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ABSTRACT 

Components of nuclear safety systems are in general highly reliable, which leads to a difficulty 

in modeling their degradation and failure behaviors due to the limited amount of data available. 

Besides, the complexity of such modeling task is increased by the fact that these systems are 

often subject to multiple competing degradation processes and that these can be dependent 

under certain circumstances, and influenced by a number of external factors (e.g. temperature, 

stress, mechanical shocks, etc.).  

In this complicated problem setting, this PhD work aims to develop a holistic framework of 

models and computational methods for the reliability-based analysis and maintenance 

optimization of nuclear safety systems taking into account the available knowledge on the 

systems, degradation and failure behaviors, their dependencies, the external influencing factors 

and the associated uncertainties. 

The original scientific contributions of the work are:  

(1) For single components, we integrate random shocks into multi-state physics models for 

component reliability analysis, considering general dependencies between the degradation and 

two types of random shocks.  

(2) For multi-component systems (with a limited number of components): 

(a) a piecewise-deterministic Markov process modeling framework is developed to treat 

degradation dependency in a system whose degradation processes are modeled by physics-

based models and multi-state models;  

(b) epistemic uncertainty due to incomplete or imprecise knowledge is considered and a finite-

volume scheme is extended to assess the (fuzzy) system reliability;  

(c) the mean absolute deviation importance measures are extended for components with 

multiple dependent competing degradation processes and subject to maintenance;  

(d) the optimal maintenance policy considering epistemic uncertainty and degradation 

dependency is derived by combining finite-volume scheme, differential evolution and non-

dominated sorting differential evolution;  

(e) the modeling framework of (a) is extended by including the impacts of random shocks on 

the dependent degradation processes. 

(3) For multi-component systems (with a large number of components), a reliability assessment 
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method is proposed considering degradation dependency, by combining binary decision 

diagrams and Monte Carlo simulation to reduce computational costs.  

 

Key words: Reliability analysis, multiple competing degradation processes, degradation 

dependency, piecewise-deterministic Markov processes, multi-state models, physics-based 

models, random shocks, epistemic uncertainty, Monte Carlo simulation, finite-volume method, 

importance measures, maintenance optimization, binary decision diagrams 
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RESUME 

Composants de systèmes de sûreté nucléaire sont en général très fiable, ce qui conduit à une 

difficulté de modéliser leurs comportements de dégradation et d'échec en raison de la quantité 

limitée de données disponibles. Par ailleurs, la complexité de cette tâche de modélisation est 

augmentée par le fait que ces systèmes sont souvent l'objet de multiples processus concurrents 

de dégradation et que ceux-ci peut être dépendants dans certaines circonstances, et influencé 

par un certain nombre de facteurs externes (par exemple la température, le stress, les chocs 

mécaniques, etc.). 

Dans ce cadre de problème compliqué, ce travail de thèse vise à développer un cadre holistique 

de modèles et de méthodes de calcul pour l'analyse basée sur la fiabilité et la maintenance 

d'optimisation des systèmes de sûreté nucléaire en tenant compte des connaissances disponibles 

sur les systèmes, les comportements de dégradation et de défaillance, de leurs dépendances, les 

facteurs influençant externes et les incertitudes associées. 

Les contributions scientifiques originales dans la thèse sont: 

(1) Pour les composants simples, nous intégrons des chocs aléatoires dans les modèles de 

physique multi-états pour l'analyse de la fiabilité des composants qui envisagent dépendances 

générales entre la dégradation et de deux types de chocs aléatoires. 

(2) Pour les systèmes multi-composants (avec un nombre limité de composants): 

(a) un cadre de modélisation de processus de Markov déterministes par morceaux est développé 

pour traiter la dépendance de dégradation dans un système dont les processus de dégradation 

sont modélisées par des modèles basés sur la physique et des modèles multi-états;  

(b) l'incertitude épistémique à cause de la connaissance incomplète ou imprécise est considéré 

et une méthode volumes finis est prolongée pour évaluer la fiabilité (floue) du système;  

(c) les mesures d'importance de l'écart moyen absolu sont étendues pour les composants avec 

multiples processus concurrents dépendants de dégradation et soumis à l'entretien;  

(d) la politique optimale de maintenance compte tenu de l'incertitude épistémique et la 

dépendance de dégradation est dérivé en combinant schéma volumes finis, évolution 

différentielle et non-dominée de tri évolution différentielle;  

(e) le cadre de la modélisation de (a) est étendu en incluant les impacts des chocs aléatoires sur 

les processus dépendants de dégradation. 
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(3) Pour les systèmes multi-composants (avec un grand nombre de composants), une méthode 

d'évaluation de la fiabilité est proposé considérant la dépendance dégradation en combinant des 

diagrammes de décision binaires et simulation de Monte Carlo pour réduire le coût de calcul. 

 

Mots Clés: Analyse de fiabilité, multiples processus concurrents de dégradation, dépendance 

de dégradation, processus de Markov déterministe par morceaux, modèles multi-états, modèles 

basés sur la physique, chocs aléatoires, incertitude épistémique, simulation de Monte Carlo, 

méthode volumes finis, mesures d'importance, optimisation de la maintenance, diagrammes de 

décision binaires 
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1. INTRODUCTION 

The focus of the present PhD thesis is on the development of a holistic framework of models 

and computational methods for the reliability-based analysis and maintenance optimization of 

nuclear safety systems, taking into account the available knowledge about the component 

degradation and failure behaviors, their dependencies, the external influencing factors and the 

associated uncertainties. This introductory chapter is organized as follows. Section 1.1 

describes the background of the work and discusses the importance of degradation modeling. 

Section 1.2 reviews different types of degradation models. Section 1.3 presents the issues to be 

addressed in degradation modeling. Section 1.4 states the research motivations and objectives. 

Section 1.5 presents the structure of the thesis. 

 

1.1 Background 

Safety-critical plants, like the nuclear power plants, are designed not to fail, i.e. with very high 

reliability, because of the potentially catastrophic consequences of their failures. Traditional 

data-based reliability analysis, based on failure data, is, then, unsuitable. On the other hand, 

most failure mechanisms can be traced to underlying degradation processes (e.g. wear, stress 

corrosion, shocks, cracking, fatigue, etc.) [1], for which models exist. 

In general, the reliability of a system decreases as the degradation processes develop, eventually 

leading to failure [2]. In reliability engineering, degradation processes have been widely studied 

and different degradation models have been developed. A review of degradation models is given 

in the following chapter. 

 

1.2 Degradation modeling 

The existing degradation models can mainly be classified into the following categories:  

• statistical models of time to failure, based on degradation data (e.g. Bernstein 

distribution [3], Weibull distribution [4]). 

• stochastic process models (e.g. Gamma processes [5], inverse Gaussian process [6]) 

describing the evolution of one or more degradation parameters by gradual degradation 
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increments over time, and the failure occurs when the degradation parameter values 

reach predefined thresholds.  

• physics-based models (PBMs), based on the knowledge of the physics of degradation, 

which is translated into equations to give a quantitative description (e.g. the physics 

functions based on critical environmental stresses, e.g. amplitude and frequency of 

mechanical loads, used to model the pitting and corrosion-fatigue degradation 

mechanisms [7]). 

• multi-state models (MSMs) describing by finite degradation states of the underlying 

degradation process (e.g. semi-Markov models for the deterioration of infrastructure 

systems [8]). 

 

The recent literature on degradation modeling can be organized under the above taxonomy. For 

statistical models, Lu et al. [9] have combined random regression coefficients and a standard 

deviation function for analyzing linear degradation data for statistical inference of a time-to-

failure distribution. Lu and Meeker [4] have developed methods using degradation measures to 

estimate a time-to-failure distribution for a broad class of degradation models and demonstrated 

some special cases for which it is possible to obtain closed-form expressions of the 

distributions. Yang and Yang [10] have estimated the parameters of lifetime distributions using 

a random-coefficient-based approach that uses the lifetimes of failed devices, combined with 

degradation information from operating devices.  

For stochastic models, Whitmore [11] has estimated the degradation process by a Wiener 

diffusion process subject to measurement errors due to imperfect instruments, procedures and 

environments. Lawless and Crowder [5] have constructed a tractable Gamma-process model 

incorporating a random effect for taking into account different degradation rates of the 

individual components. Chen et al. [6] have employed the inverse Gaussian process with 

random-drift mode, in which the random drifts are used to represent heterogeneities commonly 

observed across the product population. Note that the aforementioned degradation models are 

always built on sufficient degradation/failure data. 

PBMs [12-14] and MSMs [15-17] can be used to describe the evolution of degradation in 

structures, systems and components, for which statistical degradation/failure data are 

insufficient, e.g. the highly reliable devices in the nuclear and aerospace industries. For PBMs, 

Daigle and Goebel [12] have developed a physics model of a pneumatic valve, based on mass 
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and energy balances in which the damages depend on sliding velocity. Reggiani et al. [13] have 

developed a physics-based analytical expression of the linear drain current for hot-carrier stress 

degradation in transistors. Keedy and Feng [14] have proposed a probabilistic reliability and 

maintenance modeling framework for stent deployment and operation, based on physics-of-

failure mechanisms, e.g. delayed failure due to fatigue crack and instantaneous failure due to 

overload fracture.  

For MSMs, Moghaddass and Zuo [15] have employed the nonhomogeneous continuous-time 

hidden semi-Markov process to model the degradation and observation processes associated 

with the device. Giorgio et al. [18] have developed an age- and state-dependent Markov model 

for the wear process of cylinder liners of identical heavy-duty diesel engines for marine 

propulsion. Unwin et al. [19] have proposed a multi-state physics model (MSPM) for the 

cracking process in an dissimilar metal weld in a primary coolant system of a nuclear power 

plant.  

 

1.3 Factors considered in degradation modeling 

There are several factors, which can influence degradation evolution and, thus, need to be 

accounted for in degradation modeling.  

 

1.3.1 Degradation dependency 

In reality, components and systems are often subject to multiple competing degradation 

processes and any of them may cause failure [20]. The dependencies among these processes 

within one component (e.g. the wear of rubbing surfaces influenced by the environmental stress 

shock within a micro-engine [21]), or/and among different components (e.g. the degradation of 

the pre-filtrations stations leading to a lower performance level of the sand filter in a water 

treatment plant [22]) need to be considered, under certain circumstances. Components can be 

dependent due to functional dependence, where the failure of a trigger component causes other 

components to become inaccessible or unusable [23, 24]. Failure isolation effects can induce 

degradation dependency among different components, since failure of one component may 

cause other components within the same system to become isolated from the system due to the 

failure isolation actions [25, 26]. This renders challenging the analysis and prediction of the 
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components and systems reliability [27]. Wang and Pham [20] applied time-varying copulas for 

describing the dependencies between the degradation processes modeled by statistical 

distributions. Straub [28] used a dynamic Bayesian network to represent the dependencies 

between degradation processes modeled by multi-state models. However, no studies have 

considered degradation dependency in a system whose degradation processes are modeled by 

PBMs and MSMs. 

 

1.3.2 Random shocks 

Components may also suddenly fail due to randomly occurring events of excessive loading or 

temperature [29]. For example, thermal and mechanical shocks (e.g. internal thermal shocks 

and water hammers) [30, 31] onto power plant components can lead to intense increases in 

temperatures and stresses, respectively. These events, referred to as random shocks, need to be 

accounted for on top of the underlying degradation processes, because they can contribute to 

accelerating the degradation processes. In the literature, random shocks are typically modeled 

by Poisson processes [17], distinguishing two main types, extreme shock and cumulative shock 

processes [32], according to the severity of the damage. The former could directly lead the 

component to immediate failure [33], whereas the latter increases the degree of damage in a 

cumulative way [34]. Esary et al. [35] have considered extreme shocks in a component 

reliability model, whereas Wang et al. [29], Klutke and Yang [36] and Wortman et al. [37] have 

modeled the influences of cumulative shocks on a degradation process. Both extreme and 

cumulative random shocks have been considered by Li and Pham [17], and Wang and Pham 

[20]. Additionally, Ye et al. [38] and Fan et al. [39] have considered that a high severity of 

degradation can lead to a high probability that a random shock causes extreme damage. 

However, the fact that the effects of cumulative shocks can vary according to the severity of 

degradation has also to be considered. 

Besides, previous research has focused on the dependency between continuous/multi-state 

degradation processes and random shocks. For continuous degradation processes, Peng et al. 

[27] considered systems with one linear degradation path where shocks can bring additional 

abrupt degradation damage if the shock loads do not exceed the maximum strength of the 

material. Multi-component systems subject to multiple linear degradation paths have been 

further considered by Song et al. [40]. Jiang et al. [21] studied changes in the maximal strength 

of the material when systems are deteriorating under different situations. Becker et al. [41] 
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extended the theory of dynamic reliability to incorporate random changes of the degradation 

variables due to random shocks. Rafiee et al. [42] proposed reliability models for systems for 

which the degradation path has a changing degradation rate according to particular random 

shock patterns. Song et al. [43] studied random shocks with specific sizes or functions, which 

can selectively affect the degradation processes of one or more components (not necessarily all 

components) in one system. For multi-state degradation processes, Yang et al. [44] combined 

random shocks with Markov degradation models where shocks can lead the systems to further 

degraded states. However, few studies have explicitly considered both the dependencies 

between degradation processes and the random shocks, and among the degradation processes 

themselves. 

 

1.3.3 Maintenance policy 

Maintenance contributes to ensuring the safe and efficient operation of industrial systems [45]. 

The degradation processes can be interrupted by maintenance tasks (e.g. one component can be 

restored to its initial state by preventive maintenance if any of its degradations exceed the 

respective critical level [46] and by corrective maintenance upon its failure [21]). The 

interactions among components complicate the modeling for maintenance planning, which 

becomes a big challenge [47]. Thomas [48] has categorized these interactions in the 

maintenance modeling into three groups: economic, structural and stochastic dependences. 

Economic dependence exists when the maintenance cost of several components is not equal to 

the sum of their individual maintenance costs. For example, Castanier et al. [49] have 

considered a condition-based maintenance policy for a two-unit deteriorating system, where the 

set-up cost of inspection is charged only once if the actions on the two components are 

combined. Van Dijkhuizen [50] has investigated the long-term grouping of preventive 

maintenance jobs in a multi-setup, multi-component production system where the set-up 

activities can be combined when several components are maintained at the same time. Structural 

dependence occurs if some working components need to be replaced or dismantled in order to 

execute the maintenance of the failed ones. For example, Dekker et al. [51] have studied the 

maintenance policy for asphalt roads, where the number of maintenance services is limited by 

integrating neighboring segments into a homogeneous section which is completely repaired. 

Stochastic dependence, also referred to as probabilistic dependence, applies when the state of 

one component can affect those of other components or their failure rates. Failure interactions 
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have been the most discussed cases for stochastic dependence [22] and imply that the failure of 

one component may lead to the failure of other components with certain probabilities, and/or 

influence their failure rates [52]. For example, Lai and Chen [53] have presented an economic 

periodic replacement model for a two-unit system where the failure of unit 1 can increase the 

failure rate of unit 2, while the failure of unit 2 induces unit 1 into instantaneous failure. 

Zequeira and Bérenguer [54] have studied the inspection policies for a two-component standby 

system, where the failure of one component can modify the conditional failure probability of 

the component still in operation with probability � and does not modify it with probability 1 −�. Barros et al. [55] have optimized the maintenance policy for a two-unit parallel system where 

the failure of a component increases the failure rate of the surviving one.  

Dependency among degradation mechanisms or processes has received less attention within the 

framework of maintenance modeling and optimization of multi-component systems, although 

they are of real concern in practice (e.g. the failure of a pump due to oxidation of contacts and 

bear wearing). Peng et al. [27] have developed a maintenance policy with periodic inspections 

when two dependent or correlated failure processes are considered. Jiang et al. [21] have further 

compared two preventive maintenance (PM) policies, age replacement policy and block 

replacement policy, combining immediate corrective replacement in consideration of shifting 

failure thresholds. Özekici [56] has considered interdependent aging processes between 

components due to continuous wear and shocks, and proposed an optimal periodic replacement 

policy. Rasmekomen and Parlikad [22] have considered degradation dependency in terms of 

output performance between one critical component and other parallel components based on 

aging processes, and the optimal age-based maintenance policy for this case was also studied. 

Yang et al. [57] have proposed a general statistical reliability model for repairable multi-

component systems considering dependent competing risks, under a partially perfect repair 

assumption which considers that only the failed component, rather than the whole system, is 

replaced. Hong et al. [58] have used copulas to model degradation dependency among all the 

components of a system and obtained the optimal maintenance policy including condition-

based maintenance with periodic inspections and instantaneous corrective maintenance (CM). 

Van Horenbeek and Pintelon [59] have proposed a dynamic predictive maintenance policy that 

minimizes the long-term mean maintenance cost per unit time while considering different 

component dependencies (i.e. economic, structural and stochastic dependence). Song et al. [40] 

have applied age replacement policy and inspection-based maintenance policy for systems 

whose components have s-dependent failure times, and the optimal replacement interval or 
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inspection times are determined. Note that maintenance optimization for multi-component 

systems with multiple dependent competing degradation processes within individual 

components has not been considered and only the pre-scheduled periods for inspection or 

maintenance are considered as the decision variables of the optimization problem.   

 

1.4 Research objectives  

This PhD work aims to develop a holistic framework of models and computational methods for 

the reliability analysis and maintenance optimization of nuclear safety components and 

systems, taking into account the available knowledge on the degradation and failure behaviors, 

their dependencies, the external influencing factors and the associated uncertainties. 

The availability of such modeling framework would be strongly beneficial for the asset 

management of nuclear power plants, because it would enable to successfully predict 

component and degradation behaviors and optimally plan the necessary maintenance activities. 

The research objectives, which also derive the main contributions of this PhD work, addressing 

the challenging issues presented in Chapter 1.3, are divided into the following three groups: 

• For single components: 

- Degradation dependency: to study the dependency between random shock and 

degradation processes, both can lead components to failure. 

- Random shocks: to establish a general random shock model, where the impacts of a 

random shock are dependent on the current component degradation condition (the 

component degradation state and residence time in the state). 

- Maintenance policy: to extend the MSPM framework to include semi-Markov 

modeling, where the time of transition to a state can depend on the residence time 

in the current state, and hence is more suitable for including maintenance. 

• For multi-component systems (with a limited number of components): 

- Degradation dependency: to develop a modeling framework for systems whose 

degradation processes are modeled by PBMs and MSMs to treat degradation 

dependencies between the degradation processes within one component or/and 

among components; to account for epistemic uncertainty due to incomplete or 

imprecise knowledge on dependent degradation processes and assess the (fuzzy) 
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system reliability; to evaluate the dynamic criticality of components over time. 

- Random shocks: to consider the impacts of random shocks on PBMs and MSMs at 

the same time, which have to be characterized in different ways due to the different 

nature of the two types of degradation models. 

- Maintenance policy: to derive the optimal maintenance policy considering 

degradation dependency and epistemic uncertainty, and design an efficient 

optimization method. 

• For multi-component systems (with a large number of components): 

- To develop an efficient reliability assessment method considering degradation 

dependency. 

 

1.5 Structure of the thesis 

The thesis is composed of two parts. Part I, made of ten Chapters, presents, in synthesis, the 

motivations, contents and conclusions of the PhD work. Part II, contains a collection of seven 

journal papers, reporting each research work performed during the PhD. The readers may refer 

to them for detailed information about the research. 

The Chapters in Part I are summarized as follows. 

Chapter I (current Chapter) introduces the issues and challenges in reliability analysis and 

maintenance optimization of nuclear safety components and systems, taking into account the 

available knowledge on the system functionalities, degradation and failure behaviors, 

dependencies, external influencing factors and associated uncertainties. It also describes the 

research objectives of the work. 

Chapter 2 (Paper I) first includes semi-Markov models in the original MSPM framework for 

component reliability assessment and, then, incorporates the generalized random shock models 

where the probability of a random shock resulting in extreme or cumulative damage, and the 

cumulative damages, are both s-dependent on the current component degradation condition. 

Chapter 3 (Paper II) firstly introduces PBMs and MSMs for degradation processes. The 

piecewise-deterministic Markov processes (PDMPs) are then employed to handle the 

dependencies between PBMs, between MSMs and between these two types of models.  
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Chapter 4 (Paper III) deals with the epistemic uncertainty in the degradation processes. To 

account for this, the parameters of the PDMP model are described by fuzzy numbers. The 

extension of the finite-volume (FV) method to quantify the (fuzzy) reliability of the systems is 

proposed.  

Chapter 5 (Paper IV) focuses on the component importance measures (IMs). The extended 

mean absolute deviation (MAD) IMs for components with degradation dependency and subject 

to maintenance are proposed. The quantification of the extended component IM is developed 

based on the FV method.  

Chapter 6 (Paper V) focuses on the maintenance optimization for systems considering epistemic 

uncertainty and degradation dependency. The pre-scheduled period for inspection tasks and the 

thresholds for PM are considered as the decision variables in the optimization problem 

formulation. A new optimization method integrating non-dominated sorting differential 

evolution (NSDE) [60], differential evolution (DE) [61] and the FV method for solving PDMP 

[62] is proposed to derive the optimal maintenance policy.  

Chapter 7 (Paper VI) extends the modeling framework presented in Chapter 2 by including the 

impacts of random shocks on the dependent degradation processes. The dependencies between 

degradation processes and random shocks, and among degradation processes are explicitly 

modelled.  

Chapter 8 (Paper VII) proposes a reliability assessment method for multi-component systems 

(with a large number of components) considering degradation dependency. Binary decision 

diagrams (BDDs) and MC simulation are combined to reduce computational cost.  

Chapter 9 summarizes the applications of the proposed models and methodologies to real cases 

related to nuclear safety components and systems.  

Chapter 10 draws the conclusions of this PhD work and presents relevant open issues and 

perspectives for future research.  

Fig. 1-1 provides a pictorial view of the issues addressed in the PhD work. 
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Fig. 1-1. A pictorial view of the issues addressed in the PhD work. 
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2. MULTI-STATE PHYSICS MODEL (MSPM) FRAMEWORK FOR 

COMPONENT RELIAIBLITY ASSESSMENT INCLUDING SEMI-

MARKOV AND RANDOM SHOCK PROCESSES 

MSPM framework is proposed by Unwin et al. [19] for modeling nuclear component 

degradation, also accounting for the effects of environmental factors (e.g. temperature and 

stress) within certain predetermined ranges [63]. Random shocks need to be accounted for on 

top of the underlying degradation processes because they can bring variations to influencing 

environmental factors, even outside their predetermined boundaries [64] that can accelerate the 

degradation processes. For example, thermal, and mechanical shocks (e.g. internal thermal 

shocks and water hammers) [30, 31] onto power plant components can lead to intense increases 

in temperatures, and stresses, respectively; under these extreme conditions, the original physics 

functions in MSPM might be insufficient to characterize the influences of random shocks onto 

the degradation processes, and must, therefore, be modified. In this Chapter, we extend the 

MSPM framework for component reliability assessment by including semi-Markov and random 

shock processes, where the probability of a random shock resulting in extreme or cumulative 

shock, and the cumulative damages, are both s-dependent on the current component degradation 

condition. 

 

2.1 Extended MSPM framework 

A continuous-time stochastic process is called a semi-Markov process if the embedded jump 

chain is a Markov Chain and the times between transitions may be random variables with any 

distribution [65]. It more generally describes the fact that the time of transition to a state can 

depend on the residence time in the current state, and hence is more suitable for including 

maintenance [66]. The following assumptions are made for the extended MSPM framework 

based on semi-Markov processes:  

• The degradation process has a finite number of states � = {0,1, … , } where states 0, 

and M represent the complete failure state, and perfect functioning state, respectively. 

The generic intermediate degradation states i (0<i<M ) are established according to the 

degradation development and condition, wherein the component is functioning or 

partially functioning. 
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• The degradation follows a continuous-time semi-Markov process; the transition rate 

between state i and state j, denoted by "#,$�%#, &�, is a function of %#  which is the 

residence time of the component being in the current state i since the last transition, and & which represents the external influencing factors (including physical factors).  

• The initial state (at time t = 0) of the component is M. 

• Maintenance can be carried out from any degradation state, except for the complete 

failure state (in other words, there is no repair from failure).  

Fig. 2-1 presents the diagram of the semi-Markov component degradation process. 

 

 

Fig. 2-1. The diagram of the semi-Markov process.  

 

The probability that the continuous time semi-Markov process will step to state j in the next 

infinitesimal time interval (�, � + ∆�), given that it has arrived at state i at time '�  after n 

transitions and remained stable in i from Tn until time t , is defined as  

([)�*� = +, '�*� ∈ [�, � + ∆�]	|	.)/,	'/0/12�3�, �)� = 4, '��, '� 5 � 5 '�*�, &] 
 = ([)�*� = +, '�*� ∈ [�, � + ∆�]	|	�)� = 4, '��	, '� 5 � 5 '�*�, &] 

                =	"#,$�%# = � − '�, &�∆�, ∀	4, +	 ∈ 	�, 4 7 +.               (2.1)  

where	)/ denotes the state of the component after k transitions. The degradation transition rates 

can be obtained from the structural reliability analysis of the degradation processes (e.g. the 

crack propagation process [67], whereas the transition rates related to maintenance tasks can be 

estimated from the frequencies of maintenance activities). For example, the authors of [63] 
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divided the degradation process of the alloy metal weld into six states dependent on the 

underlying physics phenomenon, and some degradation transition rates are represented by 

corresponding physics equations. 

The solution to the semi-Markov process model is the state probability vector (��� ={�8���, �83����, … , �2���}. Because no maintenance is carried out from the component failure 

state, and the component is regarded as functioning in all other intermediate alternative states, 

its reliability can be expressed as 

���� = 1 − �2���.                           (2.2) 

Analytically solving the continuous time semi-Markov model with state residence time-

dependent transition rates is a difficult or sometimes impossible task, and the Monte Carlo 

simulation method is usually applied to obtain (��� [68, 69]. 

 

2.2 Generalized random shock models 

The following assumptions are made on the random shock process.  

• The arrivals of random shocks follow a homogeneous Poisson process {9���, � ≥ 0} 
[32] with constant arrival rate	;. The random shocks are s-independent of the 

degradation process, but they can influence the degradation process (see Fig. 2-2). 

• The damages of random shocks are divided into two types: extreme, and cumulative. 

• Extreme shock and cumulative shock are mutually exclusive. 

• The component fails immediately upon occurrence of extreme shocks. 

• The probability of a random shock resulting in extreme or cumulative damage is s-

dependent on the current component degradation. 

• The damage of cumulative shocks can only influence the degradation transition 

departing from the current state, and its impact on the degradation process is s-

dependent on the current component degradation. 
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Fig. 2-2. Degradation and random shock processes. 

 

The first five assumptions are taken from [20]. The sixth assumption reflects the aging effects 

addressed in Fan et al.’s shock model [39], where the random shocks are more fatal to the 

component (i.e. more likely lead to extreme damages) when the component is in severe 

degradation states. However, the influences of cumulative shocks under aging effects have not 

been considered in Fan et al.’s model. In addition, the random shock damage is assumed to 

depend on the current degradation, characterized by three parameters: 1) the current degradation 

state i, 2) the number of cumulative shocks m that occurred while in the current degradation 

state since the last degradation state transition, and 3) the residence time %#,<  of the component 

in the current degradation state i after m cumulative shocks %#,< ≥0.  

Let �#,�%#,< � denote the probability that one shock results in extreme damage (the cumulative 

damage probability is then 1 − �#,�%#,< �). In the case of cumulative shock, the degradation 

transition rates for the current state change at the moment of the occurrence of the shock, 

whereas the other transition rates are not affected. Let "#,$��=%#,< , &> denote the transition rates 

after m cumulative random shocks, where "#,$�2��%#,2< , &�  holds the same expression as the 

transition rate "#,$=%#,2< , &> in the pure degradation model, and the other transition rates (i.e. 

m>0) depend on the degradation and the external influencing factors. Because the influences of 

random shocks can render invalid the original physics functions, we propose a general model 

which allows the formulation of physics functions dependent on the effects of shocks. The 
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modified transition rates can be obtained by material science knowledge, and data from shock 

tests [70]. These quantities will be used as the key linking elements in the integration work of 

the next section. 

 

2.3 Proposed modeling framework 

Based on the first and second assumptions on random shocks, the new model that integrates 

random shocks into MSPM is shown in Fig 2-3. In the model, the states of the component are 

represented by pair (i,m), where i is the degradation state, and m is the number of cumulative 

shocks that occurred during the residence time in the current state. For all the degradation states 

of the component except for state 0, the number of cumulative shocks could range from 0 to 

positive infinity. If the transition to a new degradation state occurs, the number of cumulative 

shocks is set to 0, coherently with the last assumption on random shocks. The state space of the 

new integrated model is denoted by �′ = {� , 0�, � , 1�, � , 2�, … , � − 1,0�, � −1,1�, … , �0,0�}. The component is failed whenever the model reaches (0,0). The transition rate 

denoted by "�#,�,�$,��=%#,< , &>  is residence time-dependent, thus rendering the process a 

continuous time semi-Markov process.  
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Fig. 2-3. Degradation and random shock processes. 

 

Suppose that the component is in a non-failure state (i,m); then, we have three types of outgoing 

transition rates: 

"�#,�,�2,2�=%#,< , &> = ; ∙ ��#,=%#,< >�,               (2.3) 

the rate of occurrence of an extreme shock which will cause the component to go to state (0,0);  

"�#,�,�#,*��=%#,< , &> = ; ∙ �1 − �#,=%#,< >�,           (2.4) 

the rate of occurrence of a cumulative shock which will cause the component to go to state 

(i,m+1); and  

"�#,�,�$,2�=%#,< , &> = "#,$��=%#,$< , &>,                (2.5) 

the rate of transition (i.e. degradation or maintenance) which will cause the component to make 

the transition to state (j,0).  

The effect of random shocks on the degradation processes is shown in eq. (2.5) by using the 

i

j
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μ∙	(1 − �8,2 %8,2< )
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superscript �B�, where B is the number of cumulative shocks occurring during the residence 

time in the current state. It means that the transition rate functions depend on the number of 

cumulative shocks. This is a general formulation. 

The first two types eqs. (2.3) and (2.4) depend on the probability of a random shock resulting 

in extreme damage, and in cumulative damage, respectively; the last type of transition rates eq. 

(2.5) depends on the cumulative damage of random shocks. In this model, we do not directly 

associate a failure threshold to the cumulative shocks, because the damage of cumulative shocks 

can only influence the degradation transition departing from the current state, and its impact on 

the degradation process is s-dependent on the current component degradation. The cumulative 

shocks can only aggravate the degradation condition of the component instead of leading it 

suddenly to failure (which is the role of extreme shocks). The effect of the cumulative shocks 

is reflected in the change of transition rates. The probability of a shock becoming an extreme 

one depends on the degradation condition of the component. The extreme shocks immediately 

lead the component to failure, whereas the damage of cumulative shocks accelerates the 

degradation processes of the component. 

The proposed model is based on a semi-Markov process and random shocks. Under this general 

structure, as explained in the paragraph above, the physics lies in the transition rates of the semi-

Markov process. We refer to it as a physics model because the stressors (e.g. the crack in the 

case study) that cause the component degradation are explicitly modeled, differently from the 

conventional way of estimating the transition rates from historical failure and degradation data, 

which are relatively rare for the critical components. More information about MSPM can be 

found in [9]. In addition, the random shocks are integrated into the MSPM in a way that they 

may change the physics functions of the transition rates, within a general formulation. 

Similarly to what was said for the semi-Markov process presented in Section 2.2, the state 

probabilities of the new integrated model can be obtained by MC simulation, and the expression 

of component reliability is  

���� = 1 − ��2,2����.                         (2.6) 
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2.4 Component reliability estimation method 

2.4.1 Basics of Monte Carlo simulation 

The key theoretical construct upon which MC simulation is based is the transition probability 

density function C�#,�,�$,���%#,< 	|	�, &�, defined as   

	C�#,�,�$,���%#,< 	|	�, &�D%#,< ≡ the probability that, given that the system arrives at the state �4,B� at time t, with physical factors &, the next transition 

will occur in the infinitesimal time interval (� + %#,< , � +%#,< + D%#,< ), and will be to the state �+, �� [68]   

    (2.7) 

By using the previously introduced transition rates, eq. (2.7) can be expressed as 

C�#,�,�$,���%#,< 	|	�, &�D%#,< = (�#,��%#,< 	|	�, &�"�#,�,�$,��=%#,< , &>D%#,<       (2.8) 

(�#,��%#,< 	|	�, &� is the probability that, given that the component arrives at the state �4,B� at 

time t with physical factors &, no transition will occur in the time interval (�, � + %#,< �. It 

satisfies  

FG�H,I��JH,IK 	|	L,&�G�H,I��JH,IK 	|	L,&� 	= −"�#,�=%#,< , &>D%#,<                 (2.9) 

"�#,�=%#,< , &>D%#,<  is the conditional probability that, given that the component is in the state �4,B� at time t, having arrived there at time � − %#,< , with physical factors &, it will depart 

from �4,B� during (�,	� + D%#,< ). "�#,�=%#,< , &> is obtained as 

"�#,�=%#,< , &> = ∑ "�#,�,�#<,<�=%#,< , &>�#<,<�                (2.10) 

Taking the integral of both sides of eq. (2.9) with the initial condition (�#,��0|	�, &� = 1, we 

obtain 

(�#,��%#,< 	|	�, &� 	= NO�	[−P "�#,��Q, &�DQJH,IK2 ]             (2.11) 

Substituting eq. (2.11) into eq. (2.8), we obtain 

C�#,�,�$,���%#,< 	|	�, &� = 	 "�#,�,�$,��=%#,< , &>NO�	[−P "�#,��Q, &�DQJH,IK2 ]    (2.12) 

To derive a Monte Carlo simulation procedure, eq. (2.12) is rewritten as 
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 C�#,�,�$,���%#,< 	|	�, &� = R�H,I�,�S,T�=JH,IK ,&>R�H,I�=JH,IK ,&> ∙ "�#,�=%#,< , &>NO�	[−P "�#,��Q, &�DQJH,IK2 ] 
   = U�#,�,�$,��=%#,< 	|	&> ∙ V�#,�=%#,< 	|	&>.                (13) 

V�#,�=%#,< 	|	&> is the probability density function for the holding time %#,<  in the state �4, B�, 
given the physical factors &. It satisfies  

V�#,�=%#,< 	|	&> = "�#,�=%#,< , &>NO�	[−P "�#,��Q, &�DQJH,IK2 ].       (2.14) 

U�#,�,�$,��=%#,< 	|	&> = R�H,I�,�S,T�=JH,IK ,&>R�H,I�=JH,IK ,&> ,                  (2.15) 

is regarded as the conditional probability that, for the transition out of state �4,B� after holding 

time %#,< , with the physical factors &, the transition arrival state will be �+, ��. 
 In the Monte Carlo simulation, for the component arriving at any non-failure state �4, B� 
at any time t, the process at first samples the holding time at state �4,B� corresponding to eq. 

(2.14), and then determines the transition arrival state �+, �� from state �4, B� according to eq. 

(2.15). This procedure is repeated until the accumulated holding time reaches the predefined 

time horizon, or the component reaches the failure state �0,0�.  

 

2.4.2 The simulation procedure 

To generate the holding time %#,<  and the next state �+, �� for the component arriving in any 

non-failure state �4,B� at any time t, one proceeds as follows. Two uniformly distributed 

random numbers u1 and u2 are sampled in the interval [0, 1]; then, %#,<  is chosen so that 

P "�#,��Q, &�JH,IK2 DQ = ln	�1/Z��	,                     (2.16) 

and �+, �� = [∗ that satisfies 

∑ "�#,�,/=%#,< , &> < Z^"�#,�=%#,< , &> 5_∗3�/12 ∑ "�#,�,/=%#,< , &>_∗/12      (2.17) 

where [∗ represents one state in the ordered sequence of all possible outgoing states of state �4,B�. The state [∗  is determined by going through the ordered sequence of all possible 

outgoing states of state �4, B� until eq. (2.17) is satisfied. The algorithm of Monte Carlo 

simulation for solving the integrated MSPM on a time horizon [0, �_`]  is presented as 

follows.  
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Set 9_` (the maximum number of replications), and a = 0. 
While a < 9_`, do the following.   

Initialize  the system by setting Q = � , 0� (initial state of perfect performance), setting the 

time � = 0 (initial time). 

Set �< = 0 (state holding time). 

While � < �_`, do the following.  

Calculate (10). 

Sample a �’ by using eq. (2.16). 

Sample an arrival state �+, �� by using eq. (2.17). 

Set � = � + �′. 
Set Q = �+, ��. 
If Q = �0,0�, 
then break. 

End if. 

End While. 

Set a = a + 1. 
End While. □ 

 

The estimation of the state probability vector bc��� = {�8d���, �83�e���,… , �2d���} at time � is  

bc��� = �fIgh {�8���, �83����, … , �2���}	                 (2.18) 

where {�#���|4 =  ,… ,0, � 5 �_`} is the total number of visits to state i at time t, with sample 

variance [71] defined as 

i[jkld�L� = �mn����1 − �mn����/�9_` − 1�                (2.19) 
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3. DYNAMIC RELIABILITY MODELS FOR SYSTEMS WITH 

DEGRADATION DEPENDENCY 

For highly reliable systems, such as nuclear safety systems, it is relatively difficult to model 

their degradation and failure behaviors due to the limited amount of data available. In these 

cases, PBMs and MSMs are two modeling frameworks that can be used for describing the 

evolution of degradation in systems. Systems are often subject to multiple competing 

degradation processes and any of them may cause failure. The dependences among these 

processes need to be considered under certain circumstances. In this chapter, a PDMP modeling 

framework is developed to treat degradation dependency in a system whose degradation 

processes are modeled by PBMs and MSMs. 

3.1 Degradation models 

We consider a multi-component system made of o components denoted by p = {p�, p^, … , pq}. Each component may be affected by multiple degradation mechanisms or processes, 

possibly dependent. The degradation processes can be separated into two groups: (1) r = {��, �^, … , �8} modeled by M PBMs; (2) s = {��, �^, … , �f} modeled by N MSMs, where �, B = 1, 2, … ,  and ��, � = 1, 2, …	, 9 are the indexes of the degradation processes.  

 

3.1.1 Physics-based models (PBMs) 

The following assumptions on PBMs are made: 

• A degradation process tuI���, � ∈ r in the first group, has DuI  time-dependent 

continuous variables tuI��� = vOuI� ���, OuI^ ���, … , OuIFwI���x ∈ ℝFwI . A system of 

first-order differential equations (i.e. physics equations) tuIz ��� ={uI=tuI���, �	|	&uI> , are used to characterize its evolution, where &uI  are the 

environmental factors influential to �  (e.g. temperature and pressure) and the 

parameters used in {uI. This assumption is made in [72] and widely used in practice 

[12, 73]. Note that higher-order differential equations can be converted into a system 

of a large number of first-order differential equations by introducing extra variables 

[74]. 
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• tuI��� can be divided into two groups of varaibles tuI��� = �tuI} ���, tuIb ����: (1) 

tuI} ���  are the non-decreasing degradation variables describing the degradation 

process (e.g. leak area of the piston of the valve [12]]), where }  is the set of 

degradation variables indices; (2) tuIb ���  are the physical variables influencing 

tuI} ��� (e.g. velocity and force [73]), where b is the set of physical variable indices. 

For example, the friction-induced wear of the bearings is considered as one 

degradation process in [73]. It is represented by the increase in friction coefficients. 

The two friction coefficients associated with sliding and rolling friction are considered 

as the degradation variables. The rotational velocity of the pump is considered as the 

physical variable since it influences the increase in the coefficients of friction. The 

evolution of physical variables can be characterized by physics equations. If the 

variables can be modeled by physics equations and influence certain degradation 

variables, then, they are considered as physical variables. As long as one OuI# ��� ∈tuI} ���  reaches or exceeds its corresponding failure threshold OuI# ∗
, the generic 

degradation process � fails. Let ~uI  denote the failure state set of � and �uI∗  

denote the set of all the failure thresholds of tuI} ���. An example of �� is shown in 

Fig. 3-1. 

 

 

 

Fig. 3-1. An illustration of ��. 
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3.1.2 Multi-state models (MSMs) 

The following assumptions on MSMs are made: 

• A degradation process, ��T���	, �� ∈ � in the second group, takes values from a finite 

state set denoted by ��T = {0, 1, … , D�T}, where ‘D�T ’ is the perfect functioning state 

and ‘0’ is the complete failure state. The transition rates "#=+	|	&�T>, ∀	4, + ∈ ��T , 4 � + 
characterize the degradation transition probabilities from state 4 to state +, where &�T 

is the set of the environmental factors to �� and the related parameters used in "#. We 

follow the assumption of Markov property which is widely used in practice to describe 

components degradation processes [18]. The transition rates between different 

degradation states are estimated from the degradation and/or failure data from 

historical field collection. Let ~�T = {0}  denote the failure state set of �� . An 

example of �� is shown in Fig. 3-2. 

 

 

 

Fig. 3-2. An illustration of ��. 
 

3.2 Degradation model of the system considering dependency 

The dependencies between degradation mechanisms or processes may exist within each group 

and between the two groups. The evolution trajectories of the continuous variables in the first 

group may be influenced by the degradation states of the second group. The transition times 

and transition directions of the degradation processes of the second group may depend on the 

degradation levels of the components in the first group [75]. PDMPs [76], which are a family 

of Markov processes involving deterministic evolution punctuated by random jumps, can be 

employed to model this type of dependency (the detailed formulations are shown in eqs. (3.2) 
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and (3.3)). Let t��� = �tu����⋮tu����� denote the degradation processes of the first group and 

���� = �������⋮�������  denote the degradation processes of the second group. The overall 

degradation process of the system is presented as 

���� = vt�������x ∈ � = ℝFw × �                      (3.1) 

where � is a space combining ℝFw  (Du = ∑ DuI81� ) and � = {0, 1, … , D�} denotes the 

state set of process ����. The evolution of ���� has two parts: (1) the stochastic behavior of ���� and (2) the deterministic behavior of t��� between two consecutive jumps of ����, 
given ����. The former is governed by the transition rates of ����, which depend on the states 

of the degradation processes in t��� and also in ����, as follows: 

�4B∆L	→	2(=��� + ∆�� = +	|	t���, ���� = 4, &s = ⋃ &�Tf�1� > /∆�	 	
= "#�+	|	t���, &s�, ∀	� ≥ 0, 4, + ∈ �, 4 7 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �3.2�	

The latter is described by the deterministic physics, which depends on the states of the 

degradation processes in ���� and also in t���, as follows: 

tz ��� = �tu�z ���⋮tu�z ���� = �
{u���L��t���, �	|	&u�>⋮{u���L��t���, �	|	&u�>� 

= {u��L��t���, �	|	&r = ⋃ &uI81� 	>                  (3.3) 

Let ~ denote the system failure state set, which depends on the structure of the system: then, 

the system reliability at mission time '#�� can be obtained as follows: 

��'#��	� = ([��Q� ∉ ~, ∀Q 5 '#��	]                      (3.4) 

The system failure state set is dependent on system structure. To determine this set, reliability 

analysis tools such as fault tree [77] can be used to identify the combination of primary failure 

events leading to system failure. 
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3.3 System reliability estimation method 

Analytically solving the PDMP is a difficult task due to the complex behavior of the system 

[78], which contains the stochasticities in the components modeled by MSMs and the time-

dependent evolutions of the components modeled by PBMs. On the other hand, MC simulation 

methods are suited for the reliability estimation of the system. 

Refer to the system presented in Section 3.2. Let �/ = ��'/� = vt�'/���'/�x ∈ �, a	 ∈ 	ℕ, where 

'/ denotes the time of the a-th transition of ���� from the beginning. Then, {�/ , '/}/�2 is a 

Markov renewal process defined on the space � × ℝ* [76], which is characterized as follows: 

([�/*� ∈ �, '/*� ∈ ['/, '/ + ∆�]|�/ = 4, & = &s ∪ &r]  

= ∬ 9�4, D�, DQ|&��∗[2,∆L] , ∀	a ≥ 0, ∆� ≥ 0, 4 ∈ 	�, � ∈ �           (3.5) 

where � is a �-algebra of � and 9�4, D�, DQ|&� is a semi-Markov kernel on �, which verifies 

that ∬ 9�4, D�, DQ|&� 5 1�∗[2,∆	L] , ∀	∆� ≥ 0, 4 ∈ 	�. It can be further developed as:  

9�4, D�, DQ|&� = D�#�Q|&���4, D�|Q, &�                  (3.6) 

where  

D�#�Q|&�                               (3.7) 

is the probability density function of '/*� − '/ given �/ = 4 and  

��4, D�|Q, &�                             (3.8) 

is the conditional probability distribution of state �/*� starting from �/ = 4 given '/*� −'/ = Q. 
The simulation procedure consists of sampling the transition time from (3.7) and the arrival 

state from (3.8) for ����, then, calculating t��� within the transition times, by using the 

physics equation eq. (3.3) until the time of system evolution reaches a certain mission time '#�� or the system enters the failure space ~. 

To calculate the system reliability, the procedure of the MC simulation is presented as follows: 

 

Set 9_` (the maximum number of replications) and a = 0 (index of replication) 

Set a′ = 0 (number of trials that end in the failure state) 
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While a < 9_`  

Initialize  the system by setting �′ = vt�0���0�x (initial state), and the time ' = 0 (initial 

system time) 

Set �< = 0 (state holding time) 

While ' < '#�� 
Sample a �< by using the probability density function (3.7) 

Sample an arrival state �′ for stochastic process ���� from all the possible states by 

using the conditional probability distribution (3.8) 

Set ' = ' + �′ 
Calculate t�'� by using the physics eq. (3.3) 

Set �′ = �t�'��′ � 
If  ' 5 '#�� 
  If  �′ ∈ ~  

Set a< = a< + 1 
Break 

End if  

Else (when ' � '#��) 
Calculate ��'#��� 

  If  ��'#��� ∈ ~ 

Set a< = a< + 1 
Break 

End if  

End if  

End While 

Set a = a + 1 
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End While □ 

The estimated probability of occurrence of one path at time '#�� can be obtained by 

� �'#��� = 1 − a</9_`                         (3.9) 

with the sample variance [71] as follows: 

i[jG �¡IH¢¢� = � �'#����1 − � �'#����/�9_` − 1�             (3.10) 
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4. SYSTEMS RELIABILITY ASSESSMENT CONSIDERING 

DEGRADATION DEPENDENCY AND EPISTEMIC UNCERTAINTY 

Epistemic (subjective) uncertainty [79] can affect the system reliability assessment due to the 

incomplete or imprecise knowledge about the degradation processes of the components [80, 

81]. For PBMs, the parameters (e.g. wear coefficient) and influencing factors (e.g. temperature 

and pressure) may be unknown [82] and elicited from expert judgment [83]; for MSMs, the 

state performances may be poorly defined due to the imprecise discretization of the underlying 

continuous degradation processes [84] and the transition rates between states may be difficult 

to estimate statistically due to insufficient data, especially for those highly reliable critical 

components (e.g. valves and pumps in nuclear power plants or aircrafts, etc.) [85]. 

 

4.1 State of the art 

In literature, fuzzy reliability has been studied by many researchers to account for imprecision 

and uncertainty in the system model parameters. Tanaka et al. [86] have proposed the fuzzy 

fault tree for the fuzzy reliability assessment of binary-state systems and Singer [87] has 

assigned fuzzy probabilities to the basic events. Dunyak et al. [88] have proposed another fuzzy 

extension to assign fuzzy probability to all events, which is consistent with the calculations 

from fuzzy fault trees. Ding et al. [80] have developed fuzzy multi-state systems (FMSS) 

models by considering the steady state probabilities, or/and steady state performance levels of 

a component as fuzzy numbers. Ding and Lisnianski [89] have proposed the fuzzy universal 

generating function (FUGF) for the quantification of the fuzzy reliability of FMSS. Later, Li et 

al. [90] have developed a random fuzzy extension of the universal generating function and 

Sallak et al. [91] have employed Dempster–Shafer theory to quantify the fuzzy reliability of 

MSS. Liu et al. [84] have proposed a fuzzy Markov model with fuzzy transition rates for FMSS 

when the steady fuzzy state probabilities are not available.  

In this Chapter, the influence of epistemic uncertainty to PDMP system degradation models 

proposed in Chapter 3 is analyzed.  
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4.2 Piecewise-deterministic Markov process (PDMP) modeling framework under 

epistemic uncertainty 

Fuzzy set theories and techniques introduced by Zadeh [92, 93] have been employed in 

reliability models under epistemic uncertainty when the crisp values are insufficient to capture 

the actual behavior of components. In this section, the following assumptions are made to 

extend the previous PDMP model presented in Section 3.2 with the consideration of epistemic 

uncertainty: 

• The values of &r , the environmental factors and the parameters used in 

{u��L��t���, �	|	&r� for degradation processes t���, can be fuzzy numbers, denoted by &r£.  

• The values of &s, the environmental factors and the parameters used in the transition 

rates "#�+	|	t���, &s�  for the degradation processes ���� , can be fuzzy numbers, 

denoted by &s£ . 

Let �L�D� = �D�, ¤�	|	&� denote the probability distribution of ����, the system reliability at 

time � can be defined as follows: 

���� = ([��Q� ∉ ~, ∀Q 5 �] = P �L�D�	|	&��∉~                (4.1) 

Due to the epistemic uncertainty �L�D�	|	&� and reliability function ���� have, therefore, 

changed from crisp values to fuzzy numbers, denoted by �L¥ �D�	|	&¦ = &r£ ∪ &s£� and ����� 
respectively. 

 

4.3 Solution methodology 

In this section, we extend a FV method to assess the (fuzzy) system reliability. Analytical 

solution of �L�D�	|	&� is difficult to to obtain due to the complex behavior of the processes [78, 

94]. MC simulation methods can be applied for such numerical computations, but the major 

shortcoming is that they are typically time-consuming [95]. FV methods is an alternative that 

can lead to comparable results as MC simulation, but within a more acceptable computing time 

[95]. 
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4.3.1 Finite-volume (FV) for solving PDMP 

Here, we employ an explicit FV method to PDMP, developed by Cocozza-Thivent et al. [62].  

This approach can be applied under the following assumptions: 

• The transition rates "#�+	| 	 ∙, &s�, ∀4, + ∈ � are continuous and bounded functions from ℝFw to ℝ*. 

• The physics equations {u#	�∙,∙	|	&u�, ∀4 ∈ � are continuous functions from ℝFw × ℝ* 

to ℝFw and locally Lipschitz continuous. 

• The physics equations {u#	�∙, �	|	&u�, ∀4 ∈ � are sub-linear, i.e. there are some §� � 0 
and §̂ � 0 such that  ∀� ∈ ℝFw , � ∈ ℝ*|{u#	��, �	|	&u�| 5 §��‖�‖ + |�|� + §̂  

• The functions D4i�{u#	�∙,∙	|	&u��, ∀4 ∈ � are almost everywhere bounded in absolute 

value by some real value © � 0 (independent of 4). 
For the ease of notation, first we let ª#�∙,∙�:	ℝFw × ℝ → ℝFw denote the solution of 

¬¬Lª#��, �	|	&u� = {u#	=ª#��, �	|	&u�, �	|	&u>, ∀4 ∈ �, � ∈ ℝFw , � ∈ ℝ      (4.2) 

with 

	 ª#��, 0	|	&u� = �, ∀4 ∈ �, � ∈ ℝFw                    (4.3)	
and ª#��, �	|	&u� is the result of the deterministic behavior of t��� after time t, starting from 

the point � and while the processes ���� hold on state 4. 
The state space ℝFw  of continuous variables t��� is divided into an admissible mesh ℳ, 

which is a family of measurable subsets of ℝFw (ℳ is a partition of ℝFw) such that: 

(1) ⋃ ®¯∈ℳ = ℝFw. 
(2) ∀®, ° ∈ ℳ, ® 7 ° ⇒ ® ∩ ° = ∅. 

(3) B¯ = P D�¯ � 0, ∀® ∈ ℳ, where B¯ is the volume of grid ®.  

(4) QZ�¯∈ℳD4[B�®� < +∞ where D4[B�®� = QZ�∀�,¤∈¯|� − ¤|. 
Additionally, the time space ℝ* is divided into small intervals ℝ* = ⋃ [�∆�, �� +�12,�,^,…	1�∆�[, by setting the time step ∆� � 0 (the length of each interval). 

The numerical scheme aims at constructing an approximate value µL��, 4	|	&�D�  for 
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�L�D�, 4	|	&�, such that �L��, 4	|	&� is constant for ∀� ∈ ®, � ∈ [�∆�, �� + 1�∆�[, ∀® ∈ ℳ:   

µL��, 4	|	&� = (��®, 4	|	&�, ∀4 ∈ �, � ∈ ®, � ∈ [�∆�, �� + 1�∆�[          (4.4) 

(2�®, 4	|	&�, ∀4 ∈ �, ® ∈ ℳ is defined as follows: 

(2�®, 4	|	&� = P �2�D�, 4	|	&�¯ /B¯                     (4.5) 

Then, (�*��®, 4	|	&�, ∀4 ∈ �, ® ∈ ℳ, � ∈ ℕ can be calculated considering the deterministic 

evaluation of t���  and the stochastic evolution of ����  based on (��ℳ, 4	|	&�  by the 

Chapman-Kolmogorov forward equation, as follows: 

(�*��®, 4	|	&� = ��*∆L¶·H (�*�̧�®, 4	|	&� + ∆� ∑ _·SH�*∆L¶·S (�*�̧�®, +	|	&�$∈�       (4.6) 

where  

[$̄# = P "$�4, �	|	&��D�¯ B¯⁄ , ∀4 ∈ �, ® ∈ ℳ                 (4.7) 

is the average transition rate from state + to state 4 for grid ®, 

º#̄ = ∑ [#̄$$	»	# , ∀4 ∈ �, ® ∈ ℳ                      (4.8) 

is the average transition rate out of state 4 for grid ®, 

(�*�̧�®, 4	|	&� = ∑ B¼¯#¼∈ℳ (��°, 4	|	&�/B¯, ∀4 ∈ �, ® ∈ ℳ         (4.9) 

is the approximate value of probability density function on ®	 × {4} × [�� + 1�∆�, �� + 2�∆�[ 
according to the deterministic evaluation of t���, 

B¼¯# = P D¤{¤∈¼	|	ªH�¤,∆L	|	&w�∈¯} , ∀4 ∈ �, ®, ° ∈ ℳ             (4.10) 

is the volume of the part of grid ° which will enter grid ® after time ∆� according to the 

deterministic evaluation of t���.  

