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Abstract: The objective of this paper is to present a multi-objective approach to the 

design optimization process applied to systems that require a high likelihood of 

functioning on demand. In the real world it is common that there are several objectives to 

be met, not just maximising the system availability, and hence an approach is required to 

deal with these issues.  A method is presented that integrates the latest advantages of the 

fault tree analysis technique and the binary decision diagram method to model the 

availability issue, along with a multi-objective optimization approach (the Improved 

Strength Pareto Evolutionary Approach) to cater for meeting the multiple criteria of 

assessment. The end product is a mechanism to yield the best design option.  The paper 

presents the principles of the method and a case study to illustrate how the method is 

applied, along with the results produced.  The case study relates to a high integrity 

protection system of an offshore platform. The optimization criteria involves 

unavailability, cost, spurious trip frequency and maintenance down time. Several 

enhancements to the optimization strategy to improve the efficiency of the approach are 

discussed. 

Keywords: safety systems, unavailability, optimization, genetic algorithms. 

1. Introduction 

While designing a safety system it is necessary to maximise its availability, as its function 

is to work on demand.  Using traditional techniques of design, test and redesign often 

leads to a system that is adequate in terms of performance, meeting the required safety 

standard, but one that is not necessarily optimal.  In the real world, there is often more 

than one objective, and as such a multi-objective approach is required to find an optimal 

solution. 

Much of the latest research on safety system design optimization focuses on using 

modern techniques for optimization, namely applying evolutionary methods.  Primarily 

this is due to the inability of classical optimization techniques to deal with the types of 

objective function and constraints of the safety system design problem.  In addition it is 

the ability of the modern heuristic optimization techniques to cater for integer variable 

design parameters, small search space regions, and linear and nonlinear objective function 

characteristics.  Although system safety is of utmost importance there are often other 

competing objectives hence a multi–objective optimisation approach [1] is required.  

Nowadays one of the most powerful optimization method groups is genetic algorithms 

(GAs) [2].  The multi-objective GA often takes less time to find the optimal solution than 

other multi-objective approaches and also requires less computer resources [3]. This 

advantage is extremely beneficial when analysis of large safety systems is undertaken.  
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Numerous studies have shown the applicability of multi-objective GA techniques to 

the safety system optimization problem.  The coupling of genetic algorithms and Monte 

Carlo simulation have been used on nuclear safety systems [4], the use of The Improved 

Strength Pareto Evolutionary Approach (SPEA2) based genetic algorithm approach has 

been used for a multiple-optimization problem, where the parameters of design, testing and 

maintenance act as the design considerations [5], and the method has been applied to a 

safety critical air traffic control system for warning about conflict between two aircraft [6]. 

This research and others have shown the capability of the multi-objective approach and is 

the focus of this paper.   

For each safety system problem the specifics of the approach need to be tailored to 

the characteristics of the system and the constraints under analysis.  This paper considers 

an application to an offshore safety system, which has ten design variables, four objectives 

being minimizing system cost, unavailability, spurious trip frequency and maintenance 

down time.  The technique developed integrates the fault tree, binary decision diagram [7] 

and SPEA2 multi-objective evolutionary method [8].  Numerous enhancements to the 

basic methodology have been implemented to improve the efficiency of the technique 

developed for this specific application.  The end result is an efficient methodology to find 

the best system design given the objectives and resources specified.  

Notation  

GA   genetic algorithm; 

SPEA2   Improved strength pareto evolutionary approach; 

BDD   binary decision diagram; 

HIPSYS  high integrity protection system;  

ESD  emergency shutdown, 

Qsys   system unavailability; 

Fsys   system spurious trip frequency; 

MDT    maintenance down time; 

Si    strength value for design i; 

σij    distance from string i to string j; 

σ
k
i   k

th
 element in distance list for string i,  

Di   density value for design i; 

Q’sys   penalized system unavailability,  

2.   Application System and Design Objectives 

2.1. The System 

The research in this paper focuses on application to a safety system of a not normally 

manned offshore platform.  The high integrity protection systems (HIPSYS) function is to 

prevent a high-pressure surge passing through it, with the aim to prevent an overpressure 

situation on processing equipment downstream.  Figure 1 represents the main features of 

the HIPSYS [9].  Pressure in the system is monitored by pressure transmitters (PT).  

