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Abstract 

Multi-State (MS) reliability models are used in practice to describe the evolution of degradation in 

industrial components and systems. To estimate the MS model parameters, we propose a method 

based on the Fuzzy Expectation-Maximization (FEM) algorithm, which integrates the evidence of the 

field inspection outcomes with information taken from the maintenance operators about the transition 

times from one state to another. Possibility distributions are used to describe the imprecision in the 

expert statements. A procedure for estimating the Remaining Useful Life (RUL) based on the MS 

model and conditional on such imprecise evidence is, then, developed. The proposed method is 

applied to a case study concerning the degradation of pipe welds in the coolant system of a Nuclear 

Power Plant (NPP). The obtained results show that the combination of field data with expert 

knowledge can allow reducing the uncertainty in degradation estimation and RUL prediction. 

 

Key words: Multi-State Systems, Homogeneous Continuous-Time Semi-Markov Process 

(HCTSMP), Weibull Distribution, Fuzzy Expectation-Maximization (FEM), Residual Useful Life 

(RUL), Piping System (PS), Nuclear Power Plants (NPPs). 

 

Acronyms and symbols 
 

CDF           Cumulative Distribution Function 

EM             Expectation-Maximization 

FEM             Fuzzy Expectation-Maximization 

HCTSMM      Homogeneous Continuous-Time Semi-Markov Model 

MC             Monte Carlo 
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MS                 Multi-State 

MLE             Maximum Likelihood Estimation 

NPP             Nuclear Power Plant 

PDF               Probability Density Function 

PFM             Probabilistic Fracture Mechanics  

PS            Piping System 

PWR             Pressurized Water Reactor 

RCS             Reactor Cooling System 

RUL             Remaining Useful Life 

𝐶0   Case 0 

𝐶1  Case 1: moderately risk-averse expert 

𝐶2  Case 2: risk averse expert 

𝐶3  Case 3: risk prone expert 

𝐷  Dataset of inspection outcomes 

𝐸  State space 

𝑓𝑇𝑖→𝑖+1  PDF of 𝑇𝑖→𝑖+1 

𝑓𝑇𝑖→𝑖+1(∙ |𝑡𝑛,𝑖
0 ) Conditional PDF of 𝑇𝑖→𝑖+1 provided that 𝑇𝑖→𝑖+1 ≥ 𝑡𝑛,𝑖

0  

𝑓𝑅𝑈𝐿(𝑘𝜏) PDF of 𝑅𝑈𝐿(𝑘𝜏) 

𝐹𝑇𝑖→𝑖+1  CDF of 𝑇𝑖→𝑖+1 

𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒 CDF of 𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝑓𝑇𝑖→𝑖+1  PDF of fuzzy observations 

𝑘𝑛,𝑖  Inspection at which the 𝑛𝑡ℎcomponent is found in state 𝑖 for the first time 

𝐿  Likelihood function 

�̃�  Likelihood function of fuzzy observations 

ℒ𝑖→𝑖+1  𝑖𝑡ℎ contribution to the log-likelihood function   

ℒ̃𝑖→𝑖+1  𝑖𝑡ℎ contribution to log-likelihood function of fuzzy observations 

ℒ𝑙𝑜𝑔  Log-likelihood function 

ℒ̃𝑙𝑜𝑔  Log-likelihood function of fuzzy observations 

𝑀𝑛  Number of inspections on component 𝑛 

𝑁  Number of components 

𝑄  Log-likelihood function conditional on fuzzy evidence 

𝑅𝑇𝑖→𝑖+1  Reliability function of 𝑇𝑖→𝑖+1 

𝑅𝑓𝑎𝑖𝑙𝑢𝑟𝑒 Reliability function of 𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝑡  Time 

𝒕  Transition time dataset 
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𝑡𝑛  Vector of transition times of the 𝑛𝑡ℎ component 

𝑇𝑖→𝑖+1  Transition time from state 𝑖 to state 𝑖 + 1, random variable 

𝑇𝑚  Mission time 

𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒 Failure time 

 

𝑡𝑛,𝑖→𝑖+1 Transition time of the 𝑛𝑡ℎ component from state 𝑖 to state 𝑖 + 1, observed value 

�̃�𝑛,𝑖→𝑖+1 Fuzzy transition time, observed value 

𝑡𝑛,𝑖→𝑖+1 Lower bound of the support of  𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1) 

𝑡⏞𝑛,𝑖→𝑖+1 Core of 𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1) 

𝑡𝑛,𝑖→𝑖+1 Upper bound of the support of  𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1) 

𝑡𝑛,𝑖
0   Sojourn time in state 𝑖 of the 𝑛𝑡ℎ component 

�̇�𝑛,𝑖
0  Elapsed time from the first inspection time in which the component has been found 

in state 𝑖, and the last one 

𝛼𝑖  Scale parameter of the Weibull distribution describing the uncertainty on the 

transition time from state 𝑖 to state 𝑖 + 1  

𝛽𝑖  Shape parameter of the Weibull distribution describing the uncertainty on the 

transition time from state 𝑖 to state 𝑖 + 1  

𝜹  Vector of 𝛿𝑛, 𝑛 = 1…𝑁 

𝛿𝑛  Vector of binary variables associated to the 𝑛𝑡ℎcomponent  

𝛿𝑛,𝑖→𝑖+1  Binary variable associated to the 𝑛𝑡ℎcomponent indicating the censoring of the 

transition time from state 𝑖 to state 𝑖 + 1 

𝜆𝑖→𝑖+1   Transition rate from state 𝑖 to state 𝑖 + 1 

𝜆𝐶0                  Transition rate for Case 𝐶0 

𝜆𝐶2                  Transition rate for Case 𝐶2 

𝜆𝐶3                  Transition rate for Case 𝐶3 

𝜇�̃�𝑛,𝑖→𝑖+1  Possibility distribution on �̃�𝑛,𝑖→𝑖+1 

𝜏  Interval between two successive inspections 

𝜗  Vector of the transition time parameters vector 

�̂�𝑚𝑙𝑒  MLE estimates of 𝜗 

𝜗𝑞  Estimates of 𝜗 at iteration 𝑞 

𝑖  state index, 𝑖 = 1,2,3 

𝑘  inspection index, 𝑘 = 1…𝑀𝑛 

𝑛  component index, 𝑛 = 1. . 𝑁 

𝑞  FEM iteration index 

1. INTRODUCTION 
 

Multi-State (MS) degradation modelling is receiving considerable attention in the domain of 

reliability and maintenance engineering (Zio, 2016), due the fact that MS models offer a description 
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of the degradation evolution which is more realistic than that given by binary models: the evolution 

of many degradation processes proceeds in successive phases, which reflect the relative degree of 

deterioration (Moghaddass & Zuo, 2014). A further reason which justifies the growing interest in MS 

degradation models is their fit with the field maintenance data acquired from the operating systems. 

For example, operators typically assign a qualitative tag to the equipment health during periodic 

inspections such as ‘not degraded’, ‘slightly degraded’, ‘badly degraded’, etc.  

Given these characteristics, MS models have been adopted to describe the evolution of degradation 

of components of diverse application fields: membranes of pumps operating in Nuclear Power Plants 

(NPPs) (Baraldi et al., 2011), turbine nozzles for the Oil&Gas industry (Compare et al., 2016), 

turbofan engines (Moghaddas & Zuo, 2014), Diesel engines (Giorgio et al., 2011), to cite a few. 

A Multi-State (MS) degradation model has also been developed in (Fleming and Smit, 2008) for the 

Piping System (PS) of NPPs, where PSs are highly risk-sensitive structural elements (Gopika et al., 

2003; Di Maio et al., 2015). In details, in the model by (Fleming & Smit, 2008), which is general 

enough to represent all known NPP pipe failure mechanisms (Fleming, 2004), the degradation process 

affecting a PS is discretized into four states, each one associated to a physically different 

phenomenon, with state transition rates that are taken constant over time and, consequently, sojourn 

times in each state that obey exponential distributions (e.g., Fleming & Smit, 2008). However, it has 

been shown in (Veeramany & Pandey, 2011; Chatterjee & Modarres, 2008), that the constant rate 

assumption is not coherent with the evidence coming from many real industrial applications. Thus, 

to overcome the limitation of constant transition rates, the theoretical framework of the Homogeneous 

Continuous-Time Semi-Markov Processes (HCTSMPs, Howard, 1964) has been embraced to 

develop MS degradation models, which allow considering arbitrary sojourn time distributions, thus, 

taking into account the influence of the history of the degradation process on its future evolution. In 

particular, (Veeramany & Pandey, 2011) developed a HCTSMP model to describe the degradation of 

PSs in NPPs. 

For practical application, the estimation of the parameters of the MS semi-Markov degradation model, 

with associated uncertainty, is fundamental and different approaches have been proposed in the 

literature to adjust the model to the knowledge, information and data available.  

When sufficient field data is available, statistical techniques such as Maximum Likelihood Estimation 

(MLE) can be adopted (Zio, 2007; Gosselin & Fleming, 1997). However, the availability of rich 

datasets of NPP PS degradation and maintenance data is not typical and the problem of parameter 

estimation is further complicated by at least two other aspects: 
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• The inherent complexity of the PSs in NPPs and diversity in the degradation influenced by 

operating and ambient conditions (Tipping, 2010); then, it becomes difficult to identify 

mechanisms and homogeneous populations of PS for statistical inference.  

• The possible noninformativeness of the data, i.e., of the outcomes of inspections performed 

every 2-5 years, in which the PS is typically found in the first degradation states, due to its 

very high reliability (Nánási, T., 2014; Fleming, 2004; Veeramany & Pandey, 2011; Simonen 

& Goselin, 2001).  

With this scarcity of data, it is necessary to exploit any additional knowledge or information available 

to build more accurate reliability models (Zio, 2016). In this respect, Probabilistic Fracture Mechanics 

(PFM) models have been developed to predict PS crack initiation and growth from existing flaws 

(Verma & Srividya, 2011), which combine the knowledge about the physics of the crack propagation, 

modelled as a stochastic process, with PS service data that are used to tune the PFM model 

parameters. However, (Fleming, 2004) pointed out that one main limitation of the PFM approach is 

that the data used for model setting reflect the influence of previous PS inspection programs; thus, 

changes in these programs may introduce biases in the transition rates estimates. 