The first term of the right-hand parts of eq. (4.6) accounts for the situation that processes ���� 
hold on state 4 during time [�∆�, �� + 1�∆�], represented by “1” in an illustrated example in 

ℝ^ (Fig. 4-1), where 
��*∆L¶·H , ∀4 ∈ �, ® ∈ ℳ is the approximated probability that no transition 

happens from state 4  for grid ® and the second term of the right-hand parts of eq. (4.6) 

accounts for the situation that processes ���� step to state 4 from another state + at time �� + 1�∆�, represented by “2” in an illustrated example in ℝ^ (Fig. 4-1), where [$̄#∆�, ∀4, + ∈�, ® ∈ ℳ is the transition probability from state + to state 4 for grid ® (°�, °^, °½	and	°À 
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are the grids of which some parts will enter grid ® according to the deterministic evaluation 

of t��� at time �� + 1�∆�). 
 

 

 

Fig. 4-1. The evolution of degradation processes during [�∆�, �� + 1�∆�]. 
 

The approximated solution µL��,∙ 	 |	&�D�  weakly converges towards �L�D�,∙ 	 |	&�  when ∆� → 0 and |ℳ|/∆� → 0 where |ℳ| = QZ�¯∈ℳD4[B�®� [62]. 

 

4.3.2 Quantification of fuzzy system reliability 

Let [[Á]Â = [[Â , [Â	] denote the �-cut of a fuzzy number [Á, where [Â and [Â are the bounds; 

then, the �-cut of �L¥ =D�, 4	|	&¦>, ∀ÃÄ ∈ �, OÄ ∈ ℝFw , � ∈ ℝ can be obtained based on the extension 

principle [93] as follows: 

Å�L¥ =D�, 4	|	&¦>	ÆÂ = ÇB4�È∈Å&¦ÆÉ �L�D�, 4	|	Ê� ,B[OÈ∈Å&¦ÆÉ �L�D�, 4	|	Ê�Ë      (4.11) 

The approximate solution for Å�L¥ =D�, 4	|	&¦>	ÆÂ , ∀4 ∈ �, � ∈ ®, � ∈ [�∆�, �� + 1�∆�[  denoted 

by (�¦ =®, 4	|	&¦> can be obtained by varying Ê in &¦ as follows: 

Å(�¦ =®, 4	|	&¦>	ÆÂ = ÇB4�È∈Å&¦ÆÉ (��®, 4	|	&<� ,B[OÈ∈Å&¦ÆÉ (��®, 4	|	&<�Ë        (4.12) 
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where (��®, 4	|	&<� is obtained by using eq. (4.6) through the FV method. Then, the parametric 

programming algorithms [84] can be applied to find the fuzzy probability in eq. (4.12). 

The approximate solution for the �-cut of fuzzy reliability ����� of the system at time � ∈[�∆�, �� + 1�∆�[ can, then, be obtained as follows:  

[�����]Â = ∑ [(�¦ =®, 4	|	&¦>]Â P DO{`∈¯	|�`,#�	∉	~}�¯,#�⊈~            (4.13) 

In many cases, the original ���� is monotonic with &; then, we can directly obtain that instead 

of using eq. (4.13): 

[�����]Â = Ç∑ (�=®, 4	|	&Â> P DO{`∈¯	|�`,#�	∉	~}�¯,#�⊈~ , ∑ (�=®, 4	|	&Â> P DO{`∈¯	|�`,#�	∉	~}�¯,#�⊈~ Ë  

          (4.14) 

  



IMPORTANCE MEASURES (IMS) FOR COMPONENTS WITH DEGRADATION DEPENDENCY AND SUBJECT TO 

MAINTENANCE 

- 34 - 

5. IMPORTANCE MEASURES (IMS) FOR COMPONENTS WITH 

DEGRADATION DEPENDENCY AND SUBJECT TO 

MAINTENANCE  

In reliability engineering, component IMs are used to quantify and rank the importance of 

different components within a system. By determining the criticalities of the components, 

limited resources can be allocated according to components prioritization for reliability 

improvement during the system design and maintenance planning phases [96].  

The criticality of a component changes over time, due to the evolution of its underlying 

degradation processes [97]. The dependency among the degradation processes within one 

component and of different components have to be considered in the calculation of component 

IMs. Moreover, the degradation processes can be interrupted by maintenance tasks (e.g. one 

component can be restored to its initial state by preventive maintenance if any of its 

degradations exceed the respective critical level [46] and by corrective maintenance upon its 

failure [21]).  

Neglecting the factors that influence the state of being of components can result in inaccurate 

estimation of component IMs and, thus, mislead the system designers, operators and managers 

in the assignment of priorities to component criticalities. In this Chapter, we investigate the 

criticality of components taking into account the degradation dependency and maintenance 

tasks.   

 

5.1 State of the art 

A literature review on component IMs is presented below, to position our contribution within 

the existing works. Component IMs were first introduced mathematically by Birnbaum [98] in 

1969, in a binary setting (i.e. the system and its components are either functioning or faulty). 

The Birnbaum IM (BIM) allows ranking components by looking at what happens to the system 

reliability when the reliabilities of the components are changed, one at a time. Afterwards, 

various IMs have been developed for binary components, including reliability achievement 

worth (RAW), reliability reduction worth (RRW), Fussel-Vesely and Barlow-Proschan IMs [99-

101]. Other concepts of IMs have been proposed with focus to different aspects of the system, 

such as structure IMs, lifetime IMs, differential IMs and joint IMs [102]. 
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For components whose description requires more than two states, e.g. to describe different 

degrees of functionalities or levels of degradation, definition of the component IMs have been 

extended in two directions: (1) metrics for components modeled by MSMs; (2) metrics for 

components modeled by continuous processes. 

For the first type, Armstrong [103] proposed IMs for multi-state systems (MSSs) with dual-

mode failure components. For MSSs with multi-state components, Griffith [104] formalized 

the concept of system performance based on expected utility and generalized the BIM to 

evaluate the effect of component improvement onto system performance. Wu and Chan [105] 

improved the Griffith IM by proposing a new utility importance of a state of a component to 

measure which component or which state of a certain component contributes the most to system 

performance. Si et al. [106] proposed the integrated IM, based on Griffith IM, to incorporate 

the probability distributions and transition rates of the component states, and the changes in 

system performance. Integrated IM can be used to evaluate how the transition of component 

states affects the system performance from unit time to different life stages, to system lifetime, 

and provide useful information for preventive actions (such as monitoring enhancement, 

construction improvement etc.) [107, 108]. The multi-state generalized forms of classically 

binary IMs have been proposed by Zio and Podofillini [109] and Levitin et al. [110]: these IMs 

quantify the importance of a multi-state component for achieving a given level of performance. 

Ramirez-Marquez and Coit [111] developed two types of composite IMs: (1) the general 

composite IMs considering only the possible component states; (2) the alternative composite 

IMs considering both the possible component states and the associated probabilities. 

For the second type, Gebraeel [112] proposed a prognostics-based ranking algorithm to rank 

the identical components based on their residual lives. Liu et al. [113] extended the BIM for 

components with multi-dimensional degradation processes under dynamic environments. Note 

that no IM has been developed for components whose (degradation) states are determined by 

both discrete and continuous processes, and are dependent upon other components, as it is often 

the case in practice [114]. 

To include dependency, Iyer [115] extended the Barlow-Proschan IM for components whose 

lifetimes are jointly absolutely continuous and possibly dependent, and Peng et al. [97] adapted 

the mean absolute deviation (MAD) IM (one of the alternative composite IMs) for statistically 

correlated (s-correlated) components subject to a one-dimension continuous degradation 

process; this enables to measure the expected absolute deviation in the reliability of a system 
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with s-correlated degrading components, caused by different degrading performance levels of 

a particular component and the associated probabilities. To the knowledge of the authors, 

component IMs taking into account the dependency of multiple degradation processes within 

one component and among different components, with the inclusion of maintenance activities, 

have not been investigated in the literature (studies of IMs for repairable systems with s-

independent components can be found in [108, 116]).  

 

5.2 PDMP modeling framework considering maintenance  

In this section, the following assumptions are made to extend the previous PDMP model 

presented in Section 3.2 with the consideration of condition-based preventive maintenance 

(PM) via periodic inspections and corrective maintenance (CM): 

• For degradation process 4 ∈ r ∪ s, the inspection task Í#	of PM is performed with fixed 

period '# and brings the related component back to its initial state when 4 is found in 

the predefined state set Î#. 
• The degradation state of a component pÏ ∈ Ð, Ñ = 1, 2, … , o , is determined by its 

degradation processes }ÒÓ ⊆ r ∪ s and the component fails either when one of the 

degradation processes evolves beyond a threshold of failure in PBMs or reaches the 

discrete failure state in MSMs . 

• The component is restored to its initial state by CM, as soon as it fails. 

• The inspection tasks and all maintenance actions are done instantaneously and without 

errors. 

An illustration of two components p� and p^ is shown in Fig. 5-1, where }Ò� = {��} and }ÒÕ = {��}. PM is performed for ��  if tu�} ��� exceeds its threshold Ou�k  at the time of 

inspection and for �� if ������ is in state 1 at the time of inspection. 
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Fig. 5-1. An illustration of two components. 

 

To extend the previous PDMP modeling framework by including the maintenance policy, the 

difficulty is the discontinuity of t���  due to the instantaneous change caused by the 

maintenance task. To solve this problem, a set of PDMPs �/���, a = 1,2, …	is employed to 

model the system degradation processes, where a new PDMP is established once a maintenance 

task is performed. Let 9 denote the total number of maintenance tasks (PM and CM) the 

system has experienced till the mission time '#��, then,	�/���, a = 1,2, … , 9 is defined on ['/3�, '/], where '/ , a = 1,2, … ,9 denotes the execution time of the k-th maintenance task 

and '2 = 0. �fI*���� is defined on Å'fI , '#��Æ. This treatment is only for formulating the 

problem within the settings of PDMP and it does not impact the computational complexity. Fig. 

5-2 shows this for the degradation processes in Fig. 5-1. 
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Fig. 5-2. An illustration of two components, modeled by a set of PDMPs. 

 

�/�'/3��  (the initial states of �/���, a = 2,… ,9 + 1 ) can be obtained according to �/3��'/3�� and the (k-1)-th maintenance task. The degradation states of the system till '#�� 
can be represented by 

���� = ∑ ÖÅ¡I×Ø�,¡I× Å��� ∙ �/���fI/1� + ÖÇ¡I�I ,¡IH¢¢Ë��� ∙ �fI*����         (5.1) 

Since maintenance is performed instantaneously, the failure states of the system are infinitely 

approachable by ����, instead of being truly reached. We, then, use another stochastic process �<���, which can record the failure of the system as follows: 

�<��� = ÖÅ2,¡I� Æ��� ∙ ����� + ∑ ÖÆ¡I×Ø�,¡I× Æ ∙ �/���fI/1^ + ÖË¡I�I ,¡IH¢¢Ë��� ∙ �fI*����  (5.2) 

Let ~ denote the system failure state set: then, the system reliability at '#�� can be defined 

as follows: 

��'#��� = ([�<�Q� ∉ ~, ∀Q 5 '#��] = (Å⋂ ��/�'/� ∉ ~� ∩ =�fI*��'#��� ∉ ~>fI/1� Æ		      

(5.3) 

Since the component is restored to its initial state by corrective maintenance as soon as it fails, 
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the failure states of the system can only be reached by �<��� at the execution time of the 

maintenance tasks '/ , a = 1,2, … , 9  or at the mission time '#�� . Therefore, the event �<�Q� ∉ ~, ∀Q 5 '#�� can be represented by ⋂ ��/�'/� ∉ ~� ∩ =�fI*��'#��� ∉ ~>fI/1� . 

 

5.3 Component IMs 

Ramirez-Marquez and Coit [111] proposed the MAD IM for MSSs with multi-state 

components, which evaluates the components criticality taking into account all the possible 

states and associated probabilities. Peng et al. [97] adapted it for binary systems with s-

correlated components subject to one continuous degradation process.  

For components whose (degradation) states are determined by both discrete and continuous 

processes, we propose an extension of MAD to provide timely feedbacks of the criticality of 

component pÏ with multiple dependent competing degradation processes modeled by MSMs 

and PBMs, and giving consideration to PM and CM. The formulation is presented as follows: 

ÚÍÒÓ��� = Û ÇÜ( ��<�Q� ∉ ~, ∀Q 5 �|}ÒÓ���� − ����ÜË             (5.4) 

where }ÒÓ��� = �trÝ��� = �tuÝ����, … , tuÝT����, �sÓ��� = ���Ó����, … , ��ÓI�����  and 

}ÒÓ = {rk = {�k� , … , �kT}, sÏ = {�Ï� , … , �ÏI}} . It accounts for the expected absolute 

deviation in the system reliability caused by changes of all degradation processes of component 

pÏ . Let ℝFrÝ = ℝ∑ FwÝHTHÞ�  and �sÓ  denote the state space of trÝ���  and �sÓ��� , 

respectively; eq. (5.4) can, then, be expressed as 

ÚÍÒÓ��� = ∑ P C}ßÓ�L� �DOrÝ , àsÓ�`rÝ∈ℝárÝâsÓ∈�sÓ   

|(��<�Q� ∉ ~, ∀Q 5 �	|	trÝ��� = OrÝ , �sÓ��� = àsÓ� − 	����|         (5.5) 

where C}ßÓ�L� �DOrÝ , àsÓ� is the probability distribution of }ÒÓ���. 
Let 9L ≥ 1 denote the number of maintenance tasks that the system has experienced till �. 
According to eq. (5.3), we can obtain that: 

��'#��	� = ( Ç�⋂ ��/�'/� ∉ ~�fIã/1� � ∩ =�fIã *���� ∉ ~>Ë          (5.6) 

and 
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(��<�Q� ∉ ~, ∀Q 5 �|trÝ��� = OrÝ , �sÓ��� = àsÓ� = 

äå
æ
åç

F`rÝè}ßÓ�ã��F`rÝ ,âsÓ�( [�⋂ ��/�'/� ∉ ~�fIã/1� � ∩	
	��fIã *�}ßÓ ��|trÝ��� = OrÝ , �sÓ��� = àsÓ� ∉ ~�], 4C	C}ßÓ�L� �DOrÝ , àsÓ� 7 00, 4C	C}ßÓ�L� �DOrÝ , àsÓ� = 0	

	 	 	 �5.7�	

where    �fIã *�}ßÓ ��|trÝ��� = OrÝ , �sÓ��� = àsÓ� = �tu����, … , trÝ��� = OrÝ , … , tu����,	 ������, … , �sÓ��� = àsÓ , … , �������¡. 
 

5.4 Quantification of Component IMs 

Let �L�×�D� = �D�, ë�	|	&� denote the probability distribution of �/���, it can be approximated 

by (��×�®, 4	|	&�D�, � ∈ ®, � ∈ [�∆�, �� + 1�∆�[ by using the explicit FV method, developed 

by Cocozza-Thivent et al. [62], presented in Section 4.2.1.  

Given the initial probability distribution �2���D�	, 4	|	&�  of the system, (2���®, 4	|	&�, ∀4 ∈�, ® ∈ ℳ, can be obtained as: 

(2���®, 4	|	&� = P �2���D�, 4	|	&�¯ /B¯                  (5.8) 
(ì¡I� /∆Lí�� �®, 4	|	&�, ∀4 ∈ �, ® ∈ ℳ can, then, be calculated through the FV method. 

To calculate eq. (5.6) and ([�⋂ ��/�'/� ∉ ~�fIã/1� � ∩ ��fIã *�}ßÓ ��|trÝ��� = OrÝ , �sÓ��� =
àsÓ� ∉ ~�] in eq. (5.7), we are only interested in the situation that the system is functioning 

till �; thus, (ì¡I×Ø�/∆Lí�× �®, 4	|	&�, ∀4 ∈ �, ® ∈ ℳ, a = 2, 3, …9L + 1 is initiated as follows: 

(îïI×Ø�∆ã ð�× �®, 4	|	&� = 

äå
æ
åç (îïI×Ø�∆ã ð�×Ø� �®, 4	|	&� + ∑ (îïI×Ø�∆ã ð�×Ø� �®<, 4<	|	&��¯K,#K�∈.=¯×Ø�,#×Ø�>0�¯K,#K�∉~ ,
4C	=�®, 4� ∉ ~>	[�D	�∄° ∈ ℳ, + ∈ �:	�®, 4� ∈ {�°/3�, +/3��}�	0,4C	=�®, 4� ∈ ~>	òj	�∃° ∈ ℳ, + ∈ �:	�®, 4� ∈ {�°/3�, +/3��}�

    (5.9) 

where {�®/3�, 4/3��}, is the set containing all the states that step to the state (®, 4) caused by 

the �a − 1�-th maintenance task. Then, we can obtain that  
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( Ç�⋂ ��/�'/� ∉ ~�fIã/1� � ∩ =�fIã *���� ∉ ~>Ë = ∑ B¯(õ ã∆ãö��Iã ÷��®, 4	|	&��¯,#�∉~ 	 	 �5.10�	
( Ç�⋂ ��/�'/� ∉ ~�fIã/1� � ∩ ��fIã *�}ßÓ ��	|	trÝ��� = OrÝ , �sÓ��� = àsÓ� ∉ ~�Ë =	  

∑ (õ ã∆ãö��Iã ÷��®, 4	|	&��¯,#�∉~�`rÝ ,âsÓ�⊆�¯,#�
P DO¯/�`rÝ ,âsÓ�               (5.11) 

where ®/ �OrÝ , àsÓ� is the mesh by fixing }ÒÓ��� to �OrÝ , àsÓ�. 
To calculate C}ßÓ�L� �DOrÝ , àsÓ� in eqs. (5.5) and (5.7), we are interested in the state of the 

system at �  no matter whether the system is functioning till �  or not; thus, 

(îïI×Ø�∆ã ð�× �®, 4	|	&�, ∀4 ∈ �, ® ∈ ℳ, a = 2, 3, …9L + 1 is initiated as follows: 

(îïI×Ø�∆ã ð�× �®, 4	|	&� = 

äåæ
åç(îïI×Ø�∆ã ð�×Ø� �®, 4	|	&� + ∑ (îïI×Ø�∆ã ð�×Ø� �®<, 4<	|	&��¯K,#K�∈.=¯×Ø�,#×Ø�>0 ,

4C	∄° ∈ ℳ, + ∈ �:	�®, 4� ∈ {�°/3�, +/3��}0,4C	∃° ∈ ℳ, + ∈ �:	�®, 4� ∈ {�°/3�, +/3��}
   (5.12) 

We can obtain that 

C}ßÓ�L� �DOrÝ , àsÓ� = 	DOrÝ ∑ (õ ã∆ãö��Iã ÷��®, 4	|	&� P DO¯/�`rÝ ,âsÓ�¯∈ℳ,#∈��`rÝ ,âsÓ�⊆�¯,#�
		 �5.13�	

ÚÍÒÓ��� can, then, be obtained by using eqs. (5.5)-(5.13). 

The pseudo-code for the quantification of component IM ÚÍÒÓ��� is presented as follows: 

Set time �, length of each interval ∆� and admissible mesh ℳ 

Set the initial probability distribution �2���D�	, 4	|	&� 
Initialize the probability distribution of ���0� by using eq. (5.8) 

For + = 1 to 9L  do 

Calculate the probability distribution of �$�'$ � by using FV method 

Calculate the initial probability distribution of �$*��'$ � by using eq. (5.9) 

End 
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Calculate the probability distribution of �fIã *���� by using FV method 

Calculate the system reliability at time � by using eq. (5.10)  

Calculate the conditional system reliability at time � by using eq. (5.11) 

For + = 1 to 9L  do 

Calculate the probability distribution of �$�'$ � by using FV method 

Calculate the initial probability distribution of �$*��'$ � by using eq. (5.12) 

End 

Calculate the probability distribution of �fIã *���� by using FV method 

Calculate the probability distribution of }ÒÓ��� by using eq. (5.13) 

Calculate the component IM ÚÍÒÓ��� by using eqs. (5.5)-(5.7) 

□ 
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6. MAINTENANCE OPTIMIZATION FOR SYSTEMS CONSDERING 

EPISTEMIC UNCERTAINTY AND DEGRADATION DEPENDENCY 

Maintenance contributes to the safe and efficient operation of industrial systems [45]. The 

contribution to safety especially is in highly hazardous industries, such as the nuclear and 

aerospace ones. In this Chapter, a modeling and optimization framework for the maintenance 

of systems considering epistemic uncertainty and degradation dependency is proposed. 

 

6.1 Maintenance policy 

We refer to the system presented in Section 3.2, and follow the assumptions on actual 

maintenance activities performed in industrial practice made in Section 3.2, the associated costs 

are further considered as follows: 

• The PM involves condition-based maintenance tasks, which recommend maintenance 

actions according to the information collected through condition inspections [117]. 

The inspection task Í# , ∀	4 ∈ r ∪ s related to one degradation process 4 is carried out 

with fixed period and a cost is associated with each inspection.  

• If the state of one degradation process 4 ∈ r ∪ s, reported by condition inspection, 

enters the predefined state set for PM denoted by Î#, then the component containing 

this degradation process is restored to its initial state and a PM cost is incurred 

depending on the component type. Otherwise, no maintenance action is performed. 

• Component failure can be detected immediately and the failed component is restored 

to its initial state by the CM [21], and a CM cost is incurred depending on the 

component type. 

• The duration of inspection tasks is negligible and all maintenance actions are done 

instantaneously, compared with the lifetime of the components [27].  

The PDMP modeling framework including maintenance policy presented in Section 5.2 can be 

employed to model degradation processes of systems considering degradation dependency and 

subject to maintenance. 

In reality, the two major issues for the maintenance policy are to determine (1) the period '# , ∀	4 ∈ r ∪ s for each inspection task Í#  and (2) the state set for PM Î# , ∀	4 ∈ r ∪ s for 
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each degradation process 4.  

 

6.2 Maintenance optimization under uncertainty 

6.2.1 Maintenance optimization objective function 

In order to optimize the maintenance policy, the criterion considered is the expected 

maintenance cost over the system mission time. Let	Ú��� denote the maintenance cost, Î =⋃ Î#∀	#∈r∪s  and ø = ⋃ ø#∀	#∈r∪s , & = &r ∪ &s, �r∗ = ⋃ �uI∗81�  for the system functioning 

until time �, we can write:  

ù=Ú��, Î, ø	|	&, �r∗�> = ∑ ÚúH ∙ û L¡Hü#∈r∪s + ∑ ÚGÒÓ ∙ ù�9GÒÓ��, Î, ø	|	&��ÒÓ∈Ð   

+∑ ÚýÒÓ ∙ ù�9ýÒÓ��, Î, ø	|	&, �r∗��ÒÓ∈Ð + Úþ ∙ ù�9þ��, Î, ø	|	&, �r∗��        (6.1) 

where ÚúH is the cost of the inspection task 	Í#, û L¡Hü is the number of times the inspection task 

Í#  has been performed until time � , ÚGÒÓ  is the cost of PM to component pÏ , 

9GÒÓ��, Î, ø	|	&�	is the number of PM tasks to component pÏ until time �, 9ýÒÓ��, Î, ø	|	&, �r∗� 
is the number of CM tasks to component pÏ  until time � , Úþ  is the penalty cost of 

experiencing a system failure and 9þ��, Î, ø	|	&, �r∗� is the number of system failures until 

time �. 
Let �L�×�D�	|	&� denote the probability distribution of �/���; we, then, obtain that 

ù�9GÒÓ��, Î, ø	|	&�� = ∑ ∑ P �¡ë�×�D�	|	&��ßÓ∈ÎßÓ¡ë∈øßÓ/∈ℕ∗           (6.2) 

where �ÒÓ  denotes the degradation state of the component pÏ  in � , ÎÒÓ = ⋃ Î##∈}ßÓ  

denotes the state set for PM of the component pÏ and  øÒÓ denotes the set of inspection time 

of the component pÏ. The function �¡ë�×�D�	|	&�	 is the probability distribution of �/��� at the 

inspection time 'ë, 
ù�9ýÒÓ��, Î, ø	|	&, �r∗�� = ∑ P P ���×�D�	|	&�DQ�ßÓ∈~ßÓL2/∈ℕ∗           (6.3) 

where ~ÒÓ = ⋃ ~##∈}ßÓ  denotes the failure state set of the component pÏ,  
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ù�9þ��, Î, ø	|	&, �r∗�� = ∑ P P ���×�D�	|	&�DQ�∈~L2/∈ℕ∗             (6.4) 

 

6.2.2 Epistemic uncertainty 

Due to the incomplete or imprecise knowledge about the degradation processes, epistemic 

uncertainty may exist: 

• For PBMs: (1) the parameters (e.g. wear coefficient) and influencing factors (e.g. 

temperature and pressure) &u may be poorly known and elicited from expert judgment 

[82]; (2) the failure thresholds �r∗  may be uncertain due to imperfect information [118]. 

• For MSMs: (1) the state performances may be vaguely defined due to the imprecise 

discretization of the underlying continuous degradation processes [119]; (2) the 

transition rates between states may be difficult to estimate statistically due to 

insufficient data, especially for highly reliable components (e.g. valves and pumps in 

nuclear power plants, etc.) [120]. 

This uncertainty must be reflected in the modeling and accounted for in the maintenance 

optimization that rests on it. Fuzzy sets have been employed to mathematically represent 

epistemic uncertainty in some works [87, 121, 122] related to degradation modeling and 

maintenance. However, determining appropriate membership functions may be a difficult task 

in practice. The experts in many cases can only confirm an interval of the possible minimum 

and maximum values of the uncertain transition rate. One practical way of dealing with 

epistemic uncertainty is to use intervals of values for the uncertain parameters [123]. In this 

respect, the following assumptions are made (a symbol with an underbar indicates the left limit 

of that interval, while a symbol with an overbar indicates the right limit of that interval): 

• The value of ∀Ê# ∈ & , is represented by an interval [Ê#] = ÇÊ# , Ê#Ë . Let [&] =
⋃ [Ê#]ÈH∈& . 

• The value of ∀OuI# ∗ ∈ �r�∗ , ∀	� ∈ r,  is represented by an interval ÅOuI# ∗Æ =
ÇOuI# ∗, OuI# ∗Ë. Let Å�u�∗ Æ = ⋃ ÅOuI# ∗Æ`wIH ∗∈�wI∗  and [�r∗] = ⋃ Å�uI∗ Æ81� . 

ù=Ú��, Î, ø	|	&, �r∗�>, then, is also an interval, denoted by 

Åù=Ú��, Î, ø	|	[&], [�r∗]�>Æ 	= 
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�B4� &∈[&]�r∗∈[�r∗ ] ù=Ú��,Î, ø	|	&, �u∗�> ,B[O &∈[&]�r∗∈[�r∗ ] ù=Ú��,Î, ø	|	&, �u∗�>� 
= Çù=Ú��, Î, ø	|	[&], [�r∗]�>, ù=Ú��,Î, ø	|	[&], [�r∗]�>Ë               (6.5) 

 

6.2.3 Optimization problem definition 

Based on the models presented above, the problem of maintenance optimization under 

uncertainty, on a mission time horizon '#��, can be defined as:  

Min Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ 
Subject to Î# ⊆�#, ∀	4 ∈ r ∪ s 

0 5 '# 5 '#��, ∀	4 ∈ r ∪ s                      (6.6) 

where �# = �ℝFH , 4C		4 ∈ r�# , 4C				4 ∈ s. 

For its solution, it can be reformulated as a multi-objective optimization problem: 

Min ù=Ú�'#��, Î, ø	|	[&], [�r∗]�> 
Min ù=Ú�'#��, Î, ø	|	[&], [�r∗]�> 
Subject to Î# ⊆�#, ∀	4 ∈ r ∪ s  

0 5 '# 5 '#��, ∀	4 ∈ r ∪ s                     (6.7) 

where �# = �ℝFH , 4C		4 ∈ r�# , 4C				4 ∈ s. 

This formulation optimizes the lower and upper bounds of interval simultaneously. Due to the 

limit of data, no probability distribution or membership function is assumed on the interval. 

The order relation between intervals which requires no information about distribution or 

membership function [124] (Definitions 3.1 and 3.3) can be used in this situation (let ® =[[u , [�]  and ° = [ºu , º�]  denote two intervals, according to these definitions, ® 5°	4CC	[u 5 ºu	[�D	[� 5 º�). This leads to the definition of a multi-objective optimization 

problem with respect to the lower and upper bounds of the expected maintenance cost 
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(ù=Ú�'#��, Î, ø	|	[&], [�r∗]�> and ù=Ú�'#��, Î, ø	|	[&], [�r∗]�>). It also covers the minimax 

type of robust optimization based on worst-case analysis, which may generate conservative 

decisions under some situations [125]. Note that this order relation is a partial order so that the 

solutions of eq. (6.7) obtained are Pareto optimal solutions.  

Finding the Pareto optimal maintenance policy is a challenging problem, due to the complex 

behavior of the system involving the stochasticities of MSMs, time-dependent evolutions of 

PBMs and effects of the two types of maintenance. 

 

6.3 Solution methodology 

In order to solve the multi-objective optimization problem defined in eq. (6.7), we employ (1) 

FV method to calculate ù=Ú�'#��, Î, ø	|	&, �r∗�>; (2) two DEs to compute the upper and lower 

bounds of the interval Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ , using the FV method for fitness 

evaluation; (3) NSDE to find the Pareto-optimal maintenance policy for Î and ø, aiming at 

optimizing the interval produced by the two DEs. The meta-heuristic algorithm DE is chosen 

as the solution approach because 1) PDMP model is highly complex and non-linear and 2) DE 

is fit to optimizing continuous decision variables. 

 

6.3.1 FV method 

To obtain ù=Ú��, Î, ø	|	&, �r∗�>, the probability distribution of PDMPs �L�×�D� = �D�, 4�	|	&� 
need to be calculated at first. We employ the explicit FV method to estimate it, developed by 

Cocozza-Thivent et al. [62], presented in Section 4.2.1. 

 

6.3.2 DE approach 

DE is a simple and efficient heuristic approach for single-objective global optimization, 

originally developed by Store and Price [61] for continuous problems. It often shows better 

performance than alternative optimization algorithms, e.g. genetic algorithms. The procedure 

of DE is briefly presented as follows: 
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Step 1: Initialize randomly the population (  of 9� ≥ 4 target individuals over the 

variables space. 

Step 2: Generate the mutant individuals through the following mutation equation: 

i#,	*� = O
�,	 + � ∙ =O
^,	 − O
½,	>, ∀4 ∈ {1,2, … ,9�}                     (21) 

where � is the current iteration number, j�, ĵ , j½ 	 ∈ {1,2, … ,9�} are random indices 

satisfying j� 7 ĵ 7 	 j½ 7 4 and � ∈ [0, 2], determined by the user, is a constant factor 

controlling the amplification of =O
^,	 − O
½,	>. 
Step 3: Generate each trial individual through the following crossover equation: 

Z#,	*�$ = �i#,	*�$ , 4C	�j[�D 5 Ú��	òj	+ = 4j[�D�©�O#,	$ , 4C	�j[�D � Ú��	[�D	+ 7 4j[�D�©� , + = 1,2, … , ©     (22) 

where Z#,	*�$ , i#,	*�$  and O#,	$  are the +-th parameters of the vectors Z#,	*�, i#,	*� and 

O#,	 , respectively; j[�D  ∈ [0, 1]  is a uniform random number;	Ú� ∈ [0, 1]  is the 

crossover constant, determined by the user; © is the dimension of the individual vector; 4j[�D�4� is a uniform discrete random number in the set {1,2, … , ©}.  

Step 4: Evaluate the target individual and its trial individual; select the best one as the 

target individual for the next generation. 

Step 5: Go back to step 2, if the termination criterion is not met; otherwise, stop the 

algorithm. 

 

The maximum iteration number (9_` ), maximum fitness evaluation number ('_` ) and 

minimum fitness error (N�Q) are typically employed individually or jointly as the termination 

criterion.  

We use two DE algorithms (DE1 and DE2) using the FV scheme for the fitness function 

evaluation to obtain ù=Ú�'#��, Î, ø	|	[&], [�r∗]�>  and ù=Ú�'#��, Î, ø	|	[&], [�r∗]�> , 

respectively: DE1 selects the one with smallest value as the target individual for the next 

generation at step 4 whereas DE2 selects the one with largest value. 
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6.3.3 NSDE 

For solving the multi-objective problem formulated in eq. (11), the non-dominated sorting 

mechanisms are incorporated into the single objective DE, similar to the work [60] where the 

non-dominated sorting mechanisms are combined with a modified binary DE (MBDE). For the 

details about this approach, please kindly refer to [60]. 

 

6.3.4 Integration of methods 

These methods are integrated by using (1) FV scheme for the fitness evaluation in DE and (2) 

DE for the fitness evaluation in NSDE; the solution methods are integrated, for the first time, 

for maintenance optimization. The flowchart of the entire optimization methodology that 

integrates the methods mentioned above is shown in Fig. 6-1.  
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Fig. 6-1. Flowchart of the proposed optimization methodology. 

 

In Fig. 6-1, 9�� is the size of the population (� of NSDE, which contains the target individuals 

for Î and ø; 9�̂  and 9�½ are respectively the sizes of population (̂  of DE1 and population (½  of DE2, which contain the target individuals for & ; (#∗, 4 = 1, 2, 3  is the population 

generated from (# . The method starts with the random generation of 9��  individuals (i.e. 

candidate solutions) of Î and ø in the initial population (� in NSDE. Then, DE1 and DE2 

are executed in parallel to calculate Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ for each individual in (� 
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as follows: (1) randomly generate 9�̂ /9�½ individuals of	& and �r∗ , as the initial population (̂ /(½ in DE1/DE2; (2) generate the trial populations (̂∗/(½∗ for (̂ /(½ through mutation and 

crossover; (3) given the individual in (� , use FV scheme to calculate 

ù�Ú='#��, 	Î, 	ø	|	&, 	�r∗>� for the paired individuals in (̂ 	and (̂∗/((½	and (½∗), and select the 

one with smaller/bigger value as the individual of (̂ /(½ for the next generation; (4) go back to 

step (2), if the termination criterion is not met; otherwise, Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ is 

obtained for each individual in (� . Afterwards, the method returns to NSDE: (5) rank 

population (�  by performing fast non-dominated sorting on Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ 
and the ranked non-dominated fronts are, then, identified; (6) select the offspring population (�∗ based on the intermediate population o�, generated by crossover and mutation; (7) use DE1 

and DE2 to obtain Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ for each individual in (�∗; (8) identify the 

ranked non-dominated fronts by performing fast non-dominated sorting on the population union �� = (� ∪ (�∗; (9) select the best 9�� solutions from the sorted union as the updated (�; (10) 

go back to the step (6), if the termination criterion is not met; otherwise, the Pareto optimal 

maintenance policies are obtained. 
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7. RELIABILITY ASSESSMENT OF SYSTEMS SUBJECT TO 

DEPENDENT DEGRADATION PROCESSESA DN RANDOM 

SHOCKS 

System failures can be induced by internal degradation mechanisms (e.g. wear, fatigue and 

erosion) or by external causes (e.g. thermal and mechanical shocks) [126]. The reliability of 

systems experiencing both degradation and random shocks is a problem that has been widely 

studied [20, 21, 27, 40-44, 127]. The dependency among these processes leading to failure has 

posed some challenges to reliability modeling. Previous research has focused on the 

dependency between continuous/multi-state degradation processes and random shocks. 

However, few studies have explicitly considered both the dependencies between degradation 

processes and random shocks, and among the degradation processes themselves. In this 

Chapter, we extend the PDMP modeling framework for system reliability assessment by these 

two types of dependencies. 

 

7.1 Dependency between degradation processes and random shocks  

We refer to the system presented in Section 3.2, and the following assumptions on random 

shocks are made, similarly to various previous works [21, 27, 42-44]: 

• Random shocks occur in time according to a homogeneous Poisson process 

{9���, � ≥ 0} with constant arrival rate	;, where the random variable 9��� denotes 

the number of random shocks occurred until time �.  

• The damages of random shocks are divided into two types: extreme and cumulative. 

• Extreme and cumulative shocks are mutually exclusive. 

• Extreme shocks immediately lead the components to failure, whereas cumulative 

shocks gradually deteriorate the components. 

Due to the different nature of PBMs and MSMs, the impacts of random shocks on the two 

groups of components are characterized in different ways.  
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7.1.1 Impacts on MSMs 

In the generic degradation process �� ∈ s, random shocks can cause the process variable ��T��� to step from state 4 to a further degraded state + with probability �#$ , 4 � + [44], with �#2 denoting the probability that the random shock is extreme, i.e. leading to failure state 0 

upon occurrence from state ��T��� = 4. By combining the original degradation and the random 

shock processes, the resulting process is a homogeneous continuous-time Markov chain of the 

kind depicted in Fig. 7-1. The state of the process is represented by ��T< ��� = =��T���, a>, 
where a ∈ ℕ is the number of shocks experienced up to time � in the process ��. The state 

space of the new process is denoted by ��T< = {�[, º�, ∀[ ∈ ��T , º ∈ ℕ} and the space of the 

failure states of �� is denoted by ~�T< = {�0, º�, ∀º ∈ ℕ}. Note that the component fails when 

it reaches the degradation state 0, no matter how many shocks it has experienced. 

 

 

 

Fig. 7-1. Degradation process �� and random shocks. 

 

7.1.2 Impacts on PBMs 

In the generic degradation process � ∈ r, the 4-th shock becomes extreme if the shock load �# exceeds the maximal material strength ©, otherwise, it can bring an instantaneous random 
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increase Î# to tuI��� [40]. Let tuI ��� denote the cumulative change to tuI��� caused by 

random shocks until time � as follows: 

             tuI ��� = �∑ Î#fK�L�#1� , 4C	9<��� 7 0									0,								4C	9<��� = 0		                      (7.1) 

where 9<��� is the number of cumulative shocks occurred in the developing �  process 

before the extreme shock occurs. The overall degradation level of �  is expressed as }uI��� = tuI��� + tuI ��� . The process �  leads to failure if }uI���  reaches the 

predefined failure state set ~uI or a shock with load larger than © occurs. An example of 

degradation process �  considering random shocks is shown in Fig. 7-2, where �#  is the 

shock load of the 4-th shock occurred at time �#, 4 = 1,2,3. The first two shocks are cumulative 

which cause instantaneous random changes on }uI���, the last shock is extreme which lead }uI��� to failure. 

 

 

 

Fig. 7-2. An example of degradation process � with random shocks. Top Figure: degradation variable; 
Center Figure: physical variable; Bottom Figure: random shock process.  
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7.2 PDMP modeling framework for systems subject to degradation dependency and 

random shocks 

Let ����denote the overall degradation process of the system: 

���� = �t<��� = �}u����, … ,}u����� , �<��� = �����, 9����� ∈ � = ℝFw × �<  (7.2) 

where � is a space combining ℝFw  and �< = � × ℕ. Let '/, a ∈ ℕ denote the a-th jump 

time in �<���  and �/ = ��'/� = =t<�'/�, �<�'/�> = �t/< , �/< � . The evolution of ���� 
between two consecutive jumps of �<���, between which no shock occurs to the system and 

the degradation state does not change, can be written as follows: 

�z ��� = �t<z ���, �<z ���� = ={r�K�L��t���	|	&r�, ��, 0�>, Còj	� ∈ ['/, '/*�[     (7.3) 

According to the definition in [128], ���� is a PDMP since (1) it can be written as ���� =���/, � − '/�, Còj	� ∈ ['/, '/*�[  and �  satisfies ��¤, � + Q� = ����¤, ��, Q�, ∀�, Q ≥0, ¤ ∈ 	� , and � → ��¤, ��, ∀� ≥ 0, ¤ ∈ �	  is right continuous with left limits and (2) {��, '�}��2is a Markov renewal process defined on the space � × ℝ*. The probability that ���� will step to state � from state �/ in the time interval ['/, '/ + �], given {�# , '#}#�/ is as 

follows: 

([�/*� = �, '/*� ∈ ['/, '/ + �]	|	{�# , 	'#}#�/] = ([�/*� = �, '/*� ∈ ['/, '/ + �]	|	�/],	 
∀a ∈ ℕ	, �	 ∈ 	�, � 7 �/                         (7.4) 

{��, '�}��2  is characterized by the semi-Markov kernel 9=ë = ��# , ¤#�, �D�, ¤$�, D�> =(Åt/*�< ∈ [�, � + D�], �/*�< = ¤$ , '/*� − '/ ∈ [�, � + D�]	|	�/ = ëÆ, ∀a ∈ ℕ, ¤# , ¤$ ∈�<, �# , D� ∈ ℝFw , D� → �, D� → 0, which can be reformulated as follows: 

9=ë = ��# , ¤#�, �D�, ¤$�, D�> 
= (Åt/*�< ∈ [�, � + D�], �/*�< = ¤$ 	|	'/*� − '/ ∈ [�, � + D�], �/ = ëÆ 

∙ (['/*� − '/ ∈ [�, � + D�]	|	�/ = ë] 
= o=��ë, ��, �D�, ¤$�>D�ë���                      (7.5) 

where o=��ë, ��, �D�, ¤$�> is the probability distribution of state �/*� given '/*� − '/ = � 
and �/ = ë  and D�ë���  is the probability distribution of '/*� − '/  given �/ = ë . o=��ë, ��, �D�, ¤$�> can be reformulated as follows: 
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o=��ë = ��# , ¤#�, ��, �D�, ¤$�>      

= (Åt/*�< ∈ [�, � + D�], �/*�< = ¤$ 	|	'/*� − '/ ∈ [�, � + D�], �/ = ëÆ                               

= (Åt/*�< ∈ [�, � + D�]	|�/*�< = ¤$ , '/*� − '/ ∈ [�, � + D�], �/ = ëÆ 
∙ (Å�/*�< = ¤$	|	'/*� − '/ ∈ [�, � + D�], �/ = ëÆ              (7.6) 

Let �L�D� = �D�, ¤#�� denote the probability distribution of ����, which obeys the Chapman-

Kolmogorov equation [129] as follows: 

P ∑ P ∑ "¤H,¤S��	|	&s��P V=¤$ , à>;=¤# , ¤$ , �>�D¤� −ℝáw¤S∈�Kℝáw¤H∈�KL2 V�¤# , ������D�, ¤#�DQ +     

P ∑ P {r¤H��	|	&r�D4i=V�¤# , ��>���D�, ¤#�DQℝáw¤H∈�KL2 −  

∑ P V�¤# , ��ℝáw¤H∈�K �L�D�, ¤#� + ∑ P V�¤# , ��ℝáw¤HK∈�K �2�D�, ¤#� = 0      (7.7) 

where "¤H,¤S��	|	&s�  is the transition rate of �<���  from state ¤#  to ¤$ , V�∙,∙�  is any 

continuously differentiable function from  �< × ℝFw  to ℝ  with a compact support and ;=¤# , ¤$ , �>�D¤� is the probability of t<	��� ∈ [¤, ¤ + D¤] after jumping from � when �<��� 
steps to state ¤$ from state ¤#. 
The reliability of the system at time � is defined as follows: 

���� = ([��Q� ∉ ~, ∀Q 5 �] = P �L�D���∉~                 (7.8) 

where ~ is the space of the failure states of the system. 

The parameters in the proposed model can be mainly separated into three groups: (1) transition 

rates in multi-state models; (2) parameters in physics equations of physics-based models and 

(3) parameters charactering random shock processes. The first group can be estimated, by using 

degradation and/or failure data from historical field collection or degradation tests, trough 

maximum likelihood estimation for complete or incomplete data [130, 131], it can also be 

estimated by using material science knowledge (e.g. multi-state physics model [127]) instead 

of degradation and/or failure data. The values of the second group are given by the existing 

physics knowledge on the underlying degradation mechanisms (e.g. fatigue, wear, corrosion, 

etc.) [12]. The third group can be estimated by using material science knowledge on the 

influence of random shocks and related information obtained from historical field collection or 

shock tests [70].  
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7.3 Solution methodology 

The analytical solution of ����  is difficult to obtain due to the complex behavior of the 

dependent degradation and random shock processes affecting the system [94]. The MC 

simulation method [78] based on the semi-Markov kernel of {��, '�}��2 (eq. (7.5)) and the FV 

method [62] based on the Chapman-Kolmogorov equation (eq. (7.7)) can be used to solve 

PDMPs like the ones describing the dependent processes of interest here.  

 
 

7.3.1 MC simulation method 

The MC simulation method to compute the system reliability at time � consists of replicating 

several times the life process of the system by repeatedly sampling its holding time and arrival 

state from the corresponding probability distributions. Each replication continues until the time 

of system evolution reaches � or until the system enters a state in the failure set ~. The 

procedure of the MC simulation method is as follows:  

Set 9_` (the maximum number of replications) and a = 0 (index of replication) 

Set a′ = 0 (number of replications that end in a system failure state) 

While a < 9_`  

Initialize  the system by setting � = �t<	�0�, �<	�0�� (initial system state), and the time ' = 0 
(initial system time) 

Set �< = 0 (state holding time) 

While ' < � 
Sample a �< by using the probability distribution D����� 
Sample an arrival state ¤  for stochastic process �<���  and an arrival state �  for 

process t<��� by using eq. (7.6) 

Set ' = ' + �′ 
If  ' 5 � 

Set � = ��, ¤� 
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If  � ∈ 	~  

Set a< = a< + 1 
Break 

End if  

Else (when ' � �) 
If  ���, � + �< − '� ∈ ~  

Set a< = a< + 1 
Break 

End if  

End if 

End While 

Set a = a + 1 
End While □ 

The estimated system reliability at time � can be obtained by 

�8�� ��� = 1 − a</9_`                        (7.9) 

where k' represents the number of trials that end in the failure state of the system, and the sample 

variance [71] is:  

i[j���̧�L� = �8�� ����1 − �8�� ����/�9_` − 1�             (7.10) 

 

7.3.2 FV method 

We employ the explicit FV method, developed by Cocozza-Thivent et al. [62], presented in 

Section 4.2.1. It approximates �L�×�D� = �D�, ë�	|	&�, the probability distribution of �/���, by 

(��×�®, 4	|	&�D�, � ∈ ®, � ∈ [�∆�, �� + 1�∆�[. (�*��®, ¤#� can be calculated considering the 

deterministic evaluation of t��� and the stochastic evolution of �<��� based on (��ℳ, ¤#� 
by the Chapman-Kolmogorov forward equation, as follows: 

(�*��®, ¤#� 
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= ��*∆L¶·¤H (�*�̧�®, ¤#� + ∆� ∑ ∑ _�,·¤S,¤H�*∆L¶·¤S (�*�̧=°, ¤$>¤S∈�K¼∈ℳ           (7.11) 

where  

[¼,¯¤S,¤H = P "¤S,¤H��	|	&s� P ;=¤$ , ¤# , �>�D¤��¼¯ B¯⁄             (7.12) 

is the average transition rate from state ¤$ and grid ° to state ¤# and grid ®, 

º¤̄H	 = P ∑ "¤H,¤S��	|	&s�D�¤S∈�K¯ /B¯                  (7.13) 

is the average transition rate out of state ¤# for grid ®, 

(�*�̧�®, ¤#� = ∑ B¼¯¤H¼∈ℳ (��°, ¤#�/B¯                 (7.14) 

is the approximate value of probability density function on [�� + 1�∆�, �� + 2�∆�[× ® × {¤#} 
according to the deterministic evolution of t���, 

B¼¯¤H = P D¤{¤∈¼	|	ª¤H�¤,∆L	|	&r�∈¯}                     (7.15) 

is the volume of the part of grid ° which will enter grid ® after time ∆�, according to the 

deterministic evolution of t���.  

The approximated solution µL��,∙	�D� weakly converges towards �L�D�,∙	� when ∆� → 0 
and |ℳ|/∆� → 0 where |ℳ| = QZ�¯∈ℳD4[B�®�.  

The estimated system reliability at time �, then, can be calculated as follows:  

�þ�� ��� = P µL���D��∉~                        (7.16) 
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8. RELIABILITY ASSESSMENT METHOD FOR SYSTEMS WITH A 

LARGE NUMBER OF COMPONENTS CONSIDERING 

DEGRADATION DEPENDENCY 

In previous Chapters, we have employed the PDMP modeling framework to integrate PBMs 

and MSMs for treating the dependencies among degradation processes [75] for a system with 

a small number of components, where the whole system is modeled by one PDMP. For systems 

of larger size, the high dimension of its PDMP can lead to very heavy computational burdens, 

because solving the PDMP of a small system is already time consuming due to the 

combinatorial nature of MSMs and the need to simulate the trajectory between any two system 

states [75]. In addition, the dependencies may only exist within certain groups of components 

and leave different groups being independent [43], and the causes to systems failure are not 

easy to be identified. Fault tree analysis (FTA) [132] is typically used to identify the 

combinations of events leading to system failure and compute its probability by using minimal 

cut sets found from the fault tree structure. For real systems, this can be computationally 

intensive, when the tree structure is large and, especially, if it contains repeated basic events 

[133]. In addition, all basic events are usually assumed statistically independent. The 

dependencies of the degradation processes leading to failure of different components need to 

be considered which render certain basic events under different gates being dependent. In this 

Chapter, a system reliability assessment method is proposed considering degradation 

dependency by combining BDDs and MC simulation method to reduce computational cost. 

 

8.1 Methodology 

We refer to the system presented in Section 3.2. The fault tree of the system is available and 

contains o  basic events denoted by � = {N� , N^ , … , Nq}  which include the failures of 

components and other events such as erroneous operation caused by human errors. The 

component-failure type of events are determined by their underlying degradation processes. 

 

8.1.1 Binary decision diagrams (BDDs) 
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A BDD is a directed acyclic graph encoding Shannon’s decomposition of a formula. A BDD 

has two terminal vertices labeled 1 and 0 to indicate the failure and operation of the system, 

respectively. Each non-terminal vertex is labeled with a variable and has two outgoing edges: 

1-edge and 0-edge which indicate the occurrence and non-occurrence of the corresponding 

basic event, respectively.  

A BDD is employed to encode the fault tree of the system according to the given ordering of 

the indicator variable )# used to denote the occurrence or non-occurrence of the basic event 4 
()# = 1 indicating the occurrence of the basic event 4 and )# = 0 indicating the opposite). 

The size of the BDD largely depends on the given ordering and the problem of finding the 

global optimal ordering is an intractable task [134, 135]. Several ordering heuristics have been 

developed, whose performances may vary on different problems. In this work, we employ the 

weighting depth-first left-most (WDFLM) ordering technique proposed in [136], which leads 

to satisfactory results according to the tests in [137, 138]. WDFLM first assigns weight 1 to 

each basic event. Then, it traverses the fault tree bottom-up to calculate the weight of each gate 

by adding the weights of all its inputs, i.e. gates and basic events. Fig. 8-1 shows an example 

of a fault tree where the weights of the gates are obtained through WDFLM. 

 

 

 

Fig. 8-1. An illustration of fault tree labeled with weights. 
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Then, the inputs of a gate are rearranged in the order of increasing weights as shown in Fig. 8-

2.  

 

 

 

Fig. 8-2. An illustration of fault tree with rearranged inputs of gates. 

 

Finally, the depth-first left-most (DFLM) ordering technique [139] is applied to the fault tree to 

get the variable ordering. In this technique, the basic events are placed in the ordered list as 

soon as they are encountered during the DFLM traversal of the fault tree. Let < be a total 

ordering of variables, for the fault tree in Fig. 8-1 it is )½ < )À < )� < )^.  

Based on the variable ordering, the related BDD can be constructed using the bottom-up 

procedure. Firstly, all basic events 4, 4 ∈ � are associated with the if-then-else (ite) structure 

[140] 4�N�)# , 1, 0�, where 4�N�)# , C�, Ĉ � = �)#⋀C��⋁�¬)#⋀Ĉ �, which means if the basic event 4 occurs then consider function C� else consider function Ĉ . Then, work from the bottom to 

the top of the fault tree and obtain the ite structure for each gate by using the following principle: 

let us consider two variables  )_ < )¶ and four functions C�, Ĉ , C½, CÀ, let <� be any logic 

operation AND or OR, then: 

4�N�)_, C�, Ĉ � <� 4�N�)_, C½, CÀ� = 4�N�)_, C� <� C½, Ĉ <� CÀ�       (8.1) 
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and  

4�N�)_, C�, Ĉ � <� 4�N�)¶, C½, CÀ� = 4�N=)_, C� <� 4�N�)¶, C½, CÀ�, Ĉ <� 4�N�)¶, C½, CÀ�> (8.2) 

The ite structure of the top event of the fault tree in Fig. 8-1 can be obtained as 4�N�)½, 1, 4�N�)À, 1, 4�N�)�, 1, 0���. The associated BDD shown in Fig. 8-3 can be constructed 

by breaking down each ite structure into its left and right branches, and eliminating the vertexes 

that are not useful (a vertex is not useful when its two outgoing edges point to the same vertex 

or it is equivalent to another vertex) [141].  

 

 

 

Fig. 8-3. BDD for fault tree in Fig. 8-1. 

 

Finally, all the paths leading to system failure can be obtained as �1�)½ = 1, �2�)½ = 0, )À =1, �3�)½ = 0, )À = 0, )� = 1  and the path leading to system operation is )½ = 0, )À =0, )� = 0. The exact system reliability is equal to the sum of the probability of occurrence of 

the paths leading to system operation or 1 − the sum of the probability of occurrence of the 

paths leading to system failure.  

 
 

8.1.2 MC simulation method 

To derive the probability of occurrence of one path, all the PDMPs containing the variables 

involved in that path need to be solved. Since the PDMPs are independent from each other, the 

product of the probabilities of PDMPs being in the states indicated by the path equals the 
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probability of occurrence of that path. Analytically solving the PDMPs is a difficult task, 

whereas MC simulation method is well suited.  

We employ the MC simulation method for solving the PDMPs developed in Chapter 3.3. It 

consists of sampling the transition time and the arrival state for the MSMs and, then, calculating 

the behavior of the PBMs within the transition times using the physics equation. 

Let us consider one group of interdependent degradation processes rk = {�k�, … , �kT} and sÏ = {�Ï�, … , �ÏI}, which have no dependencies with the other degradation processes. Their 

degradation states are represented by  

�k,Ï��� =
�
���
��tuÝ����⋮tuÝT���� = tk���
��Ï����⋮�ÏI���� = �Ï��� �

   
! ∈ �k,Ï = ℝFrÝ × �sÓ , ∀� ≥ 0       (8.3) 

where �k,Ï  is the space combining ℝFrÝ  (DrÝ = ∑ DuÝ×�/1� ) and  �sÓ = {0, 1, … , DsÓ} 
denotes the state set of process �Ï���.  

