10 research outputs found

    An integrated design optimisation approach for systems with dependencies

    Get PDF
    The design of a safety system is critical if functionality is to be maximised and consequences reduced. There is often a trade off between the performance obtainable and the resources available. To address these balancing issues, which are usually impractical by hand for a designer, multi-objective optimisation techniques can be used. When considering safety systems there is often the situation of dependencies between components, for example with regard to maintenance. To evaluate the system behaviour in these situations an appropriate analysis method is required. The aim of this paper is to present an optimisation approach which integrates traditional methods of system failure evaluation. The combined method uses the fault tree analysis technique to represent the causes of failure on demand of the system, the binary decision diagram and Markov methods for system quantification (for independent and dependent sections of the fault tree respectively), and the Improved Strength Pareto Evolutionary Approach (SPEA2) to find the most optimal design solution. The end product is a mechanism to yield the best design option for safety systems incorporating dependencies. The paper presents the principles of the method and a case study to illustrate how the method is applied. The results produced, along with conclusions are provided

    Multi-objective offshore safety system design optimization

    Get PDF
    The objective of this paper is to present a multi-objective approach to the design optimization process applied to systems that require a high likelihood of functioning on demand. In the real world it is common that there are several objectives to be met, not just maximising the system availability, and hence an approach is required to deal with these issues. A method is presented that integrates the latest advantages of the fault tree analysis technique and the binary decision diagram method to model the availability issue, along with a multi-objective optimization approach (the Improved Strength Pareto Evolutionary Approach) to cater for meeting the multiple criteria of assessment. The end product is a mechanism to yield the best design option. The paper presents the principles of the method and a case study to illustrate how the method is applied, along with the results produced. The case study relates to a high integrity protection system of an offshore platform. The optimization criteria involves unavailability, cost, spurious trip frequency and maintenance down time. Several enhancements to the optimization strategy to improve the efficiency of the approach are discussed

    A fuzzy expectation maximization based method for estimating the parameters of a multi-state degradation model from imprecise maintenance outcomes

    Get PDF
    Multi-State (MS) reliability models are used in practice to describe the evolution of degradation in industrial components and systems. To estimate the MS model parameters, we propose a method based on the Fuzzy Expectation-Maximization (FEM) algorithm, which integrates the evidence of the field inspection outcomes with information taken from the maintenance operators about the transition times from one state to another. Possibility distributions are used to describe the imprecision in the expert statements. A procedure for estimating the Remaining Useful Life (RUL) based on the MS model and conditional on such imprecise evidence is, then, developed. The proposed method is applied to a case study concerning the degradation of pipe welds in the coolant system of a Nuclear Power Plant (NPP). The obtained results show that the combination of field data with expert knowledge can allow reducing the uncertainty in degradation estimation and RUL prediction

    Novel models and algorithms for systems reliability modeling and optimization

    Get PDF
    Recent growth in the scale and complexity of products and technologies in the defense and other industries is challenging product development, realization, and sustainment costs. Uncontrolled costs and routine budget overruns are causing all parties involved to seek lean product development processes and treatment of reliability, availability, and maintainability of the system as a true design parameter . To this effect, accurate estimation and management of the system reliability of a design during the earliest stages of new product development is not only critical for managing product development and manufacturing costs but also to control life cycle costs (LCC). In this regard, the overall objective of this research study is to develop an integrated framework for design for reliability (DFR) during upfront product development by treating reliability as a design parameter. The aim here is to develop the theory, methods, and tools necessary for: 1) accurate assessment of system reliability and availability and 2) optimization of the design to meet system reliability targets. In modeling the system reliability and availability, we aim to address the limitations of existing methods, in particular the Markov chains method and the Dynamic Bayesian Network approach, by incorporating a Continuous Time Bayesian Network framework for more effective modeling of sub-system/component interactions, dependencies, and various repair policies. We also propose a multi-object optimization scheme to aid the designer in obtaining optimal design(s) with respect to system reliability/availability targets and other system design requirements. In particular, the optimization scheme would entail optimal selection of sub-system and component alternatives. The theory, methods, and tools to be developed will be extensively tested and validated using simulation test-bed data and actual case studies from our industry partners

