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Preface 
 

The discrete wavelet transform (DWT) algorithms have a firm position in processing 
of signals in several areas of research and industry.  As DWT provides both octave-
scale frequency and spatial timing of the analyzed signal, it is constantly used to solve 
and treat more and more advanced problems. The DWT algorithms were initially 
based on the compactly supported conjugate quadrature filters (CQFs). However, a 
drawback in CQFs is due to the nonlinear phase effects such as spatial dislocations in 
multi-scale analysis. This is avoided in biorthogonal discrete wavelet transform 
(BDWT) algorithms, where the scaling and wavelet filters are symmetric and linear 
phase. The BDWT algorithms are usually constructed by a ladder-type network called 
lifting scheme. The procedure consists of sequential down and uplifting steps and the 
reconstruction of the signal is made by running the lifting network in reverse order. 
Efficient lifting BDWT structures have been developed for VLSI and microprocessor 
applications. Only register shifts and summations are needed for integer arithmetic 
implementation of the analysis and synthesis filters. In many systems BDWT-based 
data and image processing tools have outperformed the conventional discrete cosine 
transform (DCT) -based approaches. For example, in JPEG2000 Standard the DCT has 
been replaced by the lifting BDWT. 

A difficulty in multi-scale DWT analyses is the dependency of the total energy of the 
wavelet coefficients in different scales on the fractional shifts of the analysed signal. 
This has led to the development of the complex shift invariant DWT algorithms, the 
real and imaginary parts of the complex wavelet coefficients are approximately a 
Hilbert transform pair. The energy of the wavelet coefficients equals the envelope, 
which provides shift-invariance. In two parallel CQF banks, which are constructed so 
that the impulse responses of the scaling filters have half-sample delayed versions of 
each other, the corresponding wavelet bases are a Hilbert transform pair. However, 
the CQF wavelets do not have coefficient symmetry and the nonlinearity disturbs the 
spatial timing in different scales and prevents accurate statistical analyses. Therefore 
the current developments in theory and applications of shift invariant DWT 
algorithms are concentrated on the dual-tree BDWT structures. 

This book reviews the recent progress in discrete wavelet transform algorithms and 
applications. The book covers a wide range of methods (e.g. lifting, shift invariance, 
multi-scale analysis) for constructing DWTs. The book chapters are organized into 



X Preface 
 

four major parts. Part I describes the progress in hardware implementations of the 
DWT algorithms. Applications include multitone modulation for ADSL and 
equalization techniques, a scalable architecture for FPGA-implementation, lifting 
based algorithm for VLSI implementation, comparison between DWT and FFT based 
OFDM and modified SPIHT codec. Part II addresses image processing algorithms such 
as multiresolution approach for edge detection, low bit rate image compression, low 
complexity implementation of CQF wavelets and compression of multi-component 
images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift 
invariant DWTs, DC lossless property, DWT based analysis and estimation of colored 
noise and an application of the wavelet Galerkin method.  

The chapters of the present book consist of both tutorial and highly advanced material. 
Therefore, the book is intended to be a reference text for graduate students and 
researchers to obtain state-of-the-art knowledge on specific applications. The editor is 
greatly indebted to all co-authors for giving their valuable time and expertise in 
constructing this book. The technical editors are also acknowledged for their tedious 
support and help.  

 
Hannu Olkkonen, Professor 

University of Eastern Finland, Department of Applied Physics, Kuopio,  
Finland 
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Discrete Wavelet Multitone Modulation for  
ADSL & Equalization Techniques 

Sobia Baig1, Fasih-ud-Din Farrukh2 and M. Junaid Mughal2 
1Electrical Engineering Department, 

COMSATS Institute of Information Technology, Lahore 
2Faculty of Electronic Engineering, 

GIK Institute of Engineering Sciences and Technology, Topi 
1,2Pakistan 

1. Introduction 
The reliable delivery of information over severe fading wireless or wired channels is a major 
challenge in communication systems. At the heart of every communication system is the 
physical layer, consisting of a transmitter, a channel and a receiver. A transmitter maps the 
input digital information into a waveform suitable for transmission over the channel. The 
communication channel distorts the transmitted waveform. One of the many sources of 
signal distortion is the presence of multipath in the communication channel. Due to the 
effect of the multipath signal propagation, inter-symbol interference (ISI) occurs in the 
received waveform. Moreover, the transmitted signal gets distorted due to the effect of 
various kinds of interference and noise, as it propagates through the channel. ISI and the 
channel noise distort the amplitude and phase of the transmitted signal, which lead to 
erroneous bit detection at the receiver. It is desirable for a good communication system that 
its receiver is able to retrieve the digital information from the received waveform, even in 
the presence of channel impairments such as, multipath effect and noise. 
Orthogonal Frequency Division Multiplexing (OFDM) is a Multi-Carrier Modulation 
(MCM) technique that enables high data rate transmission and is robust against ISI 
(Saltzberg, 1967), (Weinstein and Ebert, 1971), (Hirosaki, 1981). It is a form of frequency 
division multiplexing (FDM), where data is transmitted in several narrowband streams at 
various carrier frequencies. The sub-carriers in an OFDM system are orthogonal under ideal 
propagation conditions. By dividing the input bit-stream into multiple and parallel bit-
streams, the objective is to lower the data rate in each sub-channel as compared to the total 
data rate and also to make sub-channel bandwidth lower than the coherence bandwidth of 
the communication channel. Therefore, each sub-channel will experience flat-fading and will 
have small ISI. Hence an OFDM system requires simplified equalization techniques, to 
mitigate the inter-symbol interference. The ISI can be completely eliminated in OFDM 
transceivers by utilizing the principle of cyclic prefixing (CP). Therefore, high data rate 
communication systems prefer to apply multicarrier modulation techniques. OFDM has 
been standardized for many digital communication systems, including ADSL, the 802.11a 
and 802.11g Wireless LAN standards, Digital audio broadcasting including EUREKA 147 
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and Digital Radio Mondiale, Digital Video Broadcasting (DVB), some Ultra Wide Band 
(UWB) systems, WiMax, and Power Line Communication (PLC) (Sari, et al., 1995) 
(Frederiksen and Prasad, 2002), (Baig and Gohar, 2003). 
Over the years, OFDM has evolved into variants, such as Discrete Multitone (DMT), and 
hybrid modulation techniques, such as multi-carrier code division multiple access (MC-
CDMA), Wavelet OFDM and Discrete Wavelet Multitone (DWMT). Several factors are 
responsible for the development of these variants, especially Wavelet based OFDM 
techniques, which target several disadvantages associated with Multicarrier modulation 
(MCM) techniques. Some of these drawbacks are: 
 the spectral inefficiency associated with the guard interval insertion, which includes the 

cyclic prefix 
 the high degree of spectral leakage due to high magnitude side lobes of pulse shape of 

sinusoidal carriers 
 OFDM based communication system’s sensitivity to inter-carrier interference (ICI) and 

narrowband interference (NBI) 
Therefore, a Discrete Wavelet Transform (DWT) based MCM system was developed as an 
alternative to DFT based MCM scheme (Lindsey, 1995). DWT based MCM techniques came 
to be known as Wavelet-OFDM in wireless communications and as Discrete Wavelet 
Multitone (DWMT) for harsh and noisy wireline communication channels such as Digital 
Subscriber Line (DSL) or Power Line Communications (PLC) (Baig and Mughal, 2009).  
This chapter describes the application of DWT in Discrete Multitone (DMT) transceivers and 
its performance analysis in Digital Subscriber Line (DSL) channel, in the presence of 
background noise, crosstalk etc. Time domain equalization techniques proposed for DWT 
based multitone that is DWMT are discussed, along with the simulation results. The pros 
and cons of adopting DWT instead of DFT in DMT transceivers will also be discussed, 
highlighting the open areas of research.  

2. Basics of wavelet filter banks & multirate signal processing systems 
Wavelets and filter banks play an important role in signal decomposition into various 
subbands, signal analysis, modeling and reconstruction. Some areas of DSP, such as audio 
and video compression, signal denoising, digital audio processing and adaptive filtering are 
based on wavelets and multirate DSP systems. Digital communication is a relatively new 
area for multirate DSP applications. The wavelets are implemented by utilizing multirate 
filter banks (Fliege, 1994). The discovery of Quadrature Mirror Filter banks (QMF) led to the 
idea of Perfect Reconstruction (PR), and thus to subband decomposition. Mallat came up 
with the idea of implementing wavelets by filter banks for subband coding and 
multiresolution decomposition (Mallat, 1999). DWT gives time-scale representation of a 
digital signal using digital filtering techniques. The DWT analyzes the signal at different 
frequency bands with different resolutions by decomposing the signal into approximation 
and detail coefficients. The decomposition of the signal into different frequency bands is 
obtained simply by successive high pass and low pass filtering of the time domain signal. 

2.1 Analysis and synthesis filter banks 
Analysis filter banks decomposes input signal into frequency subbands. A two channel 
analysis filter bank, as shown in Fig. 1, splits the input signal ܺ(ݖ)	into a high frequency 
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component ܷ଴(ݖ)	and a low frequency component ଵܷ(ݖ). The input signal ܺ(ݖ) is passed 
through a low pass filter ܪ଴(ݖ) and a high pass filter ܪଵ(ݖ), yielding the ܷ଴(ݖ) and ଵܷ(ݖ) 
respectively. 
 

 

 
 

Fig. 1. Two-channel Analysis filter bank. 

Consequently, with the sampling frequency, ܨ௦ =  is ,ߨ the available bandwidth from 0 to ,ߨ2
divided into two halves, 0	 ≤ 	݂	 ≤ ௦ܨ 4	ൗ for the lower frequency signal ܷ଴(ݖ)and ܨ௦ 4ൗ ≤ ݂ ௦ܨ≥ 2ൗ  for the high frequency signal ଵܷ(ݖ). Therefore, the filtered signals ܷ଴(ݖ)and ଵܷ(ݖ)have 
half the bandwidth of the input signal after being convolved with the low pass filter and 
high pass filter respectively.The filtered and downsampled signal spectra are shown in Fig. 
2. In matrix form the sub-band signals are represented as (Fliege, 1994), 

 ൤ܺ଴(ݖ)ଵܺ(ݖ),൨ = ଵଶ ቈܪ଴(ݖଵ ଶൗ ) ଵݖ−)଴ܪ ଶൗ ଵݖ)଴ܪ( ଶൗ ) ଵݖ−)଴ܪ ଶൗ )቉ ቈ ଵݖ)ܺ ଶൗ ଵݖ−)ܺ( ଶൗ )቉ (1) 

The two signal spectra overlap. The downsampling will produce aliased components of the 
signals, that are functions of ܺ(−ݖଵ/ଶ) in Eq. 1, since the filtered signals are not bandlimited 
to ߨ. Two-channel synthesis filter bank is the dual of analysis filter bank, as shown in Fig. 3. ܩ଴(ݖ) and ܩଵ(ݖ)	denote the lowpass and highpass filters, which recombine the upsampled 
signals ܷ଴(ݖ) and ଵܷ(ݖ) into ܺ(ݖ), the reconstructed version of the input signal. The aliased 
images are removed by the filter ܩ଴(ݖ) in the frequency range ܨௌ 4ൗ ≤ 	݂	 ≤ ௌܨ	 2ൗ , while the 
filter ܩଵ(ݖ)	eliminates the images in the upsampled signal ଵܷ(ݖ) in the frequency range 0 ≤ ݂ ≤ ௌܨ	 4ൗ . Therefore, the signal ܺ(ݖ), output from the synthesis filter bank is (Fliege, 
1994), 

(ݖ)ܺ  = ሾܩ଴(ݖ) ሿ(ݖ)ଵܩ ൤ܺ଴(ݖଶ)ଵܺ(ݖଶ)൨ (2) 

 
 

 
 

Fig. 2. (Continued) 

/ 2 
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Fig. 2. Signal spectra in two-channel analysis filter bank. (a) Low pass & high pass filter 
transfer functions. (b) low pass filtered signal spectrum ܷ଴(ݖ). (c) high pass filtered signal 
spectrum ଵܷ(ݖ). (d) downsampled signal ܺ଴(ݖ)spectrum. (e) downsampled signal ܺ(ݖ) 
spectrum (f) output signal spectra. 

 

 
Fig. 3. Two-channel Synthesis filter bank. 

2.2 Quadrature mirror filter bank 
The analysis and the synthesis filter banks combine to form a structure commonly known as 
the two-channel quadrature mirror filter (QMF) bank. QMF bank serves as the basic 

/ 2 

/ 2

/ 2



/ 2 
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building block in many multirate systems. A two-channel QMF bank is shown in Fig. 4. The 
constituent analysis and synthesis filter banks have power complementary frequency 
responses. The low pass and high pass filters in the analysis filter bank decompose the input 
signal into sub-bands, and the decimation introduces a certain amount of aliasing, due to the 
non-ideal frequency response of the analysis filters. However, the synthesis filters 
characteristics are chosen with such frequency response, that the aliasing introduced by the 
analysis filter bank is canceled out in the reconstruction process. The output signal ܺ	෡  is (ݖ)
the recovered version of the input signal ܺ(ݖ). Therefore, the output signal ܺ	෡  is (ݖ)
expressed as, 

 ෠ܺ(ݖ) = ሾܩ଴(ݖ) ሿ(ݖ)ଵܩ ଵଶ ൤ܪ଴(ݖ) (ݖ)ଵܪ(ݖ−)଴ܪ ൨(ݖ−)ଵܪ ൤  ൨ (3)(ݖ−)ܺ(ݖ)ܺ

 ෠ܺ(ݖ) = (ݖ)ܺ(ݖ)଴ܨ +  (4) (ݖ−)ܺ(ݖ)	ଵܨ

The reconstructed signal ܺ	෡  consists of two terms, the first term that is the product of the (ݖ)
transfer function ܨ଴(ݖ) and ܺ(ݖ) is the desired QMF output, while the second term is the 
product of the transfer function ܨଵ	(ݖ)	and ܺ(−ݖ) is the aliasing term ܨଵ	(ݖ) denotes the 
aliasing components produced by the overlapping frequency responses of the analysis and 
synthesis filter banks. For an alias-free filter bank, ܨଵ	(ݖ) must be equal to zero. This 
condition is mathematically expressed as (Vaidyanthan, 1993), 

(ݖ)	ଵܨ  = ଵଶ ሾܩ଴(ݖ)ܪ଴(−ݖ) + ሿ(ݖ−)ଵܪ(ݖ)ଵܩ = 0 (5) 

This condition may be satisfied by choosing ܩ଴(ݖ) = (ݖ)ଵܩ and (ݖ−)ଵܪ	 =  then the ,(ݖ−)଴ܪ
desired QMF output is represented as (Fliege, 1994), 

(ݖ)	ଵܨ  = ଵଶ ሾܪ଴(ݖ)ܪଵ(−ݖ) −  ሿ (6)(ݖ−)଴ܪ(ݖ)ଵܪ

 

 
Fig. 4. Two-channel QMF bank. 