To calculate the probability of occurrence of one path (let �k,Ï∗  indicate the state space, which 

contains all the states of �k,Ï��� that are consistent with the state of the path), the procedure 

of the MCS is presented as follows. 

Set 9_` (the maximum number of replications) and a = 0 (index of replication) 

Set a′ = 0 (number of trials that end in the state indicated by the path) 

While a < 9_`  

Initialize  the system by setting �k,Ï< �0� = "tk�0��Ï< # (initial state), and the time ' = 0 
(initial system time) 

Set �< = 0 (state holding time) 

While ' 5 '#�� 
Sample a holding time �< for current degradation state 

Sample an arrival state �Ï<< for stochastic process �Ï��� from all the possible states  
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Calculate tk�Q�, ∀Q ∈ [', ' + �′] 
Set �k,Ï< �Q� = "tk�Q�	�Ï< # , ∀Q ∈ [', ' + �′[ 
Set ' = ' + �′, �k,Ï< �'� = "tk�'�	�Ï<< # and �Ï< = �Ï<< 

End While 

If  �k,Ï< �'#��� ∈ �k,Ï∗  

Set a< = a< + 1 
End if  

Set a = a + 1 
End While □ 

The estimated probability of occurrence of one path at time '#�� can be obtained by 

( �'#��� = 1 − a</9_`                     (8.4) 

with the sample variance [71] as follows: 

i[jG �¡IH¢¢� = ( �'#����1 − ( �'#����/�9_` − 1�         (8.5) 

 

8.1.3 Flowchart of the proposed method 

The flowchart of the whole proposed computational method combining BDDs and MC 

simulation method is shown in Fig. 8-4. 
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Fig. 8-4. The flowchart of the computational method. 
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9. APPLICATIONS 

This Chapter reports the results of the applications of the developed models and proposed 

methodologies within the holistic framework for the reliability-based analysis and maintenance 

optimization of nuclear safety systems. Case studies on nuclear safety systems related to single 

components, multi-components systems (with a limited number of components) and multi-

components systems (with a large number of components) are illustrated. For further details the 

interested reader is referred to the corresponding Papers (I)-(VII) of Part II. 

 

9.1 Single components 

9.1.1 Reliability assessment of a dissimilar metal weld in a primary coolant system 

In this Section, we illustrate the MSPM framework for component reliability assessment by 

including semi-Markov and random shock processes, proposed in Chapter 2, on a case study 

slightly modified from an Alloy 82/182 dissimilar metal weld in a primary coolant system of a 

nuclear power plant in [63]. The MSPM of the original crack growth is shown in Fig. 9-1. 

 

 

 
Fig. 9-1. MSPM of crack development in Alloy 82/182 dissimilar metal welds. 

 

where �#, and $# represent the degradation transition rate, and maintenance transition rate, 

φ5
5

2

4

3

0

1

5:  Initial state
4: Micro Crack
3:  Radial Crack
2:  Circumferential crack
1:  Leak State
0:  Ruptured state

ω2
ω4 ω3

ω1

φ4
φ4’

φ2
φ1

φ3



APPLICATIONS 

- 68 - 

respectively. Except for �(,�À,	�À′ and �½, all the other transition rates are assumed to be 

constant. The expressions of the variable transition rates are  

�( = �¶J� ∙ �J)J �¶3�;                            (9.1) 

�À = � _�G�_z�J*Õ��3G���3_�/�+_z���� ,						4C	%À � [�/[z80,																						N�QN;               (9.2) 

�À′ = � _-G-_z�J*Õ��3G-��3_-/�+_z���� ,						4C	%À � [ý/[z80,																						N�QN;               (9.3) 

�½ = � �J. ,						4C	%½ � �[u − [ý�/[z80,								N�QN.																															                      (9.4) 

 

The random shocks correspond to the thermal and mechanical shocks (e.g. internal thermal 

shocks and water hammers) [30, 31] applied to the dissimilar metal welds. The damage of 

random shocks can accelerate the degradation processes, and hence increase the rate of 

component degradation. We set the probability of a random shock becoming an extreme shock 

as �#,=%#,< > = 1 − NO� Ç−/B�6 − 4� �2 − N3JH,IK �Ë, taking the exponential formulation from 

Fan et al.’s work [39]. In this formula, we use B�6− 4��2 − N3JH,IK � to quantify the component 

degradation. It is noted that the quantity 2 − N3JH,IK  ranges from 1 to 2, representing the 

relatively small effect of %#,<  onto the degradation situation in comparison with the other two 

parameters B and i, and / is a predetermined constant which controls the influence of the 

degradation onto the probability �#,=%#,< > . In addition, we assume the corresponding 

degradation transition rates after m cumulative shocks to be "#,$��=%#,< , &> = �1 +��"#,$=%#,< , &>, where � is the relative increment of transition rates after one cumulative 

shock happens, and the formulation �1 + �� is used to characterize the accumulated effect of 

such shocks. To characterize the increase of the transition rates, in the case study we have used 

the parameter � to represent the relative increment of degradation transition rate after one 

cumulative shock occurs. For the sake of simplicity, but without loss of generality in the 

framework for integration, we assume that the values of � for each cumulative shock are equal. 

But the model can handle different � for different stages of the crack process. 

The Monte Carlo simulation over a time horizon of �_` = 80 years is run 9_` = 101 
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times. The results are collected and analyzed in the following sections.   

The estimated state probabilities without, and with random shocks throughout the time horizon 

are shown in Figs. 9-2, and 9-3, respectively. 

 

 

 

Fig. 9-2. State probabilities obtained without random shocks. 

 

 

 

Fig. 9-3. State probabilities obtained with random shocks. 

 

Comparing the above two figures, it can be observed that as expected the random shocks drive 

the component to higher degradation states than the micro-crack state. The numerical 
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comparisons on the state probabilities with/without random shocks at year 80 are reported in 

Table 9-1. It is seen that, except for the micro-crack state probability, all the other state 

probabilities at year 80 have increased due to the random shocks, with the increase in leak 

probability being the most significant. 

 

Table 9-1 Comparison of state probabilities with/without random shocks (at year 80). 

 

State  Probability 

without random 

shocks 

Probability 

with random 

shocks 

Relative 

difference 

Initial  3.52e-3 9.82e-3 180.00% 

Micro-crack 0.9959 0.9661 -2.99% 

Circumferential crack  3.05e-4 7.28e-3 2286.89% 

Radial crack  1.00e-4 7.75e-3 7650.00% 

Leak  1.30e-5 2.59e-3 19823.08% 

Rupture state  2.06e-4 7.00e-3 3298.06% 

 

The fact that the probability of the initial state (compared with no random shocks) at 80 years 

has increased is attributed to the maintenance tasks. All the maintenance tasks lead the 

component to the initial state, and the repair rates from radial macro-crack state, circumferential 

macro-crack state, and leak state are higher than that from the micro-crack state. The shocks 

generally increase the component degradation speed, i.e. render the component step to further 

degradation states (other than micro-crack state) faster than the case without shocks. The 

transitions to initial state occur more frequently from further degradation states (other than from 

the micro-crack state) due to their higher maintenance rates. In summary, this phenomenon is 

due to the combined effects of shocks. 
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The estimated component reliabilities with/without random shocks and with only cumulative 

shocks throughout the time horizon are shown in Fig. 9-4. At year 80, the estimated component 

reliability with random shocks is 0.9930, with sample variance equal to 6.95e-9. Compared 

with the case without random shocks (reliability equals to 0.9998, with sample variance 2.00e-

10), the component reliability has decreased by 0.68%. The estimated component reliability 

with only cumulative shocks is 0.9973, and the sample variance equals 2.69e-9. Compared with 

the case without random shocks, the component reliability has decreased by 0.26%. 

 

 

 

Fig. 9-4. Component reliability with/without random shocks, and with only cumulative shocks. 

 

9.2 Multi-component systems (with a limited number of components)  

9.2.1 Subsystem of the residual heat removal system (RHRS) 

In this Section, we illustrate the models and methodologies for multi-component systems (with 

a limited number of components), proposed in Chapters 3-7, on a case study of one subsystem 

of the RHRS of a nuclear power plant of Électricité de France (EDF). The system consists of a 

centrifugal pump and a pneumatic valve in series. Given the series configuration, the failure of 

anyone of the two components can lead the subsystem to failure. Dependency in the degradation 

processes of the two components has been indicated by the experts: the pump vibrates due to 

degradation [142] which, in turn, leads the valve to vibrate, aggravating its own degradation 

processes [143].  

The pump is modeled by a MSM, modified from the one originally supplied by EDF upon 
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discussion with the experts. It is a continuous-time homogeneous Markov chain as shown in 

Fig. 9-5: 

 

 

 

Fig. 9-5. Degradation process of the pump. 

 

�k = {0, 1, 2, 3} denotes its degradation states set, where 3 is the perfect functioning state and 0  is the complete failure state. The parameters "½^ , "^�  and "�2  are the transition rates 

between the degradation states. Due to degradation, the pump vibrates when it reaches the 

degradation states 2 and 1. The intensity of the vibration of the pump on states 2 and 1 is 

evaluated as by the experts ‘smooth’ and ‘rough’, respectively.  

The simplified scheme of the pneumatic valve is shown in Fig. 9-6. It is a normally-closed, gas-

actuated valve with a linear cylinder actuator. 

 

 

 

Fig. 9-6. Simplified scheme of the pneumatic valve [12]. 

 

By regulating the pressure of the pneumatic ports to fill or evacuate the top and bottom 
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chambers, the position of the piston can be controlled. A return spring is linked with the piston 

to ensure the closure of the valve, when pressure is lost. The external leak at the actuator 

connections to the bottom pneumatic port due to corrosion and other environmental factors is 

chosen as the degradation mechanism of the valve, which is much more significant than the 

other degradation mechanisms according to the results shown in [12].  

Let ©¶���  denote the area of the leak hole at the bottom pneumatic port at time � , the 

development of the leak size is described by: 

©¶z ��� = $¶�1 + �2Ý�L��                         (9.5) 

where $¶ is the original wear coefficient and where �2Ý�L� is the relative increment of the 

developing rate of the external leak at the bottom pneumatic port caused by the vibration of the 

pump at degradation state ‘2’ or ‘1’.  

The leak will lead the valve to be more difficult to open but easier to close. The threshold of the 

area of leak hole ©¶∗ is defined as the value above which (©¶��� � ©¶∗) the valve cannot reach 

the fully open position within the 15s time limit from the fully closed position, after an opening 

command is executed. 

 

9.2.1.1 Reliability assessment under degradation dependency 

The degradation of the valve r = {��} is described by PBM and the degradation of the pump s = {��} is described by MSM. The degradation processes of the whole system are modeled 

by PDMP as follows:  

���� = v©¶����k���x 	∈ 	ℝ* × �k                      (9.6) 

where �k��� denotes the degradation state of the pump at time � and ©¶��� denotes the area 

of the leak hole at the bottom pneumatic port of the valve at time �. The space of the failure 

states of 3Ä��� is ~ = [0,+∞� × {‘0’} ∪ [©¶∗, +∞� × {1, 2, 3}. The development of the leak 

size is described by: 

©¶z ��� = $¶�1 + �2Ý�L��                        (9.7) 

where $¶ is the original wear coefficient and where �2Ý�L� is the relative increment of the 

developing rate of the external leak caused by the vibration of the pump at the degradation state �k = 2	or	1. 
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The initial state of the system is assumed as follows: 

�2 = v©¶�0��k�0�x = �03�                          (9.8) 

which means that the two components are both in their perfect state. The initial probability 

distribution of the processes �©¶���, �k����L�2, �2�D�	|	&�, hence, equals to /�7�D��, where / 

is the Dirac delta function. 

The system reliability at time � can be calculated as follows: 

���� = (Å�©¶�Q� < ©¶∗� ∩ ��k�Q� 7 0�, ∀Q 5 �Æ             (9.9) 

We consider MC simulations with 101 trials for the estimation of the system reliability over a 

time horizon of '#�� = 1000	Q. The results are shown in Fig. 9-7.  

 

 

 

Fig. 9-7. Estimated system reliability. 

 

The system reliability decreases more rapidly after around 885 s, because at that time the valve 

could fail, corresponding to the situation when the pump steps to the state ‘1’ very quickly and 

stays there until the valve fails. 
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9.2.1.2 Fuzzy reliability assessment 

We have &u = �$¶, �2Ý�L�� and &� = �"½^, "^�, "�2� which are the uncertain parameters due 

to the fact that their values are estimated from insufficient degradation data or elicited from 

expert judgment. Epistemic uncertainty associated to them, hence, needs to be taken into 

account and a proper mathematical representation of uncertainty of this nature is by fuzzy 

numbers. We choose triangular fuzzy numbers [144] to represent the uncertain parameters 

because their boundary values and most probable or most advisable values are considered easier 

to be elicited from experts than other FN types and they are widely used to represent uncertain 

parameters in reliability engineering [80, 84, 89, 144]. The fuzzy numbers are assigned by 

considering a relative uncertainty of ±10% of the original parameters values. However, the 

proposed framework is generally suitable for fuzzy numbers with other types of membership 

functions. 

The results of the fuzzy reliability of the system at cut levels � = 0 and � = 1 over a time 

horizon 1000 s obtained by MC simulation with 101 trials and FV method are shown in Fig 9-

8. The lower bound of the fuzzy reliability of the system at cut level � = 0 decreases more 

sharply after around 790 s, earlier than the fuzzy reliability at � = 1. It is seen that the system 

fails after around 964 s, because at that time the valve is completely failed. The upper bound of 

the fuzzy reliability at � = 0 does not experience a rapid decrease because the valve is mostly 

functioning over the time horizon. 

 

 

 

 

 



APPLICATIONS 

- 76 - 

 

 

Fig 9-8. Fuzzy reliability at cut levels � = 0 and � = 1 obtained by MC and FV. 

 

The membership function of fuzzy reliability ����� at mission time � = 800	s at different cut 

levels � ∈ [0, 1] obtained by MC simulation and FV method are illustrated in Fig. 9-9 (we 

have uniformly chosen 51 points in [0, 1] with a step equal to 0.02 assigned to �). The 

average computation time of MC simulation is 201.94 s, while that of FV scheme is 15.91 s. 

The results show that the FV method achieves comparable results as MC simulation, with less 

computational burden. 
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Fig. 9-9. Membership function of fuzzy reliability ����� at mission time � = 800	s obtained by MC 
simulation and FV method. 

 

9.2.1.3 Computation of component IMs 

The component IMs for the valve and the pump with condition-based preventive maintenance 

by periodic inspections and corrective maintenance are given in the following equations, 

respectively, as follows: 

ÚÍ���� = P C}9�L��O�|([�©¶�Q� < ©¶∗� ∩ ��k�Q� 7 0�, ∀Q 5 �|©¶��� = O�] − 	����|DOℝ÷  

(9.10) 

ÚÍG��� = ∑ ([�k��� = 4]|([�©¶�Q� < ©¶∗� ∩ ��k�Q� 7 0�, ∀Q 5 �|�k��� = 4�] − 	����|½#12     

(9.11) 

Then, by using the proposed numerical method introduced in Chapter 5.4, the values of the 

above equations can be calculated. 

The reliabilities of the whole system and of the two components over a time horizon of '#�� =2000s, regarded as the mission time under accelerated conditions, are shown in Fig. 9-

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reliability

M
em

be
rs

hi
p 

( α
)

 

 

MC
FV



APPLICATIONS 

- 78 - 

10. We can see from the figure that before around 870s (point A), the system reliability is 

basically determined by the pump reliability, since the valve is highly reliable. After that, the 

sharp decrease of the reliability of the valve due to degradation drives that of the system 

reliability, until the execution of the inspection tasks for the two components at 1000s. Because 

of the preventive maintenance, the failures of the system, the valve and the pump are mitigated. 

 

 

Fig. 9-10. The reliabilities of the system, the valve and the pump. 

 

The components IMs are shown in Fig. 9-11. Before around 400s (point B), the IMs of the two 

components are relatively close. Although the system reliability is dominated by the reliability 

of the pump, the probability of the pump at state 0 over the time horizon is limited to a very 

small value due to the corrective maintenance shown in Fig. 9-12, which can limit the 

component IM. After around 870s (point C), the pump IM experiences a sharp decrease while 

that of the valve experiences a sharp increase until 1000s, due to the evolution shown in Fig. 9-

10. After the preventive maintenance is implemented, the difference between the components 

IMs begins to reduce. Then, one can conclude that attention should be focused on the pump 

before 1000s and on the valve afterwards, to achieve higher levels of system reliability. 
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Fig. 9-11. The valve and pump IMs.  

 

 

 

Fig. 9-12. The probability of the pump at state 0 (failure). 

 

9.2.1.4 Maintenance optimization 
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policies. The obtained Pareto front in the plane of the two objective functions, i.e. lower and 

upper bounds of the maintenance cost, is shown in Fig. 9-13.  

   

 

 

Fig. 9-13. The obtained Pareto front.  

 

It is observed that the upper bounds cover a wide range whereas the lower bounds show much 

less variability. The solutions above a = (53.30, 108.45) k€ have big increments with respect to 
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a. The solutions to the right of b = (53.49, 72.75) k€ show nearly no difference in the upper 

bound value, compared with that of b. The small differences between lower bounds are due to 

the fact that the failure of the components or of the system rarely occurs under these situations, 

so that the total cost is mainly composed of the PM costs and the inspections costs; on the 

contrary, the big differences between upper bounds are mainly due to the failures of 

components, which lead to the system failure and, thus, carry a high penalty cost. It also implies 

the fact that if the frequencies of inspections and PM exceed some value, then, the high penalty 

cost may be largely avoided. In practice, the solutions with very high upper bounds might not 

be appropriate for decision makers (DMs). 
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the region [0, 100]	k€ × [0, 100]  k€. The proposed method is run with the previous 

configurations plus a penalty of 100 k€ to be added to one objective of a solution, whenever 

the other objective exceeds 100 k€. The newly obtained Pareto front is shown in Fig. 9-14. 

 

 

 

Fig. 9-14. The Pareto front obtained within the region [0, 100]	k€ × [0, 100]	k€. 

 

Given the Pareto front, the DMs need eventually choose the maintenance policy according to 

their preferences since the solutions do not dominate each other. To simulate those common 

preferences of the DMs, we choose three solutions: S, the solution selected by the ‘Min-Max’ 

method, which selects the representative center of the Pareto front, and is among the most used 

ones [145]; A (corresponding to a selection by decision makers who are optimistic and pay more 

attention to the lower bound of the cost objective factor) and B (corresponding to a selection by 

decision makers who are conservative and pay more attention to the upper bound of the cost 

objective factor), the solutions with the minimum lower bound and minimum upper bound 

values, respectively. Solutions A, B and S represent three different preferences of the DMs. 

Detailed information on S, A and B is reported in Table 9-2.   

 

Table 9-2 Solutions S, A and B. 
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Solution S A B 

 Lower bound 53.74 k€ 53.73 k€ 58.69 k€  

Upper bound 74.17 k€ 96.69 k€ 70.46 k€ 

'u� 773.47 s 808.55 s 563.00 s 

'�� 66.77 s 66.77 s 66.77 s 

:u� [7.28 e-6, ©¶∗� m2 [7.66 e-6, ©¶∗� m2 [4.91 e-6, ©¶∗� m2 

:�� {‘1’, ‘2’} {‘1’, ‘2’} {‘1’, ‘2’} 

 

 

It can be observed that S and A have nearly the same lower bound value, whereas A has a much 

higher upper bound. For the DMs, S might be more appropriate than A if the small difference 

0.01 can be considered negligible. S and A both contain B: the DMs may choose B as the result 

of minimax robust optimization, whereas if they pay more attention to the lower bound, A can 

be the choice. 

 

9.2.1.5 Reliability assessment under degradation dependency and random shocks 

According to the experts of EDF, random shocks like water hammers and internal thermal 

shocks [31] can worsen the degradation condition of both components of the subsystem 

considered or even immediately lead them to failures. 

Random shocks can deteriorate the pump from its current state 4 to a degraded state +, as �#$ =
;×�2.���HØS÷���3�2.���H÷�� , 4 ≥ +, where �#2 denotes the probability of an extreme random shock leading the 

pump from state 4 directly to failure state 0. The formulation is taken from Yang et al.’s work 

[44], which satisfies that ∑ �#$2$1# = 1. By combining the degradation process of the pump with 

the random shock process, the resulting process takes the form shown in Fig. 9-15. The state of 

the process is represented by ���� = =�k���,B>,B ∈ ℕ, where m is the number of shocks 

experienced by the pump. The state space of the new process is denoted by � ={�[, º�, ∀[ ∈ �k, º ∈ ℕ} and the set of failure states of the pump is ~<< = {�0, º�, ∀º ∈ ℕ}. 
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Fig. 9-15. Degradation and random shock processes of the pump. 

 

For the valve, the 4-th shock becomes extreme if the shock load �#  exceeds the maximal 

material strength ©, otherwise, it can bring an instantaneous random increase :# to the total 

external leak size [40]. �# and :# are assumed to be i.i.d. random variables following folded 

normal distributions, �# = |[| and :# = |º|, where [~9�;>, �>̂ � and º~9�;?, �?̂�. 
An illustration of the composite degradation process of the valve considering random shocks 

and the degradation state of the pump is shown in Fig. 9-16, where the system experienced a 

random shock at time �# , with the shock load �# , 4 = 1,3,4. The first two shocks cause 

instantaneous random increases on ©���, the last shock lead the valve to failure. The vibration 

of the pump accelerates the degradation process of the valve at time �^ and �½, when the pump 

stepped to a further degraded state. 
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Fig. 9-16. An illustration of the degradation of the valve considering random shocks and the degradation 
state of the pump. (Top Figure: degradation process of the valve; Center Figure: random shock processes; 

Bottom Figure: degradation process of the pump.) 

 

The reliability values of the valve, the pump and the system with/without random shocks, 

obtained by MC3, are shown in Fig. 9-17. The numerical comparisons on the reliability of the 

system, the valve and the pump with/without random shocks at the final time of 1000 s are 

presented in Table 9-3. 
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Fig. 9-17. The reliability of the system, the valve and the pump with/without random shocks. 

 

When random shocks are ignored, the system reliability is basically determined by the pump 

before around 870 s, since the valve is highly reliable. After that, the sharp decrease of the valve 

reliability due to degradation leads to the same behavior in the system reliability. When random 

shocks are considered, the system reliability is determined by both the pump reliability and the 

valve reliability from the beginning until around 850 s, since the valve is no longer as highly 

reliable as before. Then, the valve reliability decreases sharply due to the joint effects of random 

shocks and degradation, and this drives also the sharp decrease of the system reliability. We can 

see from the results that neglecting random shocks can result in an underestimation of the 

reliability of the system and of the components.  

 

Table 9-3 Comparison of reliability with/without random shocks at 1000 s. 
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random shocks random shocks change 

System 0.18 0.033 81.67% 

Valve  0.50 0.099 80.20% 

Pump  0.43 0.32 25.58% 

 

9.3 Multi-component systems (with a large number of components)  

9.3.1 Reliability assessment of one branch of the residual heat removal system 

In this Section, we illustrate the reliability assessment method for multi-component systems 

(with a large number of components) with degradation dependency, proposed in Chapter 2, on 

a illustrative case refers to one branch of the RHRS [146] of a nuclear power plant shown in 

Fig. 9-18. The fault tree is shown in Fig. 9-19. 

 

 

 

Fig. 9-18. The diagram of one branch of the RHRS. 
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Fig. 9-19. The fault tree of one branch of the RHRS. 

 

By knowledge and experience of the field experts, the degradation dependency is described as 

follows: the degradation of the pump can lead it to vibrate [142], which will, in turn, cause the 

vibration of the other neighboring components (e.g. the valve) and therefore aggravate the 

degradation process of the latters [143]. The dependency exists between basic events 1,2,3,4 

and 6, as indicated in Fig. 9-19.  

Applying the WDFLM ordering heuristic [136], the variable ordering obtained is )(# < )1 <)� < )^ < )½ < )À < )A < ); < )B. The corresponding BDD is shown in Fig. 9-20. There 

are two paths leading to system operation: (1) )(# = 0, )1 = 0, )� = 0, )^ = 0, )½ = 0, )À =0, )A = 0, ); = 0  and (2) )(# = 0, )1 = 0, )� = 0, )^ = 0, )½ = 0, )À = 0, )A = 0, ); =1, )B = 0. 
 

Degradation Dependency
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Fig. 9-20. The BDD corresponding to the fault tree shown in Fig. 9-19. 

 

The degradation processes are divided into five groups: {�1}, {�^}, {�B}, {�A}  and {��, �^, �½, �À, �(, ��}. Each of the first four groups has only one degradation model. The last 

group is modeled by one PDMP. 

MCS over a time horizon of 8 years has been run 101 times to solve the PDMPs and, then, 

estimate the probability of occurrence of each path. The estimated system reliability with and 

without dependency throughout the time horizon, under accelerated conditions, is shown in Fig. 

9-21. The average computation time is 34.3 s. We can see from the Figure that neglecting 

dependency can lead to overestimation of the system reliability. The system reliability with 

dependency has experienced one rapid decrease after around 6.2 year (point A), which is due 

to the valve failure in some simulation trials caused by the vibration of the pump. This sharp 

decrease in system reliability relates to the sharp increase in the system failure time density 

function, as shown in Fig. 9-22.  
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Fig. 9-21. The estimated system reliability with/without dependency. 

 

  

 

Fig. 9-22. The system failure time density function with/without dependency. 
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10.  CONCLUSIONS 

This dissertation aims to develop a holistic framework of models and computational methods 

for the reliability analysis and maintenance optimization of nuclear safety components and 

systems, taking into account the available knowledge on the system functionalities, degradation 

and failure behaviors, their dependencies, the external influencing factors and the associated 

uncertainties.  

10.1 Original contributions  

The original contributions of the PhD work are: 

• For single components:  

Firstly, the MSPM framework is extended to semi-Markov modeling to describe the fact 

that the time of transition to a state can depend on the residence time in the current state; 

this makes the framework more suitable to considering maintenance. Then, a general 

random shock model is proposed, where the probability of a random shock resulting in 

extreme or cumulative damage, and the cumulative damages, are both s-dependent on 

the current component degradation condition (the component degradation state and 

residence time in that state). Finally, the random shock model is integrated into the 

MSPM framework to describe the influence of the shocks on the degradation processes. 

The results show that the proposed model is able to characterize the influences of 

different types of random shocks onto the component state probabilities and the 

reliability estimates. 

• For multi-component systems (with a limited number of components): 

a. A PDMP modeling framework is proposed to model multiple dependent 

competing degradation processes. The significance of the proposed method lies 

in its capability to describe the degradation dependency between PBMs, between 

MSMs and between the two types of models. 

b. Epistemic uncertainty due to the incomplete or imprecise knowledge about the 

degradation processes is included in the PDMP modeling framework by 

describing the model parameters as fuzzy numbers and the FV method is 

extended to calculate the system (fuzzy) reliability. The results show that the FV 

method can lead to comparable results as MC simulation, but with reduced 
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computation time. 

c. MAD IM is extended to provide timely feedback on the criticality of a 

component in the PDMP modeling framework. The extended IM can effectively 

estimate the criticality of different components subject to multiple dependent 

discrete and continuous degradation processes, condition-based PM via periodic 

inspections and CM. 

d. The Pareto optimal maintenance policies considering epistemic uncertainty and 

degradation dependency are derived by combining NSDE, DE and FV. 

Epistemic uncertainty in the parameters of the model is taken into account by 

interval values, this leads to the formulation of a multi-objective optimization 

problem whose objectives are the lower and upper bounds of the expected 

maintenance cost. Given the Pareto front, the DMs can eventually choose the 

maintenance policy according to their preferences. 

e. The PDMP modeling framework of (a) is extended for system reliability 

assessment, by considering the impacts of random shocks. The impacts of 

random shocks on the PBMs and MSMs at the same time can be characterized 

in different ways, due to the different nature of two types of degradation models. 

The dependencies between degradation processes and random shocks, and 

among degradation processes are addressed. 

• For multi-component systems (with a large number of components):  

A computational method combining BDDs and MCS is developed for the reliability 

assessment of systems with degradation dependency, to reduce computational costs. 

Firstly, a fault tree is transformed to a BDD from which all paths leading to the system 

failure or operation can be efficiently obtained. Secondly, MCS is used to estimate the 

probability of each path to compute the system reliability taking into account the 

dependencies between basic events. The results show that instead of modeling the 

degradation of the whole system by one PDMP, the proposed method can identify the 

groups of components being dependent and decompose the original PDMP into a group 

of smaller ones, which are independent from each other and easier to be solved. Besides, 

the states of these PDMPs leading to system failure can be easily obtained. 
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10.2 Future research 

Further developments can be sought in the following directions: 

• For single components: the extended MSPM framework considers only one type of 

random shock models. The other types of random shock models can be studied, such as 

(a) run shock models, where failure of one component occurs when there is a run of a 

shocks exceeding a critical magnitude and (b) /-shock models, where failure of one 

component occurs when the time lag between two successive shocks is shorter than a 

threshold / [21].  

• For multi-component systems (with a limited number of components): firstly, only the 

influence of epistemic (subjective) uncertainty to PDMP system degradation models is 

investigated. The aleatory uncertainty associated with the parameters, such as the 

friction coefficients in physics equations of PBMs, in the PDMP system degradation 

models have to be studied. Additionally, the uncertain parameters in PDMP system 

degradation models can also influence the proposed component IMs. Global Sensitivity 

Analysis (GSA) has been employed to produce indices that assess the importance of the 

uncertain factors in the models, taking into account interactions among them [147]. It 

would be interesting to study how the sensitivity indices of the parameters of a 

component relate to the importance indices of that component, within a GSA 

framework. Moreover, the limitations of the proposed optimization method lie in the 

computational burden and the memory requirements, when applied to high-dimensional 

problems, due to the FV method which discretizes the state space of the continuous 

variables of PDMP. The computational expenses and memory requirement of the FV 

method increase almost linearly as the number of meshes partitioning the state space 

increases, which is a choice of the analysts. For high-dimensional problems, the optimal 

number of meshes has to be found to compromise the computational burden. Besides, 

sparse matrices can be employed to reduce the amount of memory required. Finally, the 

proposed PDMP models for systems subject to degradation dependency and random 

shocks consider only constant thresholds of shock loads, for shocks becoming extreme. 

In some cases, the components are deteriorating when withstanding shocks, and their 

resistance to failure is weakening [21]. In this case, they become more sensitive to shock 

loads. The changes in thresholds for shock loads have to be considered in the models. 

• For multi-component systems (with a large number of components): the proposed 
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system reliability assessment methods are solved by MC simulation, which is relatively 

time consuming. MC simulation acceleration techniques need to be developed to 

improve computation efficiency, thus, enabling to extend the applications to systems of 

larger sizes. 
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Index Terms – Component Degradation, Random shocks, Multi-state physics model, Semi-
Markov process, Monte Carlo simulation.  

 

 

Abstract - We extend a multi-state physics model (MSPM) framework for component 
reliability assessment by including semi-Markov and random shock processes. Two mutually 
exclusive types of random shocks are considered: extreme and cumulative. The former leads 
the component to immediate failure, whereas the latter influences the component degradation 
rates. General dependences between the degradation and the two types of random shocks are 
considered. A Monte Carlo simulation algorithm is implemented to compute component state 
probabilities. An illustrative example is presented and a sensitivity analysis is conducted on the 
model parameters. The results show that our extended model is able to characterize the 
influences of different types of random shocks onto the component state probabilities and the 
reliability estimates. 

 

Acronyms 

MSPM  Multi-state physics model 

 

 

Notations �   The states set of component degradation processes %#   The residence time of component being in the state i since the last 

    transition &   The external influencing factors "#,$�%# , &� The transition rate between state i and state j �   Time 

(�, � + ∆�) Infinitesimal time interval   )/   The state of the component after k transitions '/   The time of arrival at )/ of component (���  The state probability vector �#���  The probability of component being in state i at time t ����  The component reliability 



PAPER I: Y.-H. Lin, Y.-F. Li, E. Zio. Integrating Random Shocks into Multi-State Physics Models of Degradation Processes 

for Component Reliability Assessment. Reliability, IEEE Transactions on, vol.64, no.1, pp.154-166, 2015. 

- 105 - 

9���	 	 The number of random shocks occurred until time �	μ    The constant Arrival rate of random shocks  %#,<    The residence time of the component in the current degradation state i 

after m cumulative shocks �#,�%#,< � The probability that one shock results in extreme damage 

"#,$��=%#,< , &>  The transition rates after m cumulative random shocks �′   The state space of the integrated model "�#,�,�$,��=%#,< , &> The transition rate between state �4,B� and state �+, �� C�#,�,�$,���%#,< 	|	�, &� The transition probability density function (�#,��%#,< 	|	�, &�  The probability that, given that the component arrives at the  

     state �4, B� at t and &, no transition will occur in (�, � + %#,< � "�#,�=%#,< , &>  The conditional probability that, given that the component is in  

the state �4,B� at time t, having arrived there at time � − %#,< ,  

and &, it will depart from �4, B� during (�,	� + D%#,< ) V�#,�=%#,< 	|	Ê>	 	 The probability density function for τE,F<  in the state �i,m�,  
given &  U�#,�,�$,��=%#,< 	|	&> The conditional probability that, for the transition out of state  �4,B� after holding time %#,<  and &, the transition arrival  

state will be �+, �� 9_`  The maximum number of replications bc��� = {�8d���, �83�e���,… , �2d���}  The estimation of the state probability  

vector i[jkld�L�	 	 The sample variance of estimated state probability �mn���	/   The predetermined constant which controls the influence of the  

degradation onto the probability �#,=%#,< > �    The relative increment of transition rates after one cumulative shock  

happens 

 

 

1. INTRODUCTION 

Failures of components generally occur in two modes: degradation failures due to physical 
deterioration in the form of wear, erosion, fatigue, etc, and catastrophic failures due to damages 
caused by sudden shocks in the form of jolts, blows, etc [1]-[2].  
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In the past decades, a number of degradation models have been proposed in the field of 
reliability engineering [3]-[9]. They can be grouped into the following categories [9]: statistical 
distributions (e.g. Bernstein distribution [3]), stochastic processes (e.g. Gamma process and 
Wiener process) [4]-[5], and multi-state models [6]-[8].  

Most of the existing models are typically built on degradation data from historical 
collection [3], [5]-[7] or degradation tests [4], which however are suited for components of 
relatively low cost or/and high failure rates (e.g. electronic devices and vehicle components) 
[10]-[12]. In industrial systems, there are a number of critical components (e.g. valves and 
pumps in nuclear power plants or aircraft [13]-[14], engines of airplanes, etc.) designed to be 
highly reliable to ensure system operation and safety, but for which degradation experiments 
are costly. In practice, it is then often difficult to collect sufficient degradation/failure samples 
to calibrate the degradation models mentioned above.  

An alternative is to resort to failure physics and structural reliability, to incorporate 
knowledge on the physics of failure of the particular component (passive and active) [13-17]. 
Recently, Unwin et al. [16] have proposed a multi-state physics model (MSPM) for modeling 
nuclear component degradation, also accounting for the effects of environmental factors (e.g. 
temperature and stress) within certain predetermined ranges [17]. In a previous work by the 
authors [9], the model has been formulated under the framework of inhomogeneous continuous 
time Markov chain and solved by Monte Carlo simulation. 

Random shocks need to be accounted for on top of the underlying degradation processes, 
because they can bring variations to influencing environmental factors, even outside their 
predetermined boundaries [18], that can accelerate the degradation processes. For example, 
thermal and mechanical shocks (e.g. internal thermal shocks and water hammers) [17], [19]-
[20] onto power plant components can lead to intense increases in temperatures and stresses, 
respectively; under these extreme conditions, the original physics functions in MSPM might be 
insufficient to characterize the influences of random shocks onto the degradation processes and 
must, therefore, be modified. In the literature, random shocks are typically modeled by Poisson 
processes [1], [18], [21]-[23], distinguishing two main types, extreme shock and cumulative 
shock processes [21], according to the severity of the damage. The former could directly lead 
the component to immediate failure [24]-[25], whereas the latter increases the degree of damage 
in a cumulative way [26]-[27].  

Random shocks have been intensively studied [1]-[2], [22]-[23], [28]-[33]. Esary et al. [23] 
have considered extreme shocks in a component reliability model, whereas Wang et al. [2], 
Klutke and Yang [30], and Wortman et al. [31] have modeled the influences of cumulative 
shocks onto a degradation process. Both extreme and cumulative random shocks have been 
considered by Li and Pham [1], Wang and Pham [22]. Additionally, Ye et al. [28] and Fan et al. 
[29] have considered that high severity of degradation can lead to high probability that a random 
shock causes extreme damage. However, the fact that the effects of cumulative shocks can vary 
according to the severity of degradation has also to be considered.  

Among the models mixing the multi-state degradation models and random shocks, Li and 
Pham [1] divided the underlining continuous and monotonically increasing degradation 
processes into a finite number of states and combined them with independent random shocks. 
Wang and Pham [22], further considered the dependences among the continuous and monotone 
(increasing or decreasing) degradation processes and between degradation processes and 
random shocks. Yang et al. [33] integrated random shocks into a Markov degradation model. 
Becker et al. [32] combined semi-Markov degradation model, which is more general than 
Markov model, with random shocks in a dynamic reliability formulation, where the influence 
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of random shocks is characterized by the change of continuous degradation variables (e.g. 
structure strength). To the best knowledge of the authors, this is the first work of semi-Markov 
degradation modeling that represents the influence of random shocks by changing the transition 
rates, which might also be physics functions. 

The contribution of the paper is that it generalizes the MSPM framework to handle both 
degradation and random shocks, which have not been previously considered by the existing 
MSPMs. More specifically: first, we extend our previous MSPM framework [9] to semi-
Markov modeling, which more generally describes the fact that the time of transition to a state 
can depend on the residence time in the current state, and hence is more suitable for including 
maintenance [34]; then, we propose a general random shock model, where the probability of a 
random shock resulting in extreme or cumulative damage, and the cumulative damages, are 
both dependent on the current component degradation condition (the component degradation 
state and residence time in the state); finally, we integrate the random shock model into the 
MSPM framework to describe the influence of random shocks on the degradation processes. 
The rest of this paper is organized as follows. Section 2 introduces the semi-Markov scheme 
into the MSPM framework. Section 3 presents the random shock model; in Section 4, its 
integration into MSPM is presented. Monte Carlo simulation procedures to solve the integrated 
model are presented in Section 5. Section 6 uses a numerical example regarding a case study of 
literature, to illustrate the proposed model. Section 7 concludes the work. 

 

2. MSPM OF COMPONENT DEGRADATION PROCESSES  

A continuous-time stochastic process is called a semi-Markov process if the embedded jump 
chain is a Markov Chain and the times between transitions may be random variables with any 
distribution [35]. The following assumptions are made for the extended MSPM framework [9] 
based on semi-Markov processes: 

• The degradation process has a finite number of states � = {0,1, … , } where states ‘0’ 
and ‘M’ represent the complete failure state and perfect functioning state, respectively; 
The generic intermediate degradation states i (0<i<M ) are established according to the 
degradation development and condition, wherein the component is functioning or 
partially functioning. 

• The degradation follows a continuous-time semi-Markov process; the transition rate 
between state i and state j, denoted by "#,$�%#, &�, is a function of %# , which is the 
residence time of the component being in the current state i since the last transition, and &, which represents the external influencing factors (including physical factors).  

• The initial state (at time t = 0) of the component is M. 
• Maintenance can be carried out from any degradation state, except the complete failure 

state (in other words, there is no repair from failure). 

Fig. 1 presents the diagram of the semi-Markov component degradation process. 
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Fig 1. The diagram of the semi-Markov process 

 

The probability that the continuous time semi-Markov process will step to state j in the next 
infinitesimal time interval (�, � + ∆�), given that it has arrived at state i at time '�  after n 
transitions and remained stable in i from Tn until time t , is defined as follows, 

([)�*� = +, '�*� ∈ [�, � + ∆�]	|	.)/,	'/0/12�3�, �)� = 4, '��, '� 5 � 5 '�*�, &] 
 = ([)�*� = +, '�*� ∈ [�, � + ∆�]	|	�)� = 4, '��	, '� 5 � 5 '�*�, &] 

                =	"#,$�%# = � − '�, &�∆�, ∀	4, +	 ∈ 	�, 4 7 +	                (1)  

where	)/ denotes the state of the component after k transitions and '/ denotes the time of 
arrival at )/. The degradation transition rates can be obtained from the structural reliability 
analysis of the degradation processes (e.g. the crack propagation process ([15], [17]), whereas 
the transition rates related to maintenance tasks can be estimated from the frequencies of 
maintenance activities). For example, the authors of [17] divided the degradation process of the 
alloy metal weld into six states dependent on the underlying physics phenomenon, and some 
degradation transition rates are represented by corresponding physics equations. 

The solution to the semi-Markov process model is the state probability vector (��� ={�8���, �83����, … , �2���}, where �#��� is the probability of the component being in state i at 
time t. Since no maintenance is carried out from the component failure state and the component 
is regarded as functioning in all other intermediate alternative states, its reliability can be 
expressed as ���� = 1 − �2���	                           (2) 

where �2��� is the probability of the complete failure state at time t. Analytically solving the 
continuous time semi-Markov model with state residence time-dependent transition rates is a 
difficult or sometimes impossible task, and the Monte Carlo simulation method is usually 
applied to obtain (��� [36]-[37]. 

 

3. RANDOM SHOCKS 

The following assumptions are made on the random shock process: 
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• The arrivals of random shocks follow a homogeneous Poisson process {9���, � ≥ 0} 
[21] with constant arrival rate	;, where the random variable 9��� denotes the 
number of random shocks occurred until time t. The random shocks are independent 
of the degradation process, but they can influence the degradation process (see Fig. 
2). 

• The damages of random shocks are divided into two types: extreme and cumulative. 
• Extreme shock and cumulative shock are mutually exclusive. 
• The component fails immediately upon occurrence of extreme shocks. 
• The probability of a random shock resulting in extreme or cumulative damage is 

dependent on the current component degradation. 
• The damage of cumulative shocks can only influence the degradation transition 

departing from the current state and its impact on the degradation process is dependent 
on the current component degradation. 

 

 

Fig 2. Degradation and random shock processes 

 

The first five assumptions are taken from [22]. The sixth assumption reflects the aging effects 
addressed in Fan et al.’s shock model [29], where the random shocks are more fatal to the 
component (i.e. more likely lead to extreme damages) when the component is in severe 
degradation states. However, the influences of cumulative shocks under aging effects have not 
been considered in Fan et al.’s model, as in the last assumption. In addition, the random shock 
damage is assumed to depend on the current degradation, characterized by three parameters: 1) 
the current degradation state i, 2) the number of cumulative shocks m occurred while in the 
current degradation state since the last degradation state transition, 3) the residence time %#,<  
of the component in the current degradation state i after m cumulative shocks %#,< ≥0. 

Let �#,�%#,< �  denote the probability that one shock results in extreme damage (the 
cumulative damage probability is then 1 − �#,�%#,< � ). In case of cumulative shock, the 
degradation transition rates for the current state change at the moment of occurrence of the 

shock, whereas the other transition rates are not affected. Let "#,$��=%#,< , &>  denote the 
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transition rates after m cumulative random shocks, where "#,$�2��%#,2< , &�  holds the same 

expression as the transition rate "#,$=%#,2< , &> in the pure degradation model, and the other 
transition rates (i.e. m>0) depend on the degradation and the external influencing factors. 
Because the influences of random shocks can render invalid the original physics functions, we 
propose a general model which allows the formulation of ‘physics’ functions dependent on the 
effects of shocks. The modified transition rates can be obtained by material science knowledge 
and/or data from shock tests [38]. These quantities will be used as the key linking elements in 
the integration work of next section. 

 

4. INTEGRATION OF RANDOM SHOCKS IN THE MSPM 

Based on the first and second assumptions on random shocks, the new model that integrates 
random shocks into MSPM is shown in Fig 3. In the model, the states of the component are 
represented by pair (i,m), where i is the degradation state and m is the number of cumulative 
shocks occurred during the residence time in the current state. For all the degradation states of 
component except for the state ‘0’, the number of cumulative shocks could range from 0 to 
positive infinity. If the transition to a new degradation state occurs, the number of cumulative 
shocks is set to 0, coherently with the last assumption on random shocks. The state space of the 
new integrated model is denoted by �′ = {� , 0�, � , 1�, � , 2�, … , � − 1,0�, � −1,1�, … , �0,0�}. The component is failed whenever it reaches (0,0). The transition rate denoted 
by "�#,�,�$,��=%#,< , &> is residence time-dependent, thus rendering the process a continuous 
time semi-Markov process.  

 

 

 

i

j

"#,$2 %#,2< , & "#,$� %#,�< , &

0 1 . . . M
μ∙	(1 − �8,2 %8,2< )

00

. . . 
. . . 
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Fig 3. Degradation and random shock processes 

 

Suppose that the component is in a non-failure state (i,m); then, we have three types of 
outgoing transition rates: "�#,�,�2,2�=%#,< , &> = ; ∙ ��#,=%#,< >�                  (3) 

the rate of occurrence of an extreme shock which will cause the component to go to state (0,0),  "�#,�,�#,*��=%#,< , &> = ; ∙ �1 − �#,=%#,< >�              (4) 

the rate of occurrence of a cumulative shock which will cause the component to go to state 
(i,m+1) and  "�#,�,�$,2�=%#,< , &> = "#,$��=%#,$< , &>                   (5) 

the rate of transition (i.e. degradation or maintenance) which will cause the component to make 
the transition to state (j,0).  

The effect of random shocks on the degradation processes is shown in equation (5) by using 
the superscript �B�  where B  is the number of cumulative shocks occurred during the 
residence time in the current state. It means that the transition rate functions depend on the 
number of cumulative shocks. This is a general formulation. 

The first two types (equation (3) and equation (4)) depend on the probability of a random 
shock resulting in extreme damage and in cumulative damage, respectively; the last type of 
transition rates (equation (5)) depends on the cumulative damage of random shocks. In this 
model, we do not directly associate a failure threshold to the cumulative shocks, since the 
damage of cumulative shocks can only influence the degradation transition departing from the 
current state and its impact on the degradation process is dependent on the current component 
degradation. The cumulative shocks can only aggravate the degradation condition of the 
component instead of leading it suddenly to failure (which is the role of extreme shocks). The 
effect of the cumulative shocks is reflected in the change of transition rates. The probability of 
a shock becoming an extreme one depends on the degradation condition of the component. The 
extreme shocks immediately lead the component to failure, whereas the damage of cumulative 
shocks aggravates the degradation processes of the component. 

The proposed model is based on semi-Markov process and random shocks. Under this 
general structure, as explained in the paragraph above, the physics lies in the transition rates of 
the semi-Markov process. We name it a ‘physics’ model because the stressors (e.g. the crack in 
the case study) that cause the component degradation are explicitly modeled, differently from 
the conventional way of estimating the transition rates from historical failure/degradation data, 
which are relatively rare for the critical components. More information about MSPM can be 
found in [9]. In addition, the random shocks are integrated into the MSPM in a way that they 
may change the ‘physics’ functions of the transition rates, within a general formulation. 

Similarly to what was said for the semi-Markov process presented in Section 2, the state 
probabilities of the new integrated model can be obtained by Monte Carlo simulation and the 
expression of component reliability is: ���� = 1 − ��2,2����	                           (6) 

 

5. RELIABILITY ESTIMATION 
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5.1 Basics of Monte Carlo simulation 

The key theoretical construct upon which Monte Carlo simulation is based is the transition 
probability density function C�#,�,�$,���%#,< 	|	�, &�, defined as follows  	C�#,�,�$,���%#,< 	|	�, &�D%#,< ≡ probability that, given that the system arrives at the state �4,B� at time t and physical factors &, the next transition 

will occur in the infinitesimal time interval (� + %#,< , � +%#,< + D%#,< ) and will be to the state �+, �� [36].   
                                   (7) 

By using the previously introduced transition rates, equation (7) can be expressed as C�#,�,�$,���%#,< 	|	�, &�D%#,< = (�#,��%#,< 	|	�, &�"�#,�,�$,��=%#,< , &>D%#,< 	    (8) 

where (�#,��%#,< 	|	�, &� is the probability that, given that the component arrives at the state �4,B� at time t and physical factors &, no transition will occur in the time interval (�, � + %#,< � 
and it satisfies: 

FG�H,I��JH,IK 	|	L,&�G�H,I��JH,IK 	|	L,&� 	= −"�#,�=%#,< , &>D%#,< 	                 (9) 

where  "�#,�=%#,< , &> = ∑ "�#,�,�#<,<�=%#,< , &>�#<,<�                (10) 

and "�#,�=%#,< , &>D%#,<  is the conditional probability that, given that the component is in the 
state �4, B� at time t, having arrived there at time � − %#,< , and physical factors &, it will depart 
from �4,B� during (�,	� + D%#,< ). 

 Taking the integral at both sides of equation (9) with the initial condition (�#,��0|	�, &� =1, we obtain 

(�#,��%#,< 	|	�, &� 	= NO�	[−P "�#,��Q, &�DQJH,IK2 ]	           (11) 

 Substituting equation (11) into equation (8), we obtain 

C�#,�,�$,���%#,< 	|	�, &� = 	 "�#,�,�$,��=%#,< , &>NO�	[−P "�#,��Q, &�DQJH,IK2 ]  (12) 

 To derive a Monte Carlo simulation procedure, equation (12) is rewritten as C�#,�,�$,���%#,< 	|	�, &� = R�H,I�,�S,T�=JH,IK ,&>R�H,I�=JH,IK ,&> ∙ "�#,�=%#,< , &>NO�	[−P "�#,��Q, &�DQJH,IK2 ] 
   = U�#,�,�$,��=%#,< 	|	&> ∙ V�#,�=%#,< 	|	&>	                (13) 

where 

V�#,�=%#,< 	|	&> = "�#,�=%#,< , &>NO�	[−P "�#,��Q, &�DQJH,IK2 ]        (14) 

is the probability density function for the holding time %#,<  in the state �4,B�, given the 
physical factors &, and 

U�#,�,�$,��=%#,< 	|	&> = R�H,I�,�S,T�=JH,IK ,&>R�H,I�=JH,IK ,&>                     (15) 

is regarded as the conditional probability that, for the transition out of state �4,B� after holding 
time %#,<  and the physical factors &, the transition arrival state will be �+, ��. 
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 In the Monte Carlo simulation, for the component arriving at any non-failure state �4, B� 
at any time t, the process at first samples the holding time at state �4,B� corresponding to 
equation (14), and then determines the transition arrival state �+, ��  from state �4,B� 
according to equation (15). This procedure is repeated until the accumulated holding time 
reaches the predefined time horizon or the component reaches the failure state �0,0�.  

 

5.2 The simulation procedure 

To generate the holding time %#,<  and the next state �+, �� for the component arriving in 
any non-failure state �4,B� at any time t, one proceeds as follows: two uniformly distributed 
random numbers u1 and u2 are sampled in the interval [0, 1]; then, %#,<  is chosen so that 

P "�#,��Q, &�JH,IK2 DQ = ln	�1/Z��	                    (16) 

and �+, �� = [∗ that satisfies ∑ "�#,�,/=%#,< , &> < Z^"�#,�=%#,< , &> 5_∗3�/12 ∑ "�#,�,/=%#,< , &>_∗/12       (17) 

where [∗ represents one state in the ordered sequence of all possible outgoing states of state �4,B� .The state [∗  is determined by going through the ordered sequence of all possible 
outgoing states of state �4, B� until the equation (17) is satisfied. The algorithm of Monte Carlo 
simulation for solving the integrated MSPM on a time horizon [0, �_`]  is presented as 
follows: 

 

Set 9_` (the maximum number of replications) and a = 0 
While a < 9_`  

Initialize  the system by setting Q = � , 0� (initial state of perfect performance), setting the 
time � = 0 (initial time) 

Set �< = 0 (state holding time) 

While � < �_` 
Calculate the equation (10) 

Sample a �’ by using equation (16) 

Sample an arrival state �+, �� by using equation (17) 

Set � = � + �′ 
Set Q = �+, �� 
If Q = �0,0� 
then break 

End if  

End While 

Set a = a + 1 
End While □ 
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The estimation of the state probability vector bc��� = {�8d���, �83�e���,… , �2d���} at time � is 
done as, bc��� = �fIgh {�8���, �83����, … , �2���}	              (18) 

where {�#���|4 =  ,… ,0, � 5 �_`} is the total number of visits to state i at time t, with sample 
variance [39] defined as follows i[jkld�L� = �mn����1 − �mn����/�9_` − 1�	              (19) 

 

6. CASE STUDY AND RESULTS 
6.1 Case study 

We illustrate the proposed modeling framework on a case study slightly modified from an 
Alloy 82/182 dissimilar metal weld in a primary coolant system of a nuclear power plant in 
[17]. The MSPM of the original crack growth is shown in Fig. 4. 

 

 

 

Fig 4. MSPM of crack development in Alloy 82/182 dissimilar metal welds 

 

where �#  and $#  represent the degradation transition rate and maintenance transition rate, 
respectively. Except for �(,�À,	�À′ and �½, all the other transition rates are assumed to be 
constant. The expressions of the variable transition rates are as follows: 

�( = �¶J� ∙ �J)J �¶3�                            (20) 

�À = � _�G�_z�J*Õ��3G���3_�/�+_z���� ,						4C	%À � [�/[z80,																						N�QN               (21) 

�À′ = � _-G-_z�J*Õ��3G-��3_-/�+_z���� ,						4C	%À � [ý/[z80,																						N�QN               (22) 

�½ = � �J. ,						4C	%½ � �[u − [ý�/[z80,								N�QN.																															                      (23) 
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The other transition rates and the parameters values are presented in Table I below.   

