.9: Trajectories that suggest intersections between the manifolds of different invariant curves.
A zoom of the trajectories has been done in order to show the behaviour around L3.

3.2 Lunar Meteorites

Lunar meteorites are meteorites originated on the Moon that are thought to have their origin in the
impacts that the Moon suffers every year. When an object impacts on the Moon surface with enough
energy, a crater is produced. If the velocity of the crater ejecta is higher than the lunar escape velocity
(≈ 2.38 km/s), they get free from the Moon gravity and become lunar meteorites travelling through
space, being able to reach the Earth. In [GBDL95], Gladman et al. perform numerical simulations of
a big number of initial conditions at the Moon surface for velocities in the range [2.3, 3.5] km. There,
they argue that a four body problem needs to be implemented to integrate initial conditions, due to
the important effect that Sun has on them.

Concerning how lunar meteorites reach the Earth, there are clear ideas of how they leave the Moon,
and numerical computations supporting these ideas can be found in [GBD+96]. There are also reliable
physical procedures to analyse the time they have spent in space. However, the geometrical mechanism
behind this transport is not fully understood. As far as we know, no invariant object in the Earth-
Moon vicinity is known to play a crucial role in their behaviour.

In Section 3.1 we mentioned that among the connections found to be organized by the invariant
manifolds of the horizontal family of invariant curves around L3, connections between Earth and
Moon were present. Therefore, in this chapter we study whether the invariant manifolds of the
previous section can “guide” lunar meteorites to reach the Earth. The skeleton for these connections
is defined by the subsets of the stable invariant manifolds that connect the Moon surface with a
quasi-periodic orbit near L3 whose unstable manifold reaches the Earth surface.

Let us start by computing the points (positions and velocities) at which stable manifolds reach the
Moon surface, and the points at which unstable manifolds reach the Earth surface. In Figure 3.10
some histograms for the initial and the final data of these trajectories are included. Left panels show
data corresponding to the starting point on Moon surface: initial phase of the Sun, point along the
surface and velocity. Right panels show data corresponding to the final destination of these trajectories
on the Earth surface: phase of the Sun, point along the surface and velocity. Notice that the phase
of the Sun is parametrized on [0, T ], and the surface of the primaries is assumed to be circular and
parametrized by an angle in [0, 2π]. It is remarkable that there is not a preferred Sun phase or point
on the Moon surface for these orbits to start or on the Earth surface for them to end. So, transport
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Figure 3.10: Left column contains histograms for the Moon; from up to down they show the time
leaving the primary, the point of the surface at which it happens, and escape velocity. Right column
contains similar histograms but for the Earth. See the text for more details.
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Figure 3.11: Two trajectories, in the xy-plane, connecting the Moon with the Earth. See the text
for details.

between Earth and Moon takes place in a generic way, in the sense that it is not necessary to be in
any specific location on the bodies or to have an specific phase for the Sun. Ranges for velocities of
the trajectories leaving the Moon are in [2.25, 3.38] km/s, while for the velocities when they reach the
Earth surface (neglecting atmosphere effects) is in the range [11.00, 11.31] km/s. For velocities we do
find some ranges that are preferred, or have higher possibilities; they correspond to values close to the
Moon and Earth escape velocities, respectively, what seems to be a natural result. Vertical axis have
been scaled such that they correspond to the probability percentage for each of the 500 bins.

Trajectories going from the Moon to the Earth can have very different shapes, depending on the
invariant curve they approach during their journey. In Figure 3.11 two trajectories connecting Moon
and Earth are shown; the left one is close to the invariant manifolds of a quasi-periodic orbit close to
L3 and the right one is close to the invariant manifolds of a quasi-periodic orbit far from L3.

To see how likely is for a Moon ejecta to follow these trajectories we have performed a series of
numerical simulations. To this end, for each intersection point of the stable manifolds with the Moon
surface, we have modified the corresponding velocity module and direction maintaining its x and y
coordinates, as well as the initial time (we recall that the BCP depends on time). A mesh of modules
and angle directions for the velocities is created from the values of the trajectory.

The mesh is formed by 103 points in each direction (modulus and angle of the velocity vector) for a
total of 106 points. Each of these points gives an initial condition that is integrated during a maximum
of 55 Earth-Moon revolutions; depending on their final destination a colour is assigned to them, see
Figure 3.12. As in the colour maps from Section 3.1, yellow corresponds to trajectories that leave the
Earth-Moon system, purple to those that reach the Earth and red colour to those that come back to
the Moon. There are also a few trajectories in black colour that neither crash nor leave the system.
The trajectory at the left of each colour map corresponds to an orbit which is extremely close to
the invariant manifold and reaches the Earth (we note that, in a perfect computation with no errors,
an orbit exactly on the manifold will accumulate to the quasi-periodic orbit without going anywhere
else). Note that the plot axes have been adjusted differently for each trajectory.

In these maps we find a large variety of destinations for each of the trajectories starting on the Moon
surface and near the stable manifold. We can see that only for higher velocities big areas of initial
conditions leading to the Earth from the Moon are found. Also, it is quite visible that three of the
four maps have a vertical red band on the left of the plot, the reason for this to happen is that
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Figure 3.12: Left, trajectories connecting the Moon with the Earth, in the xy-plane. Right, desti-
nation colour maps when modifying trajectories velocities; horizontal axis corresponds to the velocity
module (km/s) and vertical to the angle direction (degrees). The trajectory on the left corresponds
to the centre point of the map at the right. See the text for more details.
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those are trajectories with velocities below the Moon velocity escape, consequently they tend to fall
again against the lunar surface. However, in the last map this red vertical band is not present, the
reason may be the relative position of the Sun when the trajectory starts, that helps to escape Moon’s
gravity. In Table 3.2 the initial angular position of the Sun (ϑ0, see (2.6) and Figure 2.2) for the four
trajectories are shown. Notice that for the last trajectory, the initial position of the Sun is almost
vertically above the primaries.

Trajectory 1st 2nd 3rd 4th
ϑ0 132.917506118 225.259626325 298.729423247 263.209360181

Table 3.2: Initial angular position of the Sun with respect to the Earth-Moon barycentre (ϑ0) in
degrees, for the trajectories in Figure 3.12.

3.2.1 Comparison with a realistic model

The results concerning to the transport between Earth and Moon that we have obtained by analysing
L3 in the Bicircular Problem may explain the behaviour of lunar meteorites travelling to the Earth.
Now we want to check these results in a more realistic model. To this end, we consider the Solar
system as an N -body problem containing Sun, Earth, Moon and all the planets, with initial conditions
provided by the JPL ephemeris DE405. The initial conditions for the particles are obtained by means
of a change of coordinates from BCP to the the ecliptic system of reference, whose origin is placed
at the Solar system centre of mass. Once the change is performed, we integrate every particle jointly
with the Solar system as a restricted (N + 1)-body problem.

Every initial condition of the maps in Figure 3.12 has been translated to the ecliptical system by
applying the change of coordinates detailed in Section 2.5. Notice that our coordinates in the planar
BCP are four-dimensional, so initial vertical position and velocity in the adimensional system are
zero. Also, each colour map corresponds to a different starting time (the angles in Table 3.2), that
needs to be translated to modified Julian days (the time in the JPL ephemeris is measured in Julian
days). Since time zero for BCP model corresponds to a lunar eclipse we have chosen as origin of
time in the real system the first lunar eclipse of year 2000, which corresponds to the modified Julian
day 20.1978749133 (day 0.0 corresponds to year 2000.0). Since time at which the trajectories on the
stable invariant manifolds intersect the surface of the Moon, is negative (since these manifolds are
propagated backward in time), all these trajectories occur some time (lower than a solar period T )
before the eclipse. Taking all this into account, we obtain the initial data for each point of the colour
maps with the same units as in the JPL ephemeris.

The initial numerical simulations, with the same mesh of initial conditions as in the BCP, showed
similar patterns but sometimes with a shift, mainly in velocities, and different in each case. For this
reason we have enlarged the mesh to cover a larger set of initial data. The results are shown in
Figure 3.13. An explanation of these shifts, different for each map (i.e. for each different time) may
be given by the relative positions and velocities of the Earth and Moon at each time. This implies a
different scale factor that can be translated into higher or lower velocities for the initial conditions,
see Table 3.3. The last column in this table, σv = ||ė − VM || − ||ȧ|| (in km/s), is a comparison of
the initial velocities with respect to the Moon in the two reference frames. Note that value of σv is
correlated with the shift in velocities when comparing the colour maps in Figures 3.12 and 3.13. It
is remarkable that for the time of the fourth map the relative positions of Earth, Moon and Sun are
close enough to the (planar) BCP configuration so that we have not needed to widen the mesh to find
the same patterns.

As a last check, the trajectories that leave the Earth-Moon system in those integrations (yellow colour
in the maps), are characterised in terms of their orbital elements. Again, for the planar Bicircular
model, only semi-major axis and eccentricity can be computed. For the realistic model, all the orbital
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Figure 3.13: JPL results for the destination colour maps when modifying trajectories velocities;
horizontal axis corresponds to the velocity module (km/s) and vertical to the angle direction (degrees).
See the text for more details.

Trajectory k (km) VEM (km/s) ωEM (1/s) ez (km) σv (km/s)
1st 404835.4469 0.9702 2.3964×10−6 64623.3917 1.4039×10−1

2nd 396750.5357 0.9923 2.5012×10−6 16469.0752 6.2282×10−2

3rd 369879.1465 1.0594 2.8641×10−6 -2390.8644 -1.0638×10−1

4th 384247.7345 1.0195 2.6533×10−6 -517.1608 -1.3396×10−2

BCP 384400.0000 1.0236 2.6628×10−6 0.0000 ––––

Table 3.3: Scale factor, relative Earth-Moon linear and angular velocities and vertical coordinate
in the ecliptic system and BCP for the initial data of the four trajectories of Figure 3.12. Last
row corresponds to the difference in the ecliptical velocity module for the particle relative to the
adimensional one.
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elements have been computed. Here we only include the semi-major axis, eccentricity and inclination
values for the four maps, see Figure 3.14. Again, the plots for the BCP and for the real model are in
good agreement.

Finally, it is worth to mention that the simulations in a realistic model have been also performed
taking other considerations. In particular, we repeated these simulations using the coordinates of the
planets, Sun and Moon given by the ephemeris database at each time step instead of integrating each
of the massive bodies with a N -body that only accounts for gravitational effects. The colour maps
did not present any difference, at least from a qualitative point of view. Also, we repeated these
simulations taking only into account three massive bodies, the Earth, the Moon and the Sun. Again,
no representative differences were appreciated.

Figure 3.14: Orbital elements for the trajectories that leave the Earth-Moon system, corresponding
to the four maps of initial conditions shown in Figure 3.12 (from up to down), integrating them in
the BCP (first column) and in a realistic restricted (N + 1)-body problem (other two). First two
columns of graphs show eccentricity versus semi-major axis (astronomical units), and the last one the
inclination (in degrees) versus semi-major axis.
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3.3 Transfers from a Parking Orbit of the Earth

Similarly to how we have analysed the trajectories that go from the Moon to the Earth passing through
a quasi-periodic orbit around L3, it is possible to look for connections starting in the surroundings of
the Earth to go towards the Moon or some other destination.

In this case, we can not consider the ejecta travelling directly from the Earth surface to the Moon since
the friction of Earth’s atmosphere would ask for extremely high speeds. Instead, we can analyse the
transfer from a low orbit around the Earth, what has undoubtedly astronautical interest. Therefore,
we can use the same strategy as in previous section but starting at some distance from the Earth
surface, for instance at some parking orbit. If a quasi-periodic orbit has trajectories in the stable
invariant manifold crossing a parking orbit and trajectories in the unstable manifold colliding with
the Moon we can use this geometrical structure to go from the surrounding of the Earth to the Moon
by means of a single manoeuvre, which is a change of velocity ∆v at the crossing point (in configuration
space) between the parking orbit and the stable manifold.

We have done some estimations on the ∆v costs for transferring to L3 stable manifolds from a parking
orbit defined at an altitude of 200 km from the Earth surface, and they show that the minimum
cost for some spaceship to make this manoeuvre is of 3.17 km/s; value near typical costs for leaving
a parking orbit at this distance. After this, the trajectory in the stable manifold goes towards the
quasi-periodic orbit near L3 where it will connect with a trajectory in the unstable manifold that may
go to the Moon, to the outside system or to some other destination.

Encouraged by these results, we started a collaboration with Dr. Liang for constructing a transfer
from parking orbits around the Earth to the vicinity of the triangular point L4 passing through a
selected quasi-periodic orbit around L3. There, the costs for using the stable manifolds of a torus
around L3 are carefully analysed, looking for the selection of the most convenient parking orbit and
solar phase (i.e. time). This collaboration resulted in a publication, [LNJ21] that we will briefly
summarise.

Leveraging L3 to transfer to L4:

The strategy developed in [LNJ21] is based in three steps. The first one is to look for the trajectories
in the unstable manifold of a selected quasi-periodic orbit around L3 that intersect the family of
quasi-periodic orbits around the PO1 of L4; this family is studied in Section 2.4. The intersections
are sought at ten different temporal Poincaré sections: at times equal to T, 0.1T, 0.2T, ..., 0.9T . The
trajectories of interest are saved in a set called U1 and the times of flight (TOF) for these trajectories
are found to be around the 55-69 days.

The second step is to study the stable manifolds associated with the trajectories in the set U1 and
look for intersections between the trajectories in those stable manifolds with parking orbits covering
altitudes from low Earth orbits at 167 km to geostationary orbits. Therefore the set of trajectories of
interest is narrowed, we call it U2. It is clear that, as a general rule, the higher is the altitude of the
considered parking orbit, the lower is the cost in ∆v for leaving it. In particular, the costs found for
the trajectories in this new set, U2, to leave the parking orbits are around 1-2.85 km/s and the TOFs
for going from the neighbourhood of the Earth to the quasi-periodic orbit around L3 undertake about
300-1000 days. These TOFs are quite long due to time spent in the neighbourhood of L3.

The third step is to confirm that the whole trajectory connects from the parking orbit to the vicinity
of L4, passing through L3. At this step we compute the quasi-periodic orbit around the PO1 of L4

that intersects exactly with the trajectory coming from the quasi-periodic orbit around L3 at the right
temporal section. For refining this invariant curve, we make a sweep between the tori presented in
Section 2.4.1, evaluating each curve in a fine mesh of angles θ ∈ [0, 2π]. Then, we save the information
of the invariant curve that is closer to that intersection point and the angle θ̃ at which this happens.
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total ∆v at ∆v for time of the ∆v total
Transfer TOF parking patching intersection around ∆v

(days) orbit (m/s) method (m/s) near L4 L4 (m/s) (m/s)

Figure 3.15 175.98 1494.85 69.51
0.7T 124.05 1688.41
0.8T 118.92 1683.28
0.9T 150.00 1714.36

Figure 3.16 192.62 1013.15 75.00
T 102.48 1190.63

0.1T 153.31 1241.46
0.9T 132.54 1220.69

Figure 3.17 177.37 1271.80 69.45
0.2T 173.70 1514.95
0.3T 111.86 1453.11
0.4T 150.45 1491.70

Table 3.4: TOF and fuel costs for three possible transfers for going from parking orbits around the
Earth to a quasi-periodic orbit around L4, using stable and unstable manifolds of a quasi-periodic
orbit around L3.

That curve is used as seed for the Newton method explained in Section 1.4.1 and the angle θ̃ is used to
fix that the coordinates x and y of the curve at that angle are equal to those of the trajectory coming
from L3. Notice that, in this case we may need to compute the invariant curve at a temporal section
different from a time 0, then the value of the initial phase ϑ0 6= 0 in (2.6). The cost of the injection
of the analysed trajectories in quasi-periodic orbits near L4 are of less than 300 m/s.

Once we have some trajectories going from the parking orbit of the Earth to the vicinity of L4, a
patching method based on multiple shooting method is implemented with the aim of reducing the
TOF in the vicinity of L3. The manoeuvre for this patch is of the order of 60-80 m/s. Therefore, the
principal cost of the whole connection is paid when leaving the parking orbit.

To sum up the results, we obtain trajectories that can be used to reach the triangular points passing
through L3 from a parking orbit of the Earth, that would undertake less than 200 days and total
costs in ∆v about 1.2-2 km/s. Notice that following this construction scheme for the transfer, even
the lowest time of flight obtained may be large due to the passage close to L3. In order to overcome
this situation, a second construction in using solely stable manifolds to transfer from a parking orbit
to a quasi-periodic solution near L4 is explored through a similar selection scheme developed for the
first construction. A large decrement in the total TOF is obtained and the lowest TOF is 60.86
days. However, the results also demonstrate that this second construction leads to much less transfer
opportunities in the sense of number of transfer trajectories and launch opportunities from the Earth
parking orbits and no advantage in the total fuel consumption is found.

In Table 3.4, the general information for three possible transfers following the first scheme construction
(i.e. passing through L3) is collected. The table includes the total TOF for the transfer and the total
fuel consumption, that is the sum of the costs for leaving the parking orbit, the cost of the patching
method for reducing the time spent close to L3 and the cost for the intersection of the trajectory into
a torus around L4, that can take place at different temporal sections for the same trajectory.

The trajectories of the transfers in Table 3.4 are shown in Figures 3.15, 3.16 and 3.17, where the piece
going from the parking orbit to the quasi-periodic orbit around L3 is plotted in black colour and the
piece going from that location to the quasi-periodic orbit around L4 is in blue colour. The red squares
denote the intersection points between the trajectories in the stable manifolds of L3 and the parking
orbits of the Earth and the green squares denote the intersection points between the trajectories in
the unstable manifolds of L3 and the quasi-periodic orbits around L4. In these images the plots at the
left correspond to the original trajectory and the one at the right (centre in the case of Figure 3.15)
correspond to the trajectory after the patching method is performed.
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Figure 3.15: Possible transfer from a parking orbit of the Earth to a torus around L4, passing
through L3. Left, original transfer. Centre, after the patching method. Right, a zoom where the
patching method is implemented.

Figure 3.16: Possible transfer from a parking orbit of the Earth to a torus around L4, passing
through L3. Left, original transfer. Right, after the patching method.

Figure 3.17: Possible transfer from a parking orbit of the Earth to a torus around L4, passing
through L3. Left, original transfer. Right, after the patching method.
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Figure 3.18: Fundamental cylinder of the invariant manifolds for an invariant curve of the vertical
family at a vertical distance 5.8942× 10−2 from L3. Up, unstable manifolds. Down, stable manifolds.
Left, positive piece. Right, negative piece. See text for more details.

Therefore, we have found trajectories that go from parking orbits of the Earth to the vicinity of
L4 governed by invariant manifolds of a quasi-periodic orbit around L3. These trajectories involve
affordable fuel costs but the time of flight is still long. Note that this analysis could be extended
to include more possibilities than only the ones provided by just one quasi-periodic orbit around L3,
looking specially for a reduction of the time spent in the vicinity of L3. Finally, just to mention that
a similar strategy could be used to reach the Moon or some other location of interest.

3.4 Transport through the vertical family

This section is aimed to give an insight about the dynamics governed by the vertical family of invariant
tori around L3. The computation of this family and the analysis of its stability have been presented
in Section 2.3.2.

There it is explained that the vertical family of invariant tori around L3 is composed by two-
dimensional tori that are seen as one-dimensional curves in the temporal Poincaré map corresponding
to the period of the Sun P , as it happens with the horizontal family of invariant tori around L3. We
also showed how these invariant curves have associated stable and unstable invariant manifolds since
they are hyperbolic, as it happens with the horizontal family.