The filter banks, which are able to perfectly reconstruct the input signal are the perfect 
reconstruction filter banks, that satisfy the perfect reconstruction condition. The desired 
QMF output includes the function ܨ଴(ݖ) which gives perfect reconstruction of the input 
signal if it is a mere delay, that is ܨ଴(ݖ) =  ௄(Fliege, 1994). Two-channel filter bank, shownିݖ
in Fig. 4, can be utilized to construct an octave-spaced wavelet filter bank with the help of a 
tree type structure. Octave filter bank is constructed by the successive decomposition of the 
low pass signal into constituent sub-bands, every time using the two-channel filter bank 
(Qian, 2002). A three-level octave-spaced analysis filter bank is shown in Fig. 5 (a) and a 
three-level octave-spaced synthesis filter bank is shown in Fig. 5 (b).  

ˆ ( )X z
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Fig. 5. (a) Three-level analysis filter bank (b) Three-level synthesis filter bank. 

2.3 Transmultiplexer 
Transmultiplexers form an integral part of modems and transceivers based on filter banks 
that work on the principle of perfect reconstruction. A simple two-channel filter bank can be 
utilized to illustrate the perfect reconstruction condition. A transmultiplexer is the dual of 
Sub-band coder (SBC) in structure. Fig. 6 shows a two-channel transmultiplexer filter bank, 
which converts a time-interleaved signal at its input to a FDM signal, having separate bands 
of spectrum multiplexed together and then converts it back into TDM signal at its output. 
Transmultiplexers find application in modems and transceivers for digital communication 
(Vaidyanthan, 1993). 
 

0 ( )X z

1( )X z

0
ˆ ( )X z

1
ˆ ( )X z

 
Fig. 6. Two-channel Transmultiplexer. 

x̂(n)
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3. Discrete multitone modulation technique 
Discrete Multitone (DMT) modulation is a variant of OFDM associated with various loading 
algorithms, so as to optimize a transceiver’s performance in wireline channels like 
Asymmetrical Digital Subscriber Line (ADSL) and power line (Chow, et al., 1991). In 
literature, several loading algorithms have been developed; allocating resources such as data 
bits, or power in order to optimize high data rate, low average transmitting power, or low 
bit error rate. Typically two of these parameters are kept constant and third is the goal of 
optimization. 
A conventional DFT based DMT transceiver block diagram is shown in Fig. 7. The channel 
bandwidth is divided into N sub-channels. The input serial bit-stream is also split into ܰ	parallel sub-streams. The data bits assigned to sub-channels are according to a loading 
algorithm. For water-filling bit-loading algorithm, greater number of bits is assigned to 
higher SNR sub-channels. If the value of SNR of a sub-channel is below a pre-assigned 
threshold, then no bits are allocated to that sub-channel. The assigned bits are mapped onto 
Quadrature amplitude modulation (QAM) constellation forming a complex symbol. The 
QAM symbols are then modulated onto orthogonal sub-carriers using Inverse Fast Fourier 
Transform (IFFT). The 	ܰ QAM symbols are duplicated with their conjugate symmetric 
counterparts and subjected to 2ܰ point IFFT, in order to generate real samples for 
transmission through the channel. A DMT symbol is thus formulated. 
A guard band consisting of a few samples of the DMT symbol is pre-appended to the 
symbol. This is the cyclic prefix, which consists of the last v samples of the DMT symbol, 
circularly wrapped to the 2ܰ DMT symbol. The length of cyclic prefix ݒ is chosen such that 
it will be longer than the length of the channel response. The cyclic prefix added to a DMT 
symbol lengthens the symbol period, making it longer than the worst possible delay spread, 
which is caused by time delayed reflections of the original symbol arriving at the receiver. 
Consequently, the cyclic prefix serves the purpose of absorbing any multipath interference. 
Due to this cyclic extended symbol, the samples required for performing the FFT can be 
taken anywhere over the length of the symbol, without degradation by the neighboring 
symbols. However, the information sent in the cyclic prefix is redundant and reduces the 
transceiver throughput by (2ܰ	 +  Between the transmitter and receiver lies the .2ܰ/(ݒ	
communication channel, which introduces both noise and distortion (mainly due to 
multipath propagation) to the composite transmit signal. The channel can be modeled as a 
finite impulse response (FIR) filter that possesses a frequency-selective fading characteristic. 
The cyclic prefixed signal is transmitted through the channel, the output of which gives the 
product of the channel impulse response and the transmitted symbols in frequency domain. 
DMT receiver is basically the dual of the DMT transmitter, with the exception of the 
equalization part. The equalization block consists of two parts, the time-domain equalizer 
(TEQ) and the frequency-domain equalizer (FEQ). The purpose of TEQ is channel-
shortening and it immediately follows the channel, as shown in the Fig. 7. It serves to 
shorten the channel impulse response, so that the equalized channel impulse response is less 
than the length of the cyclic prefix ݒ. At the receiver the cyclic prefix samples are discarded 
and remaining samples are subject to Fast Fourier transform (FFT). The frequency domain 
equalizer divides the received sub-symbols by the FFT coefficients of the shortened channel 
impulse response. The resulting signal is demodulated to recover the original data bits and 
converted into a serial bit stream. 
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Fig. 7. Functional block diagram of a DMT transceiver. 

3.1 Evolution of discrete wavelet multitone modulation 
A major drawback of DFT-DMT is that the rectangular low-pass prototype filter results in 
sinc shaped sub-band spectral response, the first side lobes of which are only 13dB down, as 
pointed out by Sandzberg (Sandzberg, 1995). A dispersive channel will thus introduce Inter-
Carrier Interference (ICI) at significant levels. To mitigate this we can increase filter bank 
genus, and design sub-channels with greater spectral isolation. We call this a lapped 
transform, and much work has been done on the particular case of the Lapped Orthogonal 
Transform (LOT) (Malvar, 1992). General Extended Lapped Transform (ELT) design is 
computationally prohibitive, however Cosine Modulated Filter Banks (CMFB) can be 
efficiently implemented utilizing Discrete Cosine Transform (DCT). In this way the design 
procedure is simplified if we allow the transmultiplexer filters to be modulated versions of a 
low pass, linear-phase prototype. Therefore, instead of designing ܰ filters, we now only 
design one prototype filter. Modulated filter banks implementing lapped transforms with 
applications to communications are generally referred to as Discrete Wavelet Multitone 
(DWMT), to distinguish from DMT which uses a rectangular prototype. 
Many contributions in literature have emphasized the need for DWMT in specific channel 
conditions. Tzannes and Proakis have proposed DWMT in (Tzannes, et al., 1994), and 
shown it to be superior to DFT-DMT. Authors suggest implementing DWMT in DSL 
channel for improved performance (Doux et al., 2003). Studies have compared DMT and 
DWMT performance in DSL channel (Akansu and Xueming 1998). 
DWT exhibits better spectral shaping compared to the rectangular shaped subcarriers of 
OFDM. Therefore, it offers much lower side lobes in transmitted signal, which reduces its 
sensitivity to narrowband interference (NBI) and inter-carrier interference (ICI). However, it 



 
Discrete Wavelet Multitone Modulation for ADSL & Equalization Techniques 11 

cannot utilize CP to mitigate ISI created by the frequency-selective channel, as various DWT 
symbols overlap in time domain (Vaidyanathan, 1993). Nevertheless, such MCM systems 
based on DWT require an efficient equalization technique to counter the ISI created by the 
channel. 

4. Discrete Wavelet Multitone (DWMT) in Digital Subscriber Line (DSL) 
A system based on Discrete Wavelet Multitone (DWMT) for modulating and 
demodulating the required signal using Discrete Wavelet Transform as a basis function 
has been suggested in wireless applications (Jamin andMähönen, 2005). The importance of 
DWMT in wireless communication is a recognized area of research and on similar lines a 
DWMT system can be implemented in wireline communication. It can be used as a 
maximally decimated filter bank with its overlapping symbols in time-domain. Therefore, 
this structure does not require the addition of CP which is an overhead in DMT and 
DWMT based wireline systems (Vaidyanathan, 1993). On the other hand, the wavelet 
filters also possess the advantages of having greater side-lobe attenuation and requires no 
CP (Bingham, 1990). Therefore, the DWMT systems are bandwidth efficient by not using 
the CP which creates the problem of bandwidth containment in DMT based systems. 
However, application of the DWMT systems in a dispersive channel like ADSL 
necessitates a robust channel equalization technique (Sandberg and Tzannes, 1995). In 
literature some equalization techniques for DMT based multicarrier systems have been 
suggested by many authors (Pollet and Peeters, 2000); (Acker et al., 2001); (Acker et al., 
2004); (Karp et al.,2003) and DWMT based multicarrier systems (Viholainen et al., 1999). 
Equalization is a key factor in the design of modems based on DWMT modulation 
technique and till date, it remains an open research area. When using the Discrete Wavelet 
Packet Transform (DWPT) as a basis function in DWMT systems, it is difficult to equalize 
the overlapped symbols in time domain. We emphasize on the design of equalizer for 
DWPT based DWMT multicarrier systems. The proposed system is based on DWPT for 
DWMT wireline systems and time-domain equalization is suggested for the equalization 
process of overlapped symbols. 
In this chapter, the time-domain equalization through a linear transversal filter is applied. 
The equalization algorithms are based on Zero-Forcing (Z-F) and minimum mean squared 
error (MMSE) criterion to a discrete wavelet-packet transform based DWMT transceiver for 
a wireline ADSL channel. It is then compared with the system’s performance of a DMT 
based ADSL system. For a fair comparison between the two systems, the DMT system also 
utilizes the same time-domain equalization. The performance of the proposed wavelet-
packet based transceiver is also evaluated in the presence of near-end crosstalk (NEXT) and 
far-end crosstalk (FEXT) for downstream ADSL. It is shown that the DWMT system 
conserves precious bandwidth by not utilizing any CP, and gives improvement in bit error 
rate (BER) performance over the DMT system with time-domain equalization (TEQ). 

4.1 System model of DWMT 
The DWMT system model’s block diagram is shown in Fig. 8. It divides the input data bit-
stream into multiple and parallel bit-streams. The proposed DWMT transceiver is based on 
discrete wavelet packet transform (DWPT). The DWPT is implemented through a reverse 
order perfect reconstruction filter bank transmultiplexer. Wavelet packets can be 
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implemented as a set of FIR filters, which leads to the filter bank realization of wavelet 
transform, according to Mallat’s algorithm (Mallat, 1998). The blocked version of the input 
signal ݔ	௞(݊) is mapped to a variable QAM constellation according to the number of bits 
loaded. This is interpolated and filtered by the ݇௧௛ branch synthesis filter	ܨ௞(ݖ).	The 
combined signal is sent through the channel, and the received signal is filtered by an 
equalizer filter. The equalized signal is passed through the corresponding analysis filter ܪ௞(ݖ) and decimated to retrieve the QAM encoded version of the transmitted signal. The 
transmitted signal is recovered after QAM decoding. 
 

 
Fig. 8. Functional Block diagram of DWMT system. 

4.1.1 Water filling bit loading  
Bit loading is usually applied to DMT modulated systems applied to wireline channels, by 
first estimating the signal-to-noise ratio (SNR) of each sub-channel through channel 
estimation techniques, which is followed by the distribution of bits to these sub-channels 
according to their respective SNR. Water-Filling bit loading algorithm applied in the 
proposed system is rate adaptive and it is suitable for achieving maximum bit rate and also 
useful when considering the large number of sub-channels and variable QAM constellation 
(Leke and Cioffi, 1997);(Yu and Cioffi, 2001). A discrete version of this algorithm is applied, 
in which the bit-loading procedure initiates by determining the sub-channels that should be 
turned off, due to very low SNR. The bits are assigned to channels according to their 
capacity, expressed mathematically as (Thomas et al., 2002), 

 2
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where SNR = εn.gn is the SNR of each sub-channel, εn is the sub-channel energy and gn is the 
sub-channel SNR and it can be calculated as, 
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where Hn is the ADSL channel impulse response and σ2 is the noise power, Γ is the SNR gap 
and γm is the performance margin, which is the amount by which SNR can be reduced (Yu 
and Cioffi,2001). The water filling bit-loading for the proposed system is shown in Fig. 9. 
While considering the DWMT based communication system for the ADSL channel, it is 
necessary to consider its frequency response and the effect of crosstalk, near-end crosstalk 
(NEXT), and far-end crosstalk (FEXT) in system simulation. The ADSL channel impairments 
and crosstalk is briefly discussed in the following section. 
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Fig. 9. ADSL channel frequency response & number of bits loaded according to discrete 
water-filling algorithm. 