These are located within two separate subsystems, whose function is to close the valves in 

response to a high pressure.   

    The first level of protection is via sub-system 1.  This system comprises a wing and a 

master valve, also there are three pressure transmitters fitted, with two emergency 

shutdown (ESD) valves (ESDV1 and ESDV2).  The secondary level of protection is 

provided via sub-system 2.  The secondary sub-system is completely independent in 
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operation and its method of protection is the same as the primary protective mechanism.  

It has three pressure transmitters and 2 valves fitted (HIPS1 and HIPS2). 

 

 

 

   

 

 

 
 

Figure 1: Structure of High-Integrity Protection System   

2.2. Design Variables 

To try and improve the system design various changes can be made.  For this system ten 

design variables are defined (table 1).  These changes focus on the number and type of 

valve fitted, the number and type of pressure transmitter fitted, also the number of 

transmitters required to activate the valve closure (number of transmitters to trip), and also 

alterations to the maintenance regime (inspection interval duration).   

Table 1:  Main HIPSYS Variables 

Variabl

e 

Description Value 

θ1, θ2 Inspection intervals for subsystems 1 and 2 1 week – 2 years 

V Valve type 1 or 2 

P Pressure transmitter (PT) type 1 or 2 

N1, N2 Number of PT fitted in subsystem 1 and 2 respectively 1 – 4, 0 – 4 

K1, K2 

  

Number of PT required to trip (activate) for subsystem 1 

and 2 respectively 

1 – N1,  

0 – N2 

E Number of ESD valves fitted 0 – 2 

H Number of HIPS valves fitted 0 – 2 

2.3. Design Objectives 

The objective of this design optimization problem is to minimize four system parameters: 

unavailability (Qsys), spurious trip frequency (Fsys), cost (Cost) and maintenance down time 

(MDT).  These parameters have been chosen as they are paramount in maintaining a high 

level of functionality of the system.  Adding more components to system increases the 

cost but potentially decreases the unavailability, though depending on the type of 

components it may actually increase spurious trip frequency and maintenance down time 

impacting on increases to the unavailability.  It is the balancing act between these which 

is paramount to ensure the best use of resources.  In practice, there are three limitations 

(upper bounds) set on the available resources. The total cost of the system must be less 

than one thousand units. The average time each year that the system resides in the down 

state due to preventative maintenance is a maximum of 130 hours. If the number of times 

that a spurious system shutdown occurs is more than once per year then it is deemed 

unacceptable.  
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3.   Optimization Methodology 

3.1. Overview 

The overall optimization method involves three embedded parts – structural representation, 

performance evaluation and optimization.  Structural representation of the failure of the 

system (in terms of a fault tree) is required for all designs.  Methods are required to 

analyze each individual design for all constraints (quantification of implicit and explicit 

objective functions), with a method to generate the designs to be evaluated (SPEA2 

algorithm).  The results from the quantitative objective analysis are then fed back into the 

optimization algorithm to direct the search toward the best design, as shown in Figure 2.    

 
Figure 2: Optimization Methodology Summarized 

3.2  System Structural Representation and Quantification 

For any design optimization problem representation of the system under analysis is 

required.  Given the system considered in this research has the need to function on 

demand, assessing this performance criteria is essential.  A commonly used technique for 

failure evaluation is fault tree analysis.  For the design optimization problem, house 

events [10] can be included in the tree to allow modelling for all design alternatives.  It 

prevents the need for separate fault trees for each design.  Branches of the fault tree can 

then be turned on or off depending on the specific design structure under analysis.  For 

example, in figure 3, if a valve of type 1 is fitted then the house event HE0 is set to true 

and HE2 is set to false, permitting analysis of the system with valve type 1 fitted.   