Then, in spite of the fact that the analysis of the vertical family requires to work in a six-dimensional
phase space, the invariant manifolds associated with the invariant curves in the map are two dimen-
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sional. Consequently, we can proceed as in Section 3.1 and define fundamental cylinders that allow
to know the behaviour of the connections given by the vertical family of invariant tori around L3 in
the BCP.

The size of the meshes used to parametrize these fundamental cylinders in θ ∈ [0, 2π] and σ ∈ [σ0, λuσ0]
(for the unstable manifolds) and σ ∈ [σ0, λ

−1
s σ0] (for the stable ones) are the same as those used in

Section 3.1, M1 = 1000 and M2 = 1000. Then, each point in the fundamental cylinders of the stable
and unstable invariant manifolds is computed following (3.1) using σ0 = 10−5 since we work again
with the linear approximation of the invariant manifolds. The initial conditions in the fundamental
cylinders are propagated during the same time span as in Section 3.1 in order to make comparisons
between the transport mechanisms that both families suppose.

Figure 3.18 shows the four fundamental cylinders of the stable and unstable invariant manifolds (two
branches for each manifold) associated with an invariant curve at a vertical distance of 5.8942× 10−2

from L3, see Definition 2.3.2. The two images above correspond to the unstable invariant manifolds
and the two below to the stable ones. The colour scale is again: purple for reaching the Earth, red
for reaching the Moon, yellow for reaching the outside system (i.e. being at more than 10 Earth-
Moon distances from the Earth-Moon barycentre) and black for those trajectories that during the
considered propagation time have not reached neither the primaries nor leaving the system. It is clear
that trajectories in both manifolds of this invariant curve reach the Earth, the Moon and leave the
system, suggesting that the vertical family of invariant tori around L3 is also a mechanism of transport
arising many possibilities. From these images the symmetry between stable and unstable invariant
manifolds is appreciated.

In Figures 3.19 and 3.20 the fundamental cylinders of the two branches of the unstable invariant
manifolds for invariant curves in the vertical family of L3 are shown. Notice that the fundamental
cylinders for small vertical distance to L3 remain a little to those close to L3 in the horizontal family
(see Figure 3.4); in one of the branches colours yellow and black with a little of red are dominant,
meanwhile in the other branch the dominant colours are yellow and purple. It is clear that the
connections involving the primaries are relevant when the vertical distance to L3 is small, and as it
increases the majority of the trajectories just travel around the system without reaching any of the
primaries nor leaving the system (what corresponds to the black colour). Another comment is that
there are not so many trajectories in the stable and unstable manifolds of the curves in the vertical
family that reach the Moon, as it happens in the case of the horizontal family. And finally, it is
remarkable that for invariant curves corresponding to high values of the z component (& 0.8) a clear
relation with the Earth appears again (in other words, the purple colour is again appreciable). This
effect may be related with the shape of the invariant curves in this family, see Figure 2.10. In that
plot, one can appreciate that as the z coordinate gets apart from zero, the invariant curves approach
the position of the Earth.

In Table 3.5 the percentages of the trajectories in the unstable manifolds that reach the Earth, the
Moon, the outside system or just travel around the Earth-Moon system during the propagation time
are shown. Notice that the same percentages are found for the trajectories in the stable manifolds
due to the symmetry.

Those trajectories in the hyperbolic invariant manifolds that reach distances far away enough from
the Earth-Moon barycentre, are trapped by the solar gravitational field and their orbital elements
with respect to the Sun are computed. Since now we are working in the spatial phase space we can
analyse all the heliocentric orbital elements of interest. Due to the symmetry, the elements of the
trajectories that leave the Earth-Moon system through the unstable invariant manifolds and those of
the trajectories that enter the system through the stable invariant manifolds correspond to the same
ranges of values. Therefore, we only show the orbital elements corresponding to the stable manifolds.
In Figure 3.21 some graphs corresponding to the semi-major axis, eccentricity, inclination are shown.
Again the shape and the range of values of these graphs of the orbital elements coincide with those
presented in [GVJ12].
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Figure 3.19: Fundamental cylinders for the two directions of the unstable manifolds of curves at
vertical distances to L3, from up to down, 2.0385×10−3, 1.0090×10−1, 2.0103×10−1 and 3.0013×10−1.
Notice that cylinders in Figure 3.18 fit between the first and the second rows.
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Figure 3.20: Fundamental cylinders for the two directions of the unstable manifolds of curves at
vertical distances to L3, from up to down, 5.0057×10−1, 6.3333×10−1, 8.0081×10−1 and 9.0097×10−1.
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Vertical
distance to L3 Earth (%) Moon (%) Exterior (%) Neither (%)
2.0385×10−3 1.49 6.79 11.25 0.37 50.75 91.72 36.52 1.12
5.8942×10−2 0.94 4.99 6.49 0.15 39.95 89.13 52.62 5.73
1.0090×10−1 0.77 2.93 4.93 0.16 42.46 82.65 51.84 14.25
1.5064×10−1 0.76 1.85 3.11 0.54 39.67 70.89 56.46 26.71
2.0103×10−1 1.05 1.34 2.09 1.12 43.69 60.24 53.17 37.31
3.0013×10−1 0.44 0.73 1.80 0.87 26.38 49.02 71.38 49.38
4.0035×10−1 0.42 0.31 2.55 1.12 23.55 39.99 73.48 58.58
5.0057×10−1 0.23 0.24 1.56 0.44 12.64 23.74 85.57 75.58
6.0019×10−1 0.35 0.16 1.01 0.28 8.16 14.07 90.48 85.49
6.3334×10−1 0.39 0.13 0.91 0.29 6.66 12.08 92.04 87.50
7.0056×10−1 0.58 0.15 0.80 0.27 5.09 9.22 93.53 90.36
8.0081×10−1 3.46 0.46 0.66 0.22 3.74 6.16 92.13 93.16
9.0097×10−1 2.82 0.71 0.57 0.39 3.11 4.63 93.50 94.26
9.6602×10−1 0.49 0.41 0.30 0.47 1.12 3.11 98.09 96.01

Table 3.5: Percentages of the trajectories starting at fundamental cylinders that go to the Earth,
Moon, outside system or neither, through the two directions of the unstable invariant manifolds for
some invariant curves of the vertical family around L3.

Figure 3.21: Orbital elements for orbits entering the Earth-Moon system through the stable invariant
manifolds associated with the vertical family of tori around L3. Horizontal axis corresponds to semi-
major axis (in astronomical units) in both plots. The vertical to eccentricity, in the plot on the left,
and to inclination (in degrees) in the plot on the right.
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Chapter 4

Capture of an asteroid through L3 in
the BCP

Nowadays, several space agencies and private companies are considering the exploitation of raw ma-
terials from asteroids, e.g., gold, iridium and platinum [MMBM15, ABB+15, VMC20]. Metals such
as gold or platinum could be transported to Earth, while more common metals could be used for
construction in space [O’L77]. Different options have been pointed out to obtain these materials from
asteroids. One option is to send a robotic probe to visit an asteroid, collect such materials and bring
them back to Earth. A second option is to attach a propulsion system to the asteroid and, by means
of a small manoeuvre, capture it into a suitable orbit of the Earth-Moon system. This last technique,
although difficult to carry out, allows for a much simpler mining strategy once the asteroid is inside
the Earth-Moon system. In this context, Near Earth Asteroids (NEAs) offer very suitable targets.

There are several works in the literature that analyse the capture near the L1 and L2 collinear points
(for a recent review, see [SNU18]). For instance, [SGYAM12] studies the capture opportunities for a
selection of NEAs targeting Lyapunov and Halo orbits of the Earth-Sun Circular Restricted Three-
Body Problem (RTBP). The capture of NEAs targeting L2 Lyapunov and Halo orbits in the Earth-
Moon RTBP is discussed in [TMC17]. In both works, the case of asteroid 2006 RH120 is analysed,
resulting in costs between 58 m/s and 298 m/s in the first case (Earth-Sun RTBP) and less than
500 m/s in the second (Earth-Moon RTBP). The attention paid to the collinear points L1 and L2 is
due to their strong instability and low energy level, that aids to a rapid dynamics to enter and leave
the system passing close to the small primary, either the Moon in the Earth-Moon system or the Earth
in the Sun-Earth system. However this advantage to have a fast approach is also a disadvantage to
control it, since high fuel costs have to be employed to avoid the asteroid to leave this region with
the same facility as it is approached. Not to mention the risks of a crash into the Moon or the Earth.
Other works suggest the capture of an asteroid without targeting any particular orbit, for example, in
[USB+14], the authors analyse the lengthening of the time that the asteroid 2006 RH120 was orbiting
the Earth in its last approach in 2006, by sweeping a three dimensional mesh on the parameters that
define a low thrust manoeuvre. Among their results, a manoeuvre of total ∆v of only 32 m/s is found
to have been able to extend this time another five years.

In this chapter we analyse the neighbourhood of the L3 point of the Earth-Moon system as one of
the potential destinations for a captured asteroid. One of the advantages of this region is a very mild
instability that allows for an extremely cheap control to keep the asteroid there: the station keeping
manoeuvres to remain in the neighbourhood of L3 are of just some cm/s per year [FV04]. So, it is
very cheap to keep the asteroid in that region, in order to perform a mining process or just waiting
for the right moment to send it towards to some other region. Another advantage of this region is
that, as we commented in Section 3.1.1, there are invariant manifolds connecting the vicinity of L3
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with the typical trajectories of NEAs.

The model we have used in this study of the capture of an asteroid is the planar Bicircular model.
In this model, when the infinitesimal particle is at some distance from Earth and Moon it follows a
nearly-Keplerian orbit around the Sun, see Section 3.1.1, while when it enters the Earth-Moon system
it follows the dynamics of a Restricted Three-Body Problem with a perturbation coming from the
Sun. Hence, it seems a natural initial model to study the capture of a NEA.

The idea is to use the stable invariant manifolds associated with the invariant curves around L3 in the
horizontal plane to capture the asteroid. When working with the linear approximation of the invariant
manifolds the numerical integrations have to start very close to the torus in order to have a good level
of accuracy and, hence, a long integration time is needed to move away from the neighbourhood of
L3. This long integration time introduces some numerical difficulties (as we will see in Section 4.1)
and, for this reason, we have implemented the parametrization method to compute these invariant
manifolds up to high order. As these computations are done in a Poincaré map, the parametrization
method is combined by a jet transport technique to propagate the high order derivatives needed in the
parametrization method [GJJC+21]. The last step of the process is to refine trajectories on the stable
manifold that arrive at some given position at a given time; the position and time of the asteroid.
The difference in their velocities gives the value of the impulse manoeuvre, ∆v, required to insert the
NEA into the stable manifold.

As a test example, we have considered the capture of the asteroid 2006 RH120. This is a small asteroid
(3.3± 0.4 meters in size [KKP+09]) that makes close approaches to the Earth-Moon system. In fact,
in its last approach it was orbiting the Earth from September 2006 to June 2007. We have selected
the 2006 approach to show a strategy to capture it near the L3 point of the Earth-Moon system. We
show that there are many options to capture it using a ∆v in the range 100-300 m/s, and some other
options to capture it with a ∆v below 100 m/s. Remarkably, there is one option with a ∆v as low as
20 m/s.

The chapter is structured as follows. Section 4.1 discusses the use of the high order approximation
of the stable invariant manifolds to construct a capturing strategy, and Section 4.2 shows the results
of applying the previous strategy to the capture of the asteroid 2006 RH120. Finally, Section 4.3 is
devoted to the conclusions and future work regarding to the use of manifolds for capturing an asteroid.
The analysis and results of the present chapter are collected in [JN21].

4.1 Computational strategy

The previous chapter has shown how parts of the invariant manifolds of the quasi-periodic orbits
near L3 move around the Earth-Moon system, while other parts escape and orbit the Sun. The main
idea to capture a NEA in the vicinity of L3 is to propagate, backward in time, the stable invariant
manifold of a quasi-periodic orbit near L3 looking for encounters in positions with the target object.
The difference in velocities at this “meeting point” gives the manoeuvre to inject the NEA in the
manifold so that the natural dynamics of the problem sends the asteroid to the neighbourhood of L3.
As mentioned, the advantages of using L3 are mainly a very low cost for the station keeping there,
the possibilities offered to reach a different region from there and the low risk of crashing during the
transfer.

It is worth mentioning that a preliminary exploration of the possibilities of L3 for the capture has
been done using the linear approximation of the invariant manifolds of the invariant curves shown in
Figure 2.4. However we do not aim just to find an invariant manifold that passes close to the position
of an asteroid to justify the capture, but to be able to find the initial condition on the fundamental
domain of a torus that is sent (by the backwards flow of the BCP) to the position of the asteroid
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at the right time. Notice that, when using the linear approximation of the invariant manifolds the
fundamental domain, or fundamental cylinder (FC) detailed in Section 1.4.4, needs to be defined very
close to the invariant curve (for σ0 ≤ 10−5), therefore the globalisation of those initial conditions
requires numerical integration of trajectories that spend a significant amount of time just closely
following the quasi-periodic orbit, increasing the numerical errors and making more difficult to find
the initial condition that corresponds exactly with the position of the asteroid. This difficulty is solved
using a high order parametrization method for the invariant manifolds.

The computational strategy for the capture that we present here is based on three steps. First of
all, the positions and velocities of the asteroid are obtained from the JPL Horizons system [JPL] in
the ecliptic reference frame at some Julian epochs. Therefore, a change of positions, velocities and
time is needed to transfer the information on the location of the asteroid to the Bicircular model. We
use the change of coordinates detailed in Section 2.5 and the particular case of the chosen asteroid
is presented in Section 4.1.1. The second step is to define the fundamental cylinders of the stable
invariant manifolds of tori around L3 using the high order parametrization, globalise them backward
in time, see Section 4.1.2, and then compare the position of the trajectories in the manifold with that
of the asteroid. This allows to identify sets of initial conditions on the FC that approach the asteroid.
Finally, in Section 4.1.3, we explain a Newton method used to compute the initial condition on the
FC that arrives, backward in time, to the location (positions and time) of the asteroid.

As the BCP is a periodically time-dependent model, we can look for encounters NEA-manifolds at
different times. If we use the Poincaré map P then we only look for encounters at time t = 0 mod T
(that is, after an integer number of periods of the BCP). In our analysis of the capture we define
different temporal sections, corresponding to an integer number of periods, to a quarter, to a half and
to three quarter of the period. This has two effects; on the one hand, the relative position of the
Earth-Moon system with respect to the Sun changes and this can aid (or difficult) the capture, and
on the other hand, the positions of the asteroid itself are also different.

Finally, we want to emphasise that this work studies, as an example, the capture of the asteroid
2006 RH120 in its last approach to the Earth, but it is easy to see that the whole strategy described
here can be used to study the capture of any other asteroid or object of interest.

4.1.1 Bringing a real asteroid to the BCP

We take the coordinates of asteroid 2006 RH120 from the JPL data base at different times corre-
sponding to times equal to

t = STT ST =

{
0,

1

4
,

1

2
,

3

4

}
(4.1)

in the Bicircular reference frame. That correspond to times

t = TECLIPSE +NT T̃ + ST T̃ ST =

{
0,

1
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,
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,

3

4

}
(4.2)

in Julian days, see Section 2.5.1, in particular Equation (2.19).

The database gives the coordinates of the asteroid at those selected temporal sections in the ecliptical
reference frame. In order to have the coordinates in the reference frame of the BCP, we apply the
change of coordinates detailed in Section 2.5.2. Two observations need to be done. First one, as we
want to translate the positions provided by the JPL database to the BCP frame, we have to apply
the inverse change of coordinates. And second one, since we consider the planar BCP, we project the
positions and corresponding velocities in the adimensional reference frame to the xy-plane.

In our example, we study the cost to capture the asteroid 2006 RH120 near L3. This NEA was
naturally captured by the Earth from September 2006 to June 2007. We analyse the possibilities
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of capture at different epochs that verify (4.2), such that all these epochs correspond to the same
temporal section in the BCP for a given ST . The selected epochs go from April 2006 and May 2007,
some months before and along the time of the natural capture. The reasons for choosing this time
span are the following: at these epochs the vertical coordinate is lower than in previous epochs, the
change of coordinates (2.20) is more precise close to (or inside) the Earth-Moon system, and finally,
considering positions close to the system, the propagation time of the invariant manifolds is quite low,
so that we can guarantee a certain level of control on the numerical errors.

The exact epochs and coordinates of the asteroid in the planar BCP at a temporal section correspond-
ing to integer number of solar periods (ST = 0 in (4.2) and taking TECLIPSE = 2451564.69787 Julian
Days) for the selected time span, are shown in Table 4.1. First column designates an identity number
to each epoch.

it Epoch in Julian Day x y px py
1 2453838.55277 (2006-Apr-13) 8.49569856e+00 5.32382756e+00 -1.32303889e+00 6.39230591e-01
2 2453868.08336 (2006-May-12) 4.30485868e+00 2.69869849e+00 -5.98173604e-01 4.69696447e-01
3 2453897.61394 (2006-Jun-11) 2.20409179e+00 3.15215977e+00 -2.31495071e-01 4.09922742e-01
4 2453927.14452 (2006-Jul-10) 1.79617205e+00 3.52278287e+00 4.88502390e-02 5.27242305e-02
5 2453956.67511 (2006-Aug-09) 8.44580321e-01 1.94256864e+00 -1.83258282e-01 -2.87989646e-01
6 2453986.20569 (2006-Sep-07) -2.03317473e+00 3.96100179e-01 -3.27669077e-01 3.32987066e-02
7 2454015.73627 (2006-Oct-07) -1.77595242e+00 -6.00168179e-01 1.34571469e-01 -5.87429182e-02
8 2454045.26686 (2006-Nov-05) -1.59983939e+00 -1.84351841e+00 -1.29626305e-01 1.68008169e-02
9 2454074.79744 (2006-Dec-05) -2.52446813e+00 -1.45236080e+00 4.97133752e-02 2.81586255e-01
10 2454104.32802 (2007-Jan-03) 5.36966985e-01 1.89106392e-01 9.19935708e-01 -1.16359612e-01
11 2454133.85861 (2007-Feb-02) 1.01383428e+00 -1.06799662e+00 -2.12516151e-01 1.87709985e-01
12 2454163.38919 (2007-Mar-03) -5.50357733e-01 4.66104142e-01 -1.47342869e-01 2.34743158e-01
13 2454192.91977 (2007-Apr-02) 1.55999311e-01 -1.47760228e+00 1.76720970e-01 -6.54112731e-01
14 2454222.45036 (2007-May-01) -1.05304516e+00 -1.90933922e+00 1.94206705e-01 1.00575691e-01
15 2454251.98094 (2007-May-31) -3.67319092e-01 5.92231168e-01 2.52078533e-01 2.49872133e-01

Table 4.1: Fifteen epochs corresponding to time 0 or NTT in the BCP, and the coordinates of the
asteroid 2006 RH120 in the planar BCP at these epochs.

4.1.2 High order parametrization of L3 invariant manifolds

In Section 1.3 we explained that the high order parametrization of hyperbolic invariant manifolds of
a torus can be written as a formal Taylor-Fourier expansion in terms of two parameters, σ and the
angle vector θ ∈ Td:

W (θ, σ) = a0(θ) + a1(θ)σ +
∑
k≥2

ak(θ)σk,

where ak are the functions parametrizing the manifold at order k that depend on the angles along the
torus. In particular, in this chapter we are studying the manifolds associated with invariant curves
of a stroboscopic map, therefore there is only one angular variable, θ ∈ [0, 2π]. Then we follow the
steps given in Section 1.4.3 to compute the stable and unstable invariant manifolds associated with
invariant curves in a temporal Poincaré map.