4.2 ADSL channel 
Digital Subscriber Line, commonly known as DSL is the most popular and ubiquitously 
available wireline medium which provides high-speed Internet access over the twisted pair 
telephone network. Fig. 10 shows a typical DSL network, which consists of copper lines 
extending all the way from the central office (CO) to the customer’s premises. Current and 
future applications such as Interactive Personalized TV, high definition TV (HDTV) and 
video-on-demand through high-speed Internet access, will require more bandwidth. 
Researchers are exploring cost-effective ways to exploit the existing copper infrastructure to 
deliver greater bandwidth. 
 

 
Fig. 10. A typical DSL network connecting subscribers to internet services through DSL to 
the Central Office. 

Although the DSL channel offers the advantage of utilizing the already in place telephone 
lines to carry digital data, however there are different channel impairments that pose 



 
Discrete Wavelet Transforms: Algorithms and Applications 14

difficulties in achieving the objective of high-speed and reliable communication (Cook, et 
al.,1999). These channel impairments include different types of noise and interference. The 
noise sources include crosstalk, impulse noise and narrow band noise (Thomas Starr, et al., 
2002). Also, interference in the communication signal may occur due to the electromagnetic 
conduction (EMC) in the unshielded twisted pair (UTP) and DSL operating in the vicinity of 
transmitters may pick up radio frequency interference (RFI) (Cook, et al.,1999). Moreover, 
signal reflection may be induced due to bridge tabs, unterminated lines and load 
mismatching in the telephone network. This leads to multipath signal propagation, due to 
ISI occurs (Bingham, 2000). BER deterioration, due to ISI is a significant problem in the 
communication systems utilizing the DSL channel. A typical telephone line frequency 
response and its impulse response are shown in Fig. 11 and Fig. 12 respectively. Multicarrier 
modulation is a possible solution to the ISI problem in DSL, which is already standardized 
in Asymmetric digital subscriber line (ADSL), in the form of DMT modulation, as G.DMT 
and G.lite ADSL. 
 

 
Fig. 11. Frequency response of telephone line FIR channel. 
 

 
Fig. 12. DSL channel impulse response. 
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4.2.1 Crosstalk 
In a telephone network, each subscriber is connected to the CO through a twisted pair, 
however, hundreds of such pairs are bound together in a cable. The twisting in the wires 
keeps the electromagnetic coupling between them to a minimum, however, when the pairs 
are numerous, all crosstalk between the pairs cannot be completely removed. Therefore, this 
crosstalk constitutes a dominant impairment, where DSL channel is concerned. The DSL 
crosstalk types, namely near end crosstalk (NEXT) and far-end crosstalk (FEXT) are 
illustrated in Fig. 13 (Thomas Starr, et al., 2002). NEXT is the crosstalk due to the 
neighboring transmitter on a different twisted pair line and its power increases with 
increase in frequency. FEXT is the noise detected by the receiver located at the far end of the 
cable from the transmitter. FEXT is typically less severe than NEXT, because FEXT is 
attenuated as the cable length increases. 
In this chapter, the performance of DWMT transceiver is evaluated for the downstream 
ADSL channel. For this purpose, the NEXT and FEXT are modeled using the ADSL standard 
G.992.1/G.992.2(ITU-T, 2003). 
 

 
Fig. 13. NEXT and FEXT, the DSL crosstalks illustrated (Thomas Starr, et al., 2002). 

The PSD of the ADSL transceiver disturbers for downstream is given by (ITU-T, 2003), 
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where f is in Hz and the remaining parameters are defined in Table 1. The PSD of the ADSL 
transceiver downstream NEXT is given by (ITU-T, 2003), 

 1.5 1.510
, , 10 ,(0 )

nNPSL

ADSL ds NEXT ADSL ds Disturber NXTPSD PSD f f f
 

 

 
       
  

 (10) 



 
Discrete Wavelet Transforms: Algorithms and Applications 16

where f is in Hz and the remaining parameters are also given in Table 1. The PSD of the 
ADSL transceiver downstream FEXT is given by (ITU-T, 2003), 
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where f is in Hz, and Hchannel(f) is the channel transfer function and the remaining 
parameters are given in Table 1. 
PSD of disturbers and NEXT is shown in Fig. 14(a) and Fig. 14 (b) displays the FEXT PSD for 
downstream ADSL (ITU-T, 2003). The NEXT and FEXT for upstream can be computed in a 
similar manner (ITU-T, 2003). 
 

Parameter WPT-DWMT DFT-DMT 

Number of disturbers 24 24 
fLP3dB fs/2 fs/2 
fHP3dB 138 kHz 138 kHz 
KADSL 0.1104 watts 0.1104 watts 
fNXT 160 kHz 160 kHz 
NPSL 47.0 dB 47.0 dB 
fFXT 160 kHz 160 kHz 
dFXT 1.0 km 1.0 km 
FPSL 45.0 dB 45.0 dB 

Table 1. NEXT & FEXT Simulation Parameters. 
 

 
Fig. 14. (a) PSD-disturber & PSD-NEXT for downstream ADSL in G.992.1/G.992.2 standard. 



 
Discrete Wavelet Multitone Modulation for ADSL & Equalization Techniques 17 

 
 

Fig. 14. (b) PSD-FEXT for downstream ADSL in G.992.1/G.992.2 standard. 

The wavelet packet transform (WPT) transmultiplexer in the proposed DWMT transceiver 
gives perfect reconstruction of the transmitted signal, if ideal channel conditions are 
assumed. However, an actual channel like ADSL is far from ideal, and therefore requires 
some form of equalization to reliably retrieve the transmitted signal. Time domain 
equalization is proposed here for DWMT based transceiver for ADSL. There are some 
equalization techniques for ADSL proposed in literature (Acker et al., 2004);(SMÉKAL et al., 
2003);(Trautmann and Fliege, 2002); (Yap and McCanny, 2002). 

4.3 Time domain equalization 
In order to equalize the signal after it has been dispersed by the ADSL channel, time domain 
equalization is proposed, and it is implemented through a linear transversal filter. The 
equalizer filter is a linear function of the channel length L, and the filter coefficients are 
optimized using the zero-forcing (ZF) and mean squared error (MSE) criterion (Farrukh et 
al., 2007); (Farrukh et al., 2009). 

4.3.1 ZF finite length equalizer 
In ZF algorithm it cancels out the channel effect completely by multiplying the received 
signal with the inverse of the channel impulse response, as shown in Fig. 15. With an infinite 
length equalizer filter, it is possible to force the system impulse response to zero at all 
sampling points (Proakis, 1995). However, since an infinite length filter is unrealizable. 
Therefore, a finite length filter is considered that approximates the infinite length filter 
(Proakis, 1995). The received signal y is the distorted version of the transmitted signal x after 
convolution with the channel ch plus the channel noise r. The received signal can be 
expressed in vector notation as, 

ܡ  = ܐ܋ܠ +  (12) ܚ
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The equalizer output vector z can be found by convolving a set of a training sequence input 
samples h and equalizer tap weights c (Sklar, 2001), 

	ܢ  =  (13) ܋ܐ	

However, we continue with the assumption that channel state information is entirely known 
at the receiver. Therefore, a square matrix h, consisting of channel coefficients is formulated 
with the help of ZF criterion. The ZF algorithm defines that in order to minimize the peak 
ISI distortion by selecting the equalizer filter weights c such that the equalizer output is 
enforced to zero at sample points other than at the desired pulse. The weights are chosen 
such that (Sklar, 2001) 
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The equalizing filter has L=2N+1 taps. Equalizer filter coefficients are computed by (Sklar, 
2001) 

	ࢉ  =  (15) ࢠ૚ିࢎ	

The job of equalizing filter is to recover the transmitted signal x̂  from the received channel-
distorted signal y, as follows, 

 
ˆ

h

x = yc
= xc c rc

 (16) 

where x̂ is the distorted received signal which was transmitted through ADSL channel and 
recovered after ZF equalization. 
 

 
Fig. 15. A Linear transversal equalizer with coefficients optimized by Zero-Forcing criterion. 

4.3.2 MMSE criterion 
The MMSE criterion represents a more robust solution compared to the ZF since it considers 
the effect of additive channel noise (Proakis, 1995);(Sklar, 2001). The MMSE criterion of 
transversal equalizer filter coefficients optimizes the mean squared error of all the ISI terms 
plus the noise at the equalizer output. A set of over determined equations is formed, in 
order to derive a minimum MSE solution of the equalizer filter (Sklar, 2001). Therefore, for a 
2N+1 tap filter, the matrix h will have dimensions of 4N+1 by 2N+1. Multiplying Eq. (13) by 
hT (Sklar, 2001), 

	ܢ܂ܐ  =  (17) ܋ܐ܂ܐ	
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ܢܐ܀  =  (18) ܋ܐܐ܀	

where	ܢܐ܀ is the cross correlation matrix and ܐܐ܀ =  is the autocorrelation matrix of the ܐ܂ܐ	
input noisy signal, which are used to determine the equalizer coefficients c, 

	܋  =  (19) ܢܐ܀૚ିܐܐ܀	

For the MMSE solution of the equalizing filter, an over sampled non-square matrix h is 
formed which is transformed to a square autocorrelation matrix Rhh, yielding the optimized 
filter coefficients. 

4.4 Simulation results 
An ADSL system is investigated which is based on DWPT transmultiplexer. The system 
utilizes M = 256 sub-channels and rate adaptive bit-loading algorithm is applied for bit 
allocation to each sub-channel in channel environment which is based on ADSL along with 
the crosstalk noise standards G.992.1/G.992.2 (ITU-T, 2003). For fair comparison, two 
systems are simulated, which are based on DWMT and DMT transceiver using time-domain 
equalization (TEQ) techniques for ADSL channel in the presence of AWGN and crosstalk 
noise. The channel is considered to be stationary during symbol duration. MatLab is used 
for all this simulation purpose and the parameters for simulation are specified in Table 2. 
 

Parameter WPT-DWMT DFT-DMT 

Data rate 1 Mbps 1 Mbps 
Sampling Frequency 2.208 MHz 2.208 MHz 

Modulation M-QAM (2, 4, 8, 16, 32, 64) M-QAM (2, 4, 8, 16, 32, 64) 
Cyclic Prefix None 20% 
FFT size (N) - 512 
Wavelet-level 2 - 
Number of bits/sub-channel 1 to 6 1 to 6 

Table 2. DWMT & DMT System Simulation Parameters. 

This corresponds to a system bandwidth of 2 MHz with data rate of 1 Mbps with discrete 
wavelet packet filter which is used for transmitter and receiver end. The channel 
equalization is performed by applying a linear equalizing filter in time-domain. The filter 
coefficients for equalization are optimized by ZF algorithm and MMSE criterion. The ADSL 
channel is simulated by an FIR filter of 100 taps. 
The prototype filter for the synthesis and analysis part of the transmultiplexer is a discrete 
wavelet filter using 2-level wavelet packet. The input symbols xk(n) are M-QAM modulated. 
The equalizer frequency response of ZF equalizer FIR filter is shown in Fig. 16. Initially 
DWMT transceiver and DMT systems are compared regarding the bit error rate (BER) 
performance in AWGN channel, having identical time-domain zero-forcing channel 
equalization. Although, the conventional DMT system equalization is a combination of time-
domain equalization (TEQ) and frequency-domain equalization (FEQ) techniques, in this 
case DMT is equalized with a time-domain Zero-Forcing for fair comparison between the 
two systems. The DWPT transform is applied utilizing Haar wavelet. Fig. 17 shows the 
comparative performance of two systems in the presence of AWGN without crosstalk. The 
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BER curve, shown in Fig. 17, presents the fact that the two systems give almost identical 
performance for lower SNR, and at higher SNR, the DWMT system exhibits an 
improvement of 1 dB in ܧ௕/ ௢ܰ over the DMT system for an AWGN channel, at a ܴܧܤ of 1E-
6. It shows that both techniques using DMT and DWPT based ADSL without crosstalk 
perform identically except at higher SNR. In the next step, the simulation is performed 
according to the ADSL standard with crosstalk from G.992.1/G.992.2 (ITU-T, 2003).  
 

 
Fig. 16. Equalizing Zero-Forcing filter frequency response. 
 

 
Fig. 17. BER Comparison of DWMT & DMT systems in AWGN with ZF Equalization 
techniques. 

Fig. 18 shows the performance of DWMT and DMT systems in ADSL channel with AWGN, 
NEXT and FEXT (crosstalk), utilizing time-domain equalization (TEQ) techniques. The 
NEXT & FEXT represent the downstream crosstalk in ADSL channel according to the 
G.992.1/G.992.2 standard (ITU-T, 2003), with the simulation parameters as described in 
Table 1. DMT system is still equalized by ZF-TEQ, while the DWMT transceiver is equalized 
by ZF-TEQ, time-domain MMSE (MMSE-TEQ). The BER curves shown in Fig. 18 validate 
the fact that the wavelet packet transmultiplexer improves the performance of DWMT 
transceiver, having ZF-TEQ by Eb/No margin of 1.0 db for BER of 1E-4, over a DMT 
transceiver, having an identical equalizer. Moreover the MMSE-TEQ technique for DWMT 
system shows an improvement of 2 dBs in Eb/No over ZF-TEQ technique for DWMT and a 3 
dB gain over the ZF-TEQ equalized DMT system, at a BER of 1E-4. 
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Fig. 18. BER Comparison of DWMT & DMT systems for ADSL channel with AWGN, NEXT 
& FEXT. 

5. Pros & cons of applying DWT in multicarrier modulation techniques 
DWMT modulation based transceiver, appears to be an interesting choice, when utilizing 
multi-carrier modulation techniques in wireline systems. It not only recommends the unique 
time-frequency localization advantage over the conventional frequency localized DMT 
systems, but also preserves precious bandwidth, which is wasted in DMT based systems in 
the form of cyclic prefix. However, when utilized in time dispersive channel like ADSL, 
DWMT transceiver cannot do without an equalization technique because of the time 
overlapped symbols. In this chapter DWMT based transceiver is discussed and its 
performance analyzed for the ADSL channel, in comparison with a conventional DMT 
modulation with ZF and MMSE algorithms using the time-domain equalization. DWMT 
system based on WPT performs well in the presence of AWGN and crosstalk in comparison 
with the DMT system for ADSL. ZF equalization algorithm does not consider noise, while 
the MMSE criterion of optimizing the equalizer coefficients takes into account the effect of 
channel noise. Therefore MMSE algorithm based DWMT transceiver gives better BER 
performance in comparison with ZF criterion, since ZF is known to enhance channel noise. 
The time-domain equalization is computationally complex in comparison to frequency 
domain equalization, however it offers improved bit error rate. 