    SPEA2-based safety system multi-objective optimization

    Get PDF
    Safety systems are designed to prevent the occurrence of certain conditions and their future development into a hazardous situation. The consequence of the failure of a safety system of a potentially hazardous industrial system or process varies from minor inconvenience and cost to personal injury, significant economic loss and death. To minimise the likelihood of a hazardous situation, safety systems must be designed to maximise their availability. Therefore, the purpose of this thesis is to propose an effective safety system design optimization scheme. A multi-objective genetic algorithm has been adopted, where the criteria catered for includes unavailability, cost, spurious trip and maintenance down time. Analyses of individual system designs are carried out using the latest advantages of the fault tree analysis technique and the binary decision diagram approach (BDD). The improved strength Pareto evolutionary approach (SPEA2) is chosen to perform the system optimization resulting in the final design specifications. The practicality of the developed approach is demonstrated initially through application to a High Integrity Protection System (HIPS) and subsequently to test scalability using the more complex Firewater Deluge System (FDS). Computer code has been developed to carry out the analysis. The results for both systems are compared to those using a single objective optimization approach (GASSOP) and exhaustive search. The overall conclusions show a number of benefits of the SPEA2 based technique application to the safety system design optimization. It is common for safety systems to feature dependency relationships between its components. To enable the use of the fault tree analysis technique and the BDD approach for such systems, the Markov method is incorporated into the optimization process. The main types of dependency which can exist between the safety system component failures are identified. The Markov model generation algorithms are suggested for each type of dependency. The modified optimization tool is tested on the HIPS and FDS. Results comparison shows the benefit of using the modified technique for safety system optimization. Finally the effectiveness and application to general safety systems is discussed

    SPEA2-based safety system multi-objective optimization

    Get PDF
    Safety systems are designed to prevent the occurrence of certain conditions and their future development into a hazardous situation. The consequence of the failure of a safety system of a potentially hazardous industrial system or process varies from minor inconvenience and cost to personal injury, significant economic loss and death. To minimise the likelihood of a hazardous situation, safety systems must be designed to maximise their availability. Therefore, the purpose of this thesis is to propose an effective safety system design optimization scheme. A multi-objective genetic algorithm has been adopted, where the criteria catered for includes unavailability, cost, spurious trip and maintenance down time. Analyses of individual system designs are carried out using the latest advantages of the fault tree analysis technique and the binary decision diagram approach (BDD). The improved strength Pareto evolutionary approach (SPEA2) is chosen to perform the system optimization resulting in the final design specifications. The practicality of the developed approach is demonstrated initially through application to a High Integrity Protection System (HIPS) and subsequently to test scalability using the more complex Firewater Deluge System (FDS). Computer code has been developed to carry out the analysis. The results for both systems are compared to those using a single objective optimization approach (GASSOP) and exhaustive search. The overall conclusions show a number of benefits of the SPEA2 based technique application to the safety system design optimization. It is common for safety systems to feature dependency relationships between its components. To enable the use of the fault tree analysis technique and the BDD approach for such systems, the Markov method is incorporated into the optimization process. The main types of dependency which can exist between the safety system component failures are identified. The Markov model generation algorithms are suggested for each type of dependency. The modified optimization tool is tested on the HIPS and FDS. Results comparison shows the benefit of using the modified technique for safety system optimization. Finally the effectiveness and application to general safety systems is discussed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optimisation multi-physique et multi-critère des coeurs de RNR-Na : application au concept CFV