   

Table I Parameters and constant transition rates [17] 

 

b –Weibull shape parameter for crack initiation model 2.0 

τ – Weibull scale parameter for crack initiation model   4 years 

[ý – Crack length threshold for radial macro-crack 10 mm 

(ý – Probability that micro-crack evolves as radial crack   0.009 

[z8 – Maximum credible crack growth rate 9.46 mm/yr 

[� – Crack length threshold for circumferential macro-crack 10 mm 

(Ú – Probability that micro-crack evolves as circumferential crack  0.001 

[� – Crack length threshold for leak   20 mm 

ωÀ	 –	Repair transition rate from micro-crack   1 x10-3 /yr $3	 –	Repair transition rate from radial macro-crack   2 x10-2 /yr $2	 –	Repair transition rate from circumferential macro-crack   2 x10-2 /yr $1	 –	Repair transition rate from leak   8 x10-1 /yr �1 – Leak to rupture transition rate   2x10-2 /yr 

�2 – Macro-crack to rupture transition rate  1x10-5 /yr 

 

 The random shocks correspond to the thermal and mechanical shocks (e.g. internal thermal 
shocks and water hammers) [17], [19]-[20] to the dissimilar metal welds. The damage of 
random shocks can accelerate the degradation processes, and hence, increase the rate of 
component degradation. Note that Yang et al [33] have related random shocks to the 
degradation rates in their work. To assess the degree of impact of shocks, we may use 1) physics 
functions for the influence of random shocks through material science knowledge; 2) transition 
times, speed of cracking development and other related information obtained from shock tests 
[38]. We set the occurrence rate ; = 1 15⁄ à3�  and the probability of a random shock 

becoming extreme shock �#,=%#,< > = 1 − NO� Ç−/B�6− 4� �2 − N3JH,IK �Ë , taking the 

exponential formulation from Fan et al.’s work [29]. In this formula, we use B�6− 4��2 −N3JH,IK � to quantify the component degradation. It is noted that the quantity 2 − N3JH,IK  ranges 
from 1 to 2, representing the relatively small effect of %#,<  onto the degradation situation in 
comparison with the other two parameters B and i, and / is a predetermined constant which 
controls the influence of the degradation onto the probability �#,=%#,< >. In this study, we set 
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/ = 0.0001. The value of / was set considering the balance between showing the impact of 
extreme shocks and reflecting the high reliability of the critical component. In addition, we 
assume the corresponding degradation transition rates after m cumulative shocks to be "#,$��=%#,< , &> = �1 + ��"#,$=%#,< , &>, where � = 0.3 is the relative increment of transition 
rates after one cumulative shock happens, and the formulation �1 + �� is used to characterize 
the accumulated effect of such shocks. In order to characterize the increase of the transition 
rates, in the case study we have used the parameter � to represent the relative increment of 
degradation transition rate after one cumulative shock occurs. For the sake of simplicity, but 
without loss of generality in the framework for integration, we assume that the values of � for 
each cumulative shock are equal. But the model can handle different �s for different stages of 
the crack process. 

 

6.2 Results and analysis 

The Monte Carlo simulation over a time horizon of �_` = 80 years is run 9_` = 101 
times. The results are collected and analyzed in the following sections.   

 

6.2.1 Results of state probabilities 

The estimated state probabilities without and with random shocks throughout the time 
horizon are shown in Figs. 5 and 6, respectively. 

 

 

 

Fig 5. State probabilities obtained without random shocks 
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Fig 6. State probabilities obtained with random shocks 

 

Comparing the above two Figures, it can be observed that as expected the random shocks drive 
the component to higher degradation states than the micro-crack state. The numerical 
comparisons on the state probabilities w/o random shocks at year 80 are reported in Table II. It 
is seen that except for the micro-crack state probability, all the other state probabilities at year 
80 have increased due to the random shocks, with the increase in leak probability being the 
most significant. 

 

Table II Comparison of state probabilities w/o random shocks  

(at year 80) 

 

State  Probability without 
random shocks 

Probability with 
random shocks 

Relative 
difference 

Initial  3.52e-3 9.82e-3 180.00% 

Micro-crack 0.9959 0.9661 -2.99% 

Circumferential crack  3.05e-4 7.28e-3 2286.89% 

Radial crack  1.00e-4 7.75e-3 7650.00% 

Leak  1.30e-5 2.59e-3 19823.08% 

Rupture state  2.06e-4 7.00e-3 3298.06% 

 

The fact that the probability of the initial state (compared with no random shocks) at 80 years 
has increased is attributed to the maintenance tasks. All the maintenance tasks lead the 
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component to the initial state and the repair rates from radial macro-crack state, circumferential 
macro-crack state and leak state are higher than that from micro-crack state. The shocks 
generally increase the speed of the component to step back to further degradation states from 
where it steps to the initial state more quickly. In summary, this phenomenon is due to the 
combined effects of shocks. 

 

6.2.2 Results of component reliability 

The estimated component reliabilities with and without random shocks throughout the time 
horizon are shown in Fig. 7, respectively. At year 80, the estimated component reliability with 
random shocks is 0.9930, with sample variance equal to 6.95e-9. Compared with the case 
without random shocks (reliability equals to 0.9998, with sample variance 2.00e-10), the 
component reliability has decreased by 0.68%.  

 

 

 

Fig 7. Component reliability estimation w/o random shocks. 

 

6.2.3 Analysis of the extreme shocks 

Table III presents the frequencies of different numbers of random shocks occurred per 
simulation trial. The most likely number is around 5, which is consistent with our assumption 
on the value of the occurrence rate (; = 1/15à3�) of random shocks. 

 

Table III Frequency of the number of random shocks occurred per trial  

(mission time t = 80 years) 

 

Nb of random 
shocks/trial 

0 1 2 3 4 5 6 7 8 9 >9 

Percentage (%) 0.63 3.14 8.00 13.55 17.15 17.56 14.91 10.83 6.87 3.90 3.45 

0 10 20 30 40 50 60 70 80
0.99

0.992

0.994

0.996

0.998

1

Time

C
om

po
ne

nt
 r

el
ia

bi
lit

y

 

 

without random shocks
with random shocks



PAPER I: Y.-H. Lin, Y.-F. Li, E. Zio. Integrating Random Shocks into Multi-State Physics Models of Degradation Processes 

for Component Reliability Assessment. Reliability, IEEE Transactions on, vol.64, no.1, pp.154-166, 2015. 

- 119 - 

 

In total, 6973 trials ended in failure, among which 4531 trials (64.98%) are caused by 
extreme shocks. Table IV reports the number of trials ending with extreme shocks, for different 
numbers of cumulative shocks occurred per trial. 

 

Table IV Number of trials ended with extreme shocks for different numbers of 
cumulative shocks (mission time t = 80 years) 

 

Nb of 
cumulative 

shocks per trial 

Nb of 
trials 

Nb of trials 
ending with 

extreme shock 

0 6345 0 

1 31739 367 

2 80292 633 

3 135676 812 

4 171526 809 

5 175569 743 

6 148844 500 

7 108101 332 

8 68579 172 

9 38964 90 

10 19569 43 

11 8998 19 

>11 5798 11 

 

The influence of the number of cumulative shocks occurred per trial on the probability of the 
next random shock being extreme is shown in Fig. 8: as expected, the larger the number of 
cumulative shocks the higher the probability of extreme shock. 
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Fig 8. Probability of the next random shock being extreme as a function of the number of 
cumulative shocks occurred per trial. 

 

The influence of the degradation state on the probability of the next random shock being 
extreme is shown in Fig. 9: as expected, the likelihood of extreme shocks is higher when the 
component degradation state is closer to the failure state. 

 

 

 

Fig 9. Probability of the next random shock being extreme as a function of the 
degradation state of the component. 

 
6.2.4 Influence of cumulative shocks on degradation 

In order to characterize the influence of cumulative shocks on the degradation processes, 
we set to 0 the probability of a random shock being extreme, so that all random shocks will be 
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cumulative. The estimated state probabilities are shown in Fig. 10. 

 

 

 

Fig 10. State probabilities obtained with cumulative shocks only. 

 

The state probabilities with cumulative shocks exhibit similar patterns as those in Fig. 6; only 
the rupture state probability has decreased due to the lack of extreme shocks. The numerical 
comparisons on the state probabilities without random shocks and with cumulative shocks at 
year 80 are reported in Table V. 

 

Table V Comparison of state probabilities without random shocks and with cumulative 
shocks  

(at year 80) 

 

State  Probability without 
random shocks 

Probability with 
cumulative shocks 

Relative difference 

Initial  3.52e-3 9.94e-3 184.11% 

Micro-crack  0.9959 0.9704 -2.56% 

Circumferential crack  3.05e-4 7.05e-3 2210.16% 

Radial crack  1.00e-4 7.52e-3 7419.00% 

Leak  1.30e-5 2.76e-3 21161.54% 

Rupture  2.06e-4 2.70e-3 1212.62% 

0 10 20 30 40 50 60 70 80
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Time

P
ro

ba
bi

lit
y

 

 

initial
microcrack
circumferential
radial
leak
rupture



PAPER I: Y.-H. Lin, Y.-F. Li, E. Zio. Integrating Random Shocks into Multi-State Physics Models of Degradation Processes 

for Component Reliability Assessment. Reliability, IEEE Transactions on, vol.64, no.1, pp.154-166, 2015. 

- 122 - 

 

As for the case with random shocks, cumulative shocks have a similar influence on the state 
probabilities. In Fig. 11, we compare the estimated component reliability with cumulative 
shocks with the other two estimated probabilities of Fig. 7. At year 80, the estimated component 
reliability with cumulative shocks is 0.9973 and the sample variance equals to 2.69e-9. 
Considering cumulative shocks only, the component reliability has decreased by 0.26%. 

 

 

 

Fig 11. Component reliability w/o random shocks and with only cumulative shocks. 

 

6.3 Sensitivity analysis 

With the model specifications of Section 6.1, two important parameters are: the constant / 

in �E,F=%E,F< > and the relative increment � in "#,$��=%#,< , &>. To analyze the sensitivity of the 
component reliability estimates to these two parameters, we take values of / within the range 
[0.0001, 0.0002] and � within the range [0.2, 0.4].  

Fig. 12 shows the estimated component reliabilities with different combinations of the two 
parameters. In general, the component reliability decreases when any of the parameters 
increases. In fact, higher / in �E,F=%E,F< > leads to higher probability of the random shock being 
extreme, which is more critical to the component, and higher relative increment �  in "#,$��=%#,< , &> results in larger degradation transition rates. We can also see from the Figure that 
in this situation, when the same percentage of variation applies to the two parameters, � is more 
influential than / on the component reliability. The corresponding variances of the estimated 
component reliability computed using equation (19) are shown in Fig. 13, where it is seen that 
the high reliability estimates have low variance levels. 
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Fig 12. Component reliability estimate as a function of � and / (at year 80). 

 

 

 

Fig 13.Variance of component reliability estimate as a function of ε and δ (at year 80).  

 

7. CONCLUSIONS 

An original, general model of a degradation process dependent on random shocks has been 
proposed and integrated into a MSPM framework with semi-Markov processes, which also 
considers two types of random shocks: extreme and cumulative. General dependences between 
the degradation and the effects of shocks can be considered.  

A literature case study has been illustrated to show the effectiveness and modeling 
capabilities of the proposal, and a crude sensitivity analysis has been applied to a pair of 
characteristic parameters newly introduced. The significance of the findings in the case study 
considered is that our extended model is able to characterize the influences of different types of 
random shocks onto the component state probabilities and the reliability estimates. 
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Abstract –A modeling framework for the treatment of systems subject to dependent 
degradation processes is adopted, based on piecewise-deterministic Markov process (PDMP). 
Due to the complexity of PDMP, analytical solutions are difficult to obtain. In this paper, we, 
then, consider the Monte Carlo simulation method and finite-volume scheme for system 
reliability assessment, and provide the guidelines for their implementation. To examine their 
properties, a comparative study of the two approaches is conducted on two case studies 
regarding a subsystem of the residual heat removal system of a nuclear power plant. 

 

 

Keywords: dependent degradation processes, piecewise-deterministic Markov process, multi-
state model, physics-based model, Monte Carlo simulation method, finite-volume scheme.  

_____________________________________________________________________ 

 

1. INTRODUCTION 

In the field of reliability engineering, a number of degradation models have been proposed, 
which can mainly be classified into the following categories: statistical distributions (e.g. 
Bernstein distribution [1]), stochastic processes (e.g. Gamma process [2]), multi-state models 
(e.g. semi-Markov models [3]) and physics-based models (e.g. probabilistic superposition 
model [4]). In practice, appropriate degradation models have to be chosen based on the available 
information/data. For some highly reliable components/systems (e.g. pumps and valves in 
nuclear power plants), their degradation and/or failure data are often limited and do not allow 
building their lifetime distributions or assigning the values to the parameters of the stochastic 
degradation processes. Physics-based models (PBMs) [5-8] and multi-state models (MSMs) [9-
14] are two widely used modeling frameworks. A PBM aims at developing an integrated 
mechanistic description of the component/system life consistent with the underlying real 
degradation mechanisms (e.g. wear, corrosion, cracking, etc.) by using physics knowledge and 
equations [4], whereas a MSM describes the degradation process in a discrete way, supported 
by material science knowledge [15], degradation and/or failure data [10] from historical field 
collection or degradation tests.  
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In reality, systems are often subject to multiple degradation processes. These degradation 
processes can be dependent under certain circumstances, e.g. when the degradation dynamics 
of some components depend on the degradation state of other components [16], or the various 
degradation processes share the same influencing factors [17]. This renders the system 
reliability analysis and prediction a challenging problem.  

Peng et al. [18] considered two dependent failure processes modeled as stochastic 
processes. Wang and Pham [19] applied time-varying copulas for describing the dependence 
between the degradation processes modeled by statistical distributions. Yang et al. [20] modeled 
the components dependence through the joint distribution of failure time. Straub [21] used a 
dynamic Bayesian network to represent the dependence between degradation processes 
modeled by multi-state models. The dependence is handled in different ways according to the 
types of degradation models involved. 

Piecewise-deterministic Markov process (PDMP) can be employed to integrate PBMs and 
MSMs for dealing with the degradation dependence among different components, as shown in 
our previous preliminary study [22]. The PDMP, firstly introduced by Davis in [23, 24], and 
further studied by Jacobsen [25] and Cocozza-Thivent [26] is a general model that includes 
many other models (e.g. semi-Markov process, Markov process, etc.) as special cases. 
Marseguerra and Zio [27] have applied the PDMP approach to the dynamic reliability 
assessment of a heated hold-up tank system, whereas Chiquet et al. [28] used PDMP to model 
fatigue crack in a structural component. However, due to the complex behavior of PDMP, 
analytical solutions are difficult to obtain [27].  

The Monte Carlo (MC) simulation method and finite-volume (FV) approach are two widely 
used approaches for solving PDMP models to evaluate reliability quantities. Zhang et al. [29] 
have used the MC simulation method to assess the safety and production availability of an 
offshore oil production system. Lair et al. [30] have developed a FV scheme to optimize the 
preventive maintenance of air-conditioning systems used in trains. Cocozza-Thivent et al. [31] 
have proposed an explicit FV scheme for dynamic reliability assessment. An implicit FV 
scheme has been proposed by Eymard et al. [32] to assess the marginal distribution of a process 
describing the time evolution of a hybrid system.  

In this paper, we develop the MC simulation method and the FV scheme to solve a model 
for system reliability analysis considering degradation dependence, proposed in our previous 
study [22]. A comparative analysis of the two methods is offered, considering the following 
evaluation criteria: accuracy, computation time, memory consumption, efficiency, scope of 
application and ease of implementation. Guidelines for implementing the two methods are 
developed, based upon the findings of the comparative study. 

The reminder of this article is organized as follows. Section 2 introduces the PDMP for 
systems with degradation dependence. The procedures of MC simulation method and FV 
scheme to solve the model are presented in Section 3. Section 4 presents the evaluation criteria, 
the case study and the comparison of the two methods. Section 5 concludes the work. 

 

2. PDMP MODELING OF DEGRADATION WITH DEPENDENCE  

Based on the available information/data, two main types of models can be used to represent 
the degradation processes of components: PBMs and MSMs. We consider a multi-component 
system consisting of two groups of components. There are   components in the first group r = {��, �^, … , �8} , whose degradation processes are described PBMs (one for each 
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component) and N components in the second group s = {��, �^, … , �8}, whose degradation 
processes are described by MSMs (one for each component).  

 

2.1 PBMs 

For component � ∈ r, the vector )uIKKKKKKKÄ���	containing DuI  time-dependent continuous 
variables is used to describe its degradation level, whose evolution in time is characterized by 

a system of first-order differential equations )uIzKKKKKKKÄ��� = CuIKKKKKKÄ=)uIKKKKKKKÄ���, �	|	ÊuI> , i.e. physics 

equations, where ÊuI  are the parameters in CuIKKKKKKÄ	representing the environmental influencing 

factors. )uIKKKKKKKÄ��� contains degradation variables such as crack length [7] and wear area [6], and 
physical variables such as velocity and force [5], which influence the evolution of the 
degradation variables. The generic component �  fails when )uIKKKKKKKÄ���  exceeds the 

degradation threshold OuIKKKKKKKÄ∗ = �OuI� ∗, OuI^ ∗, … , OuIFwI∗�.  

 

2.2 MSMs 

For component �� ∈ s, the vector ��T��� is used to describe its degradation level, taking 
values from a finite state set denoted by ��T = {0, 1, … , D�T} , where D�T  is the perfect 
functioning state and 0 is the complete failure state. The component is partially functioning in 
all generic intermediate states. Markov processes [10] and semi-Markov processes [9, 33] are 
widely used in practice as MSMs. The transition rates "#=+	|	Ê�T>, ∀	4, + ∈ ��T , 4 � + are used 
to describe the speed of degradation from state 4  to state + , where Ê�T  represents the 
environmental influencing factors and the related coefficients. The generic component �� 
fails when ��T��� reaches the state 0. 

 

2.3 PDMP for systems with dependence 

The degradation levels of one component may influence the degradation dynamics of the 
others (e,g, the degradation levels of the components in the first group may influence the 
transition rates of the degradation processes of the second group, and the degradation states of 
the second group may influence the evolution trajectories of the continuous degradation 
variables in the first group). PDMP can be employed to model this type of interdependence 
[22]. The overall degradation processes of the system are presented as 

3Ä��� =
�
���
��)u�KKKKKKÄ���⋮)u�KKKKKKKÄ���� = )	KKKÄ���
�������⋮������� = �	KKKÄ����

   
! ∈ � = ℝFw × �               (1) 

where �  is the space combining ℝFw  ( Du = ∑ DuI81� ) and � = {0, 1, … , D�}  ( � =∏ ��Tf�1� ). The evolution of 3Ä��� has two parts: (1) the stochastic behavior of �KÄ��� and (2) 

the deterministic behavior of )	KKKÄ��� between two consecutive jumps of �KÄ���, given �KÄ���. The 
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first process is governed by the transition rates of �KÄ���, which depend on the degradation states 
of all the components as follows: �4B∆L	→	2(=�KÄ�� + ∆�� = MÄ	|	)	KKKÄ���, �KÄ��� = ÃÄ, &s = ∏ &�Tf�1� > /∆�	 	

= "mÄ=MÄ	|	)	KKKÄ���, &s>, ∀	� ≥ 0, ÃÄ, MÄ ∈ �, ÃÄ 7 MÄ	 	 	 	 	 	 	 	 	 	 	 	 �2�	
The second process is described by the deterministic physic equations, which depend on the 
degradation states of all the components as follows: 

)zÄ��� = N)u�zKKKKKKÄ���⋮)u�zKKKKKKKÄ���O = ��
Cu�2KÄ�L�KKKKKKKKKKKKÄ=)	KKKÄ���, �	|	&u�>⋮Cu�2KÄ�L�KKKKKKKKKKKKKÄ=)	KKKÄ���, �	|	&u�>�

! 

= Cu2KÄ�L�KKKKKKKKKKÄ=)	KKKÄ���, �	|	&r = ∏ &uI81� 	>               (3) 

Let '/ denote the a-th transition time of the process �KÄ���. .3/KKKKÄ, '/0/�2 is, then, a Markov 

renewal process [26] defined on the space Û × ℝ*, since the probability that the whole system 
will step to state MÄ from state ÃÄ in the time interval ['�, '� + ∆�], given .3/KKKKÄ, '/0/�� is: 

( Ç3�*�KKKKKKKKKÄ = MÄ, '�*� ∈ ['�, '� + ∆�]	|	.3/KKKKÄ, 	'/0/��3�, .3�KKKKÄ = ÃÄ, 	'�0Ë = (Å3�*�KKKKKKKKKÄ = MÄ, '�*� ∈ ['�, '� + ∆�]	|	3�KKKKÄ = ÃÄÆ	 ∀	� ≥ 0, ÃÄ, MÄ	 ∈ 	�, ÃÄ 7 MÄ                      (4) 

The process 3Ä��� that takes values in � is a Piecewise-Deterministic Process (PDP), since it 
can be written as follows [26]:  3Ä��� = 	�=3/KKKKÄ, � − '/>, Còj	� ∈ ['/, '/*�[, ∀	a	 ∈ 	ℕ           (5) 

and 3Ä��� is a PDMP on the condition that � satisfies the following [26]: 	��àÄ, � + Q� = ����àÄ, ��, Q�, ∀�, Q ≥ 0, àÄ ∈ 	�              (6) 

This is especially true in our case, as � is the solution of a first-order ordinary differential 
equations system [34]. 

Let ~ denote the space of the failure states of 3Ä���: then, the reliability of the system at 
time � is defined as follows: ���� = ([3Ä�Q� ∉ ~, ∀Q 5 �]                      (7) 

 

3. METHODS FOR RELIABILITY ASSESSMENT 

Analytically solving the PDMP is a difficult task due to the complexity in the system 
behavior[27], with stochastic state transitions occurring in the components modeled by MSMs 
and time-dependent evolutions of the characteristic variables in the components modeled by 
PBMs. In this section, the procedures of the MC simulation method and FV scheme to solve 
the model are presented. 
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3.1 MC simulation method for solving PDMP 

To apply the MC simulation method, eq. (4) is written as follows: (Å3�*�KKKKKKKKKÄ ∈ °, '�*� ∈ ['�, '� + ∆�]	|	3�KKKKÄ = ÃÄ, &sÆ 
= P 9=ÃÄ, DQKKKKÄ, DQ	|	&s>¼∗[2,∆L]

	 
∀	� ≥ 0, ∆� ≥ 0, ÃÄ ∈ 	�, ° ∈ �                     (8) 

where �  is a �-algebra of � [26] and 9=ÃÄ, DQKKKKÄ, DQ	|	&s> is a semi-Markov kernel on �, 

which verifies that ∬ 9�ÃÄ, DQKKKKÄ, DQ	|	&s� 5 1�∗[2,∆	L] , ∀	∆� ≥ 0, ÃÄ ∈ 	� . It can be further 

developed as:  9=ÃÄ, DQKKKKÄ, DQ	|	&s> = D�mÄ�Q	|	&s��=ÃÄ, Q, DQKKKKÄ	|	&s>             (9) 

where  D�mÄ�Q	|	&s�                             (10) 

is the probability density function of '�*� − '� given 3�KKKKÄ = ÃÄ and  �=ÃÄ, Q, DQKKKKÄ	|	&s>                           (11) 

is the conditional probability of state 3�*�KKKKKKKKKÄ given '�*� − '� = Q.  

Then, the MC simulation method can be used to estimate the reliability of the system within a 
certain mission time '#��, given the initial system state 32KKKKÄ at time '2 = 0. The method to 
simulate the behavior of the system consists in sampling the transition time from eq. (10) and 
the arrival state from eq. (11) for the components in the second group and, then, using the 
physics eq. (3) to calculate the evolution of the components in the first group within the 
transition times. Each simulation trial continues until the time of system evolution reaches '#�� or until the system enters the failure space ~, event whose occurrence is recorded for 
the statistical estimation of the system reliability. 

 

3.1.1 The simulation procedure 

The procedure of the MC simulation method is as follows: 

Set 9_` (the maximum number of replications) and a = 0 (index of MC trials) 

Set a′ = 0 (number of MC trials that end in failure state) 

While a < 9_`  

Initialize  the system by setting 3′KKKÄ = ")Ä�0��KÄ # (initial system state) and the time ' = 0 
(initial system time) 

Set �< = 0 (state holding time) 

While ' < '#�� 
Sample a �< by using the probability density function (10) 
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Sample an arrival state �′KKKÄ for stochastic process �KÄ��� from all possible states, by 
using the conditional probability function (11) 

Set ' = ' + �′ 
Calculate )	KKKÄ��� in the interval [' − �<, '] by using the physics equations eq. (3) 

Set 3′KKKÄ = ")	KKKÄ�'��′KKKÄ # 

If  ' 5 '#�� 
  If  ∃� ∈ [' − �<, '],3Ä��� = ")	KKKÄ����KÄ # ∈ 	~  

Set a< = a< + 1 
Break 

End if  

Else (when ' � '#��) 
  If  ∃� ∈ [' − �<, '#��]	,3Ä��� = ")	KKKÄ����KÄ # ∈ 	~  

Set a< = a< + 1 
Break 

End if  

End if 

Set �KÄ = �<KKKÄ 
End While 

Set a = a + 1 
End While □ 

 

To calculate the value of )	KKKÄ���, Runge-Kutta methods can be applied for the numerical solution 
of the ordinary differential equations [35, 36]. The estimated component reliability at time '#�� can be obtained by � �'#��� = 1 − a</9_`                     (12) 

where k' represents the number of trials that end in the failure state of the system and the sample 
variance is [37]:  i[j� �¡IH¢¢� = � �'#����1 − � �'#����/�9_` − 1�          (13) 

 

3.2 FV scheme for solving PDMP 

The MC simulation method is conceptually easy to apply and without particular restrictions on 
the dimension of PDMP. On the contrary, it can be quiet time-consuming because of the 
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repetition of many trials in order to get a satisfactory accuracy in the system reliability estimate.  

An FV scheme discretizing the state space of the continuous variables and the time space of 
PDMP is an alternative that in certain cases can lead to results comparable to the MC simulation 
method, but in significantly shorter computing times. Here, we employ an explicit FV scheme 
for system reliability estimation [31]. 

 

3.2.1 Assumptions 

This approach can be applied under the following assumptions: 

• The transition rates "mÄ�MÄ	| 	 ∙, &s�, ∀ÃÄ, MÄ ∈ � are continuous and bounded functions from ℝFw to ℝ*. 

• The physic equations CumÄ	KKKKKÄ�∙,∙	|	&u�, ∀ÃÄ ∈ � are continuous functions from ℝFw × ℝ* 
to ℝFw and locally Lipschitz continuous. 

• The physic equations CumÄ	KKKKKÄ�∙, �	|	&u�, ∀ÃÄ ∈ � are sub-linear, i.e. there are some §� � 0 
and §̂ � 0 such that  ∀OÄ ∈ ℝFw , � ∈ ℝ* RCumÄ	KKKKKÄ�OÄ, �	|	&u�R 5 §��‖OÄ‖ + |�|� + §̂  

• The functions D4i�CumÄ	KKKKKÄ�∙,∙	|	&u��, ∀ÃÄ ∈ � are almost everywhere bounded in absolute 
value by some real value © � 0 (independent of ÃÄ). 

 

3.2.2 Solution approach 

For ease of notation, first we let SmÄKKKÄ�∙,∙�:	ℝFw × ℝ → ℝFw denote the solution of 

¬¬LSmÄKKKÄ�OÄ, �	|	&u� = CumÄ	KKKKKÄ �SmÄKKKÄ�OÄ, �	|	&u�, �	Ü 	&u� , ∀ÃÄ ∈ �, OÄ ∈ ℝFw , � ∈ ℝ    (14) 

with 

	 SmÄKKKÄ�OÄ, 0	|	&u� = OÄ, ∀ÃÄ ∈ �, xKÄ ∈ ℝUV                  (15)	
and SmÄKKKÄ�OÄ, �	|	&u� represents the deterministic evolution of )	KKKÄ��� at time t, starting from the 
condition OÄ and while the processes �KÄ��� hold in state ÃÄ. 

The state space ℝFw of continuous variables )	KKKÄ��� is divided into an admissible mesh ℳ, 
which is a family of measurable subsets of ℝFw (ℳ is a partition of ℝFw) such that: 

(5) ⋃ ®¯∈ℳ = ℝFw. 
(6) ∀®, ° ∈ ℳ, ® 7 ° ⇒ ® ∩ ° = ∅. 
(7) B¯ = P DOKKKKÄ¯ � 0, ∀® ∈ ℳ, where B¯ is the volume of grid ®.  
(8) QZ�¯∈ℳD4[B�®� < +∞ where D4[B�®� = QZ�∀ Ä̀,âKÄ∈¯|OÄ − àÄ|. 

Additionally, the time space ℝ* is divided into small intervals ℝ* = ⋃ [�∆�, �� +�12,�,^,…	1�∆�[, by setting the time step ∆� � 0 (the length of each interval). 

Let �L�DQÄ	|	& = &u ∪ &��  denote the probability distribution of 3Ä��� . The numerical 
scheme aims at constructing an approximate value µL�O	KKKÄ,∙ 	 |	&�DO	KKKÄ for �L�DO	KKKÄ,∙ 	 |	&�, such that 
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µL�O	KKKÄ,∙ 	 |	&� is constant on each ® × {ÃÄ} × [�∆�, �� + 1�∆�[, ∀® ∈ ℳ, ÃÄ ∈ �:   µL�O	KKKÄ, Ã	KÄ	|	&� = (��®, ÃÄ	|	&�, ∀ÃÄ ∈ �, OÄ ∈ ®, � ∈ [�∆�, �� + 1�∆�[    (16) (2�®, ÃÄ	|	&�, ∀ÃÄ ∈ �, ® ∈ ℳ is defined as follows: (2�®, ÃÄ	|	&� = P �2�DO	KKKÄ, Ã	KÄ	|	&�¯ /B¯                 (17) 

Then, (�*��®, ÃÄ	|	&�, ∀ÃÄ ∈ �, ® ∈ ℳ, � ∈ ℕ can be calculated considering the deterministic 
evaluation of )	KKKÄ���  and the stochastic evolution of �	KKKÄ���  based on (��ℳ, ÃÄ	|	&�  by the 
Chapman-Kolmogorov forward equation, as follows: (�*��®, ÃÄ	|	&� 

= ��*∆L¶·lÄ (�*�̧�®, ÃÄ	|	&� + ∆� ∑ _·WKÄlÄ�*∆L¶·WKÄ (�*�̧�®, MÄ	|	&�XÄ∈�          (18) 

where  

[X̄ÄmÄ = P "XÄ�ÃÄ, OÄ	|	&��DOKKKKÄ¯ B¯Y , ∀ÃÄ ∈ �, ® ∈ ℳ            (19) 

is the average transition rate from state MÄ to state ÃÄ for grid ®, 

ºm̄Ä = ∑ [m̄ÄXÄXÄ	»	mÄ , ∀ÃÄ ∈ �, ® ∈ ℳ                  (20) 

is the average transition rate out of state ÃÄ for grid ®, (�*�̧�®, ÃÄ	|	&� = ∑ B¼¯mÄ¼∈ℳ (��°, ÃÄ	|	&�/B¯, ∀ÃÄ ∈ �, ® ∈ ℳ      (21) 

is the approximate value of probability density function on {ÃÄ} × [�� + 1�∆�, �� + 2�∆�[× ® 
according to the deterministic evolution of )	KKKÄ���, B¼¯mÄ = P DàKKKKÄ{âKÄ∈¼	|	ZlÄKKKKÄ�âKÄ,∆L	|	&w�∈¯} , ∀ÃÄ ∈ �, ®, ° ∈ ℳ             (22) 

is the volume of the part of grid ° which will enter grid ® after time ∆�, according to the 
deterministic evolution of )	KKKÄ���.  

The approximated solution µL�O	KKKÄ,∙ 	 |	&�DO	KKKÄ weakly converges towards �L�DO	KKKÄ,∙ 	 |	&�  when ∆� → 0 and |ℳ|/∆� → 0 where |ℳ| = QZ�¯∈ℳD4[B�®�.  

The reliability of the system can, then, be calculated as follows:  ���� = P �L�DQÄ	|	&�[Ä	∉	~                         (23) 

The shortcomings of the FV scheme is that it suffers for high dimensional problems and it is 
relatively more difficult to develop than the MC simulation method. 

 

4. Comparative Study 

4.1. Evaluation criteria 

The evaluation criteria for the comparative study are accuracy, computation time, memory 
consumption, scope of application and ease of implementation. The first three attributes are 
quantitative and the rests are qualitative. 

To compute accuracy, we use the results obtained by the MC simulation with 10( trials as 
reference values O
\è\
\��\  and compute the relative change of the results O  obtained by 
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another method: �N�[�4iN	]ℎ[�SN�O, O
\è\
\��\� = �O − O
\è\
\��\�/O
\è\
\��\, where O is 
the obtained system reliability. 

The efficiency is also an important measure of performance. A method is more efficient if 
it can produce results comparable with the other, but with less computation time (here measured 
in seconds).  

The memory consumption refers to the amount of digital information stored in the computer 
during the calculation and is measured in kilobytes (KB). 

For the scope of application, we consider two case studies: one with high dimension and 
the other with low dimension, since the two methods mainly differ in their capacity of treating 
different dimensions of the problem. 

The ease of implementation describes how easy it is to implement a method in practice.  

  

4.2. Numerica experiment design 

All the numerical experiments are carried out in MATLAB on a PC with an Intel Core 2 
Duo CPU at 3.06 GHz and a RAM of 3.07 GB.  

 We consider MC simulations with 10½ , 10À  and 10(  trials (for ease of reference, 
hereafter named MC1, MC2 and MC3, respectively). The parameters of the FV scheme are 
problem-dependent. Their tuning can be achieved by gradually decreasing the space step and 
the time step. To compare the two methods, the parameter setting of FV scheme is first assigned 
such that it can lead to similar results as MC3, which gives the most accurate results that are 
used for reference. Then, we consider several parameter settings around it.  

 

4.3. Test cases and results 

We consider an important subsystem of a residual heat removal system of a nuclear power 
plant [38], consisting of a pneumatic valve and a centrifugal pump, which are used in 
conjunction in a variety of domains for fluid delivery [5, 39]. The degradation model of the 
pump is the one originally considered in [22] while that of the valve is the physics-based model 
presented in [5]. Dependence is considered, as a result of discussions with experts: the 
degradation of the pump can lead it to vibrate [39], which will, in turn, cause the vibration of 
the valve and, therefore, aggravate the degradation process of the latter [40]. 

The degradation process of the centrifugal pump is modeled by a continuous-time 
homogeneous Markov chain with constant transition rates as shown in Fig. 1: 

 

 

 

Fig. 1. Degradation process of the pump [22]. 

 

The perfect functioning state is denoted with the label ‘3’ and ‘0’ is the label of the complete 

3 2 1 0
λ32 λ21 λ10
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failure state. The vibration of the pump caused by degradation is classified into two levels: 
‘smooth’ and ‘rough’ [41], corresponding to the degradation states ‘2’ and ‘1’, respectively. Let �k��� denote the degradation state of the pump at time � and �k = {0, 1, 2, 3} denote the 
degradation states set. The values of the degradation transition rates are presented in Table I. 

 

Table I Values of the degradation transition rates of the pump 

 

Parameter  Value 

"½^	 6.00e-3 /s 

"^�	 6.00e-3 /s 

"�2	 6.00e-3 /s 

 

The pneumatic valve refers to a normally-closed and gas-actuated valve with a linear 
cylinder actuator, which has been studied in [5, 42] and [34] by physics-based modeling. A 
simplified scheme of the valve is shown in Fig. 2. 

 

 

 

Fig. 2. Simplified scheme of the pneumatic valve [42]. 

  

Two case studies considering two different degradation mechanisms of the valve will be 
carried out in the following section. 

 

4.3.1. Case 1 

Return Spring

Piston

Bottom chamberBottom 
pneumatic port

Top chamber

Top
pneumatic port

Fluid 
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A common degradation mechanism of the valve is the internal leakage from the seal 
surrounding the piston [34]. Owing to this, the pneumatic gas can flow between the two 
chambers therefore influencing the response time and behavior of the valve. The degradation 
variable of the valve is the equivalent orifice area of the internal leakage of the piston, denoted 
by ����, and the degradation process of the valve at time � is described by the following vector: 

)_KKKKÄ��� = 	
�
���
����O���i���BL���B¶���� �

  !                              (24) 

where O��� is the position of the valve, i��� is the velocity of the valve, BL��� is the mass of 
the gas in the top chamber, B¶��� is the mass of the gas in the bottom chamber and � is the 
running time of the valve. The derivatives of these variables are represented by:  

)_zKKKKÄ��� = 	
�
���
�z ���i���[���CL���C¶���1 �

  !                              (25) 

where [��� is the valve acceleration, CL��� and C¶��� are the mass flows going into the top 
and bottom chambers, respectively. The details of the physic functions governing the evolutions 
of the above variables are as follows: �z ��� = `ji���^                             (26) 

where ̀  is the wear coefficient, 

[��� = 1B [=�¶��� − �L���> �®k − ����� − BS + 

−a�O��� + O2� − ji��� + ��=O���>]                    (27) 

where 

�¶��� = a�L��b¡�a7*¯Ý`�L�                            (28) 

is the gas pressure on the bottom of the piston, 

    �L��� = ã�L��b¡�ã7*¯Ý�u¢3`�L��                           (29) 

is the gas pressure on the top of the piston, 

��=O���> = ca��−O����,																4C	O��� < 0													0,																																	4C	0 5 O��� 5 ��		−a��O��� − ���,							4C	O��� � ��											             (30) 

is the contact force, CL��� = CZ�ZL���, �L���, ®�� + CZ��¶���, �L���, �����            (31) 
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C¶��� = CZ�Z¶���, �¶���, ®�� + CZ��L���, �¶���, �����            (32) 

where ZL��� and Z¶��� are the pressures on the top and bottom pneumatic ports, respectively, 
alternating between (�+k and (_L depending on the command (opening command: ZL��� =(_L  and Z¶��� = (�+k ; closing command: ZL��� = (�+k  and Z¶��� = (_L ), and CZ 
defines the gas flow through an orifice as follows: 

CZ���, �^, ®� =
äå
æ
åç�(Ú�®d e[�b¡ � ^e*��f÷�fØ�	,																										4C	/ 5 � ^e*�� ffØ�		
�(Ú�®d e[�b¡ � ^e3���/Õf − /f÷�f �	,									4C	/ � � ^e*�� ffØ�			

      (33) 

where  g( = max	���, �^�		/ = FEh	�k�,kÕ�Fij	�k�,kÕ�								� = QS���� − �^�.                        

The parameters definitions and numerical values related to the internal leakage degradation are 
presented in Table II below. 

 

Table II Parameter Definitions and Values of Internal Leakage variables [5] 

 

Parameter – Definition Value 

S – acceleration due to gravity 9.8 m/s 

(�+k – supply pressure	 5.27e6 Pa 

(_L – atmospheric pressure	 1.01e5 Pa 

B – mass of the moving parts of the valve	 50 kg 

j – coefficient of kinetic friction	 6.00e3 Ns/m 

a – spring constant	 4.80e4 N/s 

a� – large spring constant associated with the flexible seals	 1.00e8 N/s 

O2 – amount of spring compression when the valve is closed	 0.254 m 

�� – fully open position of the valve	 0.1 m 

®k – surface area of the piston	 8.10e-3 m2 

§L2 – minimum gas volume of the top chamber	 8.11e-4 m3 

§¶2 – minimum gas volume of the bottom chamber	 8.11e-4 m3 
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�Z – gas constant for the pneumatic gas	 296 J/K/kg 

' – ideal gas temperature	 293 K 

k – ration of specific heats	 1.4 

Q – gas compressibility factor	 1 

®� – orifice area of the pneumatic port	 1.00e-5 m2 

` – wear coefficient 6e-9 m/N 

Ú� – flow coefficient	 0.1 

 

At the initial stage, the valve is set to the fully closed position with the values:  

)_KKKKÄ�0� = 	
�
��
��

��0�00(QZ���Q®�+§�0��b¡([�B§º0�b¡0 �
  
 !

                            (34) 

The threshold �∗ for the internal leakage of the piston ���� is defined as the value above 
which (��0� � �∗) the valve cannot reach the fully open position within the 15s time limit after 
an opening command is executed at time � = 0Q. The size of the internal leakage is assumed 
to be constant during the opening procedure (�z ��� = 0, 0 5 � 5 15 ) [34] to obtain a 
conservative threshold of �∗ = 3.20N − 6	B^ in this case. The behavior of the valve within 
15s with different values of ��0� is shown in Fig. 3.  
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Fig. 3. Valve position for different sizes of the internal leakage. 

 

4.3.1.1.PDMP for the degradation processes of the system considering dependence 

The degradation processes of the whole system are modeled by PDMP as follows:  

3Ä��� = ")_KKKKÄ����k���# =
�
��
��
����O���i���BL���B¶�����k����

  
 ! 	 ∈ 	ℝ1 × �k                 (35) 

and  

3zÄ��� = ")_zKKKKÄ���0 # =
�
���
��<z ��, �k����i���[���CL���C¶���10 �

   
!

                     (36) 

where �<z ��, �k���� is the derivative of the internal leakage of the valve, with consideration of 
the degradation dependence between the valve and the pump whereas the development of the 
internal leakage of the valve is dependent on the degradation state of the pump, 

�<z ��, �k���� = `�1 + �2Ý�L��ji���^                    (37) 
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where �2Ý�L� is the relative increment of the developing rate of the internal leakage caused by 

the vibration of the pump (if we ignore the degradation dependence, then �2Ý�L� = 0). For 

illustrative purposes, we assume that �½ = �2 = 0, �^ = 10% and �� = 20%. The times 
between two consequent jumps of PDMP follow the exponential distribution with constant 
degradation transition rates of the pump. The space of the failure states of 3Ä��� is ~ = ℝ1 ×{0} ∪ [�∗, +∞� × ℝ( × �k.  

 

4.3.1.2. Results and analysis 

Due to the large dimension of the PDMP and the complex formulation of the physic 
equations, the MC simulation method is adopted to solve the model. 

The initial state of the system is as follows: 

3′KKKÄ = ")_KKKKÄ�0��k�0�# =
�
���
��
��0� = 000(QZ���Q®�+§�0��b¡([�B§º0�b¡03 �

   
 !

                       (38) 

which means that the two components are both in perfect state and the valve is in the fully 
closed position. The command of the valve is a 30s-periodic-signal and the valve is commanded 
to open in the first half-period and to close in the second half. The pump is functioning until it 
reaches the failure state ‘0’. 

MC1, MC2 and MC3 are applied for the system reliability estimation over a time horizon 
of '#�� = 700	Q. The results are shown in Fig. 4. In order to appreciate the differences in the 
curves plotted in Fig. 4, the results between 460 s and 560 s are presented in Fig. 5. 
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Fig. 4. System reliability obtained by MC1, MC2 and MC3. 

 

 

 

Fig. 5. System reliability with common degradation cause and degradation dependence 
obtained by MC1, MC2 and MC3 between 460 s and 560 s. 

 

In Fig. 6, we compare the system reliability with/without dependence, obtained by MC3. 
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system reliability is equal to the reliability of the pump. After that time, valve failures begin to 
occur in some simulation trials, corresponding to realizations in which the pump jumps to state 
‘1’ very soon and stays there until the valve fails. The system reliability, then, experiences three 
sharp decreases at around 497.39 s (point B), 526.77 s (point C) and 556.45 s (point D) 
respectively, and the system is definitely failed afterwards. The longest failure time of the valve 
is at point D, corresponding to the situation when the pump stays in the initial state ‘3’ from the 
beginning until the failure of the valve. It is seen that neglecting degradation dependence might 
underestimate the system reliability. 

 

 

 

Fig. 6. System reliability with/without dependence. 

 

4.3.2. Case 2 

In this case study, the external leakage at the actuator connections to the bottom pneumatic 
port due to corrosion and other environmental factors is considered as relevant degradation 
mechanism, [5].  

Let ©¶��� denote the area of the leakage hole at the bottom pneumatic port at time t; the 
development of the leakage size is described by: 

 ©¶z ��� = $¶                             (39) 

where $¶ = 1N − 8	B2/Q is the original wear coefficient. The threshold of the area of the 
leakage hole can be calculated as ©¶∗ = 1.06e− 5	B^  by using the same criteria given in 
Section 4.1. 

 

4.3.2.1. PDMP for the degradation processes of the system considering 
dependence 

The degradation processes of the whole system are modeled by PDMP as follows:  

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Time (s)

R
el

ia
bi

lit
y

 

 

β
2
 = β

1
 = 0

β
2
 = 10%, β

1
 = 20%

A

B

C 

D 



PAPER II: Y.-H. Lin, Y.-F. Li, E. Zio. Reliability Assessment of Systems Subject to Dependent Degradation Processes: A 

Comparison between Monte Carlo Simulation and Finite-Volume Scheme. Reliability Engineering & System Safety. (Under 

review) 

- 145 - 

3Ä��� = v©¶����k���x 	∈ 	ℝ* × �k                      (40) 

and  

3zÄ��� = v©¶<z ���0 x = v$¶�1 + �2Ý�L��0 x                    (41) 

where �2Ý�L� is the relative increment of the developing rate of the external leakage at the 

bottom pneumatic port caused by the vibration of the pump at the degradation state ‘2’ or ‘1’ 
(if we ignore the degradation dependence, then �2Ý�L� = 0). We assume that �½ = �2 = 0, �^ = 10% and �� = 20%. The times between two consequent jumps of PDMP follow the 
exponential distribution with constant degradation transition rates of the pump. The space of 
the failure states of 3Ä��� is ~ = ℝ* × {0} ∪ [©¶∗, +∞� × �k.  

The initial state of the system is assumed as follows: 

32KKKKÄ = v©¶�0��k�0�x = �03�                           (42) 

which means that the two components are both in their perfect state. 

 

4.3.2.2.Results and analysis 

MC simulation method and FV scheme are applied for the estimation of the system 
reliability over a time horizon of '#�� = 1000	Q. The results obtained by MC1, MC2 and MC3 
are shown in Fig. 7.  

 

 

 

Fig. 7. System reliability obtained by MC1, MC2 and MC3. 
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For the FV scheme, the state space ℝ* of ©¶��� has been divided into an admissible 
mesh ℳ = ⋃ [�∆O, �� + 1�∆O[�12,�,^,…	  and the time space ℝ* has been divided into small 
intervals ℝ* = ⋃ [�∆�, �� + 1�∆�[�12,�,^,…	 . The values of space step ∆O and time step ∆� 
can influence the accuracy of the results. We have considered 7 different parameter settings: (1) 
FV1: ∆O = 1N − 8, ∆� = 1; (2) FV2: ∆O = 5N − 8, ∆� = 1; (3) FV2a: ∆O = 10N − 8, ∆� =1; (4) FV3: ∆O = 1N − 8, ∆� = 5, (5) FV3a: ∆O = 1N − 8, ∆� = 10, (6) FV4: ∆O = 5N −8, ∆� = 5 and (7) FV5: ∆O = 10N − 8, ∆� = 10. Their results are shown in Fig. 8-11.  

We compare the results obtained by FV1 and MC3 in Fig. 8, where it is shown that FV 
scheme can lead to results comparable to those of the MC simulation method. The effect of 
variations in ∆O is studied in Fig. 9, where it can be seen that before around 730 s (point A) 
the three curves match. Up to that time, the system reliability is equal to the reliability of the 
pump. After that time, ©¶��� approaches the threshold ©¶∗ and valve failure begins to occur, 
so that the effect of variations in ∆O becomes more distinct since smaller ∆O leads to more 
accurate estimation of ©¶��� and, thus, more accurate estimation of the system reliability. The 
effect of variation in ∆� is studied in Fig. 10, where we can see that the effect of variations in ∆� is visible from the beginning, since ∆� can influence the estimation of both ©¶��� and �k��� and, thus, influence the estimation of the system reliability from the beginning. The joint 
effect of variations in ∆O and ∆� is shown in Fig. 11. 

 

 

 

Fig. 8. System reliability obtained by FV1 and MC3. 
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Fig. 9. System reliability obtained by FV1, FV2 and FV2a. 

 

 

 

Fig. 10. System reliability obtained by FV1, FV3 and FV3a. 
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Fig. 11. System reliability obtained by FV1, FV4 and FV5. 

 

4.4. Comparisons 

The numerical comparisons of the two methods are reported in Table III. With reference to 
the results obtained by MC3, as expected that the relative change of the other MC simulation 
settings decrease as the number of replications is increased and that of FV scheme decreases as 
the space step ∆O and/or the time step ∆� is reduced. The average computation time of the 
two methods shows that the FV scheme is more efficient and less memory demanding than MC 
simulation for simple and low dimensional problems. However, it should be noted that the 
memory requirement of the FV scheme is much higher than that of MC simulation method and 
the FV scheme is sensitive to the space step and time step. The computational expenses of the 
MC simulation method increase linearly as the number of replications increases and that of FV 
scheme is almost linear with ∆O ∙ ∆�. 

 

Table III Comparisons of the system reliability results obtained by MC simulation method and 
FV scheme 

 

Methods System 
reliability 
at 1000 s 

Relative 
change 
with 

respect to 
MC3 

Average 
computation 

time (s) 

Memory 
consumption 

(KB) 

MC MC3 0.0197  1.41 8.17 
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simulation 
method 

MC2 0.0175 11.17% 0.14 8.17 

MC1 0.023 16.75% 0.014 8.17 

FV 
scheme 

FV1 0.0199 1.02% 0.17 33.62 

FV2 0.0237 20.30% 0.042 13.26 

FV2a 0.0253 28.43% 0.021 10.72 

FV3 0.0212 7.61% 0.033 27.22 

FV3a 0.0231 17.26% 0.017 26.41 

FV4 0.0218 10.66% 0.0058 6.86 

FV5 0.0241 22.34% 0.00027 3.51 

 
4.5. Guidelines for the use of the MC simulation method and FV scheme 

Table IV summarizes the qualitative insights drawn from the comparative studies of the two 
numerical approaches. 

 

Table IV Comparisons of the two numerical approaches 

 MC simulation method FV scheme 

Parameters Number of replications Space step, Time step 

Accuracy Medium High 

Computation time Long Short 

Memory consumption Low High 

Efficiency Low High 

Scope of application Large Small 

Ease of Implementation Yes Generally no 

 

The MC simulation method requires a number of replications to achieve a desired level of 
accuracy, whereas the FV scheme needs to discretize the time space and state space by properly 
choosing the corresponding step sizes. Due to the discretization, the memory consumption of 
FV scheme is typically larger than that of the MC simulation method. The MC simulation 
method is easy to be implemented by the practitioners without restrictions on the dimension of 
the problem, like for PDMP. In reverse, the price to pay is that the MC simulation method can 
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be quiet time-consuming. The FV scheme is an alternative that appears to be efficient and lead 
to results comparable to those of the MC simulation method with acceptable computing time. 
However, it is unsuited for high-dimensional problems or problems with complex equations 
describing the deterministic evolution, and it is also relatively difficult to implement and deploy.  

Given the above observations, the following guidelines for utilization may be helpful: 

• For high dimensional problems or problems with complex equations describing the 
deterministic evolution, the MC simulation method is preferred. 

• For low dimensional problems or problems with simple equations describing the 
deterministic evolution, the FV scheme is preferred. Note that in some cases the high 
dimensional problem can be decomposed into several low dimensional ones mutually 
independent on each other. Then, the FV schemes can be run on low dimensional 
problems in parallel. 

 
5. CONCLUSIONS 

 

We employ the PDMP approach to model degradation processes of systems subject to 
degradation dependence. The significance of the method lies in the possibility that it offers to 
describe the degradation dependence between PBMs, between MSMs and between the two 
types of models. The MC simulation method and FV scheme have been designed for the system 
reliability assessment based on the PDMP. Two case studies based on a real industrial system 
have been solved to illustrate the advantages and limitations of the two numerical approaches. 
A comparative study has been carried out to study their accuracy, efficiency, memory 
requirement, scope of application and ease of implementation. Results show that the MC 
simulation method is easy to be implemented and has wide applicability, since it has no 
restriction on the dimension of the underlying PDMP modeling the degradation processes. The 
FV scheme, although relatively difficult to handle and more demanding in terms of computer 
memory, is computationally more efficient and can lead to results comparable to those of the 
MC simulation method for simple and low dimensional problems. 

As future research, we plan to study acceleration techniques for the MC simulation method, 
to relieve the computational burden. 
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Abstract – Components are often subject to multiple competing degradation processes. For 
multi-component systems, the degradation dependency within one component or/and among 
components need to be considered. Physics-based models (PBMs) and multi-state models 
(MSMs) are often used for component degradation processes, particularly when statistical data 
are limited. In this paper, we treat dependencies between degradation processes within a 
piecewise-deterministic Markov process (PDMP) modeling framework. Epistemic (subjective) 
uncertainty can arise due to the incomplete or imprecise knowledge about the degradation 
processes and the governing parameters: to take into account this, we describe the parameters 
of the PDMP model as fuzzy numbers. Then, we extend the finite-volume (FV) method to 
quantify the (fuzzy) reliability of the system. The proposed method is tested on one subsystem 
of the residual heat removal system (RHRS) of a nuclear power plant, and a comparison is 
offered with a Monte Carlo (MC) simulation solution: the results show that our method can be 
most efficient. 

 

Keywords – Multiple dependent competing degradation processes, piecewise-deterministic 
Markov process (PDMP), epistemic uncertainty, fuzzy set theory, fuzzy reliability, finite-
volume (FV) method. 

_____________________________________________________________________ 

 

1. INTRODUCTION 

Industrial components are often subject to multiple competing degradation processes, 
whereby any of them may cause failure [1]. For multi-component systems, the dependency 
between degradation processes within one component (e.g. the wear of rubbing surfaces 
influenced by the environmental stress shock within a micro-engine [2]), or/and the degradation 
dependency among components (e.g. the degradation of the pre-filtrations stations leading to a 
lower performance level of the sand filter in a water treatment plant [3]) need to be considered.  

Physics-based models (PBMs) [4-7] and multi-state models (MSMs) [8-11] are two 
modeling frameworks that can be used for describing the evolution of degradation in structures 
and components. The former uses physics knowledge that is implemented into mathematical 
equations for an integrated mechanistic description of the component behavior given the 
underlying degradation mechanisms (e.g. shocks, fatigue, wear, corrosion, etc.). The latter 
generally uses degradation and/or failure data from historical field collection or degradation 
tests, or material science knowledge (e.g. multi-state physics model [12]) to describe the 
degradation processes by a finite number of states of degradation severity and a set of transition 
rates (estimated from historical data) between the different degradation states.  
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To treat degradation dependencies in a system whose components are modeled by these 
two types of models, a piecewise-deterministic Markov process (PDMP) approach was 
employed in our previous work [13]. Monte Carlo (MC) simulation methods [14, 15] can be 
used to solve PDMP, since the analytical solution is difficult to obtain due to the complex 
behavior of the system, resulting in the stochasticities of MSMs and time-dependent evolutions 
of PBMs. However, the major shortcoming is that MC can be quiet time-consuming [16]. The 
finite-volume (FV) scheme studied by Cocozza-Thivent et al. [17] and Eymard et al. [18] 
appears to be more efficient, leading to comparable results as MC simulation with acceptable 
computing time [16].  