In the present work, we consider that additional information on the occurrence of state transitions can 

be obtained from experts to supplement field data. Namely, we assume that experts can give 

statements such as “The pipe transition from detectable flaw state to detectable leak state occurred 

between 1998 and 2000, March 1999 being the expected month for this transition”. Obviously, the 

imprecision in these qualitative statements need to be properly represented and combined with the 

field data.  

Bayesian statistics is often adopted to this aim, starting from the elicitation from experts of prior 

distributions of the model parameters and following with their update based on to the field evidence 

collected (Compare et al., 2017a). Markov Chain Monte Carlo algorithms (Robert & Casella, 2004) 

can be used to estimate the posterior distributions of the multi-state model parameters, which encode 

both the prior expert knowledge and the field evidence. However, the representation by probability 

distributions of the imprecision in the qualitative expert statements is debatable, as it has been argued 

that the probabilistic approach in situations of scarce evidence tends to force assumptions that may 

not be justified by the available information (Aven et al., 2014; Baudrit et al., 2008; Bowles & Peláez, 

1995). For this reason, we here use possibility distributions to represent the imprecision in the expert 

statements about the transition times, to “imperfectly specify a value that is existing and precise, but 

not measurable with exactitude under the given observation conditions” (Denoeux, 2011).  
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To estimate the MS model parameters from partially observed data, we resort to the Fuzzy 

Expectation-Maximization (FEM) algorithm (Denoeux, 2011); this uses the Zadeh’s extension 

principle to extend the application of standard statistical approaches to possibility distributions, which 

are formally coincident with the membership functions of fuzzy sets (Dubois, 2006). 

Finally, based on the MS degradation model, we propose a methodology to estimate the Remaining 

Useful Life (RUL) of the NPP PSs.  

To sum up, the main contributions of the present work are: 

1. The development of a methodology to estimate the parameters of a MS degradation model, 

which exploits both data from inspection outcomes and expert information. 

2. The development of a methodology to estimate the RUL, conditional on imprecise evidence. 

The remainder of the paper is organized as follows. Section 2 describes the problem settings, the 

available information and data. Section 3 illustrates the methodology to estimate the unknown 

parameters of the HCTSMP model in the considered settings. In Section 4, the methodology to 

estimate the RUL is illustrated. The application of the developed methodologies to a case study 

concerning simulated PS degradation paths is reported in Section 5. Finally, Section 6 concludes the 

work.  

2. Problem Settings 
 

To focus concretely the illustration of our work, we develop a MS model derived from the 4-states 

model proposed by (Fleming, 2004) for describing degradation in PSs of NPPs (Figure 1).  

 

Figure 1: Sketch of MS model. 

In state 1, the PS is assumed to be in an as good as new state; flaws are present but not detectable. 

These gradually grow until they become detectable, whose condition is represented by state 2. Then, 

the PS further degrades and a leak becomes detectable (state 3). Finally, the leak extends until it leads 

to rupture (state 4) (Veeramany & Pandey, 2011). Pipes are assumed to be non-repairable: this means 
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that in the representation of the model (Figure 1), the transitions only go from left-to-right and also 

that state 4 is an absorbing state (i.e., once reached, it cannot be left).  

The random transition time, 𝑇𝑖→𝑖+1, from state 𝑖 to state 𝑖 + 1 is assumed to obey a Weibull 

distribution (Cannarile et al., 2015a), with scale parameter 𝛼𝑖 and shape parameter 𝛽𝑖, 𝑖 = 1, 2, 3. The 

probability density function (PDF) of 𝑇𝑖→𝑖+1 is given by 

 

𝑓𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1) =
𝛽𝑖

𝛼𝑖
∙ (
𝑡𝑖→𝑖+1

𝛼𝑖
)
(𝛽𝑖−1)

exp (− (
𝑡𝑖→𝑖+1

𝛼𝑖
)
𝛽𝑖
)        𝑡𝑖→𝑖+1 > 0, 𝛼𝑖 > 0, 𝛽𝑖 > 0  (1) 

 

and the corresponding Cumulative Distribution Function (CDF) 𝐹𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1), reliability function 

𝑅𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1) and transition rate 𝜆𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1) are, respectively: 

 

𝐹𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1) = ∫ 𝑓𝑇𝑖→𝑖+1(𝑡)
𝑡𝑖→𝑖+1
0

𝑑𝑡 = 1 − 𝑒−(
𝑡𝑖→𝑖+1
𝛼

)
𝛽𝑖

  (2) 

 

𝑅𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1) = exp (−(
𝑡𝑖→𝑖+1

𝛼𝑖
)
𝛽𝑖
)        𝑡𝑖→𝑖+1 > 0, 𝛼𝑖 > 0, 𝛽𝑖 > 0   (3) 

 

𝜆𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1) =
𝛽𝑖

𝛼𝑖
∙ (
𝑡𝑖→𝑖+1

𝛼𝑖
)
(𝛽𝑖−1)

        𝑡𝑖→𝑖+1 > 0, 𝛼𝑖 > 0, 𝛽𝑖 > 0   (4) 

 

The choice of relying on Weibull distributions is justified by practical reasons: Weibull distributions 

are the probability distributions most commonly used in reliability engineering to describe the 

degradation processes of industrial components in the semi-Markov framework (Boutros et al., 2011) 

(Moghadass & Zuo, 2012), (Compare et al. 2017b), (Giorgio et al., 2011) due to their flexibility and 

the clear meaning of the distribution parameters. For this reason, experts of different industrial fields 

feel comfortable with using Weibull distributions to characterize the evolution of the degradation 

processes (Cannarile et al., 2017). 

2.1. Available data 
 

We assume that a dataset 𝐷 is available containing the inspection outcomes of 𝑁 NPP PSs, whose 

degradation evolves according to the HCTSMM described above. We also assume that each 
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component is perfectly working (i.e., it is in state 1) at time 𝑡 = 0 and is inspected with period 𝜏 over 

the mission time 𝑇𝑚.  

We indicate by 𝑀𝑛 the number of inspections performed on the 𝑛𝑡ℎ component through its mission 

time 𝑇𝑚, whereas 𝑘𝑛,𝑖 represents the first inspection at which the 𝑛𝑡ℎ component is found in state 𝑖, 

with 𝑘𝑛,1 = 0 and  𝑘𝑛,𝑖 ∈ {1,… ,𝑀𝑛}, 𝑖 = 2,3,4.  

In this setting, the transition time 𝑡𝑛,𝑖→𝑖+1 of the 𝑛𝑡ℎ PS, 𝑛 = 1…𝑁, from state 𝑖 to state 𝑖 + 1, 𝑖 =

1, 2, 3, can be regarded as a realization of the random variable 𝑇𝑖→𝑖+1, induced by randomly sampling 

from a population of NPP PSs (Denoeux, 2011), although a censoring mechanism avoids observing 

transition times that would occur after the time horizon 𝑇𝑚. In this respect, if 𝑖𝑛
∗ =

max
𝑖∈{1,2,3,4}

(∑ 𝑡𝑛,𝑗−1→𝑗 < 𝑇𝑚
𝑖
𝑗=1 ) < 4, where 𝑡𝑛,0→1 = 0, then for simplicity we set 𝑘𝑛,𝑠+1 = 𝑀𝑛, ∀ 𝑠 ≥

𝑖∗ ∩  𝑠 ∈ {2,3,4}. For example, if the 𝑛𝑡ℎ component is found in state 3 at the end of the mission time 

𝑇𝑚, then 𝑖∗ = 3, 𝑘𝑛,3 = 𝑘𝑛,4 = 𝑀𝑛, whereas 𝑡𝑛,3→4 is unknown, but larger than 𝑇𝑚 − (𝑡𝑛,1→2 +

𝑡𝑛,2→3).  

On this basis, we introduce the binary variable for 𝑖 = 1, 2, 3 

 

𝛿𝑛,𝑖→𝑖+1 = {
0          𝑖𝑓 ∑𝑡𝑛,𝑗−1→𝑗

𝑖

𝑗=1

< 𝑇𝑚   𝑎𝑛𝑑   𝑡𝑛,𝑖→𝑖+1 ≤ [𝑇𝑚 −∑𝑡𝑛,𝑗−1→𝑗

𝑖

𝑗=1

] 

1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

 

to indicate whether 𝑡𝑛,𝑖→𝑖+1 is an actual transition time or a right-censored observation (Zio, 2007). 

In words, 𝛿𝑛,𝑖→𝑖+1 is set to 0 if the transition from state 𝑖 to state 𝑖 + 1 occurred before 𝑇𝑚, and to 1 

otherwise (Cannarile et al., 2015b). 

Moreover, even for uncensored transitions, 𝑡𝑛,𝑖→𝑖+1 cannot be directly observed; rather, we know that 

(𝑘𝑛,𝑖+1 − 1)𝜏 ≤ [ ∑ 𝑡𝑛,𝑗−1→𝑗
𝑖
𝑗=1 + 𝑡𝑛,𝑖→𝑖+1] ≤ 𝑘𝑛,𝑖+1𝜏 , 𝑘 = 1,… ,𝑀𝑛 and 𝑖 = 1, 2, 3.  

Formally, the available dataset can be represented by 𝐷 = (𝒕, 𝜹), where 𝒕 = [𝑡1, … 𝑡𝑁], 𝑡𝑛 =

[𝑡𝑛,0→1, … , 𝑡𝑛,𝑖𝑛∗−1→𝑖𝑛∗ ], 𝜹 = [𝛿1, … , 𝛿𝑁], and 𝛿𝑛 = [𝛿𝑛,1→2, 𝛿𝑛,2→3, 𝛿𝑛,3→4], 𝑛 = 1,… ,𝑁. 

2.2. Information from experts 
 

When the expert inspects the component, he/she can add additional information on the transition 

times, based on his/her knowledge. We assume that expert statements about the unknown  𝑡𝑛,𝑖→𝑖+1 

give:  
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1. An interval [𝑡𝑛,𝑖→𝑖+1, 𝑡𝑛,𝑖→𝑖+1] in which the transition certainly occurred, where 

 [ ∑ 𝑡𝑛,𝑗−1→𝑗
𝑖
𝑗=1 + 𝑡𝑛,𝑖→𝑖+1] ≥ (𝑘𝑛,𝑖+1 − 1)𝜏; [ ∑ 𝑡𝑛,𝑗−1→𝑗

𝑖
𝑗=1 + 𝑡𝑛,𝑖→𝑖+1] ≤ 𝑘𝑛,𝑖+1𝜏. 