    Get PDF
    Nuclear reactor core design is a highly multidisciplinary task where neutronics, thermal-hydraulics, fuel thermo-mechanics and fuel cycle are involved. The problem is moreover multi-objective (several performances) and highly dimensional (several tens of design parameters).As the reference deterministic calculation codes for core characterization require important computing resources, the classical design method is not well suited to investigate and optimize new innovative core concepts. To cope with these difficulties, a new methodology has been developed in this thesis. Our work is based on the development and validation of simplified neutronics and thermal-hydraulics calculation schemes allowing the full characterization of Sodium-cooled Fast Reactor core regarding both neutronics performances and behavior during thermal hydraulic dimensioning transients.The developed methodology uses surrogate models (or metamodels) able to replace the neutronics and thermal-hydraulics calculation chain. Advanced mathematical methods for the design of experiment, building and validation of metamodels allows substituting this calculation chain by regression models with high prediction capabilities.The methodology is applied on a very large design space to a challenging core called CFV (French acronym for low void effect core) with a large gain on the sodium void effect. Global sensitivity analysis leads to identify the significant design parameters on the core design and its behavior during unprotected transient which can lead to severe accidents. Multi-objective optimizations lead to alternative core configurations with significantly improved performances. Validation results demonstrate the relevance of the methodology at the predesign stage of a Sodium-cooled Fast Reactor core.La conception du coeur d’un réacteur nucléaire est fortement multidisciplinaire (neutronique, thermo-hydraulique, thermomécanique du combustible, physique du cycle, etc.). Le problème est aussi de type multi-objectif (plusieurs performances) à grand nombre de dimensions (plusieurs dizaines de paramètres de conception).Les codes de calculs déterministes utilisés traditionnellement pour la caractérisation des coeurs demandant d’importantes ressources informatiques, l’approche de conception classique rend difficile l’exploration et l’optimisation de nouveaux concepts innovants. Afin de pallier ces difficultés, une nouvelle méthodologie a été développée lors de ces travaux de thèse. Ces travaux sont basés sur la mise en oeuvre et la validation de schémas de calculs neutronique et thermo-hydraulique pour disposer d’un outil de caractérisation d’un coeur de réacteur à neutrons rapides à caloporteur sodium tant du point de vue des performances neutroniques que de son comportement en transitoires accidentels.La méthodologie mise en oeuvre s’appuie sur la construction de modèles de substitution (ou métamodèles) aptes à remplacer la chaîne de calcul neutronique et thermo-hydraulique. Des méthodes mathématiques avancées pour la planification d’expériences, la construction et la validation des métamodèles permettent de remplacer cette chaîne de calcul par des modèles de régression au pouvoir de prédiction élevé.La méthode est appliquée à un concept innovant de coeur à Faible coefficient de Vidange sur un très large domaine d’étude, et à son comportement lors de transitoires thermo-hydrauliques non protégés pouvant amener à des situations incidentelles, voire accidentelles. Des analyses globales de sensibilité permettent d’identifier les paramètres de conception influents sur la conception du coeur et son comportement en transitoire. Des optimisations multicritères conduisent à des nouvelles configurations dont les performances sont parfois significativement améliorées. La validation des résultats produits au cours de ces travaux de thèse démontre la pertinence de la méthode au stade de la préconception d’un coeur de réacteur à neutrons rapides refroidi au sodium

    SPEA2-based safety system multi-objective optimization

    Get PDF
    Safety systems are designed to prevent the occurrence of certain conditions and their future development into a hazardous situation. The consequence of the failure of a safety system of a potentially hazardous industrial system or process varies from minor inconvenience and cost to personal injury, significant economic loss and death. To minimise the likelihood of a hazardous situation, safety systems must be designed to maximise their availability. Therefore, the purpose of this thesis is to propose an effective safety system design optimization scheme. A multi-objective genetic algorithm has been adopted, where the criteria catered for includes unavailability, cost, spurious trip and maintenance down time. Analyses of individual system designs are carried out using the latest advantages of the fault tree analysis technique and the binary decision diagram approach (BDD). The improved strength Pareto evolutionary approach (SPEA2) is chosen to perform the system optimization resulting in the final design specifications. The practicality of the developed approach is demonstrated initially through application to a High Integrity Protection System (HIPS) and subsequently to test scalability using the more complex Firewater Deluge System (FDS). Computer code has been developed to carry out the analysis. The results for both systems are compared to those using a single objective optimization approach (GASSOP) and exhaustive search. The overall conclusions show a number of benefits of the SPEA2 based technique application to the safety system design optimization. It is common for safety systems to feature dependency relationships between its components. To enable the use of the fault tree analysis technique and the BDD approach for such systems, the Markov method is incorporated into the optimization process. The main types of dependency which can exist between the safety system component failures are identified. The Markov model generation algorithms are suggested for each type of dependency. The modified optimization tool is tested on the HIPS and FDS. Results comparison shows the benefit of using the modified technique for safety system optimization. Finally the effectiveness and application to general safety systems is discussed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Un cadre holistique de la modélisation de la dégradation pour l’analyse de fiabilité et optimisation de la maintenance de systèmes de sécurité nucléaires