Let us write the parametrization of the stable invariant manifold (W s) and of the unstable invariant
manifold (Wu) associated with an invariant curve as:

W s(θ, σ) =
∑
k≥0

ask(θ)σk,

Wu(θ, σ) =
∑
k≥0

auk(θ)σk,
(4.3)

where ask (auk) denotes each function of the parametrization of the stable (unstable) invariant manifold
at order k. Now, we must remember that the Bicircular Problem, as many other classical mechanical
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systems, presents a symmetry when inverting the time (see Equation (2.3)); i.e. if (x, y, px, py, t) is
a particular solution of the system, also is (x,−y,−px, py,−t). Since the computed invariant curves
near L3 cut symmetrically the x-axis, they are symmetric to themselves (self-symmetric), and their
stable and unstable manifolds associated are also symmetric between them. Also, in our frame of the
BCP, λu = λ−1s due to the Hamiltonian structure. Therefore, we can compute only one invariant
manifold (either the stable or the unstable) and have both, since

W s(θ, σ){x, y, px, py} = Wu(θ, σ){x,−y,−px, py}. (4.4)

In fact, for this application we have computed the unstable manifolds and we have used the symmetry
to obtain the stable one.

The family of invariant curves around L3 covers a wide area of the Earth-Moon system, see Figure 2.4.
However, as these curves grow far away from L3, they approach the Earth. This makes the curves
in the outer part of the family to be considered inconvenient for being used in the capture, since the
closer they pass to the Earth the risk of a crash increases. Also, if the asteroid is captured using an
inner curve of the family it remains orbiting in a small zone, that is easy to control and where the risk
of any crash is not relevant. Therefore, not all the invariant curves in the family are of interest for
this application, and then we decide to focus on those at a maximum distance of 0.65 adimensional
units from L3, recall Definition 2.3.1 for the distance to L3. Within this distance the parametrization
method is applied to a subset of curves separately by, approximately, 10−3 adimensional length units,
to obtain a total of 614 invariant curves.

Recall that the orders 0 and 1 of the parametrization of the invariant manifolds correspond to the
invariant curve and to the hyperbolic eigenfunction, respectively, that we have already computed and
used in previous chapters. For computing the orders k ≥ 2 of the parametrization of the invariant
manifolds of these 614 invariant curves, we follow the Algorithm 1.4.3, described in Section 1.4.3, up
to order K = 16.

Looking at Figure 2.4 it is clear that each invariant curve in the family has different shape and different
eigenvalues as their distance to L3 increases. This is why each of them is discretized by a different
number of Fourier modes. Moreover, the number of Fourier modes is not kept constant during the
computation of the manifold: as it has been explained in Algorithm 1.4.3, the number of modes is
increased from one order of the parametrization to the next when needed. Notice that each order
of the parametrization, m, is computed tentatively with the same number of Fourier modes as the
coefficient of the previous order, m − 1. The criteria we have followed to increase this number is for
the Euclidean norm of the last two terms of bm to be below some tolerance that also depends on the
order of the parametrization, being tol2 = 10−10 at order 2 and tolm = 2tolm−1 for m > 2. When
this tolerance is reached, the number of modes is increased by 20. The reason for this criteria is
that the requirement of accuracy can be decreased for higher order terms without loss of accuracy
for the manifold. The full computation of the parametrizations of the invariant manifolds for the 614
invariant curves following the procedure explained in Algorithm 1.4.3 takes less than 1.5 hours in a
computer with 16 processors.

Table 4.2 shows the number of Fourier modes for the coefficients of the parametrization at order 0
(a0, the invariant curve), Nk=0, and the number of modes needed for the parametrization function at
order 15 (a15), Nk=15 and at order 16 (a16), Nk=16, for curves at different distances from L3 in order
to illustrate how the size of the discretizing series increases according to the shape of the invariant
curve and to the degree of the parametrization.

Once we have the parametrizations of the invariant manifolds for the computed curves, we check up
to which distance from the invariant curve each of the parametrizations can be trusted. Following the
criteria defined by (1.53),

σ̄0 ≈
1

λu

(
ε

||aK ||1

)1/K

,
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Invariant Curves Invariant Manifolds

distance σ̄0 σ̄0
to L3 λu Nk=0 Nk=15 from (1.53) Nk=16 from (1.53)
10−3 3.37281360 25 25 1.17×10−1 25 1.34×10−1

0.1 3.36135224 27 27 8.08×10−2 27 9.28×10−2

0.2 3.32665559 28 48 6.25×10−2 48 7.20×10−2

0.3 3.26751807 29 69 5.10×10−2 69 5.86×10−2

0.4 3.18166131 32 92 4.37×10−2 92 5.02×10−2

0.5 3.06474188 45 125 3.87×10−2 125 4.45×10−2

0.6 2.90843912 72 192 3.52×10−2 332 4.04×10−2

0.65 2.79811097 84 364 3.52×10−2 424 3.86×10−2

Table 4.2: Values of the unstable eigenvalue (λu), the number of Fourier modes needed for the orders
of the parametrizations 0 (Nk=0), 15 (Nk=15) and 16 (Nk=16) and the σ̄0 parameter such that the
error of the parametrization up to order k = 15 and k = 16 is below 10−14, for invariant curves at
different distances from L3.
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Figure 4.1: Growth of the value of σ̄0, for the approximation to be trusted with an error below
10−14, according with the order of the parametrization (k). It is shown for the manifolds of the eight
invariant curves in Table 4.2. Left, for the maximum order considered, K = 16. Right, a zoom
including only up to order 5.

in the Section 1.4.5, we see that for the parametrizations at the maximum considered order, K = 16,
to satisfy an error ε below 10−14, the values of σ̄0 must be between 1.34× 10−1 for the inner invariant
curves of the family and 3.86×10−2 for the outer ones, see Table 4.2. This supposes a big improvement
with respect to the value σ0 ≈ 10−5 needed for accurately approximate the manifold using the linear
approximation. The values of σ̄0 at the parametrization order k = 15 are also included in the table
to illustrate that the gain of domain of validity from order 15 to 16 is not significant, and therefore
considering parametrization order higher than 16 seems to be not necessary.

In order to make this improvement more visual, in Figure 4.1, the variation of the computed value σ̄0
with respect to the order of the parametrization is shown. The plot on the left shows this variation
up to the maximum order considered (K = 16) and the plot on the right shows a zoom of the first
orders. As it is natural, the first orders of the approximation allow to increase the value of σ̄0 more
easily than for the higher orders.

Now we have the information needed to define fundamental domains for the stable invariant manifolds
following expression (1.52), as explained in Section 1.4.3. These domains are cylinder shaped and they
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distances |σ0| divisions divisions
to L3 considered in θ in τ
10−3 - 0.1 5.00×10−2 1000 500
0.1 - 0.3 5.00×10−2 2000 500
0.3 - 0.4 5.00×10−2 2500 400
0.4 - 0.65 2.50×10−2 5000 200

Table 4.3: Values of σ0 and the number of divisions taken for the mesh of (θ,τ) to define the
fundamental cylinders for the invariant curves depending on their distance to L3.

are parametrized by two parameters, θ and τ ,

(θ, τ) ∈ [0, 2π]× [0, 1] 7→ Zs(θ, τ) =

K∑
k=0

ask(θ)((1 + τ(1/λs − 1))σ0)k.

Notice that σ0 must take positive and negative values, in order to parametrize the two branches of the
stable invariant manifold. Therefore, to analyse the fundamental domains, first, we need to specify
a value for σ0 and to make a mesh on the two parameters, such that every point in the fundamental
cylinder, (θ, τ), is an initial condition on the stable invariant manifold. For each invariant curve we
need to specify the value of σ and of the number of divisions taken along the angle θ and in parameter
τ to define the mesh of its fundamental cylinder. The selected values are taken attending to the
differences observed between the parametrizations of the manifolds for curves at different distances to
L3. Table 4.3 collects the values considered depending on the range of distance at which the curve is
placed. This way, the mean distance between each two points in the mesh of any of the FC is of the
order of 5× 10−4 adimensional units, around 200 km.

Each of the points in the mesh, i.e. initial condition on the FC, is integrated backward in time for a
maximum of 15 solar periods, by means of a Taylor method [JZ05]. After each period of the BCP, we
compute the distance to each of the fifteen positions of the asteroid given in Table 4.1 and we store
the minimum of this distance, jointly with the differences in velocities between the point of minimum
distance and the asteroid (we will refer to this difference as ∆v).

If, during the integration, a trajectory in the stable manifold crashes with the Earth or the Moon
the integration is stopped and we keep the information of the closest approach to the asteroid before
the crash. We also compute the growth of the derivative of the trajectory with respect to the initial
condition (this is the typical computation done to estimate Lyapunov exponents) to have an idea of
the error propagation due to the instabilities of the problem. If this increasing factor grows more
than 109, we proceed as in the crash case, in order to discard those trajectories with significant error
accumulated.

4.1.3 Refining an initial confition on the FC

In this section we present a Newton method to refine an initial condition on the FC, identified by two
values θ and τ , that arrives to the position of the asteroid, at a specific time. The seed for the Newton
method is given by the first approximation obtained in the previous section. The FC is parametrized
according to (1.52) as

Zs(θ, τ) =

K∑
k

ask(θ)((1 + τ(λ−1s − 1))σ0)k,

where Zs(θ, τ) is a four-dimensional vector, (Zs = {x, y, px, py}). Therefore, what we want is to find
parameters (θ, τ) such that the trajectory starting at this point reaches, at some time tf , the position
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of the asteroid. This condition is written as

F (θ, τ) = {x(θ, τ), y(θ, τ)}tf − {xasteroid, yasteroid} = 0.

This is the equation we will solve using a Newton method. The derivatives of F with respect to θ and
to τ follow from the chain rule,

∂F

∂θ
(θ, τ) = DxP (Zs(θ, τ))tf

K∑
k=0

∂ask(θ)

∂θ

[
σ0(1 + τ(λ−1s − 1))

]k
,

∂F

∂τ
(θ, τ) = DxP (Zs(θ, τ))tf

K∑
k=1

ask(θ)σk0k[1 + τ(λ−1s − 1)]k−1(λ−1s − 1),

being DxP (Zs(θ, τ))tf a 4 × 4 matrix that contains the derivative of the flow at the final time, tf .
Notice that for k = 0, the derivative of F (θ, τ) with respect to τ is zero, since at this order, the
parametrization corresponds just to the invariant curve, that does not depend on τ . Also, note that
these expressions involve four dimensions, but we are only interested on the first two components,
since we want to refine the values of (θ, τ) that give the desired values for the (x, y) coordinates at
the final time.

4.2 Results for the asteroid 2006 RH12O

The strategy explained in the previous section has been applied to four different temporal sections,
that is four Poincaré maps defined at times corresponding to an integer number of solar periods (T ),
to a quarter (T/4), to a half (T/2) and to three quarter (3T/4) of solar periods, see Equation (4.2).

In the time span considered, we have found several trajectories that approach different positions of the
asteroid, and requiring a low ∆v for the capture at any of the four temporal sections. Since we want
to compute the trajectory in the stable manifold that arrives exactly to the position of the asteroid at
the right time, we look for areas in the fundamental domain of the invariant curves that show clearly
a minimum of the distance to the position of the asteroid, what we have called “minimum distance
areas” for short.

In order to visualise the results of globalising the invariant manifolds, we make use of colour maps
corresponding to fundamental cylinders, such that the horizontal axis corresponds to θ ∈ [0, 2π], the
vertical one to τ ∈ [0, 1]. Therefore, every point (θ, τ) is an initial condition on the FC, that is
integrated backward in time and coloured according to some magnitude. Details about the meshes
used and how to compute these trajectories in the stable manifolds are presented in Section 4.1.2.

Each point of the FC is coloured according to the minimum distance of the trajectory starting at this
point to the asteroid, making easy to identify sets of trajectories, covering some area of the FC, that
approach significantly the asteroid. In order to reduce the possibilities to the most convenient ones, we
add two restrictions for the coloured maps. The first one is regarding to the distance to the asteroid
and the second one to the maximum affordable ∆v. Only trajectories that get closer than 105 km
to the asteroid with a difference in velocities below 1 km/s, are included in the maps. Note that
these are not strong restrictions, the reason for them is only to make easy to recognise the minimum
distance areas and to have an idea of the ∆v that may be involved. Actually, between all the suitable
trajectories that have been found, only some of those requiring a ∆v below 500 m/s are presented.
Also, once the minimum distance areas are identified, we use the method explained in Section 4.1.3 to
refine a trajectory nearby that arrives to the asteroid position. The accuracy imposed to the Newton
method is for the trajectory in the manifold to lay as close as 10−10 adimensional units (≈ 3.8 cm)
to the asteroid position at the right time; this tolerance is achieved with just three or four Newton
iterations.
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The way to present and interpret the results is the same for any of the temporal sections, so an
extended examination of the results corresponding to the temporal section at times “0” or NTT are
first given in Section 4.2.1, and some of the results for the other three temporal sections are collected,
in a more schematic way, in Section 4.2.2.

At the end of Section 4.2.1, we also give a brief explanation about the continuity in time of the
minimum distance areas, and its effect on the ∆v, in order to express the robustness of the trajectories
susceptible to be used for the capture and to point out the possibility of implementing optimisation
algorithms.

4.2.1 Temporal Poincaré sections at time T

The first results show that stable invariant manifolds of tori close to L3 (that are also the most unstable
ones) reach the positions of the NEA before the asteroid enters the Earth-Moon system (epochs it=1,
2 and 3 of the Table 4.1), with a low difference in velocities. Once the asteroid has entered the
Earth-Moon system there are many initial conditions in the fundamental cylinders that approach the
asteroid, specially for stable invariant manifolds of tori in the middle of the family, not very close to
L3. However, the difference in velocities when the asteroid is in the region close to the Earth and
Moon is higher than when the asteroid is far away from any massive body, as expected according to
some results found in the literature [SGYAM12, TMC17]. Finally, when the asteroid is leaving the
system, the stable manifolds reach its position with a smaller difference in the velocities than when
it is inside. In order to support these comments, three epochs are analysed in detail; it=2, it=7, and
it=14. Since the procedure to obtain and present the results is the same for the three cases, we give
a more detailed explanation for the first one, and limit ourselves to a brief version for the other two,
again to avoid being repetitive.

it=2, (2006-May-12)

In Figure 4.2, colour maps of the FC of different tori, covering distances to L3 from 0.01257 to 0.05784
(a length of ∼ 17400.33 km) are shown. The first six maps, in the first two rows, are coloured
according to the minimum distance, in km, reached between the trajectory in the stable manifold and
the position of the asteroid at epoch it=2. Belonging the first colour map to the invariant curve that
is closer to L3 and the following ones, to invariant curves increasingly further away from L3. The
last six maps in Figure 4.2 correspond to the same fundamental cylinders as the first two rows, this
time coloured according to the instantaneous ∆v in km/s, needed for the insertion of the asteroid in
those trajectories belonging to stable manifolds. Remember that only trajectories that approach that
position at least at 105 km and require a ∆v of less than 1 km/s are included in the maps.

Recalling the effective continuity of the family of quasi-periodic orbits, we can compute any invariant
curve between those shown in Figure 4.2 and observe a similar dynamics for the invariant manifolds
than that of their neighbour curves, including presenting similar minimum distance areas. Altogether,
considering the union of all these tori that present some clear zones of minimum distance, there exists
some three dimensional regions of significant size where there are points that allow the capture of the
asteroid with a single manoeuvre.

Now, we analyse the maps in Figure 4.2 separately. It is clear that for the first FC, two minimum
distance areas are identified, very close one to the other, for values of θ between 3 and 4, and for
some τ around 0.6. Let us call the minimum distance area on the left Minimum 1, and Minimum 2
to the one on the right. We can see these two minimum distance areas on the FC of the manifolds
of nearby invariant curves that are further away from L3. These minima start moving away and two
other minimum distance areas appear for the FC in the second colour maps, named Minimum 3 (the
one on the left) and 4 (the one of the right). For the FC in the third map of the first row another
two minima are already found, Minimum 5 and 6. In the following maps these six minima can be
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Figure 4.2: Six fundamental cylinders of tori at different distances from L3 between 0.01257 and
0.05784. Plots in the first two rows show the FCs coloured according to the distance to the asteroid
at position it=2, in km. Plots in the last two rows show the same FCs this time coloured according
to the instantaneous ∆v in km/s.
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Min 1 Min 2
dist to L3 NT θ τ ∆v (m/s) NT θ τ ∆v (m/s)
0.01257 5 3.589 0.600 254.159 5 4.029 0.609 254.188
0.02043 5 2.953 0.580 254.098 5 4.654 0.632 254.260
0.03213 5 2.755 0.564 254.045 5 4.826 0.659 254.341
0.03947 5 2.709 0.555 254.018 5 4.849 0.676 254.392
0.04926 5 2.681 0.545 253.986 5 4.839 0.701 254.464
0.05784 5 2.672 0.537 253.962 5 4.805 0.725 254.529

Min 3 Min 4
dist to L3 NT θ τ ∆v (m/s) NT θ τ ∆v (m/s)
0.01257
0.02043 6 3.065 0.664 114.391 6 3.702 0.690 114.414
0.03213 6 2.591 0.636 114.346 6 4.149 0.729 114.426
0.03947 6 2.501 0.624 114.320 6 4.216 0.749 114.425
0.04926 6 2.442 0.611 114.283 6 4.237 0.776 114.416
0.05784 6 2.419 0.601 114.248 6 4.222 0.801 114.403

Min 5 Min 6
dist to L3 NT θ τ ∆v (m/s) NT θ τ ∆v (m/s)
0.01257
0.02043
0.03213 7 3.132 0.681 131.324 7 3.506 0.707 131.301
0.03947 7 2.791 0.656 131.348 7 3.827 0.740 131.272
0.04926 7 2.628 0.638 131.366 7 3.958 0.771 131.247
0.05784 7 2.556 0.626 131.379 7 3.997 0.797 131.228

Table 4.4: Values of θ and τ corresponding to the initial conditions in the fundamental cylinders in
Figure 4.2, that lay on the position of the asteroid at May 12, 2006, (it=2) after NT BCP periods,
and the ∆v required for each of them.

easily identified. Looking at same maps in last two rows of Figure 4.2, it is clear that these minimum
distance areas correspond to low values of ∆v. It is worth mentioning that these maps are very similar
for epochs it=1 and it=3.

For each of the six minimum distance areas, and for different tori, we have computed the trajectory
that exactly arrives to the asteroid position at epoch it=2, with the Newton method introduced in
Section 4.1.3. Table 4.4 collects the results for the initial condition in the fundamental cylinder, θ and
τ , along with the number of solar periods, NT , that this trajectory needs to reach the position of the
asteroid and the amount of ∆v required for the transfer. The trajectories in the stable manifold that
reach the asteroid corresponding to the first bigger two minima need five solar periods to reach the
position of interest and the ∆v to take advantage of their dynamics is around 254 m/s. For the next
two minima, smaller in size than the previous ones, six solar periods are required and the ∆v is of
less than 115 m/s. Finally, for the last two, even smaller in size, another extra solar period is needed
in the propagation of the trajectories and the costs are of less than 132 m/s.

Now, we perform the simulation of the capture of asteroid 2006 RH120. For this, we consider as
starting point the coordinates of the asteroid at epoch it=2, add the corresponding velocity impulse,
the ∆v included in the Table 4.4, and integrate forward in time in the planar BCP, making sure that
the asteroid is trapped by the stable invariant manifolds of L3, and lead to the neighbourhood of L3,
where it remains, just spinning around the corresponding torus for long time.