2. A time instant 𝑡⏞𝑛,𝑖→𝑖+1 ∈  [𝑡𝑛,𝑖→𝑖+1, 𝑡𝑛,𝑖→𝑖+1] in which the transition occurrence is fully 

plausible. 

For simplicity, these pieces of information are represented by triangular possibility distributions: 

 

ℒ𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1) = (𝑡
𝑛,𝑖→𝑖+1

, 𝑡⏞𝑛,𝑖→𝑖+1 , 𝑡𝑛,𝑖→𝑖+1) (6) 

 

with support [𝑡𝑛,𝑖→𝑖+1, 𝑡𝑛,𝑖→𝑖+1] and core 𝑡⏞𝑛,𝑖→𝑖+1, (see Figure 2). Namely, 𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1) expresses 

the degree of possibility that the true value of  𝑇𝑖→𝑖+1 is 𝑡𝑖→𝑖+1: when 𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1) = 0, then the 

outcome 𝑡𝑖→𝑖+1 is considered impossible by the expert, whereas 𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1) = 1 means that the 

outcome 𝑡𝑖→𝑖+1 is fully plausible, expected by the expert (Aven et al., 2014).  

Notice that the triangular shape for the possibility distribution is the appropriate choice when the 

expert is willing to specify the most likely value that  𝑡𝑛,𝑖→𝑖+1 can assume (Aven et al., 2014). 

 

Figure 2: Possibility distribution example for the information 𝒕𝒏,𝒊→𝒊+𝟏 = 𝟑, 𝒕⏞𝒏,𝒊→𝒊+𝟏 = 𝟑. 𝟔𝟔𝟕, �̅�𝒏,𝒊→𝒊+𝟏 = 𝟒. 

3. Parameter Estimation 

The aim of this Section is estimating the parameters (𝛼𝑖, 𝛽𝑖) of the Weibull distributions. We consider 

two different situations: 

• The only source of information available is dataset 𝐷. In this standard case, we can apply the 

MLE approach. 
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• Also information provided by experts about transition times is available, described in the form 

of possibility distributions 𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1), 𝑖 = 1, 2, 3, 𝑛 = 1,… ,𝑁. In this case, we use the 

FEM algorithm proposed in (Denoeux, 2011). 

The comparison of these two settings allows highlighting the benefit of exploiting the information 

coming from experts. 

For clarity of presentation, the distribution parameters are indicated by 𝜗 = [𝜗1, 𝜗2, 𝜗3], where 𝜗𝑖 =

[𝛼𝑖, 𝛽𝑖], 𝑖 = 1,2,3. 

 

3.1. Estimation based on inspection outcomes, only 
 

The application of MLE requires defining the likelihood function, which is given by: 

 

𝐿(𝜗|𝐷) = ∏ [∏ [ 𝐹𝑇𝑖→𝑖+1(𝑘𝑛,𝑖+1𝜏) − 𝐹𝑇𝑖→𝑖+1((𝑘𝑛,𝑖+1 − 1)𝜏)]
𝛿𝑛,𝑖→𝑖+1

∙  𝑅𝑇𝑖→𝑖+1(𝑇𝑚 − 𝑘𝑛,𝑖𝜏)
(1−𝛿𝑛,𝑖→𝑖+1)3

𝑖=1 ]𝑁
𝑛=1           (7) 

 

where the difference 𝐹𝑇𝑖→𝑖+1(𝑘𝑛,𝑖+1𝜏) −  𝐹𝑇𝑖→𝑖+1((𝑘𝑛,𝑖+1 − 1)𝜏) represents the probability of finding 

the component for the first time in state 𝑖 + 1 at inspection 𝑘𝑛,𝑖+1, provided that it was in state 𝑖 at 

inspection (𝑘𝑛,𝑖 − 1), whereas 𝑅𝑇𝑖→𝑖+1(𝑇𝑚 − 𝑘𝑛,𝑖𝜏) indicates the probability of spending time 

(𝑇𝑚 − 𝑘𝑛,𝑖𝜏) in state 𝑖. The quantity 𝛿𝑛,𝑖→𝑖+1 determines which of the two contributions has to be 

considered for the 𝑛𝑡ℎ component, depending on the censoring mechanism it has undergone. 

The corresponding log-likelihood can be written as: 

 ℒ(𝜗|𝐷) = ℒ1→2(𝜃1|𝐷) + ℒ2→3(𝜃2|𝐷) + ℒ3→4(𝜃3|𝐷) =∑ℒ𝑖→𝑖+1(𝜃𝑖|𝐷)

3

𝑖=1

 (8) 

where 

 

ℒ𝑖→𝑖+1(𝜗𝑖|𝐷) = ∑ log ([ 𝐹𝑇𝑖→𝑖+1(𝑘𝑛,𝑖+1𝜏) − 𝐹𝑇𝑖→𝑖+1 ((𝑘𝑛,𝑖+1 − 1)𝜏)]
𝛿𝑛,𝑖→𝑖+1

𝑅𝑇𝑖→𝑖+1(𝑇𝑚 − 𝑘𝑛,𝑖𝜏)
1−𝛿𝑛,𝑖→𝑖+1

)

𝑁

𝑛=1

 

∑𝑡𝑛,𝑗−1→𝑗

𝑖

𝑗=1

< (𝑘𝑛,𝑖 − 1)𝜏, 𝑖 = 1,2,3 

(9) 

 

The estimation �̂�𝑚𝑙𝑒 of 𝜗 is given by:  
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�̂�𝑚𝑙𝑒 = argmax
𝜗∈𝛩 

 ℒ(𝜗|𝐷) (10) 

 

Notice that Equations (8) - (9) simplify the estimation of  �̂�𝑚𝑙𝑒. In fact, each of the three contributions 

ℒ𝑖→𝑖+1, 𝑖 = 1, 2, 3 depends on the two parameters (𝛼𝑖 , 𝛽𝑖), only. Then, one can divide the 

maximization problem in Equation (7) into three simpler sub-problems, which can be solved 

independently on each other. 

 

3.2. Estimation based on inspection outcomes and information elicited from experts 
 

To show the methodology to estimate 𝜗 based on the possibility distributions 𝜇�̃�𝑛,𝑖→𝑖+1, we first derive 

the likelihood function as if we exactly knew the transition times 𝑡𝑛,𝑖→𝑖+1. On this basis, we will easily 

extend this function to the case of imprecise transition times  �̃�𝑛,𝑖→𝑖+1. 

Analogously to the previous case, the likelihood function reads: 

 

𝐿(𝜗|𝐷) =∏[∏𝑓𝑇𝑖→𝑖+1(𝑡𝑛,𝑖→𝑖+1)
𝛿𝑛,𝑖→𝑖+1 ∙ 𝑅𝑇𝑖→𝑖+1 (𝑇𝑚 −∑𝑡𝑛,𝑗−1→𝑗

𝑖

𝑗=1

)

(1−𝛿𝑛,𝑖→𝑖+1)3

𝑖=1

]

𝑁

𝑛=1

 (11) 

 

where the pdf  𝑓𝑇𝑖→𝑖+1(𝑡𝑛,𝑖→𝑖+1) is used instead of 𝐹𝑇𝑖→𝑖+1(𝑘𝑛,𝑖+1𝜏) −  𝐹𝑇𝑖→𝑖+1((𝑘𝑛,𝑖+1 − 1)𝜏), because 

in this case we are assuming to know the transition times. Notice that the conditioning on 𝐷 in 

Equation (11) also concerns the fact that (∑ 𝑡𝑛,𝑗−1→𝑗
𝑖
𝑗=1 + 𝑡𝑛,𝑖→𝑖+1) ∈ [(∑ 𝑡𝑛,𝑗−1→𝑗

𝑖
𝑗=1 +

𝑡𝑛,𝑖→𝑖+1), (∑ 𝑡𝑛,𝑗−1→𝑗
𝑖
𝑗=1 + 𝑡𝑛,𝑖→𝑖+1)]  ⊆ [(𝑘𝑛,𝑖+1 − 1)𝜏, 𝑘𝑛,𝑖+1𝜏], if 𝛿𝑛,𝑖→𝑖+1=0.  

Analogously to Equation (7), Equation (11) can be divided in three parts to divide the maximization 

problem into three easier sub-problems and, thus, simplify the parameter estimation problem: 

 

ℒ(𝜗|𝐷) = ℒ1→2(𝛼1, 𝛽1|𝐷)+ ℒ2→3(𝛼2, 𝛽2|𝐷)+ ℒ3→4(𝛼3, 𝛽3|𝐷) (12) 

 

where 

ℒ𝑖→𝑖+1(𝜗𝑖|𝐷)  = ∑ 𝑙𝑜𝑔 [𝑓𝑇𝑖→𝑖+1 (𝑡𝑛,𝑖→𝑖+1)
𝛿𝑛,𝑖→𝑖+1 ∙ 𝑅𝑇𝑖→𝑖+1 (𝑇𝑚 −∑𝑡𝑛,𝑗−1→𝑗

𝑖

𝑗=1

)

(1−𝛿𝑛,𝑖→𝑖+1)

]

𝑁

𝑛=1

, 𝑖 = 1,2,3 (13) 
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When the information about 𝑇𝑛,𝑖→𝑖+1 is represented by the possibility distribution 𝜇�̃�𝑛,𝑖→𝑖+1, then the 

likelihood in Equation (11) reads (Denoeux, 2011): 

�̃�(𝜗|𝐷) =∏[∏𝑓𝑇𝑖→𝑖+1(𝑡𝑛,𝑖→𝑖+1)
𝛿𝑛,𝑖→𝑖+1 ∙ 𝑅𝑇𝑖→𝑖+1 (𝑇𝑚 −∑𝑡𝑛,𝑗−1→𝑗

𝑖

𝑗=1

)

(1−𝛿𝑛,𝑖→𝑖+1)3

𝑖=1

]

𝑁

𝑛=1

 (14) 

 

where  

𝑓𝑇𝑖→𝑖+1(𝑡𝑛,𝑖→𝑖+1) = ∫ 𝜇𝑡𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1)
+∞

0

∙ 𝑓𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1)𝑑𝑡𝑖→𝑖+1 = ∫ 𝜇𝑡𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1)
𝑡𝑛,𝑖→𝑖+1

𝑡𝑛,𝑖→𝑖+1

∙ 𝑓𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1)𝑑𝑡𝑖→𝑖+1 (15) 

 

That is, the imprecise evidence represented by the possibility distribution 𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1) forces to 

change 𝑓𝑇𝑖→𝑖+1(𝑡𝑛,𝑖→𝑖+1) into 𝑓𝑇𝑖→𝑖+1(𝑡𝑛,𝑖→𝑖+1) through Equation (15), which applies the Zadeh’s 

definition of probability of a fuzzy event (Denoeux, 2011; Zadeh, 1996 ). Notice that 𝑅𝑇𝑖→𝑖+1 is not 

affected by fuzzy uncertainty as it relates to the case in which the transition has not been observed. 