6. Conclusion 
The multirate digital signal processing techniques, including wavelets and filter banks are part 
of new emerging technologies, which are finding applications in the field of digital 
communications. DWT based Multicarrier modulation techniques have opened new avenues 
for researchers, to avoid the spectral leakage and spectral inefficiency associated with Fourier 
Transform based MCM techniques. Time domain equalizers based on ZF and MMSE 
algorithms are utilized for DSL channel equalization in DWMT transceivers. MMSE based 
equalizers outperform the ZF equalizers in terms of BER. The equalization techniques adopted 
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for DWMT transceiver is a topic of active research. Moreover, simulation results found in 
literature have shown that DWT based MCM systems exhibit higher immunity to narrowband 
interference (NBI). Therefore, WOFDM/DWMT can be considered as a viable alternative to 
spectrally inefficient OFDM/DMT, however at the cost of higher computational complexity of 
equalization. 
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1. Introduction

In recent year, the Forward and Inverse Discrete Wavelet Transform (FDWT/IDWT) (S.Mallet,
1999) has been widely used as an alternative to the existing time-frequency representations
such as DFT and DCT. It has become a powerful tool in many areas, such as image
compression and analysis, texture discrimination, fractal analysis, pattern recognition and so
on. The recent and future developments of high definition digital video and the diversity of
the terminals had led to consider a multi-resolution codec. In this context, the FDWT/IDWT
as well as the others computational functions such as Motion Estimation (ME) are required to
be scalable and flexible to support rich multimedia applications and adapt to the fast changing
of standards requirement. In this background, a universal, extremely scalable and flexible
computational architecture which can adapt to variable workload would be more and more
important and suitable for the multimedia application in the future.
In the literature, there have been several proposals devoted to the hardware implementation of
FDWT/IDWT. Some proposals(M.A.Trenas et al., 2002) (et al, 2002) (Lee & Lim, 2006)(Ravasi,
2002)(P.Jamkhandi et al., 2000)(Tseng et al., 2003)addressed the importance of flexibility and
proposed programmable DWT architectures based on two types: VLSI or FPGA architecture.
The VLSI architectures have large limitations in terms of flexibility and scalability compared
to the FPGA architectures. Even though some recent solutions proposed programmable
and scalable for either variable wavelet filters(Olkkonen & T.Olkkonen, 2010) (Lee & Lim,
2006) or the structure of FDWT, they remind, in addition to their cost, dedicated to specifics
algorithms and cannot be adapted to future solutions. In another hand, the existing FPGA
architectural solutions are mainly ASIC like architectures and use external off-the-shelf
memory components which represent a bottleneck for data access. The possibility of
parallelizing the processing elements offered by FPGAs associated to a sequential access to
data and bandwidth limitations do not enhance the overall computing throughput. The
very powerful commercial VLIW digital signal processor obtains its performance thanks to
a double data-path with a set of arithmetic and logic operators with a possibility of parallel
executions and a wide execution pipeline. However, these performances are due to a high
frequency working clock. Even though these DSP has a parallel but limited access to a set
of instructions, the data memory access remains sequential. The performance requirement is
paid by high circuit complex and power consumption. Most of work focuses on the reuse of
devices likes FPGAs for different applications or different partitions of one applications.
In order to square up these needs, we propose a novel DWT architecture and implementation
method. The proposed architecture can support multi-standard by reconfiguring the
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Fig. 1. Application adaptive configuration

interconnection between date memories and processing elements. Moreover, the number
of processing element and its working frequency could be reconfigured dynamically. A
controller plays a key role as a reconfigurable interface allowing multiple accesses to local
memory, external memory through a DMA and feeding the processing element in an
optimal fashion. An implementation method is developed to identify parallelism level of
processing element and working frequency as well as to find out the tradeoff between power
consumption and performance. In comparing with others VLSI and ASIC architecture, double
size of memory can be economic in using our novel architecture.
In the following paper, we start, in Section2 by presenting a definition of adaptation in two
manners: the application adaptive and task adaptive, within the system complexe context. We
then give a brief overview of DWT algorithm in Section 3 where we detail a reconfigurable
DWT hardware processor architecture. In order to experimentally explicit our proposed
system, Section 4 focus on the detail of our proposed reconfigurable architecture which
supports our DWT algorithm implementation. Section 5 focus on the implmentation, analysis
and validation of system. Finally, Section 6 summarizes and concludes this work.

2. Levels of adaptation

In the multimedia computing environment, adaptation can be seen in two manners: the
application adaptive and task adaptive. Following the adaptation of computing environement
the different applications or different standard of one application can be switched in run-time.
For example, the multimedia terminal switches it use from playing a movie to answering
a video call. The task adaptive consists of the switching different versions of a task of an
application, this situation can occur for instance in down scaling or up scaling situations.

2.1 Application adaptive
For a given domain, applications can be described by a set of processing tasks and sub tasks.
The difference between the applications could be represented with common processing tasks
and specific processing tasks. Figure 1-A2 shows an example of two applications A1 and
A2 featuring common tasks (continuous lines) and specific tasks (dash lines). Switching from
application A1 to application A2requires replacement of specific tasks and the communication
between newly loaded tasks and common tasks. In some cases, the simultaneous execution
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of two applications is required. To achieve this, different versions of specific tasks must be
available.

2.2 Task adaptive
Each task of an application commonly consists of a set of sub-tasks or a set of operators
depending on the complexity of task as shown in figure1-A3. To enable task adaptivity,
different versions of a task for a given algorithm must be defined and characterised in terms
of power, area, throughput, efficiency and other objectives. For the same task, it must be
also possible to change the type of algorithm in order to adapt the application to the future
standards.
In this background, the adaptability of application helps us to configure partially one part
of application for adapting to a new application. The task adaptive level permits us mainly
to make a small change in the task to make the application adapt to different sceneries. In
this paper, we focus on the task adaptive so as to realize muti DWT processing algorithms by
using partial reconfiguration technique.

3. 2-D DWT processing algorithm

A survery of 2-D DWT architecture can be referenced in the paper Olkkonen & T.Olkkonen
(2010). The two dimensional (2D) forward discrete wavelet transform (FDWT) is a rapid
decomposition in the multimedia application domain. The FDWT is computed by successive
low-pass and high-pass filtering. The output of each filter is decimated that is every second
value is removed halving de length of the output S.Mallet (1999). The output of each filter
stage is made of transform coefficients and each filter stage represents a level of transform.
The low pass result is then transformed by the same process and this is repeated until the
desired level is reached. In the Inverse discrete wavelet transform (IDWT), the approximation
and detail coefficients at every level are up-sampled by two, passed through the low pass and
high pass filters and then added. This process is continued through the same number of levels
as in the decomposition process to obtain the original signal. In this paper we will focus on
the implementation of IDWT, the same approach will be applied to FDWT.

3.1 Classical processing approach
The classical approach to 2D decoding is to process each layer in the tree decomposition
separately and to process the vertical and horizontal layers successively one after the other.
The performance of this approach is strongly limited by the management of temporary data
required between two successive layers and between horizontal and vertical filtering. For a
2D image with N rows and N columns and L levels, the amount of data to be filtered on each
layer increase ( for IDWT) by a factor of four from one layer to the next, and the total amount of
processed data along the whole tree reconstruction process is given by the following equation:

D =
L

∑
i=1

N × N
4i−1 =

4L − 1
3 × 4L−1 × N × N (1)

To process a N × N image, a temporal memory of size

D − N × N = (
4L − 1

3 × 4L−1 )× N × N (2)

is required. As an example, for 2 level resolution a temporal memory of 0.25 N × N size is
required. For a given layer, the filtering process is achieved horizontally and vertically; thus
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two read accesses and two writes accesses are necessary and the total amount of data read and
written is expressed as Dw = Dr = 2 × D. The memory bandwidth B, in bidirectional access
case, can be considered as the production of the total amount of data processed for a frame
per second ( f ps) Td f = (Dr + Dw)× f ps and the number of bits Nb of a coefficient:

B = Td f × Nb (3)

As an example, for a gray level image of 512 × 512 pixels with 25 frame per second, 8 bits
per pixel and 2 levels of reconstruction, a bandwidth of 260 Mb/s is required. These results
illustrate the memory management problem as the main bottleneck of the classical approach.

3.2 Proposed processing approach
In order to reduce the memory size and to optimize the overall system performance, the
wavelet algorithm is redesigned to exploit efficiently the inherent processing parallelism. This
processing parallelism is possible if the required data is accessible in parallel, accordingly a
data partitioning is used. The degree of parallelism and thus of the data partitioning will
depend on the level of transformation, the number of levels and data dependency.
The proposed organization is shown in figure 2 depicting the memory fragmentation (2-a)
and tasks allocation (2-b) on processing elements for two level IDWT. It is a compromise
and intermediate solution between a massive parallelism and a sequential execution. The
processing tasks are mainly filtering operations witch are organized and allocated to a
processing element so that the among of data processed is the same. Indeed, if we consider a
W × W bloc, an IDWT will be processed in three phases as shown in figure (3). In phase Φ1
The processing element PE1 requires 2 × W

2 × W
2 = W×W

2 data accesses to reconstruct the LL
bloc meanwhile the processing element PE2 can process vertically the W×W

2 remaining data
(HL and HH). In phase Φ2, when the two processing elements terminate their executions, the
LL bloc is reconstructed and the pressing element PE2 can resume its vertical executions on
the W×W

2 available data. In phase Φ3, after the termination of PE2, data is available to process
the horizontal pass on a bloc of W ×Wdata. Using PE1 and PE2 in parallel, the data processed
by each PE is of W×W

2 . This architecture is scalable and can be extended to different levels of
resolutions by an adequate choice of processing elements.

4. System overall architecture

With the down scaling technology, the modern chips can integrate a huge quatity of mixed
grain hardware resources ranging from several hard microprocessors, hard arith- metic
operators to hundred of thousand of simple gates allowing the integration of various soft
cores. The prob- lem of resources management becomes then very acute especially in
reconfigurable systems. In these systems, the management of reconfigurations is a very
important part in the design phase due to the complexity of hardware reconfigurations and
the reconfigurability needs of an aplication.
In the different proposed solutions, the two parts of reconfiguration that are reconfigurable
capabilities of the hardware and the different reconfigurations possibilities of an application
are not taken into account. A layered reconfiguration management approach through a hierar-
chical decomposition of a system will allow us to solve this problem.
The proposed adaptable architectue shown in figure 1- c, allowing the adaptation of differents
applications and an application in different conditions, is organised as a set of clusters. Each
cluster is designed to execute a sub-set of tasks. This clusters are parallelisable, so that the
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Fig. 2. Processing approach in 2D IDWT onto two-level(a); task allocation(b)
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Fig. 3. 2-D IDWT Processing phases
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same set of processing are performed on multiple data blocs. Each cluster is composed of
an heterogeneous multiprocessor cores that allow software reuse, one or several Reconfig-
urable Processing Modules (RPU), a Reconfigurable Communication Module (RCM), and on
chip memory. The RPM allows hardware acceleration and can be configured in a way that
supports different versions of a task. The reconfigurable interface (RIF) is used to build the
inter- connection between differents modules. Each RPM can be reconfigured at runtime.
Each cluster has a local configuration manager implemented in an on chip processor that
controls the sequences of reconfigurations of the cluster. In this local configuration level, all
clusters are configurable in parallel and independently. The reconfiguration process allocates
dynamicaly to differents tasks of an application the adequate hard- ware ressources and
optimal operation frequency and voltage. The presence of local configuration managers
allows the acceleration of the adaptation process. To control the overall system, a global
reconfiguration level is necessary. In this level, the necessary informations are managed in
order to modify the global organisation of the system by configuring the communication
between clusters and the elements of a cluster, allowing for instance to switch from an
application to another.
The overall architectureM.Guarisco et al. (2007) is depicted in figure 4. Three memory blocks
are present, while the first one and the last one repectively store original data image and
deliver computed data, the second block feeds the processing elements. In addition to these
three blocks, the system is composed of a reconfigurable processing unit two data organization
units and control unit. This last one unit allows to connect the right memory to the right Unit
at the right time. Once the memory bloc 1 is full (and as a consequence memory bloc 3 is
empty, or at least, all his bytes are read or store in external memory), each memory datapath
is switch allowing new picture datas to be treated. A new cycle begins, memory 3 is this time
filled and datas in memory 1 are transforming.

Fig. 4. Porposed DWT processing system architecture

4.1 RPU instance
The reconfigurable Processing Unit (RPU) allows the implementation of different types of
wavelet filter. A filter (task) is a set of arithmetic and logic operators. A configuration of RPU
consists of a type of filter or a version of a filter. For a given filter, corresponding operators can
be connected by different ways in order to carry out different filter versions. These different
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Fig. 5. General architecture of a RPU

versions can be parallel, in pipeline, sequential or an association of both methods. A possible
architecture of the RPU and conction with reconfigurable interface is shown in the figure5
Chart1 lists number of computation operators needed (number of additioner, shifter,
multiplier by filtering operation). We have choose two filters in order to illustrate adaptation
at task level.

Filters Additions Shifts Multiplications

5/3 5 2 0

2/6 5 2 0

SPB 7 4 1

9/7-M 8 2 1

2/10 7 2 2

5/11-C 10 3 0

5/11-A 10 3 0

6/14 10 3 1

SPC 8 4 2

13/7-T 10 2 2

13/7-C 10 2 2

9/7-F 12 4 4

Table 1. Different filter types of wavelet transform
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Table 1 lists the number of main computational requirements (the number of additions,
shifts, and multiplications per filtering operation). We choose two filters to illustrate the task
adaptive level.