In Figure 4.3, we show the trajectories corresponding to the six minima present in the fifth colour
map of Figure 4.2. It is clear that the trajectories of the first two minima almost overlap, specially
when they are far from the Earth-Moon system. Similar effect is observed with the trajectories of
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Figure 4.3: Simulation of the capture of the asteroid at May 12, 2006, through the trajectories in
the stable manifold of the fifth FC of Figure 4.2 when applying the obtained ∆v, Table 4.4. The
Earth and the Moon are included as black circles of corresponding radius, and the initial position of
the asteroid as a red star.

the second two minima, and with the ones of the third two minima. It is clear also the reason for
the different values of the number of solar periods needed for each of the trajectories. Finally, these
trajectories do not approach much neither of the massive bodies, although they pass at a distance
of less than sixty thousand kilometres from the Moon, which makes that the norm of the derivative
of the actual position w.r.t. the initial conditions be in the range between 103 and 104. This is a
moderate error increasing factor.

it=7, (2006-Oct-07)

In this case, we consider the capture in an epoch in which the asteroid has already entered the Earth-
Moon system. Figure 4.4 contains colour maps of the FC of different tori, covering distances to L3

from 0.53075 to 0.60047 (a length of about 26800.76 km). Again, the first six maps are coloured
according to the minimum distance, in km, reached between the trajectory in the stable manifold and
the position of the asteroid, this time at epoch it=7. And the last six maps in Figure 4.4 correspond
to the same fundamental cylinders but coloured according to the instantaneous ∆v in km/s.

In the first fundamental cylinder of Figure 4.4 only one minimum distance area is identified, lets
call it Minimum 1. However, as we consider fundamental domains of curves increasingly distant to
L3, this minimum is split into two different minimum distance areas. Let us call Minimum 2 to the
minimum distance area at higher value of τ . In the third colour map, the first two minima are moving
apart and a third one appears for low values of τ , Minimum 3. If we keep on examining fundamental
domains of invariant curves further away from L3, we observe that the third minimum splits into
two, naming Minimum 4 the one at lower value of τ . In the fifth colour map, the four minimum
distance areas are clearly identified, and for the last colour map Minimum 2 passes to be at the lower
part of the fundamental domain. Keep in mind that this is a normal phenomenon since there is a
continuity between the boundaries of these maps. The fact that this minimum passes from the upper
part of the fundamental domain to the lower part makes necessary to integrate an extra period, see
Table 4.5, since now this initial condition is closer to the invariant curve and it requires more time to
approximate the asteroid. Minimum 1 and Minimum 3 come closer as moving through the family of
invariant curves of L3, until they join and then disappear. Concerning to Minimum 2 and Minimum
4, they have been tracked through more invariant curves, further to L3 that the six fundamental
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Figure 4.4: Six fundamental cylinders of tori at different distances from L3 between 0.53075 and
0.60047. Plots in the first two rows show the FCs coloured according to the distance to the asteroid
at position it=7, in km. Plots in the last two rows show the same FCs this time coloured according
to the instantaneous ∆v in km/s.
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Min 1 Min 2
dist to L3 NT θ τ ∆v (m/s) NT θ τ ∆v (m/s)
0.53075 6 2.970 0.539 402.596
0.55281 6 2.867 0.585 388.037 6 3.358 0.702 427.682
0.56617 6 2.844 0.628 379.142 6 3.451 0.800 433.318
0.57624 6 2.840 0.656 373.419 6 3.506 0.870 436.837
0.59139 6 2.850 0.691 365.138 6 3.584 0.985 442.115
0.60047 6 2.872 0.691 360.775 7 4.158 0.021 445.375

Min 3 Min 4
dist to L3 NT θ τ ∆v (m/s) NT θ τ ∆v (m/s)
0.53075
0.55281
0.56617 6 3.307 0.204 406.799
0.57624 6 3.146 0.285 389.217 6 3.600 0.216 434.045
0.59139 6 3.027 0.420 373.829 6 3.737 0.280 446.723
0.60047 6 2.964 0.533 365.323 6 3.802 0.326 452.982

Table 4.5: Values of θ and τ corresponding to the initial conditions in the fundamental cylinders
in Figure 4.4, that lay on the position of the asteroid at the October 7, 2006, (it=7) after NT BCP
periods and the ∆v required for each of them.

domain included here, however the ∆v needed for using them in a capture increases, see the last map
in Figure 4.4. Therefore, we only focus on the results of the fundamental cylinders included in the
Figure 4.4.

As in the previous case, we use a Newton method to find the initial condition (θ and τ on the FC)
that arrives to the asteroid 2006 RH120 at epoch it=7. The results are collected in Table 4.5. It can
be observed that the ∆v required for the trajectories corresponding to the minimum distance areas
1 and 3 decreases as the curve they belong to is further away from L3. The opposite effect happens
with the trajectories of the minima 2 and 4.

Finally, we take the coordinates of the asteroid at epoch it=7, we add the velocity impulse of Table 4.5
and we integrate these trajectories forward in time in the planar BCP to check that the asteroid is
lead towards L3 (this is also a final test of correctness of all the computations). In Figure 4.5 the
trajectories corresponding to the four minimum distance areas of the fifth fundamental cylinder in
Figure 4.4 are shown. They correspond to an invariant curve for which Minimum 1 and 3 have not
yet come together, but it can be appreciated how their trajectories are approaching. For trajectories
of Minima 1 and 3 the expansion factor for the error is only of the order 102, because they do not
approach much any massive body and because of the short integration time. This factor is of the
order of 103 for the trajectory of Minimum 4, and increases to 104 for Minimum 2, due to the fact
that the trajectory approaches the Moon.

it=14, (2007-May-01)

In this last example of temporal section corresponding to time t = 0 mod T (or t = NTT ), we show
the results for the capture of 2006 RH120 when it is starting to leave the Earth-Moon system. As the
evolution of the minimum distance areas between different tori has been detailed in previous cases,
from now on the results are presented in a short version. Figure 4.6 shows the fundamental cylinders
for tori at distances to L3 from 0.52061 to 0.59139 (a length of ∼ 27207.85 km). In the first three
FCs, each initial condition is coloured according to the minimum distance, in km, to the position of
the asteroid at epoch it=14, and in the last three, they are coloured according to the difference in
velocities between the trajectories in the stable manifolds and those of the asteroid, in km/s.
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Figure 4.5: Simulation of the capture of the asteroid at October 7, 2006, through the trajectories
in the stable manifold of the fifth FC of Figure 4.4 when applying the obtained ∆v, Table 4.5. The
Earth and the Moon are included as black circles of corresponding radius, and the initial position of
the asteroid as a red star.

In the first colour map of Figure 4.6 a curved minimum distance area seems to appear for high values
of τ (if we zoom that region we realise that there are actually two very close minima). As we examine
the colour maps corresponding to invariant curves increasingly further away from L3, the distance
between these two separated minima increases: note that they move toward higher values of τ until
they appear in the lower part of the fundamental cylinders. When this happens, the trajectories
corresponding to those that lay on the exact position of the asteroid, obtained as in the previous cases
and collected in Figure 4.7 (left), require an extra period of integration. At the right in the same
Figure, the trajectories described by the asteroid, starting at epoch it=14 and propagated forward
in time after adding the computed ∆v for the two minima of the third fundamental cylinder are
presented. In this case, the two trajectories approach a little the position of the Moon, specially the
red one, for this reason the expansion factor for the error is between 103 − 104. Nevertheless, an
expansion factor of this value is acceptable.

Temporal continuity

We have performed some computations in order to analyse how the minimum distance area evolve at
different time sections, close in time to the temporal section treated in the previous examples. The
asteroid was considered twelve hours before and another twelve hours after the three epochs such that
the time spans cover one day and are centered in each of the three cases.

For the first case, twelve hours before it=2, the ∆v of minima 1, 2, 3 and 4 increases about 10 m/s,
however for the minima 5 and 6 it decreases to ≈ 120 m/s. When we study these minima twelve hours
later than it=2, we see that the difference in velocities has increased for the six trajectories; about 30
m/s for Minimum 1 and 2, ≈ 70 m/s for Minimum 3 and 4 and more than 100 m/s for Minimum 5
and 6.

In the second case, twelve hours before it=7, the ∆v grows of the order of a couple of tens of m/s
for the four minima. And, twelve hours after it=7, the minimum distance areas do not appear well
defined for the first five invariant curves, but the first two minima appear in the fundamental domain
corresponding to the last one, requiring less ∆v for both; about 20 m/s less for Minimum 1 and about
40 m/s less for Minimum 2.
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Figure 4.6: Three fundamental cylinders of tori at different distances from L3 between 0.52061 and
0.59139. Plots in the first row show the FCs coloured according to the distance to the asteroid at
position it=14, in km. Plots in the last row show the same FCs this time coloured according to the
instantaneous ∆v in km/s.

Finally, for the last case the differences are more homogeneous. Roughly speaking, twelve hours before
it=14 the ∆v needed is about 20 m/s lower than the one obtained for the two minima studied, and
twelve hour after it=14, it increases more or less the same quantity.

Therefore, the same minimum distance areas that are found at a specific temporal section, appear at
different close temporal sections, varying a little the difference between the velocities of the trajectories
in the stable manifolds and those of the asteroid. This can be used to look for the optimal time (less
∆v required) to perform the capture, or to use all these minima, continuous in time, to perform a low
thrust. This is left for future work.

4.2.2 Temporal Poincaré sections at times T/4, T/2 and 3T/4

Looking at the variety of possible trajectories for the capture of asteroid 2006 RH120 offered by the
stable manifolds of the invariant curves of L3, it is expected that many other possibilities appear when
applying the same strategy for the capture at temporal Poincaré sections corresponding to T/4, T/2
and 3T/4.

Actually, several new minimum distance areas have been found for any of these three temporal sections
and for the different epochs of the asteroid. We do not aim to present neither all the possibilities nor
different cases for any of the temporal sections, but to give some representative results in a qualitative
way and to explain, quantitatively, a couple of examples.
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Min 1
dist to L3 NT θ τ ∆v (m/s)
0.52061 5 2.551 0.878 362.771
0.56111 6 2.674 0.072 359.814
0.59139 6 2.516 0.197 361.850

Min 2
dist to L3 NT θ τ ∆v (m/s)
0.52061 5 2.845 0.885 370.471
0.52061 6 3.822 0.080 391.813
0.52061 6 4.039 0.205 407.460
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Figure 4.7: Left, values of the initial conditions in the FCs of Figure 4.6, that after NT BCP periods
lay on the position of the asteroid at May 1, 2007, (it=14), and the ∆v required for each of them.
Right, simulation of the capture of the asteroid by the trajectories in the minimum distance areas of
the third FC when applying the obtained ∆v. The Earth is included as a black circle of corresponding
radius, and the initial position of the asteroid as a red star.

First, we discuss the situation where the asteroid has not still entered the Earth-Moon system. Re-
gardless of the temporal section applied, the obtained colour maps corresponding to fundamental
cylinders of the inner tori in the family, are very similar to those presented in Figure 4.2, with some
variations in the required ∆v. This is in good agreement with the temporal continuity of the minimum
distance areas exposed in Section 4.2.1.

Notice that the fact that these minimum distance areas are present in the fundamental cylinders of
inner tori covering a time span of more than three months and different temporal section, implies a
long continuity in time of these possibilities of capture, which is good. The reason for this to happen
is that the trajectories in the stable invariant manifolds that are far from the Earth and the Moon, are
orbiting the Earth-Moon system while approaching it, the same behaviour is shown by the asteroid
before entering the system. Therefore, the trajectory of the asteroid and the trajectories on the stable
manifolds of L3 are continually meeting before finally entering the system, where they may behave
differently.

In fact, such a long temporal continuity is not found for any of the other minimum distance areas
corresponding to epochs in which the asteroid is inside the system. What we have observed for these
epochs is a decrease in the required ∆v, being in many cases even lower than 200 m/s. However,
for these new temporal sections, less possibilities are available for the epochs in with the asteroid is
leaving the system.

Finally, we present two cases, the first one concerns to the lowest ∆v found for the epochs in which
the asteroid has not entered yet the system, and the second one is devoted to an example of relative
low ∆v when the asteroid is already inside the system.

A very cheap transfer

If we look closely to the maps in Figure 4.2, we can observe that in the minimum distance areas,
the trajectory corresponding to the one that lays on the position of the asteroid is placed, roughly
speaking, in the centre of zone, however, when we look at the same colour maps coloured according
to the ∆v, we see that the minimum value of ∆v for those areas is not placed at their centres. It
happens that half a period after epoch it=3, the minimum in distance and the minimum in ∆v more
or less overlap for the first two minima of the six observed, leading to trajectories that require less
than 20 m/s for the capture.
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Figure 4.8: Three fundamental cylinders of tori at different distances from L3 between 0.02159 and
0.03947. Plots in the first row show the FCs coloured according to the distance to the asteroid T/2
after position it=3, in km. Plots in the last row show the same FCs this time coloured according to
the instantaneous ∆v in km/s.

Min 1
dist to L3 NT θ τ ∆v (m/s)
0.02159 4 2.856 0.626 19.398
0.02738 4 2.693 0.615 19.386
0.03947 4 2.555 0.597 19.338

Min 2
dist to L3 NT θ τ ∆v (m/s)
0.02159 4 4.224 0.678 19.338
0.02738 4 4.373 0.693 19.293
0.03947 4 4.472 0.725 19.176
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Figure 4.9: Left, values of the initial conditions in the FCs of Figure 4.8, that after NT BCP periods
lay on the position of the asteroid at June 25, 2006, (half a period after it=3) and the ∆v required
for each of them. Right, simulation of the capture of the asteroid by the trajectories in the two bigger
minimum distance areas on the third FC when applying the obtained ∆v. The Earth and the Moon
are included as black circles of corresponding radius, and the initial position of the asteroid as a red
star.
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In Figure 4.8 we show some fundamental cylinders of tori close to L3, at distances from 0.02159 to
0.03947. The first three maps are coloured according to the distance between the position of the
asteroid at the 25 of June of 2006 (half a period after epoch it=3) and the trajectories in the stable
manifolds at the temporal section T/2; the other three colour maps are coloured according to the
difference between velocities. It is easy to observe that the required ∆v has decreased significantly
for the first bigger minima, but not for the other four. Figure 4.9 (left) contains the table with
the data for the initial conditions in the FCs, corresponding to those two minima, that leads to
the trajectories laying on the position of the asteroid, together with the trajectories described by
the asteroid, forward in time, after adding the velocity impulse of the third presented fundamental
cylinder. These trajectories not only require a very low ∆v but also do not come close to any of the
primaries, suggesting a safe and very cheap journey for the asteroid.

A last example

Figure 4.10 shows some fundamental cylinders for tori at distances from L3 between 0.44160 and
0.53075. In the first three plots, the initial conditions are coloured according to the distance between
the position of the asteroid at the 14 of October of 2006 (a quarter of period after epoch it=7) and
the trajectories in the stable manifolds at temporal section T/4; the other three maps correspond to
the same FCs, now coloured according to the difference between their velocities. Two minima are
found, for one of them, the ∆v increases with the distance to L3, and for the other one, it decreases.
As before, we have refined trajectories near these minima that arrive exactly to the asteroid, the
results are collected in Figure 4.11, left. At the right of this figure, the trajectories corresponding
to the integration of the asteroid forward in time, after adding a velocity impulse to reach the third
fundamental domain are also included. In this last example, the asteroid is so close to the family of
tori around L3 that the trajectories are pretty short.

4.3 Conclusions about the capture

This chapter presents a strategy for capturing a NEA in a neighbourhood of the L3 point of the
Earth-Moon system. It is based on the use of stable invariant manifolds of invariant tori around L3

of the planar Bicircular Earth-Moon system. To compute the manifolds we first obtain a high order
approximation to them by combining jet transport and the parametrization method, and then we
globalise them by means of numerical integration. This shows that a part of these manifolds exits the
Earth-Moon system and then orbits the Sun in a trajectory close to that of the Earth around the Sun,
which intersects the region of motion of NEAs. When these manifolds intersect with the position of
a NEA, the difference between their velocities (∆v) gives the necessary manoeuvre to inject the NEA
in the manifold so that it travels to the neighbourhood of L3. For a NEA following an orbit similar
to that of the Earth, this difference of velocities should not be very large.

We have applied this procedure to study the capture of the asteroid 2006 RH120. In general, several
possibilities for the capture have been found, for the different positions of the asteroid and for the dif-
ferent temporal Poincaré maps applied to the stable manifolds. As expected, the ∆v varies depending
on the relative position of the asteroid with respect to the massive bodies in the system, being higher
when the asteroid is inside the Earth-Moon system and significantly lower when it is still outside. In
fact, one option for the capture that only requires a manoeuvre of less than 20 m/s has been analysed.

In addition, it has been observed that the possibilities for the capture vary continuously between
nearby tori in the family and also depend continuously in time. This suggest that the dynamics below
these opportunities is robust. Moreover, these continuities can be exploited to perform optimisation
methods and reduce, even more, the required ∆v.
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Figure 4.10: Three fundamental cylinders of tori at different distances from L3 between 0.44160 and
0.53075. Plots in the first row show the FCs coloured according to the distance to the asteroid T/4
after position it=7, in km. Plots in the last row show the same FCs this time coloured according to
the instantaneous ∆v in km/s.

Min 1
dist to L3 NT θ τ ∆v (m/s)
0.44160 4 4.645 0.453 186.195
0.50037 4 4.517 0.560 204.122
0.53075 4 4.481 0.666 213.989

Min 2
dist to L3 NT θ τ ∆v (m/s)
0.44160 4 4.743 0.635 170.133
0.50037 5 5.137 0.026 148.754
0.53075 5 5.067 0.116 144.139
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Figure 4.11: Left, values of the initial conditions in the FCs of Figure 4.10, that after NT BCP
periods lay on the position of the asteroid at October 14, 2006, (a quarter of period after it=7), and
the ∆v required for each of them. Right, simulation of the capture of the asteroid by the trajectories
in the minimum distance areas on the third FC when applying the obtained ∆v. The Earth is included
as a black circle of corresponding radius, and the initial position of the asteroid as a red star.
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We want to emphasise that this machinery is valid for studying the capture of any other asteroid
or space debris with an orbit close to that of the Earth. It is also possible to use other families of
quasi-periodic orbits as a target destination for the captured object, and it may also be a tool to
analyse the deflection of NEAs (with an orbit close to that of the Earth) that pose a collision threat
to the Earth.

It is worth to mention that some analysis have been done using the manifolds associated with the
vertical family of quasi-periodic orbits around L3 in the BCP, Section 3.4. In that case, we need
to match the three positions of the asteroid (x, y, z) at the right time, however those manifolds are
defined by just two parameters. Then, a way of overcome this difficulty is to add another condition,
as for example, a third parameter that allows to move along the family to find the suitable torus for
the capture. We saw that the possibilities for capture are given for those invariant curves with low z
amplitude, as expected from Section 3.4, and we found that it is more difficult to recognise the areas
of minimum distance since in this 3D system, many possible approaches turned out to be tangent to
the position of the asteroid, and therefore, not useful for out purpose. For those reasons we do not
include the results for that family in this dissertation.

Finally, let us comment on some extensions of this work. The next natural steps are to use three-
dimensional quasi-periodic orbits of the 3D Bicircular model, to refine the transfer trajectory and
the destination orbit near L3 to a realistic model (for instance, based on the JPL ephemeris), and to
consider the use of a low thrust propulsion system for the transfer manoeuvre.
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Chapter 5

Some other contributions to BCP

This chapter is devoted to other two contributions to the Earth-Moon-Sun Bicircular problem we
have carried out. First one is focused on the analysis of the unstable behaviour around the triangular
points and the second one is about a family of stable invariant tori around the Moon.