    
         Figure 3: House events      Figure 4: Example BDD 

In terms of quantification of the fault tree the BDD technique [7] is used. This technique 

changes the form of the diagram into a form that is more easily manipulated 

mathematically.  The BDD can be described as a rooted, directed acyclic graph (as shown 

in figure 4), which is comprised of nodes (representing components, i.e., V1F is Valve type 

1 fails) and edges (representing component states, 1 is the failed state and 0 the working 
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state).  The end terminal square boxes represent the state of the system. Analysis is 

computationally more efficient and can deal with large fault trees without the requirement 

for approximation analysis.  The quantification of the objectives for a problem depends on 

their form.  There are two main categories: explicit and implicit. Explicit ones can be 

determined and easily evaluated from an explicit function of the design variables. In 

contrast, implicit constraints can only be evaluated by a full analysis of the system.  This 

research involves quantification of both types of objective. 

 3.3. Optimization Algorithm 

Among all major multi-objective evolutionary algorithms, the SPEA approach [11] is one 

of the most popular. Advances in the method have yielded the SPEA2 architecture [8].  

The suggested overall algorithm for this research is: 
  

Step 1: Initialization: Generate an initial population and create the empty archive (external 

set).  

Step 2: Fitness assignment: Calculate fitness values of individuals in initial population. 

Step 3: Environmental selection: Copy all nondominated individuals to the archive. If its 

size exceeds the allowable size then reduce the archive by means of the truncation 

operator, otherwise fill the archive with dominated individuals from initial population. 

Note: the archive size is constant over time. 

Step 4: Termination: If the maximum number of generations is reached then set the 

nondominated set to the set of decision vectors represented by the nondominated 

individuals in the archive. Stop. 

Step 5: Mating selection: Perform binary tournament selection with replacement on the 

archive in order to fill the mating pool.  

Step 6: Variation: Apply recombination and mutation operators to the mating pool and set 

the archive to the resulting population. Increment generation counter and go to Step2. 

4.  Implementation of Optimization Methodology to HIPSYS 

4.1 HIPSYS structural representation 

The C++ package was used to build the optimization methodology software.  The first 

part of the program produces the HIPSYS design architecture.  A full system analysis is 

required for the evaluation of the system unavailability.  The top event of the HIPSYS 

unavailability fault tree represents the causes of the system failing to protect the processing 

equipment. In total the fault tree consists of 154 gates, 38 basic events representing 

component failures, and 40 house events representing the design options.  

The spurious trip frequency for each design is also an implicit objective that requires 

the use of fault tree analysis to assess its value. The causal relationship ‘HIPSYS fails 

spuriously’ is represented by the sub-events ‘Wing or Master Valve Fails Spuriously’, 

‘ESD Subsystem Fails Spuriously’ and ‘HIPSYS Subsystem Fails Spuriously’ related by 

‘OR’ logic. The fault tree consists of 142 gates, 38 basic events and 40 house events.  

For each design generated by the optimization approach, the process of calculating 

the unavailability and spurious trip frequency for each specific design has three stages.  

Each new design is checked for feasibility (stage 1).  House events are set in the fault tree 

structure to represent the specific design (stage 2).  The fault tree is then reduced to 

remove redundant branches (stage 3) in preparation for analysis via the BDD method in the 

quantification phase. 
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4.2. Quantification of Objectives 

This stage involves evaluation of the objectives.  For the fault tree unavailability and the 

spurious trip frequency calculation each HIPSYS design undergoes a BDD construction 

then evaluation stage.  Standard BDD quantification methods are used.   

The remaining objectives require mathematical calculation.  Cost of the HIPSYS  

design can be calculated using equation 1.  

Cost = Cost(subsystem1)+Cost(subsystem2) ≤ 1000                       (1) 

The cost of each sub-system depends on the number of valves fitted as well as the cost of 

the valves of type 1 and type 2, the cost of the PT of type 1 and 2. There is also a constant 

included to accommodate the fixed costs of both subsystems.  