4.1.0.1 The 5/3 lifting based wavelet transform

The IDWT 5/3 lifting based wavelet transform has short filter length for both low-pass and
high-pass filter. They are computed through following equations :

D[n] = S0[n]− [1/4(D[n] + D[n − 1]) + 1/2] (4)

S[n] = D0[n] + [1/2(S0(n + 1) + S0[n])] (5)

The equations for FDWT 5/3 are given bellow:

D[n] = D0[n]− [1/2(S0(n + 1) + S0[n])]] (6)

S[n] = s0[n] + [1/4(D[n] + D[n − 1]) + 1/2] (7)

D[n] is the even term and S[n] is the odd term. The corresponding data flow graph(DFG)
is shown in figure 6. It is composed of two partitions: odd and even. Each partition is
implemented in the corresponding data path of the RPU. The register file is used to hold
intermediate computation results.

4.1.0.2 The 9/7 − F based FDWT

The 9/7-F FDWT is an efficient approach which is computed through following equations:

D1[n] = D0[n] + [
203
128

(−S0[n + 1]− S0[n]) + 0.5] (8)

S1[n] = S0[n] + [
217
4096

(−D1[n]− D1[n − 1]) + 0.5] (9)

D[n] = D1[n] + [
113
128

(D1[n + 1] + D1[n]) + 0.5] (10)

S[n] = S1[n] + [
1817
4096

(D1[n] + D1[n − 1]) + 0.5] (11)

There is similarities between equations of 5/3 filter and those of 9/7 − F filter which implies
same similarities between the data flow graph of the two filters. It is clear that by duplicating
the dataflow graph of filter 5/3 and inserting four multipliers we obtain the data flow graph of
the 9/7 filter. Moreover, if we consider the table 1, we can see that by partially reconfiguring
the 9/7 filter we can implement all the list of the table. The reconfiguration of 9/7 filter
consists of suppressing or disconnecting unused operators and generation of an adequate
control and an efficient data management.

4.2 Reconfigurable interface
The reconfigurable interface is the key element of Reconfigurable Prcessing Unit (RPU). One of
its functionality is to connect together the RPU and control communication protocol between
the RPU and internal memory. Th controler has to generate adresses for writing and reading
operations in memory. A reconfigurable sequencer is used in order to manage the operation
and communication sequence. The reconfigurable interface is composed of a three levels
pipelined structure for calcul units apart from the one of the first level. Steps of pipeline
are : reading (R), execution (E), and writing (W). In our bench test, two versions of interfaces
holding different filters implementation are defined. The pipeline stages are :
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Fig. 6. IDWT 5/3 (a) and 9/7 DFG (b)

• Read (R): The source operands from the on chip memory are sent to the register file. The
contro module gives an order to the reading file address generator integrated into the
control module for reading the row or column resource from the memory module (SRAM)
to the RPU at the address pointed to be by a read counter. Two data are read in one clock
cycle.

• Execution (E): The data available in the regiter file is used bythe data-path to process in
parallel the two parts of the filter. As the high pass filter part requires the previous result
of low pass filter part, the execution is delayed by one clock cylce for high pass filter results.
This operation is executed in one clock cycle.

• Writeback (W): The results of computation are written back to on chip memory at the
address pointed to by a write counter.

The figure7 illustrates the operating mode of the three stages pipeline. Because of sequential
acces to one memory bloc, the computations of the first level are performed as shown in (a)
allowing the exection of three operations in one clock cycle. For the remaining porcessing,
thanks to the parallel read, execute and write, six operations are executed in one clock cycle
(b).
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Fig. 7. Pipeline organization: special case (a) and normal case(b)

4.3 Memory access
Seemless memory is make up of several fixed size blocks. Each block is a dual port memory
with simultaneous read-write access. Size of memory block correspond to image size in the
first level of transformation in the case of the iDWT (inverse DWT). In our experimentation we
choose an image of 32x32 pixels or bytes (we work on grey level pictures, that’s why a pixel is
constitued by one byte only). Because of this organisation, when the first level is proceded, the
two data paths of the processing elements are sequentially feeded, that require two memory
access cycles. However, for others, datas are read from (or ordered in) two different parallel
memory blocks for one processing element in parallel.

4.4 Detailed operations
To explain the operating details of the system, consider an original 8x8 image as shown in
figure 8-a. One of the task of this architecture is to rearrange the the pixels in the memory
bloc. In order to benefit from the parallelism, Data organizing mudule arranges the pixels as
shown in figure 8-b. So, due to the utilisation of memory bloc divided in four independent
dual port memories, the processing controller can reach, for a given i, Si and Di which are
normally two consecutive pixel in the image and those which we need to calculate at the same
time the two coefficient of the DWT. If we want to calculate two new samples at each clock
cycle, we have to reach two consecutive elements (Si and Di) at the same cycle.
So, in a first time, each processing element can calculate 1D-DWT in line. As we have two
element, the system can compute two 1D-DWT in the same time. In a second time, the system
computes the 1D-DWT, but now, in columns. Thus, we save a precious time and we can
theoretically achieve an infinite number of levels. Let be Tload, the needed time to fill a memory
bloc at the frequency of the data (it corresponds to the time of a complete reading or writing,
pixel after pixel, of the whole memory bloc), we can say that the execution time of the first
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Fig. 8. Original Image(a); Reorganized Image(b)

level is Tload
2 (we reach two pixels at one clock cycle, so, it divides by two Tload, we have two

PE that divides again by two Tload but we have to achieve two time the 1D-DWT. Finally the
execution time is of Tload

2 ). Moreover, we know that for the next level, we need only the low
frequency coefficients which represent only a quarter of the total result of the previous level.
The execution time is then the result of an arithmetic suite which is represented in equation 4.

Tn
exec = ∑ i = 1n 1

4i−1
Tload

2
(12)

If the number of level tends towards infinite, the execution time is then of 2∗Tload
3 . A data-out

unit allows getting back the DWT coefficients in an ordered way. This controller can be easily
modified to adapt the structure of the data flow to the system.

4.5 Target platform
In order to demonstrate the feasibility of the proposed FDWT/IDWT architecture, we have
implemented a reconfigurable architecture IDWT targeting an FPGA Xilinx from the Virtex
4 family. The virtex-4 circuit hold partial reconfiguration. Partial reconfiguration of Xilinx
FPGA’s is achieved using partial configuration datas Inc. (2004). The target architecture,
as shown as in the figure 9, is make up of static modules (PowerPC, ICAP, BRAM, PLB
Bus) and reconfigurable units(the scalable RPU and hierarchic on-chip memory). ICAP is
used to achieve the partial reconfiguration through the embeded processor PowerPC. The
reconfiguration datas are stocked in BRAM memory of FPGA and are loaded via ICAP.

5. Implementation results

We have modeled the architecture in HDL in the sofware suite ISE from Xilinx. The simulation
results agree with our theoretical waiting. Indeed, we can perform with this architecture
a very high number of levels. According to the simulation results, we can run a working
frequency of 67MHz. But as we use the internal memory of an FPGA, we are limited and we
can reach an image size of only 128x128 pixels. The solution consists of a small modification
of the data organizing units to allow the architecture to treat macro-bloc instead of a whole
picture.
Figure10 illustrates the placement and routing of one RPU on Xilinx Virtex-4 FPGA. Three
mains parts of system like: reconfigurable interface(middle bloc), four registre blocs and two
datapaths of IDWT algorithm. The configuration file of each is independant, which is named

35A Scalable Architecture for Discrete Wavelet Transform on FPGA-Based System
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Fig. 9. Target architecture.

Partial bitstreams RPU bitstream size(Kbyte) Reconfiguration time
Ko ms

static
part

582 Ko 21 sec (JTAG)

Partial bitstream 1 R_com_1 33Ko 0.57 ms
Partial bitstream 2 R_com_2 63Ko 0.67 ms
Partial bitstream 3 R_f_53 28Ko 0.26 ms
Partial bitstream 3 R_d_97 11Ko 0.16 ms

Table 2. Measured reconfiguration time of different bitstream files for 2-D IDWT.
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Fig. 10. placement and routing schema of DWT processing unit with Xilinx PlanAhead tool

as partial bitstreams. The different partial bitstreams are stored in the on chip BRAM. The
static bitstream is loaded using cable. To measure the execution time of each partial bitstream,
a free running hardware timer is used. The measurement results are in table 2. In this table,
the mains modules are : the different part between filter 5/3 and 9/7 ( R_d_97 ), 5/3 filter
functional module (R_f_53), interface for 5/3 filter (R_com_1) and: communication interface
for 9/7 filter (R_com_2).
The on chip PowerPC processor is used for autoconfiguration through HWICAP. As the
PowerPC is an element of the system, it is used to detect external or internal events and
accordingly loads automatically the adequate configuration to adapte the system to the given
situation and then making the auto-adaptive. The HWICAP makes auto-configuration easier,
in fact a C program on PowerPC allows the transfer of 512x32 bit blocks of the partial bitstream
from the configuration memory to a fixed size buffer of the HWICAP peripheral, which the
transfer from the buffer to the ICAP. The total reconfiguration time can approximated by the
following equation:

Tcon f ig = TICAP + TBRAM (13)

Where TICAP is the time required to transfer configuration from the buffer to the ICAP, and
TBRAM is the time required to transfer data from configuration memory to the HWICAP buffer.
Table 2 shows different parts of the system, the size of corresponding bitstream file and their
configuration time. The system consists of a static part and reconfigurable parts ( Part1 and
Part2 are the two versions of reconfigurable communication allowing the switching between
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two filters, Part3 corresponds to 5/3 filter, and Part4 is the difference between 5/3 filter
and 9/7 filter ). The configuration time is measured using a free running counter (timer)
incremented every system clock cycle, and capturing the start time and the end time. We see
that the configuration time as expected depends linearly on the size of bitstream.

Type of
architecture

Resolution Area(mm2
for VLSI and
ASIC)(CLB for
FPGA)

Max frequency of
operation(MHz)

Memory
Requirement
(KB)

Proposed
architecture

32x32 153 CLBs 50 1.024

64x64 538 CLBs 50 4.960

ASICs
based(Tseng
et al., 2003)

one image
frame

8.796 mm2 50 2 memory frames

Zero-padding
scheme (et al,
2002)

32x32 4.26mm2 50 6.99

Table 3. Implementation results

To compare the measured configuration time with the minimum possible value, the value for
the reconfiguration of Virtex-4 FPGA could be obtained with this equation: Tcon f ig = L/r,
where L is the length of the configuration and r is the transfer rate. As an example, for a file of
63KB size, and a clock frequency of 100 MHz as used in our experimentation, the minimum
theoretical time is 0.63 ms, which is much less than 90 ms that as given in table 2. This is due to
PowerPC that acts as the configuration manager in our system. Large part of time is spent to
copy reconfiguration data from on chip or external memory to HWICAP buffer. The difference
between the measured configuration time (0.97 ms) and the computed time (0.63 ms) is due
to the imprecision of the measurement method. In fact, the capture of start and stop time is
achieved using software, which tacks additional clock cycles. In table 2 we can see also that
the main part of reconfiguration time is wasted for the transmission of reconfiguration files.
The reconfiguration time includes two part times: Tbram, the total load time for transferring
the reconfiguration bitstreams from memory on chip to buffer of ICAP with package
512byte. Ticap, the total configuration time through the ICAP port is grouped by the sum
of configuration time for one package. Hence, the reconfiguration time is decided largely
by the size of reconfiguration bit files and the number of reconfiguration bit files. The
reconfiguration manager makes possible to reduce the reconfiguration time through hiding
partial reconfiguration process in the execution process. It is obvious that the configuration
time can be improved. A solution we are studying is based on a specific hardware
reconfiguration manager capable to transfers the configuration data from on chip memory
to ICAP.
Moreover, the chart 3 compare our approach with the other architecture. We observe primary
two parameters based on different resolution of image. At the same working condition, the
area of DWT computing module is variety according to the size of image(153CLBs for 32x32
and 538CLBs for 64x64) where including the adding of memory requirement(1,024KB for
32x32 and 4,960KB for 64x64). Thus the area of circuit can be used efficiently according to
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the defnite size of image. The size of of memory requirment is scalable and thus the correcte
size of memory can be configured dynamically to adapt to the requirement of bandwidth
of memory. The other work shown in this table are based on ASIC(Tseng et al., 2003)and
VLSI (et al, 2002). the area of circuit and the size of memory are fixed and thus the maximum
size of memory must be previewered, which may lead to the urgent or surplus of memory
access.
This proposed architecture features small area and low momory requirments. Processing time
for a 32x32 image blocks is 43s which is lower than others traditional design. Using a 64X64
image blocks gives a good performance throughput which takes 86s for the transformation,
for two-level 2D IDWT, which is capable to perform the image CCIR(720X576) format image
signal at 50 f rame/s.