Epistemic (subjective) uncertainty [19] can affect the analysis due to the incomplete or 
imprecise knowledge about the degradation processes of the components [20, 21]. For PBMs, 
the parameters (e.g. wear coefficient) and influencing factors (e.g. temperature and pressure) 
may be unknown [22] and elicited from expert judgment [23]; for MSMs, the state 
performances may be poorly defined due to the imprecise discretization of the underlying 
continuous degradation processes [24] and the transition rates between states may be difficult 
to estimate statistically due to insufficient data, especially for those highly reliable critical 
components (e.g. valves and pumps in nuclear power plants or aircrafts, etc.) [25]. 

In literature, fuzzy reliability has been studied by many researchers to account for 
imprecision and uncertainty in the system model parameters. Tanaka et al. [26] have proposed 
the fuzzy fault tree for the fuzzy reliability assessment of binary-state systems and Singer [27] 
has assigned fuzzy probabilities to the basic events. Dunyak et al. [28] have proposed another 
fuzzy extension to assign fuzzy probability to all events, which is consistent with the 
calculations from fuzzy fault trees. Ding et al. [20] have developed fuzzy multi-state systems 
(FMSS) models by considering the steady state probabilities, or/and steady state performance 
levels of a component as fuzzy numbers. Ding and Lisnianski [29] have proposed the fuzzy 
universal generating function (FUGF) for the quantification of the fuzzy reliability of FMSS. 
Later, Li et al. [30] have developed a random fuzzy extension of the universal generating 
function and Sallak et al. [31] have employed Dempster–Shafer theory to quantify the fuzzy 
reliability of MSS. Liu et al. [24] have proposed a fuzzy Markov model with fuzzy transition 
rates for FMSS when the steady fuzzy state probabilities are not available. To the knowledge 
of the authors, none of the previous studies has considered epistemic uncertainty in PDMP 
system models. 

The contributions of the paper are twofold. First, we employ fuzzy numbers to represent 
various epistemic uncertainties in multiple dependent competing degradation processes 
modeled by PDMP. Second, we extend the FV scheme for the quantification of PDMP under 
epistemic uncertainty instead of using time-consuming MC simulation methods [32, 33]. The 
reminder of the paper is structured as follows. Section 2 introduces the PDMP for multiple 
dependent competing degradation processes. Section 3 presents the FV scheme for PDMP. 
Section 4 presents the PDMP under uncertainty and the extended FV scheme for system 
reliability quantification. Section 5 presents a case study on one subsystem of the residual heat 
removal system (RHRS) [34] of a nuclear power plant. Section 6 presents numerical results and 
analysis. Section 7 concludes the work. 

 

2. PDMP FOR SYSTEMS DEGRADATION CONSIDERING DEPENDENCY 

The following assumptions are made on the multiple dependent competing degradation 
processes of a system [13]: 
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• The system consists of two groups of components: the first group contains M 
components, �KÄ = ���, �^, … , �8�, whose degradation processes are modeled by 
PBMs; the second group contains N components, �KKÄ = ��� , �^ , … , �f�, whose 
degradation processes are modeled by MSMs including MSPM. 

• All degradation processes of the system follow the PDMP, taking into account the 
degradation dependency of components within each group and between the groups. 

• For a generic component �, B = 1, 2, …	, , of the first group, DuI time-dependent 
continuous variables are used to describe the degradation process; the variables vector )uIKKKKKKKÄ��� = �)uIýKKKKKKKÄ���, )uIGKKKKKKKÄ����  contains (1) non-decreasing degradation variables )uIýKKKKKKKÄ��� (e.g. crack length) and (2) physical variables )uIGKKKKKKKÄ��� (e.g. velocity and force), 
whose evolution in time is described by a set of first-order differential equations 
mathematically representing the underlying physical processes. The component � 

fails when one variable of the first type OuI# ��� ∈ )uIýKKKKKKKÄ���  reaches or exceeds its 

corresponding failure threshold, denoted by OuI# ∗
; the set of failure states of � is 

denoted by ℱuI.  
• For a generic component ��, � = 1, 2, …	, 9 , in the second group, its discrete 

degradation state space is denoted by ��T = {0�T , 1�T , … , D�T}, ranging from perfect 
functioning state ‘D�T ’ to complete failure state ‘0’. The component is functioning or 
partially functioning in all generic intermediate states. The transition rates between 
two different degradation states are used to describe the speed of reaching another 
degradation state. The performance level of one component (e.g. vibration of the valve 
due to degradation) at each degradation state and the impact on the other components 
are considered as deterministic. The failure state set of �� is denoted by ~�T = {0�T}. 

The degradation condition of the whole system is, then, represented as follows: 

3Ä��� =
�
���
�

��
�)u�KKKKKKÄ���)uÕKKKKKKÄ���⋮)u�KKKKKKKÄ����

 ! = )	KKKÄ���
�������, ��Õ���, … , ������� = �KÄ����

   
! ∈ Û = ℝFw × �	 	 	 	 	 	 	 	 �1�	

where ��T���, � = 1, 2, …	, 9 denotes the degradation state of component �� at time t, Û is 
a hybrid space of ℝFw (Du = Du� + DuÕ +	…	+ Du�) and � (� = ��� × ��Õ …× ���). 

The evolution of the degradation processes 3Ä��� involves the stochastic behavior of �KÄ��� 
and the deterministic behavior of )	KKKÄ���, between two consecutive jumps of �KÄ���, given �KÄ���. 
Let �/KKKÄ ∈ �, a ∈ ℕ denote the state of the N components in the second group after k transitions 
(a transition occurs as long as any one of the N components changes its state) and '/ ∈ ℝ*, a ∈ℕ denote the time of arrival at state �/KKKÄ. �KÄ��� is written as follows:  �KÄ��� = �/KKKÄ, ∀� ∈ ['/, '/*�[                          (2) 

The probability that �KÄ��� will step to state MÄ from state ÃÄ in the next infinitesimal time interval ['�, '� + ∆�], given �3	KKKÄ����2�L�¡T, is as follows: 

(Å��*�KKKKKKKKÄ = MÄ, '�*� ∈ ['�, '� + ∆�]	|	�3	KKKÄ����2�L�¡T , Ê�	KKKKKÄ] 
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= (Å��*�KKKKKKKKÄ = MÄ, '�*� ∈ ['�, '� + ∆�]	|	3	KKKÄ�'�� = �)	KKKÄ�'��, ÃÄ�, Ê�KKKKÄ] = "mÄ=MÄ, )	KKKÄ�'��	|	Ê�KKKKÄ>∆�	 ∀	� ≥ 0, ÃÄ, MÄ ∈ �, ÃÄ 7 MÄ                          (3) 

where Ê�KKKKÄ represents the external influencing factors of the components in the second group 
and the related coefficients to the transition rates, "mÄ=MÄ, )	KKKÄ�'��	|	Ê�KKKKÄ>  represents the 

corresponding transition rate. The evolution of )	KKKÄ���,  when � ∈ ['/, '/*�[, a ∈ ℕ , is 
deterministically described by a set of differential equations as follows: 

)zÄ��� =
�
���
)u�zKKKKKKÄ���)uÕzKKKKKKÄ���⋮)u�zKKKKKKKÄ����

  ! =
�
���
Cu�2×KKKKKÄKKKKKKKKKÄ=)	KKKÄ���, �	|	Êu�KKKKKÄ>CuÕ2×KKKKKÄKKKKKKKKKÄ=)	KKKÄ���, �	|	ÊuÕKKKKKÄ>⋮Cu�2×KKKKKÄKKKKKKKKKKÄ=)	KKKÄ���, �	|	Êu�KKKKKKKÄ>�

  ! = Cu2×KKKKKÄKKKKKKKÄ=)	KKKÄ���, �	|	ÊuKKKKÄ>        (4) 

where CuI2×KKKKKKKKKKKÄ,B = 1, 2, … ,  are the set of physics equations, given the influence of the 

degradation state �/KKKÄ of the second group components, ÊuIKKKKKKKÄ,B = 1, 2, … ,  represents the 
external influencing factors of the component ��  and the physical parameters used in the 
physics equations. Mathematically, the dependency within each group and between two groups 
is treated in the framework of a piecewise-deterministic Markov process (PDMP) modeling, 

where the physics equations in the first group, denoted by Cu2×KKKKKÄKKKKKKKÄ=)	KKKÄ���, �	|	ÊuKKKKÄ>, are dependent on 

the states (�/KKKÄ) of the components in the second group and the transition rates in the second 
group, denoted by "mÄ=MÄ, )	KKKÄ���	|	Ê�KKKKÄ>, are dependent on the evolution of the variables ()	KKKÄ���) in 
the first group. 

The reliability of the system at time t is defined as follows: ���� = ([3Ä�Q� ∉ ℱ, ∀Q 5 �]                         (5) 

where ℱ = ℱoKÄ × ℱ2KÄ ⊊ Û denotes the space of the failure states of 3Ä���, where ℱoKÄ denotes 

the sub-space of the states of )Ä��� and ℱ2KÄ denotes the sub-space of the states of �KÄ���. Let �L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>, OÄ ∈ ℝFw , ÃÄ ∈ �  denote the probability density function (PDF) of processes �)	KKKÄ���, �	KKKÄ����L�2 being in state �O	KKKÄ, ÃÄ� at time t, which satisfies: P ∑ �L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>DOÄmÄ	∈	ℝáw = 1                      (6) 

The reliability of the system can be calculated as:  ���� = P ∑ �L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>DOÄmÄ	∉	ℱqKKÄÄ̀	∉	ℱrKKKÄ                    (7) 

The PDF �L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> obeys the Chapman-Kolmogorov equation [35] as follows: ss� �L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> = 

∑ "XÄ=ÃÄ, OÄ	|	Ê�KKKKÄ>XÄ	»	mÄ �L=OÄ, MÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>  

−"mÄ=	OÄ	|	Ê�KKKKÄ>�L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> − div "CumÄKKKKÄ�OÄ, �|	ÊuKKKKÄ��L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>#          (8) 
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where "mÄ=	OÄ	|	Ê�KKKKÄ> = ∑ "mÄ=MÄ, OÄ	|	Ê�KKKKÄ>XÄ	»	mÄ  is the transition rate departing from the state ÃÄ. Among 
the right-hand parts of equation (8), the first two terms are due to the stochastic behavior of 
processes �KÄ��� : the first term accounts for the transition of processes 3Ä��� into state �ÃÄ, OÄ�, 
the second term accounts for the transition of processes 3Ä��� out of state �ÃÄ, OÄ�; the last term 
is due to the deterministic behavior of processes )Ä���, which represents the volume density of 
the outward flux of the probability field around the point �ÃÄ, OÄ�. Given the initial probability 
distribution of the system �2=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> , its evolution in time and that of the system 
reliability can be obtained solving equations (8) and (7), respectively. 

A challenging problem is to calculate the probability density function �L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>, 
because the analytical solution is difficult to obtain due to the complex behavior of the processes 
[14, 15]. MC simulation methods can be applied for such numerical computations, but the major 
shortcoming is that they are typically time-consuming [16]. FV methods is an alternative that 
can lead to comparable results as MC simulation, but within a more acceptable computing time 
[16]. 

 

3. FINITE-VOLUME SCHEME FOR PDMP 

Instead of directly solving the probability density function �L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> through the 
Chapman-Kolmogorov equation (8), an approximate solution can be obtained by the FV 
scheme by discretizing the state space of the continuous variables and the time space of PDMP. 
The approximated solution converges towards the accurate solution under certain conditions. 
Here, we employ an explicit FV scheme to PDMP, developed by Cocozza-Thivent et al. [17]. 

 
3.1 Assumptions 

This approach can be applied under the following assumptions [17]: 

• The transition rates "mÄ=MÄ,∙ 	 |	Ê�KKKKÄ>, ∀ÃÄ, MÄ ∈ � are continuous and bounded functions from ℝFw to ℝ*. 

• The physics equations CumÄ	KKKKKÄ�∙,∙	|	ÊuKKKKÄ>, ∀ÃÄ ∈ � are continuous functions from ℝFw × ℝ* 
to ℝFw and locally Lipschitz continuous. 

• The physics equations CumÄ	KKKKKÄ�∙, �	|	ÊuKKKKÄ>, ∀ÃÄ ∈ � are sub-linear, i.e. there are some §� � 0 
and §̂ � 0 such that  ∀OÄ ∈ ℝFw , � ∈ ℝ* RCumÄ	KKKKKÄ�OÄ, �	|	ÊuKKKKÄ>R 5 §��‖OÄ‖ + |�|� + §̂  

• The functions D4i�CumÄ	KKKKKÄ�∙,∙	|	ÊuKKKKÄ>�, ∀ÃÄ ∈ � are almost everywhere bounded in absolute 
value by some real value © � 0 (independent of i). 

 

3.2 Numerical scheme 

For the ease of notation, first we let SmÄKKKÄ�∙,∙�:	ℝFw × ℝ → ℝFw denote the solution of 

¬¬LSmÄKKKÄ=OÄ, �	|	ÊuKKKKÄ> = CumÄ	KKKKKÄ �SmÄKKKÄ=OÄ, �	|	ÊuKKKKÄ>, �	Ü 	ÊuKKKKÄ� , ∀ÃÄ ∈ �, OÄ ∈ ℝFw , � ∈ ℝ       (9) 
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with 

 SmÄKKKÄ=OÄ, 0	|	ÊuKKKKÄ> = OÄ, ∀ÃÄ ∈ �, OÄ ∈ ℝFw                    (10) 

and SmÄKKKÄ=OÄ, �	|	ÊuKKKKÄ> is the result of the deterministic behavior of )	KKKÄ��� after time t, starting from 

the point OÄ while the processes �KÄ��� hold on state ÃÄ. 
The state space ℝFw of continuous variables )	KKKÄ��� is divided into an admissible mesh ℳ, 

which is a family of measurable subsets of ℝFw (ℳ is a partition of ℝFw) such that [17]: 

(9) ⋃ ®¯∈ℳ = ℝFw. 
(10) ∀®, ° ∈ ℳ, ® 7 ° ⇒ ® ∩ ° = ∅. 
(11) B¯ = P DOKKKKÄ¯ � 0, ∀® ∈ ℳ, where B¯ is the volume of grid ®.  
(12) QZ�¯∈ℳD4[B�®� < +∞ where D4[B�®� = QZ�∀ Ä̀,âKÄ∈¯|OÄ − àÄ|. 

Additionally, the time space ℝ* is divided into small intervals ℝ* = ⋃ [�∆�, �� +�12,�,^,…	1�∆�[ by setting the time step ∆� � 0 (the length of each interval). 

The numerical scheme aims at giving an approximate value for the probability density 
function �L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> on each {4} × [�∆�, �� + 1�∆�[× ®, ∀ÃÄ ∈ �, � ∈ ℕ, ® ∈ ℳ denoted 

by ��=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>, by assuming that: 

�L=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> = ��=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>, ∀ÃÄ ∈ �, OÄ ∈ ®, � ∈ [�∆�, �� + 1�∆�[      (11) 

Given the initial probability density function �2=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> of the system at time � =0, �2=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>, ∀ÃÄ ∈ �, ® ∈ ℳ can be obtained as: 

�2=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> = P �2=OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>DOKKKKÄ¯ /B¯                (12) 

Then, ��*�=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>, ∀ÃÄ ∈ �, ® ∈ ℳ, � ∈ ℕ  can be calculated considering the 

deterministic evaluation of )	KKKÄ���  and the stochastic evolution of �	KKKÄ���  based on ��=ℳ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> by the Chapman-Kolmogorov forward equation [36], as follows: 

��*�=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> 
= ��*∆L¶·lÄ ��*�e=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> + ∆� ∑ _·WKÄlÄ�*∆L¶·WKÄ ��*�e=®, MÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>XÄ∈XÄ	»	mÄ           (13) 

where  

[X̄ÄmÄ = P "XÄ=ÃÄ, OÄ	|	Ê�KKKKÄ>DOKKKKÄ¯ B¯Y , ∀ÃÄ ∈ �, ® ∈ ℳ                (14) 

is the average transition rate from state MÄ to state ÃÄ for grid ®, 

º X̄Ä = ∑ [X̄ÄmÄmÄ	»	XÄ , ∀MÄ ∈ �, ® ∈ ℳ                     (15) 

is the average transition rate out of state ÃÄ for grid ®, ��*�e=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> = ∑ B¼¯mÄ¼∈ℳ ��=°, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>/B¯, ∀ÃÄ ∈ �, ® ∈ ℳ      (16) 

is the approximate value for probability density function on {4} × [�� + 1�∆�, �� + 2�∆�[× ® 
according to the deterministic evaluation of )	KKKÄ���, B¼¯mÄ = P DàKKKKÄ{âKÄ∈¼	|	ZlÄKKKKÄ=âKÄ,∆L	|	ÈwKKKKKÄ>∈¯} , ∀ÃÄ ∈ �, ®, ° ∈ ℳ               (17) 
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is the volume of the part of grid °, which will enter grid ® after time ∆� according to the 
deterministic evaluation of )	KKKÄ���. 

The first term of the right-hand parts of equation (13) accounts for the situation that 
processes �KÄ���  hold on state ÃÄ during time [�∆�, �� + 1�∆�] , represented by “1” in an 

illustrated example in ℝ^  (Fig 1), where 
��*∆L¶·lÄ , ∀ÃÄ ∈ �, ® ∈ ℳ  is the approximated 

probability that no transition happens from state ÃÄ for grid ® and the second term of the right-
hand parts of equation (13) accounts for the situation that processes �KÄ��� step to state ÃÄ from 
another state MÄ at time �� + 1�∆�, represented by “2” in an illustrated example in ℝ^ (Fig 1), 

where [X̄ÄmÄ∆�, ∀ÃÄ, MÄ ∈ �, ® ∈ ℳ is the transition probability from state MÄ to state ÃÄ for grid ® 
(°�, °^, °½	and	°À  are the grids of which some parts will enter grid ®  according to the 
deterministic evaluation of )	KKKÄ��� at time �� + 1�∆�). 

 

 

 

Fig 1. The evolution of degradation processes during [�∆�, �� + 1�∆�]. 
 

The approximated solution ��=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>  weakly converges towards the unique 
solution of equation (8) when ∆� → 0  and |ℳ|/∆� → 0where |ℳ| = QZ�¯∈ℳD4[B�®� 
[17]. 

 

4. PDMP UNDER UNCERTAINTY 

Fuzzy set theories and techniques introduced by Zadeh [37, 38] have been employed in 
reliability models under epistemic uncertainty when the crisp values are insufficient to capture 
the actual behavior of components. In this work, the following assumptions are made to extend 
the previous PDMP model with the consideration of epistemic uncertainty: 
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• The values of the external influencing factors and physical parameters ÊuKKKKÄ  in the 

physics equations CumÄKKKKÄ�OÄ, �	|	ÊuKKKKÄ�, ∀ÃÄ ∈ �, OÄ ∈ ℝFw  and equations SmÄKKKÄ=OÄ, �	|	ÊuKKKKÄ>, ∀ÃÄ ∈�, OÄ ∈ ℝFw , � ∈ ℝ for the deterministic processes )Ä��� can be fuzzy numbers, denoted 

by ÊuKKKKÄ£.  
• The values of the external influencing factors and the related coefficients Ê�KKKKÄ in the 

transition rates for the stochastic processes �KÄ���  between two different states "mÄ=MÄ, OÄ	|	Ê�KKKKÄ>, ∀	� ∈ ℝ*, OÄ ∈ ℝFw , ÃÄ, MÄ ∈ �, ÃÄ 7 MÄ can be fuzzy numbers, denoted by Ê�KKKKÄ£. 

The values of the probability density function �=�, OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> and reliability function ����  have, therefore, changed from crisp values to fuzzy numbers, denoted by �Á ��, OÄ, ÃÄ	|	ÊuKKKKÄ£, Ê�KKKKÄ£�  and �����  respectively. In the next section, we extend the approach 

presented in Section 2 to quantify the dependent degradation processes modeled by PDMP 
under uncertainty. 

 

4.1 Quantification of PDMP under uncertainty 

Let [[Á]Â = [[Â , [Â	] denote the �-cut of a fuzzy number [Á, where [Â and [Â are the 

bounds; then, the �-cut of �Á ��, OÄ, ÃÄ	|	ÊuKKKKÄ£, Ê�KKKKÄ£� , ∀ÃÄ ∈ �, OÄ ∈ ℝFw , � ∈ ℝ can be obtained based 

on the extension principle [38] as: 

Ç�Á ��, OÄ, ÃÄ	|	ÊuKKKKÄ£, Ê�KKKKÄ£�	ËÂ = 

uvv
vwB4�ÈwKKKKKÄ∈ÇÈwKKKKKÄ£ËÉÈxKKKKKÄ∈ÇÈxKKKKKÄ£ ËÉ

�=�, OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> ,B[OÈwKKKKKÄ∈ÇÈwKKKKKÄ£ËÉÈxKKKKKÄ∈ÇÈxKKKKKÄ£ ËÉ
�=�, OÄ, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>yzz

z{
         (18) 

The approximate solution for Ç�Á ��, OÄ, ÃÄ	|	ÊuKKKKÄ£, Ê�KKKKÄ£�	ËÂ , ∀ÃÄ ∈ �, OÄ ∈ ®, � ∈ [�∆�, �� + 1�∆�[ 
denoted by ��| �®, ÃÄ	|	ÊuKKKKÄ£, Ê�KKKKÄ£� can be obtained by varying ÊuKKKKÄ in ÇÊuKKKKÄ£ËÂ and Ê�KKKKÄ in ÇÊ�KKKKÄ£ËÂ as 

follows 

Ç��| �®, ÃÄ	|	ÊuKKKKÄ£, Ê�KKKKÄ£�	ËÂ = 

uvv
vwB4�ÈwKKKKKÄ∈ÇÈwKKKKKÄ£ËÉÈxKKKKKÄ∈ÇÈxKKKKKÄ£ ËÉ

��=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> ,B[OÈwKKKKKÄ∈ÇÈwKKKKKÄ£ËÉÈxKKKKKÄ∈ÇÈxKKKKKÄ£ ËÉ
��=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ>yzz

z{
            (19) 

where ��=®, ÃÄ	|	ÊuKKKKÄ, Ê�KKKKÄ> is obtained by eq. (13) through the FV scheme. Then, the parametric 
programming algorithms [24] can be applied to find the fuzzy probability in eq. (19). 

The approximate solution for the �-cut of fuzzy reliability ����� of the system at time � ∈[�∆�, �� + 1�∆�[ can, then, be obtained as follows:  
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[�����]Â = ∑ ∑ [��| �®, ÃÄ	|	ÊuKKKKÄ£, Ê�KKKKÄ£�]ÂmÄ	∉	ℱqKKÄ P DOKKKKÄ{ Ä̀∈¯	| Ä̀	∉	ℱrKKKÄ}¯∈ℳ            (20) 

In most cases, the original ���� is monotonic with ÊuKKKKÄ and Ê/KKKKÄ; then, we can directly obtain 
that instead of using eq. (19): 

[�����]Â = �} } �� �®, ÃÄ	|	ÊuKKKKÄÂ , Ê�KKKKÄÂ�mÄ	∉	ℱqKKÄ ~ DOKKKKÄ{ Ä̀∈¯	| Ä̀	∉	ℱrKKKÄ}¯∈ℳ , 
∑ ∑ �� v®, ÃÄ	|	ÊuKKKKÄÂ , Ê�KKKKÄÂxmÄ	∉	ℱqKKÄ P DOKKKKÄ{ Ä̀∈¯	| Ä̀	∉	ℱrKKKÄ}¯∈ℳ �               (21) 

 

5. ILLUSTRATIVE CASE 

The illustrative case refers to one important subsystem of a residual heat removal system 
(RHRS) consisting of a centrifugal pump and a pneumatic valve. The definition of the system 
has been provided by Électricité de France (EDF). The degradation model of the pump is a 
modified MSM from the one originally supplied by EDF, while that of the valve is a PBM 
developed by Daigle and Goebel [4]. Upon discussion with the experts, a degradation 
dependency between the two components has been considered, as follows: the degradation of 
the pump will cause it to vibrate [39] which, in turn, will lead the valve to vibrate and therefore 
aggravate the degradation processes of the latter [40]. 

Given its series logic structure, the subsystem is considered failed when one of the two 
components is failed. 

 

5.1 Centrifugal pump 

The multi-state model of the degradation processes of the centrifugal pump is a continuous-
time homogeneous Markov chain with constant transition rates as shown in Fig 2: 

 

 

 

Fig 2. Degradation processes of the pump. 

 

There are four degradation states for the pump, from the perfect functioning state ‘3’ to the 
complete failure state ‘0’. Due to the degradation, the pump can vibrate when it reaches the 
degradation states ‘2’ and ‘1’. The intensity of the vibration of the state ‘2’ is assigned as 
‘smooth’ and that of the state ‘1’ is assigned as ‘rough’ by the experts. Let �k��� denote the 
degradation state of the pump at time �  and �k = {‘0’, ‘1’, ‘2’, ‘3’} denote the degradation 
states set. The pump is functioning until it reaches the complete failure state ‘0’; "½^, "^� and "�2 are the transition rates of the degradation process. 

 
5.2 Pneumatic valve 

The simplified scheme of the pneumatic valve is shown in Fig 3.  

3 2 1 0
λ32 λ21 λ10
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Fig 3. Simplified scheme of the pneumatic valve [4]. 

 

The pneumatic valve is a normally-closed and gas-actuated valve with a linear cylinder 
actuator. Top chamber and bottom chamber are separated by the piston, and are connected to a 
top pneumatic port and a bottom pneumatic port, respectively. The position of the piston 
between fully closed position ‘0’ and fully open position ‘O�’ can be controlled by regulating 
the pressure of the pneumatic ports to fill or evacuate the two chambers. A return spring is 
linked with the piston to ensure that the valve will close when pressure is lost, due to the spring 
force. 

There are several common degradation mechanisms of the valve (e.g. sliding wear, internal 
leaks, external leaks, etc.). In this case study, as degradation mechanism we have chosen the 
external leak at the actuator connections to the bottom pneumatic port due to corrosion and 
other environmental factors, for two reasons: 1) it is more significant than the other degradation 
mechanisms according to the results shown in [4]; 2) the uncertainty associated with the wear 
coefficient estimated from a limited amount of data should be taken into account. The leak will 
lead the valve to be more difficult to open but easier to close. The threshold of the area of leak 
hole ©¶∗ is defined as the value above which (©¶��� � ©¶∗) the valve cannot reach the fully 
open position within the 15s time limit from the fully closed position, after an opening 
command is executed. 

Let ©¶��� denote the area of the leak hole at the bottom pneumatic port at time t, the 
development of the leak size is described by: 

 ©¶z ��� = $¶�1 + �2Ý�L��                         (22) 

where $¶ is the original wear coefficient and where �2Ý�L� is the relative increment of the 

developing rate of the external leak at the bottom pneumatic port caused by the vibration of the 
pump at the degradation state ‘2’ or ‘1’ (if we ignore the degradation dependency, then �2Ý�L� =0).  

The function command of the valve cycle is a 30s-periodic-signal and the valve is 

Return Spring

Piston

Bottom chamberBottom 
pneumatic port

Top chamber

Top
pneumatic port

Fluid 



PAPER III: Y.-H. Lin, Y.-F. Li, E. Zio. Fuzzy Reliability Assessment of Systems with Multiple Dependent Competing 

Degradation Processes. Fuzzy Systems, IEEE Transactions on, vol.23, no.5, pp.1428-1438, 2015. 

- 164 - 

commanded to open in the first half-period and to close in the second half by changing the 
pressure of the top bottom pneumatic port ZL��� and that of the bottom pneumatic port Z¶��� 
(opening command: ZL��� = (_L and Z¶��� = (�+k; closing command: ZL��� = (�+k and Z¶��� = (_L). At the beginning, the valve is set to the fully closed position. 

Let O��� denote the position of the valve at time �, whose evolution in time is described 
by the following equations: O���� = [���                             (23) 

where  

[��� = 1B [=�¶��� − �L���>®k −BS + 

−a�O��� + O2� − ji��� + ��=O���>]                  (24) 

is the valve acceleration, where 

�¶��� = a�L��b¡�a7*¯Ý`�L�                           (25) 

is the gas pressure of the bottom of the piston, 

�L��� = ã�L��b¡�ã7*¯Ý�`¢3`�L��                         (26) 

is the gas pressure of the top of the piston and where 

BL��� = BL�0� +~ CZ�ZL���, �L���, ®��D�L
2  

with BL�0� = (QZ���Q®�+§�0��b¡                        (27) 

and 

B¶��� = B¶�0� +~ CZ�Z¶���, �¶���, ®�� + CZ�(_L, �¶���, ©¶����D�L
2  

with m��0� = ������7���                           (28) 

are respectively the masses of the gas in the top chamber and bottom chamber at time �, and 
where  

CZ���, �^, ®� =
äå
æ
åç�(Ú�®d kQ�Z' � 2k + 1�e*�e3�	,																										4C	/ 5 � 2k + 1� ee3�		
�(Ú�®d kQ�Z' � 2k − 1��/ê − /e*�e �	,									4C	/ � � 2k + 1� ee3�			

 

with g( = max	���, �^�		/ = FEh	�k�,kÕ�Fij	�k�,kÕ�								� = QS���� − �^�                          (29) 

defines the gas flow through an orifice, and 
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��=O���> = ca��−O����,																4C	O��� < 0													0,																																	4C	0 5 O��� 5 ��		−a��O��� − O��,							4C	O��� � ��											             (30) 

is the contact force exerted on the piston by the flexible seals. 

The parameters definitions and values (except for $¶ and �2Ý�L�) of the valve are presented in 

Table I below. 

 

Table I Valve Parameter Definitions and Values 

 

Parameter – Definition Value 

S – acceleration due to gravity 9.8 m/s 

(�+k – supply pressure	 5.27e6 Pa 

(_L – atmospheric pressure	 1.01e5 Pa 

B – mass of the moving parts of the valve	 50 kg 

j – coefficient of kinetic friction	 6.00e3 Ns/m 

a – spring constant	 4.80e4 N/s 

a� – large spring constant associated with the flexible seals	 1.00e8 N/s 

O2 – amount of spring compression when the valve is closed	 0.254 m 

O� – fully open position of the valve	 0.1 m 

®k – surface area of the piston	 8.10e-3 m2 

§L2 – minimum gas volume of the top chamber	 8.11e-4 m3 

§¶2 – minimum gas volume of the bottom chamber	 8.11e-4 m3 

�Z – gas constant for the pneumatic gas	 296 J/K/kg 

' – ideal gas temperature	 293 K 

k – ratio of specific heats	 1.4 

Q – gas compressibility factor	 1 

®� – orifice area of the pneumatic port	 1.00e-5 m2 

Ú� – flow coefficient	 0.1 
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With the given values, the threshold of the area of leak hole ©¶∗ = 1.06e− 5	B^ (maximum 
damage) can be calculated: once exceeded, the valve will not reach the fully open position 
within the 15s limit, as shown in Fig 4. 

   

 

Fig 4. Valve behavior with different sizes of the external leak. 

 

5.3 PDMP for the system under uncertainty 

The degradation processes of the whole system are modeled by PDMP as follows:  

3Ä��� = v©¶����k���x 	∈ 	ℝ* × �k                         (31) 

The space of the failure states of 3Ä��� is ℱ = ℱýa × ℱ2Ý = [©¶∗, +∞� × {‘0’}. We have ÊuKKKKÄ =�$¶, �2Ý�L�� and Ê�KKKKÄ = �"½^, "^�, "�2� which are the uncertain parameters due to the fact that 
their values are estimated from insufficient degradation data or elicited from expert judgment. 
Epistemic uncertainty associated to them, hence, needs to be taken into account and a proper 
mathematical representation of uncertainty of this nature is by fuzzy numbers (FNs). We choose 
triangular fuzzy numbers (TFNs) [41] to represent the uncertain parameters because their 
boundary values and most probable or most advisable values are considered easier to be elicited 
from experts than other FN types and they are widely used to represent uncertain parameters in 
reliability engineering [20, 24, 29, 41]. However, the proposed framework is generally suitable 
for fuzzy numbers with other types of membership functions. The values of $¶| , �2Ý�L�� , "½£̂ , "^�£  and "�2£  are shown in Table II. The fuzzy numbers are assigned by considering a relative 
uncertainty of ±10% of the original parameters values.  

 

Table II The values of the fuzzy parameters in PDMP 
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Parameter  Value 

$¶|  (9e-9, 1e-8, 1.1e-8) m2/s 

�£̂ (9%, 10%, 11%) 

��£ (18%, 20%, 22%) 

"½£̂ 	 (2.7e-3, 3e-3, 3.3e-3) s-1 

"^�£ 	 (2.7e-3, 3e-3, 3.3e-3) s-1 

"�2£ 	 (2.7e-3, 3e-3, 3.3e-3) s-1 

 

The initial state of the system is assumed as follows: 

32KKKKÄ = v©¶�0��k�0�x = � 0‘3’� 
which means that the two components are both in their perfect state. The initial PDF of the 

processes �©¶���, �k����L�2, �2 �O, 4	|	ÊuKKKKÄ£, Ê�KKKKÄ£�, hence equals to 1 if �O, 4� = �0, ‘3’� and to 0 
otherwise. 

 

6. RESULTS 

A MC-based approach [33] can also be used to quantify the epistemic uncertainty, in 
alternative to the fuzzy arithmetic operations and fuzzy parameter programming procedure. The 
comparisons between the results of the reliability of the system at cut level � = 1, i.e. without 
fuzziness in the parameters values, over a time horizon 1000s calculated by MC simulation and 
the FV scheme are shown in Fig 5 and Fig 6. In order to better understand the differences 
presented in Fig 5 and Fig 6, we have added below each original Figure one extra Figure, 
zooming on the time horizon between 800 s and 900 s to illustrate the results obtained by 
different methods. For the FV scheme, the state space ℝ* of ©¶��� has been divided into an 
admissible mesh ℳ = ⋃ [�∆O, �� + 1�∆O[�12,�,^,…	  where ∆O = 1e − 8	m2/s  and the time 
space ℝ*  into small intervals ℝ* = ⋃ [�∆�, �� + 1�∆�[�12,�,^,…	  by setting the time step ∆� = 1	s. All the experiments were carried out in MATLAB on a PC with an Intel Core 2 Duo 
CPU at 1.97 GHz and a RAM of 1.95 GB. The MC simulation method with 105 and 106 
replications (named MC1 and MC2, respectively), and the proposed FV scheme are applied for 
the fuzzy reliability assessment of the system. The average computation time of MC1 and MC2 
is respectively 0.94 s and 9.40 s, while that of the FV scheme is 0.20 s. The system reliability 
decreases more rapidly after around 885 s, because at that time the valve could fail, 
corresponding to the situation when the pump steps to the state ‘1’ very quickly and stays there 
until the valve fails. 

The quantitative comparison of the results over a time horizon 1000 s is shown in Table III. 
Compared with the results of MC2, the mean absolute relative difference (MARD) of the results 
of MC1 is 0.40%, while that of the results of the FV scheme is 0.17%. It is observed that the 
results of the FV scheme are closer to those of MC2, which is more accurate than that of MC1 
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because of the larger number of simulations.  

 

 

 

Fig 5. Fuzzy reliability at cut level � = 1 (no fuzziness) obtained by MC1 and MC2. 

 

 

 

Fig 6. Fuzzy reliability at cut level � = 1 (no fuzziness) obtained by MC2 and FV 
scheme. 
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Fig 7. Fuzzy reliability at cut level � = 1 (no fuzziness) obtained by MC1, MC2 and FV 
scheme of time horizon between 800 s and 900 s. 

 

Table III Comparison of the fuzzy reliability of the system at cut level � = 1 (no fuzziness) 
between MC simulation methods and FV scheme at different times 

 

    Method 

Time   

MC2 MC1 Relative 
difference 

FV 

scheme 

Relative 
difference 

100s 0.9965 0.9966 0.01% 0.9964 -0.01% 

200s 0.9769 0.9766 -0.03% 0.9773 0.04% 

300s 0.9372 0.9364 -0.09% 0.9379 0.07% 

400s 0.8799 0.8780 -0.22% 0.8805 0.07% 

500s 0.8094 0.8063 -0.38% 0.8102 0.10% 

600s 0.7305 0.7283 -0.30% 0.7321 0.22% 

700s 0.6496 0.6469 -0.42% 0.6513 0.26% 

800s 0.5696 0.5664 -0.56% 0.5714 0.32% 

900s 0.4873 0.4839 -0.70% 0.4874 0.02% 

1000s 0.1801 0.1778 -1.28% 0.1811 0.56% 
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The results of the fuzzy reliability of the system at cut levels � = 0 and � = 1 over a time 
horizon 1000 s obtained by MC2 and FV scheme are shown in Fig 8. The lower bound of the 
fuzzy reliability of the system at cut level � = 0 decreases more sharply after around 790 s, 
earlier than the fuzzy reliability at � = 1. It is seen that the system fails after around 964 s, 
because at that time the valve is completely failed. The upper bound of the fuzzy reliability at � = 0 does not experience a rapid decrease because the valve is mostly functioning over the 
time horizon. 

 

 

 

Fig 8. Fuzzy reliability at cut levels � = 0 and � = 1 obtained by MC2 and FV scheme. 

 

The membership function of fuzzy reliability ����� at mission time � = 800	s at different 
cut levels � ∈ [0, 1] obtained by MC simulation methods and FV scheme are illustrated in Fig 
9 and Fig 10 (we have uniformly chosen 51 points in [0, 1] with a step equal to 0.02 assigned 
to �). The average computation times of MC1 and MC2 are 20.19 s and 201.94 s respectively, 
while that of FV scheme is 15.91 s. 
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Fig 9. Membership function of fuzzy reliability ����� at mission time � = 800	s obtained 
by MC1 and MC2. 

 

 

 

Fig 10. Membership function of fuzzy reliability ����� at mission time � = 800	s 
obtained by MC2 and FV scheme. 

 

The quantitative comparison of the results of the membership functions obtained by the MC 
simulation methods and FV scheme is shown in Table IV. Compared with the results of MC2, 
the MARD of the results of MC1 is 0.38% while that of the FV scheme is 0.27%. 

 

Table IV Comparison of the results of the membership function obtained by MC simulation 
methods and FV scheme 

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reliability

M
em

be
rs

hi
p 

(α
)

 

 

MC1
MC2

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reliability

M
em

be
rs

hi
p 

(α
)

 

 

MC2
FV Scheme



PAPER III: Y.-H. Lin, Y.-F. Li, E. Zio. Fuzzy Reliability Assessment of Systems with Multiple Dependent Competing 

Degradation Processes. Fuzzy Systems, IEEE Transactions on, vol.23, no.5, pp.1428-1438, 2015. 

- 172 - 

 

     Method 

Cut level 

MC2 MC1 Relative difference 

(Minimum/Maximum) 

FV 

scheme 

Relative difference 

(Minimum/Maximum) 

� = 0 [0.5062, 0.6330] [0.5086, 0.6340] 0.47% / 0.16% [0.5057, 0.6350] -0.10% / 0.32% 

� = 0.1 [0.5137, 0.6271] [0.5111, 0.6260] -0.51% / 0.18% [0.5148, 0.6285] 0.21% / 0.22% 

� = 0.2 [0.5209, 0.6203] [0.5181, 0.6218] -0.54% / 0.24% [0.5220, 0.6221] 0.21% / 0.29% 

� = 0.3 [0.5266, 0.6141] [0.5249, 0.6095] -0.32% / -0.75% [0.5283, 0.6157] 0.32% / 0.26% 

� = 0.4 [0.5329, 0.6088] [0.5348, 0.6071] 0.36% / -0.28% [0.5344, 0.6093] 0.28% / 0.08% 

� = 0.5 [0.5386, 0.6015] [0.5413, 0.6001] 0.50% / -0.23% [0.5405, 0.6030] 0.35% / 0.25% 

� = 0.6 [0.5440, 0.5955] [0.5476, 0.5976] 0.66% / 0.35% [0.5466, 0.5966] 0.48% / 0.18% 

� = 0.7 [0.5513, 0.5892] [0.5529, 0.5880] 0.29% / -0.20% [0.5528, 0.5903] 0.27% / 0.19% 

� = 0.8 [0.5577, 0.5825] [0.5559, 0.5808] -0.32% / -0.29% [0.5590, 0.5840] 0.23% / 0.26% 

� = 0.9 [0.5626, 0.5756] [0.5643, 0.5797] 0.30%/ 0.71% [0.5652, 0.5777] 0.46% / 0.36% 

  

The above results show that the FV scheme achieves comparable results as MC2, with less 
computational burden. 

 

7. CONCLUSIONS 

In system reliability modeling, it is important to be able to describe multiple dependent 
degradation processes, while including the uncertainty in their quantitative evaluation. In this 
work, we have considered the degradation dependencies among different system components 
and within one component in the framework of PDMP modeling. Both PBMs and MSMs are 
used to describe the components degradation behavior. Epistemic Uncertainty due to the 
incomplete or imprecise knowledge about the degradation processes and the governing 
parameters is included by describing the model parameters as fuzzy numbers. For the 
calculation of the system (fuzzy) reliability, the FV method has been extended and shown to 
lead to comparable results as MC simulation, but with reduced computing time. 

 In future research, it will be interesting to consider the situation when aleatory uncertainty 
is associated with the parameters in the PDMP model. 
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Index Terms – Degradation dependency, importance measures, multiple dependent competing 
degradation processes, piecewise-deterministic Markov process (PDMP), finite-volume 
approach, residual heat removal system, nuclear power plant.  

 

 

Abstract - Component importance measures (IMs) are widely used to rank the importance of 
different component within a system and guide allocation of resources. The criticality of a 
component may vary over time, under the influence of multiple dependent competing 
degradation processes and maintenance tasks. Neglecting this may lead to inaccurate estimation 
of the component IMs and inefficient related decisions (e.g. maintenance, replacement, etc.). 
The work presented in this paper addresses the issue by extending the mean absolute deviation 
IM by taking into account: (1) the dependency of multiple degradation processes within one 
component and among different components; (2) discrete and continuous degradation 
processes; (3) two types of maintenance tasks: condition-based preventive maintenance via 
periodic inspections and corrective maintenance. Piecewise-deterministic Markov processes are 
employed to describe the stochastic process of degradation of the component under these 
factors. A method for the quantification of the component IM is developed based on the finite-
volume approach. A case study on one section of the residual heat removal system of a nuclear 
power plant is considered as an example for numerical quantification. 

 

 

Acronyms 

IMs   Importance measures 

PBMs   Physics-based models 

MSMs   Multi-state models 

GSA   Global sensitivity analysis 

BIM   Birnbaum IM 

MAD   Mean absolute deviation 

MSSs    Multi-state systems 

PM    Preventive maintenance 

CM    Corrective maintenance 

FV    Finite-volume  

RHRS    Residual heat removal system  
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Notations o   Number of components in the system r   Group of degradation processes modeled by PBMs s   Group of degradation processes modeled by MSMs }ÒÓ   Degradation state of component pÏ )uIKKKKKKKÄ���  Time-dependent continuous variables of degradation process � 

)uI}KKKKKKKÄ���  Non-decreasing degradation variables vector 

)uIbKKKKKKKÄ���  Physical variables vector ~uI  Set of failure states of degradation process � ��T���  State variable of degradation process �� ��T   Finite state set of degradation process �� ~�T   Set of failure states of degradation process �� Î#   Predefined state set of PM for degradation process 4 '#   Fixed period of PM for degradation process 4 3Ä���  Degradation state of the system 9   Number of maintenance tasks experienced by the system '#��  System mission time '/    Execution time of the k-th maintenance task 3/KKKKÄ���   Degradation state of the system defined on ['/3�, '/] &s    Environmental and operational factors in s "mÄ=MÄ|)	KKKÄ���, &s> Transition rate from state ÃÄ to MÄ &r   Environmental and operational factors in r CrKKKÄ=3/KKKKÄ���, �|&r> Deterministic physics equations in r 3<KKKÄ���  Stochastic process recording the failure of the system ~   System failure state set ÚÍÒÓ���  Component IM of component pÏ at time � 
C}ßÓKKKKKKKKKÄ�L� �DOrÝKKKKKKÄ, àsÓKKKKKKÄ�  Probability distribution of }ÒÓKKKKKKKÄ���  
�L�×KKKKKÄ�DO	KKKÄ, Ã	KÄ	|	&� Probability distribution of processes 3/KKKKÄ���   

(��×KKKKKÄ�®, ÃÄ|&�   Approximate value for µL�×KKKKKÄ�∙,∙ |&� on {ÃÄ} × [�� + 1�∆�, �� + 2�∆�[× ® 	��®/3�, Ã/3�KKKKKKKÄ��  Set containing all the states that step to the state (®, ÃÄ) after the  

�a − 1�-th maintenance task 
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 ®/ �OrÝKKKKKKÄ, àsÓKKKKKKÄ�  Mesh by fixing }ÒÓKKKKKKKÄ��� to �OrÝKKKKKKÄ, àsÓKKKKKKÄ�. 
 

 
1. INTRODUCTION 

In reliability engineering, component importance measures (IMs) are used to quantify and 
rank the importance of different components within a system. By determining the criticalities 
of the components, limited resources can be allocated according to components prioritization 
for reliability improvement during the system design and maintenance planning phases [1].  

The criticality of a component changes over time, due to the evolution of its underlying 
degradation processes [2]. Also, in practice, components are often subject to multiple 
competing degradation processes and any of them may individually lead to component failure 
[3]. The dependency among the degradation processes within one component (e.g. in a micro-
engine, the shock process can enhance the wear process of rubbing surfaces and each process 
can lead to failure [4]) and of different components (e.g. in a water treatment plant, the decaying 
pre-filtrations often lower the performance of sand filter [5]) have to be considered in the 
calculation of component IMs. Moreover, the degradation processes can be interrupted by 
maintenance tasks (e.g. one component can be restored to its initial state by preventive 
maintenance if any of its degradations exceed the respective critical level [6] and by corrective 
maintenance upon its failure [7]).  

Neglecting the factors that influence the state of being of components can result in 
inaccurate estimation of component IMs and, thus, mislead the system designers, operators and 
managers in the assignment of priorities to component criticalities. In this paper, we investigate 
the criticality of components taking into account the influence of multiple dependent competing 
degradation processes and maintenance tasks.   

Physics-based models (PBMs) [8] and multi-state models (MSMs) [9] are used to describe 
the component degradation processes considered in our work. The former translates physics 
knowledge into mathematical equations that describe the underlying continuous degradation 
processes associated to a specific mechanism, e.g. wear, corrosion and cracking [10]; the latter 
approximates the development of continuous degradation by a process of transitions between a 
finite number of discrete states [11]. Recently, the authors have employed the piecewise-
deterministic Markov process (PDMP) modeling framework to incorporate PBMs and MSMs 
and to treat the dependency of degradation processes [12]. In the present work, the authors 
introduce a set of PDMPs to incorporate also maintenance policies. 

PBMs and MSMs are two widely used approaches, especially for highly reliable 
components, whose degradation/failure data are insufficient to build their lifetime distributions 
[12]. The effects of uncertain parameters in the MSMs have been considered in [13]. Global 
Sensitivity Analysis (GSA) has been employed to produce indices that assess the importance of 
the uncertain factors in the models, taking into account interactions among them. Such paper 
focuses on the importance indices of uncertain factors.  

In this paper, we consider importance indices of components within multi-component 
systems taking into account the influence of multiple competing degradation processes, 
degradation dependency and maintenance tasks. GSA is not employed for such task, since it is 
not the uncertainty in the parameters that is considered. A literature review on component IMs 
is presented below, to position our contribution within the existing works. Component IMs were 
first introduced mathematically by Birnbaum [14] in 1969, in a binary setting (i.e. the system 
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and its components are either functioning or faulty). The Birnbaum IM (BIM) allows ranking 
components by looking at what happens to the system reliability when the reliabilities of the 
components are changed, one at a time. Afterwards, various IMs have been developed for 
binary components, including reliability achievement worth (RAW), reliability reduction worth 
(RRW), Fussel-Vesely and Barlow-Proschan IMs [15-17]. Other concepts of IMs have been 
proposed with focus to different aspects of the system, such as structure IMs, lifetime IMs, 
differential IMs and joint IMs [18]. 

For components whose description requires more than two states, e.g. to describe different 
degrees of functionalities or levels of degradation, definition of the component IMs have been 
extended in two directions: (1) metrics for components modeled by MSMs; (2) metrics for 
components modeled by continuous processes. For the first type, Armstrong [19] proposed IMs 
for multi-state systems (MSSs) with dual-mode failure components. For MSSs with multi-state 
components, Griffith [20] formalized the concept of system performance based on expected 
utility and generalized the BIM to evaluate the effect of component improvement on system 
performance. Wu and Chan [21] improved the Griffith IM by proposing a new utility 
importance of a state of a component to measure which component or which state of a certain 
component contributes the most to system performance. Si et al. [22] proposed the integrated 
IM, based on Griffith IM, to incorporate the probability distributions and transition rates of the 
component states, and the changes in system performance. Integrated IM can be used to 
evaluate how the transition of component states affects the system performance from unit time 
to different life stages, to system lifetime, and provide useful information for preventive actions 
(such as monitoring enhancement, construction improvement etc.) [23, 24]. The multi-state 
generalized forms of classically binary IMs have been proposed by Zio and Podofillini [25] and 
Levitin et al. [26]: these IMs quantify the importance of a multi-state component for achieving 
a given level of performance. Ramirez-Marquez and Coit [27] developed two types of 
composite IMs: (1) the general composite IMs considering only the possible component states; 
(2) the alternative composite IMs considering both the possible component states and the 
associated probabilities. For the second type, Gebraeel [28] proposed a prognostics-based 
ranking algorithm to rank the identical components based on their residual lives. Liu et al. [29] 
extended the BIM for components with multi-dimensional degradation processes under 
dynamic environments. Note that no IM has been developed for components whose 
(degradation) states are determined by both discrete and continuous processes, and are 
dependent upon other components, as it is often the case in practice [30]. 

To include dependency, Iyer [31] extended the Barlow-Proschan IM for components whose 
lifetimes are jointly absolutely continuous and possibly dependent, and Peng et al. [2] adapted 
the mean absolute deviation (MAD) IM (one of the alternative composite IMs) for statistically 
correlated (s-correlated) components subject to a one-dimension continuous degradation 
process; this enables to measure the expected absolute deviation in the reliability of a system 
with s-correlated degrading components, caused by different degrading performance levels of 
a particular component and the associated probabilities. To the knowledge of the authors, 
component IMs taking into account the dependency of multiple degradation processes within 
one component and among different components, with the inclusion of maintenance activities, 
have not been investigated in the literature (studies of IMs for repairable systems with s-
independent components can be found in [24, 32]).  

In this work, we extend the MAD to a more general setting of modeling by PDMP [33], to 
provide timely feedback on the criticality of a component with respect to the system reliability. 
The extension considers: (1) the dependency of multiple degradation processes within one 
component and different components; (2) discrete and continuous degradation processes; (3) 
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two types of maintenance tasks, condition-based preventive maintenance (PM) via periodic 
inspections and corrective maintenance (CM).Then, a method for the quantification of 
component IM is designed based on the finite-volume (FV) approach [34].  

The rest of this paper is organized as follows. Section 2 presents the assumptions and 
degradation models under dependency and maintenance. Section 3 describes the proposed 
component IM. Section 4 introduces the proposed quantification method. Section 5 provides a 
numerical example referred to one subsystem of the residual heat removal system (RHRS) [35], 
to demonstrate the application of the proposed component IM and feasibility of the 
quantification method. Finally, Section 6 concludes the work. 

 

2. MODELING DEGRDATION OF UNDER DEPENDENCY AND 
MAINTENANCE PDMP 

2.1. General assumptions 
 

• Consider a multi-component system, made of o components coded in the vector Ð ={p�, p^, … , pq}, each one with multiple degradation processes, possibly dependent. 
The degradation processes can be separated into two groups: (1) r = {��, �^, … , �8} 
modeled by M PBMs; (2) s = {�� , �^ , … , �f}  modeled by N MSMs, where �, B = 1, 2, … ,  and ��, � = 1, 2, …	, 9  are the indices of the degradation 
processes.  

• The degradation state of a component pÏ ∈ Ð, Ñ = 1, 2, … , o , is determined by its 
degradation processes }ÒÓ ⊆ r ∪ s and the component fails either when one of the 

degradation processes evolves beyond a threshold of failure in the continuous state 
stochastic process or reaches the discrete failure state in the multi-state stochastic 
transition process. 

• A degradation process � ∈ r in the first group is described by DuI time-dependent 

continuous variables )uIKKKKKKKÄ��� = v)uI}KKKKKKKÄ���, )uIbKKKKKKKÄ���x ∈ ℝFwI , whose evolutions are 

described by a set of first-order differential equations (physics equations) in terms of: 

(1) the non-decreasing degradation variables vector )uI}KKKKKKKÄ���  (e.g. crack length) 
representing the component degradation condition; (2) the physical variables vector )uIbKKKKKKKÄ��� (e.g. velocity) influencing )uI}KKKKKKKÄ��� and vice versa. Due to degradation process �, the component fails when any degradation variable OuI# ��� ∈ )uI}KKKKKKKÄ��� exceeds its 

corresponding failure threshold denoted by OuI# ∗
. The set of failure states of the 

degradation variables )uIKKKKKKKÄ��� is denoted by ~uI.  
• A degradation process �� ∈ s in the second group is described by the state variable ��T���, which takes values from a finite state set ��T = {0�T , 1�T , … , D�T}, where ‘D�T ’ 

is the perfect functioning state and ‘0�T ’ is the complete failure state. All intermediate 
states are functioning or partially functioning. The evolution of the degradation process 
is characterized by the transition rates between states. The failure state set of the multi-
state stochastic transition process of degradation ��T��� is described by ~�T = {0�T}. 

• Dependencies between degradation processes may exist both within and between 
groups r and s. The detailed formulations are given in eqs. (1-3). 
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• For degradation process 4 ∈ r ∪ s, the inspection task Í#	of PM is performed with fixed 
period '# and brings the related component back to its initial state when 4 is found in 
the predefined state set Î#. 