Similarly, the average maintenance down time (MDT) is calculated as a sum of the 

maintenance down time of subsystem 1 and subsystem 2 for each potential design 

(equation 2): 

MDT = MDT(subsystem1) + MDT(subsystem2) <130                     (2) 

Included are the number of valves, the test times of the valves of type 1 and type 2, and the 

test times of the pressure transmitter of type 1 and 2. Again there are constants referring to 

the sum of the test times for the fixed components in each subsystem. Full details are given 

in reference [9]. 

Limitations are set on three of these objectives and penalties are incurred on the 

unavailability value when violation occurs (these are explained in detail in reference 12). 

The resulting value is a penalized system unavailability, which participates in the 

optimization procedure.  If no violation occurs the initial unavailability value is used. 

4.3  Optimization Implementation 

4.3.1 Coding and Initialization 

The number of strings for the initial population was set at 20. These are generated 

randomly.  Each design variable must be allocated a particular length of the string i.e., a 

particular number of bits, in order to accommodate the largest possible value in binary 

form. In total, each string is 32 bits in length, as shown in Figure 5. 

 

 
Figure 5: Binary Representation of Solution String  

4.3.2 Genetic Algorithm Fitness Assignment 

The quality of potential designs are calculated by creating a fitness score relating to 

dominance. Since this is a minimization problem, design a is said to dominate design b if 

all a parameter values are equal to or smaller than parameter b values or at least one of 

parameter a values is smaller than the respective b parameter value.  Initially each string 

is assigned a strength value )(iS , representing the number of solutions it dominates. 

On the basis of the S values, the raw fitness )(iR of a design i is calculated. This 

fitness is determined by summing the strengths of its dominators in both the archive and 
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population (i.e., those designs with higher strength values).  As there is the potential for 

most designs to not dominate each other, additional information is incorporated to 

discriminate between designs having identical raw fitness values. The density estimation 

technique used in SPEA2 is an adaptation of the kth nearest neighbour method [8], where 

the density at any point is a decreasing function of the distance to the kth nearest data point. 

In this problem the inverse of the distance to the kth nearest neighbour is taken as a density 

estimate ijσ , i.e., for each individual i the distances to all designs j in the archive and 

population are calculated using equation 3: 

 

    (3) 

where  C(i) and MDT(i) are the cost and maintenance down time of the i
th design 

respectively, Q’(i) and Fsys(i) are the i
th designs penalized system unavailability and 

spurious trip frequency respectively, j is from the interval [1,.., population size] with the 

condition that i ≠ j. Obtained distances are stored in a list (matrix). After sorting the list in 

increasing order, the k
th element gives the distance sought for design i, denoted as k

iσ , 

where k is equal to the square root of the population size. Afterwards, the density )(iD  

corresponding to i is defined by equation 4. 

                                              

                                                                  (4) 

 

In the denominator, two is added to ensure that its value is greater that zero.  The fitness 

is calculated by adding the two factors, the raw fitness and the density function.    

5.   Case Study Results  

5.1  Optimization Schemes 

Two different optimization schemes have been implemented to tailor the algorithm 

parameters for the HIPSYS system in order to evaluate the one that leads faster to the 

global optimal solution. In the first scheme a single population of 20 strings have been 

generated and run through 3000 generations with the crossover and mutation rates equal to 

0.7 and 0.01 respectively. The second scheme was based on thirty different initial 

populations with only 100 generations for each run of the optimization program with the 

same crossover and mutation rates. The first scheme resulted in a single Pareto set of 

nondominated HIPSYS design options, on the other hand the second scheme gave 30 sets. 

A Pareto set obtained from the 20
th

 run in the second scheme consisted of a larger number 

of nondominated solutions by most optimization parameter values and, therefore, has been 

chosen for comparison with the first optimization scheme.  