6. Conclusion

In this book chapter, , we have described auto-adaptive and reconfigurable hybrid architecture
for F/IDWT signal processing application. Two levels of auto adaptation are defined in
order to minimize the reconfiguration overhead. The application adaptive level in which
different applications of a domain are classified and characterized by a set of tasks. The task
adaptive level in which for a given task, a set of versions are defined and characterized for
use in a situation to adapt the application to different constraints like energy, and bandwidth
requirement.
The proposed architecture is a universal, scalable and flexible featuring two levels of
reconfiguration in order to enable the application adaptivity and task adaptivity. We
demonstrated through the case study that it can be used for any types of filters, any size
of image and any level of transformation. The memory is organized as a set of independent
memory blocks. Each memory block is a reconfigurable module. The high scalability of the
architecture is achieved through the flexibility and ease of choosing the number of memory
blocks and processing elements to match the desired resolution. The on-chip memory is used
not only to hold the source image, but also to store the temporary and final result. Hence, there
is no need of temporal memory. The processor has no instructions and then no decoder, in fact,
the hardware reconfigurable controller plays the role of a specific set of instructions and their
sequencing. For a given set of tasks, a set of configurations are generated at compile time and
loaded in run time by the configuration manager via configuration memory. The prototype
has been tested on FPGA developpment cart of Xilinx with 65nm CMOS technology. The
prototyping chip can be reconfigured to adapte 5/3 filter or 9/7 filter. In comparing with
others ASIC architecture at the same working frequency, our proposed architecture requires
less memory bloc and fewer hardware resource than the others.
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1. Introduction

The advantages of the wavelet transform over conventional transforms, such as the Fourier
transform, are now well recognized. Because of its excellent locality in time-frequency
domain, wavelet transform is remarkable and extensively used for signal analysis,
compressing and denoising. Defining DWT by Mallat [1] provided possibility of its digitally
hardware or software implementation. The discrete wavelet transform (DWT) performs a
multiresolution signal analysis which has adjustable locality in both the space (time) and
frequency domains [1]. Unlike the Fourier transform, the wavelet transform has many
possible sets of basis functions. A trade-off can be made between the choice of basis functions
and the complexity of the corresponding hardware implementations. Using finite impulse
response (FIR) filters and then subsampling is the classical method for implementing the
DWT. Due to the large amount of computations required, there have been many research
efforts to develop new rapid algorithms [2]. In 1996, Sweldens presented a lifting scheme
for a fast DWT, which can be easily implemented by hardware due to significantly reduced
computations [3]. This method is entirely based on a spatial interpretation of the wavelet
transform. Moreover, it provides the capability of producing new mother wavelets for
the wavelet transform, based on space domain features. Due to recent advances in the
technology, implementation of the DWT on field programmable gate array (FPGA) and digital
signal processing (DSP) chips has been widely developed. As described in Sect. 3, in the
lifting scheme the structural processing elements, including multipliers, are arranged serially;
hence, the number of multipliers in each pipeline stage determines the clock speed of the
structure. Based on [4], the main challenges in the hardware architectures for 1-D DWT are
the processing speed and the number of multipliers, while for 2-D DWT it is the memory
issue that dominates the hardware cost and the architectural complexity. The reason is the
limitation of the on-chip memory and the power consumption [4,5].

2. DWT structures

The wavelet transform provides a time-frequency domain representation for the analysis
of signals. Therefore, there are two main methods to produce and implement wavelet
transforms. These methods are based on time domain or frequency domain features. The
frequency based method is Filter Banks (FB) and the time based one is called Lifting Scheme
(LS). We will describe them in following sections.

3
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2.1 Filter banks structure
In the FB method, for one level of wavelet decomposition, the input signal is divided into two
separate frequency parts by passing it simultaneously through a pair of low pass, H(z), and
high pass, G(z), filters, as shown in Fig. 1. Then, subsampling the filter’s output to produce
the low pass and high pass outputs (s,d). Therefore, the FB method performs the DWT based
on convolving filter taps and samples of the input signal. H(z) and G(z) can be written in this
form:

H(z) = h0 + h1z−1 + h2z−2 + ...+ hN z−N

G(z) = g0 + g1z−1 + g2z−2 + ...+ gMz−M.

G(z) 2

d

H(z) 2

s

x

Fig. 1. Filter Banks Block diagram

As an example consider the CDF(2,2) wavelet. H(z) and G(z) for this transform are

H(z) =
−1
4
√
2

z2 +
1

2
√
2

z +
3

2
√
2
+

1
2
√
2

z−1 +
−1
4
√
2

z−2.

G(z) =
−1
2
√
2

z2 +
1√
2

z +
−1
2
√
2

The low pass filter has 5 taps and the high pass has 3 taps, so we call it 5/3 wavelet. Although
FB structure is the prior one but it is only capable of providing wavelet transforms in the
frequency domain and not in the time domain. Moreover, in general, the FB filter coefficients
are not integer numbers; hence, they are not appropriate for hardware implementation. In
addition, the number of arithmetic computations in the FB method is very large.

2.2 Lifting structure
The LS method is a new method for constructing and performing wavelets based on the time
(space) domain [3].
As shown in Fig. 2, at first the LS structure splits the input signal samples into even and odd
samples. Then P function is applied on even samples as a prediction function. The word
prediction is used here because P function predicts odd samples using even samples.The
difference between this prediction and the actual value of odd sample, creates the high
frequency part of the signal which is called "detail" coefficients (d). Then applying the U
function on detail signal and combining the result with even samples update them so that the
output coefficients (s) have the desired properties. Usually the desired properties of s is the
same as the properties of input signal (x) but with half size. So the s signal is an approximation
for x and is called approximation coefficient.
Note that the details and approximation coefficients (d,s) in lifting scheme, respectively, are
the same as high pass and low pass outputs in FB.
Based on the above description we have

d = xodd − P(xeven),
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for prediction block and
s = xeven + U(d)

for update block.
Equations for P and U functions are determined based on the implemented wavelet, also the
number and arrangement of P and U blocks in the lifting structure are different for various
types of wavelets.

split P U

-

+

x

x

x

d

s

Fig. 2. Block diagram of a lifting stage

We can write matrix equations for P and U blocks respectively as following:[
xeven(z)

d(z)

]
=

[
1 0

t(z) 1

]
︸ ︷︷ ︸

P

[
xeven(z)
xodd(z)

]

[
s(z)
d(z)

]
=

[
1 s(z)
0 1

]
︸ ︷︷ ︸

U

[
xeven(z)

d(z)

]
.

Generally speaking, if we have more than one lifting step, the matrix equation is(3):[
s(z)
d(z)

]
=

[
k 0
0 1/k

] m

∏
i=1

[
1 si(z)
0 1

] [
1 0

ti(z) 1

] [
xeven(z)
xodd(z)

]
(1)

In (1), k and 1/k are normalization factors. The last matrix is used only for normalization
and may be omitted in many applications such as compression. The relation between FB
coefficients and LS equations is (3):

E(z) =
[

he(z) ho(z)
ge(z) go(z)

]
=

[
k 0
0 1/k

] m

∏
i=1

[
1 si(z)
0 1

] [
1 0

ti(z) 1

]

Matrix E(z) is called a polyphase matrix, where according to the FB structure, he and ho are
even and odd taps of the low pass filter and ge and go are even and odd taps of the high
pass filter, respectively. si(z) and ti(z) are related to filter coefficients in FB structure. In other
words si(z) and ti(z) can be obtained from FB by factorization algorithm presented in [5].
Example: Let consider the previous example, 5/3 wavelet, in LS. This wavelet consist of one
lifting step (one P unit and one U unit together is a lifting step). For this wavelet the prediction
of each odd sample in signal is the average of two adjacent even samples. Then P block
calculates the difference between the real value of signal sample and its prediction:

d(n) = x(2n + 1)− 1
2
[x(2n) + x(2n + 2)].

U block updates even samples to have the same property as the original signal. It uses two
most recently computed differences for update procedure:

s(n) = x(2n) +
1
4
(d(n − 1) + d(n)).
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So the matrix equation for 5/3 wavelet is

[
s(z)
d(z)

]
=

[√
2 0
0 1√

2

] [
1 1

4 (1+ z−1)
0 1

] [
1 0

−1
2 (1+ z) 1

]
︸ ︷︷ ︸

E(z)

[
xeven(z)
xodd(z)

]

and the polyphase matrix is

E(z) =

[ −1
4
√
2

z−1 + 3
2
√
2
− 1

4
√
2

z 1
2
√
2

z−1 + 1
2
√
2−1

2
√
2
− 1

2
√
2

z 1√
2

]
.

We propose the following lemma for using in hardware implementation of LS as will be
describe in section 3.1.
Lemma1: Factorization can be done so that si(z) and ti(z) are first-order or lower-order
polynomials.
Proof sketch: After a polyphase matrix representing a wavelet transform with finite filters
is factored into lifting steps, each step becomes a Laurent polynomial. Since the difference
between the degrees of the even and odd parts of a polynomial is never greater than 2, it is
always possible to find the common divisor of the first-order or lower-order polynomials.
Also, the lifting factorization process is non-unique and so there is freedom in the form
of factorization. Hence, a classical wavelet filter can always be factored into first-order or
lower-order Laurent polynomials (i.e., si(z) or ti(z)).�
Compared to the FB method, the LS method has many advantages [6,7]. The most important
one is the number of arithmetic computations. In the LS method, the number of arithmetic
operations, additions and multiplications, is nearly one-half of that of the FB, which is why
the LS structure is more efficient. Even the amount of computations in some types of DWT
can be reduced to a quarter of that needed for FB [8]. Furthermore the LS structure has
the advantage of implementing the Integer Wavelet Transform (IWT) efficiently. IWT is a
wavelet-like transform in which all of the decomposition coefficients are integer [9]. The IWT
is appropriate for hardware implementation of the DWT [10]. The practical advantages of
using the lifting-based IWT have been described in [11]. Moreover, by using the LS, it is easy
to implement the DWT in a fully in-place method, which is memory efficient [2,12].
Regarding the above explanation, the LS structure is used to implement 5/3 and 9/7 wavelets,
which are used, respectively, for lossless and lossy compression in the JPEG 2000 standard.

3. 1-DDWT

In this section, some types of lifting-based DWT processing elements and 1-D structures are
explained.

3.1 Basic functional units for lifting scheme
As pointed out in Lema1, factorization can be done so that si(z) and ti(z) are first order or
lower-order polynomials. Figure 3 shows three possible categories of the basic processing
unit and the related polynomials in such a factorization. Different kinds of lifting-based DWT
architectures can be constructed by combining the three basic lifting elements. Most of the
applicable DWTs like 9/7 and 5/3 wavelets consist of processing units, as shown in Fig. 3(a),
which is simplified as Fig. 4. This unit is called the processing element (PE). In Fig. 4, A, B
and C are input samples which arrive successively. To implement the P unit, A and C receive
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D
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×
b

Fig. 3. Basic functional units for LS

Fig. 4. Most convenient basic PE for LS

even samples while B receives odd samples. On the other hand, for the U unit, A and C
are odd samples and B receives even samples. Now, the structure of Fig. 4 can be used to
implement 5/3 and 9/7 wavelets. For instance, Fig. 5 and Fig. 6 shows the architecture of
the 5/3 and 9/7 wavelets respectively, where each white circle represents a PE. In Fig. 6, the

R R

P

U

R

Fig. 5. Lifting Structure for 5/3 wavelet

R R

P

P

U

U

R

Fig. 6. Lifting Structure for 9/7 wavelet

input and output layers are essential (basic) layers and are fixed for each wavelet type, while
by changing the number of extended layers, the type of wavelet can be changed accordingly.
For example, omission of a single extended (added) layer in Fig. 6 will change the related
architecture from 9/7 type to 5/3 type. The black circles in Fig. 6 represent needed stored data
for computing outputs (s,d). R0, R1 and R2, are registers that get their values from new input
samples and are called data memory. The other three black circles which store the results
of previous computations are known as temporary memory. The number of data memory
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registers is constant and is equal to 3, while the number of temporary memory registers is
(2e + 1), where e is the number of extended layers [13]. This structure can be implemented
by using combinatorial circuits so that, when the input samples are fed to the architecture,
outputs are ready to be used after a delay time. Also, the implementation of the structure
can be performed via a pipelined structure by adding some registers. The number of pipeline
stages depends on the added registers. Increasing the pipeline stages results in increases in
the clock frequency, system latency and number of required registers [4]. Note that 2-D DWT
architectures are constructed from 1-D DWT units as row-wise and column-wise DWT units.
The data of a complete row is saved for each memory in a column-wise unit. So, the sum of
the data and temporary memories in the column-wise DWT unit determines the amount of
needed internal memory [14,15,16]. The pipeline registers do not affect the required internal
memory [17].

3.2 1-D DWT structures
By combining the functional units described in previous section we can construct 1
dimensional DWT. The architectures presented in Fig. 7 can be applied to implement
the lifting-based 1-D DWT. The structure shown in Fig. 7(a) processes all input samples
concurrently, in parallel form. In Fig. 7(b), input samples arrive in pairs at consecutive clock
pulses and the results for each pair are ready after five cycles. However, due to the pipelined
structure, the clock frequency of Fig. 7(b) is higher than that of Fig. 7(a). There is a trade-off
between the clock speed and the number of pipeline stages.

4. Hardware architectures

4.1 Simple hardware implementation
Figure 7 shows an architecture proposed in [18] for the 9/7 wavelet. Indeed, it is the hardware
Implementation of Fig. 6. Accordingly, the architecture presented in Fig. 9 can be used for the
5/3 wavelet.