The log-likelihood is given by: 

 

ℒ̃(𝜗|𝐷) = log ( �̃�(𝜗|𝐷)) = ℒ̃1→2(𝛼1, 𝛽1|𝐷) + ℒ̃2→3(𝛼2, 𝛽2|𝐷) + ℒ̃3→4(𝛼3, 𝛽3|𝐷) (16) 

 

where   

ℒ̃𝑖→𝑖+1(𝜗𝑖|𝐷) = ∑ 𝑙𝑜𝑔 [�̃�𝑇𝑖→𝑖+1
(𝑡𝑛,𝑖→𝑖+1)

𝛿𝑛,𝑖→𝑖+1
∙ 𝑅𝑇𝑖→𝑖+1(𝑇𝑚 − ∑ 𝑡𝑛,𝑗−1→𝑗

𝑖
𝑗=1 )

(1−𝛿𝑛,𝑖→𝑖+1)
]𝑁

𝑛=1 , 𝑖 = 1,2,3             (17) 

 

3.3. Fuzzy Expectation-Maximization algorithm 
 

The EM algorithm has been proposed by (Dempster et al., 1977) as a broadly applicable and efficient 

mechanism for computing maximum likelihood estimates. It is made up of two steps (i.e., expectation 

and maximization), which are iteratively performed until the maximum of the likelihood function is 

achieved.  

Inspired by the original EM algorithm, (Denoeux, 2011) has proposed an enhancement that extends 

its application to fuzzy evidence. We resort to this method for the maximization of each ℒ̃𝑖→𝑖+1 in 

Equation (17), 𝑖 = 1,2,3. 



13 
 

Every iteration 𝑞 of the algorithm is composed by two steps: 

STEP 1: Expectation step (E-step) 

The expectation step requires the calculation of the expected value of the log-likelihood �̃�𝑖→𝑖+1 

conditional to a set of fuzzy evidences: 

 

 𝑄(𝜗𝑖, 𝜗𝑖
𝑞) = 𝐸𝜗𝑖

𝑞[ℒ̃𝑖→𝑖+1|𝐷]  (18) 

 

which reads (Denoeux, 2011): 

𝑄(𝜗𝑖 , 𝜗𝑖
𝑞) = ∑ {

∫ 𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1) log[𝐿(𝜗|𝐷)] 𝐿(𝜗
𝑞|𝐷)𝑑𝑡𝑖→𝑖+1

+∞

0

∫ 𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑖→𝑖+1)𝐿(𝜗
𝑞|𝐷)𝑑𝑡𝑖→𝑖+1

+∞

0

}

𝑁

𝑛=1

 (19) 

 

Then, the expected value 𝑄(𝜗𝑖 , 𝜗𝑖
𝑞) of ℒ̃𝑖→𝑖+1 in Equation (17) conditioned to the set of fuzzy 

evidences 𝐷, given the fit 𝜗𝑖
𝑞
 of 𝜗𝑖 at the current iteration 𝑞, becomes: 

 

𝑄(𝜗𝑖 , 𝜗𝑖
𝑞
) = 

= ∑ [
∫ 𝜇�̃�𝑛,𝑖→𝑖+1

(𝑡𝑖→𝑖+1)∙log[𝑓𝑇𝑖→𝑖+1
(𝑡𝑖→𝑖+1|𝜗)]∙𝑓𝑇𝑖→𝑖+1

(𝑡𝑖→𝑖+1|𝜗
𝑞)𝑑𝑡𝑖→𝑖+1

+∞
0

∫ 𝜇�̃�𝑛,𝑖→𝑖+1
(𝑡𝑖→𝑖+1)∙𝑓𝑇𝑖→𝑖+1

(𝑡𝑖→𝑖+1|𝜗
𝑞)𝑑𝑡𝑖→𝑖+1

+∞
0

]

𝛿𝑛,𝑖→𝑖+1

𝑁
𝑛=1 + ∑ log [𝑁

𝑛=1 𝑅𝑇𝑖→𝑖+1(𝑇𝑚 −∑ 𝑡𝑛,𝑗−1→𝑗
𝑖
𝑗=1 )](1−𝛿𝑛,𝑖→𝑖+1)          

          

(20) 

 

STEP 2: Maximization step (M-step) 

The maximization step consists in maximizing 𝑄(𝜗𝑖 , 𝜗𝑖
𝑞) with respect to 𝜗𝑖. To do this, we need to 

select an arbitrary guess vector 𝜃𝑞=0 which here is obtained by applying the standard MLE approach 

to the same dataset. The first iteration of the M-step stops when 
𝜕𝑄(𝜗𝑖,𝜗𝑞 )

𝜕𝜗𝑖
 is smaller than an arbitrary 

fixed tolerance. The obtained parameters 𝜗𝑞=1, will be the guess vector for the following 

maximization step.  

The expectation and maximization steps are iterated until the difference |ℒ̃(𝜗𝑖
𝑞+1) − ℒ̃(𝜗𝑖

𝑞)| is smaller 

than some arbitrary fixed tolerance. 

4. Remaining Useful Life Estimation 
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Once the parameters 𝛼𝑖 and 𝛽𝑖, 𝑖 = 1, 2, 3, of the HCTSMM have been estimated, they can be used 

to estimate the PS RUL at any 𝑘𝑡ℎ inspection time, with  𝑘 = 1,… ,𝑀𝑛. To highlight the benefits of 

including the expert knowledge in the model estimation parameters, we estimate the RUL in both the 

settings illustrated in Sections 3.1 and 3.2 (i.e., based only on data, and on data with additional 

imprecise information from the experts). 

To this aim, we first consider the random variable 𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1|𝑡𝑛,𝑖
0 ), which represents the residual 

sojourn time in state 𝑖, provided that the component has already been in state 𝑖 for 𝑡𝑛,𝑖
0  years. The PDF 

and CDF of 𝑇𝑖→𝑖+1 conditional on 𝑡𝑛,𝑖
0  are indicated by  𝑓𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1|𝑡𝑛,𝑖

0 ) and 𝐹𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1|𝑡𝑛,𝑖
0 ), 

respectively. Accordingly, the expected value of the random variable 𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1|𝑡𝑛,𝑖
0 ), 

𝐸[𝑇𝑖→𝑖+1|𝑡𝑛,𝑖
0 ] is 

 

𝐸[𝑇𝑖→𝑖+1|𝑡𝑛,𝑖
0 ] =      ∫ (𝑡𝑖→𝑖+1 − 𝑡𝑛,𝑖

0 )
+∞

𝑡𝑛,𝑖
0

𝑓𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1|𝑡𝑛,𝑖
0 )𝑑𝑡𝑖→𝑖+1 = [

𝐸[𝑇𝑖→𝑖+1] − ∫ 𝑡𝑖→𝑖+1 ∙ 𝑓𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1)𝑑𝑡𝑖→𝑖+1
𝑡𝑛,𝑖
0

0

𝑅𝑇𝑖→𝑖+1(𝑡𝑛,𝑖
0 )

] − 𝑡𝑛,𝑖
0  (21) 

 

where 𝐸[𝑇𝑖→𝑖+1] represents the expected value of 𝑇𝑖→𝑖+1.  

The 𝛼 −quantile 𝑞𝛼[𝑇𝑖→𝑖+1|𝑡𝑛,𝑖
0 ] of 𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1|𝑡𝑛,𝑖

0 ) can be derived from the inverse function 

𝐹𝑇𝑖→𝑖+1
−1
(𝛼|𝑡𝑛,𝑖

0 ) of 𝐹𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1|𝑡𝑛,𝑖
0 ). 

Suppose that at the inspection time  𝑘𝜏, the component is found in state 𝑖; then, its RUL is the random 

variable 𝑅𝑈𝐿(𝑘𝜏) defined as: 

 

𝑅𝑈𝐿( 𝑘𝜏) = 𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1|𝑡𝑛,𝑖
0 ) +∑𝑇𝑗→𝑗+1

𝑗>𝑖

 , 𝑖, 𝑗 ∈  {1, 2, 3} (22) 

 

 assuming that the sojourn time already spent in state 𝑖 is 𝑡𝑛,𝑖
0 . 

The expected value, 𝐸[𝑅𝑈𝐿(𝑘𝜏)], and the 𝛼 −quantiles of 𝑅𝑈𝐿(𝑘𝜏), 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)], are given by, 

respectively: 
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𝐸[𝑅𝑈𝐿(𝑘𝜏)] =  

{
 
 
 
 

 
 
 
 
{
𝐸[𝑇1→2] − ∫ 𝑡1→2 ∙ 𝑓𝑇1→2(𝑡1→2)𝑑𝑡1→2

𝑡𝑛,𝑖
0

0

𝑅𝑇1→2(𝑡𝑛,𝑖
0)

} + 𝐸[𝑇2→3] + 𝐸[𝑇3→4] − 𝑘𝜏,                                   𝑖𝑓 𝑖 = 1

{
𝐸[𝑇2→3] − ∫ 𝑡2→3 ∙ 𝑓𝑇2→3(𝑡2→3)𝑑𝑡2→3

𝑡𝑛,𝑖
0

0

𝑅𝑇2→3(𝑡𝑛,𝑖
0)

} + 𝐸[𝑇3→4] − 𝑡𝑛,𝑖
0 ,                                                      𝑖𝑓 𝑖 = 2

{
𝐸[𝑇3→4] − ∫ 𝑡3→4 ∙ 𝑓𝑇3→4(𝑡3→4)𝑑𝑡3→4

𝑡𝑛,𝑖
0

0

𝑅𝑇3→4(𝑡𝑛,𝑖
0 )

} − 𝑡𝑛,𝑖
0 ,                                                                           𝑖𝑓 𝑖 = 3

 (23) 

 

 

𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)]: ∫ 𝑓𝑅𝑈𝐿(𝑘𝜏)(𝑡)𝑑𝑡 = 𝛼
𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)]

0
 (24) 

 

where 𝑓𝑅𝑈𝐿(𝑘𝜏) is the PDF of the random variable 𝑅𝑈𝐿( 𝑘𝜏). 