All results showed that both optimization schemes produced very similar Pareto 

fronts, however the front obtained by the first scheme produces a larger number of the 

boundary points (design solutions) due to a larger number of generations. Observation of 

the data itself shows that the 1
st
 scheme produces up to 4 additional non-dominated 

designs.   

The comparison of the best results obtained during experiments is shown in Table 2. The 

minimal unavailability values concentrate in the intervals [4.235e-7, 1e-6) and [4.143e-7, 

6e-7) for the first and second schemes respectively. There are also slight differences in the 

values of the other objectives.  The parameter values are also very similar for all designs.  

The obtained results prove the good performance of the developed tool, which produces a 

2222
))()(())(')('())()(())()(( jFiFjQiQjMDTiMDTjCiC syssysij −+−+−+−=σ
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solution close to the global minimum in only 20 minutes (for 3000 system evaluations). 

Despite the relatively small number of generations, the second optimization scheme 

provided larger diversity between potential HIPSYS designs and lead to a smaller system 

unavailability. These results compared well with those from using an exhaustive search 

method with unavailability as the objective function.  The slight differences were due to 

the competing nature of the four objectives in the multi-objective algorithm. 
  

Table 2: Results Comparison 
Parameters Scheme 

1 

Scheme 

2 

Parameters Scheme 1 Scheme 2 

No. of ESD valves,E 0 0 Mainten int, θ2 60 93 

No. of PTs, N1 2 3 Valve type V 1 1 

No. of PTs  to trip, K1 2 2 PT type 1 1 

Maintenance int, θ1 19 18 MDT 128.40 129.53 

No. of HIPS valves, H 1 1 Cost 632 652 

No. of  PTs, N2 2 3 Fsys 0.45044 0.45027 

No. of  PTs to trip, K2 2 2 Qsys 4.235e-7 4.14e-7 

5.2  Enhancements to the Algorithm 

5.2.1. Overview 

Though the results from the algorithm produce a pareto optimal set there are modifications 

to some of the optimization parameter values and some parts of the program that could 

possibly improve the method further. These modifications relate to: the optimization 

parameter values (population size, crossover rate, mutation rate); the crossover procedure 

(not single-point), and the methods for changing infeasible parameter parts to feasible ones 

(regeneration).  The exact tuning and end results of the changes made are problem 

specific however the basis of the modifications used can be applied in other problem 

domains. 

5.2.2 Crossover and Mutation Rates Modification 

According to research [2] into the effectiveness of the GA operators, the optimal values for 

the crossover rate appear to be in the range from 0.5 to 0.9. The interval for the effective 

mutation rate values is (0, 0.2). Hence, investigation was produced with a limited set of 

values for each parameter.  The crossover rates chosen were 0.5, 0.6, 0.7, 0.8 and 0.9.  

Mutation rates were 0.1, 0.01 and 0.001. 

In total there are 15 possible combinations of these parameters. Hence, 15 runs of the 

optimization program were carried out. There were three optimal solutions among the 

obtained possible system designs with parameter values which are the best according to the 

considered limitations. The unavailability of the first design is the smallest of all obtained 

solutions (Qsys = 4.504e-7), the second design gives the smallest cost (512 units) and the 

third design benefits from the smallest spurious system failure (Fsys = 0.245132) and MDT 

closest to the limit of 130 hours (MDT = 129.9834). There is not one combination of 

parameters which yields the smallest values for all objectives, hence the best performance 

result should be selected given the optimization objectives given more weighting. In this 

case unavailability is chosen given the characteristics of the system under analysis and 

hence the first solution is assumed the best for this application (crossover rate of 0.7 and 

mutation rate of 0.01). 
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5.2.3 Modification of the Population Size 

The populations of 5, 10, 20 and 40 strings have been investigated by running the program 

with 0.7 crossover rate and 0.01 mutation rate, given the results following the crossover 

and mutation rate investigations.  As it might be expected, the larger population lead to a 

better performance as each time when the population size doubles, the average values of 

MDT, system spurious failure and unavailability are improved. However, the best design 

parameters values change chaotically.  Similar to the earlier results, all optimal designs 

are very close to each other. However, with more objectives being lower and if using 

unavailability as our primary concern, the population of 20 strings produces the best results 

for this application. 