4.2 Minimizing hardware architectures
In the structure of Fig. 8, there are two similar cascaded blocks which are different only in the
multiplier’s coefficients. According to [19], one of the similar blocks may be omitted as shown
in Fig. 10. Note that in Figs. 7 and 8, the delay unit represented by z−1 is implemented by
one register, while in Fig. 10 each delay unit contains two consecutive registers. Investigation
on the architecture depicted in Fig. 10 shows that this hardware contains one P and one U
unit. Note that, as mentioned in Sect. 2, both the P and U units can be implemented with the
functional unit depicted in Fig. 4. Therefore, the structure shown in Fig. 10 is implemented
by two similar sections which can be reduced to one section. The resulting architecture for the
9/7 wavelet is shown in Fig. 11. In this structure, U1(0) represents the current output of the
U1 unit and P1(-1) represents the previous output of the P1 unit, and so on. The control signal,
"S", which has four states, selects the inputs of the multiplexers sequentially. In the first state,
two consecutive input samples arrive and the P1 function with α coefficient is performed on
them. In the second state, the U1 function with β coefficient will be imposed on the result of
the previous state (first state’s output). Similarly, in the third and fourth states, computations
for P2 and U2 units will be performed on the results of the previous states. Thus, P2 and
U2 produce final outputs for the structure. The data flow for achieving a pair of wavelet
coefficients using the proposed structure is shown in Table 1.
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Fig. 7. 1-D DWT structures based on lifting a)parallel architecture b) sequential-pipelined
architecture
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Fig. 8. Lifting-based hardware architecture for 9/7 wavelet

S in1 in2 out F(factor)
0 i1 i0 P1 α
1 i0(-1) P1 U1 β
2 P1(−1) U2 P2 γ
3 U1(−1) P2 U2 ζ

Table 1. Time sequence for structure of Fig. 11

The calculation of consecutive wavelet coefficients is periodic and continuous; therefore, the
sequence of control signal "S" for data flow can be easily generated by a simple logic circuit.
Figure 11 shows the hardware architecture for Fig. 11. The 5/3 wavelet implementation of
the proposed architecture is depicted in Fig. 13. It is clear that only the number of coefficients
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Fig. 9. Lifting-based hardware architecture for 5/3 wavelet
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Fig. 10. Propose architecture in [19]
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Fig. 11. Minimized structure

and delay block registers, that is, the z−1 blocks, have been modified from four to two. So,
changing the wavelet type changes these two quantities, coefficients and registers, only. Both
P and U units in LS can be implemented by means of the PE shown in Fig. 4. We explored
this feature in the previous section and implemented a 1-D DWT structure containing only
one PE. We call this method the "foldedmethod". The folded structure is an alternative for the
proposedmethod in [12] by which the lifting-based structures can be designed systematically.
As shown in Fig. 14 for 9/7 wavelet, the method in [12] produces systolic architecture, but
folded method produces folded architecture. In folded structure, the output of the PE unit is
fed back through the delay registers to the PE’s input. By incorporating different numbers of
delay registers and coefficients with PE, the structure for different wavelets can be designed.
For example the folded structure for 5/3 and 9/7 wavelets has two and four delay registers,
respectively. Also the coefficients for 5/3 wavelet are −1

2 and 1
4while for 9/7 they are α, β,γ, δ.
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Fig. 12. Hardware implementation for Fig.10
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Fig. 13. Minimized architecture for 5/3 wavelet

(a) Systolic method

PE

out

(b) Folded method

Fig. 14. 1-D Lifting-Based DWT for 9/7 wavelet by Systematic Design Method

In order to show the efficiency of our architecture, several architectures are chosen for
comparison. Ignoring the pipeline registers, the results of comparison for the 9/7 wavelet are
given in Table 2. It is obvious that compared to other architectures, the number of processing
units is reduced in the folded architecture, thus requiring less area to implement the DWT.
Having smaller 1-D DWT units is very effective in multidimensional architectures or in 2-D
DWT, where it is needed to increase the number of 1-D DWT units to achieve a higher
performance [20]. The cost is that, in the proposed architecture, the clock pulses required
to compute outputs are more than those in the previous architectures. This requirement is
due to the sequential states required to complete the computation of each output.
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Architecture Multiplier Adder Register
Lifting[18] 4 8 6

Proposed in [19] 2 4 6
Systolic[12] 4 8 4
Folded [30] 1 2 4

Table 2. Comparison of some different 1-D DWT architectures for 9/7 wavelet (J −→ ∞)

5. 2-D DWT structures

In this section, we review four convenient structures for 2-D DWT. It is assumed that the 2-D
wavelets reviewed in the following structures are separable, so that the 2-D wavelet transform
can be reduced to a 1-D wavelet transform performed on rows and columns, respectively.
In the direct method (step-by-step method), shown in Fig. 15, the input frame, stored in
external memory, arrives at the 1-D DWT, row by row. The primary outputs are wavelet
coefficients in the row direction and are stored in the external memory. After scanning all
the rows of the frame, again the coefficients are transferred from the external memory to the
1-D DWT block, but this time in the column-wise direction. The secondary outputs of the
1-D DWT block are 2-D DWT coefficients of the input frame, which are stored in the external
memory again. If computation of coefficients for one more decomposition level is needed, this
proceduremust be repeated for the LL part of the previous level, whose size is a quarter of the
input frame size. This routine will be repeated for higher levels. The direct method hardware
is simple, but its latency and the number of external memory accesses are large. The number
of external memory accesses for computing a J-level 2-D DWT of an N × N input image can
be calculated by the expression below, where half of the sum is related to the external memory
reads and the other half is related to the external memory writes

4× (1+
1
4
+

1
16

+ · · ·+ (
1
4
)J−1)× N2 (2)

1-D

DWT

External memory

(N*N)

Fig. 15. Direct method

The line-based method can be implemented in two forms: single level and multilevel. In the
line-based single level method, which is shown in Fig. 16, each level of DWT is performed by
a 2-D DWT block. In this method, only internal memory is used to compute one level DWT
for both the row and column directions, hence, there is no external memory access during
the computation of one level 2-D DWT (except for reading rudimentary inputs and writing
final results for that level). The required internal memory is the sum of the data memory and
the temporal memory (black circles shown in Fig. 6) for each line. So the amount of needed
internal memory is 6N for 9/7 wavelet and 4N for 5/3 wavelet [13,21]. But the results of the
DWT in the row direction for even rows can be used for the computation of the DWT in the
column direction without storing them. Hence, the required internal memory for 9/7 and 5/3
2-D wavelets is reduced to 5N and 3N, respectively. Recently, some new modifications have
been made for the 2-D DWT block. For example, in [20] the number of data entrances has been
increased by using more 1-D DWT units in the 2-D DWT block. Although this modification
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increases the speed, it requires more internal memory and the size of the circuit is increased.
In [22], by replacing registerswith line buffers and controlling data flow in a structure like Fig.
13, with 5 more registers, a 2-D DWT block for 5/3 wavelet has been proposed.
Obviously, for a higher-level 2-D DWT, only LL coefficients of the previous level are used, so
the total number of external memory access for a J-level 2-D DWT on an N × N image is

2× (1+
1
4
+

1
16

+ · · ·+ (
1
4
)J−1)× N2 (3)

The structure of Fig. 17 performs all levels of 2-D DWT, using only internal memory. So,

1-level

2-D DWT

External memory

(N*N)

Fig. 16. Single level line-based method

the total number of external memory accesses for a J-level 2-D DWT is limited to 2N2, which
corresponds to reading the input image for the first level and writing the final DWT results.
The line-based multilevel structure, shown in Fig. 17, is much faster than the previous
structures, but it needs a larger amount of hardware and so its hardware utilization (i.e., the
average value of the area of working parts versus the whole area of the hardware) is low [23],
but the 2-D recursive architecture proposed in [24] improves the hardware utilization for the
J-level 2-D DWT. In Fig. 17, the required internal memory for the 9/7 wavelet is obtained from
equation (4).

5N × (1+
1
2
+

1
4
+ · · ·+ (

1
2
)J−1) (4)

J-level

2-D DWT

External memory

(N*N)

Fig. 17. Multilevel line-based method

There is a trade-off between the size of the internal memory and the number of external
memory accesses in the 2-D DWT structures mentioned previously. Now, a block-based
structure that parameterizes the aforementioned trade-off is introduced. The block-based
structure is similar to the line-based method, but instead of considering the total length of
a row for DWT in the row direction, only a part of it with length M pixels is considered (Fig.
18). It means that the first M columns of the main frame (the gray area in Fig. 18) are used
as the input frame and 2-D DWT coefficients are computed for them. So the required internal
memory, which is determined by the length of the rows, is decreased. As an example, for the
9/7 wavelet the internal memory size will be decreased from 5N to 5M (where M is a fraction
of N). It is possible to consider a block of image by partitioning the image in both the row and
column directions. In this method, the block (or window) slides across the image and both
the row- and column-wise 1-D DWTwill be performed on them [25]. The size of tile windows
may be reduced to 2× 2 pixels [26].
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Fig. 18. Scan method in block-based structure

6. Scan methods for block-based structure

However, in the above-mentioned method, there is a problem in the boundary region between
twoM-pixel sections. To compute the DWT for the beginning pixel of the nextM-pixel section,
values of K previous pixels are needed. These K pixels produce values of temporary memory
(black circles shown in Fig. 19). K is equal to nt − 2, where nt is the number of filter taps
corresponding to the desired DWT. For the 9/7 wavelet, as shown in Fig. 19, K is equal to
7 (shaded circles). To solve the boundary problem, the overlapped scan method has been

Fig. 19. Boundary region for 9/7 wavelet

proposed in [27]. A new M-pixel section begins from the last K pixels in the previous section.
So two sections are overlapped in K pixels, and this causes the number of external memory
reads to be N2M

(M−K)
instead of N2. The number of external memory writes is limited to writing

the output results and is equal to N2.
We can use an alternate scan method for the overlapped region at the boundary between two
M-pixel sections. The relationships for the new scan method are different from the previous
method. The temporary memory at the boundary of two M-pixel sections (black circles in Fig.
19) can be saved for the computation of the next section. These saved values will be used
for the computation of the next M pixels. Hence, a new M-pixel section begins without any
overlap with the previous section. The required memory to save temporary data is L × N,
where L is the value of the temporary memory in the related DWT core. For example, in Fig.
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Direct Single level line-based Block-Based
Internal Memory Size 0 5N 5M 5M

External Memory Reads 2N2 N2 N2M
M−K N2(1+ 4

M )− 4N
External Memory Write 2N2 N2 N2 N2(1+ 4

M )− 4N
Control complexity Low Medium Medium Medium

Table 3. Comparison of different 2-D DWT structures for one level 9/7 wavelet

19, L is 4 for the 9/7 wavelet without pipelining. The storage of temporary memory may be
fulfilled in internal or external memory. If internal memory is used to save temporary data, the
number of external memory accesses is equal to N2 read and N2 write operations. However,
if external memory is used to save temporarymemory, both of the external memory reads and
writes are increased by an amount of ( N

M − 1)N × L. Hence, the number of external memory
reads as well as the number of external memory writes is equal to N2 + ( N

M − 1)N × L. In
this expression, the ( N

M − 1) coefficient is the number of M-pixel sections. Due to hardware
limitations (the limit size of internal memory on FPGA ICs), we select the second case for
implementation. Comparisons of the aforementioned methods for one level 2-D DWT are
given in Table 3. The table shows the values of the internal memory size and external memory
accesses for the three algorithms. It is shown that in our proposed algorithm the internal
memory size is between those of two other algorithms (the direct method and the line-based
method). The same conclusion is true for the external memory size. The table also shows
the order of complexity for the control circuits of these methods based on [28]. Similar
comparisons for J-level (J −→ ∞) 2-D DWT are given in Table 4. Note that M has been
considered to be fixed for all levels of 2-D DWT. It means that the width of the M-pixel section
for the current level is the same as the one in the previous level. The J-level structure can
be implemented either in the form of a single level (Fig. 15) or multilevel structure (Fig.
16), and the relevant values are listed in Table 4. We observe that the parameter M can be
determined according to hardware limitations, such as internal memory. The conclusion from
the two tables is that the block-based structure with the new scan method, in comparison
with the direct method, needs more internal memory, but needs only about one-half of the
external memory accesses. Due to the shorter access time for internal memory, the clock
pulse frequency will increase, and based on the energy model in [5] the power consumption
will decrease. In comparison with other methods, the new method remarkably decreases
the needed internal memory at the cost of a soft increase in the number of external memory
accesses.

7. Experimental results

The folded 1-D DWT architecture was described in VHDL code and simulated by
Active-HDL6.3 software. Then the relevant VHDL code was synthesized by the Synplify7.5.1
software tool to be implemented on IC XC2V40 (from the VirtexII family of Xilinx FPGAs).
The maximum estimated frequency for implementing Fig. 12 on this IC is 122.4 MHz, which
is practical for real-time implementation of the 9/7 wavelet for large images. The maximum
frequency to implement the 5/3 wavelet on the IC is 163.1 MHz. Also, the block-based
architecture with the new scan method was modeled and simulated for the 5/3 wavelet with
N = 1024 and 8-bit pixels. The code was synthesized by Synplify7.5.1 for implementation on
VirtexII. After post place and route simulation, the clock pulse frequency achieved was 97
MHz. The structure receives one pixel as input per each clock pulse. So, according to the
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Block-Based
Direct Line-Based Single Level Line-Based Multilevel Line-Based

Single
Level

Multi-
level (27) (30) (27) (30)

Internal
Memory
Size

0 5N 10N 5M 5M (5M)J (5M)J

External
Memory
Reads

8
3 N2 4

3 N2 N2 4
3 (

N2M
M−K )

4
3 N2(1+ 4

M )− 8N N2 + 4
3

N2K
M−K N2 + 16N2

M − 8N

External
Memory
Write

8
3 N2 4

3 N2 N2 4
3 N2 4

3 N2(1+ 4
M )− 8N N2 N2 + 16N2

M − 8N

Table 4. Comparison of different 2-D DWT structures for J level 9/7 wavelet (J −→ ∞)

calculations below, the folded structure can be used to perform 3 levels of 2-D DWT for 70
frames (1024×1024 pixels) per second, and it is suitable for use in real-time hardware video
codec.

t =
1024× 1024× (1+ 1

4 +
1
16 )

97MHz
= 14.2ms,

n f =
1
t
=

1
14.2ms

� 70( f rame/s).