The definition of 𝑡𝑛,𝑖
0  depends on the case under investigation. In details, in the setting described in 

Section 3.1 with data only, we know that 𝑡𝑛,1
0 = 𝑘𝜏  and 𝑡𝑛,𝑖

0  𝜖 [(𝑘𝜏 − 𝑘𝑛,𝑖𝜏), (𝑘𝜏 − (𝑘𝑛,𝑖 − 1)𝜏)], 𝑖 =

2,3. In this case, 𝐸[𝑅𝑈𝐿(𝑘𝜏)] and 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] are interval estimates, whose lower and upper 

bounds are obtained by substituting  𝑡𝑛,𝑖
0  with (𝑘𝜏 − 𝑘𝑛,𝑖𝜏) and (𝑘𝜏 − (𝑘𝑛,𝑖 − 1)𝜏) (see Figure 3), 

respectively, in Equations (23) and (24). 

 

Figure 3: 𝒕𝒏,𝒊
𝟎  for setting in Section 3.1. 

With respect to the setting illustrated in Section 3.2, the sojourn time in state 𝑖 corresponds to the 

difference between the crisp number (𝑘𝜏 − 𝑘𝑛,𝑖−1𝜏) and the triangular fuzzy number �̃�𝑛,𝑖−1→𝑖, 

resulting in the possibility distribution 𝜇�̃�𝑛,𝑖
0 (𝑡𝑛,𝑖

0 ) (Aven et al., 2014): 

 

𝜇�̃�𝑛,𝑖
0 (𝑡𝑛,𝑖

0 ) = ((𝑘𝜏−𝑘𝑛,𝑖−1𝜏 − 𝑡𝑛,𝑖→𝑖+1), (𝑘𝜏−𝑘𝑛,𝑖−1𝜏 − 𝑡⏞𝑛,𝑖→𝑖+1), (𝑘𝜏−𝑘𝑛,𝑖−1𝜏−𝑡𝑛,𝑖→𝑖+1)) (25) 
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which is shown in Figure 4. 

 

Figure 4: 𝒕𝒏,𝒊
𝟎  for setting in Section 3.2. 

 

Since the random variable 𝑅𝑈𝐿(𝑘𝜏) depends on the sojourn time, as shown in Equation (22), it is 

affected by the epistemic uncertainty on 𝑡𝑛𝑖
0 , and, thus, in the case considered it becomes a fuzzy 

number, described by a possibility distribution. Therefore, the expected value and the 𝛼 −quantile 

estimates of the fuzzy 𝑅𝑈𝐿(𝑘𝜏), according to the Zadeh extension principle, are fuzzy numbers too 

(Zadeh, 1996; Aven et al., 2014). The lower bound, core and upper bound of the estimates of 

𝐸[𝑅𝑈𝐿(𝑘𝜏)] and 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] are obtained by combining Equation (25) with Equation (23) and 

Equation (24), respectively.  

Finally, notice that if at inspection time 𝑘𝜏 the component is found in state 1 (i.e., no transition has 

been observed), then 𝐸[𝑅𝑈𝐿(𝑘𝜏)] and 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] do not depend on 𝑡𝑛,𝑖
0 . 

5. CASE STUDY 
 

In this Section, the settings described in Sections 3.1 and 3.2 and the RUL estimation procedure 

discussed in Section 4 are applied to a simulated case study concerning the 4-states PS degradation 

process described in Section 2.  

5.1. Data Simulation 
 

We have artificially generated N = 100 degradation paths by Monte-Carlo (MC) sampling from the 

Markov Model described in (Fleming, 2004), which assumes that the transition times are 

exponentially distributed with scale parameters 𝜆𝑖→𝑖+1 given in Table 1. 

𝑖 𝜆𝑖→𝑖+1(𝑦
−1) 

1 4.35×10−4 

2 1.79×10−4 
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3 1.97×10−2 

 

Table 1: Values of the scale parameter 𝝀𝒊→𝒊+𝟏 used to simulate the degradation process (Fleming, 2004). 

Then, a right censoring mechanism has been applied to the gathered data, with 𝑇𝑚 = 60 𝑦𝑒𝑎𝑟𝑠. This 

value is taken from (Di Maio et al., 2015) and considers that typically NPPs have a life time of 40 

years, plus possible extension. We consider that the system is periodically inspected with period 𝜏 =

5 𝑦𝑒𝑎𝑟𝑠.  

The case study dataset is summarized in Table 2a, which reports for every state 𝑖 (first column) the 

corresponding number of components that have entered in state 𝑖 (second column) and the number of 

components which are found in state 𝑖 at inspection 𝑘𝑛,𝑖 = 𝑀𝑛 (third column). 

 

 

 

 

 

Table 2a: Case study 

dataset. 

To better understand the case study dataset, the degradation paths of the six components that entered 

a state 𝑖 > 1 are summarized in Table 2b, where the first column reports the 𝑛𝑡ℎ component, whereas 

the other three columns report the values of 𝑘𝑛,𝑖, 𝑖 = 2,3,4, respectively, as defined in Subsection 2.1.  

  

 

 

 

 

 

 

Table 2b: Case study dataset. 

𝑖 
Number of components 

entered in state 𝑖 

Number of components found in state 𝑖 at 

inspection 𝑀𝑛 

1 100 94 

2 6 4 

3 2 1 

4 1 1 

𝑛 𝑘𝑛 , 2 𝑘𝑛,3 𝑘𝑛,4 

4 4 - - 

13 11 - - 

17 11 - - 

41 8 9 - 

74 3 - - 

91 1 10 12 
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Obviously, in this simulated case study we do not have real expert judgments. Nevertheless, for a 

better understanding of how the expert knowledge can influence the estimation of the unknown 

parameters, we investigate three different settings relating to as many risk attitudes of the expert. 

Namely, we consider three different types of possibility distributions 𝜇�̃�𝑛,𝑖→𝑖+1(𝑡𝑛,𝑖→𝑖+1) 

corresponding to the information about the transition time retrievable from a moderately risk-averse 

(Figure 5), risk- averse (Figure 6), and risk- prone (Figure 7) expert. For brevity, these three settings 

will be referred to as cases 𝐶1, 𝐶2 and 𝐶3, respectively, whereas the MLE setting will be referred to as 

𝐶0. 

Figure 5: Example of possibility distribution of case 𝑪𝟏 (moderately risk-averse). 

 

Figure 6: Example of possibility distribution of case 𝑪𝟐 (risk-averse).  
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Figure 7: Example of possibility distribution of case 𝑪𝟑 (risk-prone). 

 

In the first case, the expert does not commit her/him-self and, thus, does not reduce the support of the 

possibility distribution; she/he only gives the fully plausible value of 𝑡𝑛,𝑖→𝑖+1, within the interval 

[(𝑘𝑛,𝑖+1 − 1)𝜏; 𝑘𝑛,𝑖+1𝜏], but closer to its lower bound; namely, he/she sets 𝑡⏞𝑛,𝑖→𝑖+1 = 0.667 + �̇�𝑛,𝑖
0 , 

where �̇�𝑛,𝑖
0 = (𝑘𝑛,𝑖+1 − 1)𝜏 − 𝑘𝑛,𝑖𝜏 (i.e., the time elapsed from the first inspection time in which the 

component has been found in state 𝑖 and the last one). In the second case, the expert is more 

conservative, i.e., he/she feels that the transition surely lies in the interval [(𝑘𝑛,𝑖+1 − 1)𝜏; (𝑘𝑛,𝑖+1𝜏 −

2 )], with core 𝑡⏞𝑛,𝑖→𝑖+1 = 0.667 + �̇�𝑛,𝑖
0 . Finally, the case in Figure 7 refers to an expert that feels 

confident on the system and, thus, states that the transition surely occurred in the interval 

[(𝑘𝑛,𝑖+1 − 1)𝜏 + 2); 𝑘𝑛,𝑖+1𝜏 ], the fully plausible value 𝑡⏞𝑛,𝑖→𝑖+1 = 2.667 + �̇�𝑛,𝑖
0 . 

 

5.2. Parameters Estimation results 
 

Tables 3-6 report the results obtained for cases 𝐶0 − 𝐶3, respectively, which are summarized by the 

expected value, 𝐸[𝑇𝑖→𝑖+1], the variance, 𝑉𝑎𝑟[𝑇𝑖→𝑖+1], the median, 𝑞0.5[𝑇𝑖→𝑖+1] and the interval 𝐼 =

[𝑞0.05[𝑇𝑖→𝑖+1]; 𝑞0.95[𝑇𝑖→𝑖+1]] which covers 90 % of the values of the random variables 𝑇𝑖→𝑖+1 , 𝑖 =

1,2,3 , obeying Weibull distributions.  

 

MLE estimation 

𝒊 �̂�𝐌𝐋𝐄 𝑽𝒂𝒓{𝑻𝒊→𝒊+𝟏} 𝑬{𝑻𝒊→𝒊+𝟏} 𝒒𝟎.𝟓{𝑻𝒊→𝒊+𝟏} I 
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1 
𝛼1 =1.494e+03 

𝛽1 =0.866 
3. 466e+06 1.607e+03 979.22 [50.15; 5319.51] 

2 
𝛼2=104.41 

𝛽2=0.65 

5.097e+04 142.13 59.52 [1.07; 561.88] 

3 
𝛼3=21.29 

𝛽3=1.44 
185.04 19.32 16.52 [2.71; 45.62] 

 

Table 3: Results for case 𝑪𝟎. 