5.2.4. Modification of the Parameter Evaluation Scheme 

There are four HIPSYS design parameters (number of pressure transmitters fitted and 

required for subsystems 1 and 2, i.e., N1, N2, K1 and K2) in which their conversion from 

binary form can yield infeasible values.  The initial approach was to rigidly assign 

infeasible values to alternatives depending on the decimal value. For the modified 

parameter evaluation scheme if the parameter value is infeasible, this parameter is 

regenerated. The process stops only when the new value is from the feasible region.  The 

average results, produced by the modified method compared to the initial approach were 

better in terms of three optimization parameter values (cost, MDT and unavailability) 

hence enhancing the optimization algorithm. 

5.2.5 Modification of the Crossover Procedure 

During the investigation process three additional crossover procedures were created. The 

modified method is similar to the single-point crossover. The main difference is that the 

second parent string from the pair can again participate in crossover as the first parent. 

Two-point and Three-point crossover methods first generate respectively two and three 

random positions of the string. Then parent strings are crossed at those points. All methods 

were applied to the different sized populations (5, 10, 20 and 40 strings).  

As it was expected the new crossover methods produced poor results for the smallest 

population since it is not diverse. The obtained results were quite chaotic with the minimal 

objectives being scattered across crossover methods.  For all three populations (10, 20 and 

40 strings) the modified crossover method worked best since it produced the largest 

number of the best parameter values and hence was deemed best suited to this application. 

5.3  The Chosen Optimization Scheme 

According to the investigation results the following modified optimization scheme was 

chosen: 

• Population of 20 strings; 

• 0.7 crossover rate; 

• 0.01 mutation rate; 

• 100 generations; 

• Modified parameter estimation procedure; 

• Modified crossover operator. 

Tables 3 and 4 show the comparison of the best design parameter values obtained by the 

initial and modified programs.  All solutions are nondominated. The initial version of the 

program gives smaller unavailability for both the best and average results. However, the 
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modified algorithm produces slightly better values for the system cost, MDT and spurious 

system failure. The average cost was reduced by 27 units. The average MDT was improved 

and is reasonably closer to the limit of 130 hours. The spurious system failure of the new 

best design is two times smaller. The difference between the initial and modified 

unavailability is 0.00005. If this difference is insignificant for the potential decision maker 

then the modified program results can be assumed to be better. Throughout the process as 

multiple solutions are produced the analyst must make a choice as to which objective gains 

precedence.  Ultimately this research has shown the applicability of the method to such 

systems.  

Table 3: Best Design Characteristics 

Pop size 
Estimation 

technique 

Parameter 

Values 
Cost MDT Fsys Qsys 

Average 597 120.718 0.37532 6.9379e-5 Initial 

Best 592 129.701 0.45468 4.5042e-7 

Average 570 126.702 0.32278 5.0000e-4 

 

20 strings 

Modified 

Best 592 129.983 0.24513 5.0500e-5 
 

Table 4: Best Designs Comparison 

Best Design Q1 Q2 E H N1 / K1 N2 / K2 V P 

Initial 25 73 0 1 1 / 1 3 / 3 1 2 

Modified 29 108 1 0 2 / 2 0 / 0 1  1 

6.    Conclusions 

An integrated optimization approach has been developed and discussed in this paper.  The 

technique has been successfully applied to the high integrity protection system optimization 

problem. Results show that this technique produces a set of non-dominated solutions which 

yield optimal designs given the four objectives and resource limitations.  The parameters 

of the optimization approach and alterations to the design parameter allocation methods 

show the flexibility of the technique for this application.  The overall conclusion is that 

this method is suitable for such safety system design problems and the authors can see that 

the method has potential for application to systems in other domains.  Further work would 

be beneficial to examine scalability and complexity issues. 
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