• The component is restored to its initial state by CM, as soon as it fails. 
• The inspection tasks and all maintenance actions are done instantaneously and without 

errors. 

An illustration of two components p� and p^ is shown in Fig. 1, where }Ò� = {��} and }ÒÕ = {��}. PM is performed for ��  if )u�}KKKKKKÄ��� exceeds its threshold Ou�k  at the time of 
inspection and for �� if ������ is in state 1 at the time of inspection. 

 

 

Fig. 1. An illustration of two components. 

 

2.2. Degradation model of the system 

The degradation state of the system is represented as  

3Ä��� =
�
���
��)u�KKKKKKÄ���⋮)u�KKKKKKKÄ���� = )	KKKÄ���
�������⋮������� = �	KKKÄ����

   
! ∈ � = ℝFr × �, ∀� ≥ 0            (1) 

where Û is the space combining ℝFr (Dr = ∑ DuI81� ) and � (� = ∏ ���f�1� ). 

A set of PDMPs 3/KKKKÄ���, a = 1,2, …	is employed to model the system degradation processes, 
where a new PDMP is established once a maintenance task is performed. Let 9 denote the 
total number of maintenance tasks (PM and CM) the system has experienced till the mission 
time '#��, then,	3/KKKKÄ���, a = 1,2, … , 9 is defined on ['/3�, '/], where '/ , a = 1,2, … ,9 
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denotes the execution time of the k-th maintenance task and '2 = 0. 3fI*�KKKKKKKKKKKKÄ��� is defined on Å'fI , '#��Æ. Fig. 2 shows this for the degradation processes in Fig. 1.  

 

 

 

Fig. 2. An illustration of two components, modeled by PDMPs. 

 

The evolution of the elements 3/KKKKÄ���, a = 1,2,… ,9 + 1, of the system state vector 3Ä��� 
involves (1) the stochastic transition process of �KÄ��� and (2) the deterministic progression of )	KKKÄ���, between successive transitions of �KÄ���, given �KÄ���. The first process is governed by the 
transition rates of �KÄ���:  �4B∆L	→	2(=�KÄ�� + ∆�� = MÄ|3/KKKKÄ��� = �)	KKKÄ���, �KÄ��� = ÃÄ�¡, &s> = "mÄ=MÄ|)	KKKÄ���, &s>∆�, ∀	ÃÄ, MÄ ∈ �, ÃÄ 7 MÄ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �2� 
where the parameter vector &s represents environmental and operational factors influencing 
the degradation processes in s, and "mÄ=MÄ|)	KKKÄ���, &s> is the transition rate from state ÃÄ to MÄ. The 
second evolution process is described by the deterministic physics equations as follows: 

)zÄ��� = N)u�zKKKKKKÄ���⋮)u�zKKKKKKKÄ���O = �
Cu�KKKKKÄ=3/KKKKÄ���, �|&u�>⋮Cu�KKKKKKÄ=3/KKKKÄ���, �|&u�>� = CrKKKÄ =3/KKKKÄ���, �|&r = =&u� , &uÕ , … , &u�>�       

(3) 

where the parameter vector &uI , B = 1,2, …	,   represents environmental and operational 

factors influencing the degradation processes in �. 3/KKKKÄ�'/3�� (the initial states of 3/KKKKÄ���, a =2,… ,9 + 1) can be obtained according to 3/3�KKKKKKKKKÄ�'/3�� and the (k-1)-th maintenance task. 
The degradation states of the system till '#�� can be represented by 
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3Ä��� = ∑ ÖÅ¡I×Ø�,¡I× Å��� ∙ 3/KKKKÄ���fI/1� + ÖÇ¡I�I ,¡IH¢¢Ë��� ∙ 3fI*�KKKKKKKKKKKKÄ���         (4) 

Since maintenance is performed instantaneously, the failure states of the system are infinitely 
approachable by 3Ä���, instead of being truly reached. We, then, use another stochastic process 3<KKKÄ���, which can record the failure of the system as follows: 3<KKKÄ��� = ÖÅ2,¡I� Æ��� ∙ 3�KKKKÄ��� + ∑ ÖÆ¡I×Ø�,¡I× Æ ∙ 3/KKKKÄ���fI/1^ + ÖË¡I�I ,¡IH¢¢Ë��� ∙ 3fI*�KKKKKKKKKKKKÄ��� (5) 

Let ~ denote the system failure state set: then, the system reliability at '#��  can be 
defined as follows: ��'#��� = (Å3<KKKÄ�Q� ∉ ~, ∀Q 5 '#��Æ = (Å⋂ =3/KKKKÄ�'/� ∉ ~> ∩ =3fI*�KKKKKKKKKKKKÄ�'#��� ∉ ~>fI/1� Æ                 

(6) 

Since the component is restored to its initial state by corrective maintenance as soon as it fails, 
the failure states of the system can only be reached by 3<KKKÄ��� at the execution time of the 
maintenance tasks '/ , a = 1,2, … , 9  or at the mission time '#�� . Therefore, the event 3<KKKÄ�Q� ∉ ~, ∀Q 5 '#�� can be represented by ⋂ =3/KKKKÄ�'/� ∉ ~> ∩ =3fI*�KKKKKKKKKKKKÄ�'#��� ∉ ~>fI/1� . 

 
3. COMPONENT IM 

Ramirez-Marquez and Coit [27] proposed the MAD IM for MSSs with multi-state 
components, which evaluates the components criticality taking into account all the possible 
states and associated probabilities. Peng et al. [2] adapted it for binary systems with s-correlated 
components subject to one continuous degradation process.  

For components whose (degradation) states are determined by both discrete and continuous 
processes, we propose an extension of MAD to provide timely feedbacks of the criticality of 
component pÏ with multiple dependent competing degradation processes modeled by MSMs 
and PBMs, and giving consideration to PM and CM. The formulation is presented as follows: 

ÚÍÒÓ��� = Û ÇÜ( �3<KKKÄ�Q� ∉ ~, ∀Q 5 �|}ÒÓKKKKKKKÄ���� − ����ÜË              (7) 

where }ÒÓKKKKKKKÄ��� = �)rÝKKKKKKÄ��� = �)uÝ�KKKKKKKKÄ���, … , )uÝTKKKKKKKKÄ����, �sÓKKKKKKÄ��� = ���Ó����, … , ��ÓI�����  and }ÒÓ = {rk = {�k� , … , �kT}, sÏ = {�Ï� , … , �ÏI}} . It accounts for the expected absolute 
deviation in the system reliability caused by changes of all degradation processes of component pÏ. Let ℝFrÝ = ℝ∑ FwÝHTHÞ�  and �sÓ = ∏ ��ÓH#1�  denote the state space of )rÝKKKKKKÄ��� and �sÓKKKKKKÄ���, 
respectively; eq. (7) can, then, be expressed as 

ÚÍÒÓ��� = ∑ P C}ßÓKKKKKKKKKÄ�L� �DOrÝKKKKKKÄ, àsÓKKKKKKÄ�`rÝKKKKKKKÄ∈ℝárÝâsÓKKKKKKKKÄ∈�sÓ   

|(�3<KKKÄ�Q� ∉ ~, ∀Q 5 �|)rÝKKKKKKÄ��� = OrÝKKKKKKÄ, �sÓKKKKKKÄ��� = àsÓKKKKKKÄ� − 	����|            (8) 

where C}ßÓKKKKKKKKKÄ�L� �DOrÝKKKKKKÄ, àsÓKKKKKKÄ� is the probability distribution of }ÒÓKKKKKKKÄ���. 
Let 9L ≥ 1 denote the number of maintenance tasks that the system has experienced till �. According to eq. (6), we can obtain that: 

��'#��	� = ( Ç�⋂ =3/KKKKÄ�'/� ∉ ~>fIã/1� � ∩ =3fIã *�KKKKKKKKKKKKÄ��� ∉ ~>Ë           (9) 
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and (�3<KKKÄ�Q� ∉ ℱ, ∀Q 5 �|)rÝKKKKKKÄ��� = OrÝKKKKKKÄ, �sÓKKKKKKÄ��� = àsÓKKKKKKÄ� = 

äåå
æ
ååç

F`rÝKKKKKKKÄè}ßÓKKKKKKKKKKÄ�ã��F`rÝKKKKKKKÄ,âsÓKKKKKKKKÄ�( [�⋂ =3/KKKKÄ�'/� ∉ ℱ>fIã/1� � ∩	
	�3fIã *�}ßÓKKKKKKKKKKKKÄ ��|)rÝKKKKKKÄ��� = OrÝKKKKKKÄ, �sÓKKKKKKÄ��� = àsÓKKKKKKÄ� ∉ ℱ�], 4C	C}ßÓKKKKKKKKKÄ�L� �DOrÝKKKKKKÄ, àsÓKKKKKKÄ� 7 0

0, 4C	C}ßÓKKKKKKKKKÄ�L� �DOrÝKKKKKKÄ, àsÓKKKKKKÄ� = 0	
			 �10�	

where 3fIã *�ýßÓKKKKKKKKKKKKÄ ��|)rÝKKKKKKÄ��� = OrÝKKKKKKÄ, �sÓKKKKKKÄ��� = àsÓKKKKKKÄ� = �)u�KKKKKKÄ���, … , )rÝKKKKKKÄ��� =OrÝKKKKKKÄ, … , )u�KKKKKKKÄ���, ������, … , �sÓKKKKKKÄ��� = àsÓKKKKKKÄ, … , �������¡. 
 

4. FV SCHEME FOR COMPONENT IM QUANTIFICATION 

Let �L�×KKKKKÄ�DO	KKKÄ, Ã	KÄ	|	& = &r ∪ &s�, ∀O	KKKÄ ∈ ℝFr , Ã	KÄ ∈ �  denote the probability distribution of 

processes 3/KKKKÄ���. Due to the complex behavior of the PDMP, the analytical solution for the 
probability distribution is difficult to obtain [36]. The FV approach developed in [34] can be 
used to obtain the approximated solution by discretizing the time space and the state space of 
the continuous variables, achieving accurate results within an admissible computing time, as 
shown in  [37].  

 

4.1. FV scheme for PDMP 
4.1.1. Assumptions 

This approach can be applied under the following assumptions: 

• "mÄ�MÄ,∙ |&s�, ∀ÃÄ, MÄ ∈ � are continuous and bounded functions from ℝFr to ℝ*. 

• CrmÄ	KKKKKÄ�∙,∙|&r�, ∀ÃÄ ∈ �  are continuous functions from ℝFr × ℝ*  to ℝFr  and locally 
Lipschitz continuous. 

• CrmÄ	KKKKKÄ�∙, �|&r�, ∀ÃÄ ∈ � are sub-linear, i.e. there are some §� � 0 and §̂ � 0 such that  ∀OÄ ∈ ℝFr , � ∈ ℝ* RCrmÄ	KKKKKÄ�OÄ, �|&r�R 5 §��‖OÄ‖ + |�|� + §̂  

• D4i�CrmÄ	KKKKKÄ�∙,∙|&r��, ∀ÃÄ ∈ � are almost everywhere bounded in absolute value by some 
real value © � 0 (independent of ÃÄ). 

 

4.1.2. Solution approach 

The time space ℝ* is divided into small intervals ℝ* = ⋃ [�∆�, �� + 1�∆�[�12,�,^,…	  by 

setting the length of each interval ∆� � 0 and the state space ℝFr of )	KKKÄ��� is divided into an 
admissible mesh ℳ which satisfies that: 

(13) ⋃ ®¯∈ℳ = ℝFr. 
(14) ∀®, ° ∈ ℳ, ® 7 ° ⇒ ® ∩ ° = ∅. 
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(15) B¯ = P DOKKKKÄ¯ � 0, ∀® ∈ ℳ, where B¯ is the volume of grid ®.  
(16) QZ�¯∈ℳD4[B�®� < +∞ where D4[B�®� = QZ�∀ Ä̀,âKÄ∈¯|OÄ − àÄ|. 
The numerical scheme aims at constructing an approximate value µL�×KKKKKÄ�O	KKKÄ,∙ |&�DO	KKKÄ  for �L�×KKKKKÄ�DO	KKKÄ,∙ |&�, such that µL�×KKKKKÄ�O	KKKÄ,∙ |&� is constant on each ® × {ÃÄ} × [�∆�, �� + 1�∆�[, ∀® ∈ℳ, ÃÄ ∈ �, [�∆�, �� + 1�∆�[∈ ['/3�, '/]:   

µL�×KKKKKÄ�O	KKKÄ, Ã	KÄ|&� = (��×KKKKKÄ�®, ÃÄ|&�, ∀ÃÄ ∈ �, OÄ ∈ ®, � ∈ [�∆�, �� + 1�∆�[       (11) 

(2�×KKKKKÄ�®, ÃÄ|&�, ∀ÃÄ ∈ �, ® ∈ ℳ is defined as follows: 

(2�×KKKKKÄ�®, ÃÄ|&� = P �2�×KKKKKÄ�DO	KKKÄ, Ã	KÄ|&�¯ /B¯                  (12) 

Then, (�*��×KKKKKÄ �®, ÃÄ	|	&�, ∀ÃÄ ∈ �, ® ∈ ℳ, � ∈ ℕ can be calculated considering the deterministic 

evaluation of )	KKKÄ���  and the stochastic evolution of �	KKKÄ���  based on (��×KKKKKÄ�ℳ, ÃÄ|&�  by the 
Chapman-Kolmogorov forward equation [38], as follows: 

(�*��×KKKKKÄ �®, ÃÄ|&� 
= ��*∆L¶·lÄ (�*��×KKKKKÄ̧ �®, ÃÄ|&� + ∆� ∑ _·WKÄlÄ�*∆L¶·WKÄ (�*��×KKKKKÄ̧ �®, MÄ|&�XÄ∈�                (13) 

where  

[X̄ÄmÄ = P "XÄ�ÃÄ, OÄ|&��DOKKKKÄ¯ B¯Y , ∀ÃÄ ∈ �, ® ∈ ℳ                 (14) 

is the average transition rate from state MÄ to state ÃÄ for grid ®, 

ºm̄Ä = ∑ [m̄ÄXÄXÄ	»	mÄ , ∀ÃÄ ∈ �, ® ∈ ℳ                        (15) 

is the average transition rate out of state ÃÄ for grid ®, 

(�*��×KKKKKÄ̧ �®, ÃÄ|&� = ∑ B¼¯mÄ¼∈ℳ (��×KKKKKÄ�°, ÃÄ|&�/B¯, ∀ÃÄ ∈ �, ® ∈ ℳ           (16) 

is the approximate value of probability density function on {ÃÄ} × [�� + 1�∆�, �� + 2�∆�[× ® 
according to the deterministic evaluation of )	KKKÄ���, B¼¯mÄ = P DàKKKKÄ{âKÄ∈¼	|	ZlÄKKKKÄ�âKÄ,∆L|&w�∈¯} , ∀ÃÄ ∈ �, ®, ° ∈ ℳ                (17) 

is the volume of the part of grid ° which will enter grid ® after time ∆� according to the 

deterministic evaluation of )	KKKÄ���, where SmÄKKKÄ�∙,∙�:	ℝFr × ℝ → ℝFr is the solution of 

¬¬LSmÄKKKÄ�àÄ, �|&r� = CrmÄ	KKKKKÄ �SmÄKKKÄ�àÄ, �|&r�, �Ü &r�                   (18) 

with 

	 SmÄKKKÄ�àÄ, 0|&r� = àÄ                            (19)	SmÄKKKÄ�àÄ, ∆�|&r� gives the state of the deterministic behavior of )	KKKÄ��� after time ∆�, starting from 
the state àÄ while the processes �KÄ��� stay in state ÃÄ. 
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4.2. Quantification of component IM 

Given the initial probability distribution �2��KKKKÄ�DO	KKKÄ, Ã	KÄ|&� of the system, (2��KKKKÄ�®, ÃÄ|&�, ∀ÃÄ ∈�, ® ∈ ℳ, can be obtained as: 

(2��KKKKÄ�®, ÃÄ|&� = P �2��KKKKÄ�DO	KKKÄ, Ã	KÄ|&�¯ /B¯                   (20) 

(ì¡I� /∆Lí��KKKKÄ �®, ÃÄ|&�, ∀ÃÄ ∈ �, ® ∈ ℳ can, then, be calculated through the FV scheme. 

To calculate eq. (9) and ([�⋂ =3/KKKKÄ�'/� ∉ ℱ>fIã/1� � ∩ �3fIã *�}ßÓKKKKKKKKKKKKÄ ��|)rÝKKKKKKÄ��� = OrÝKKKKKKÄ, �sÓKKKKKKÄ��� =àsÓKKKKKKÄ� ∉ ℱ�] in eq. (10), we are only interested in the situation that the system is functioning till �; thus, (ì¡I×Ø�/∆Lí�×KKKKKÄ �®, ÃÄ|&�, ∀ÃÄ ∈ �, ® ∈ ℳ, a = 2, 3, …9L + 1 is initiated as follows: 

(îïI×Ø�∆ã ð�×KKKKKÄ �®, ÃÄ|&� = 

äåå
æ
ååç

(îïI×Ø�∆ã ð�×Ø�KKKKKKKKKKÄ �®, ÃÄ|&� + ∑ (îïI×Ø�∆ã ð�×Ø�KKKKKKKKKKÄ =®<, Ã<KKÄ|&>�¯K,mKKKÄ�∈��¯×Ø�,m×Ø�KKKKKKKKKÄ��
�¯K,mKKKÄ�∉~

,
4C	=�®, ÃÄ� ∉ ~>	[�D	 �∄° ∈ ℳ, MÄ ∈ �:	�®, ÃÄ� ∈ {�°/3�, M/3�KKKKKKKKÄ�}�	0,4C	=�®, ÃÄ� ∈ ~>	òj	 �∃° ∈ ℳ, MÄ ∈ �:	�®, ÃÄ� ∈ {�°/3�, M/3�KKKKKKKKÄ�}�

    (21) 

where ��®/3�, Ã/3�KKKKKKKÄ�� , ∀ÃÄ ∈ �, ® ∈ ℳ, is the set containing all the states that step to the state 

(®, ÃÄ) caused by the �a − 1�-th maintenance task. Then, we can obtain that  

( Ç�⋂ =3/KKKKÄ�'/� ∉ ~>fIã/1� � ∩ =3fIã *�KKKKKKKKKKKKÄ��� ∉ ~>Ë = ∑ B¯(õ ã∆ãö��Iã ÷�
KKKKKKKKKKKKKKKKÄ�®, ÃÄ|&��¯,mÄ�∉~    (22) 

( ��⋂ =3/KKKKÄ�'/� ∉ ℱ>fIã/1� � ∩ "3fIã *�}ßÓKKKKKKKKKKKKÄ ��|)rÝKKKKKKÄ��� = OrÝKKKKKKÄ, �sÓKKKKKKÄ��� = àsÓKKKKKKÄ� ∉ ℱ#� =	  

∑ (õ ã∆ãö��Iã ÷�
KKKKKKKKKKKKKKKKÄ�®, ÃÄ|&��¯,mÄ�∉~�`rÝKKKKKKKÄ,âsÓKKKKKKKKÄ�⊆�¯,mÄ� P DOKKKKÄ¯/�`rÝKKKKKKKÄ,âsÓKKKKKKKKÄ�                (23) 

where ®/ �OrÝKKKKKKÄ, àsÓKKKKKKÄ� is the mesh by fixing }ÒÓKKKKKKKÄ��� to �OrÝKKKKKKÄ, àsÓKKKKKKÄ�. 
To calculate C}ßÓKKKKKKKKKÄ�L� �DOrÝKKKKKKÄ, àsÓKKKKKKÄ� in eq. (8), (10), we are interested in the state of the system at 

� no matter whether the system is functioning till � or not; thus, (ì¡I×Ø�/∆Lí�×KKKKKÄ �®, ÃÄ|&�, ∀ÃÄ ∈ �, ® ∈ℳ, a = 2, 3, …9L + 1 is initiated as follows: 

(îïI×Ø�∆ã ð�×KKKKKÄ �®, ÃÄ|&� = 

äå
æ
åç(îïI×Ø�∆ã ð�×Ø�KKKKKKKKKKÄ �®, ÃÄ|&� + ∑ (îïI×Ø�∆ã ð�×Ø�KKKKKKKKKKÄ =®<, Ã<KKÄ|&>�¯K,mKKKÄ�∈��¯×Ø�,m×Ø�KKKKKKKKKÄ�� ,

4C	∄° ∈ ℳ, MÄ ∈ �:	�®, ÃÄ� ∈ {�°/3�, M/3�KKKKKKKKÄ�}0,4C	∃° ∈ ℳ, MÄ ∈ �:	�®, ÃÄ� ∈ {�°/3�, M/3�KKKKKKKKÄ�}
      (24) 

We can obtain that 
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C}ßÓKKKKKKKKKÄ�L� �DOrÝKKKKKKÄ, àsÓKKKKKKÄ� = 	DOrÝKKKKKKÄ ∑ (õ ã∆ãö��Iã ÷�
KKKKKKKKKKKKKKKKÄ�®, ÃÄ|&� P DOKKKKÄ¯/�`rÝKKKKKKKÄ,âsÓKKKKKKKKÄ�¯∈ℳ,mÄ∈��`rÝKKKKKKKÄ,âsÓKKKKKKKKÄ�⊆�¯,mÄ� 	 (25) 

ÚÍÒÓ��� can, then, be obtained by using eqs. (8)-(10), (20)-(25). 

The pseudo-code for the quantification of component IM ÚÍÒÓ��� is presented as follows: 

Set time �,  length of each interval ∆� and admissible mesh ℳ 

Set the initial probability distribution �2��KKKKÄ�DO	KKKÄ, Ã	KÄ|&� 
Initialize the probability distribution of 3�KKKKÄ�0� by using eq. (20) 

For + = 1 to 9L  do 

Calculate the probability distribution of 3XKKKÄ�'$ � by using FV scheme 

Calculate the initial probability distribution of 3X*�KKKKKKKKÄ�'$ � by using eq. (21) 

End 

Calculate the probability distribution of 3fIã *�KKKKKKKKKKKKÄ���  by using FV scheme 

Calculate the system reliability at time � by using eq. (22)  

Calculate the conditional system reliability at time � by using eq. (23) 

For + = 1 to 9L  do 

Calculate the probability distribution of 3XKKKÄ�'$ � by using FV scheme 

Calculate the initial probability distribution of 3X*�KKKKKKKKÄ�'$ � by using eq. (24) 

End 

Calculate the probability distribution of 3fIã *�KKKKKKKKKKKKÄ���  by using FV scheme 

Calculate the probability distribution of }ÒÓKKKKKKKÄ��� by using eq. (25) 

Calculate the component IM ÚÍÒÓ��� by using eq. (8) 

□ 

 

5. ILLUSTRATIVE CASE 

The system consists of a centrifugal pump and a pneumatic valve in series, and is a 
subsystem of the residual heat removal system (RHRS) of a nuclear power plant of Électricité 
de France (EDF). Given the series configuration, the failure of anyone of the two components 
can lead the subsystem to failure. A dependency in the degradation processes of the two 
components has been indicated by the experts: the pump vibrates due to degradation [39] which, 
in turn, leads the valve to vibrate, aggravating its own degradation processes [40].  

 
5.1. Centrifugal pump 

The pump is modeled by a MSM, modified from the one originally supplied by EDF upon 
discussion with the experts. It is a continuous-time homogeneous Markov chain as shown in 
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Fig. 3: 

 

 

 

Fig. 3. Degradation process of the pump. 

 �k = {0, 1, 2, 3} denotes its degradation states set, where 3 is the perfect functioning state 
and 0 is the complete failure state. The parameters "½^, "^� and "�2 are the transition rates 
between the degradation states. Due to degradation, the pump vibrates when it reaches the 
degradation states 2 and 1. The intensity of the vibration of the pump on states 2 and 1 is 
evaluated as by the experts ‘smooth’ and ‘rough’, respectively.  

 
5.2. Pneumatic valve 

The simplified scheme of the pneumatic valve is shown in Fig. 4. It is a normally-closed, 
gas-actuated valve with a linear cylinder actuator. 

 

 

 

Fig. 4. Simplified scheme of the pneumatic valve [41]. 

 

The position of the piston is controlled by regulating the pressure of the pneumatic ports to 
fill or evacuate the top and bottom chambers. The degradation mechanism of the valve is 
considered as the external leak at the actuator connections to the bottom pneumatic port due to 
corrosion, and is modeled by a PBM. It is much more significant than the other degradation 
mechanisms according to the results shown in  [41]. The valve is considered failed when the 
size of the external leak exceeds a predefined ©¶∗ . The PBM is used by EDF experts for 
degradation modeling, due to limited statistical degradation data on the valve behavior.  
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5.3. PDMP for the system 

The degradation of the valve r = {��} is described by PBM and the degradation of the 
pump s = {��} is described by MSM. The degradation processes of the whole system are 
modeled by PDMP as follows:  

3Ä��� = v©¶����k���x 	∈ 	ℝ* × �k                      (26) 

where �k��� denotes the degradation state of the pump at time � and ©¶��� denotes the area 
of the leak hole at the bottom pneumatic port of the valve at time �. The space of the failure 
states of 3Ä��� is ~ = [0,+∞� × {‘0’} ∪ [©¶∗, +∞� × {1, 2, 3}. The development of the leak 
size is described by: ©¶z ��� = $¶�1 + �2Ý�L��                       (27) 

where $¶ is the original wear coefficient and where �2Ý�L� is the relative increment of the 

developing rate of the external leak caused by the vibration of the pump at the degradation state �k = 2	or	1 .  The parameter values related to the system degradation processes under 
accelerated aging conditions and to the maintenance tasks are presented in Table I. For 
confidentiality reasons, the values presented below are fictitious. 

 

Table I Parameter values related to PDMP and the maintenance tasks 

 

Parameter Value $¶ 1e-8 m2/s �^ 10% �� 20% "½^  3e-3 s-1 "^� 3e-3 s-1 "�2 3e-3 s-1 ©¶∗ 1.06e-5 m2 'u� 1000 s '�� 1000 s :u� [8e-6, ©¶∗� m2 :�� {1, 2} 

 

The system reliability at time � can be calculated as follows: ���� = (Å�©¶�Q� < ©¶∗� ∩ ��k�Q� 7 0�, ∀Q 5 �Æ               (28) 

The component IMs for the valve and the pump are given in eq. (29) and eq. (30), 
respectively, as follows: 
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ÚÍ���� = P C}9KKKKKKÄ�L��O�|([�©¶�Q� < ©¶∗� ∩ ��k�Q� 7 0�, ∀Q 5 �|©¶��� = O�] − 	����|DOℝ÷  

(29) ÚÍG��� = ∑ ([�k��� = 4]|([�©¶�Q� < ©¶∗� ∩ ��k�Q� 7 0�, ∀Q 5 �|�k��� = 4�] − 	����|½#12     
(30) 

Then, by using the proposed numerical method introduced in section 4, the values of the 
above equations can be calculated. 

 
5.4. Results 

The reliabilities of the whole system and the two components over a time horizon of '#�� =2000s, regarded as the mission time under accelerated conditions, are shown in Fig. 5. 
We can see from the figure that before around 870s (point A), the system reliability is basically 
determined by the pump reliability, since the valve is highly reliable. After that, the sharp 
decrease of the reliability of the valve due to degradation drives that of the system reliability, 
until the execution of the inspection tasks for the two components at 1000s. Because of the 
preventive maintenance, the failures of the system, the valve and the pump are mitigated. 

 

 

 

Fig. 5. The reliabilities of the system, the valve and the pump 

 

The components IMs are shown in Fig. 6. Before around 400s (point B), the IMs of the two 
components are relatively close. Although the system reliability is dominated by the reliability 
of the pump, the probability of the pump at state 0 over the time horizon is limited to a very 
small value due to the corrective maintenance shown in Fig. 7, which can limit the component 
IM. After around 870s (point C), the pump IM experiences a sharp decrease while that of the 
valve experiences a sharp increase until 1000s, due to the evolution shown in Fig. 5. After the 
preventive maintenance is implemented, the difference between the components IMs begins to 

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time

R
el

ia
bi

lit
y

 

 

System
Valve
Pump

A 



PAPER IV: Y.-H. Lin, Y.-F. Li, E. Zio. Component Importance Measures for Components with Multiple Dependent 

Competing Degradation Processes and Subject to Maintenance. Reliability, IEEE Transactions on. (Accepted) 

- 191 - 

reduce. Then, one can conclude that attention should be focused on the pump before 1000s and 
on the valve afterwards, to achieve higher levels of system reliability. 

 

  

 

Fig. 6. The valve and pump IMs  

 

 

 

Fig. 7. The probability of the pump at state 0 (failure) 

 

The reliabilities of the whole system and the two components over a time horizon of '#�� =2000s without maintenance are shown in Fig. 8. Before 1000s, the situations are the 
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same as with maintenance (Fig. 5). The sharp decrease of the reliability of the valve, then 
continues due to the lack of preventive maintenance, and the valve reaches failure after around 
1060s, and the system fails too.  

 

 

 

Fig. 8. The reliabilities of the system, valve and pump without maintenance 

 

The related component IMs are shown in Fig. 9. From the figure, we can see that the 
criticality of the pump is higher than that of the valve most of the time until around 1015s (point 
E). Due to the absence of preventive maintenance, the system reliability quickly decreases to 
zero afterwards, which leads the components IMs to quickly decrease to zero. The gap between 
the two curves is due to the difference between the reliabilities of the two components, and 
reaches its maximum value at around 875s (point D), when the valve starts to contribute to the 
system failure. 
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Fig. 9. The valve and pump IMs without maintenance 

 

Finally, the reliabilities of the whole system and the two components over a time horizon of '#�� =2000s, without degradation dependency, are shown in Fig. 10. The system reliability is 
determined by the reliability of the pump since the valve is highly reliable. The IMs of the two 
components are shown in Fig. 11. The IM of the pump experiences a sudden change due to the 
preventive maintenance at 1000s, while that of the valve is always equal to zero. 
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Fig. 10. The reliabilities of the system, the valve and the pump without degradation 
dependency 

 

 

 

Fig. 11. The valve and pump IMs without degradation dependency 

 

To investigate the impacts of the periods of the inspection tasks, the IMs of the two 
components with different inspection periods are shown in Fig. 12. We have tested two settings 'u� = '�� = 500Q and 'u� = '�� = 250Q. From the figure, we can see that the IM of the valve 
is always equal to zero since it is highly reliable and that the increase of the inspection frequency 
can reduce the IM of the pump. 
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Fig. 12. The valve and pump IMs with different inspection periods 

 

6. CONCLUSION 

 

In this paper, we consider components with multiple competing degradation processes 
modeled by PBMs and MSMs. The PDMP modeling framework is employed to incorporate 
multiple dependent competing degradation processes and maintenance policies. To quantify the 
importance of different components within a system, MAD IM has been extended to 
accommodate components whose (degradation) states are determined by both discrete and 
continuous processes. The extended IM can provide timely feedbacks on the criticality of a 
component with respect to the system reliability. The degradation dependencies within one 
component and among different components, and two types of maintenance tasks (condition-
based preventive maintenance by periodic inspections and corrective maintenance) have been 
taken into account. A quantification method based on the FV approach has been developed and 
illustrated in the application to a case study of a portion of an emergency system (the RHRS) 
from real-world nuclear power plants. The illustrative example shows that the extended IM can 
effectively estimate the criticality of different components under the conditions of interest.  

As future work, it would be interesting to study how the sensitivity indices of the 
parameters of a component relate to the importance indices of that component, within a GSA 
framework. 
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Abstract – This paper presents a modeling and optimization framework for the maintenance of 
systems under epistemic uncertainty. The degradation dependencies among different 
components and within one component are considered. The component degradation processes, 
the condition-based preventive maintenance and the corrective maintenance are described 
through a piecewise-deterministic Markov process modeling approach. Epistemic uncertainty, 
due to incomplete or imprecise knowledge about the degradation processes of the components, 
is treated by considering interval-valued parameters. This leads to the formulation of a multi-
objective optimization problem whose objectives are the lower and upper bounds of the 
expected maintenance cost, and whose decision variables are the periods of inspections and the 
thresholds for preventive maintenance. A solution method to derive the optimal maintenance 
policy is proposed by combining finite-volume scheme for calculation, differential evolution 
and non-dominated sorting differential evolution for optimization. A case study pertaining to 
one subsystem of the residual heat removal system of a nuclear power plant is presented. 

 

Index Terms – Maintenance optimization, epistemic uncertainty, degradation dependency, 
multi-objective optimization, piecewise-deterministic Markov process. 

_____________________________________________________________________ 

 

 

Acronyms 

PBMs   Physics-based models 

MSMs   Multi-state models 

PDMP   Piecewise-deterministic Markov process 

PM    Preventive maintenance 

CM    Corrective maintenance 

DE    Differential evolution 

NSDE    Non-dominated sorting differential evolution 

FV    Finite-volume  

RHRS    Residual heat removal system  
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DMs    Decision makers 

 

 

Notations o   Number of components in the system r   Group of degradation processes modeled by PBMs s   Group of degradation processes modeled by MSMs }ÒÓ   Degradation sate of component pÏ tuI���  Time-dependent continuous variables of degradation process � tuI} ���  Non-decreasing degradation variables vector tuIb ���  Physical variables vector ~uI  Set of failure states of degradation process � ��T���  State variable of degradation process �� ��T   Finite state set of degradation process �� ~�T   Set of failure states of degradation process �� &s    Environmental and operational factors in s "#�+|t���, &s� Transition rate from state 4 to + &r   Environmental and operational factors in r {r��/���, �|&r� Deterministic physics equations in r ����  Degradation state of the system ~   System failure state set Î#   Predefined state set of PM for degradation process 4 '#   Fixed period of PM for degradation process 4 9   Number of maintenance tasks experienced by the system '#��  System mission time '/    Execution time of the k-th maintenance task �/���   Degradation state of the system defined on ['/3�, '/] Ú���	   Maintenance cost  ÚúH 	   Cost of the inspection task  Í# ÚGÒÓ 	   Cost of PM to component  pÏ 9GÒÓ��, Î, ø	|	&�	  Number of PM tasks to component pÏ until time � 
9ýÒÓ��, Î, ø	|	&, �r∗�	  Number of CM tasks to component pÏ until time � 
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Úþ	   Penalty cost of experiencing a system failure 9þ��, Î, ø	|	&, �r∗�		  Number of system failures until time until time � �L�×�D�	|	&�	   Probability distribution of �/��� �ÒÓ 	   Degradation state of the component pÏ in � ÎÒÓ 	   State set for PM of the component pÏ øÒÓ 	   State set for PM of the component pÏ 
 

 
1. INTRODUCTION 

Maintenance contributes to ensuring the safe and efficient operation of industrial systems 
[1]. The contribution to safety especially is in highly hazardous industries, such as the nuclear 
and aerospace ones. The interactions among components complicate the modeling for 
maintenance planning, which becomes a big challenge [2]. Thomas [3] has categorized these 
interactions into three groups: economic, structural and stochastic dependences. Economic 
dependence exists when the maintenance cost of several components is not equal to the sum of 
their individual maintenance costs. For example, Castanier et al. [4] have considered a 
condition-based maintenance policy for a two-unit deteriorating system, where the set-up cost 
of inspection is charged only once if the actions on the two components are combined. Van 
Dijkhuizen [5] has investigated the long-term grouping of preventive maintenance jobs in a 
multi-setup, multi-component production system where the set-up activities can be combined 
when several components are maintained at the same time.  Structural dependence occurs if 
some working components need to be replaced or dismantled in order to execute the 
maintenance of the failed ones. For example, Dekker et al. [6] have studied the maintenance 
policy for asphalt roads where the number of maintenance services is limited by integrating 
neighboring segments into a homogeneous section which is completely repaired. Stochastic 
dependence, also referred to as probabilistic dependence, applies when the state of one 
component can affect those of other components or their failure rates. Failure interactions have 
been the most discussed cases for stochastic dependence [7] and imply that the failure of one 
component may lead to the failure of other components with certain probabilities, and/or 
influence their failure rates [8]. For example, Lai and Chen [9] have presented an economic 
periodic replacement model for a two-unit system where the failure of unit 1 can increase the 
failure rate of unit 2, while the failure of unit 2 induces unit 1 into instantaneous failure. 
Zequeira and Bérenguer [10] have studied the inspection policies for a two-component standby 
system, where the failure of one component can modify the conditional failure probability of 
the component still alive with probability � and do not modify it with probability 1 − �. 
Barros et al. [11], have optimized the maintenance policy for a two-unit parallel system where 
the failure of a component increases the failure rate of the surviving one.  

In practice, the failure of industrial components is often the result of multiple and possibly 
competing mechanisms (e.g. friction-induced wear of the bearings and impeller wear caused by 
cavitation and erosion by the flow, can both lead to centrifugal pump failure [12]). For multi-
component systems, the dependencies among these mechanisms within one component (e.g. 
the wear of rubbing surfaces influenced by the environmental stress shock within a micro-
engine [13]), or/and among different components (e.g. the degradation of the pre-filtrations 
stations leading to a lower performance level of the sand filter in a water treatment plant [7]) 
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need to be considered. Dependency among degradation mechanisms or processes has received 
less attention within the framework of maintenance modeling and optimization of multi-
component systems, although they are of real concern in practice (e.g. the failure of a pump due 
to oxidation of contacts and bear wearing). Peng et al. [14] have developed a maintenance 
policy with periodic inspections when two dependent or correlated failure processes are 
considered. Jiang et al. [13] have further compared two preventive maintenance (PM) policies: 
age replacement policy and block replacement policy, combining immediate corrective 
replacement in consideration of shifting failure thresholds. Özekici [15] has considered 
interdependent aging processes between components due to continuous wear and shocks, and 
proposed an optimal periodic replacement policy. Rasmekomen and Parlikad [7] have 
considered degradation dependency in terms of output performance between one critical 
component and other parallel components based on aging processes, and the optimal age-based 
maintenance policy for this case was also studied. Yang et al. [16] have proposed a general 
statistical reliability model for repairable multi-component systems considering dependent 
competing risks, under a partially perfect repair assumption which considers that only the failed 
component, rather than the whole system, is replaced. Hong et al. [17] have used copulas to 
model degradation dependency among all the components of a system and obtained the optimal 
maintenance policy including condition-based PM with periodic inspections and instantaneous 
corrective maintenance (CM). Van Horenbeek and Pintelon [18] have proposed a dynamic 
predictive maintenance policy that minimizes the long-term mean maintenance cost per unit 
time while considering different component dependencies (i.e. economic, structural and 
stochastic dependence). Song et al. [19] have applied age replacement policy and inspection-
based maintenance policy for systems whose components have s-dependent failure times, and 
the optimal replacement interval or inspection times are determined. Note that maintenance 
optimization for multi-component systems with multiple degradation processes within 
individual components has not been considered and only the pre-scheduled periods for 
inspection or maintenance are considered as the decision variables of the optimization problem.   

To describe the component degradation mechanisms or processes, a number of models have 
been proposed in the field of reliability engineering. These models differ depending on the 
available information/data, and can be mainly classified into the following groups: statistical 
distributions (e.g. Bernstein distribution [20]), stochastic processes (e.g. Gamma process [21]), 
multi-state models (MSMs) (e.g. Markov model [22]) and physics-based models (PBMs) (e.g. 
physics model of the valve based on mass and energy balances [23]). Among the existing 
degradation models, physics-based models (PBMs) [24] and multi-state models (MSMs) [25] 
are two frequently used approaches, in the field of reliability engineering to describe the 
degradation of components, particularly when degradation/failure data are not sufficiently 
available to allow resorting to statistical or stochastic modeling, e.g. for highly reliable devices 
like those used in the nuclear and aerospace industries. Recently, a modeling approach 
employing a piecewise-deterministic Markov process (PDMP) has been proposed and 
developed in [26] to integrate PBMs and MSMs for dealing with the degradation dependencies 
among components and within one component.  

An issue that arises in degradation modeling is epistemic uncertainty, due to the incomplete 
or imprecise knowledge of the degradation processes of the components, especially for the 
highly reliable ones. The values of the parameters of the physics equations (e.g. wear 
coefficients), influencing factors (e.g. temperatures and pressures) or transition rates between 
degradation states may be poorly known and inferred from the scarce data available and from 
elicited expert judgment [27]. This uncertainty must be reflected in the modeling and accounted 
for in the maintenance optimization that rests on it. Fuzzy sets have been employed to 
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mathematically represent epistemic uncertainty in some works [28-30] related to degradation 
modeling and maintenance. However, determining appropriate membership functions may be 
a difficult task in practice. In these cases, intervals can be used as a more general and less 
knowledge and information demanding representation of uncertainty than fuzzy sets [31]. 

To the knowledge of the authors, no study has considered epistemic uncertainty in 
maintenance modeling and optimization for multi-component systems with degradation 
dependency. In this paper, we do this by employing interval values to represent epistemic 
uncertainty in the parameters of the model. To derive the optimal maintenance policy, the 
maintenance cost is set as the objective function, which also takes an interval representation 
instead of a crisp value. Then, the objective is set as the interval-valued expected maintenance 
cost and its optimization is done within a bi-objective scheme considering lower and upper 
bounds values [32]. 

The main contribution of the paper is that it generalizes the existing maintenance models 
for multi-component systems by taking into account both degradation dependency among the 
components and epistemic uncertainty in the degradation models. More specific technical 
contributions are: for maintenance optimization: (1) the pre-scheduled period for inspection 
tasks and the thresholds for PM are considered as the decision variables in the optimization 
problem formulation; (2) a new optimization method integrating non-dominated sorting 
differential evolution (NSDE) [33], differential evolution (DE) [34] and finite-volume (FV) 
scheme for solving PDMP [35] is proposed to derive the optimal maintenance policy; for 
maintenance modeling: (1) epistemic uncertainty in the parameters of the model is taken into 
account by interval values; (2) the modeling approach previously proposed in [26] is extended 
by including condition-based PM with periodic inspections and CM. 

The rest of the paper is structured as follows. Section 2 provides the assumptions and model 
descriptions. Section 3 presents the formulation of the maintenance optimization problem under 
uncertainty. Section 4 introduces the proposed solution approach for optimization. Section 5 
demonstrates a case study on one subsystem of the residual heat removal system (RHRS) [36] 
of a nuclear power plant. Section 6 presents the numerical results and analysis. Section 7 
concludes the work.  

 
2. PROBLEM AND MODEL DESCRIPTION 

2.1. Problem description 

We consider a multi-component system made of o  components denoted by p = {p� , p^ , … , pq} . Each component may be affected by multiple degradation mechanisms or 
processes, possibly dependent. The degradation processes can be separated into two groups: (1) r = {��, �^, … , �8} modeled by M PBMs; (2) s = {��, �^, … , �f} modeled by N MSMs, 
where �, B = 1, 2, … ,  and ��, � = 1, 2, …	, 9  are the indexes of the degradation 
processes. The degradation state of a component pÏ ∈ Ð, Ñ = 1, 2, … , o, is determined by its 
degradation processes }ÒÓ ⊆ r ∪ s and the component fails when one of its degradation 

processes becomes failure. A maintenance policy containing both CM and PM is considered. 

 
2.2. Degradation models 

In this section, PBMs, MSMs and PDMP modeling framework for systems considering 
degradation dependencies will be introduced, which are the basis of the problem and have been 
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proposed in [37].  

 

2.2.1. PBMs 

The following assumptions on PBMs are made [37]: 

• A degradation process tuI���, � ∈ r in the first group, has DuI  time-dependent 

continuous variables tuI��� = vOuI� ���, OuI^ ���, … , OuIFwI���x ∈ ℝFwI . A system of 

first-order differential equations (i.e. physics equations) tuIz ��� ={uI=tuI���, �	|	&uI> , are used to characterize its evolution, where &uI  are the 
parameters of the physics equations {uI  (e.g. temperature and pressure). This 
assumption is made in [38] and widely used in practice [12, 23]. Note that higher-order 
differential equations can be converted into a system of a large number of first-order 
differential equations by introducing extra variables [39]. 

•  tuI��� can be divided into two groups of varaibles tuI��� = �tuI} ���, tuIb ����: (1) tuI} ���  are the non-decreasing degradation variables describing the degradation 
process (e.g. leak area of the piston of the valve [23]), where }  is the set of 
degradation variables indices; (2) tuIb ���  are the physical variables influencing tuI} ��� (e.g. velocity and force [12]), where b is the set of physical variable indices. 
For example, the friction-induced wear of the bearings is considered as one 
degradation process in [12]. It is represented by the increase in friction coefficients. 
The two friction coefficients associated with sliding and rolling friction are considered 
as the degradation variables. The rotational velocity of the pump is considered as the 
physical variable since it influences the increase in the coefficients of friction. The 
evolution of physical variables can be characterized by physics equations. If the 
variables can be modeled by physics equations and influence certain degradation 
variables, then, they are considered as physical variables. As long as one OuI# ��� ∈tuI} ���  reaches or exceeds its corresponding failure threshold OuI# ∗

, the generic 
degradation process � fails. Let ~uI  denote the failure state set of � and �uI∗  
denote the set of all the failure thresholds of  tuI} ���. 

 
2.2.2. MSMs 

The following assumptions on MSMs are made [37]: 

• A degradation process, ��T���	, �� ∈ � in the second group, takes values from a finite 
state set denoted by ��T = {0, 1, … , D�T}, where ‘D�T ’ is the perfect functioning state 

and ‘0’ is the complete failure state. The transition rates "#=+	|	&�T>, ∀	4, + ∈ ��T , 4 � + 
characterize the degradation transition probabilities from state 4 to state +, where &�T 
is the set of the environmental factors to �� and the related parameters used in "#. We 
follow the assumption of Markov property which is widely used in practice to describe 
components degradation processes [25]. The transition rates between different 
degradation states are estimated from the degradation and/or failure data from 
historical field collection. Let ~�T = {0} denote the failure state set of ��. 
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2.2.3. Degradation model of the system 

The dependencies between degradation mechanisms or processes may exist within each 
group and between the two groups. The evolution trajectories of the continuous variables in the 
first group may be influenced by the degradation states of the second group. The transition 
times and transition directions of the degradation processes of the second group may depend on 
the degradation levels of the components in the first group [26]. PDMPs [40], which are a family 
of Markov processes involving deterministic evolution punctuated by random jumps, can be 
employed to model this type of dependency (the detailed formulations are shown in eqs. (2) and 

(3)). Let t��� = �tu����⋮tu����� denote the degradation processes of the first group and ���� =
�������⋮������� denote the degradation processes of the second group. The overall degradation 

process of the system is presented as 

���� = vt�������x ∈ � = ℝFw × �                        (1) 

where � is a space combining ℝFw  (Du = ∑ DuI81� ) and � = {0, 1, … , D�} denotes the 

state set of process �KÄ���. The evolution of  ���� has two parts: (1) the stochastic behavior of ���� and (2) the deterministic behavior of t��� between two consecutive jumps of ����, 
given ����. The former is governed by the transition rates of ����, which depend on the states 
of the degradation processes in t��� and also in ����, as follows: �4B∆L	→	2(=��� + ∆�� = +	|	t���, ���� = 4, &s = ⋃ &�Tf�1� > /∆�	 	

= "#�+	|	t���, &s�, ∀	� ≥ 0, 4, + ∈ �, 4 7 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �2�	
The latter is described by the deterministic physics, which depends on the states of the 
degradation processes in ���� and also in t���, as follows: 

tz ��� = �tu�z ���⋮tu�z ���� = �
{u���L��t���, �	|	&u�>⋮{u���L��t���, �	|	&u�>� 

= {r��L��t���, �	|	&r = ⋃ &uI81� 	>                    (3) 

Let ~ denote the system failure state set, which depends on the structure of the system: 
then, the system reliability at mission time '#�� can be obtained as follows: ��'#��	� = ([��Q� ∉ ~, ∀Q 5 '#��	]                    (4) 

The system failure state set is dependent on system structure. To determine this set, 
reliability analysis tools such as fault tree [41] can be used to identify the combination of 
primary failure events leading to system failure. 

 
2.3. Maintenance policy 

The following assumptions are made based on actual maintenance activities performed in 
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industrial practice: 

• The PM involves condition-based maintenance tasks, which recommend maintenance 
actions according to the information collected through condition inspections [42]. The 
inspection task Í# , ∀	4 ∈ r ∪ s related to one degradation process 4 is carried out with 
fixed period and a cost is associated with each inspection.  

• If the state of one degradation process 4 ∈ r ∪ s, reported by condition inspection, 
enters the predefined state set for PM denoted by Î#, then the component containing 
this degradation process is restored to its initial state and a PM cost is incurred 
depending on the component type. Otherwise, no maintenance action is performed. 

• Component failure can be detected immediately and the failed component is restored 
to its initial state by the CM [13], and a CM cost is incurred depending on the 
component type. 

• The duration of inspection tasks is negligible and all maintenance actions are done 
instantaneously, compared with the lifetime of the components [14].  

The degradation processes and the maintenance policy of an example system are shown in 
Fig 1, considering a mission time '#��. It consists of two components p� and p^. }Ò� = {��} 
and }ÒÕ = {��} . 'u�  and '��  are the periods of the inspection tasks for Íu�  and Í�� , 
respectively. For ��, PM is carried out whenever its degradation variable tu�} ��� reaches or 
exceeds its PM threshold Ou�k at the time of inspection. The physical variable tu�b ��� is also 
initialized immediately after PM is performed. For ��, PM is carried out when it is in state ‘1’ 
at the time of inspection.  

 

 

 

Fig. 1. An illustration of the degradation processes with maintenance policy, for an 
example system. 
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A CM is carried out instantaneously once any component fails and the failed component is 
restored to its initial state at the time of failure. Thus, the failure states of the degradation 
processes are infinitely approachable instead of being truly reached, because the maintenance 
tasks are assumed to be done instantaneously and ���� has a unique value from � at any time �.    

To extend the PDMP to model the degradation processes and the maintenance policy, the 
difficulty is the discontinuity of t���  due to the instantaneous change caused by the 
maintenance task. To solve this problem, we choose to divide the entire mission time into 
multiple intervals. In each interval, one new PDMP, �/���, a = 1,2, … ,9 + 1, is defined, 
where 9 is the number of maintenance tasks the system has experienced till the mission time. 
Let '/ , a = 1,2,… , 9 denote the execution time of the k-th maintenance task, then �����	is 
defined on [0, '� ], �fI*���� is on Å'fI , '#��Æ and �/���, a = 2,… , 9 is on ['/3�, '/], 
respectively. In this way, the failure states of the degradation processes can be reached by the 
process �/���. The initial states �/���, a = 2,… , 9 + 1 are dependent on the maintenance 
task carried out at time '/3� and �/3��'/3��. Fig 2 shows this for the degradation processes 
in Fig 1.  

 

 

 

Fig. 2. An illustration of system maintenance, treated via PDMP. 

 

This treatment is only for formulating the problem within the settings of PDMP and it does 
not impact the computational complexity. As we shall see later, we employ a FV scheme to 
solve the PDMP, which efficiently gives an approximate solution by discretizing the state space 
of the continuous variables and the time space of PDMP. The entire mission is, thus, divided 
into much smaller intervals to ensure the convergence of the approximated solution (∆� → 0 
and |ℳ|/∆� → 0). The computational complexity depends on the number of small intervals 
defined in FV scheme, which has no relation with the number of multiple intervals defined in 
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the problem formulation. 

In reality, the two major issues for the maintenance policy are to determine (1) the period '# , ∀	4 ∈ r ∪ s  for each inspection task Í# and (2) the state set for PM Î# , ∀	4 ∈ r ∪ s for 
each degradation process 4.  

 
3. MAINTENANCE OPTIMIZATION UNDER UNCERTAINTY 

3.1. Maintenance optimization criterion 

In order to optimize the maintenance policy, the criterion considered is the expected 
maintenance cost over the system mission time. Let	Ú��� denote the maintenance cost, Î =⋃ Î#∀	#∈r∪s  and ø = ⋃ ø#∀	#∈r∪s , & = &r ∪ &s, �r∗ = ⋃ �uI∗81�  for the system functioning 
until time �, we can write:  

ù=Ú��, Î, ø	|	&, �r∗�> = ∑ ÚúH ∙ û L¡Hü#∈r∪s + ∑ ÚGÒÓ ∙ ù�9GÒÓ��, Î, ø	|	&��ÒÓ∈Ð   

+∑ ÚýÒÓ ∙ ù�9ýÒÓ��, Î, ø	|	&, �r∗��ÒÓ∈Ð + Úþ ∙ ù�9þ��, Î, ø	|	&, �r∗��        (5) 

where ÚúH is the cost of the inspection task 	Í#, û L¡Hü is the number of times the inspection task Í#  has been performed until time � , ÚGÒÓ  is the cost of PM to component pÏ , 9GÒÓ��, Î, ø	|	&�	is the number of PM tasks to component pÏ until time �, 9ýÒÓ��, Î, ø	|	&, �r∗� 
is the number of CM tasks to component pÏ  until time � , Úþ  is the penalty cost of 
experiencing a system failure and 9þ��, Î, ø	|	&, �r∗� is the number of system failures until 
time �. 

Let �L�×�D�	|	&� denote the probability distribution of �/���; we, then, obtain that 

ù�9GÒÓ��, Î, ø	|	&�� = ∑ ∑ P �¡ë�×�D�	|	&��ßÓ∈ÎßÓ¡ë∈øßÓ/∈ℕ∗           (6) 

where �ÒÓ  denotes the degradation state of the component pÏ  in � , ÎÒÓ = ⋃ Î##∈}ßÓ  

denotes the state set for PM of the component pÏ and  øÒÓ denotes the set of inspection time 

of the component pÏ. The function �¡ë�×�D�	|	&�	 is the probability distribution of �/��� at the 

inspection time 'ë, 
ù�9ýÒÓ��, Î, ø	|	&, �r∗�� = ∑ P P ���×�D�	|	&�DQ�ßÓ∈~ßÓL2/∈ℕ∗             (7) 

where ~ÒÓ = ⋃ ~##∈}ßÓ  denotes the failure state set of the component pÏ,  

ù�9þ��, Î, ø	|	&, �r∗�� = ∑ P P ���×�D�	|	&�DQ�∈~L2/∈ℕ∗                (8) 

 
3.2. Epistemic uncertainty  

Due to the incomplete or imprecise knowledge about the degradation processes, epistemic 
uncertainty may exist: 

• For PBMs: (1) the parameters (e.g. wear coefficient) and influencing factors (e.g. 
temperature and pressure) &u may be poorly known and elicited from expert judgment 
[27]; (2) the failure thresholds �r∗  may be uncertain due to imperfect information [43]. 
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• For MSMs: (1) the state performances may be vaguely defined due to the imprecise 
discretization of the underlying continuous degradation processes [44]; (2) the 
transition rates between states may be difficult to estimate statistically due to 
insufficient data, especially for highly reliable components (e.g. valves and pumps in 
nuclear power plants, etc.) [45]. 