As explained in Chapter 2, more particularly in Section 2.4, the triangular equilibrium points, L4 and
L5 of the Earth-Moon RTBP, are replaced by three periodic orbits when the solar gravitational field
is introduced as a time periodic perturbation of the Earth-Moon system. Two of the three periodic
orbits are stable (PO2 and PO3 ) and the other one is unstable (PO1 ). In Section 2.4.1, we show the
family of invariant tori around PO1, see Figure 2.13, and their partially hyperbolic behaviour. Since,
their instability is extremely weak (λu < 1.3 for the invariant tori in the family, see Figure 2.15),
globalising their hyperbolic invariant manifolds using the standard linear approximation is not a
feasible task. Recall that when we use the linear approximation for the invariant manifolds, their
numerical propagation must start very close to the invariant curve and then, the integration time may
be too long. In this particular case, the integration time of the trajectories in the manifolds when
they are in the vicinity of the invariant curve is so long that the numerical errors start to accumulate
before they leave this region. For this reason, in Section 5.1 we present the high order parametrization
of the stable/unstable invariant manifolds associated with the invariant tori around PO1 of L4, what
allows to start their globalisation far away from the family, showing their behaviour when leaving the
L4 vicinity. Notice that, due to the symmetries between L4 and L5, the analysis performed for L4 can
be extrapolated to the L5 case.

The second section of this chapter, Section 5.2, concerns about stable invariant tori around the Moon
in the BCP. They come from a family of stable periodic orbits around the Moon that can be found in
the Earth-Moon RTBP. Their stability can be of interest for many purposes, like studying the lunar
surface or to be used as parking orbits where to keep materials reservoirs for lunar missions or where
to capture an asteroid. However, we will see that in the BCP this family is close to a resonance that
favours the appearance of chaotic motion.

5.1 Unstable behaviour around triangular points

Most of the works focused on the study of the triangular points and their neighbourhood rely on
their stability for many applications, regardless of whether these works are developed in the RTBP
framework or in the BCP one. It must be noticed that stable behaviour is still dominant in the vicinity
of these points in the BCP, where effectively stable regions are still found in spite of the appearance
of an unstable dynamical substitute, see [Jor00]. In addition, due to the very mild instability of the
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Invariant Curves Invariant Manifolds

distance to Stable Unstable
PO1 of L4 λu Nk=0 Nk=16 σ̄0 from (1.53) Nk=16 σ̄0 from (1.53)
4.93×10−4 1.09864459 25 25 7.46×10−2 25 8.77×10−2

5.26×10−3 1.09917517 25 25 7.00×10−2 25 8.48×10−2

0.011 1.10111040 25 25 6.63×10−2 25 8.22×10−2

0.014 1.10285521 25 65 6.46×10−2 25 8.12×10−2

0.019 1.10623723 25 65 6.22×10−2 45 7.96×10−2

0.029 1.12080462 25 65 4.58×10−2 65 5.81×10−2

0.054 1.20217907 31 91 4.02×10−2 71 5.10×10−2

0.066 1.25240803 46 86 4.51×10−2 86 5.62×10−2

0.073 1.27176712 55 115 4.84×10−2 115 5.89×10−2

0.078 1.28174818 85 145 4.98×10−2 125 5.89×10−2

0.081 1.28394365 146 226 5.00×10−2 186 5.85×10−2

Table 5.1: Values of the unstable eigenvalue (λu), the number of Fourier modes needed for the
orders of the parametrizations 0 (Nk=0) and 16 (Nk=16) and the σ parameter such that the error of
the parametrization of the stable and unstable invariant manifolds up to order K = 16 is below 10−14,
for invariant curves at different distances from the PO1 of L4.

invariant objects associated with PO1, it is not possible to study their hyperbolic behaviour using the
standard linear approximation of the invariant manifolds, according to the explanation given at the
beginning of this chapter.

In this dissertation we have presented how to compute the high order parametrization of stable and
unstable invariant manifolds associated with invariant curves, therefore we have the knowledge and
tools to overcome the main difficulty of studying the unstable behaviour around the triangular points
and consequently, the present section is devoted to this aim.

The whole procedure to compute them is detailed in Section 1.4.3 and its application to the invariant
manifolds of the horizontal family of invariant tori around L3 is presented in Section 4.1.2. Therefore,
here we limit ourselves to a brief exposition of the parametrization of the family of tori around PO1
of L4, since our aim is only to give a general view of the dynamics in this vicinity. Notice that the
conclusions about the behaviour around PO1 of L4 can be extrapolated to the behaviour of the PO1
of L5, due to the symmetry that exists between them.

In this case, there is not a symmetry between the stable and unstable invariant manifolds of the same
invariant object, as it occurs in the case of L3. In fact, the stable (unstable) invariant manifolds of
the invariant tori around the PO1 of L4 give us by the symmetry, the unstable (stable) invariant
manifolds of the invariant tori around the PO1 of L5.

We compute the high order parametrization of the stable and unstable invariant manifolds of the invari-
ant curves around PO1 shown in Figure 2.13. The maximum order considered for the parametrization
is again K = 16, as for the case of the manifolds associated with L3, see the comments about the max-
imum considered order given in Section 4.1.2. Recall that the order 0 and order 1 correspond to the
invariant curve and eigenfunction, respectively. Then, we start the computation of the parametrizing
functions ak for 2 ≤ k ≤ K following the Algorithm 1.4.3 and using the same number of Fourier modes
than the number used for the computation of the invariant curves and its eigenfunctions. Again, we
increase this number according to the criteria established in Section 4.1.2; if the Euclidean norm of
the last two terms of b2 are below a tolerance tol2 = 10−10 we increase the number of Fourier modes
by 20, then this tolerance varies as tolm = 2tolm−1 for m > 2.

In Table 5.1, we show the number of Fourier modes that are needed to discretize the parametrizing
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distances to |σ0| divisions divisions
to PO1 of L4 considered in θ in τ
10−4 – 6.5×10−3 5.00×10−2 500 200
6.5×10−3 – 0.011 5.00×10−2 1000 200
0.011 – 0.014 5.00×10−2 2000 200
0.014 – 0.029 2.50×10−2 2500 200
0.029 -0.082 2.50×10−2 5000 200

Table 5.2: Values of σ0 and the number of divisions taken for the mesh of (θ,τ) to define the
fundamental cylinders for the invariant curves depending on their distance to PO1 of L4.

function at order 16, a16, of the stable and unstable manifolds of the family of invariant curves around
PO1, and the value of σ̄0 from Equation (1.53), that corresponds to the maximum distance from the
invariant curve at which we can consider that the error of the computed parametrization is below
10−14. These values vary along the family of invariant curves, in order to identify the region of the
family we use the distance to the PO1 of L4 introduced in Definition 2.4.1.

Notice that in general the parametrization of the unstable invariant manifolds require less Fourier
modes than the parametrization of the stable ones. Also, the value of σ̄0 up to which we consider the
approximation to be accurate enough is higher for the unstable than for the stable invariant manifolds
parametrization. This suggests that the unstable manifolds suffer less wrinkling than the stable ones,
as we will see.

The value of |σ0| that we have considered for the definition of the fundamental cylinders, of the stable
and unstable manifolds, as well as the number of divisions taken along the angle θ ∈ [0, 2π] and the
parameter τ ∈ [0, 1] are collected in Table 5.2. The selected values vary according to the distance to
the PO1 of L4.

Once we define the fundamental cylinders we propagate a mesh of points on them, forward in time
for those in the unstable manifolds, and backward in time for those in the stable manifolds. It is
important to remember that the closer the invariant curves are to the PO1 of L4, the weaker is its
instability, see Figure 2.15. This affects to the invariant manifolds, making that for those associated
with invariant curves closer to the PO1 of L4, it takes more time to go far away from the vicinity of
L4. For this reason we use again the the growth of the derivative of the trajectory w.r.t. the initial
condition, sometimes called expansion factor, to have an idea of the error propagation due to the
instabilities of the problem, as we did in Chapter 4. Then, we show the behaviour of the manifolds
when this factor for the trajectories in their fundamental domains is lower than 109.

In Figure 5.1 the stable and unstable invariant manifolds, along with the invariant curve they belong
to, are shown projected in the xy-plane. The invariant curve in that figure is at a distance to the
PO1 of L4 of 3.7202 × 10−3 (corresponding to an unstable eigenvalue λu = 1.09890577). In spite of
using the high order approximation of the invariant manifolds, that allows to start their globalisation
far from the invariant curve (|σ0| = 5.00 × 10−2), it takes tens of Earth-Moon revolutions to make
them grow as they are shown in the first image of the figure. The three images are separated in time
five Earth-Moon revolutions. It is easy to see that as time evolves, the invariant manifolds (stable
and unstable) come back towards the invariant curve. It seems like the stable and unstable invariant
manifolds connect, suggesting homoclinic connections, however, we must keep in mind that these
images correspond to a projection in two dimensions of four-dimensional trajectories, plus the time
dependence.

Figure 5.2 is similar to the previous one, now for an invariant curve at a distance of 8.2050× 10−3 to
the PO1 of L4 (at which corresponds an unstable eigenvalue of 1.09996271). In this case we can see
how the invariant manifolds start to take a shape different from the shape of the invariant curve as
they grow far away from it.

97



CHAPTER 5. SOME OTHER CONTRIBUTIONS TO BCP

Figure 5.1: Invariant manifolds in the xy-plane of the curve at a distance to the PO1 of L4 of
3.7202×10−3 at different times. Stable manifolds in green, unstable in red. The curve is also included
in black.
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Figure 5.2: Invariant manifolds in the xy-plane of the curve at a distance to the PO1 of L4 of
8.2050×10−3 at different times. Stable manifolds in green, unstable in red. The curve is also included
in black.
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As the distance to the PO1 of L4 increases, also does the instability of the invariant curves and
escaping the vicinity of L4 becomes easier. In Figure 5.3 we present two images corresponding to the
invariant manifolds associated with an invariant curve at a distance of 1.2579× 10−2 (corresponding
to λu = 1.10187690). The first image shows the propagation of the manifolds, and in the image below
we show a cut of those manifolds, corresponding to the curves at τ = 1 in the fundamental cylinder
after the same propagation time, so the plots are closed curves, one for each manifold. This image is
included in order to stress how the shape of these manifolds changes. This shape starts being close
to a circle and it deforms appearing some “peaks” that correspond to the trajectories that are able to
leave the region of L4. Notice that the peaks of the stable manifolds are more pronounced than those
of the unstable ones. This is related to the wrinkle effect mentioned above.

In fact, if we now analyse the colour maps corresponding to fundamental cylinders of the same in-
variant manifolds shown in Figure 5.3, and colour each initial condition according to their fate for a
globalisation of the manifolds satisfying that the expansion factor is small enough, we see that none
of the trajectories in the unstable invariant manifolds associated with that invariant curve is able to
leave the vicinity of L4, meanwhile some of the trajectories in the stable manifolds are. In Figure 5.4
we include the fundamental cylinders of those stable manifolds, coloured according to their origin.
The meaning of the colours is the same as in previous chapters, purple for reaching the Earth, red for
reaching the Moon, yellow for reaching the outside system (that is, being at more than 10 Earth-Moon
lengths from the origin). Now the trajectories that do not reach any primary nor escape the system
are not included, since they constitute the vast majority of the possible trajectories and it would not
be convenient to colour them in black as we did for the L3 case.

We see in Figure 5.4 that there are sets of trajectories in the stable manifolds that reach the Moon
(red colour). They are disposed in “V” shape, in agreement with the plots in Figure 5.3. However,
colouring the trajectories according to their fate does not allow to distinguish all the trajectories in
those FC that are able to leave the L4 vicinity. That is, we observe that most of the trajectories
in the manifolds do not reach any of the primaries nor the outside system, but this does not mean
that these trajectories remain in the vicinity of L4. In order to identify all the trajectories that leave
this vicinity, regardless their fate, we colour the trajectories in those CF according to the number of
crosses to the x -axis they perform, see Figure 5.5. Note that only those trajectories that cross at least
once the x-axis are included.

For those trajectories that leave the vicinity of L4 but do not reach any primary nor escape, we find
different behaviours, among them it is interesting the kind of trajectory like the one shown at the left
of Figure 5.6. Its behaviour recalls to that of the Hilda asteroids in the Sun-Jupiter system [DBDO05],
with the difference that in this case the primaries are the Earth and Moon. The trajectory on the right
of that figure, shows a trajectory that leaves the vicinity of L4 through a stable manifold, surrounds
the vicinity of L3 and then reaches the Moon.

Since the invariant curves around PO1 of L4 are more unstable as they are further from this periodic
orbit, for invariant curves disposed further than the one corresponding to Figure 5.4, it is feasible to
show the fundamental cylinders of both, the stable and unstable invariant manifolds coloured according
to their fate; origin for the stable manifolds and destination for the unstable ones. In Figures 5.7 and
5.8 we show colour maps for curves at different distances from the PO1 of L4.

It is clear that most of the trajectories in these manifolds describe motions in which no primary is
reached and only some of them are able to reach the Moon and the outside system, but in general
they do not reach the Earth.

To finish this section, it is worth to mention that due to the shape of these manifolds, specially when
they leave the vicinity of L4, to use them for the capture of an asteroid as we did in Chapter 4
using the manifolds of tori around L3, is not convenient. In fact, we followed the strategy presented
in Section 4.1, however, when the sets of trajectories in the FC that approach the position of the
asteroid were identified, we found that the Newton method used to compute the trajectory that lies
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Figure 5.3: Invariant manifolds in the xy-plane of the curve at a distance to the PO1 of L4 of
1.2579 × 10−2. Above, the propagation of the manifolds up to a certain time. Below, a cut on the
manifolds corresponding to τ = 1 after the same propagation time as above. Stable manifolds in
green, unstable in red. The curve is also included in black.
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Figure 5.4: Fundamental cylinders of the stable invariant manifolds for an invariant curve of the
horizontal family at a distance to the PO1 of L4 of 1.2579× 10−2, coloured according to their origin.
See the text for more details.

Figure 5.5: Same fundamental cylinders than in Figure 5.4, now coloured according to the number
of crosses to the x -axis they perform. Only those trajectories that cross the x-axis at least once are
included.
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Figure 5.6: Two trajectories governed by quasi-periodic solutions near the PO1 of L4
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Figure 5.7: Fundamental cylinders of the invariant manifolds for an invariant curve of the horizontal
family at a distance to the PO1 of L4 of 4.4071 × 10−2, coloured according to their fate. Up, the
unstable manifolds, down, the stable ones.

103



CHAPTER 5. SOME OTHER CONTRIBUTIONS TO BCP

Figure 5.8: Fundamental cylinders of the invariant manifolds for an invariant curve of the horizontal
family at a distance to the PO1 of L4 of 6.0390 × 10−2, coloured according to their fate. Up, the
unstable manifolds, down, the stable ones.

at the exact position and time of the asteroid did not converge in the vast majority of the cases. The
reason is that the trajectories in the FC of tori around the OP1 of L4 that approximate the position
of the asteroid, do it in a tangent way, not surrounding the position of the asteroid. Consequently,
there is not a trajectory in those sets that approaches as much as we want the position of the asteroid
allowing the capture.

5.2 Invariant tori around the Moon

In the RTBP many families of periodic orbits are found. Be them around the equilibrium points,
around one of the primaries or around the two primaries. In particular, there is a family of retrograde
periodic orbits around the Moon, contained in the horizontal plane, that in the bibliography is usually
called Family C of retrograde periodic orbits, [Bro68]. This family is stable, what makes it suitable for
many purposes like performing physical measurements or just to be employed as lunar parking orbits
where to capture an asteroid or to keep materials for some mission in the Moon.

When adding the time-periodic perturbation due to the gravitational field of the Sun, these periodic
orbits become two-dimensional invariant tori meanwhile generic non-resonance and non-degeneracy
conditions are satisfied. Then, in this section we are interested in the analysis of the invariant tori
around the Moon in the Earth-Moon BCP under the gravitational effect of the Sun. To this end, we
first obtain the family of periodic orbits around the Moon in the Earth-Moon RTBP, and then we
continue them to the BCP model through the parameter ε, that allows to introduce little by little the
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Figure 5.9: Family of retrograde periodic orbits around the Moon in the Earth-Moon RTBP.

gravitational effect of the Sun,
Hε = HRTBP + εĤBCP , (5.1)

similarly as what we did to find the dynamical equivalents of the equilibrium points in the BCP in
Chapter 2.

In Figure 5.9 the family C around the Moon in the RTBP is shown. Each of these periodic orbits
is identified by an energy level and by a frequency, that we denote by ωRTBP . As natural, for inner
periodic orbits, this frequency is larger, see Figure 5.10. In order to compute the invariant tori
that come from these periodic orbits when the time-periodic perturbation is added, we use again
the temporal Poincaré map, P , corresponding to the period of the Sun in the BCP and look for the
resulting invariant curve in the map to satisfy the invariance condition, see Section 1.4.1. For these
reason in Figure 5.10 we add the value of the rotation number that the periodic orbits have if we look
at them in the map P ,

ρ = 2π

(
ωRTBP
ωs

− 1

)
. (5.2)

Notice that we subtract 2π to the typical expression of the rotation number (see Chapter 1) in order to
avoid have values of ρ larger than 2π. Also, note that the rotation numbers shown in Figure 5.10 cross
the value equal to 1, what indicates that there is a resonance between these orbits and the natural
frequency of the problem.

Then, we use the periodic orbits in the unperturbed system and their frequencies to find the cor-
responding invariant tori in the BCP by computing invariant curves of the Poincaré map P as ε in
Equation (5.1) goes from zero to one. Here, we must realise that the periodic orbit of the RTBP,
i.e. when ε = 0, is also seen as an invariant curve in the Poincaré map P . For the computations
we discretise the invariant curves of the RTBP in terms of Fourier series and follow the procedure
explained in Section 1.4.1.

In this particular case the continuation of these invariant objects of the RTBP to the BCP presents
difficulties, probably due to the fact of being so close to a resonance. Moreover, we will see that
the shape of the resulting invariant curves in the BCP is significantly different from the shape of the
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Figure 5.10: Variation of the frequency of the periodic orbits of the Family C in the Earth-Moon
RTBP, ωRTBP , according to the cut on the x-axis the periodic orbits in Figure 5.9 perform at the left
of the Moon. The second vertical axis corresponds to the rotation number they have in the Poincaré
map P .

periodic orbits they come from. Then, the continuation in ε of one periodic orbit to the corresponding
invariant curve in the BCP needs to be performed using a small step of continuation and giving good
enough seeds for the Newton method defined in Section 1.4.1. In this case we keep the value of ρ
fixed, therefore the rotation number is not an unknown of the linear system we need to solve and we
only need to add one extra equation to have uniqueness of solution. We have force the y coordinate
of the curve to be zero when the angle θ is zero,

ϕy(θ = 0) = 0.

To be more precise, we use the Fourier series of the invariant curve corresponding to the periodic
orbit of the map P in the RTBP (ε = 0) to find the invariant curve at ε = 0.01. Then, we use this
two curves to give a precise seed to compute the invariant curve at ε = 0.02, and with these three we
compute the corresponding invariant curve at ε = 0.03. From that value we perform the continuation
in ε with a step of 0.01 using the discretizations of the previous four invariant curves up to obtain the
one in the BCP model (ε = 1). The periodic orbits are approximated by Fourier series with N = 57
Fourier modes. As the value of ε increases, the number of modes is also increased when needed as we
have done previously.