 

FEM estimation 

𝒊 �̂�𝐅𝐄𝐌 𝑽𝒂𝒓{𝑻𝒊→𝒊+𝟏} 𝑬{𝑻𝒊→𝒊+𝟏} 𝒒𝟎.𝟓{𝑻𝒊→𝒊+𝟏} I 

1 
𝛼1 =1.671e+03 

𝛽1 =0.837 
4.858e+07 1.835e+03 1078.75 [47.48; 6239.39] 

2 
𝛼2=98.26 

𝛽2=0.68 

3.698e+04 127.60 57.41 [1.28; 484.85] 

3 
𝛼3=21.57 

𝛽3=1.32 
229.89 19.85 16.34 [2.23; 49.47] 

 

Table 4: Results for case 𝑪𝟏. 

The parameters values estimated in case 𝐶1 are similar to those in case 𝐶0 . This is due to the fact that 

the simulated dataset is composed by 94% of components that have never experienced any transition 

during the mission time i.e., they are still in state 1 at 𝑡 = 𝑇𝑚 (Table 2). For these components, the 

expert opinion on state transition times is not exploited. Moreover, in case 𝐶1, the expert gives a 

possibility distribution whose support is coincident with the interval between successive inspections, 

which corresponds to the interval-censored data considered in case 𝐶0.  

 

FEM estimation 

𝒊 �̂�𝐅𝐄𝐌 𝑽𝒂𝒓{𝑻𝒊→𝒊+𝟏} 𝑬{𝑻𝒊→𝒊+𝟏} 𝒒𝟎.𝟓{𝑻𝒊→𝒊+𝟏} I 

1 
𝛼1 =2.134e+03 

𝛽1 =0.779 
1.020e+06 2.464e+03 1334.30 [47.71; 8753.99] 
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2 
𝛼2=108.69 

𝛽2=0.61 

7.018e+04 156.91 60.18 [0.92; 640.69] 

3 
𝛼3=21.90 

𝛽3=1.20 
293.80 20.57 16.16 [1.87; 54.36] 

 

Table 5: Results for case 𝑪𝟐. 

 

FEM estimation 

𝒊 �̂�𝐅𝐄𝐌 𝑽𝒂𝒓{𝑻𝒊→𝒊+𝟏} 𝑬{𝑻𝒊→𝒊+𝟏} 𝒒𝟎.𝟓{𝑻𝒊→𝒊+𝟏} I 

1 
𝛼1 =1.011e+03 

𝛽1 =0.985 
1.066e+07 1.017e+03 697.54 [50.66; 3085.01] 

2 
𝛼2=77.92 

𝛽2=0.89 

8.427e+03 82.16 51.78 [2.86; 265.42] 

3 
𝛼3=20.73 

𝛽3=1.64 
133.69 18.54 16.59 [3.38; 40.21] 

 

Table 6: Results for case 𝑪𝟑. 

 

The impact of including the expert information is appreciable when case 𝐶0 is compared with cases 𝐶2 

and 𝐶3, where the supports of the possibility distributions on the transition times do not coincide with 

the whole interval [(𝑘𝑛,𝑖+1 − 1)𝜏; 𝑘𝑛,𝑖+1𝜏]. We consider only the transitions observed before 𝑇𝑚, so 

that the parameter estimation is influenced by transition times 𝑡𝑛,𝑖→𝑖+1 < 60 for which the expert 

expresses his/her opinion. The influence of the expert risk-attitude can be appreciated when 

comparing the estimated parameters 𝛽. In particular, for the first and the second transition, 𝛽1 and 𝛽2 

are smaller than 1, which means decreasing estimated transition rate over time, but, in case 𝐶3, 𝛽1 

and 𝛽2 are larger than the estimates of cases 𝐶0 and 𝐶2.  

In order to clarify the influence of the expert risk-attitude on transition rates, we have computed 𝜆𝐶0 

for case 𝐶0 (i.e., the expert is moderately risk-averse),  𝜆𝐶2 for case 𝐶2 (i.e., the expert is risk-averse), 

and 𝜆𝐶3 for case 𝐶3 (i.e, the expert is moderately risk-prone), according to the expression for 𝜆𝑖 given 

in Equation (4). The behaviors over time of the estimated transition rates for the transition from state 

1 to state 2 are shown in Figure 8: in the initial part of the time axis, the transition rate related to the 

risk-prone expert is smaller than those of the moderately risk-averse and risk-averse experts. 
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Figure 8: Transition rates for transition from state 1 to state 2, with 𝝀𝑪𝟎 for Case 𝑪𝟎, 𝝀𝑪𝟐 for Case 𝑪𝟐 and 𝝀𝑪𝟑 for 

Case 𝑪𝟑. 

 Similarly, the rate for the third transition estimated in case 𝐶3 is initially larger than those in case 

𝐶0 and 𝐶2, as shown in Figure 9. 

 

     Figure 9: Transition rates 𝝀𝑪𝟎, 𝝀𝑪𝟐 and 𝝀𝑪𝟑 for transition from state 3 to state. 
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Figure 10 shows the estimated reliability function for the different scenarios, which has been derived 

by the Monte Carlo (MC) approach summarized in Appendix A.  

Figure 10: Estimated reliability function. 

5.3. RUL estimation results 
 

In this Section, we report the results of the estimation of 𝐸 [𝑅𝑈𝐿(𝑘𝜏)] and 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)], by applying 

the procedure described in Section 4.  

 

5.3.1 𝐸[𝑅𝑈𝐿(kτ)] estimation 
 

The expected value 𝐸 [𝑅𝑈𝐿((𝑘𝜏))] of the random variable 𝑅𝑈𝐿(𝑘𝜏) has been estimated according 

to Equation (23) at each inspection time 𝑘𝜏, 𝑘 = 1…𝑀𝑛, assuming that at this time instant the 

component can be found in state 1, state 2 or state 3.  

Figures 11-16 show the evolution of 𝐸 [𝑅𝑈𝐿(𝑘𝜏)] over 𝑘𝜏. We firstly compare the results obtained 

in case 𝐶0 with those obtained in case 𝐶1, as their estimated model parameters are similar to each 

other. Then, RUL estimates in case 𝐶0 are compared to those of cases 𝐶2 and 𝐶3. For visualization, 

the axes of these Figures have different scales; yet, for states 𝑖 = 2, 3 the 𝐸 [𝑅𝑈𝐿(𝑘𝜏)] is divided into 

two plots: a) where 𝑘𝜏 = {5,… ,30} and b) where 𝑘𝜏 = {35,… ,60}. The estimates of 𝐸 [𝑅𝑈𝐿(𝑘𝜏)], 

given that the PS is in state 1, are reported in Figure 11, both for case 𝐶1 and for case 𝐶0.  Since no 

transition has been observed when the component is found in state 1, then the estimates do not depend 

on 𝑡𝑛,𝑖
0  and are not affected by uncertainty. The difference between the estimated RULs is only due 

to the different values of 𝜗.  
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Figure 11: Results for Cases 𝑪𝟎 and 𝑪𝟏; state 1; E[RUL] and Inspection time in years. 

 

In Figures 12-13, the estimates of 𝐸 [𝑅𝑈𝐿(𝑘𝜏)] for states 2 and 3 are shown, respectively, which are 

intervals for case 𝐶0 and triangular possibility distributions for case 𝐶1. From the comparison of these 

Figures, we can notice that in case 𝐶1 the uncertainty on 𝐸 [𝑅𝑈𝐿((𝑘𝜏))] is always smaller than that 

in case 𝐶0, at any inspection time. This is due to the fact that the expert statements introduce an 

additional information on the system behaviour, which allows better specifying the value of  

𝐸 [𝑅𝑈𝐿(𝑘𝜏)] in the interval containing its unknown value. This result highlights the contribution of 

the method here proposed to exploit any source of information that can corroborate data. 

 

 

Figure 12: Results for cases 𝑪𝟎 and 𝑪𝟏; state 2; E[RUL] and Inspection time in years. 
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Figure 13: Results for cases 𝑪𝟎 and 𝑪𝟏; state 3; E[RUL] and Inspection time in years. 

 

With respect to the comparison of case 𝐶0 to cases 𝐶2 and 𝐶3, Figure 14 compares the 𝐸 [𝑅𝑈𝐿(𝑘𝜏)] 

estimates when the component is in state 1, which do not depend on 𝑡𝑛,𝑖
0  . The estimates are not 

affected by uncertainty, as introduced previously, and the ones of case 𝐶0 are always smaller than 

those of case 𝐶2 and larger than those of case 𝐶3. This difference reflects the different expected value 

estimated in each case, in fact the expected value of case 𝐶2 is larger than the others, while the one of 

case 𝐶3 is smaller. 

Figure 14: Results for cases 𝑪𝟎, 𝑪𝟐 and 𝑪𝟑; state 1; E[RUL] and Inspection time in years. 

Figure 15 compares the results of case 𝐶0 to those of cases 𝐶2 and 𝐶3, when the PS is found in state 

2. We can note that intervals estimated in case 𝐶0 never contain the fuzzy estimates of cases 𝐶2 and 

𝐶3.  
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Figure 15: Results for cases 𝑪𝟎, 𝑪𝟐 and 𝑪𝟑; state 2; E[RUL] and Inspection time in years. 

In particular, the estimates in case 𝐶3 are always smaller than the corresponding ones of case 𝐶0, 

which are smaller than those of case 𝐶2. This is due to the fact that the estimates of 𝐸[𝑇𝑖→𝑖+1], 𝑖 =

1, 2, 3, are larger in case 𝐶2 than in case 𝐶0, while they are larger in case 𝐶0 than in case 𝐶3. Figure 

16 shows the RUL estimates in cases 𝐶0, 𝐶2 and 𝐶3 assuming that the component is found in state 3. 

In this case, the estimates are closer to each other since the corresponding estimated parameters 𝜗 for 

the third transition are similar to each other, as underlined previously.  

 

 

 

 

 

 

         

Figure 16: Results for cases 𝑪𝟎, 𝑪𝟐 and 𝑪𝟑; state 3; E[RUL] and Inspection time in years. 

 

5.3.2 𝒒𝜶[𝑹𝑼𝑳(𝒌𝝉)] estimation 

 

“The interval containing 𝛼% of the values of the random variable 𝑅𝑈𝐿(𝑘𝜏), Equation (24), has been 

estimated through MC simulation (see Appendix B), at each inspection time 𝑘𝜏, 𝑘 = 1…𝑀𝑛, 

assuming that at this time instant the component can be found in state 1, state 2 or state 3. 