The experts in many cases can only confirm an interval of the possible minimum and 
maximum values of the uncertain transition rate. One practical way of dealing with epistemic 
uncertainty is to use intervals of values for the uncertain parameters [31]. In this respect, the 
following assumptions are made (a symbol with an underbar indicates the left limit of that 
interval, while a symbol with an overbar indicates the right limit of that interval): 

• The value of ∀Ê# ∈ & , is represented by an interval [Ê#] = ÇÊ# , Ê#Ë . Let [&] =⋃ [Ê#]ÈH∈& . 

• The value of ∀OuI# ∗ ∈ �r�∗ , ∀	� ∈ r,  is represented by an interval ÅOuI# ∗Æ =ÇOuI# ∗, OuI# ∗Ë. Let Å�u�∗ Æ = ⋃ ÅOuI# ∗Æ`wIH ∗∈�wI∗  and [�r∗] = ⋃ Å�uI∗ Æ81� . 

ù=Ú��, Î, ø	|	&, �r∗�>, then, is also an interval, denoted by Åù=Ú��, Î, ø	|	[&], [�r∗]�>Æ 	= 

�B4� &∈[&]�r∗∈[�r∗ ] ù=Ú��,Î, ø	|	&, �u∗�> ,B[O &∈[&]�r∗∈[�r∗ ] ù=Ú��,Î, ø	|	&, �u∗�>� = Çù=Ú��, Î, ø	|	[&], [�r∗]�>, ù=Ú��,Î, ø	|	[&], [�r∗]�>Ë             (9) 

 

3.3. Optimization problem 

Based on the models presented above, the problem of maintenance optimization under 
uncertainty, on a mission time horizon '#��, can be defined as:  

Min Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ 
Subject to Î# ⊆�#, ∀	4 ∈ r ∪ s 0 5 '# 5 '#��, ∀	4 ∈ r ∪ s                        (10) 

where �# = �ℝFH , 4C		4 ∈ r�# , 4C				4 ∈ s. 

For its solution, it can be reformulated as a multi-objective optimization problem: 

Min ù=Ú�'#��, Î, ø	|	[&], [�r∗]�> 
Min ù=Ú�'#��, Î, ø	|	[&], [�r∗]�> 
Subject to Î# ⊆�#, ∀	4 ∈ r ∪ s  0 5 '# 5 '#��, ∀	4 ∈ r ∪ s                      (11) 
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where �# = �ℝFH , 4C		4 ∈ r�# , 4C				4 ∈ s. 

This formulation optimizes the lower and upper bounds of interval simultaneously. Due to the 
limit of data, no probability distribution or membership function is assumed on the interval. 
The order relation between intervals which requires no information about distribution or 
membership function [32] (Definitions 3.1 and 3.3) can be used in this situation (let ® =[[u , [�]  and ° = [ºu , º�]  denote two intervals, according to these definitions, ® 5°	4CC	[u 5 ºu	[�D	[� 5 º�). This leads to the definition of a multi-objective optimization 
problem with respect to the lower and upper bounds of the expected maintenance cost 

(ù=Ú�'#��, Î, ø	|	[&], [�r∗]�> and ù=Ú�'#��, Î, ø	|	[&], [�r∗]�>). It also covers the minimax 

type of robust optimization based on worst-case analysis, which may generate conservative 
decisions under some situations [46]. Note that this order relation is a partial order so that the 
solutions of (11) obtained are Pareto optimal solutions.  

Finding the Pareto optimal maintenance policy is a challenging problem, due to the complex 
behavior of the system involving the stochasticities of MSMs, time-dependent evolutions of 
PBMs and effects of the two types of maintenance. 

 
4. SOLUTION APPROACH  

In order to solve the multi-objective optimization problem defined in eq.(11), we employ 
(1) FV scheme to calculate ù=Ú�'#��, Î, ø	|	&, �r∗�>; (2) two DEs to compute the upper and 
lower bounds of the interval Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ, using the FV scheme for fitness 
evaluation; (3) NSDE to find the Pareto-optimal maintenance policy for Î and ø, aiming at 
optimizing the interval produced by the two DEs.  The meta-heuristic algorithm DE is chosen 
as the solution approach because 1) PDMP model is highly complex and non-linear and 2) DE 
is fit to optimizing continuous decision variables. 

 
4.1. FV for solving PDMP 

To obtain ù=Ú��, Î, ø	|	&, �r∗�>, �L�×�D� = �D�, 4�	|	&� of PDMPs need to be calculated at 
first. Monte Carlo (MC) simulation methods can be used to solve it: however, the major 
shortcoming is the high computational burden. FV scheme is an alternative that can lead to 
results comparable to MC simulation, but in significantly shorter computing times [35]. FV 
scheme gives an approximate solution by discretizing the state space of the continuous variables 
and the time space of PDMP. Here, we employ an explicit FV scheme to PDMP, developed by 
Cocozza-Thivent et al. [35].  

 
4.1.1. Assumptions 

This approach can be applied under the following assumptions: 

• The transition rates "#�+	| 	 ∙, &s�, ∀4, + ∈ � are continuous and bounded functions from ℝFw to ℝ*. 
• The physics equations {u#	�∙,∙	|	&u�, ∀4 ∈ � are continuous functions from ℝFw × ℝ* 

to ℝFw and locally Lipschitz continuous. 



PAPER V: Y.-H. Lin, Y.-F. Li, E. Zio. A Framework for Modeling and Optimizing Maintenance in Systems Modeled by 

Piecewise-Deterministic Markov Processes Considering Epistemic Uncertainty. Reliability, IEEE Transactions on. (Under 

review) 

- 212 - 

• The physics equations {u#	�∙, �	|	&u , �, ∀4 ∈ � are sub-linear, i.e. there are some §� �0 and §̂ � 0 such that  ∀� ∈ ℝFw , � ∈ ℝ*|{u#	��, �	|	&u�| 5 §��‖�‖ + |�|� + §̂  

• The functions D4i�{u#	�∙,∙	|	&u��, ∀4 ∈ � are almost everywhere bounded in absolute 
value by some real value © � 0 (independent of 4). 

 
4.1.2. Solution approach 

For the ease of notation, first we let ª#�∙,∙�:	ℝFw × ℝ → ℝFw denote the solution of 
¬¬Lª#��, �	|	&u� = {u#	=ª#��, �	|	&u�, �	|	&u>, ∀4 ∈ �, � ∈ ℝFw , � ∈ ℝ        (12) 

with 	 ª#��, 0	|	&u� = �, ∀4 ∈ �, � ∈ ℝFw                      (13)	
and ª#��, �	|	&u� is the result of the deterministic behavior of t��� after time t, starting from 
the point � and while the processes ���� hold on state 4. 

The state space ℝFw of continuous variables t��� is divided into an admissible mesh ℳ, 
which is a family of measurable subsets of ℝFw (ℳ is a partition of ℝFw) such that: 

(17) ⋃ ®¯∈ℳ = ℝFw. 
(18) ∀®, ° ∈ ℳ, ® 7 ° ⇒ ® ∩ ° = ∅. 
(19) B¯ = P D�¯ � 0, ∀® ∈ ℳ, where B¯ is the volume of grid ®.  
(20) QZ�¯∈ℳD4[B�®� < +∞ where D4[B�®� = QZ�∀�,¤∈¯|� − ¤|. 

Additionally, the time space ℝ* is divided into small intervals ℝ* = ⋃ [�∆�, �� +�12,�,^,…	1�∆�[, by setting the time step ∆� � 0 (the length of each interval). 

The numerical scheme aims at constructing an approximate value µL�×��,∙ 	 |	&�D�  for �L�×�D�,∙ 	 |	&�, such that �L�×��,∙ 	 |	&� is constant on each ® × {4} × [�∆�, �� + 1�∆�[, ∀® ∈ℳ, 4 ∈ �, [�∆�, �� + 1�∆�[∈ ['/3�, '/]:   �L�×��, 4	|	&� = (��×�®, 4	|	&�, ∀4 ∈ �, � ∈ ®, � ∈ [�∆�, �� + 1�∆�[       (14) 

(2�×�®, 4	|	&�, ∀4 ∈ �, ® ∈ ℳ is defined as follows: 

(2�×�®, 4	|	&� = P �2�×�D�, 4	|	&�¯ /B¯                    (15) 

Then, (�*��× �®, 4	|	&�, ∀4 ∈ �, ® ∈ ℳ, � ∈ ℕ can be calculated considering the deterministic 

evaluation of t���  and the stochastic evolution of ����  based on (��×�ℳ, 4	|	&�  by the 
Chapman-Kolmogorov forward equation, as follows: (�*��× �®, 4	|	&� 

= ��*∆L¶·H (�*��×̧ �®, 4	|	&� + ∆� ∑ _·SH�*∆L¶·S (�*��×̧ �®, +	|	&�$∈�               (16) 

where  [$̄# = P "$�4, �	|	&��D�¯ B¯⁄ , ∀4 ∈ �, ® ∈ ℳ                (17) 



PAPER V: Y.-H. Lin, Y.-F. Li, E. Zio. A Framework for Modeling and Optimizing Maintenance in Systems Modeled by 

Piecewise-Deterministic Markov Processes Considering Epistemic Uncertainty. Reliability, IEEE Transactions on. (Under 

review) 

- 213 - 

is the average transition rate from state + to state 4 for grid ®, º#̄ = ∑ [#̄$$	»	# , ∀4 ∈ �, ® ∈ ℳ                       (18) 

is the average transition rate out of state 4 for grid ®, 

(�*��×̧ �®, 4	|	&� = ∑ B¼¯#¼∈ℳ (��×�°, 4	|	&�/B¯, ∀4 ∈ �, ® ∈ ℳ         (19) 

is the approximate value of probability density function on {4} × [�� + 1�∆�, �� + 2�∆�[× ® 
according to the deterministic evaluation of t���, B¼¯# = P D¤{¤∈¼	|	ªH�¤,∆L	|	&w�∈¯} , ∀4 ∈ �, ®, ° ∈ ℳ               (20) 

is the volume of the part of grid ° which will enter grid ® after time ∆� according to the 
deterministic evaluation of t���.  

The approximated solution µL�×��,∙ 	 |	&�D� weakly converges towards �L�×�D�,∙ 	 |	&� when ∆� → 0 and |ℳ|/∆� → 0 where |ℳ| = QZ�¯∈ℳD4[B�®� [35]. ù=Ú�'#��, Î, ø	|	&, �r∗�>, 
then, can be obtained through eqs. (5)-(8).  

 
4.2. DE approach 

DE is a simple and efficient heuristic approach for single-objective global optimization, 
originally developed by Store and Price [34] for continuous problems. It often shows better 
performance than alternative optimization algorithms, e.g. genetic algorithms. The procedure 
of DE is briefly presented as follows: 

 

Step 1: Initialize randomly the population (  of 9� ≥ 4 target individuals over the 
variables space. 

Step 2: Generate the mutant individuals through the following mutation equation: i#,	*� = O
�,	 + � ∙ =O
^,	 − O
½,	>, ∀4 ∈ {1,2, … ,9�}            (21) 

where � is the current iteration number, j�, ĵ , j½ 	 ∈ {1,2, … ,9�} are random indices 
satisfying j� 7 ĵ 7 	 j½ 7 4 and � ∈ [0, 2], determined by the user, is a constant factor 
controlling the amplification of =O
^,	 − O
½,	>. 
Step 3: Generate each trial individual through the following crossover equation: 

Z#,	*�$ = �i#,	*�$ , 4C	�j[�D 5 Ú��	òj	+ = 4j[�D�©�O#,	$ , 4C	�j[�D � Ú��	[�D	+ 7 4j[�D�©� , + = 1,2, … , ©     (22) 

where Z#,	*�$ , i#,	*�$  and O#,	$  are the +-th parameters of the vectors Z#,	*�, i#,	*� and O#,	 , respectively; j[�D  ∈ [0, 1]  is a uniform random number;	Ú� ∈ [0, 1]  is the 
crossover constant, determined by the user; © is the dimension of the individual vector; 4j[�D�4� is a uniform discrete random number in the set {1,2, … , ©}.  

Step 4: Evaluate the target individual and its trial individual; select the best one as the 
target individual for the next generation. 

Step 5: Go back to step 2, if the termination criterion is not met; otherwise, stop the 
algorithm. 
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The maximum iteration number (9_` ), maximum fitness evaluation number ('_` ) and 
minimum fitness error (N�Q) are typically employed individually or jointly as the termination 
criterion.  

We use two DE algorithms (DE1 and DE2) using the FV scheme for the fitness function 

evaluation to obtain ù=Ú�'#��, Î, ø	|	[&], [�r∗]�>  and ù=Ú�'#��, Î, ø	|	[&], [�r∗]�> , 

respectively: DE1 selects the one with smallest value as the target individual for the next 
generation at step 4 whereas DE2 selects the one with largest value. 

 
4.3. NSDE 

For solving the multi-objective problem formulated in eq. (11), the non-dominated sorting 
mechanisms are incorporated into the single objective DE, similar to the work [33] where the 
non-dominated sorting mechanisms are combined with a modified binary DE (MBDE). For the 
details about this approach, please kindly refer to [33]. 

 
4.4. Integration of methods 

These methods are integrated by using (1) FV scheme for the fitness evaluation in DE and 
(2) DE for the fitness evaluation in NSDE; the solution methods are integrated, for the first 
time, for maintenance optimization. The flowchart of the entire optimization methodology that 
integrates the methods mentioned above is shown in Fig. 3.  
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Fig. 3. Flowchart of the proposed optimization methodology. 

 

In Fig. 3,  9�� is the size of the population (� of NSDE, which contains the target individuals 
for Î and ø; 9�̂  and 9�½ are respectively the sizes of population (̂  of DE1 and population (½  of DE2, which contain the target individuals for & ; (#∗, 4 = 1, 2, 3  is the population 
generated from (# . The method starts with the random generation of 9��  individuals (i.e. 
candidate solutions) of Î and ø in the initial population (� in NSDE. Then, DE1 and DE2 
are executed in parallel to calculate Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ for each individual in (� 
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as follows: (1) randomly generate 9�̂ /9�½ individuals of	& and �r∗ , as the initial population (̂ /(½ in DE1/DE2; (2) generate the trial populations (̂∗/(½∗ for (̂ /(½ through mutation and 
crossover; (3) given the individual in (� , use FV scheme to calculate ù�Ú='#��, 	Î, 	ø	|	&, 	�r∗>� for the paired individuals in (̂ 	and (̂∗/((½	and (½∗), and select the 

one with smaller/bigger value as the individual of (̂ /(½ for the next generation; (4) go back to 
step (2), if the termination criterion is not met; otherwise, Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ is 
obtained for each individual in (� . Afterwards, the method returns to NSDE: (5) rank 
population (�  by performing fast non-dominated sorting on Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ 
and the ranked non-dominated fronts are, then, identified; (6) select the offspring population (�∗ based on the intermediate population o�, generated by crossover and mutation; (7) use DE1 
and DE2 to obtain Åù=Ú�'#��, Î, ø	|	[&], [�r∗]�>Æ for each individual in (�∗; (8) identify the 
ranked non-dominated fronts by performing fast non-dominated sorting on the population union �� = (� ∪ (�∗; (9) select the best 9�� solutions from the sorted union as the updated (�; (10) 
go back to the step (6), if the termination criterion is not met; otherwise, the Pareto optimal 
maintenance policies are obtained. 

 
5. ILLUSTRATIVE CASE 

The illustrative case refers to one subsystem consisting of a centrifugal pump and a 
pneumatic valve in series, which is part of the residual heat removal system (RHRS) of a nuclear 
power plant. Given the series configuration, the subsystem is failed when one of the two 
components is failed. A degradation dependency between the two components has been 
considered upon discussion with experts of Électricité de France (EDF): the degradation of the 
pump will cause it to vibrate [47] which, in turn, will lead the valve to vibrate and therefore 
aggravate the degradation processes of the latter [48]. For confidentiality, the values of the 
model parameters and the costs of the maintenance policy presented below are altered so as to 
render them fictitious.  

 
5.1. Centrifugal pump 

The pump has one degradation process, related to the external leakage, which is modeled 
by a MSM modified from the one originally supplied by EDF. It is a continuous-time 
homogeneous Markov chain with constant transition rates as shown in Fig 4. 

 

 

 

Fig. 4. Degradation process of the pump. 

 

Let �k��� denote the degradation state of the pump at time � and �k = {‘0’, ‘1’, ‘2’, ‘3’} 
denote the degradation states set of the pump, where ‘3’ is the perfect functioning state and ‘0’ 
is the complete failure state. The pump is functioning until it reaches the state ‘0’. The pump 
can vibrate when it reaches the degradation states ‘2’ and ‘1’ due to degradation. The intensity 
of the vibration of the state ‘2’ is assigned as ‘smooth’ and that of the state ‘1’ is assigned as 

3 2 1 0
λ32 λ21 λ10
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‘rough’ by the experts. The parameters "½^, "^� and "�2 are the transition rates of the model 
of the degradation process. 

 
5.2. Pneumatic valve 

The pneumatic valve is a normally-closed, gas-actuated valve with a linear cylinder 
actuator. Its simplified scheme is shown in Fig 5.  

 

 

 

Fig. 5. Simplified scheme of the pneumatic valve [23]. 

 

By regulating the pressure of the pneumatic ports to fill or evacuate the top and bottom 
chambers, the position of the piston can be controlled. A return spring is linked with the piston 
to ensure the closure of the valve, when pressure is lost. The external leak at the actuator 
connections to the bottom pneumatic port due to corrosion and other environmental factors is 
chosen as the degradation mechanism of the valve, which is much more significant than the 
other degradation mechanisms according to the results shown in [23].  

Let ©¶��� denote the area of the leak hole at the bottom pneumatic port at time �, the 
development of the leak size is described by: ©¶z ��� = $¶�1 + �2Ý�L��                         (23) 

where $¶ is the original wear coefficient and where �2Ý�L� is the relative increment of the 
developing rate of the external leak at the bottom pneumatic port caused by the vibration of the 
pump at degradation state ‘2’ or ‘1’.  

The leak will lead the valve to be more difficult to open but easier to close. The threshold 
of the area of leak hole ©¶∗ is defined as the value above which (©¶��� � ©¶∗) the valve cannot 
reach the fully open position within the 15s time limit from the fully closed position, after an 
opening command is executed.  

 

Return Spring

Piston

Bottom chamberBottom 
pneumatic port

Top chamber

Top
pneumatic port

Fluid 
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5.3. PDMP for the system under uncertainty 

The degradation of the valve r = {��} is described by PBM and the degradation of the 
pump s = {��} is described by MSM. The degradation processes of the whole system are 
modeled by PDMP as follows:  

���� = v©¶����k���x 	∈ 	ℝ* × �k                      (24) 

The space of the failure states of 3Ä��� is ~ = [0,+∞� × {‘0’} ∪ [©¶∗, +∞� × {‘1’, ‘2’, ‘3’}. &r = {$¶} × {�^} × {��}, &s = {"½^} × {"^�} × {"�2}  and �r∗ = {©¶∗}  are the uncertain 
parameters. As an example, a relative uncertainty of ±10% of the original parameters values 
has been considered to assign their interval values. Their interval values are shown in Table I, 
under accelerated aging conditions. 

 

Table I The interval values of the uncertain parameters in PDMP 

 

Parameter Interval value $¶ [$¶] = [9e-9, 1.1e-8] m2/s �^ [�^] = [9%, 11%] �� [��] =  [18%, 22%] "½^ ["½^] = [2.7e-3, 3.3e-3] s-1 "^� ["^�] = [2.7e-3, 3.3e-3] s-1 "�2 ["�2] = [2.7e-3, 3.3e-3] s-1 ©¶∗ [©¶∗] = [9.54e-6, 1.166e-5] m2 

 

The initial state of the system is assumed as follows: 

�2 = v©¶�0��k�0�x = �03�                          (25) 

which means that the two components are both in their perfect state. The initial probability 
distribution of the processes �©¶���, �k����L�2, �2�D�	|	&�, hence, equals to /�7�D��, where / 
is the Dirac delta function. 

 
5.4. Maintenance optimization 

The problem of maintenance optimization under uncertainty on the horizon of the mission 
time '#�� can, then, be formulated as:  

Min ù=Ú�'#��, Î, ø	|	[&], [�r∗]�> 
Min ù=Ú�'#��, Î, ø	|	[&], [�r∗]�> 

Subject to :u� ⊆]0, ©¶∗[ 
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Î�� ⊆ {‘0’, ‘1’, ‘2’, ‘3’}  0 5 '# 5 '#��, ∀	4 ∈ {��, ��}                       (26) 

The related costs affecting the maintenance policy are shown in Table II. 

 

Table II The related costs of the maintenance policy 

 

Task Cost (k€) 

Inspection of pump 2 

PM of pump 5 

CM of pump 10 

Inspection of valve 2 

PM of valve 5 

CM of valve 10 

Penalty 1000 

 
6. RESULTS 

At first, the proposed method has been run 150 generations to obtain the Pareto optimal 
maintenance policies, with the following parameter values: 9�� is set to 20; 9�̂  and 9�½  are 
set to 10; '#�� is set to 1000	Q following the accelerated aging condition explained in our 
previous work [26]; Ú� is set to 0.7 for DE1 and DE2, and is set to 0.8 for NSDE; � is set 
to 0.5 for DE1 and DE2, and is set to 1 for NSDE. The values of 9��, 9�̂  and 9�½ are chosen 
with respect to the computational complexity of the FV scheme and the limited computational 
resources. The parameters of DE1 and DE2 are determined after trials on different values. The 
parameters of NSDE are chosen similarly, except that the fitness functions (i.e. DE1 and DE2) 

are replaced by the computationally much cheaper surrogates ùvÚ �'#��, Î, ø	|	&, �r∗�x and 

ù�Ú='#��, Î, ø	|	&, �r∗>�, respectively. The reasons of using such surrogates are: 1) the system 

degradation speed reaches the maximum by taking 	&, �r∗  and the minimum by taking &, �r∗ ; 2) 

DE1 and DE2 are relatively time consuming. 

All the experiments have been carried out by running the MATLAB algorithm on a PC with 
an Intel Core 2 Duo CPU at 1.97 GHz and a RAM of 1.95 GB. The average computation time 
for one generation of NSDE is about 3.23 hrs. The obtained Pareto front in the plane of the two 
objective functions, i.e. lower and upper bounds of the maintenance cost, is shown in Fig. 6.  
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Fig. 6. The obtained Pareto front.  

 

It is observed that the upper bounds cover a wide range whereas the lower bounds show 
much less variability. The solutions above a = (53.30, 108.45) k€ have big increments with 
respect to the upper bound, but they have nearly no difference in the lower bound compared 
with those of a. The solutions to the right of b = (53.49, 72.75) k€ show nearly no difference in 
the upper bound value, compared with that of b. The small differences between lower bounds 
are due to the fact that the failure of the components or of the system rarely occurs under these 
situations, so that the total cost is mainly composed of the PM costs and the inspections costs; 
on the contrary, the big differences between upper bounds are mainly due to the failures of 
components, which lead to the system failure and, thus, carry a high penalty cost. It also implies 
the fact that if the frequencies of inspections and PM exceed some value, then, the high penalty 
cost may be largely avoided. In practice, the solutions with very high upper bounds might not 
be appropriate for decision makers (DMs). 

In case that the DMs intend to conduct a search within a certain budget, the method proposed 
is also capable of dealing with this situation. For instance, we can focus on the solutions within 
the region [0, 100]	k€ × [0, 100]  k€. The proposed method is run with the previous 
configurations plus a penalty of 100 k€ to be added to one objective of a solution, whenever 
the other objective exceeds 100 k€. The newly obtained Pareto front is shown in Fig. 7. 
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Fig. 7. The Pareto front obtained within the region [0, 100]	k€ × [0, 100]	k€. 

 

Given the Pareto front, the DMs need eventually choose the maintenance policy according 
to their preferences since the solutions do not dominate each other. To simulate those common 
preferences of the DMs, we choose three solutions: S, the solution selected by the ‘Min-Max’ 
method, which selects the representative center of the Pareto front, and is among the most used 
ones [49]; A (corresponding to a selection by decision makers who are optimistic and pay more 
attention to the lower bound of the cost objective factor) and B (corresponding to a selection by 
decision makers who are conservative and pay more attention to the upper bound of the cost 
objective factor), the solutions with the minimum lower bound and minimum upper bound 
values, respectively. Solutions A, B and S represent three different preferences of the DMs. 
Detailed information on S, A and B is reported in Table III.   

 

Table III Solutions S, A and B 

Solution S A B 

 Lower bound 53.74 k€ 53.73 k€ 58.69 k€  

Upper bound 74.17 k€ 96.69 k€ 70.46 k€ 'u� 773.47 s 808.55 s 563.00 s '�� 66.77 s 66.77 s 66.77 s :u� [7.28 e-6, ©¶∗� m2 [7.66 e-6,  ©¶∗� m2 [4.91 e-6, ©¶∗� m2 :�� {‘1’, ‘2’} {‘1’, ‘2’} {‘1’, ‘2’} 
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The comparisons of the three solutions are done based on the illustrations in Fig. 8. It can 
be observed that S and A have nearly the same lower bound value, whereas A has a much higher 
upper bound. For the DMs, S might be more appropriate than A if the small difference 0.01 can 
be considered negligible. S and A both contain B: the DMs may choose B as the result of 
minimax robust optimization, whereas if they pay more attention to the lower bound, A can be 
the choice. 

 

 

 

Fig. 8. The three selected solutions. 
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Fig. 9. The system reliability under the maintenace policy S. 

 

Since the valve is highly reliable, the system reliability is basically determined by the pump 
reliability. The failures of the system are mitigated at each execution of the preventive 
maintenance. 

To illustrate the convergence of the proposed method, the hypervolume indicator [50] with 
a point of reference defined as �100, 100� and the generational distance [51] between the best 
Pareto fronts obtained at two consecutive generations, are used. Fig. 10 shows their trajectories 
during the evolution of NSDE without penalty. Fig. 11 shows the trajectories of NSDE with 
penalty. It is seen that NSDE generally converges after about 60 generations in both cases. 

 

 

 

Fig. 10. The convergence plots for NSDE without penalty. 
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Fig. 11. The convergence plots for NSDE with penalty. 

 

7. CONCLUSIONS AND FUTURE WORKS 

In this work, we have considered the problem of maintenance modeling and optimization 
of multi-component systems, with degradation dependency and epistemic uncertainty. The 
component degradation processes, the condition-based PM and the CM are described through 
a PDMP modeling approach. Intervals are used to represent the uncertain parameters. Both the 
pre-scheduled periods for inspection tasks and the thresholds for PM are regarded as the 
decision variables in the maintenance optimization problem. Optimization is formulated in a 
multi-objective scheme aiming at minimizing the lower and upper bounds of the interval-valued 
maintenance cost. To derive the optimal maintenance policy, a solution method is proposed 
combing FV scheme, DE approach and NSDE approach. Results on a realistic case study show 
the feasibility of the procedure.    

The main contribution of the paper is that it generalizes the existing maintenance models 
for multi-component systems by taking into account both degradation dependency among the 
components and epistemic uncertainty in the degradation models. As the future work, we plan 
to extend the proposed framework taking into account the economic and structural dependences 
between different components. 

Limitations of the proposed solution approach lies in the computational burden and the 
memory requirements, when applied in high dimensional problems, due to the FV method 
which discretizes the state space of the continuous variables of PDMP. The computational 
expenses and memory requirement of the FV method increase almost linearly as the number of 
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meshes partitioning the state space increases, which is chosen by the users. For higher 
dimensional problems, we can limit the number of meshes to relieve computational burden. 
Note that in some cases the high dimensional problem can be decomposed into several low 
dimensional ones mutually independent on each other. Then, the FV schemes can be run on low 
dimensional problems in parallel. Besides, the computation time can be reduced via reducing 
the number of meshes set in FV schemes and the amount of memory required can be reduced 
via using sparse matrices. Improvement of these issues will be sought in future research. 
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Reliability Assessment of Systems Subject to Dependent Degradation 
Processes and Random Shocks  

 
_____________________________________________________________________ 

 
Abstract – System failures can be induced by internal degradation mechanisms or by external 
causes. In this paper, we consider the reliability of systems experiencing both degradation and 
random shock processes. The dependencies between degradation processes and random shocks, 
and among degradation processes are explicitly modelled. The degradation processes of system 
components are modeled by multi-state models (MSMs) and physics-based models (PBMs). 
The piecewise-deterministic Markov process modeling framework is employed to combine 
MSMs and PBMs, and for incorporating degradation and random shocks dependencies. The 
Monte Carlo simulation and finite-volume methods are used to compute the system reliability. 
A subsystem of a residual heat removal system in a nuclear power plant is considered as 
illustrative case. 
 
 
Key Words – multi-state system, system reliability assessment, degradation, random shocks, 
dependency, piecewise-deterministic Markov process, Monte Carlo simulation, residual heat 
removal system. 

_____________________________________________________________________ 
 

 
Acronyms 

PBMs   Physics-based models 

MSMs   Multi-state models 

PDMP   Piecewise-deterministic Markov process 

MCS   Monte Carlo simulation 

FV    Finite-volume 

RHRS    Residual heat removal system  

 

Notations 

s   Group of degradation processes modeled by MSMs 

r   Group of degradation processes modeled by PBMs 

��T   Finite state set of degradation process �� 

��T���  State variable of degradation process �� 

"#=+	|	&�T> Transition rate from state 4 to + 
~�T   Set of failure states of degradation process �� 
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tuI���  Time-dependent continuous variables of degradation process � 

tuI} ���  Non-decreasing degradation variables vector 

tuIb ���  Physical variables vector 

~uI  Set of failure states of degradation process � 

9���  Number of random shocks occurred until time � 
;   Arrival rate of random shock process 

��T< ���  Degradation level of �� considering random shocks  

~�T<    Set of failure states of ��T< ��� �#   Shock load of the 4-th shock 

©   Maximal material strength 

Î#   Instantaneous random increase caused by the 4-th cumulative shock 

9����  Number of cumulative shocks occurred until time � 
}uI  Degradation level of � considering random shocks 

����  Degradation state of the processes of set s 

t���  Degradation state of the processes of set r 

&s    Environmental and operational factors in s 

&r    Environmental and operational factors in r 

����  Degradation process of the system 

�<���  Degradation state of the processes of set s considering random shocks 

t<���  Degradation state of the processes of set r considering random shocks 

'/    a-th jump time in �<��� 
�/ = �t/< , �/< � State of ����, t<���, �<��� after a-th jump of �<��� 
{r�K�L��t���	|	&r� Deterministic physics equations of t��� 
"¤H,¤S��	|	&s�   Transition rate of �<��� from state ¤# to ¤$  

9=ë, �D�, ¤$�, D�> Semi-Markov kernel of {��, '�}��2 D�ë���   Probability distribution of holding time given �/ = ë 
 
 
1. INTRODUCTION 
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System failures can be induced by internal degradation mechanisms (e.g. wear, fatigue and 
erosion) or by external causes (e.g. thermal and mechanical shocks) [1]. The interactions 
between these factors need to be considered under certain circumstances, e.g. when degradation 
processes and random shocks are s-dependent (e.g. single-event overloads with safe shock 
magnitudes can influence the fatigue crack growth of stents by causing instantaneous increase 
on the crack propagation [2]), or the degradation state of some components in one system can 
influence the degradation dynamics or the remaining useful life of the others (e.g. the 
degradation of the pre-filtration stations leading to a lower performance level of the sand filter 
in a water treatment plant [3]). Neglecting these aspects may result in overestimation of system 
reliability [4]. The evaluation of the system reliability over time can be an important and critical 
task. For example, the reliabilities of safety systems in nuclear power plants, such as reactor 
shutdown, emergency core cooling and other safety multi-component systems in nuclear 
industry, need to meet the requirements imposed by regulator to ensure their operational safety 
[5]. The instants when the requirements are not satisfied can be identified according to the 
reliability evaluation over time. Afterwards, the reliability improvement actions can be 
performed, such as maintenance, to avoid possible human and economic loss. In this paper, we 
investigate reliability assessment of multi-component systems subject to dependent degradation 
processes influenced by random shocks.  The dependencies present challenging issues in 
system reliability modeling and assessment [6] (e.g. the micro-electromechanical systems 
which are complex design systems experiencing dependent component failure processes and 
multiple dependent competing failure processes for each component [7]).  

In industrial systems, many critical components (e.g. valves and pumps in the nuclear and 
aerospace industries) are designed to be highly reliable, for which statistical degradation/failure 
data are often limited. In this case, multi-state models (MSMs) [8-10] and physics-based models 
(PBMs) [11-13] can be used to describe the evolution of degradation in components and 
systems. A MSM describes the degradation process in a discrete way, supported by material 
science knowledge [14] and/or available but limited degradation/failure historical data from 
field collection or degradation tests [9]. On the contrary, a PBM gives an integrated mechanistic 
description of the component life consistent with the underlying real degradation mechanisms 
under operating conditions [15], by using physics knowledge modeled by corresponding 
mathematical equations [11]. In practice, degradation models of different nature have to be 
applied depending on the available information of the degradation processes. Recently [16], the 
piecewise-deterministic Markov process (PDMP) modeling framework has been employed to 
incorporate PBMs and MSMs, and to treat the dependencies among degradation processes but 
without considering the influences of random shocks. On the other hand, random shocks can 
accelerate the degradation processes (e.g. internal thermal shocks and water hammers onto 
power plant components [17]).  

The reliability of systems experiencing both degradation and random shocks is a problem 
that has been widely studied [4, 7, 14, 18-23]. The dependency among these processes leading 
to failure has posed some challenges to reliability modeling. A literature review is presented 
below, to position our contributions within the existing works. Previous research has focused 
on the dependency between one type of degradation processes (continuous or multi-state) and 
random shocks. For continuous degradation processes, Peng et al. [20] considered systems with 
one linear degradation path where shocks can bring additional abrupt degradation damage if the 
shock loads do not exceed the maximum strength of the material; multi-component systems 
subject to multiple linear degradation paths have been further considered by Song et al. [7]; 
Jiang et al. [19] considered changes in the maximal strength of the material when systems are 
deteriorating under different situations; Becker et al. [18] extended the theory of dynamic 
reliability to incorporate random changes of the degradation variables due to random shocks; 
Ye et al. [24] considered the destructive power of a shock depending not only on the shock’s 
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magnitude but also on the state of the system; Wang et al. [25] considered two types of the 
effects of shocks: a sudden increase in the failure rate after a shock, and a direct random change 
in the degradation after the occurrence of a shock; Rafiee et al. [21] proposed reliability models 
for systems for which the degradation path has a changing degradation rate according to 
particular random shock patterns; Song et al. [22] studied random shocks with specific sizes or 
functions, which can selectively affect the degradation processes of one or more components 
(not necessarily all components) in one system. For multi-state degradation processes, Yang et 
al. [23] combined random shocks with Markov degradation models where shocks can lead the 
systems to further degraded states; Lin et al. [14] integrated random shocks into multi-state 
physics models of degradation processes where the influences of shocks are dependent on the 
current degradation condition; Ruiz-Castro [26] considered external shocks which could 
produce several effects; extreme failure, cumulative damage and when the damage reaches a 
threshold state, a non-repairable failure occurs, and changes in the internal performance of the 
device. Note that no work has considered systems with both continuous and multi-state 
degradation processes and subject to random shocks and few studies have explicitly considered 
both the dependencies between degradation processes and random shocks, and that among the 
degradation processes themselves. Wang and Pham [4] employed copulas to handle these two 
types of dependencies; however, sufficient degradation/failure data is required to determine the 
copula functions through statistical inference.  

In this paper, we extend the PDMP modeling framework for system reliability assessment, 
considering not only the dependencies among degradation processes but also the impacts of 
random shocks. To the best knowledge of the authors, this is the first work investigating systems 
with both continuous and multi-state degradation processes, subject to random shocks and 
considering the dependencies between degradation processes and random shocks, and among 
degradation processes are considered. Since the analytical solution is difficult to obtain due to 
the complexity of the system being considered, we employ two numerical approaches to assess 
system reliability: the Monte Carlo (MC) simulation [27] and the finite-volume (FV) [28] 
methods.  

The remainder of this article is organized as follows. Section 2 provides the assumptions 
and descriptions of the degradation processes and random shocks. Section 3 presents the 
extended model for systems with degradation and random shock processes, considering their 
dependencies. The proposed MC simulation and FV methods are presented in Section 4. Section 
5 presents an illustrative an illustrative study taken from the real-world residual heat removal 
system (RHRS) operated by Électricité de France (EDF). It is one important subsystem 
consisting of a pneumatic valve and a centrifugal pump in series, and is widely used in a variety 
of domains for fluid delivery (from water supply to spacecraft fueling systems) [12, 29]. The 
RHRS is used for cooling the reactor during and following shutdown, contributing to safety by 
removing heat from the core and transferring it to the environment. Numerical results and 
analysis are presented in Section 6. Section 7 concludes the work. 

 
2. ASSUMPTIONS AND MODEL DESCRIPTIONS 

We consider a multi-component system. Each component may be affected by multiple 
degradation mechanisms or processes, possibly dependent. The degradation processes can be 
separated into two groups: (1) s consists of processes fit to be modeled by MSMs; (2) r 
consists of processes fit to be modeled by PBMs.  

 
2.1. Degradation models 

 
2.1.1. MSMs 

We follow the assumptions on MSMs made in [16]: 
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• A degradation process, ��T���	, �� ∈ s of group (1), takes values from a finite state 
set denoted by ��T = {0, 1, … , D}, where D is the perfect functioning state and 0 is 
the complete failure state. The component is functioning or partially functioning in the 
intermediate degradation states. The transition rates "#=+	|	&�T>, ∀	4, + ∈ ��T , 4 � + 
characterize the degradation transition probabilities from state 4 to state +, where &�T represents the environmental factors relevant to �� and the related parameters 
of "�T. We follow the assumption of Markov property made in [9, 30, 31]. Markov 
processes are widely used in practice to describe components degradation processes. 
The transition rates between different degradation states are estimated from the 
degradation and/or failure data from historical field collection. The failure state set of 
the process �� is denoted by ~�T = {0}. 

 
2.1.2. PBMs 

We follow the assumptions on PBMs made in [16]: 
• A degradation process tuI���, � ∈ r  of group (2), has DuI  time-dependent 

continuous variables, whose evolution is characterized by a system of first-order 
differential equations tuIz ��� = {uI=tuI���, �	|	&uI>, i.e. physics equations, where &uI  represents the environmental factors influential to �  (e.g. temperature and 
pressure) and the parameters used in {uI. This assumption is made in [32] and widely 
used in practice [12, 29]. Note that higher-order differential equations can be converted 
into a system of first-order differential equations by introducing extra variables [33]. 

•  tuI��� = �tuI} ���, tuIb ���� contains: (1) the non-decreasing degradation variables tuI} ��� (e.g. leak area) describing the degradation process, where } is the set of 
degradation variables indices  (the same assumption has been widely used in practical 
studies [2, 12, 29]); (2) the physical variables tuIb ��� (e.g. velocity and force), which 
influence tuI} ��� , where b  is the set of physical variable indices. The generic 
degradation process �  reaches failure when one OuI# ��� ∈ tuI} ���  reaches or 

exceeds its corresponding failure threshold denoted by OuI# ∗
. The failure state set of 

the process � is denoted by ~uI. 
 
2.2. Random shocks 
Random shocks can influence the degradation processes of the components. The following 

assumptions are made, similarly to various previous works [19-23]. 
• Random shocks occur in time according to a homogeneous Poisson process 

{9���, � ≥ 0} with constant arrival rate	; (Fig. 1), where the random variable 9��� 
denotes the number of random shocks occurred until time �.  

• The damages of random shocks are divided into two types: extreme and cumulative. 
• Extreme and cumulative shocks are mutually exclusive. 
• Extreme shocks immediately lead the components to failure, whereas cumulative 

shocks gradually deteriorate the components. 
 

 
 

Fig. 1. Random shock process 
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3. DEPENDENT DEGRADATION PROCESSES AND RANDOM SHOCKS  

 
3.1. Dependency between degradation processes and random shocks 
Due to the different nature of PBMs and MSMs, the impacts of random shocks on the two 

groups of components are characterized in different ways.  
 

3.1.1. Impacts on MSMs 
In the generic degradation process �� ∈ s, random shocks can cause the process variable ��T��� to step from state 4 to a further degraded state + with probability �#$ , 4 � + [23], with �#2 denoting the probability that the random shock is extreme, i.e. leading to failure state 0 

upon occurrence from state ��T��� = 4. By combining the original degradation and the random 
shock processes, the resulting process ��T< ��� is a homogeneous continuous-time Markov 
chain of the type depicted in Fig. 2. Each layer indicates one degradation state of ��T���, and 
the numbers in each layer indicate the numbers of shocks experienced up to time � in the 
process ��, denoted by a. The state of ��T< ��� is, then, represented by pair =��T���, a>. The 
transitions represented by solid lines are due to original degradation process, characterized by 
the original transition rates, which do not influence the value of a. The transitions represented 
by dotted lines are due to random shocks, which cause a to be increased by one. ;�#$ , 4 � + 
is the rate of occurrence of a shock which will cause the process stepping to the +-th layer from 
the 4-th layer. Note that �� fails whenever ��T��� reaches the degradation state 0, no matter 
how many shocks it has experienced. Therefore, the space of the failure states of ��T< ��� is 
denoted by ~�T< = {�0, º�, ∀º ∈ ℕ} . The state space of ��T< ���  is denoted by ��T< =.�[, º�, ∀[ ∈ ��T , º ∈ ℕ0.  

 

 
 

Fig. 2. Degradation process �� and random shocks. 
 

3.1.2. Impacts on PBMs 
In the generic degradation process � ∈ r, the 4-th shock becomes extreme if the shock 

load �# exceeds the maximal material strength ©, otherwise, it can bring an instantaneous 
random increase Î#  to tuI��� [7]. The overall degradation level of �  is expressed as  
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follows: 

             }uI��� = �tuI��� + ∑ Î#f��L�#1� , 4C	9<��� 7 0									tuI���,								4C	9<��� = 0		                 (1) 

where 9���� is the number of cumulative shocks occurred in the developing �  process 
before the extreme shock occurs until time �. The process �  leads to failure if }uI��� 
reaches the predefined failure state set ~uI or a shock with load larger than © occurs. An 
example of degradation process � considering random shocks is shown in Fig. 3, where �# 
is the shock load of the 4-th shock occurred at time �#, 4 = 1,2,3. The center figure in Fig. 3 
represents the evolution of the physical variable (e.g. velocity and force), which can influence 
the degradation variable (top figure) and may also be influenced by random shocks (bottom 
figure). 
 

 
 

Fig. 3. An example of degradation process � with random shocks. Top Figure: 
degradation variable; Center Figure: physical variable; Bottom Figure: random shock process.  

 
3.2. Dependency among degradation processes 
Dependencies may exist among degradation processes within each group and between the 

two groups. The degradation states of the processes of set s may influence the evolution of 
the continuous variables of the degradation processes of set r, and the degradation levels of 
the latter may influence the transition times and transition directions of the former (the detailed 
formulations are shown in eqs. (2) and (3)) [16]. 

Let ���� = �������, … , ������� ∈ � = {0, 1, … , D�}    and t��� =�tu����, … , tu����� ∈ ℝFw 	. The evolution of ���� is governed by the transition rates which 

depend on the states of the degradation processes in the first group t��� and also in the second 
group ����, as follows: �4B∆L	→	2(=��� + ∆�� = �	|	t���, ���� = ë, &s = ⋃ &�Tf�1� > /∆�	 	= "ë��	|	t���, &s�, ∀	� ≥ 0, ë, � ∈ �, ë 7 �	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �2�	
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The evolution of t��� is described by mathematical equations representing the underlying 
physics and depends on the states of the degradation processes in the second group ���� and 
also in the first group t���, as follows: tz ��� = =tu�z ���, … , tu�z ���> = ={u���L��t���, �	|	&u�>, … , {u���L��t���, �	|	&u�>> = {r��L��t���, �	|	&r = ⋃ &uI81� 	>                       (3) 

 
3.3. PDMPs for systems subject to degradation dependency and random shocks 
Let ����denote the overall degradation process of the system: ���� = �t<��� = �}u����, … ,}u����� , �<��� = �����, 9����� ∈ � = ℝFw × �<     (4) 

where � is a space combining ℝFw and �< = � × ℕ. Let '/, a ∈ ℕ denote the a-th jump 
time in �<���  and �/ = ��'/� = =t<�'/�, �<�'/�> = �t/< , �/< � . The evolution of ���� 
between two consecutive jumps of �<���, between which no shock occurs to the system and 
the degradation state does not change, can be written as follows: �z ��� = �t<z ���, �<z ���� = ={r�K�L��t���	|	&r�, ��, 0�>, Còj	� ∈ ['/, '/*�[                 (5) 
According to the definition in [34], ���� is a PDMP since (1) it can be written as ���� =���/, � − '/�, Còj	� ∈ ['/, '/*�[  and �  satisfies ��¤, � + Q� = ����¤, ��, Q�, ∀�, Q ≥0, ¤ ∈ 	� , and � → ��¤, ��, ∀� ≥ 0, ¤ ∈ �	  is right continuous with left limits and (2) {��, '�}��2is a Markov renewal process defined on the space � × ℝ*. The probability that ���� will step to state � from state �/ in the time interval ['/, '/ + �], given {�# , '#}#�/ is 
as follows: ([�/*� = �, '/*� ∈ ['/, '/ + �]	|	{�# , 	'#}#�/] = ([�/*� = �, '/*� ∈ ['/, '/ + �]	|	�/],	 ∀a ∈ ℕ	, �	 ∈ 	�, � 7 �/                          (6) {��, '�}��2  is characterized by the semi-Markov kernel9=ë = ��# , ¤#�, �D�, ¤$�, D�> =(Åt/*�< ∈ [�, � + D�], �/*�< = ¤$ , '/*� − '/ ∈ [�, � + D�]	|	�/ = ëÆ, ∀a ∈ ℕ, ¤# , ¤$ ∈�<, �# , D� ∈ ℝFw , D� → �, D� → 0, which can be reformulated as follows: 9=ë = ��# , ¤#�, �D�, ¤$�, D�> = (Åt/*�< ∈ [�, � + D�], �/*�< = ¤$ 	|	'/*� − '/ ∈ [�, � + D�], �/ = ëÆ ∙ (['/*� − '/ ∈ [�, � + D�]	|	�/ = ë] = o=��ë, ��, �D�, ¤$�>D�ë���                        (7) 
where o=��ë, ��, �D�, ¤$�> is the probability distribution of state �/*� given '/*� − '/ = � 
and �/ = ë  and D�ë���  is the probability distribution of '/*� − '/  given �/ = ë . o=��ë, ��, �D�, ¤$�> can be reformulated as follows: o=��ë = ��# , ¤#�, ��, �D�, ¤$�>      = (Åt/*�< ∈ [�, � + D�], �/*�< = ¤$ 	|	'/*� − '/ ∈ [�, � + D�], �/ = ëÆ                               = (Åt/*�< ∈ [�, � + D�]	|�/*�< = ¤$ , '/*� − '/ ∈ [�, � + D�], �/ = ëÆ ∙ (Å�/*�< = ¤$	|	'/*� − '/ ∈ [�, � + D�], �/ = ëÆ                 (8) 

Let �L�D� = �D�, ¤#��  denote the probability distribution of ���� , which obeys the 
Chapman-Kolmogorov equation [35]  as follows: P ∑ P ∑ "¤H,¤S��	|	&s��P V=¤$ , à>;=¤# , ¤$ , �>�D¤� −ℝáw¤S∈�Kℝáw¤H∈�KL2 V�¤# , ������D�, ¤#�DQ +     P ∑ P {r¤H��	|	&r�D4i=V�¤# , ��>���D�, ¤#�DQℝáw¤H∈�KL2 −  ∑ P V�¤# , ��ℝáw¤H∈�K �L�D�, ¤#� + ∑ P V�¤# , ��ℝáw¤HK∈�K �2�D�, ¤#� = 0        (9) 

where "¤H,¤S��	|	&s�  is the transition rate of �<���  from state ¤#  to ¤$ , V�∙,∙�  is any 
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continuously differentiable function from  �< × ℝFw  to ℝ  with a compact support and ;=¤# , ¤$ , �>�D¤�  is the probability of t<	��� ∈ [¤, ¤ + D¤]  after jumping from �  when �<��� steps to state ¤$ from state ¤#. 
The reliability of the system at time � is defined as follows: ���� = ([��Q� ∉ ~, ∀Q 5 �] = P �L�D���∉~                 (10) 

where ~ is the space of the failure states of the system. 
The parameters in the proposed model are mainly divided into three groups: (1) transition 

rates in multi-state models; (2) parameters in physics equations of physics-based models and 
(3) parameters charactering random shock processes. The values of the first group can be 
estimated, using degradation and/or failure data from historical field collection or degradation 
tests, through maximum likelihood estimation for complete or incomplete data [36, 37], it can 
also be estimated by domain experts using physics knowledge (e.g. the values of the transition 
rates in multi-state physics model [14]) are described by physics equations). For the second 
group, the laws of physics are used to build the equations describing the development of the 
underlying degradation mechanisms (e.g. fatigue, wear, corrosion, etc.) [12]. The related 
parameter values can be estimated through regression models using degradation and/or failure 
data. For example, the physics equations of the fatigue cracking of the seal are built according 
to Paris-Erdogan law in [38],  which relates the stress intensity factor range to the crack growth 
under a fatigue stress regime. Their values are estimated through least squares regression 
methods by using data on crack length and cycles. The values of the third group can be 
estimated using related degradation and/or failure data obtained from historical field collection 
or shock tests [39] based on likelihood based inference or regression models [24]. For example, 
the Brown-Proschan model is employed to model wear and shock processes of tire treads in 
[24], the likelihood function can be derived based on cumulative hazard function and the 
parameter values are estimated through maximum likelihood estimation. 
 
4. SYSTEM RELIABILITY ASSESSMENT UNDER DEPENDENT DEGRA DATION 

AND RANDOM SHOCK PROCESSES 
The analytical solution of ���� is difficult to obtain mainly due to the complex PDMPs 

used to model the dependent degradation and random shock processes [40]. Therefore, we 
consider the following two approximate methods: the MC simulation method [27] based on the 
semi-Markov kernel of {��, '�}��2 (eq. (7)) and the FV method [28] based on the Chapman-
Kolmogorov equation (eq. (9)). They are two widely used approaches for solving PDMPs to 
evaluate reliability quantities. FV method approximates the probability density function of 
PDMPs by discretizing the state space of the continuous variables and the time space. It is a 
method that can lead to comparable results as MC simulation, using less computing time for 
low dimensional problems [41]. However, it is typically unsuited for high-dimensional 
problems or problems with complex equations describing the deterministic evolution. Besides, 
it is relatively more difficult to implement than MC simulation method.  
 

4.1. MC simulation method 
The MC simulation method to compute the system reliability at time �  consists of 

replicating several times the life process of the system by repeatedly sampling its holding time 
and arrival state from the corresponding probability distributions. Each replication continues 
until the time of system evolution reaches � or until the system enters a state in the failure set ~. The procedure of the MC simulation method is as follows:  
Set 9_` (the maximum number of replications) and a = 0 (index of replication) 
Set a′ = 0 (number of replications that end in a system failure state) 
While a < 9_`  
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Initialize  the system by setting � = �t<	�0�, �<	�0�� (initial system state), and the time ' =0 (initial system time) 
Set �< = 0 (state holding time) 
While ' < � 

Sample a �< by using the probability distribution D����� 
Sample an arrival state ¤ for stochastic process �<��� and an arrival state � for 
process t<��� by using eq. (8) 
Set ' = ' + �′ 
If  ' 5 � 

Set � = ��, ¤� 
If  � ∈ 	~  

Set a< = a< + 1 
Break 

End if  
Else (when ' � �) 

If  ���, � + �< − '� ∈ ~  
Set a< = a< + 1 
Break 

End if  
End if 

End While 
Set a = a + 1 

End While □ 
The estimated system reliability at time � can be obtained by �8�� ��� = 1 − a</9_`                         (11) 

where k' represents the number of trials that end in the failure state of the system, and the sample 
variance [42] is:  i[j���̧�L� = �8�� ����1 − �8�� ����/�9_` − 1�               (12) 

MC simulation method is widely used in practice to evaluate system reliability [43]. It is 
based on the strong law of large numbers and the central limit theorem and provides an unbiased 
estimator. The error on the estimate can be controlled within a confidence interval built based 
on the sample variance given in eq. (12), which can guarantee the consistency of the estimate. 
The accuracy of MC simulation method increases as the number of replications increases. MC 
simulation method is more efficient to solve higher-dimensional problems, since the sample 
variance does not depend on the number of dimensions. There are certain techniques to improve 
the efficiency of MC simulation method (such as importance sampling, sequential MC, etc.) 
[43], which have to be designed according to the specific problems and have not been 
considered in our general reliability assessment framework. 
 
 

4.2. FV method 
The FV method is an alternative for the approximated solution of the system reliability, 

based on a discretization of the state space of the continuous variables and time space [41]. 
Here, we employ an explicit FV scheme developed by Cocozza-Thivent et al. [28]. The 
numerical scheme aims at constructing an approximate value µL��, ¤#�D� for �L�D�, ¤#�. The 
estimated system reliability at time �, then, can be calculated as follows:  �þ�� ��� = P µL���D��∉~                          (13) 

See Appendix A for detailed descriptions of FV method. Due to the complexity of the Chapman-
Kolmogorov equation (eq. (9)), there is no explicit expressions about the variance or uncertainty 
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associated with the estimation. However, the convergence of the method is proven in [28] under 
the condition that ∆� → 0 and |ℳ|/∆� → 0 where |ℳ| is the space step and ∆� is the time 
step. The efficiency and the accuracy of the method have been shown through the numerical 
example in [28]. 

 
5. CASE STUDY 

We consider a subsystem of a residual heat removal system (RHRS) in a nuclear power 
plant, which consists of a pneumatic valve and a centrifugal pump in series shown in Fig. 4. 

For the degradation model of the pump, we consider a MSM modified from the one 
originally supplied by EDF [16], while for the valve we take the PBM proposed in [12].  
 

 
 

Fig. 4. Subsystem of RHRS, consisting of a centrifugal pump and a pneumatic valve. 
 