In Figure 5.11 we show some of these invariant tori in the BCP in the stroboscopic map P , i.e. the
invariant curves, along with the periodic orbits of the RTBP they come from. It is clear that the
shape of the curves is affected by the perturbation due to the Sun gravitational field, making them
to approach the Earth. In Table 5.3 more information about these tori, identified by the colour, is
given. In particular, their rotation number and the value of the x coordinate when y = 0 at the right
of the Moon. The number of Fourier modes needed to discretize the periodic orbit (Nε=0) and the
corresponding the invariant torus in the BCP (Nε=1) are also included to show that about the double
of modes are needed for the tori. Looking at the values of ρ and the x-cut, we can say that the inner
curves of the ones presented approach the resonance and that the outer curves approach the Earth.
For these reasons the continuation of these invariant tori becomes really sensitive.
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Figure 5.11: In dashed line, some periodic orbits of the RTBP (ε = 0). In continuous line, the
resulting invariant curves in P in the BCP (ε = 1). The colour identifies each periodic orbit with the
corresponding invariant curve. The Earth and Moon are included as black circles of corresponding
radius.

PO Invariant curve
x-cut between

colour Nε=0 Nε=1 ρ Earth and Moon
blue 57 136 0.71636 -0.3732997
red 57 107 0.73368 -0.3824480
green 57 117 0.75236 -0.3914972
purple 57 98 0.77251 -0.4005613

Table 5.3: Values of the number of Fourier modes used to approximate the periodic orbits, PO,
(Nε=0) and the corresponding invariant curves (Nε=1), along with the values of the rotation number
(ρ) and the cut of over the x coordinate at the right of the Moon, i.e. between Earth and Moon.
These values correspond to the periodic orbits and tori shown in Figure 5.11, identified by the colour.
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Figure 5.12: A neighbourhood of the invariant tori around the Moon coloured according to their
Lyapunov exponent. In green, two lines to illustrate where the selected point on the curve is.

In order to illustrate that around these invariant curves there exits chaotic motion we analyse the
Lyapunov exponent in a neighbourhood of one of them. More precisely, we take a point in the
invariant curve of the map P plotted in green in Figure 5.11, and define a mesh of initial conditions
around it, varying the x and y coordinates and maintaining px and py. The selected point on the
curve, pc, has coordinates (x, y, px, py):

pc = (−0.312226578560269,−0.890844722802814, 0.645880857474948,−0.826791414257056).

Let us denote by x0 and y0 the x and y coordinates of this point. The mesh is composed by 800×400 =
320000 points, taken for x ∈ [x0 − 0.1, x0 + 0.3) and y ∈ [y0 − 0.1, y0 + 0.1) equispaced a distance
of 5 × 10−4. For each of these points in the mesh we compute an approximation of the Lyapunov
exponent at every application of the map P until the variation between two consecutive applications
of the map P is below 10−5.

In Figure 5.12, we show these points coloured according to their Lyapunov exponent, also two lines
in green are included, at x = x0 and y = y0, in order to show where the selected point on the curve
(pc) is. Looking at this plot it is clear why we have defined the mesh with a larger range for x than
for y. Some dark regions are recognised, that correspond to stable motion, but they are disposed
in a nearly stripe pattern, surrounded by points whose Lyapunov exponent is high, specially in the
area corresponding approximately to x ∈ (−0.3,−0.25). This behaviour of the Lyapunov exponent
for close initial conditions, suggests chaotic motion in the neighbourhood of the invariant tori we have
found around the Moon in the BCP.

This is just a preliminary and basic analysis of the chaotic behaviour close to these tori disposed
around the Moon in the Earth-Moon bicircular system. An improvement of this analysis could be to
implement more sophisticated tools like, for example the Mean Exponential Growth factor of Nearby
Orbits (MEGNO), see [CS00], a technique that allows to recognise stochastic components of the phase
space.
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Chapter 6

High dimensional reducible tori on
Poincaré maps

This chapter is devoted to the effective computation of the stable/unstable invariant manifolds of
reducible invariant tori of any dimension

ϕ(θ) : Td 7→ Rn with θ ∈ Td and d ≥ 1.

In this case we analyse quasi-periodic solutions of the same angular dimension as the number of basic
frequencies of the system. That are the simplest invariant object that one can find in the discrete
dynamical system. Then we omit the case in which d = 0, since this corresponds to the case of
autonomous Poincaré maps where the simplest invariant object is a fixed point.

As announced in the first chapter, when the dimension of the quasi-periodic orbits is high it is often
not feasible to find these solutions through the computational methods we have employed until now
in this dissertation. It was also mentioned there that, if the dynamical system is reducible (see
Definition 1.2.2), there are other very efficient numerical methods that allow to compute the torus
jointly with the Floquet change of variables and the reduced Floquet matrix, B. It turns out that the
reduced dynamical system is very suitable for its computational resolution in parallel, as [Olm07, JO09]
proposed and carried out. These works are based on the proofs about the existence of such reduced
quasi-periodic solutions presented in [JS96].

Our aim in this chapter is to extend the work [Olm07, JO09]. There, the authors develop an algorithm
to obtain, at the same time and through parallel computation, reducible invariant tori in stroboscopic
maps along with their Floquet transformation, what gives the linear behaviour around the tori. It
is remarkable that the number of operations and storage requirements are proportional to N logN
and N respectively, where N denotes the number of Fourier modes used to represent the torus. A
side benefit is that the method has a high degree of parallelism so it can take advantage of modern
computers.

In the present work, we extend the methods in [JO09] so that now: i) the method provides a high-order
parametrization of the stable and/or unstable manifolds of the tori if they exist; ii) we implement a
C code that runs in a computer with several processors between which the computations are done
concurrently using OpenMP [DM98] instead of the PVM library [GBD+95] used in [JO09].

On the one hand, we implement a parametrization method for computing the Taylor-Fourier expan-
sion of the stable/unstable invariant manifolds of invariant tori. As we have seen in Section 1.3, to
implement this parametrization method on a Poincaré map we need to estimate the high-order deriva-
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tives of this Poincaré map, which requires to compute high-order derivatives of the flow of the ODE.
Therefore, we make use again of the jet transport tool developed in [GJJC+21], see Section 1.3.1, to
obtain the high order derivatives of the flow in the map, similarly as we did in Section 1.4.3.

On the other hand, the use of parallel computing allows to reduce the total computational time by
using several processors. The parallelization presented in [JO09] was implemented on a cluster of
PCs (with a distributed memory), making use of the PVM library for the communications through
an Ethernet network using a master-slave scheme. Therefore, there was always a penalty time to pay
for those communications. For this reason, the reduction in temporal costs of the parallelization was
relevant for a small number of processors, but at some point, this reduction stagnates. Nowadays,
the processors involved in our parallelizations belong to the same computer (hence, with a shared
memory), so there is not communication penalty between the threads. Both, the computation of the
tori and their invariant manifolds are implemented in parallel.

This chapter is distributed as follows. In Section 6.1 we talk about the reduced system and briefly
summarise the algorithm to compute the quasi-periodic orbits jointly with the Floquet change intro-
duced in [JO09]. Section 6.2 is devoted to the development of the code to compute the high order
parametrization of the stable/unstable invariant manifolds in terms of the Floquet change. Sometimes
the instability of the quasi-periodic solutions is so strong that we can not apply previous algorithms
directly and we need to combine them with multiple shooting techniques. This situation is faced in
Section 6.3. In Section 6.4 we give some details about the computer implementation. And finally,
Section 6.5 is focused on two applications of the presented methods; a forced pendulum and one of
the Simplified Solar System Models (SSSM) presented in [GM01].

This chapter is a joint work with Dr. Gimeno, Prof. Jorba and Dr. Olmedo, collected in [GJNO21].

6.1 The reduced torus

Assuming the existence of a torus for system (1.12),{
x̄ = P (x, θ),

θ̄ = θ + ρ,

with θ ∈ Td d ≥ 1, that satisfies invariance condition (1.13),

ϕ(θ + ρ) = P (ϕ(θ), θ),

and that is reducible (see Definiton 1.2.2), À. Jorba and E. Olmedo [JO09] developed an iterative
method based on Newton iteration (quadratically convergent) for finding the torus and the Floquet
change at the same time. For this, it is necessary to know suitable initial conditions for ϕ(θ) and C(θ)
(namely x0(θ) and C0(θ) respectively), such that C−10 (θ+ρ)DxP (x0(θ), θ)C0(θ) is close to a constant
matrix B0. Lets suppose by now that these approximations are available. Then, residual magnitudes
y0(θ) and Q0(θ) indicate the magnitude of the error of these approximations to the real solution.

y0(θ) = x0(θ + ρ)− P (x0(θ), θ), (6.1)

Q0(θ) = C−10 (θ + ρ)DxP (x0(θ), θ)C0(θ)−B0. (6.2)

Then, the norm of these magnitudes is a small quantity of order, say ε. Let us take, for example,
infinite norm, ||y0||∞ ≈ ε and ||Q0||∞ ≈ ε.

The idea is to use the reducibility assumption for finding a better approximation of the invariant torus,
and with it, to improve the Floquet change, iteratively until the precision of both parametrizations is
good enough. As all details and proofs are carefully described in [JO09], very brief description of the
procedure is given here.
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Note that in the present work we assume that the torus exists and that it is real analytic. In [JS96]
the proof of its existence is given for flows and it can be easily translated for maps, as long as some
hypothesis are satisfied. First hypothesis is referred to the smoothness of the map. Second hypothesis
is that some Diophantine conditions, involving the frequency vector ρ and the eigenvalues λ1, . . . , λn
of the matrix B0 are satisfied. Concretely, it is assumed that there exist real constants c > 0 and
γ > d− 1 such that

| exp(〈κ, ρ〉 i)− λj | >
c

|κ|γ
, ∀κ ∈ Zd \ {0}, j = 1, . . . , n, (6.3)∣∣∣∣exp(〈κ, ρ〉i)− λj

λl

∣∣∣∣ > c

|κ|γ
, ∀κ ∈ Zd \ {0}, j, l = 1, . . . , n, (6.4)

where i denotes the complex unit, 〈·, ·〉 the standard scalar product, and |κ| = |κ1|+ · · ·+ |κd|. Note
that condition (6.3) is satisfied if all the eigenvalues λj have modulus different from 1, and condition
(6.4) is satisfied if all eigenvalues have different modulus. As at every step of the iterative procedure,
the Floquet matrix changes, a non-degeneracy condition on the eigenvalues is needed. For this, it
is common to make eigenvalues depending on parameters such that Diophantine condition holds at
every iterative step. In practice, we do not need to verify this condition but what we have to do is to
check if the left-hand side of (6.3) and (6.4) is small. This can be done indirectly by checking the size
of the Fourier modes of the correction given by the Newton method is not too big.

Assuming all these hypothesis to hold and that x0(θ) and C0(θ) are available (with ||y0||∞ ≈ ε and
||Q0||∞ ≈ ε), let us summarise the iterative scheme in [JO09] to find good approximations of the torus
and of the Floquet change. The iterative scheme is divided in two steps. The first one focuses on
computing a better approximation of the torus, and the second one, on improving the Floquet change
and Floquet matrix.

Algorithm 6.1.1 (Computation of invariant torus, Floquet change, and Floquet matrix).

? Input: Discrete system as (1.12), initial guesses x0(θ), C0(θ), and B0.

? Output: Torus ϕ(θ), Floquet change C(θ), and Floquet matrix B.

First step:

1. Compute the error y0(θ) = x0(θ + ρ)− P (x0(θ), θ).

2. Compute the function g(θ) = −C−10 (θ + ρ)y0(θ).

3. Find u that verifies u(θ + ρ) = B0u(θ) + g(θ). For this, we expand functions g and u in real
Fourier series (the expansion can be done in complex Fourier series, but we work with real
expansions in the computer programs):

g(θ) =
g(0)

2
+
∑
κ6=0

g(c)κ cos〈κ, θ〉+ g(s)κ sin〈κ, θ〉,

u(θ) =
u(0)

2
+
∑
κ6=0

u(c)κ cos〈κ, θ〉+ u(s)κ sin〈κ, θ〉,

where κ ∈ Nd and 〈κ, θ〉 = κ1θ1 + · · · + κdθd, and solve the following system to find Fourier
coefficients u(0), u(c)κ , and u(s)κ

(Id−B0)
u(0)

2
=
g(0)

2
,

(B2
0 − 2 cos〈κ, ρ〉B0 + Id)u(c)κ = (cos〈κ, ρ〉Id+B0)g(c)κ − sin〈κ, ρ〉g(s)κ ,

(B2
0 − 2 cos〈κ, ρ〉B0 + Id)u(s)κ = (cos〈κ, ρ〉Id+B0)g(s)κ + sin〈κ, ρ〉g(c)κ ,

(6.5)

where Id denotes the identity matrix.
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4. Compute h(θ) = C0(θ)u(θ).

5. Compute x1(θ) = x0(θ)+h(θ), that is the new approximation of the torus, such that ||y1||∞ ≈ ε2,
with y1 defined like in (6.1).

Second step:

1. Compute the matrices R(θ) = C−10 (θ + ρ)Dxf(x1(θ), θ)C0(θ)−B0, R̃(θ) = R(θ)−Avg(R), and
B1 = B0 + Avg(R), where Avg(R) is the average of the map θ 7→ R(θ), that is,

Avg(R) =
1

(2π)d

∫
Td

R(θ) dθ

and B1 is the new approximation to the Floquet matrix.

2. Find the matrix valued function H that verifies H(θ + ρ)B1 − B1H(θ) = R̃(θ). For this, we
expand R and H in real Fourier series:

H(θ) =
∑
κ 6=0

H(c)
κ cos〈κ, θ〉+H(s)

κ sin〈κ, θ〉,

R̃(θ) =
∑
κ6=0

R(c)
κ cos〈κ, θ〉+R(s)

κ sin〈κ, θ〉,

and we solve the following system to find Fourier coefficients H(c)
κ and H(s)

κ (note that H(0) = 0)

(H(c)
κ cos〈κ, ρ〉+H(s)

κ sin〈κ, ρ〉)B1 −B1H
(c)
κ = R(c)

κ ,

(H(s)
κ cos〈κ, ρ〉 −H(c)

κ sin〈κ, ρ〉)B1 −B1H
(s)
κ = R(s)

κ .
(6.6)

3. Compute C1(θ) = C0(θ)(Id+H(θ)), that is the new approximation of the Floquet transformation,
such that ||Q1||∞ ≈ ε2, with Q1 defined like in (6.2).

Once we have x1(θ), B1, and C1(θ), we keep on iterating until either the norms of y and Q are small
enough or the differences between one step and the previous one are small enough.

Note that the computation of each pair of coefficients (u(c)κ , u(s)κ ) in (6.5) is independent for each κ.
The same happens with for each pair (H(c)

κ , H(s)
κ ) in (6.6). That makes these linear systems very

suitable for their computational resolution in parallel. With this, the dimension of each linear system
depends on the dimension of the phase space and the number of linear systems to be solved on the
number of Fourier modes used. On the other hand, the evaluation of the map P and DxP can be
perform independently of each θ, which leads to a straightforward parallelization.

6.2 High order parametrization of invariant manifolds

Here we continue the explanations given in Section 1.3 for invariant tori that have associated sta-
ble/unstable invariant manifolds. There we write the invariant manifold of an invariant torus as a
formal Taylor-Fourier expansion in terms of two parameters, a parameter to move in the hyperbolic
direction σ ∈ R and the angle vector θ ∈ Td, Equation (1.29)

W (θ, σ) = a0(θ) + a1(θ)σ +
∑
k≥2

ak(θ)σk,
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where ak are the functions, from Td to Rn, parametrizating the manifold at order k that depend on
the angles along the torus. Again, here we consider the case in which σ is one-dimensional.

In the particular case that the system is Hamiltonian, the stable eigenvalue corresponds to the inverse
of the unstable one. And, since many of the classical mechanical systems show a symmetry when
inverting the time, sometimes it is possible to have both parametrizations, the stable and the unstable,
by just computing one of them and applying the corresponding symmetry. Here, we are going to
explain the general case, valid for Hamiltonian and non-Hamiltonian systems and without considering,
in advance, any symmetry.

6.2.1 Computation of the invariant manifold

Following Section 1.3, the functions ak are found by solving invariance condition (1.30),

P (W (θ, σ), θ) = W (θ + ρ, λσ),

order by order. Recall that the order 0 and order 1 correspond to the invariant torus and the eigenfunc-
tion that are obtained through the Algorithm 6.1.1 summarised in previous section. More precisely, we
have obtained the eigenvectors of the Floquet matrix B. Then, if v is the eigenvector of B associated
with λ, the eigenfunction a1 of the torus is C(θ)v. Recall that the torus and its eigendirection give
the linear approximation to the invariant manifolds.

For the functions at any other order m, assuming the functions up to order m − 1 are known, in
Section 1.3 we arrive to the following expression,

bm(θ)σm +DxP (a0(θ), θ)am(θ)σm = am(θ + ρ)λmσm,

where we recall that bm is a θ-dependent function at order m that comes from the image under P of
the invariant manifold at order m− 1.

This expression, that involves a non-sparse matrix DxP (a0(θ), θ), is the one that we solve directly in
the case of invariant curves (Algorithm 1.4.3 applied in Chapters 4 and 5). Now, the dimension of
this matrix is too large to work with it. Then, we introduce a Floquet change looking for a rewrite of
this system that allows its decoupling and parallel resolution as it was done for finding the invariant
torus and Floquet transformation.

Let us write the last expression in terms of the Floquet change am(θ) = C(θ)um(θ),

bm(θ) +DxP (a0(θ), θ)C(θ)um(θ) = C(θ + ρ)um(θ + ρ)λm,

and multiply by C−1(θ + ρ) on both sides, leading to

C−1(θ + ρ)bm(θ) +Bum(θ) = um(θ + ρ)λm. (6.7)

Under the generic condition of non-resonance, detailed in the Lemma 6.2.1, (6.7) determines uniquely
the function um, that gives am through the Floquet transformation. So, let us assume that gm(θ) =
C−1(θ + ρ)bm(θ) admits a (real) Fourier series expansion, that is,

gm(θ) =
g(0)

2
+
∑
κ6=0

g(c)κ cos〈κ, θ〉+ g(s)κ sin〈κ, θ〉.

Then, we have to find the coefficients of another Fourier expansion

um(θ) =
u(0)

2
+
∑
κ 6=0

u(c)κ cos〈κ, θ〉+ u(s)κ sin〈κ, θ〉,
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such that (6.7) is satisfied. Imposing the equation (6.7) on the Fourier coefficients and using a Cramer-
block method, we end up with the following linear system of cohomological equations depending on
κ,

(λmId−B)
u(0)

2
=
g(0)

2
,

(B2 − 2λm cos〈κ, ρ〉B + λ2mId)u(c)κ = (λm cos〈κ, ρ〉Id+B)g(c)κ − λm sin〈κ, ρ〉g(s)κ ,

(B2 − 2λm cos〈κ, ρ〉B + λ2mId)u(s)κ = (λm cos〈κ, ρ〉Id+B)g(s)κ + λm sin〈κ, ρ〉g(c)κ .

(6.8)

The linear systems in (6.8) are solvable as long as B(κ) = B2 − 2λm cos〈κ, ρ〉B + λ2mId is invertible
for all κ. If µ is an eigenvalue of B, then B(κ) has eigenvalues of the form

µ2 − 2λm cos〈κ, ρ〉µ+ λ2m

which makes B(κ) invertible whenever µ is different to λm exp(±〈κ, ρ〉i).

We have then proved the following lemma:

Lemma 6.2.1. Let B be a Floquet matrix associated with the frequency vector ρ on Td and let |λ| 6= 1
be a real number satisfying that for each eigenvalue µ of B and a fixed m ∈ N, m ≥ 2,

µ 6= λm exp(±〈κ, ρ〉i), ∀κ ∈ Nd. (6.9)

Then for all smooth function gm on Td, there exists a unique smooth function um such that

λmum(θ + ρ) = Bum(θ) + gm(θ). (6.10)

Remark 6.2.2. Note that (6.9) is always satisfied when λ is the dominant eigenvalue of the Floquet
matrix.

