32 research outputs found

    Self-organising maps : statistical analysis, treatment and applications.

    Get PDF
    This thesis presents some substantial theoretical analyses and optimal treatments of Kohonen's self-organising map (SOM) algorithm, and explores the practical application potential of the algorithm for vector quantisation, pattern classification, and image processing. It consists of two major parts. In the first part, the SOM algorithm is investigated and analysed from a statistical viewpoint. The proof of its universal convergence for any dimensionality is obtained using a novel and extended form of the Central Limit Theorem. Its feature space is shown to be an approximate multivariate Gaussian process, which will eventually converge and form a mapping, which minimises the mean-square distortion between the feature and input spaces. The diminishing effect of the initial states and implicit effects of the learning rate and neighbourhood function on its convergence and ordering are analysed and discussed. Distinct and meaningful definitions, and associated measures, of its ordering are presented in relation to map's fault-tolerance. The SOM algorithm is further enhanced by incorporating a proposed constraint, or Bayesian modification, in order to achieve optimal vector quantisation or pattern classification. The second part of this thesis addresses the task of unsupervised texture-image segmentation by means of SOM networks and model-based descriptions. A brief review of texture analysis in terms of definitions, perceptions, and approaches is given. Markov random field model-based approaches are discussed in detail. Arising from this a hierarchical self-organised segmentation structure, which consists of a local MRF parameter estimator, a SOM network, and a simple voting layer, is proposed and is shown, by theoretical analysis and practical experiment, to achieve a maximum likelihood or maximum a posteriori segmentation. A fast, simple, but efficient boundary relaxation algorithm is proposed as a post-processor to further refine the resulting segmentation. The class number validation problem in a fully unsupervised segmentation is approached by a classical, simple, and on-line minimum mean-square-error method. Experimental results indicate that this method is very efficient for texture segmentation problems. The thesis concludes with some suggestions for further work on SOM neural networks

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    A robust framework for medical image segmentation through adaptable class-specific representation

    Get PDF
    Medical image segmentation is an increasingly important component in virtual pathology, diagnostic imaging and computer-assisted surgery. Better hardware for image acquisition and a variety of advanced visualisation methods have paved the way for the development of computer based tools for medical image analysis and interpretation. The routine use of medical imaging scans of multiple modalities has been growing over the last decades and data sets such as the Visible Human Project have introduced a new modality in the form of colour cryo section data. These developments have given rise to an increasing need for better automatic and semiautomatic segmentation methods. The work presented in this thesis concerns the development of a new framework for robust semi-automatic segmentation of medical imaging data of multiple modalities. Following the specification of a set of conceptual and technical requirements, the framework known as ACSR (Adaptable Class-Specific Representation) is developed in the first case for 2D colour cryo section segmentation. This is achieved through the development of a novel algorithm for adaptable class-specific sampling of point neighbourhoods, known as the PGA (Path Growing Algorithm), combined with Learning Vector Quantization. The framework is extended to accommodate 3D volume segmentation of cryo section data and subsequently segmentation of single and multi-channel greyscale MRl data. For the latter the issues of inhomogeneity and noise are specifically addressed. Evaluation is based on comparison with previously published results on standard simulated and real data sets, using visual presentation, ground truth comparison and human observer experiments. ACSR provides the user with a simple and intuitive visual initialisation process followed by a fully automatic segmentation. Results on both cryo section and MRI data compare favourably to existing methods, demonstrating robustness both to common artefacts and multiple user initialisations. Further developments into specific clinical applications are discussed in the future work section

    The 1993 Space and Earth Science Data Compression Workshop

    Get PDF
    The Earth Observing System Data and Information System (EOSDIS) is described in terms of its data volume, data rate, and data distribution requirements. Opportunities for data compression in EOSDIS are discussed

    Puheen ja tekstin välisen tilastollisen assosiaation itseohjautuva oppiminen

    Get PDF
    One of the key challenges in artificial cognitive systems is to develop effective algorithms that learn without human supervision to understand qualitatively different realisations of the same abstraction and therefore also acquire an ability to transcribe a sensory data stream to completely different modality. This is also true in the so-called Big Data problem. Through learning of associations between multiple types of data of the same phenomenon, it is possible to capture hidden dynamics that govern processes that yielded the measured data. In this thesis, a methodological framework for automatic discovery of statistical associations between two qualitatively different data streams is proposed. The simulations are run on a noisy, high bit-rate, sensory signal (speech) and temporally discrete categorical data (text). In order to distinguish the approach from traditional automatic speech recognition systems, it does not utilize any phonetic or linguistic knowledge in the recognition. It merely learns statistically sound units of speech and text and their mutual mappings in an unsupervised manner. The experiments on child directed speech with limited vocabulary show that, after a period of learning, the method acquires a promising ability to transcribe continuous speech to its textual representation.Keinoälyn toteuttamisessa vaikeimpia haasteita on kehittää ohjaamattomia oppimismenetelmiä, jotka oppivat yhdistämään saman abstraktin käsitteen toteutuksen useassa eri modaaliteeteissa ja vieläpä kuvailemaan aistihavainnon jossain toisessa modaaliteetissa, missä havainto tapahtuu. Vastaava pätee myös niin kutsutun Big Data ongelman yhteydessä. Samasta ilmiöstä voi usein saada monimuotoista mittaustuloksia. Selvittämällä näiden tietovirtojen keskinäiset yhteydet voidaan mahdollisesti oppia ymmärtämään ilmiön taustalla olevia prosesseja ja piilevää dynamiikkaa. Tässä diplomityössä esitellään menetelmällinen tapa löytää automaattisesti tilastolliset yhteydet kahden ominaisuuksiltaan erilaisen tietovirran välille. Menetelmää simuloidaan kohinaisella sekä korkea bittinopeuksisella aistihavaintosignaalilla (puheella) ja ajallisesti diskreetillä kategorisella datalla (tekstillä). Erotuksena perinteisiin automaattisiin puheentunnistusmenetelmiin esitetty menetelmä ei hyödynnä tunnistuksessa lainkaan foneettista tai kielitieteellistä tietämystä. Menetelmä ainoastaan oppii ohjaamattomasti tilastollisesti vahvat osaset puheesta ja tekstistä sekä niiden väliset yhteydet. Kokeet pikkulapselle suunnatulla, sanastollisesti rajoitetulla puheella osoitti, että oppimisjakson jälkeen menetelmällä saavutetaan lupaava kyky muuntaa puhetta tekstiks

    Towards an Understanding of Large Language Models in Software Engineering Tasks

    Full text link
    Large Language Models (LLMs) have drawn widespread attention and research due to their astounding performance in tasks such as text generation and reasoning. Derivative products, like ChatGPT, have been extensively deployed and highly sought after. Meanwhile, the evaluation and optimization of LLMs in software engineering tasks, such as code generation, have become a research focus. However, there is still a lack of systematic research on the application and evaluation of LLMs in the field of software engineering. Therefore, this paper is the first to comprehensively investigate and collate the research and products combining LLMs with software engineering, aiming to answer two questions: (1) What are the current integrations of LLMs with software engineering? (2) Can LLMs effectively handle software engineering tasks? To find the answers, we have collected related literature as extensively as possible from seven mainstream databases, and selected 123 papers for analysis. We have categorized these papers in detail and reviewed the current research status of LLMs from the perspective of seven major software engineering tasks, hoping this will help researchers better grasp the research trends and address the issues when applying LLMs. Meanwhile, we have also organized and presented papers with evaluation content to reveal the performance and effectiveness of LLMs in various software engineering tasks, providing guidance for researchers and developers to optimize
    corecore