5.1. Centrifugal pump 
The degradation process of the pump is modeled by a four-state, continuous-time, 

homogeneous Markov chain as shown in Fig. 5.  
 

 
 

Fig. 5. Degradation process of the pump. 
 
Among the four states of the pump, state 3 is the perfect functioning state and state 0 is 

the complete failure state. Let �k��� denote the degradation state of the pump at time � and �k = {3, 2, 1, 0} denote the degradation states set. The pump is functioning until �k��� = 0. 
The parameters "½^ , "^�  and "�2  are the transition rates between the degradation states, 
estimated from the available degradation and/or failure data. The pump vibrates when it reaches 
the degradation states 2 and 1; the intensity of the vibration of the pump on states 2 and 1 
is evaluated by the experts as ‘smooth’ and ‘rough’, respectively. The set of the failure states 
of the pump is ~k = {0}. 

 
5.2. Pneumatic valve 
The simplified scheme of the pneumatic valve is shown in Fig. 6. The degradation of the 

valve is the external leak at the actuator connections to the bottom pneumatic port due to 
corrosion, and is modeled by a PBM due to limited statistical degradation data on the valve 
behavior. It is much more significant than the other degradation mechanisms according to the 
results shown in [12].  
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Fig. 6. Simplified scheme of the pneumatic valve [12]. 
 

Let ©¶��� denote the area of the leak hole at the bottom pneumatic port of the valve at time �. The development of the leak size is described by ©¶z ��� = $¶, where $¶ is the original 
wear coefficient. The valve is considered failed when the size of the external leak exceeds a 
predefined threshold ©¶∗. The set of the failure states of the valve is ~_ = [©¶∗, +∞�. 

 
5.3. Dependency between degradation processes 
Dependency in the degradation processes of the two components has been indicated as a 

relevant problem by the experts of EDF: the pump vibrates due to degradation [44] which, in 
turn, leads the valve to vibrate, aggravating its own degradation processes [45]. The 
development of the leak size of the valve is, then, reformulated as follows [16]: ©¶z ��� = $¶�1 + ���k�����                        (14) 
where ���k���� is the function indicating the relative increment of the growth rate of the 
external leak caused by the vibration of the pump at the degradation state �k���.   

 
5.4. Random shocks 
According to the experts of EDF, random shocks like water hammers and internal thermal 

shocks [17] can worsen the degradation condition of both components of the subsystem 
considered or even immediately lead them to failures. 

Random shocks can deteriorate the pump from its current state 4 to a degraded state +, as �#$ = ;×�2.���HØS÷���3�2.���H÷�� , 4 ≥ + , where �#2  denotes the probability of an extreme random shock 

leading the pump from state 4 directly to failure state 0.  The formulation is taken from Yang 
et al.’s work [23], which satisfies that ∑ �#$2$1# = 1. By combining the degradation process of 
the pump with the random shock process, the resulting process takes the form shown in Fig. 7. 
The state of the process is represented by ���� = =�k���,B>,B ∈ ℕ, where m is the number 
of shocks experienced by the pump. The state space of the new process is denoted by � ={�[, º�, ∀[ ∈ �k, º ∈ ℕ} and the set of failure states of the pump is ~<< = {�0, º�, ∀º ∈ ℕ}. 
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Piston

Bottom chamberBottom 
pneumatic port

Top chamber

Top
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Fig. 7. Degradation and random shock processes of the pump. 
 
For the valve, the 4-th shock becomes extreme if the shock load �# exceeds the maximal 

material strength ©, otherwise, it can bring an instantaneous random increase :# to the total 
external leak size [7]. �# and :# are assumed to be i.i.d. random variables following folded 
normal distributions [46], �# = |[| and :# = |º|, where [~9�;>, �>̂ � and º~9�;?, �?̂�. 
 

5.5. PDMP for the system considering dependency 
An illustration of the composite degradation process of the valve considering random 

shocks and the degradation state of the pump is shown in Fig. 8, where  the system experienced 
a random shock at time �# , with the shock load �# , 4 = 1,3,4. The first two shocks cause 
instantaneous random increases on ©���, the last shock lead the valve to failure. The vibration 
of the pump accelerates the degradation process of the valve at times �^ and �½, when the 
pump stepped to a further degraded state. 
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Fig. 8. An illustration of the degradation of the valve considering random shocks and the 

degradation state of the pump. Top Figure: degradation process of the valve; Center Figure: 
random shock processes; Bottom Figure: degradation process of the pump. 

 
The degradation processes of the whole system can be represented by:  ���� = �©���, ����� 	∈ 	ℝ* × � = �                     (15) 

Let '/, a ∈ ℕ  denote the a -th jump time in ����  and �/ = �©/, �/� = ��'/� . The 
evolution of ���� between two consecutive jumps of ����, between which no shock occurs 
to the system and the degradation state of the pump does not change, can be written as follows: �z ��� = �©z ���, �z ���� = �$¶�1 + ���k�����, �0, 0��   = ��������, �0, 0��, Còj	� ∈ ['/, '/*�[                   (16) 
where ��∙� is used to denote the corresponding equation. 
By integrating eq. (25), we can obtain that: ���� = �©/ + �� − '/�$¶�1 + ���k�'/���, �/� = �����/ , � − '/�, �/�, Còj	� ∈ ['/, '/*�[ = ���/, � − '/�, Còj	� ∈ ['/, '/*�[                     (17) 
where ���∙� and ��∙� are used to denote the corresponding equations.  

Let �L�DO, ¤#�  denote the probability distribution of ���� . Given the series logic 
configuration of the system considered, the system fails when one of the two components fails; 
the reliability of the system at time � is, then, defined as follows: 
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���� = 	([��Q� ∉ ~, ∀Q 5 �] = P ∑ �L�DO, ¤#�¤H∉~<K`∉~�             (18) 

where ~ = ℝ* × ~<< ∪ ~_ × � is the set of the failure states of the system. 
The parameter values related to the system degradation processes and random shocks under 
accelerated aging conditions are presented in Table I. The first eight parameter values related 
to the degradation processes are taken from [16], the values of ;?, �? and © are taken from 
[20] and those of ;, ;> and �> are assumed arbitrarily. The parameter values are set upon 
the discussion with the experts from EDF. 

 
Table I Parameter values 

 
Parameter Value "½^ 3e-3 /s "^� 3e-3 /s "�2 3e-3 /s $¶ 1e-8 m2/s ��3� 0 ��2� 10% ��1� 20% ��0� 0 ©¶∗ 1.06e-5 m2 ; 5e-3 /s ;?  1.2 Gpa �?  0.2 Gpa © 1.5 Gpa. ;> 1e-7 m2 �> 2e-8 m2 

 
6. NUMERICAL RESULTS AND ANALYSIS 

The MC simulation and the FV methods are employed to estimate the system reliability. All 
the experiments are carried out in MATLAB on a PC with an Intel Core 2 Duo CPU at 3.06 
GHz and a RAM of 3.07 GB. MC simulations with 10½, 10À and 10( replications (named 
MC1, MC2 and MC3, respectively) are applied over a time horizon of '#�� = 1000	Q for the 
system reliability estimation. System holding time, arrival state for stochastic process ���� 
and arrival state for process ©��� can be sampled by using the probability distribution eq. (28), 
the probability mass function eq. (30) and the probability distribution eq. (31), respectively. See 
Appendix B for detailed descriptions of these equations. 

The results are shown in Fig. 9. It is seen that the MC simulation method requires a number 
of replications to achieve the desired level of accuracy. The average computation times of MC1, 
MC2 and MC3 are 0.21 s, 2.17 s and 21.77 s, respectively.  
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Fig. 9. System reliability estimated by MC1, MC2 and MC3. 

 
For the FV method, the state space ℝ* of ©��� has been divided into an admissible mesh ℳ = ⋃ [B∆O, �B + 1�∆O[12,�,^,…	  and the time space ℝ*  has been divided into small 

intervals ℝ* = ⋃ [�∆�, �� + 1�∆�[�12,�,^,…	 . See Appendix C for the application of FV method. 
The system reliability estimated by the FV method, is shown in Fig. 10 with the following 

different parameter settings: (1) FV1: ∆O = 5N − 9, ∆� = 0.5; (2) FV2: ∆O = 1.5N − 8, ∆� =1.5 and (3) FV3: ∆O = 4.5N − 8, ∆� = 4.5. The accuracy of the FV scheme increases as the 
space step ∆O and the time step ∆� are reduced. The average computation times of FV1, FV2 
and FV3 are 0.19 s, 1.93 s and 26.39 s, respectively. 
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Fig. 10. System reliability estimated by FV1, FV2 and FV3. 
 

The quantitative comparison of the most accurate results obtained by MC3 with those 
obtained by FV3 is shown in Table II. The sample variances associated with system reliability 
values estimated by MC3 are less than 2.5e-6 according to eq. (12), which means the results are 
sufficiently consistent and accurate. The quantitative comparison of results obtained by MC3 
and FV3 shown in Table II is only used to show that FV scheme can achieve comparable results 
to the MC simulation method (relative error less than 0.9%) in the illustrative case. Note that 
FV3 gives deterministic results since the values of ∆O  and ∆�  do not change, which 
guarantees the accuracy and consistency of the quantitative comparison. To provide more 
information, we have added Fig. 11 to compare the results obtained by MC3 with that obtained 
by FV3 over the time horizon.  For this case study, the computational expense of the two 
methods is similar.  
 

Table II Quantitative comparison of the results obtained by MC3 and FV3 
 

    Method 
Time   

MC3 FV3 Relative 
error 

100s 0.9611 0.9607 0.0438% 
200s 0.9021 0.9011 0.1162% 
300s 0.8230 0.8205 0.3027% 
400s 0.7285 0.7263 0.2974% 
500s 0.6284 0.6271 0.2109% 
600s 0.5312 0.5300 0.2394% 
700s 0.4395 0.4397 0.0365% 
800s 0.3576 0.3591 0.4157% 
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900s 0.2467 0.2459 0.3204% 
1000s 0.0335 0.0332 0.8955% 

 

 
Fig. 11. Comparison of the results obtained by MC3 and FV3. 

 
 
The reliability values of the valve, the pump and the system with/without random shocks, 

obtained by MC3, are shown in Fig. 12. The numerical comparisons on the reliability of the 
system, the valve and the pump with/without random shocks at the final time of 1000 s are 
presented in Table III. 
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Fig. 12. The reliability of the system, the valve and the pump with/without random shocks. 

 
When random shocks are ignored, the system reliability is basically determined by the pump 

before around 870 s, since the valve is highly reliable. After that, the sharp decrease of the valve 
reliability due to degradation leads to the same behavior in the system reliability. When random 
shocks are considered, the system reliability is determined by both the pump reliability and the 
valve reliability from the beginning until around 850 s, since the valve is no longer as highly 
reliable as before. Then, the valve reliability decreases sharply due to the joint effects of random 
shocks and degradation, and this drives also the sharp decrease of the system reliability. We can 
see from the results that neglecting random shocks can result in an underestimation of the 
reliability of the system and of the components.  

 
Table III Comparison of reliability with/without random shocks at 1000 s 

 
 Reliability without 

random shocks 
Reliability with 
random shocks 

Relative 
change 

System 0.18 0.033 81.67% 
Valve  0.50 0.099 80.20% 
Pump  0.43 0.32 25.58% 

 
Following one assumption of our work (i.e. limited historical data), epistemic uncertainty 

can arise due to the incomplete or imprecise knowledge about the degradation processes and 
the governing parameters of the pump and the valve, which has been considered in [16] by 
describing the degradation model parameters as intervals (or fuzzy numbers). In the revised 
manuscript, we follow the settings in [16] where a relative deviation of ±10% to the original 
parameters values has been considered for "½^ ,  "^� , "�2 , $¶ , ��3�, ��2�, ��1� and ��0� upon the discussions with the domain experts from EDF. The lower and upper bounds of 
system reliability under uncertainty, and the original values without uncertainty obtained by 

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

R
el

ia
bi

lit
y

 

 



PAPER VI: Y.-H. Lin, Y.-F. Li, E. Zio. Reliability Assessment of Systems Subject to Dependent Degradation Processes and 

Random Shock. IIE Transactions. (Under review) 

- 249 - 

MC3 are shown in Fig. 13. The lower bound of system reliability with uncertainty decreases 
more sharply after around 790 s, earlier than that without uncertainty. It is seen that the system 
fails after around 964 s, because at that time the valve is completely failed. The upper bound of 
system reliability with uncertainty does not experience a rapid decrease because the valve is 
mostly functioning over the time horizon. 

 

 
Fig. 13. The lower and upper bounds of system reliability with uncertainty, and the original 

values without uncertainty obtained by MC3. 
 
7. CONCLUSIONS 

In this paper, we presented reliability models for systems experiencing both degradation 
processes and random shocks. The degradation processes involve both continuous and multi-
state processes, which are modeled by MSMs and PBMs, respectively. The dependencies 
between degradation processes and random shocks and among degradation processes are 
addressed by PDMP modeling. The procedures of the MC simulation and FV methods to solve 
the model are developed. A subsystem of a RHRS in a nuclear power plant, which consists of a 
pneumatic valve and a centrifugal pump, is considered as the illustrative example to 
demonstrate the effectiveness and modeling capabilities of the proposed framework. As original 
contribution and differently from our previous work [16], this work is first in considering 
system reliability under both continuous and multi-state degradation processes, random shocks 
and their dependencies.  

As future work, we will include maintenance in the model and derive optimal maintenance 
policies under the conditions considered. 
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Appendix A: FV method 
 
Assumptions 
The FV method for determining the approximated solution of the system reliability can be 
developed under the following assumptions [28]: 
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• The transition rates "¤H,¤S�∙ |	&s�		, ∀¤# , ¤$ ∈ �<  are continuous and bounded 

functions from ℝFw to ℝ*. 
• The physics equations {r¤H�∙	|	&r�, ∀¤$ ∈ �< are continuous functions from ℝFw to ℝFw and locally Lipschitz continuous. 
• The physics equations {r¤H�∙	|	&r�, ∀¤# ∈ �< are sub-linear, i.e. there are some §� �0 and §̂ � 0 such that  ∀� ∈ ℝFw , � ∈ ℝ*|{r¤H��	|	&r�| 5 §�‖�‖ + §̂   

• The functions D4i�{r¤H�∙	|	&r��, ∀¤# ∈ �<  are almost everywhere bounded in 
absolute value by some real value © � 0 (independent of ¤#). 

• If ��∙�  is a continuous and bounded function from ℝFw  to ℝ , then, � →P��àÄ�;=¤# , ¤$ , �>�D¤� is continuous from ℝFw to ℝ.  
 
Solution approach 

For ease of notation, we let ª¤H�∙, ∙ 	 |	&r�:	ℝFw × ℝ → ℝFw denote the solution of ¬¬Lª¤H��, �	|	&r� = {r¤H�ª¤H��, �	|	&r�	|	&r�, ∀¤# ∈ �<, � ∈ ℝFw , � ∈ ℝ      (19) 

with 	 ª¤H��, 0	|	&r� = �, ∀¤# ∈ �<, � ∈ ℝUV                  (20)	
and ª¤H��, �	|	&r� being the result of the deterministic behavior of t��� after time t, starting 
from the point � while the processes �<��� hold on state ¤#. 

The state space ℝFw of continuous variables t<��� is divided into an admissible mesh ℳ, 
which is a family of measurable subsets of ℝFw, i.e., ℳ is a partition of ℝFw such that: 

(21) ⋃ ®¯∈ℳ = ℝFw. 
(22) ∀®, ° ∈ ℳ, ® 7 ° ⇒ ® ∩ ° = ∅. 
(23) B¯ = P D�¯ � 0, ∀® ∈ ℳ, where B¯ is the volume of grid ®.  
(24) QZ�¯∈ℳD4[B�®� < +∞ where D4[B�®� = QZ�∀�,¤∈¯|� − ¤|. 

Additionally, the time space ℝ* is divided into small intervals ℝ* = ⋃ [�∆�, �� +�12,�,^,…	1�∆�[ by setting the time step ∆� � 0 (the length of each interval). 
The numerical scheme aims at constructing an approximate value µL��,∙	�D� for �L�D�,∙	�, 

such that µL��,∙	� is constant on each [�∆�, �� + 1�∆�[× ® × {¤#}, ∀® ∈ ℳ,¤# ∈ �<:   µL��, ¤#� = (��®, ¤#�, ∀¤# ∈ �<, � ∈ ®, � ∈ [�∆�, �� + 1�∆�[         (21) (2�®, ¤#�, ∀¤# ∈ �<, ® ∈ ℳ is defined as follows: (2�®, ¤#� = P �2�D�, ¤#�¯ /B¯                      (22) 
Then, (�*��®, ¤#� can be calculated considering the deterministic evaluation of t��� and the 
stochastic evolution of �<��� based on (��ℳ, ¤#� by the Chapman-Kolmogorov forward 
equation, as follows: (�*��®, ¤#� = ��*∆L¶·¤H (�*�̧�®, ¤#� + ∆� ∑ ∑ _�,·¤S,¤H�*∆L¶·¤S (�*�̧=°, ¤$>¤S∈�K¼∈ℳ          (23) 

where  [¼,¯¤S,¤H = P "¤S,¤H��	|	&s� P ;=¤$ , ¤# , �>�D¤��¼¯ B¯⁄              (24) 

is the average transition rate from state ¤$ and grid ° to state ¤# and grid ®, º¤̄H	 = P ∑ "¤H,¤S��	|	&s�D�¤S∈�K¯ /B¯                    (25) 

is the average transition rate out of state ¤# for grid ®, (�*�̧�®, ¤#� = ∑ B¼¯¤H¼∈ℳ (��°, ¤#�/B¯                   (26) 
is the approximate value of probability density function on [�� + 1�∆�, �� + 2�∆�[× ® × {¤#} 
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according to the deterministic evolution of t���, B¼¯¤H = P D¤{¤∈¼	|	ª¤H�¤,∆L	|	&r�∈¯}                       (27) 

is the volume of the part of grid ° which will enter grid ® after time ∆�, according to the 
deterministic evolution of t���.  
The approximated solution µL��,∙	�D� weakly converges towards �L�D�,∙	� when ∆� → 0 
and |ℳ|/∆� → 0 where |ℳ| = QZ�¯∈ℳD4[B�®�.  
 
Appendix B: Equations for MC simulation method in case study 
 
The semi-Markov kernel of {��, '�}��2  is 9=ë = �O, ¤#�, �DO, ¤$�, D�> =o���ë, ��, �DO, ¤$��  D�ë���, ∀a ∈ ℕ, ¤# , ¤$ ∈ �, O ∈ ℝ*, DO → 0, D� → 0 . According to the 
degradation models of the system, we can obtain that: D�ë1�`,¤H���� = "¤HN3R¤HLD�                       (28) 
where "¤H is the sum of the outgoing transition rates of ���� from state ¤#, and o���ë, ��, �DO, ¤#��                                     = (Å©/*� ∈ [O, O + DO]	|	�/*� = ¤$ , '/*� − '/ ∈ [�, � + D�], �/ = ëÆ ∙ (Å�/*� = ¤$ 	|	'/*� − '/ ∈ [�, � + D�], �/ = ëÆ              (29) 
where  (Å�/*� = ¤$ 	|	'/*� − '/ ∈ [�, � + D�], �/ = ëÆ = (Å�/*� = ¤$ 	|	�/ = ¤#Æ = R¤H,¤SR¤H                                 (30) 

where "¤H,¤S is the transition rate of ���� from state ¤# to state ¤$, and (Å©/*� ∈ [O, O + DO]	|	�/*� = ¤$ , '/*� − '/ ∈ [�, � + D�], �/ = ëÆ 
=
äåæ
åç (Å���ë, �� + :�'/ + �� ∈ [O, O + DO]Æ,4C	�j[�Q4�4ò�	CjòB	¤#	�ò	¤$ 	4Q	DZN	�ò	j[�DòB	Qℎò]a	/���ë,L��DO�,4C	�j[�Q4�4ò�	CjòB	¤#	�ò	¤$ 	4Q	DZN	�ò	DNSj[D[�4ò�

           (31) 

where  :�'/ + �� is the instantaneous random increase caused by shock at time '/ + �, / is 
the Dirac delta function and (Å���ë, �� + :�'/ + �� ∈ [O, O + DO]Æ 

=
äåæ
åç Φ�ý3���� � ∙ �����`3���ë,L�3���� ��DO,4C	O < ©¶∗�1 −Φ�ý3���� �� ∙ /���ë,L�*ýa∗�DO� +Φ�ý3���� � ∙ �����`3���ë,L�3���� ��DO,4C	O ≥ ©¶∗

  (32) 

where Φ�∙� and ��∙� are the cumulative distribution function and the probability density 
function of a folded normal distribution related to the standard normal distribution, respectively. 
Here, since an extreme shock can directly lead the valve to failure, we assume each extreme 
shock increase the total external leak size by ©¶∗ to formulate the problem within the settings 
of PDMP. Note that this assumption will not change the reliability of the valve.  
 
Appendix C: Application of FV method in case study 
 

The probability distribution of ���� , �L�DO, ¤#� , obeys the Chapman-Kolmogorov 
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equation [35]  as follows: P ∑ P ∑ "¤H,¤S�P V=¤$ , à>;=¤# , ¤$ , O>�Dà� − V�¤# , O�ℝ÷ ����DO, ¤#�DQ¤S∈�ℝ÷¤H∈�L2 +     P ∑ P ��¤#�D4i=V�¤# , O�>���DO, ¤#�DQℝ÷¤H∈�L2 − ∑ P V�¤# , O�ℝ÷¤H∈� �L�DO, ¤#� +  ∑ P V�¤# , O�ℝ÷¤H∈� �2�DO, ¤#� = 0                     (33) 
where V�∙,∙� is any continuously differentiable function from  � × ℝ* to ℝ with a compact 
support and ;=¤# , ¤$ , O>�Dà� is the probability of ©��� ∈ [à, à + Dà] after jumping from O 
when ���� steps to state ¤$ from state ¤# as follows: 

 ;=¤# , ¤$ , O>�Dà� =
äå
åæ
åå
ç Φ�ý3���� � ∙ �����â3`3���� ��Dà,4C	�j[�Q4�4ò�	CjòB	¤#	�ò	¤$ 	4Q	DZN	�ò	j[�DòB	Qℎò]a	[�D	à < ©¶∗�1 −Φ�ý3���� �� ∙ /`*ýa∗�Dà� +Φ�ý3���� � ∙ �����â3`3���� ��Dà4C	�j[�Q4�4ò�	CjòB	¤#	�ò	¤$ 	4Q	DZN	�ò	j[�DòB	Qℎò]a	[�D	à ≥ ©¶∗

	
/`�Dà�,4C	�j[�Q4�4ò�	CjòB	¤#	�ò	¤$ 	4Q	DZN	�ò	DNSj[D[�4ò�

 

(34) (2�B, ¤#� is defined as follows: (2�B, ¤#� = P �2�DO, ¤#��*��∆`∆` /∆O                    (35) 
where �2�DO, ¤#� = /2�DO� ∙ Ö{¤H1�½,2�} . Then, (�*��B, ¤#�, � ∈ ℕ  can be calculated 
considering the deterministic evolution of ©��� and the stochastic evolution of ���� based 
on (��⋅, ⋅� by the Chapman-Kolmogorov forward equation, as follows: (�*��B, ¤#� 

= ��*∆LR¤H (�*�̧�B, ¤#� + ∆� ∑ ∑ _IK,I¤S,¤H
�*∆LR¤S (�*�̧=B<, ¤$>¤S∈�K∈ℕ          (36) 

where  [K,¤S,¤H = "¤S,¤H P P ;=¤$ , ¤# , O>�Dà�DO�*��∆`∆`�K*��∆`K∆` ∆OY           (37) 

is the average transition rate from state ¤$ and grid [B<∆O, �B< + 1�∆O[ to state ¤# and grid [B∆O, �B + 1�∆O[, (�*�̧�B, ¤#� = ∑ iK,¤HK∈ℕ (��B<, ¤#�/∆O                (38) 

is the approximate value of probability density function on [B∆O, �B + 1�∆O[× {¤#} 
according to the deterministic evolution of ©��� between jumps of ���� and iK,¤H = P DO{`∈[K∆`,�K*��∆`[	|	�����`,¤H�,∆L�∈[∆`,�*��∆`[}        (39) 

is the volume of the part of grid [B<∆O, �B< + 1�∆O[ which will enter grid [B∆O, �B +1�∆O[ after time ∆� according to the deterministic evaluation of ©���.  
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Abstract – Components are often subject to multiple competing degradation processes. This 
paper presents a reliability assessment framework for multi-component systems whose 
component degradation processes are modeled by multi-state and physics-based models with 
limited statistical degradation/failure data. The piecewise-deterministic Markov process 
modeling approach is employed to treat dependencies between the degradation processes within 
one component or/and among components. A computational method combining binary decision 
diagrams (BDDs) and Monte Carlo simulation (MCS) is developed to solve the model. A BDD 
is used to encode the fault tree of the system and obtain all the paths leading to system failure 
or operation. MCS is used to generate random realizations of the model and compute the system 
reliability. A case study is presented, with reference to one branch of the residual heat removal 
system (RHRS) of a nuclear power plant. 

 

Key Words – System reliability analysis, Degradation dependency, Piecewise-deterministic 
Markov process, Binary decision diagrams, Monte Carlo simulation. 

_____________________________________________________________________ 

 

 

Acronyms 

PBMs   Physics-based models 

MSMs   Multi-state models 

FTA   Fault tree analysis 

CCFs   Common cause failures 

BDDs   Binary decision diagrams 

MCS   Monte Carlo simulation 

RHRS    Residual heat removal system  

WDFLM   Weighting depth-first left-most 

DFLM    Depth-first left-most 



PAPER VII: Y.-H. Lin, Y.-F. Li, E. Zio. A Reliability Assessment Framework for Systems with Multiple Dependent 

Competing Degradation Processes. Systems, Man, and Cybernetics: Systems, IEEE Transactions on. (Accepted) 

- 257 - 

ite     if-then-else 

 

Notations 

Ú   Number of components in the system L   Group of degradation processes modeled by PBMs K   Group of degradation processes modeled by MSMs 

}Ò�   Degradation state of component p� 
)uIKKKKKKKÄ���  Time-dependent continuous variables of degradation process LF 

)uIýKKKKKKKÄ���  Non-decreasing degradation variables vector 

)uIGKKKKKKKÄ���  Physical variables vector 

ℱuI   Set of failure states of degradation process LF 

��T���  State variable of degradation process Kh 

��T   Finite state set of degradation process Kh ℱ�T   Set of failure states of degradation process Kh 

3Ä���  Degradation state of the system 

Ê�    Environmental and operational factors in K 

"#=+	|	&�T> Transition rate from state 4 to + 
Êu   Environmental and operational factors in L 
CuIKKKKKKÄ=)uIKKKKKKKÄ���, �	|	&uI> Physics equations of degradation process � 

3k,ÏKKKKKKKÄ���  Stochastic process of one group of interdependent degradation  

processes 

9 �ÃÄ, DQKKKKÄ, DQ|&�Ó� Semi-Markov kernel 

 

 

1. INTRODUCTION 

Most components undergo degradation processes before failure. A number of degradation 
models have been proposed in the field of reliability engineering based on the available 
information/data, which can be mainly classified into the following groups: statistical 
distributions (e.g. Bernstein distribution [1]), stochastic processes (e.g. Gamma process [2]), 
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multi-state models (MSMs) (e.g. semi-Markov model [3]) and physics-based models (PBMs) 
(e.g. probabilistic superposition model [4]). Among the existing degradation models, PBMs [5-
7] and MSMs [8-10] can be used to describe the evolution of degradation in structures, systems 
and components, for which statistical degradation/failure data are insufficient, e.g. the highly 
reliable devices in the nuclear and aerospace industries. A PBM gives an integrated mechanistic 
description of the component life consistent with the underlying real degradation mechanisms 
(e.g. wear, corrosion, fatigue, etc.) by using physics knowledge and equations [4], whereas a 
MSM describes the degradation process in a discrete way, supported by material science 
knowledge, degradation and/or failure data from historical field collection or degradation tests 
[11, 12].  

In reality, components/systems are often subject to multiple competing degradation 
processes. The dependencies among these processes within one component (e.g. the wear of 
rubbing surfaces influenced by the environmental stress shock within a micro-engine [13]), 
or/and among different components (e.g. the degradation of the pre-filtrations stations leading 
to a lower performance level of the sand filter in a water treatment plant [14]) need to be 
considered. Components can be dependent due to functional dependence, where the failure of 
a trigger component causes other components to become inaccessible or unusable [15, 16]. 
Competing failure propagation and failure isolation effects have been studied in [17, 18], where 
a failure not only causes outage to the component from which the failure originates, but also 
propagates through all other system components causing the entire system failure and failure 
isolation occurs when the failure of one component causes other components within the same 
system to become isolated from the system.  

  Recently, the authors have employed the piecewise-deterministic Markov process 
(PDMP) modeling framework to integrate PBMs and MSMs for treating the dependencies 
among degradation processes [19] for a system with a small number of components, where the 
whole system is modeled by one PDMP. For systems of larger size, the high dimension of its 
PDMP can lead to very heavy computational burdens, because solving the PDMP of a small 
system is already time consuming due to the combinatorial nature of MSMs and the need to 
simulate the trajectory between any two system states [19]. In addition, the dependencies may 
only exist within certain groups of components and leave different groups being independent 
[20], and the causes to systems failure are not easy to be identified.  

Fault tree analysis (FTA) [21] is typically used to identify the combinations of events 
leading to system failure and compute its probability by using minimal cut sets found from the 
fault tree structure. For real systems, this can be computationally intensive, when the tree 
structure is large and, especially, if it contains repeated basic events [22]. In addition, all basic 
events are usually assumed statistically independent.  

Common cause failures (CCFs) of components have been considered in [23-25]: implicit 
and explicit methods have been developed to evaluate the system reliability. In binary-state 
systems, components failures with dependent propagation effects have been studied in [26], 
within a dynamic FTA framework. The statistical dependence of component states across 
different phases of phased-mission systems has been treated by using multiple-valued decision 
diagrams to encode fault trees in [27, 28].  

On the contrary, the dependencies of the degradation processes leading to failure of different 
components need to be considered which render certain basic events under different gates being 
dependent. To the knowledge of the authors, there is no published research work to tackle this 
problem, of practical reference [29].  

To take into account such dependencies at a relatively low computational cost for systems 
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of larger size, a system reliability assessment method is proposed combining binary decision 
diagrams (BDDs) [30] and Monte Carlo simulation (MCS) [31]. Instead of modeling the 
degradation of the whole system by one PDMP as in [19], the proposed method can identify the 
groups of components being dependent and decompose the original PDMP into a group of 
smaller ones which are independent from each other and easier to be solved. Besides, the states 
of these PDMPs leading to the systems failure can be easily obtained. Firstly, a fault tree is 
transformed to a BDD from which all paths leading to the system failure or operation can be 
efficiently obtained. BDDs [30] are directed acyclic graphs, encoding Shannon’s decomposition 
of a formula, and have been implemented in many domains; they possess the feature of sharing 
equivalent subgraphs and hence can reduce the computational time and memory requirements 
[32]. An algorithm based on BDD has been developed for reliability analysis of phased-mission 
systems with multimode failures in [33] to improve the efficiency and reduce the computational 
complexity. BDD has also been employed for network reliability and sensitivity analysis in 
[34]. Secondly, MCS is used to estimate the probability of each path to compute the system 
reliability taking into account the dependencies between basic events, since analytically solving 
the PDMPs is difficult, if not impossible, due to the large size and complex behavior of the 
system [35].  

The rest of this paper is organized as follows. Section 2 provides the assumptions and model 
descriptions. The proposed reliability assessment method is presented in Section 3. Section 4 
presents one case study on one branch of a residual heat removal system (RHRS) of a nuclear 
power plant. Section 5 concludes the work. 

 

2. ASSUMPTIONS AND MODEL DESCRIPTION 

 
2.1 General assumptions 

We consider a multi-component system, made of Ú  components denoted by Ð = {p� , p^, … , p�}. 
The following assumptions are made:  

• The fault tree of the system is available and contains o basic events denoted by � ={N�, N^, … , Nq} which include the failures of components and other events such as 
erroneous operation caused by human errors. The component-failure type of events are 
determined by their underlying degradation processes.   

• Each component may be affected by multiple degradation processes, possibly dependent. 
The degradation processes can be separated into two groups: (1) r = {��, �^, … , �8} 
modeled by M PBMs; (2) s = {�� , �^ , … , �f}  modeled by N MSMs, where �, B = 1, 2, … ,  and ��, � = 1, 2, …	, 9  are the indexes of the degradation 
processes. The degradation state of a component p� ∈ Ð, ] = 1, 2, … , Ú, is determined 
by its degradation processes }Ò� ⊆ r ∪ s  and the component fails when its 
degradation processes enter its failure state space (see the two bullets below for its 
definition). 

• A degradation process � ∈ r in the first group is described by duI time-dependent 

continuous variables )uIKKKKKKKÄ��� = v)uI}KKKKKKKÄ���, )uIbKKKKKKKÄ���x ∈ ℝFwI  in terms of: (1) the non-

decreasing degradation variables vector XuI}KKKKKKKÄ�t� (e.g. crack length) representing the 

component degradation condition; (2) the physical variables )uIbKKKKKKKÄ��� (e.g. velocity) 
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influencing XuI}KKKKKKKÄ�t� and vice versa. DuI is the number of non-decreasing degradation 
variables and physical variables for a degradation process �.  Their evolution is 

characterized by a system of first-order differential equations )uIzKKKKKKKÄ��� =CuIKKKKKKÄ=)uIKKKKKKKÄ���, �	|	&uI>, i.e. physics equations, where &uI represents the environmental 

factors to �  (e.g. temperature and pressure) and the parameters used in CuIKKKKKKÄ. The 
evolution of physical variables can be characterized by physics equations. The 
environmental factors are the parameters of the physics equations and their evolution is 
not characterized by physics equations. If any environmental or operational factor is 
modeled by physics equations and influencing the degradation variables, then, it is 

considered as one physical variable. � fails when one OuI# ��� ∈ )uI}KKKKKKKÄ��� reaches or 

exceeds its corresponding failure threshold denoted by OuI# ∗
. The failure state set of � 

is denoted by ~uI. An example of �� is shown in Fig. 1. 
• A degradation process �� ∈ s in the second group is described by the state variable ��T���, which takes values from a finite state set ��T = {0�T , 1�T , … , D�T}, where ‘D�T ’ 

is the perfect functioning state and ‘0�T ’ is the complete failure state. All intermediate 

states are functioning or partially functioning. The transition rates "#=+	|	&�T>, ∀	4, + ∈��T , 4 � + characterize the degradation transition probabilities from state 4 to state +, 
where &�T represents the environmental factors to �� and the related coefficients of "�T . The failure state set of ��  is denoted by ~�T = {0�T}. An example of ��  is 
shown in Fig. 2. 

 

 

 

Fig. 1. An illustration of L�. 
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Fig. 2. An illustration of K�. 
 

Dependencies between degradation processes may exist both within and across groups r 
and s. The degradation levels of the components in the first group may influence the transition 
times and transition directions of the degradation processes of the second group and the 
degradation states of the second group may influence the evolution trajectories of the 
continuous variables in the first group [19]. PDMPs are employed to model this dependency, 
the detailed formulations are shown in eqs. (1) and (2).  

 

2.2 PDMPs for dependent degradation processes 

Let us consider one group of interdependent degradation processes rk = {�k�, … , �kT} 
and sÏ = {�Ï�, … , �ÏI}, which have no dependencies with the other degradation processes. 
Their degradation states are represented by  

3k,ÏKKKKKKKÄ��� =
�
���
��N
)uÝ�KKKKKKKKÄ���⋮)uÝTKKKKKKKKÄ���O = )k	KKKKKÄ���
��Ï����⋮�ÏI���� = �Ï	KKKKÄ��� �

   
 ! ∈ �k,Ï = ℝFrÝ × �sÓ , ∀� ≥ 0        (1) 

where �k,Ï  is the space combining ℝFrÝ  (DrÝ = ∑ DuÝ×�/1� ) and  �sÓ = {0, 1, … , DsÓ} 
denotes the state set of process �Ï	KKKKÄ���. 

The evolution of the vector of degradation states  3k,ÏKKKKKKKÄ���  involves (1) the stochastic 

transition process of �ÏKKKÄ��� and (2) the deterministic progression of )k	KKKKKÄ���, between successive 

transitions of �ÏKKKÄ��� , given �ÏKKKÄ���. The first process is governed by the transition rates of �ÏKKKÄ���, 
which depend on the degradation levels of the components in the first group, as follows::  

�4B∆L	→	2( ��ÏKKKÄ�� + ∆�� = MÄ|3k,ÏKKKKKKKÄ��� = �)k	KKKKKÄ���, �ÏKKKÄ��� = ÃÄ�¡ , &sÓ� 
= "mÄÏ �MÄ|)k	KKKKKÄ���, &sÓ� ∆�, ∀	ÃÄ, MÄ ∈ �sÓ , ÃÄ 7 MÄ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 �2� 

where the parameter vector &sÓ represents environmental and operational factors influencing 

the degradation processes in sÏ. The second evolution process is described by the deterministic 
physics equations which depend on the degradation states of the second group as follows: 
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)kzKKKKÄ��� = N)uÝ�zKKKKKKKKÄ���⋮)uÝTzKKKKKKKKÄ���O = N
CuÝ�KKKKKKKÄ =3k,ÏKKKKKKKÄ���, �|&uÝ��⋮CuÝTKKKKKKKÄ =3k,ÏKKKKKKKÄ���, �|&uÝT�O 

= CrÝKKKKKÄ =3k,ÏKKKKKKKÄ���, �|&rÝ = �&uÝ� , …	, &uÝT�x                  (3) 

where the parameter vector &uÝ× , a = 1,2, …	, �  represents environmental and operational 

factors influencing the degradation processes in �k×. It should be noted that the evolution of 

one degradation process in 3k,ÏKKKKKKKÄ��� depends on the states of all the degradation processes in 3k,ÏKKKKKKKÄ���.  

 

3. METHODOLOGY 

In this section, a computational method combining BDDs and MCS is proposed. 

 

3.1 Binary decision diagrams 

A BDD is a directed acyclic graph encoding Shannon’s decomposition of a formula.  A 
BDD has two terminal vertices labeled 1 and 0 to indicate the failure and operation of the 
system, respectively. Each non-terminal vertex is labeled with a variable and has two outgoing 
edges: 1-edge and 0-edge which indicate the occurrence and non-occurrence of the 
corresponding basic event, respectively.  

A BDD is employed to encode the fault tree of the system according to the given ordering 
of the indicator variable )# used to denote the occurrence or non-occurrence of the basic event 4 ()# = 1 indicating the occurrence of the basic event 4 and )# = 0 indicating the opposite). 
The size of the BDD largely depends on the given ordering and the problem of finding the 
global optimal ordering is an intractable task [36, 37]. Several ordering heuristics have been 
developed, whose performances may vary on different problems. In this work, we employ the 
weighting depth-first left-most (WDFLM) ordering technique proposed in [38], which leads to 
satisfactory results according to the tests in [39, 40]. WDFLM first assigns weight 1 to each 
basic event. Then, it traverses the fault tree bottom-up to calculate the weight of each gate by 
adding the weights of all its inputs, i.e. gates and basic events. Fig. 3 shows an example of a 
fault tree where the weights of the gates are obtained through WDFLM. 
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Fig. 3. An illustration of fault tree labeled with weights. 

 

Then, the inputs of a gate are rearranged in the order of increasing weights as shown in Fig. 
4.  

 

 

Fig. 4. An illustration of fault tree with rearranged inputs of gates. 

 

Finally, the depth-first left-most (DFLM) ordering technique [41] is applied to the fault tree 
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to get the variable ordering. In this technique, the basic events are placed in the ordered list as 
soon as they are encountered during the DFLM traversal of the fault tree. Let < be a total 
ordering of variables, for the fault tree in Fig. 3 it is )½ < )À < )� < )^.  

Based on the variable ordering, the related BDD can be constructed using the bottom-up 
procedure. Firstly, all basic events 4, 4 ∈ � are associated with the if-then-else (ite) structure 
[42] 4�N�)# , 1, 0�, where 4�N�)# , C�, Ĉ � = �)#⋀C��⋁�¬)#⋀Ĉ �, which means if the basic event 4 occurs then consider function C� else consider function Ĉ . Then, work from the bottom to 
the top of the fault tree and obtain the ite structure for each gate by using the following principle: 
let us consider two variables  )_ < )¶ and four functions C�, Ĉ , C½, CÀ, let <� be any logic 
operation AND or OR, then: 4�N�)_, C�, Ĉ � <� 4�N�)_, C½, CÀ� = 4�N�)_, C� <� C½, Ĉ <� CÀ�         (4) 

and  4�N�)_, C�, Ĉ � <� 4�N�)¶, C½, CÀ� = 4�N=)_, C� <� 4�N�)¶, C½, CÀ�, Ĉ <� 4�N�)¶, C½, CÀ�> (5) 

The ite structure of the top event of the fault tree in Fig. 3 can be obtained as ite�X½, 1, ite�XÀ, 1, ite�X�, 1, 0���. The associated BDD shown in Fig. 5 can be constructed by 
breaking down each ite structure into its left and right branches, and eliminating the vertexes 
that are not useful (a vertex is not useful when its two outgoing edges point to the same vertex 
or it is equivalent to another vertex) [43].  

 

 

 

Fig. 5. BDD for fault tree in Fig. 3. 

 

Finally, all the paths leading to system failure can be obtained as �1�)½ = 1, �2�)½ =0, )À = 1, �3�)½ = 0, )À = 0, )� = 1  and the path leading to system operation is )½ =0, )À = 0, )� = 0 . The exact system reliability is equal to the sum of the probability of 
occurrence of the paths leading to system operation or 1 − the sum of the probability of 
occurrence of the paths leading to system failure.  

 

3.2 MCS for PDMPs 

To derive the probability of occurrence of one path, all the PDMPs containing the variables 
involved in that path need to be solved. Since the PDMPs are independent from each other, the 
product of the probabilities of PDMPs being in the states indicated by the path equals the 
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probability of occurrence of that path. Analytically solving the PDMPs is a difficult task, 
whereas MCS is well suited.  

We develop a MCS algorithm for solving the PDMPs. It consists of sampling the transition 
time and the arrival state for the MSMs and, then, calculating the behavior of the PBMs within 
the transition times using the physics equation. 

Refer to one PDMP presented in Section 2.2. Let 3k,Ï/KKKKKKKÄ = 3k,ÏKKKKKKKÄ�'/� = ¡)k	KKKKKÄ�'/��Ï/KKKKÄ ¢ ∈
�k,Ï, a	 ∈ 	ℕ, where �Ï/KKKKÄ ∈ ��Ó , a ∈ ℕ denotes the state of �Ï	KKKKÄ��� after a transitions from the 

beginning (a transition occurs as long as any one of the elements in �Ï	KKKKÄ���  changes its state) 

and '/  denotes the time of arrival at state �Ï/KKKKÄ. Then, �3k,Ï/KKKKKKKÄ, '/�/�2  is a Markov renewal 

process defined on the space �k,Ï × ℝ*  [44]. We can obtain that  

( Ç3k,Ï�*�KKKKKKKKKÄ ∈ °, '�*� ∈ ['�, '� + ∆�]|3k,Ï�KKKKKKKÄ = ÃÄ, &�ÓË 
= P 9 �ÃÄ, DQKKKKÄ, DQ|&�Ó�¼∗[2,∆L]

 

∀	� ≥ 0, ∆� ≥ 0, ÃÄ ∈ 	�k,Ï, ° ∈ �                      (6) 

where �  is a � -algebra of �k,Ï  and 9 �ÃÄ, DQKKKKÄ, DQ|&�Ó�  is a semi-Markov kernel on �k,Ï , 

which verifies that ∬ 9�ÃÄ, DQKKKKÄ, DQ|&�Ó� 5 1�Ý,Ó∗[2,∆	L] , ∀	∆� ≥ 0, ÃÄ ∈ 	�k,Ï . It can be further 

developed as:  

9 �ÃÄ, DQKKKKÄ, DQ|&�Ó� = D�mÄ �Q|&�Ó� � �ÃÄ, DQKKKKÄ|Q, &�Ó�                 (7) 

where  

D�mÄ �Q|&�Ó�                                 (8) 

is the probability density function of '�*� − '� given 3k,Ï�KKKKKKKÄ = ÃÄ and  

� �ÃÄ, DQKKKKÄ|Q, &�Ó�                                (9) 

is the conditional probability of state 3k,Ï�*�KKKKKKKKKÄ given '�*� − '� = Q.   

The simulation procedure consists of sampling the transition time from (8) and the arrival state 
from (9) for �Ï	KKKKÄ���, then, calculating )k	KKKKKÄ��� within the transition times, by using the physics 
equation eq. (3) until the time of system evolution reaches a certain mission time '#��. 

To calculate the probability of occurrence of one path (let �k,Ï∗KKKKKKKÄ indicate the state space, 

which contains all the states of 3k,ÏKKKKKKKÄ��� that are consistent with the state of the path), the 
procedure of the MCS is presented as follows. 

Set 9_` (the maximum number of replications) and a = 0 (index of replication) 

Set a′ = 0 (number of trials that end in the state indicated by the path) 

While a < 9_`  
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Initialize  the system by setting 3k,Ï<KKKKKKKÄ�0� = ")k	KKKKKÄ�0��Ï<KKKÄ # (initial state), and the time ' = 0 
(initial system time) 

Set �< = 0 (state holding time) 

While ' 5 '#�� 
Sample a �< by using (8) 

Sample an arrival state �Ï<<KKKKKÄ for stochastic process �ÏKKKÄ��� from all the possible states by  

using (9) 

Calculate )k	KKKKKÄ�Q�, ∀Q ∈ [', ' + �′] by using eq. (3) 

Set 3k,Ï<KKKKKKKÄ�Q� = ")k	KKKKKÄ�Q�	�Ï<KKKÄ # , ∀Q ∈ [', ' + �′[ 
Set ' = ' + �′, 3k,Ï<KKKKKKKÄ�'� = ")k	KKKKKÄ�'�	�Ï<<KKKKKÄ # and �Ï<KKKÄ = �Ï<<KKKKKÄ 

End While 

If  3k,Ï<KKKKKKKÄ�'#��� ∈ �k,Ï∗KKKKKKKÄ 
Set a< = a< + 1 

End if  

Set a = a + 1 
End While □ 

The estimated probability of occurrence of one path at time '#�� can be obtained by ( �'#��� = 1 − a</9_`                        (10) 

with the sample variance [45] as follows: i[jG �¡IH¢¢� = ( �'#����1 − ( �'#����/�9_` − 1�               (11) 

 

3.3 Flowchart of the proposed method 

The flowchart of the whole proposed computational method combining BDDs and MCS is 
shown in Fig. 6. 
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Fig. 6. The flowchart of the computational method. 

 

4. CASE STUDY 

The illustrative case refers to one branch of the RHRS [46] of a nuclear power plant shown 
in Fig. 7. The fault tree is shown in Fig. 8. The definitions of the basic events are presented in 
Table I. 

 

 

 

Fig. 7. The diagram of one branch of the RHRS. 
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Fig. 8. The fault tree of one branch of the RHRS. 

 

Table I Definitions of the basic events 

 

Basic event Definition 

1 Failure of the circuit breaker 

2 Failure of the motor 

3 Failure of the pump contactor 

4 Failure of the pump 

5# Closure due to human error 

6 Failure of the valve 

7 Failure of the diaphragm 

8 Failure of the pneumatic valve VP1 

9 Failure of the pneumatic valve VP2 

 

Degradation Dependency
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By knowledge and experience of the field experts, the degradation dependency is described 
as follows: the degradation of the pump can lead it to vibrate [47], which will, in turn, cause the 
vibration of the other neighboring components (e.g. the valve) and therefore aggravate the 
degradation process of the latters [48]. The dependency exists between basic events 1,2,3,4 and 
6, as indicated in Fig. 6. 

The component degradation models provided by the expert colleagues of Electricité de 
France are presented below. Some degradation processes are modeled by PBMs if their 
degradation data is unavailable and, thus, the physics equations have to be used, whereas the 
others are modeled by MSMs supported by the degradation and/or failure data from historical 
field collection.   

The circuit breaker, motor and pump contactor each have one degradation process modeled 
by MSMs ��, �^ and �½ respectively, as shown in Fig. 9. 

 

 

 

 

 

 

 

Fig. 9. The representation of the degradation processes of the circuit breaker, motor and pump 
contactor. 

 

The pump has two degradation processes modeled by MSMs �À and �(, as shown in Fig. 
10. �À relates to the failure on demand and �( relates to the external leakage which can cause 
the pump to vibrate when ��)��� reaches the state 1�).  
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Fig. 10. The representation of the degradation processes of the pump. 

 

Closure due to human error follows one MSM �1, as shown in Fig. 11. 

 

 

 

Fig. 11. The process of closure due to human error. 

 

The valve has one degradation process modeled by one PBM ��  related to the crack 
propagation due to manufacturing defects. �� is based on a deterministic crack growth model, 
which follows Paris–Erdogan law [49]. For the phase of crack propagation, the threshold is 
defined as the number of cycles calculated as follows, 

9� = �/�IÕ3��∗��/_7�IÕØ��3�/_��IÕØ�����è����gh2�gh√¤¥��gh�I                       (12) 

where the definition of the parameters can be found in  [50]. The valve fails when the number 
of solicitation exceeds 9�. The equivalent number of solicitations executed per year is assumed 
to be constant and equal to D�. 

The diaphragm has one degradation process modeled by one PBM �^  related to the 
cavitation erosion mechanism, which can cause the thickness loss. The threshold is defined as 
the thickness required to ensure pressure resistance, which is calculated as follows,   

  � = (©2/2�� + à(�                           (13) 

where ( is the estimated pressure for RHRS, ©2 is the outside diameter of the pipe, à is a 
coefficient and � is the allowable stress in the pipe. The diaphragm fails when the thickness 
loss exceeds �. The annual loss of thickness is assumed to be constant and equal to D. 

The pneumatic valves VP1 and VP2 each have one degradation process modeled by MSMs �B and �A respectively, as shown in Fig. 12. 

 

 

 

 

 

Fig. 12. The representation of the degradation processes of the pneumatic valves. 
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�(  has impacts on  �� , �^ , �½ , �À  and �� . When ��)���  reaches the state 1�)  the 
transition rates of ��, �^, �½ and �À will increase to  "�< , "<̂ , "½<  and "À< , respectively, and D� in �� will change to D�<. All the parameter values in the degradation models are presented 
in Table II. For confidentiality, we use artificially scaled values; they are set in a way to simulate 
the system under accelerated aging conditions.   

 

Table II Parameter values 

 

Parameter Value 

"� 6.65e-8 /h 

"^ 1.8e-6 /h     

"½ 4.4e-7 /h 

"À 1.3e-5 /h 

"(� 4.7e-5 /h 

"(̂ 1.3e-5 /h 

"1 1.5e-5 /h 

"B 1.95e-8 /h 

"A 1.95e-8 /h 

B 4 S.U. 

[2 3.6 mm 

[� 9.3 mm 

Ú 1.8e-12 S.U. 

C���8_` 2 S.U. 

�8_` 1.18 S.U. 

Δ�8_` 0 MPa 

D� 10 /yr 

( 41 b 

©2 273 mm 
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� 101 Mpa 

à 0.4 S.U. 

D 7 mm /yr 

"�<  9.31e-8 /h 

"<̂  2.52e-6 /h     

"½<  6.16e-7 /h 

"À<  1.82e-5 /h 

D�< 15 /yr 

 

Applying the WDFLM ordering heuristic [38], the variable ordering obtained is )(# <)1 < )� < )^ < )½ < )À < )A < ); < )B . The corresponding BDD is shown in Fig. 13. 
There are two paths leading to system operation: (1) )(# = 0, )1 = 0, )� = 0, )^ = 0, )½ =0, )À = 0, )A = 0, ); = 0  and (2) )(# = 0, )1 = 0, )� = 0, )^ = 0, )½ = 0, )À = 0, )A =0, ); = 1, )B = 0. 

 

 

 

Fig. 13. The BDD corresponding to the fault tree shown in fig. 8. 

 

 The degradation processes are divided into five groups: {�1}, {�^}, {�B}, {�A}  and 
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{��, �^, �½, �À, �(, ��}. Each of the first four groups has only one degradation model. The 
PDMP related to the last group is presented as follows, 

3�,(KKKKKKKÄ��� =
�
���
� 9�����������Õ�����.�����*�����)����

   
! ∈ ��,( = ℝ ×∏ �sÓ(Ï1� , ∀� ≥ 0            (14) 

where 9��� denotes the number of solicitations applied till �, 9z ��� = �D� , 4C	��)��� = 2�)D�<, 4C	��)��� = 1�) 
and ��Ó���, Ñ = 1,2,… , 5 are characterized by the related transition rates. 

MCS over a time horizon of 8 years has been run 101 times to solve the PDMPs and, then, 
estimate the probability of occurrence of each path. The numerical experiments are carried out 
in MATLAB on a PC with an Intel Core 2 Duo CPU at 3.06 GHz and a RAM of 3.07 GB. The 
estimated system reliability with and without dependency throughout the time horizon, under 
accelerated conditions, is shown in Fig. 14. The average computation time is 34.3 s. We can see 
from the Figure that neglecting dependency can lead to overestimation of the system reliability. 
The system reliability with dependency has experienced one rapid decrease after around 6.2 
year (point A), which is due to the valve failure in some simulation trials caused by the vibration 
of the pump. This sharp decrease in system reliability relates to the sharp increase in the system 
failure time density function, as shown in Fig. 15.  

 

 

 

Fig. 14. The estimated system reliability with/without dependency. 
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Fig. 15. The system failure time density function with/without dependency. 

 

5. CONCLUSION 

In this paper, we have proposed a framework for the reliability assessment of systems whose 
components have dependent competing degradation processes. The modeling framework rests 
on MSMs and PBMs, and the PDMP modeling approach is employed to treat dependencies 
between the degradation processes within one component or/and among components. The 
numerical solution involves the translation of the system fault tree into a BDD, and the 
estimation of the probabilities of the paths of events occurrences by MCS. The case study 
demonstrates the relevance of degradation process dependencies for the system reliability. 

It is interesting to include failure isolation as future research in our proposed model. Failure 
detection and isolation can be used to mitigate degradation dependency by performing 
corresponding maintenance tasks or failure isolation actions. 
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