Expressions in (6.8) recall those in (6.5) and (6.6). Therefore, it is clear that the computation of
each pair of coefficients (u

(c)
κ , u

(s)
κ ) of um is independent to each other. That makes the proposed

invariant manifold computation highly parallelizable as it was the Algorithm 6.1.1. Hence, to find the
unknowns (u

(c)
κ , u

(s)
κ ), we solve a large number of small dimensional linear systems at the same time;

the dimension of each linear system depends on the dimension of the phase space and the number of
systems only depends on the number of Fourier modes used for the approximation of gm and um.

Notice that, when we start the computation of the functions ak for k ≥ 2, we use the same number
of Fourier modes Ni for each of the angular dimensions θi with i = 1, . . . , d, as for the torus and
the Floquet change Fourier series. However, it may happen that those numbers of modes, that were
enough for distretising accurately the torus and the Floquet change, may not be enough for discretising
some of the parametrization functions ak for k ≥ 2. If this happens for a given order, it is necessary
to increase the number of Fourier modes from this order on, as we did following Algorithm 1.4.3 in
Chapters 4 and 5 for the computation of invariant manifolds of invariant curves. This effect has not
been appreciated in the examples of Section 6.5, where we have checked the size of the Fourier modes
after the computation. Varying the number of Fourier modes during the computation has an extra
penalty that depends on the number of Fourier modes added. Notice that in the present case, in which
N ∈ Zd for each dimension of the phase space, this penalty time may be too long.

Algorithm 6.2.3 summarises the process explained above.

Algorithm 6.2.3 (Invariant manifold of a torus through its Floquet transformation).

? Input: Discrete system as in (1.12), torus ϕ(θ), Floquet change C(θ), Floquet matrix B, real
eigenvalue |λ| 6= 1 of B, and its eigenvector v.
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? Output: Coefficients ak(θ) for k ≥ 2 verifying (1.30).

1. a0(θ)← ϕ(θ).

2. a1(θ)← C(θ)v.

3. For k = 2, 3, . . .

a) b0(θ) + · · ·+ bk(θ)σk ← P (a0(θ) + · · ·+ ak−1(θ)σk−1 + 0σk, θ) using jet transport.
b) gk(θ)← C−1(θ + ρ)bk(θ).
c) Find uk(θ) such that λkuk(θ + ρ) = Buk(θ) + gk(θ) using (6.8).
d) ak(θ)← C(θ)uk(θ).

6.2.2 Stable invariant manifold

The procedure introduced above is valid for both, the stable and the unstable invariant manifold
computation. However, as it has been mentioned previously along the text, when the Poincaré map
is applied forward in time to compute the stable manifold, it approaches the torus and also the
unstable invariant manifold. This computation affects the numerical accuracy of the stable manifold
by increasing the numerical errors due to the effect of the unstable direction. This effect is more
relevant when the unstable direction is strong. Because of that, it is more accurate to obtain the
parametrization of the stable invariant manifold using the inverse of the Poincaré map in (1.12),{

x = P−1(x̄, θ̄),

θ = θ̄ − ρ.
(6.11)

In the case of the stable invariant manifold, i.e. the real |λ| < 1 eigenvalues of B in (1.18), the
invariance condition (1.30) is written for (6.11) as,

P−1(W (θ + ρ, σ), θ + ρ) = W
(
θ,
σ

λ

)
. (6.12)

We proceed as before, we consider a formal power expansion of W in (1.29) and solve (6.12) order by
order to obtain the functions ak that parametrize the stable invariant manifold.

Notice that in that case, we must introduce a Floquet change that removes the angle dependence when
the dynamics is moving backward in time, i.e. when we apply P−1. The Floquet transformation for
the torus, and the torus itself, in the map P and in the map P−1 are related through a phase equal
to the vector ρ.

Following the Algorithm 6.1.1, the invariant torus and its eigenfunction (order zero and one of the
parametrization) are obtained by application of P . If we want to use them for the parametrization of
the stable manifold, where we apply P−1, we have to re-parametrize them as a0(θ+ ρ) and a1(θ+ ρ).
Therefore, in this case we look for the functions ak with k ≥ 2 shifted a quantity ρ.

Then, assuming that we know the parametrization up to order m − 1, in order to find the function
am(θ) = C(θ)um(θ), such that um(θ) satisfies

C−1(θ)b−m(θ) +B−1um(θ + ρ) = λ−mum(θ), (6.13)

where b−m(θ) denotes the term of order m resulting from the evaluation of the invariant manifold up
to order m − 1 by the inverse Poincaré map. Now, multiplying by B and by λm the last expression,
we have

λmum(θ + ρ) = Bum(θ) + gm(θ), (6.14)
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that has the same form as (6.10) with gm(θ) = −λmBC−1(θ)b−m(θ). Therefore, relaying on Lemma 6.2.1
and the solution of the linear systems in (6.8), there exists the function um : Td 7→ Rn, evaluated in
um(θ + ρ), that satisfies (6.14). Note that, the condition in (6.9) remains the same.

Algorithm 6.2.4 (Stable invariant manifold of a torus through its Floquet transformation).

? Input: Discrete system as in (1.12), torus ϕ(θ), Floquet change C(θ), Floquet matrix B, real
eigenvalue |λ| < 1 of B, and its eigenvector v.

? Output: Coefficients ak(θ + ρ) for k ≥ 2 verifying (6.12).

1. a0(θ + ρ)← ϕ(θ + ρ).

2. a1(θ + ρ)← C(θ + ρ)v.

3. For k = 2, 3, . . .

a) b0(θ) + · · · + bk(θ)σk ← P−1(a0(θ + ρ) + · · · + ak−1(θ + ρ)σk−1 + 0σk, θ + ρ) using jet
transport.

b) gk(θ)← −λkBC−1(θ)bk(θ).
c) Find uk(θ) such that λkuk(θ + ρ) = Buk(θ) + gk(θ) using (6.8).
d) uk(θ + ρ)← uk(θ).
e) ak(θ + ρ)← C(θ + ρ)uk(θ + ρ).

6.3 Multiple shooting

There are invariant objects so unstable that it is impossible to integrate accurately the flow around
them during the time involved in the Poincaré map. In these cases, it is convenient to split the
time into a certain number of temporal sections, such that the integration time between each two
consecutive sections is considerably reduced and so the propagation of the numerical error. These
methods are commonly known as multiple shooting or parallel shooting methods and they have been
widely used to compute highly unstable periodic orbits [SB02]. A version of this methodology applied
to the computation of invariant tori and their Floquet changes can be found in [Olm07].

A multiple shooting method splits the Poincaré map into a finite number of maps such that the
composition of them gives the original one. Let φ(t; 0, x, θ) be the time t flow of (1.5) from initial
time 0 and initial conditions x ∈ Rn and θ ∈ Td. The temporal Poincaré map is defined as

P (x, θ) = φ(δ; 0, x, θ),

with δ = 2π/ω0. Let us assume that P admits a reducible torus ϕ : Td → Rn with frequency vector
ρ ∈ Td given by ρ = ωδ being ω in the given model (1.5). That is, ϕ must satisfy (1.13). A multiple
shooting method with r sections splits the map P into P1, . . . , Pr new maps such that their composition
gives P . Therefore, the problem consists in finding a reducible torus given in r pieces ϕ1, . . . , ϕr that
are the intersections of the torus of the flow with respectively each temporal section.

A standard multiple shooting method is one that considers the r sections equidistantly in time. Let
us then define

Pj(x, θ) = φ(jδ/r; (j − 1)δ/r, x, θ), j = 1, . . . , r.

There are several options to define the new invariance equations associated with ϕ1, . . . , ϕr. For
instance,

Pj(ϕj(θ), θ) = ϕj+1(θ), j = 1, . . . , r − 1,

Pr(ϕr(θ), θ) = ϕ1(θ + ρ),
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or another example can be,

Pj(ϕj(θ), θ + (j − 1)ρ/r) = ϕj+1(θ + jρ/r), j = 1, . . . , r − 1,

Pr(ϕr(θ), θ + (r − 1)ρ/r) = ϕ1(θ + ρ).

However, these two examples do not scale with the Algorithms 6.1.1, 6.2.3, and 6.2.4 because, in both
cases, the right hand side has no a uniform rotation angle for each j = 1, . . . , r. That forces us to
change other steps in those algorithms besides the only evaluation of the Poincaré map.

Our goal is then to choose an expression that only change the evaluation of the P and DxP and the
other steps in Algorithms 6.1.1, 6.2.3, and 6.2.4 remain the same. The previous proposed invariance
equations require to consider a rotation vector of dimension d for each shooting. To keep the same
shifting over the r new sections, we propose

Pj(ϕj(θ), θ − (j − 1)ρ/r) = ϕj+1(θ + ρ/r), j = 1, . . . , r − 1,

Pr(ϕr(θ), θ − (r − 1)ρ/r) = ϕ1(θ + ρ/r).
(6.15)

Note that one can see a multiple shooting approach as a single shooting but with a larger phase space.
The equations (6.15) do not recover P in (1.13) by a direct composition since they must be alternated
with rotation operators. Similarly, the ϕ in (1.13) can be obtained from the ϕ1, . . . , ϕr in (6.15) by
undoing rotations. The Lemma 6.3.1 makes explicit all these rotations and, in particular, says that
DxP is a product of differentials of Pj with interlaced rotations.

Lemma 6.3.1. Let α be an angle and let Tα be the operator defined as Tαx(θ) = x(θ+ α). Then the
map P at the torus ϕ in (1.13) and Pj in (6.15) at the torus ϕj are related by

P = Tρ−ρ/r ◦ Pr ◦ T−ρ/r ◦ Pr−1 ◦ · · · ◦ T−ρ/r ◦ P1.

6.3.1 Reducibility and multiple shooting

The linear skew-product associated to the linearization around a torus found with this multiple shoot-
ing has a uniform rotation over the sections. Thus, (6.15) has a linear behaviour expressed by

X̄j+1 = Aj(θ)Xj , j = 1, . . . , r − 1,

X̄1 = Ar(θ)Xr,

θ̄ = θ + ρ/r,

(6.16)

with Aj(θ) = DxPj(ϕj(θ), θ − (j − 1)ρ/r) for j = 1, . . . , r.

Following the Definition 1.2.2, (6.16) is reducible if, and only if, there exist a change of variables of
the form Xj = Cj(θ)Yj for j = 1, . . . , r such that (6.16) becomes

Ȳj+1 = BjYj , j = 1, . . . , r − 1

Ȳ1 = BrYr,

θ̄ = θ + ρ/r,

(6.17)

where the matrices B1, . . . , Br ∈ Rn×n are defined by

Bj = Cj+1(θ + ρ/r)−1Aj(θ)Cj(θ), j = 1, . . . , r − 1

Br = C1(θ + ρ/r)−1Ar(θ)Cr(θ),
(6.18)

and they do not depend on θ.

Remark 6.3.2 (Matrix-form). The linearization around a torus can also be formulated in a matrix-
block form of a higher dimensional problem, that is, n ·r dimension. Thus in practice, Algorithm 6.1.1
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can be used with multiple shooting just considering ρ/r instead of ρ and evaluating Pj and DxPj
following (6.15). Indeed, if we consider the block matrices

Ã(θ) =


Ar

A1

. . .
Ar−1

 (θ), B̃ =


Br

B1

. . .
Br−1

 , (6.19)

C̃(θ) =


C1

. . .
Cr−1

Cr

 (θ), C̃−1(θ) =


C−1r

C−11

. . .
C−1r−1

 (θ),

then using a little bit more memory to keep the zeros for each θ we can directly use Algorithm 6.1.1.

As a consequence of the Remark 6.3.2, we have the following straightforward lemma.

Lemma 6.3.3. Let B1, . . . , Br be the matrices in (6.18) and let B̃ be the matrix in (6.19). Then
µ is an eigenvalue of B̃ if, and only if, µr is an eigenvalue of BrBr−1 · · ·B1. In other words, the
eigenvalues of B̃ are the complex roots of the eigenvalues of BrBr−1 · · ·B1.

Lemma 6.3.4 (see §51 in [Wil65]). Let A and B be square matrices. Then the spectrum of AB is the
same as the spectrum of BA.

Combining Lemmas 6.3.1, 6.3.3, and 6.3.4, we prove Proposition 6.3.5. That result links the relation
between the Floquet matrix with the one using the multiple shooting. To prove it, it is enough i)
to observe that from Lemma 6.3.1 the spectrum of DxP on the torus ϕ has the same spectrum as
(DxPr) · · · (DxP1), respectively on ϕr, . . . , ϕ1. ii) The different rotation operators T−ρ/r do not change
the spectrum because of the Lemma 6.3.4. iii) The Floquet Cj do not change the spectrum of Bj .
Therefore, Lemma 6.3.3 allows to finish the proof of the Proposition 6.3.5.

Proposition 6.3.5. The eigenvalues of the Floquet matrix of a multiple shooting (6.17) with r sections
are the complex r roots of the eigenvalues of the Floquet matrix with single shooting (1.18).

6.3.2 Multiple shooting applied to invariant manifolds

If the torus is very hyperbolic, the linear approximation to the manifold in one of the sections of
the torus (single shooting) is enough to globalize the manifold with a good level of accuracy. This
is because, as the manifold is very unstable, it is sufficient to use the unstable direction of the torus
in one of the sections, say ϕ1, to grow numerically the manifold [Ros20]. Other works, as [Dua19],
use multiple shooting to compute the linear approximation to the invariant manifold. As here we are
interested in a high-order approximation to these manifolds, we need to compute high-order derivatives
of the map. Due to the strong instability of the torus, we have to continue with the multiple shooting
scheme in order to compute the derivatives of the maps Pj accurately. Therefore, we will compute
the Taylor-Fourier expansions for the torus ϕj , j = 1, . . . , r.

The parametrization of the manifold, as explained in Section 6.2, is done at each of the r sections.
Let Wj be a formal power expansion for each j = 1, . . . , r of the form

Wj(θ, σ) =
∑
k≥0

aj,k(θ)σk, θ ∈ Td.

We denote the truncated power expansion of Wj of order m by Wj,m.

118



6.3. MULTIPLE SHOOTING

Let us assume, by simplicity, that |µ| 6= 1 is real. Then, applying the invariance condition of the torus
to the invariant manifold leads to the equations

Pj(Wj(θ, σ), θ − (j − 1)ρ/r) = Wj+1(θ + ρ/r, µσ), j = 1, . . . , r − 1,

Pr(Wr(θ, σ), θ − (r − 1)ρ/r) = W1(θ + ρ/r, µσ).
(6.20)

The zeroth order in σ of (6.20) is just the torus ϕj in (6.15), that is, aj,0 = ϕj . The first order in σ
in (6.20) has the form

DxPj(aj,0(θ), θ − (j − 1)ρ/r)aj,1(θ) = aj+1,1(θ + ρ/r)µ, j = 1, . . . , r − 1,

DxPr(ar,0(θ), θ − (r − 1)ρ/r)ar,1(θ) = a1,1(θ + ρ/r)µ.

Using the change aj,1(θ) = Cj(θ)vj for j = 1, . . . , r and the definition of Bj in (6.18), we end up with

Bjvj = µvj+1, j = 1, . . . , r − 1,

Brvr = µv1,

and by the matrix-block form in Remark 6.3.2, we conclude that v = (v1, . . . , vr) is an eigenvector of
eigenvalue µ of B̃ that, by Proposition 6.3.5, means that µ is a r root of an eigenvalue of (1.18).

Let us now assume that we know the functions aj,k for j = 1, . . . , r and k = 0, . . . ,m− 1. Then, using
the induction hypothesis, for j = 1, . . . , r − 1, (and similarly for j = r)

Pj(Wj,m−1(θ, σ), θ − j − 1

r
ρ)

= Pj(Wj,m−1(θ, σ), θ − j − 1

r
ρ) +DxPj(Wj,m−1(θ, σ), θ − j − 1

r
ρ)aj,m(θ)σm +O(σm+1)

= Pj(Wj,m−1(θ, σ), θ − j − 1

r
ρ) +Aj(θ)aj,m(θ)σm +O(σm+1)

= Wj+1,m−1(θ +
ρ

r
, µσ) + bj,m(θ)σm +Aj(θ)aj,m(θ)σm +O(σm+1),

(6.21)

with Aj(θ) = DxPj(aj,0(θ), θ− (j − 1)ρ/r). Equating the order σm in (6.21) with the right hand side
in (6.20), we end up with the expressions

bj,m(θ) +Aj(θ)aj,m(θ) = aj+1,m(θ + ρ/r)µm, j = 1, . . . , r − 1,

br,m(θ) +Ar(θ)ar,m(θ) = a1,m(θ + ρ/r)µm.

Introducing the Floquet change aj,m(θ) = Cj(θ)uj,m(θ) for all j = 1, . . . , r, and using (6.18), we
deduce

Cj+1(θ + ρ/r)−1bj,m(θ) +Bjuj,m(θ) = µmuj+1,m(θ + ρ/r), j = 1, . . . , r − 1,

C1(θ + ρ/r)−1br,m(θ) +Brur,m(θ) = µmu1,m(θ + ρ/r).
(6.22)

The system of equations (6.22) can directly be solved as the one in (6.10) and independently on j.

This scheme works for real stable/unstable manifolds. For the reasons discussed in Section 6.2.2, to
compute stable manifolds is numerically more precise to consider the inverse Poincaré map. We can
then write similar conditions to (6.20) for P−1j .

Remark 6.3.6. The parametrization (6.20) can also been seen as a single shooting in higher dimen-
sion. Thus we can skip the detailed expressions in (6.22) for each index j and apply directly the
Section 6.2 but with the matrix-block in the Remark 6.3.2 and with ρ/r instead of ρ. In particular,
the Algorithms 6.2.3 and 6.2.4 can be used with the penalty of more memory usage.
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6.4 Computer implementation

This section is devoted to provide some technical details and information concerning to the computer
implementation of the introduced algorithms. Notice that, some detail has been already explained,
as the idea of the jet transport technique used to obtain high-order derivatives of the Poincaré map
through automatic differentiation, see Section 1.3.1.

Also, it is important to mention that an effective manipulation of Fourier series of several variables
has a crucial impact on the performance of Algorithms 6.1.1, 6.2.3 and 6.2.4 to do the steps of shifting
by ρ and to solve cohomological equations. We do not only need to be able to express the series in
its Fourier coefficients and its tabulation on a grid of angles θ ∈ Td; a process based on the Discrete
Fourier Transform. We have to know how to perform operations affecting to its coefficients. In
particular, we need to be able to know at each memory location which is its coefficient and vice versa.
This is highly dependent on the package used. In this work, we have used the FFTW3 (Fastest Fourier
Transform in the West) package [FJ05]. For the specific details of how this package was managed, we
refer the interested reader to Section 5.1 of [GJNO21].

Since this work is focused on the parallelism of computations, Section 6.4.1 is devoted to the technical
details in the implementation of our computations and an analysis of the degree of parallelism achieved.
Finally, Section 6.4.2 collects some numerical tests to analyse the accuracy of the obtained results.

6.4.1 Parallelism

Algorithms 6.1.1, 6.2.3, and 6.2.4 contain steps that are highly parallelizable. Such a parallelism
was already exploited in [JO09] in Algorithm 6.1.1 using the PVM library [GBD+95] running on a
cluster of PCs connected through an Ethernet network. Here we use OpenMP 4.5 [Ope15] which
runs concurrently in a PC with several CPUs and it provides an easier and efficient parallelism
programming.