Figures 17-22 show the evolution 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)]  over 𝑘𝜏 and we report the estimates for 𝛼 = 0.1. We 

firstly compare the results obtained in case 𝐶0 with those obtained in case 𝐶1, as their estimated model 

parameters are similar to each other. Then RUL estimates in Case 𝐶0 are compared to those of cases 

𝐶2 and 𝐶3 . For visualization, the axes of these Figures have different scales; yet, for states 𝑖 = 2,3 

the 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)]  is divided into two plots: a) where 𝑘𝜏 = {5,… ,30} and b) where 𝑘𝜏 = {35, … ,60}. 

The estimates of 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] , given that the PS is in state 1, are reported in Figure 15, both for case 

𝐶1 and for case 𝐶0. Since no transition has been observed when the component is found in state 1, 

then the estimates do not depend on 𝑡𝑛,𝑖
0  and are not affected by uncertainty.  
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Figure 17: Results for case  𝑪𝟎 , 𝑪𝟏, state 1; 𝒒𝟎.𝟏[𝑹𝑼𝑳] and Inspection time in years. 

 

In Figures 18-19, the estimates are shown for the states 2 and 3, respectively, which are intervals for 

case 𝐶0 and traingular possibility distributions for case 𝐶1. From the comparison of these Figures, we 

can notice that in case 𝐶1 the uncertainty on 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] is always smaller than that in case 𝐶0, at 

any inspection time. This is thanks to the additional information given by the expert and exploited in 

the estimation, which allows better specifying the value of  𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] in the interval containing 

its unknown value. 

 

 

 

 

 

 

 

Figure 18: Results for case  𝑪𝟎 , 𝑪𝟏, state 2; 𝒒𝟎.𝟏[𝑹𝑼𝑳] and Inspection time in years. 

 

 

 

 

 

 

 

 

Figure 19: Results for case  𝑪𝟎 , 𝑪𝟏, state 3; 𝒒𝟎.𝟏[𝑹𝑼𝑳] and Inspection time in years. 
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With respect to the comparison of case  𝐶0 to cases   𝐶2 and  𝐶3, Figure 20 compares the 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] 

estimates when the component is in state 1. The estimates of case 𝐶2 are larger than the others, 

throughout the time range, reflecting the larger expected values estimated for the transition times, in 

this case. Whereas, the estimates of case 𝐶3 are smaller than the others, over all the time range, 

reflecting the smaller expected values estimated for the transition times, in this case. 

 

Figure 20: Results for case  𝑪𝟎 , 𝑪𝟐 and  𝑪𝟑 state 1; 𝒒𝟎.𝟏[𝑹𝑼𝑳] and Inspection time in years. 

Figures 21 compares the results of case 𝐶0 to those of cases 𝐶2 and 𝐶3, in case the PS is found in state 

2. We can note that, initially, the intervals estimated in case 𝐶0 almost contain the fuzzy estimates of 

case 𝐶2 and are very close to those of case 𝐶3. Then, after 𝑘𝜏 = 25 years, the estimates of case 𝐶3 are 

smaller and differ from the others. This is due to the fact that initially the influence of the expert 

opinion is more relevant: in fact the estimates of case 𝐶3, in which the expert is risk-prone, are larger 

than those of cases 𝐶0 and 𝐶2. Figure 22 shows the RUL estimates in cases 𝐶0 and 𝐶3, assuming that 

the component is found in state 3. In this case, the estimates are closer to each other and sometimes 

the intervals estimates of case 𝐶0 contain the possibility distributions of cases 𝐶2 and 𝐶3. As for Figure 

21, initially the estimates of case 𝐶3 are larger than those of cases 𝐶2 and 𝐶0, according to the expert 

opinion. Furthermore, the estimates of cases 𝐶2 and 𝐶3 are close to each other since the behavior 

described by the model parameters, estimated in these two cases, are similar.  
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Figure 21: Results for case  𝑪𝟎 , 𝑪𝟐 and  𝑪𝟑, state 2; 𝒒𝟎.𝟏[𝑹𝑼𝑳] and Inspection time in years. 

 

 

 

 

 

 

 

 

 

Figure 22: Results for case  𝑪𝟎 , 𝑪𝟐 and  𝑪𝟑, state 3; 𝒒𝟎.𝟏[𝑹𝑼𝑳] and Inspection time in years. 

 

Overall, for all the cases considered, the estimated 𝐸[𝑅𝑈𝐿(𝑘𝜏)] and 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] increase 

proportionally to 𝑘𝜏 when the component is in state 1 or 2, independently on the case considered, and 

decrease when the component is in state 3. This is due to the fact that for 𝑖 = 1,2 𝛽𝑖 is less than 1, 

which corresponds to a decreasing failure rate (Thoman et al., 1969). Consequently, for increasing 

value of 𝑘𝜏, 𝐸[𝑅𝑈𝐿(𝑘𝜏)] and 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] are increasing over time. On the other hand, for state 𝑖 =

3, 𝛽3 is larger than 1, which corresponds to an increasing failure rate, and so, for increasing values of 

𝑘𝜏, the expected value 𝐸[𝑅𝑈𝐿(𝑘𝜏)] and the quantile 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)]  are decreasing over time.   

6. Conclusions 
 

In this work, we have developed a method based on the FEM algorithm to estimate the parameters of 

a MS degradation model. The method allows integrating field data from inspection outcomes with 

additional information about the state transition times from maintenance operators. Such additional, 

imprecise information has been represented by possibility distributions. Based on the MS model with 

estimated parameters, a procedure for predicting the RUL has been developed. The proposed method 

has been applied to a case study concerning the degradation of pipe welds in the coolant system of a 

PWR NPP. We have also investigated how results change when the expert knowledge is not employed 

and only inspection outcomes are considered. The results have shown that the combination of field 

data with expert knowledge allows reducing the uncertainty in degradation estimation. Finally, the 

proposed methodology can be easily extended to other industrial reliability problems, where 

information from expert is available to supplement field data.   



30 
 

Acknowledgements 

The participation of Enrico Zio to this research is partially supported by the China NSFC under grant 

number 71231001. 

REFERENCES 
 

Alonso, J.M., Magdalena, L., González-Rodríguez, G., “Looking for a good fuzzy system 

interpretability index: An experimental approach” International Journal of Approximate Reasoning, 

51 (1), pp. 115-134, 2009. 

 

Aven, T., Baraldi, P., Flage, R., Zio, E., “Uncertainty in Risk Assessment: The Representation and 

Treatment of Uncertainties by Probabilistic and Non-Probabilistic Methods”. Wyley. 2014. 

 

Baraldi, P., Roozbeh R.-F., Zio, E., "Bagged ensemble of Fuzzy C-Means classifiers for nuclear 

transient identification." Annals of Nuclear Energy 38.5, pp:1161-1171, 2011. 

 

Baudrit, C., Dubois, D., Perrot, N., “Representing parametric models tainted with imprecision. Fuzzy 

Sets and Systems” Vol. 159, pp. 1913-1928, 2008. 

 

Boutros, T., Liang, M. “Detection and diagnosis of bearing and cutting tool faults using hidden 

Markov models” Mechanical Systems and Signal Processing, 25 (6), pp. 2102-2124, 2011. 

 

Bowles, J.B., Peláez, C.E., “Application of Fuzzy Logic to Reliability Engineering”, Proceedings of 

the IEEE, 83 (3), pp. 435-449, 1995. 

 

Cannarile, F., Compare, M., Mattafirri, S., Carlevaro, F., Zio, E., “Comparison of Weibayes and 

Markov Chain Monte Carlo methods for the reliability analysis of turbine nozzle components with 

right censored data only”, Safety and Reliability of Complex Engineered Systems - Proceedings of 

the 25th European Safety and Reliability Conference, ESREL 2015, pp. 1937-1944, 2015a. 

 

Cannarile, F., Compare, M., Di Maio, F., Zio, E., “Handling reliability big data: A similarity-based 

approach for clustering a large fleet of assets”, Safety and Reliability of Complex Engineered Systems 

- Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015, pp. 891-896, 

2015b. 



31 
 

Cannarile, F., Compare, M., Di Maio, F., Zio, E.  A Clustering Approach for Mining Reliability Big 

Data for Asset Management. Proceedings of the Institution of Mechanical Engineers, Part O: Journal 

of Risk and Reliability, accepted, 2017. 

 

Chapman, O.J.V., Fabbri, L., editors “Discussion document on risk informed in-service inspection of 

nuclear power plants in Europe” Petten, The Netherlands: European Commission, DG-JRC-Institute 

for Advanced Materials; 2000. 

 

Chatterjee, K., Modarres, M., “A probabilistic physics of failure approach to prediction of steam 

generator tube rupture frequency”, ANS PSA 2011 International Topical Meeting on Probabilistic 

Safety Assessment and Analysis Wilmington, NC, March 13-17, 2011, on CD-ROM, American 

Nuclear Society, LaGrange Park, 2008. 

 

Compare, M., Baraldi, P., Bani, I., Zio, E., Mc Donnel, D. “Development of a Bayesian multi-state 

degradation model for up-to-date reliability estimations of working industrial components”, 

Reliability Engineering and System Safety, 166, pp. 25-40, 2017a. 

 

Compare, M., Baraldi, P., Cannarile, F., Di Maio, F., Zio, E., “Homogeneous finite-time, finite-state, 

semi-Markov modelling for enhancing Empirical Classification System diagnostics of industrial 

components”, Probabilistic Engineering Mechanics, under review, 2017b. 

 

Compare, M., Martini, F., Mattafirri, S., Carlevaro, F., Zio, E., “Semi-Markov model for the oxidation 

degradation mechanism in gas turbine nozzles”, IEEE Transactions and Reliability, 2015, 65(2), pp. 

574-581, 2016. 

 

Dempster, A.P., Laird, N.M., Rubin, D.B., “Maximum likelihood from incomplete data via the EM 

algorithm”, Journal of the Royal Statistical Society B, 39, pp. 1-38, 1977. 

 

Denœux, T., “Maximum likelihood estimation from fuzzy data using the EM algorithm” Fuzzy Sets 

and Systems, 183 (1), pp. 72-9, 2011. 