    Get PDF
    Components of nuclear safety systems are in general highly reliable, which leads to a difficulty in modeling their degradation and failure behaviors due to the limited amount of data available. Besides, the complexity of such modeling task is increased by the fact that these systems are often subject to multiple competing degradation processes and that these can be dependent under certain circumstances, and influenced by a number of external factors (e.g. temperature, stress, mechanical shocks, etc.). In this complicated problem setting, this PhD work aims to develop a holistic framework of models and computational methods for the reliability-based analysis and maintenance optimization of nuclear safety systems taking into account the available knowledge on the systems, degradation and failure behaviors, their dependencies, the external influencing factors and the associated uncertainties.The original scientific contributions of the work are: (1) For single components, we integrate random shocks into multi-state physics models for component reliability analysis, considering general dependencies between the degradation and two types of random shocks. (2) For multi-component systems (with a limited number of components):(a) a piecewise-deterministic Markov process modeling framework is developed to treat degradation dependency in a system whose degradation processes are modeled by physics-based models and multi-state models; (b) epistemic uncertainty due to incomplete or imprecise knowledge is considered and a finite-volume scheme is extended to assess the (fuzzy) system reliability; (c) the mean absolute deviation importance measures are extended for components with multiple dependent competing degradation processes and subject to maintenance; (d) the optimal maintenance policy considering epistemic uncertainty and degradation dependency is derived by combining finite-volume scheme, differential evolution and non-dominated sorting differential evolution; (e) the modeling framework of (a) is extended by including the impacts of random shocks on the dependent degradation processes.(3) For multi-component systems (with a large number of components), a reliability assessment method is proposed considering degradation dependency, by combining binary decision diagrams and Monte Carlo simulation to reduce computational costs.Composants de systèmes de sûreté nucléaire sont en général très fiable, ce qui conduit à une difficulté de modéliser leurs comportements de dégradation et d'échec en raison de la quantité limitée de données disponibles. Par ailleurs, la complexité de cette tâche de modélisation est augmentée par le fait que ces systèmes sont souvent l'objet de multiples processus concurrents de dégradation et que ceux-ci peut être dépendants dans certaines circonstances, et influencé par un certain nombre de facteurs externes (par exemple la température, le stress, les chocs mécaniques, etc.).Dans ce cadre de problème compliqué, ce travail de thèse vise à développer un cadre holistique de modèles et de méthodes de calcul pour l'analyse basée sur la fiabilité et la maintenance d'optimisation des systèmes de sûreté nucléaire en tenant compte des connaissances disponibles sur les systèmes, les comportements de dégradation et de défaillance, de leurs dépendances, les facteurs influençant externes et les incertitudes associées.Les contributions scientifiques originales dans la thèse sont:(1) Pour les composants simples, nous intégrons des chocs aléatoires dans les modèles de physique multi-états pour l'analyse de la fiabilité des composants qui envisagent dépendances générales entre la dégradation et de deux types de chocs aléatoires.(2) Pour les systèmes multi-composants (avec un nombre limité de composants):(a) un cadre de modélisation de processus de Markov déterministes par morceaux est développé pour traiter la dépendance de dégradation dans un système dont les processus de dégradation sont modélisées par des modèles basés sur la physique et des modèles multi-états; (b) l'incertitude épistémique à cause de la connaissance incomplète ou imprécise est considéré et une méthode volumes finis est prolongée pour évaluer la fiabilité (floue) du système; (c) les mesures d'importance de l'écart moyen absolu sont étendues pour les composants avec multiples processus concurrents dépendants de dégradation et soumis à l'entretien; (d) la politique optimale de maintenance compte tenu de l'incertitude épistémique et la dépendance de dégradation est dérivé en combinant schéma volumes finis, évolution différentielle et non-dominée de tri évolution différentielle; (e) le cadre de la modélisation de (a) est étendu en incluant les impacts des chocs aléatoires sur les processus dépendants de dégradation.(3) Pour les systèmes multi-composants (avec un grand nombre de composants), une méthode d'évaluation de la fiabilité est proposé considérant la dépendance dégradation en combinant des diagrammes de décision binaires et simulation de Monte Carlo pour réduire le coût de calcul
    corecore