The use of profilers for the experiments in Section 6.5 shows that more than the 98% (in both al-
gorithms) is spent in the evaluation of the discrete map P and its derivatives, which involves ODE
integrations, and a lower percentage is required to solve the cohomological equations. Therefore, the
parallelism strategy has consisted in running the evaluation of the ODE integrator, Taylor [JZ05]
and Runge-Kutta-Verner 8(9) [Ver78] in the experiments, sequentially and independently in each of
the different available CPUs of the PC. This provides an automatic parallelism since the algorithms
require to evaluate the discrete map for each of the different angle values in the mesh in Td. Note
that with this approach the use of jet transport does not provide any downside because we do not
parallelize the integrator itself.

The second level of parallelism is in the cohomological equations, the shifting by ρ, and some of the
matrix-solvers that are independent to each other either in a Fourier representation or in a table of
values.

Finally, we parallelize the transformation between the table of values and the Fourier coefficients (and
vice versa). That has been done by the feature already provided in the FFTW3 package and in
combination with the OpenMP. We did not detect a major improvement because the package itself
is already optimized enough and already the profiler indicated that these transformations do not
contribute too much in the performance when one use the FFTW3.

We took care of the potential overhead in the initialization of the threads, that is, the different
(sub)processes that are executed in the CPUs. Thus, we initialize the threads at the beginning of the
algorithms to have ready the pool of threads and bifurcate the code execution when we reach those
parallelizable steps.
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6.4.2 Accuracy tests

In order to ensure that the computations are correct and to ensure that the level of accuracy is the
required one, we implement some tests. First, regarding to the torus and the Floquet change, we
implement three tests, two of them already introduced in [Olm07], let us call them Test 1, Test 2,
and Test 3. Secondly, test presented in Section 1.4.5 is implemented to assess the parametrization of
the hyperbolic invariant manifolds. The Tests 2 and 3 are run after the solutions have been obtained,
which means that they can be used to check how good are these solutions in terms of the invariance
equations they must satisfied.

In all the tests, we are going to use norms and tolerances that must be chosen depending on the model,
precision arithmetic, and matching with other tolerances in the algorithms, such as, the one for the
Newton’s process or the ODE integrations. In Section 6.5, we will made explicit all these choices.

The invariance equation

Algorithm 6.1.1 stops when the invariance condition (1.13) for the torus ϕ and for the Floquet change
(1.19) are satisfied within a certain threshold. On the other hand, Algorithm 6.2.3 and Algorithm 6.2.4
are not iterative processes and the steps in each algorithm are deduced by imposing (by power matching
in σ) the invariance equations (1.30) and (6.12), respectively.

Test 1. Let A be a mesh in Td. A function z is said to verify the equation I(z(θ)) = 0 with tolerance
τ if, and only if,

max
θ∈A

||I(z(θ))|| ≤ τ.

Note that Test 1 can be defined in terms of the relative error instead of the absolute error.

The tail of the Fourier discretization

The test consists in checking that the truncated Fourier representation is accurate enough with the
mesh size. We use the fact that, under a smoothness assumption, the Fourier coefficients decay. In
the applications in Section 6.5, these functions are analytic and then their Fourier coefficients decay
exponentially. The truncation error is approximated by the size of the last Fourier coefficients in its
representation. To prevent potential symmetries that make zero some of the entries, we check the last
two indexed coefficients.

Test 2. A truncated real Fourier representation given by

x(θ) =
x(0)

2
+

N∑
|κ|=1

x(c)κ cos 〈κ, θ〉+ x(s)κ sin 〈κ, θ〉 , θ ∈ Td.

is said to verify the Test 2 with tolerance τ if, and only if, for all κ ∈ Nd such that |κ| = N or
|κ| = N − 1,

||(x(c)κ , x(s)κ )||2 ≤ τ.

We apply the Test 2 for each of the Fourier series involved in the torus, in its Floquet change, and its
parametrized manifold. Moreover, Test 2 can be used to keep track which of the components of the
angular variables vector θ ∈ Td have the biggest tail size in norm, and then increase the mesh size on
that direction until either we reach a maximum mesh size or we reach the desired tolerance.
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The mesh

The third test is computationally more expensive, it consists in checking the function that we want
to make zero in a different mesh but with the same size. A way to do this check without the need of
using more computational sources is just to perform a fixed shift by an angle, say γ, and then check
if the equation is still verified with a prescribed tolerance.

Test 3. Let A be a mesh in Td. A function z is said to verify the equation I(z(θ)) = 0 with tolerance
τ and shifting γ ∈ Td if, and only if,

max
θ∈A

||I(z(θ + γ))|| ≤ τ.

Note that as Test 1, Test 3 can be defined in terms of the relative error instead of the absolute error.
In the case of the torus, the Test 3 consists first in performing the shift ψ(θ) = ϕ(θ + γ) and then
checking (1.13) but for ψ and with the same original mesh in θ, that is,

max
θ∈A
||ψ(θ + ρ)− P (ψ(θ), θ + γ)|| ≤ τ.

Similarly, we can apply Test 3 for the Floquet change C, and for the functions ak.

6.5 Applications

In this section we implement two different applications. The first example is a classical quasi-
periodically forced pendulum and the second one is an application to celestial mechanics; one of
the Simplified Solar System Model (SSSM) introduced in [GMM02, Mon01].

In order to stress the independence of the integration method, we use a Taylor integration with jet
transport and tolerance 10−16 for the first method and a Runge-Kutta-Verner 8(9) with jet transport
and tolerance 10−14 for the celestial mechanic one. To verify the different tests described in Sec-
tion 6.4.2, we consider the Euclidean norm for vectors, the Fröbenius norm for matrices, and a generic
test tolerance of τ = 10−10.

In all the experiments we have used the gcc compiler, version 8.3.0, on a Linux computer with
two Intel(R) Xeon(R) CPU E5-2680 @2.70GHz processors, which give a total of 16 cores. For the
sake of simplicity, in what follows we use the terms core and processor equally, to refer to a single
computational unit.

6.5.1 A quasi-periodically forced pendulum

This first application considers one of the examples included in [JO09]. The system describes the
movement of a quasi-periodically forced pendulum

ẋ = y

ẏ = −α sinx+ εζ(θ0, . . . , θd),

θ̇i = ωi, i = 0, . . . , d

(6.23)

where x, y ∈ R, and α is a parameter whose value is chosen as 0.8. For i = 0, . . . , d, θi ∈ T and ε
accounts for the weight of the forcing function ζ:

ζ(θ0, . . . , θd) =

[
d+ 2 +

d∑
i=0

cos θi

]−1
.
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p Total time speed-up
1 8m3.286s 1.000
2 4m9.742s 1.934
4 2m18.073s 3.500
8 1m13.779s 6.550
16 39.234s 12.318

Table 6.1: Computational time needed for computing the torus of system (6.23) with frequency
vector of dimension d = 4. First column corresponds to the number of processors used, second one to
the total time employed according to the number of processors, and the last one designs the speed-up.

As frequencies we have chosen, with d = 4,

ω0 = 1, ω1 =
√

2, ω2 =
√

3, ω3 =
√

5, ω4 =
√

7. (6.24)

We have applied the methodology summarized in Section 6.1, Algorithm 6.1.1, to obtain the torus,
the Floquet transformation, and the Floquet matrix near x = π, y = 0 for ε = 0.01. Recall that
according to the dimension of the frequency vector selected, d, the dimension of the resulting torus
of the flow (6.23) near the point (π, 0) is d+ 1. By defining a returning map P to the section θ0 = 0
mod 2π, the dimension of the torus is reduced by one. As initial seeds we used the point (π, 0) for
the torus, the identity for the Floquet transform, and the differential of P at (π, 0) for the Floquet
matrix.

Each of the angles has been discretized using N = 31 Fourier modes, that results to a total of
2N4 = 1847042 unknowns for the torus and 4N4 = 3694084 for the Floquet change. Note that a
direct method to compute the torus and not using the advantage of the Floquet change needs to store
4N8 double precision variables which is totally unfeasible.

The Algorithm 6.1.1 was run with a Newton threshold of 10−10 and the Test 1 for the torus is
satisfied with 10−13 after 3 Newton’s iteration and with 10−12 for the Floquet transformation and
Floquet matrix.

After the Newton convergence and the success in the Test 1, we apply the Test 2 reporting the different
values for each of the angular directions, that is, respectively, 10−10, 10−11, 10−10, and 10−11. The
Test 3 is also satisfied with 10−11 for the torus and 10−12 for the Floquet transformation.

The Floquet matrix, B, has hyperbolic real eigenvalues λs = 3.625204837874207 × 10−3 and λu =
2.758464817115549 × 102. Note that |λsλu − 1| = 1.13 × 10−11. In the Table 6.1, we show the
computational time required for computing the torus using different number of processors. In the
same table, the speed-up factor is included. This factor measures the relation between the time
needed for solving the system with p processors with respect to the time of the linear resolution, that
is, using just one processor (p = 1). Ideally, when the parallelization is performed with p processors,
the time should be divided by p. We can see in the table that this does not happen, specially when the
number of processors increases and so the overhead in each of the processors. Some checks have been
done regarding to this; for example, disabling the Hyper-threading of the processors the computational
times remained the same. It is noteworthy that the analysis of the profiler to our program shows that
99.76% of the computations have been parallelized.

We compute the approximations to the stable/unstable invariant manifolds up to order 10 following
the Algorithms 6.2.3 and 6.2.4. Table 6.2 shows the required times for these computations using
different number of processors and the corresponding values for the speed-up. The Test 1 is satisfied
in relative error for each of the order in σ starting with a 10−14 at zeroth order to 10−11 at order 10.
Tests 2, 3, and the test described in Section 1.4.5 have also been successful at each of the orders.
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unstable stable
p Total time speed-up Total time speed-up
1 2h33m13s 1.000 2h33m31s 1.000
2 1h19m08s 1.936 1h28m59s 1.725
4 43m12s 3.546 48m23s 3.173
8 22m13s 6.894 25m03s 6.129
16 11m09s 13.746 12m32s 12.245

Table 6.2: Computational time needed for the stable/unstable manifolds up to order 10 of the torus
in Table 6.1. First column corresponds to the number of processors used.

6.5.2 A quasi-periodically perturbed model for the Earth-Moon system

G. Gómez, J. J. Masdemont and J. M. Mondelo developed a methodology to generate simplified
Solar Systems models (SSSM) using a set of basic frequencies, see [GMM02, Mon01]. The systems of
equations introduced in those works describe the motion of a massless particle subjected to a series
of time-periodic perturbations. These models are defined in such a way that if we remove all the
time-periodic dependencies present in the SSSM, the resulting models correspond to the well-known
Restricted Three-Body Problem (RTBP), [Sze67].

Among the simplified models introduced in [GMM02, Mon01], special attention is paid to the Earth-
Moon case, including the gravitational effect of the Sun. For the description of this simplified model
they use five basic frequencies for the accurate characterization of the lunar motion. The selection of
these frequencies comes from the simplified Brown theory presented in [Esc68]. Their values in terms
of cycles per lunar revolution (RTBP adimensional units) are the following:

• mean longitude of the Moon, ω1 = 1,

• mean elongation of the Moon from the Sun, ω2 = 0.925195997455093,

• mean longitude of the lunar perigee, ω3 = 8.45477852931292× 10−3,

• longitude of the mean ascending node of the moon on the ecliptic, ω4 = 4.01883841204748× 10−3,

• Sun’s mean longitude of perigee, ω5 = 3.57408131981537× 10−6 .

So, this model includes the gravitational effect of the Sun (not only on the motion of the infinitesimal
particle, but also on the motion of the Earth and the Moon), the lunar eccentricity, inclination between
the orbital plane of the Moon and the ecliptic plane, and also between the orbital and equatorial planes.

In order to generate the model, the authors change these frequencies to a new basis ν = (ν1, . . . , ν5)
defined as ν1 = ω2, ν2 = ω1 − ω3, ν3 = ω1 − ω2 + ω4, ν4 = ω1 − ω5, and ν5 = ω5 − ω2, such that when
the frequencies ν1, . . . , νi are added to the unperturbed system (Earth-Moon RTBP), the simplified
models SSSMi are generated for i = 1, . . . , 5, each of them subjected to ν1, . . . , νi perturbations.

The equations of motion for an infinitesimal particle in these models SSSMi, i = 1, . . . , 5 are introduced
in terms of time-dependent functions cij , j = 1, . . . , 13,



ẍ = ci1 + ci4ẋ+ ci5ẏ + ci7x+ ci8y + ci9z + ci13
∂Ωi

∂x
,

ÿ = ci2 − ci5ẋ+ ci4ẏ + ci6ż − ci8x+ ci10y + ci11z + ci13
∂Ωi

∂y
,

z̈ = ci3 − ci6ẏ + ci4ż + ci9x− ci11y + ci12z + ci13
∂Ωi

∂z
,

(6.25)
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being

Ωi =
1− µ√

(x− µ)2 + y2 + z2
+

µ√
(x− µ+ 1)2 + y2 + z2

+
µS√

(x− xiS)2 + (y − yiS)2 + (z − ziS)2
,

(6.26)

where µ is the Earth-Moon mass parameter, µS is the mass of the Sun with respect to the sum of
masses of Earth and Moon, and xiS , y

i
S , z

i
S denote the positions of the Sun.

The quasi-periodic time-dependent functions cij can be computed in terms of the positions, velocities,
accelerations, and over-accelerations of the two selected primaries. The description of these time-
dependent functions as well as the positions xiS , y

i
S and ziS , consists on a refined Fourier analysis,

detailed in [GMS10a, GMS10b]. Note that, regardless of the model i, taking cj = 0 except for c5 = 2,
c7 = c10 = c13 = 1 and omitting the last term in (6.26), the system of equations in (6.25) becomes
that of the RTBP.

Recall that the RTBP presents five equilibrium points ([Sze67]), L1,...,5, where L1,2,3, are the colinear
points, of centre×centre×saddle type, and the other two, L4,5, are the triangular points, that have a
dynamics of centre×centre×centre for the mass parameter of the Earth-Moon system. The dynamics
of the saddle parts of L1,2 are numerically difficult to compute because its unstable parts are of order
108 and 106 respectively.

The angular dimension of these points increases as the frequencies of the SSSM are included. In the
SSSM1 the equilibrium points become periodic orbits, in the SSSM2 become two-dimensional quasi-
periodic solutions (or 2D tori), and so on. A way of computing these quasi-periodic solutions is to
continue them from one SSSMi to SSSMi+1 as the number of considered frequencies increases. This
continuation is sometimes difficult due to appearance of resonances, [Olm07].

In order to reduce the continuation problems, we add a small dissipation parameter to the equations
of the system when continuing from SSSMi to SSSMi+1. Thus, elliptic eigenvalues become hyperbolic
and difficulties of convergence with the algorithm coming from possible resonances are likely removed.
Once we have the invariant torus in the system SSSMi+1 plus the dissipation parameter, we remove
that parameter and refine the invariant object in the original SSSMi+1.

To prevent the numerical difficulties coming from the strong instability in L1,2, we use multiple
shooting with r sections, in particular, r = 4 and r = 3 respectively. Then we perform the computation
of the torus, its Floquet change, and Floquet matrix until we reach the SSSM3 model. With this, we
have obtained the invariant tori that replace L1,2 in the SSSM3 model, which are tori of dimensions
3 for the flow, and their Floquet matrices. Note that, as we are using multiple shooting, we have
computed r sections of the torus. Next, we have computed the unstable manifold of each torus.
Table 6.3 shows the computational times and corresponding speed-up for the approximation of the
unstable invariant manifolds up to order 10.

L1 unstable L2 unstable
λu 1.469645480926268e+02 1.343539917760893e+02
p Total time speed-up Total time speed-up
1 16m29s 1.000 6h41m46s 1.000
2 9m44s 1.886 3h58m09s 1.912
4 5m20s 3.450 2h39m36s 3.456
8 2m30s 6.610 1h52m39s 6.596
16 1m18s 12.740 26m02s 13.090

Table 6.3: Computational time with p CPUs of the unstable manifolds of L1 and L2 of SSSM3 using
meshes N = (43, 43) and N = (223, 223), and parallel sections 4 and 3 respectively.
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6.6 Conclusions

This chapter has shown that the computation of high-order Taylor-Fourier expansions of stable and
unstable invariant manifolds associated with high-dimensional tori are, nowadays, feasible. Even
when the instability of the torus is very strong, where we have combined the algorithms with multiple
shooting methods. We have provided explicit algorithms to compute all these invariant objects.

The developed methods look suitable to address computation of invariant manifolds generated by
several eigendirections. We plan to modify the current code for such a context as well as to manage
some of the eigenvalue cases not included here. Similar ideas can be applied to the case when the
frequency vector ρ is not known or even when the internal dynamics is not a fixed rotation ρ, in
particular, in a context when the dynamical system is autonomous. Some results in these directions
have already been worked in [Olm07].

The method is highly parallelizable to compute torus, the Floquet transformation, and its invariant
manifolds. In the experiments, we used OpenMP showing a really good speed-up. We are also aware
of other approaches that can take advantage of the intrinsic parallelism of the algorithms such as
a GPU approach. We plan exploring in future works a GPU parallelization scheme and providing
experiments showing that there is no relevant penalty in the communication between the CPU and
the GPUs.
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Conclusions and future work

Throughout this dissertation we have faced dynamical systems under time-periodic perturbations,
focusing specially on the Sun-perturbed Earth-Moon Bicircular Problem. We have given answers
to many questions that we had before starting the research and to many others that arise as the
investigation evolved.

In particular, we have extensively studied the horizontal family of two-dimensional quasi-periodic
orbits around L3, that was found to give rise to very rich transport phenomena. The stable/unstable
invariant manifolds associated with these solutions are three-dimensional, but they can be seen as
two-dimensional in a suitable defined stroboscopic map. This lead us to introduce the fundamental
cylinders; a fundamental domain for the manifolds that allow to visualise in a generic and relatively
simple way all the connections that may take place through each one of these quasi-periodic solutions.
We highlight the connections from the Moon to the Earth that may give an insight about the travel the
some lunar meteorites found in our planet. The results obtained in the BCP were translated through
a non-autonomous change of coordinates to a more realistic model based on JPL ephemeris, arising
a good agreement between the models. A natural extension to this part is to study these connections
between the Eath and Moon in the spatial case, or to use a model that accounts for the eccentricity
of the primaries.

Another application in the BCP framework that we have carefully accomplish is the use of the stable
invariant manifolds associated with those quasi-periodic solutions to capture a NEA. For this we need
to compute the high order approximation of the stable/unstable invariant manifolds; what has been
done for stroboscopic maps and as a combination of the parametrization method with the jet transport
technique to obtain automatically the derivatives of the map. There we conclude that not only it is
possible the capture in the BCP through L3, but also it may be really cheap. In this application,
many further improvements can be performed, see also Section 4.3, as from the astronautical point
of view (like looking for reducing the fuel costs or the time of flight) as from the point of view of
the dynamical systems, like using the invariant manifolds of three-dimensional quasi-periodic orbits
to perform the capture in the 3D BCP.

It must be noticed that, most of the ideas, strategies and tools employed in the analysis of this specific
system has provided us a better understanding of its dynamics, but also, most of these procedures
can be extended to many other dynamical systems under time-periodic perturbations, not only those
related to the celestial mechanics.

As a final application we have developed an algorithm to compute in parallel the high order parametriza-
tion of stable/unstable invariant manifolds associated with reducible quasi-periodic solutions of any
high dimension. This is a really powerful tool that not only makes feasible to solve the large dimen-
sional systems related to those high dimensional tori, but also it reduces significantly the computational
costs. In Section 6.6 we carefully detail the main conclusions and future work to perform in this direc-
tion. Also, when we work with invariant objects of large dimension it is extremely difficult to visualise
the results in a generic way, therefore it may be interesting to develop an strategy that allow us to
visualise and understand the dynamics in these high dimensional systems as we did for the BCP.
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