 

Di Maio, F., Colli, D., Zio, E., Tao, L., Tong, J., “A multi-state physics modelling approach for the 

reliability assessment of nuclear power plants piping systems” Annals of Nuclear Energy, 80, pp. 

151-165, 2015.  



32 
 

 

Dubois, D., “Possibility theory and statistical reasoning”, Computational Statistics & Data Analysis, 

51, (1), 2006. 

 

Fleming, K.N. “Markov models for evaluating risk-informed in-service inspection strategies for 

nuclear power plant piping systems”, Reliability Engineering and System Safety, 83 (1), pp. 27-45, 

2004. 

 

Fleming, K.N., Gosselin S., “Application of Markovian Technique to Modelling influences of 

inspection on pipe rupture frequencies”, SKI Seminar on Piping Reliability, 1997. 

 

Fleming, K.N., Lydell, B.O.Y., “Database development and uncertainty treatment for estimating pipe 

failure rates and rupture frequencies”, Reliability Engineering and System Safety, 86 (3), pp. 227-

246, 2004. 

 

Fleming, K.N., Lydell, B.O.Y., “Pipe rupture frequencies for internal flooding probabilistic Risk 

Assessment (PRAs)” 101232 (EPRI Licensed Material), Electric Power Research Institute Palo Alto 

(CA), 2006. 

 

Fleming, K.N., Smit, K. Evaluation of design, leak monitoring, and nde strategies to assure pbmr 

helium pressure boundary reliability”,Proceedings of the 4th International Topical Meeting on High 

Temperature Reactor Technology, 2, pp. 135-142 HTR 2008. 

 

Ghodrati, B., Farzaneh Ahmadzadeh, Kumar, U., "Mean Residual Life Estimation Considering 

Operating Environment." International Conference on Quality, Reliability, Infocom Technology and 

Industrial Technology Management ICQRITTM, 26-28 Nov 2012, Newdelhi, India, 2012. 

 

Giorgio, M., Guida, M., Pulcini, G., “An age- and state-dependent Markov model for degradation 

processes”, IIE Transactions, 43 (9), pp. 621-632, 2011. 

 

Gopika, V., Bidhar, S.K., Kushwaha, H.S., Verma, A.K., Sirividya, A., “A comprehensive framework 

for evaluation of piping reliability due to erosion corrosion for risk-informed inservice inspection” 

Reliab. Eng. Syst. Saf. 82, 187-193, 2003. 

 



33 
 

Gosselin SR, Fleming KN, “Evaluation of pipe failure potential via degradation mechanism 

assessment” Fifth International Conference on Nuclear Engineering, May 26-30, Nice, France; 1997. 

 

Howard, R.A. “System Analysis of Semi-Markov Processes”, IEEE Transactions on Military 

Electronics, 8 (2), pp. 114-124, 1964. 

 

Lee, S.-M., Chang, Y.-S., Choi, J.-B., Kim, Y.-J., “Failure probability assessment of wall-thinned 

nuclear pipes using probabilistic fracture mechanics” Nuclear Engineering and Design, 236 (4), pp. 

350-358, 2006. 

 

Limnios, N., Oprisan, G., “Semi-Markov Process and Reliability”, Birkhauser, Boston, 2001. 

Lydell, B., Riznic, J., “OPDE-The international pipe failure data exchange project” Nuclear 

Engineering and Design, 238 (8), pp. 2115-2123, 2008. 

 

Marseguerra, M., Zio, E., Podofillini, L., “A multiobjective genetic algorithm approach to the 

optimization of the technical specifications of a nuclear safety system” Reliability Engineering and 

System Safety, 84 (1), pp. 87-99, 2004 

 

Miksch, T.J., Fleming, K.N.,“Piping system failure rates and rupture frequencies for use in risk 

informed in-service inspection applications” EPRI TR-111880 [ EPRI Licensed Material], 1999. 

 

Moghaddass, R., Zuo, M.J., “An integrated framework for online diagnostic and prognostic health 

monitoring using a multistate deterioration process” Reliability Engineering an System Safety, 124, 

pp. 92-104, 2014. 

 

Nánási, T., “Interval censored data analysis with Weibull and exponential distribution” Applied 

Mechanics and Materials, 693, pp. 74-79, 2014. 

 

Nyman R., Erixon S., Tomic B., Lydell B., “Reliability of Piping System Components” Volume 4: 

The Pipe Failure Event Database, SKI Report 95:61, 1996. 

 

Rahman, S. “Probabilistic fracture mechanics: J-estimation and finite element methods” Engineering 

Fracture Mechanics, 68 (1), pp. 107-125, 2001. 



34 
 

 

Robert, C.P., Casella, G., “Monte Carlo statistical methods”, New York: Springer, 2004. 

 

Si, X.-S., Wang, W., Hu, C.-H., Zhou, D.-H., “Remaining useful life estimation - A review on the 

statistical data driven approaches” European Journal of Operational Research, 213 (1), pp. 1-14, 2011. 

 

Simola, K., Pulkkinen, U., Talja, H., Karjalainen-Roikonen, P., Saarenheimo, A., “Comparison of 

approaches for estimating pipe rupture frequencies for risk-informed in-service inspections”, 

Reliability Engineering and System Safety, 84 (1), pp. 65-74, 2004. 

 

Simonen, F.A., Gosselin, S.R.,”Life prediction and monitoring of nuclear power plant components 

for service-related degradation”, Journal of Pressure Vessel Technology, Transactions of the ASME, 

123 (1), pp. 58-64, 2001. 

 

Thoman, D.R., Bain, L.J., Antle, C.E., “Inferences on the Parameters of the Weibull Distribution” 

Technometrics, 11 (3), pp. 445-460, 1969. 

 

Tipping, G., “Understanding and mitigating ageing in nuclear power plants: Materials and operational 

aspects of plant life management (PLIM)”, Understanding and Mitigating Ageing in Nuclear Power 

Plants: Materials and Operational Aspects of Plant Life Management (PLIM), pp. 1-914, 2010. 

 

Veeramany, A., Pandey, M.D., “Reliability analysis of nuclear piping system using semi-Markov 

process model” Annals of Nuclear Energy, 38 (5), pp. 1133-1139, 2011. 

 

Verma, A.K., Srividya, A.K.D., “Risk-Informed Decision Making in Nuclear Power Plants”, Safety 

and Risk Modeling and its Application, Springer Series in Reliability Engineering, London, 2011. 

 

Vinod, G., Bidhar, S.K., Kushwaha, H.S., Verma, A.K., Srividya, A., “A comprehensive framework 

for evaluation of piping reliability due to erosion-corrosion for risk-informed inservice inspection”, 

Reliability Engineering and System Safety, 82 (2), pp. 187-193, 2003. 

 

Yuan X., “Stochastic Modeling of Deterioration in Nuclear Power Plant Components” phd thesis, 

University of Waterloo, 2007. 

 



35 
 

Zadeh, L. A., “Fuzzy logic= computing with words.” IEEE transactions on fuzzy systems 4. (2), pp. 

103-111, 1996. 

 

Zio, E. “An introduction to the basics of reliability and risk analysis” Vol. 13. World scientific, 2007. 

 

Zio, E. “Challenges and opportunities in reliability engineering: the big KID (Knowledge, 

Information and Data)” IEEE Transactions on Reliability, 65(4), pp. 1769-1782, 2016. 

 

APPENDIX A 
  

To estimate the reliability function in Figure 10, we have used the following procedure based on 

Monte Carlo simulation: 

Algorithm A:  

While 𝑠𝑖𝑚 ≤ 𝑀, where 𝑀 = 100000 is the number of desired Monte Carlo draws, do: 

• Sample sojourn time in state 1: 𝑡1
𝑠𝑖𝑚~𝑓𝑇1→2(𝑡1→2, 𝛼1, 𝛽1) 

• … 

• Sample sojourn time in state 3: 𝑡3
𝑠𝑖𝑚~𝑓𝑇3→4(𝑡3→4, 𝛼3, 𝛽4) 

The quantity 𝑡𝑠𝑖𝑚 = ∑ 𝑡𝑖
𝑠𝑖𝑚3

𝑖=1  is a draw from the failure time random variable 𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = ∑ 𝑇𝑖→𝑖+1
3
𝑖=1 . 

Finally,  using draws 𝑡𝑠𝑖𝑚, 𝑠𝑖𝑚 = 1,… ,𝑀, firstly, we have estimated the CDF 𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒  of the random 

variable 𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒 with the MATLAB® routine ecdf, then, the reliability function has been estimated 

as 𝑅𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − 𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒. 

APPENDIX B 
To estimate quantile 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] we propose the following procedure based on Monte Carlo 

simulation: 

Algorithm B: 

M = 100000 is the number of Monte Carlo samples 

While 𝑠𝑖𝑚 ≤ 𝑀: 

• Sample the residual sojourn time in state 𝑖 provided that the component has already sojourned 

in this state for 𝑡𝑛,𝑖
0  units of time: 𝑡𝑖

𝑠𝑖𝑚|𝑡𝑛,𝑖
0 ~𝑓𝑇𝑖→𝑖+1(𝑡𝑖→𝑖+1

|𝑡𝑛,𝑖
0 , 𝛼𝑖 , 𝛽𝑖), 

• For 𝑗 = 𝑖 + 1 𝑡𝑜 3 

o Sample sojourn time in state j: 𝑡𝑖+1
𝑠𝑖𝑚~𝑓𝑇𝑗→𝑗+1 (𝑡𝑗→𝑗+1, 𝛼𝑗, 𝛽𝑗) 

• End for 
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  𝑡𝑅𝑈𝐿(𝑘𝜏)
𝑠𝑖𝑚 = 𝑡𝑖

𝑠𝑖𝑚|𝑡𝑛,𝑖
0 + 𝑡𝑖+1

𝑠𝑖𝑚 + ⋯+ 𝑡3
𝑠𝑖𝑚 − 𝑡𝑛,𝑖

0  is a draw from random variable 𝑅𝑈𝐿(𝑘𝜏).  

End while 

Finally, quantile 𝑞𝛼[𝑅𝑈𝐿(𝑘𝜏)] has been estimated from the collection of samples 𝑡𝑅𝑈𝐿(𝑘𝜏)
𝑠𝑖𝑚  with the 

MATLAB® routine quantile.” 
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