8. Conclusion

Lifting Scheme and some different lifting based architectures for DWT presented in this
chapter. Then we focused on the size (area) of the architecture. An architecture to minimize
the number of multipliers and adders has been investigated for implementation of 1-D DWTs.
All types of 1-D DWTs can be implemented by modifying only the number of registers and
coefficients of the architecture. Thus, the folded architecture, which has fixed form units for
all DWT types, presents a new folded method for systematic implementation of DWT. It is
possible to design a software program to produce the folded architecture for different types
of wavelets. What is needed is to define coefficients (α, β, ...) required for each step of the
desired wavelet in the lifting scheme. The folded method can be extended for large and
complex structures such as multilevel discrete wavelet packet transforms [29] to reduce the
area. Also, we have reviewed the 2-D DWT block-based structure and shown its power
to trade off between the internal memory size and the number of external accesses by a
controlling parameter.
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1. Introduction 
Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation system. 
The transmission channel is divided into a number of subchannel in which each subchannel is 
assigned a subcarrier. Conventional OFDM systems use IFFT and FFT algorithms at the 
transmitter and receiver respectively to multiplex the signals and transmit them 
simultaneously over a number of subcarriers. The system employs guard intervals or cyclic 
prefixes (CP) so that the delay spread of the channel becomes longer than the channel impulse 
response (Peled & Ruiz, 1980; Bahai & Saltzberg, 1999; Kalet, 1994; Beek et al.,1999; Bingham, 
1990; Nee and Prasad, 2000). The system must make sure that the cyclic prefix is a small 
fraction of the per carrier symbol duration (Beek et al.,1999; Steendam & Moeneclaey, 1999). 
The purpose of employing the CP is to minimize inter-symbol interference (ISI). However a CP 
reduces the power efficiency and data throughput. The CP also has the disadvantage of 
reducing the spectral containment of the channels (Ahmed, 2000; Dilmirghani & Ghavami, 
2007, 2008). Due to these issues, an alternative method is to use the wavelet transform to 
replace the IFFT and FFT blocks (Ahmed, 2000; Dilmirghani & Ghavami, 2007, 2008; Akansu & 
Xueming, 1998; Sandberg & Tzannes, 1995). The wavelet transform is referred as Discrete 
Wavelet Transform OFDM (DWT-OFDM). By using the transform, the spectral containment of 
the channels is better since they are not using CP (Ahmed, 2000; Dilmirghani & Ghavami, 
2007, 2008). The illustration of the superior subchannel containment attributes in wavelet has 
been described in detailed by (Sandberg & Tzannes, 1995) as compared to Fourier. The wavelet 
transform also employs Low Pass Filter (LPF) and High Pass Filter (HPF) operating as 
Quadrature Mirror Filters satisfying perfect reconstruction and orthonormal bases properties. 
It uses filter coefficients as approximate and detail in LPF and HPF respectively. The 
approximated coefficients is sometimes referred to as scaling coefficients, whereas, the detailed 
is referred to wavelet coefficients (Abdullah et al., 2009; Weeks, 2007). In some literatures, these 
two filters are also called subband coding since the signals are divided into sub-signals of low 
and high frequencies respectively. The purpose of this chapter is to show the simulation study 
of using the Matrices Laboratory (MATLAB) on the wavelet based OFDM particularly DWT-
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OFDM as alternative substitutions for Fourier based OFDM. MATLAB is preferred for this 
approach because it offers very powerful matrices calculation with wide range of enriched 
toolboxes and simulation tools. To the best of the authors’ knowledge, there is no study on the 
descriptive procedures of simulations using MATLAB with regards of flexible transformed 
models in an OFDM system, especially when dealing with wavelet transform. Therefore, this 
chapter is divided into three main sections: section 2 will explain conventional FFT-OFDM, 
section 3 will describe in detail the models for DWT-OFDM, and section 4 will discuss the Bit 
Error rate (BER) result regarding those two transformed platforms, DWT-OFDM versus FFT-
OFDM. 

2. Fourier-based OFDM 
A typical block diagram of an OFDM system is shown in Figure 1. The inverse and forward 
blocks can be FFT-based or DWT-based OFDM.  
 

 
Fig. 1. A Typical model of an OFDM transceiver with inverse and forward transformed 
blocks which can be substituted as FFT-OFDM or DWT-OFDM. 

The system model for FFT-based OFDM will not be discussed in detail as it is well known in 
the literature. Thus, we merely present a brief description about it. The data dk is first being 
processed by a constellation mapping. M-ary QAM modulator is used for this work to map 
the raw binary data to appropriate QAM symbols. These symbols are then input into the 
IFFT block. This involves taking N parallel streams of QAM symbols (N being the number of 
sub-carriers used in the transmission of the data) and performing an IFFT operation on this 
parallel stream. The output in discrete time domain is as follows: 

 
1 2

0

1( ) ( )
nN j i
N

k m
i

X n X i e
N




   (1) 

Where xk(n) | 0 ≤ n ≤ N −1, is a sequence in the discrete time domain and Xm(i) | 0 ≤ i ≤ N − 
1 are complex numbers in the discrete frequency domain. The cyclic prefix (CP) is lastly 
added before transmission to minimize the inter-symbol interference (ISI). At the receiver, 
the process is reversed to obtain the decoded data. The CP is removed to obtain the data in 
the discrete time domain and then processed to FFT for data recovery. The output of the FFT 
in the frequency domain is as follows: 
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3. Wavelet-based OFDM 
As mentioned in the previous section, the inverse and forward block transforms are flexible 
and can be substituted with FFT or DWT-OFDM. We have discussed briefly about FFT-
OFDM. Thus, this section will describe wavelet based OFDM particularly about DWT-
OFDM transceiver. This section is divided into three parts: a description of the DWT-OFDM 
transmitter and receiver models as well as the Perfect Reconstruction properties’ discussion. 

3.1 Discrete Wavelet Transform (DWT) transmitter  
From Figure 1, it is obvious that the transmitter first uses a 16 QAM digital modulator which 
maps the serial bits d into the OFDM symbols Xm, within N parallel data stream Xm(i) where 
Xm(i) |0 ≤ i ≤ N − 1. The main task of the transmitter is to perform the discrete wavelet 
modulation by constructing orthonormal wavelets. Each Xm(i) is first converted to serial 
representation having a vector xx which will next be transposed into CA as shown in details 
as in Figure 2. This means that CA not only its imaginary part has inverting signs but also its 
form is changed to a parallel matrix. Then, the signal is up-sampled and filtered by the LPF 
coefficients or namely as approximated coefficients. This coefficients are also called scaling 
coefficients. Since our aim is to have low frequency signals, the modulated signals xx 
perform circular convolution with LPF filter whereas the HPF filter also perform the 
convolution with zeroes padding signals CD respectively. Note that the HPF filter contains 
detailed coefficients or wavelet coefficients. Different wavelet families have different filter 
length and values of approximated and detailed coefficients. Both of these filters have to 
satisfy orthonormal bases in order to operate as wavelet transform. The number of CA and 
CD depends on the OFDM subcarriers N. Samples of this processing signals CA and CD that 
pass through this block model is shown in Figure 4. The above mentioned signals are 
simulated using MATLAB command [Xk] = idwt(CA;CD;wv) where wv is the type of wavelet 
family. 
 

 
Fig. 2. Discrete Wavelet Transform (DWT)-OFDM transmitter model. 
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The detailed and approximated coefficients must be orthogonal and normal to each other. 
By assigning g as LPF filter coefficients and h as HPF filter coefficients, the orthonormal 
bases can be satisfied via four possible ways (Weeks, 2007): <g, g*>= 1, <h, h*>= 1, <g, h*>= 0 
and <h, g*>= 0. The symbol * indicates its conjugate, and the symbol < , > is referring to the 
dot product. The result which yields to 1 is related to the normal property whereas the 
result yielding to 0 is for orthogonal property accordingly.  
 

 
Fig. 3. The processed signals of one symbol DWT-OFDM system using bior5.5 in DWT 
transmitter. Top: data CA, Middle: data CD, Bottom: data Xk, corresponding to Figure 2. 

Both filters are also assumed to have perfect reconstruction property. The input and output 
of the two filters are expected to be the same. A further discussion can be found in section 
3.3. 

3.2 Discrete Wavelet Transform (DWT) receiver  
The DWT receiver is the reverse process which is simulated using the MATLAB command 
[ca; cd] = dwt(Uk;wv). The receiver system model that processes the data ca, cd and Uk  is 
shown in Figure 4. The parameter wv is to indicate the wavelet family that is used in this 
simulation. Uk is the front-end receiver data. This data is decomposed into two filters, high 
and low pass filters corresponding to detailed and approximated coefficients accordingly. 
The ca signal which is the output of the approximated coefficients or low pass filter will 
finally be processed to the QAM demodulator for data recovery. To perform that operation, 
data is first transposed before converting into parallel representation. The output Um(i) is 
passed to QAM demodulator. The index i depends on the number of OFDM subcarriers. 
The data cd is explained next. Due to the effect of CD data generated in the transmitter, Uk 
has some zeroes elements which is decomposed as the detailed coefficients. The signal 
output of these coefficients is cd. Comparing to ca, the cd signal is discarded because it does 
not contain any useful information instead. Samples of this processing signals that pass 
through the DWT-OFDM receiver model is shown in Figure 5. 
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Fig. 4. Discrete Wavelet Transform (DWT)-OFDM receiver model. 

 

 
Fig. 5. The processed signals of one symbol DWT-OFDM system using bior5.5 in DWT 
receiver. Top: data ca. Middle: data cd. Bottom: data Uk, corresponding to Figure 4.  

3.3 Perfect reconstruction 
A block diagram of perfect reconstruction (PR) system operation is illustrated in Figure 6. 
The PR property is performed by a two-channel filter bank which is represented by the LPF 
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and HPF. The first level of analysis filter in the receiver part can be folded and the decimator 
and the expander are cancelled out by each other. 
 

 
Fig. 6. A simple and modified model of two-channel filter bank illustrating a perfect 
reconstruction property with the superscript number is referring to the steps. 

To satisfy a perfect reconstruction operation, the output Yk(i) is expected to be the same as 
Xk(i). With the exception of a time delay, the input can be considered as Yk(i) = Xk(i-n) where 
n can be substituted as 1 to describe this simple task. The steps to perform the mathematical 
operation of PR can be summarized as follows (Weeks, 2007): 
1. Selecting the filter coefficients for ga, i.e., a and b. Thus, ga = {a; b}. 
2. ha is a reversed version of ga with every other value negated. Thus, ha = {b;−a}. If the  

system has 4 filter coefficients with ga = {a; b; c; d}, then ha = {d;−c; b;−a}. 
3. hs is the reversed version of ga, thus hs = {b; a}. 
4. gs is also a reversed version of ha, therefore gs = {−a; b}. 
The above steps can be rewritten as follows: 

 ga ={a,b}, ha={b,-a}, hs={b,a}, gs={-a,b} (3) 

Considering that the input with delay are applied to ha and ga in Figure 4, then the output of 
these filters are 

 Zk(i) = b(Xk(i) − a(Xk(i-1)) (4) 

 Wk(i) = a(Xk(i) + b(Xk(i-1)) (5) 

Considering also that Zk(i) and Wk(i) are delayed by 1, then i can be replaced by (i-1) as 
follows 

 Zk(i-1) = a(Xk(i-1) + b(Xk(i-2)) (6) 

 Wk(i-1) = b(Xk(i-1) − a(Xk(i-2)) (7) 

The output Yk(i) can be written as 

 Yk(i) = gsZk(i) + hsWk(i) (8) 

or, 

 Yk(i) = −aZk(i) + bZk(i-1) + bWk(i) + aWk(i-1) (9) 



 
Simulation of Models and BER Performances of DWT-OFDM versus FFT-OFDM 63 

Substituting equations (5), (6), (7) and (8) into (9) yields to 

 Yk(i) = 2(a2 + b2)Xk(i-1) (10) 

The output Yk(i) is the same as the input Xk(i) except that it is delayed by 1 if we substitute 
the coefficient factor 2(a2 +b2) by 1. The PR condition is satisfied. 

4. Simulation results 
Simulation variables and their matrix values are shown in Table I. The number of samples 
for the subcarriers N is 64, and the number of samples for the symbols ns is 1000. Data is 
similar between FFT and DWT OFDM in all parameters except the multiplexed one. For 
DWT-OFDM, it is required the transmitted signal to have double the data of FFT-OFDM. 
This is due to the fact that the DWT transmitter has zeroes padding component. An element 
value in the table that has a multiplier is referred to its matrix representation of row and 
column. If the element has 64 x 1000, it means that it has 64 numbers of rows and 1000 
numbers of columns. 
 

 Variables and Parameters FFT-OFDM DWT-OFDM 

Minimum 
requirement 

Subcarriers 64 64 

OFDM symbols 1000 1000 

Transmitter 

input binary generated 64 x 1000 64 x 1000 

parallel transmitted data 64 x 1000 64 x 1000 

serial transmitted data 1 x 64000 1 x 64000 

multiplexed data transmitted 64000 x 1 128000 x 1 

Receiver 

multiplexed data received 64000 x 1 128000 x 1 

serial received data 1 x 64000 1 x 64000 

parallel received data 64 x 1000 64 x 1000 

output binary recovered 64 x 1000 64 x 1000 

Table 1. Simulation variables and their matrix values. 

The curves in Figure 8 could have been better if we used more number of samples for the 
symbols. However, this yields longer time of running the simulations. Other variables are 
listed according to their use as in Figures 1, 2 and 3. Figure 7 shows the OFDM symbols in 
time domain for the two transformed platforms FFT and DWT. Some of the simulation 
parameters related to this figure are: the OFDM symbol period To = 9 ms, the total 
simulation time t = 10 × To = 90 ms, the sampling frequency fs = 71.11 kHz, the carriers 
spacing ΔN = 1.11 kHz and the bandwidth B = ΔN × 64 = 71.11 kHz. Thus, the simulation 
satisfied the Nyquist criterion where fs < 2B. Both platforms used the same parameters. It is 
interesting to observe that the DWT-OFDM symbol is less in term of the mean of amplitude 
vectors as compared to FFT-OFDM. The mean of FFT is 1.4270, whereas, the mean of DWT 
is -9.667E-04. This is due to the fact that zero - padding was performed in the DWT  
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Fig. 7. An OFDM symbol in time domain: FFT-OFDM (Top), DWT-OFDM (Bottom). 

 

 
Fig. 8. BER performance for DWT-OFDM. 



 
Simulation of Models and BER Performances of DWT-OFDM versus FFT-OFDM 65 

(transmitter) system model. As a result, most samples in the middle of DWT-OFDM symbol 
is almost zeroes. The DWT-OFDM performance can be observed from Figure 8. The wavelet 
families Biorthogonal and Daubechies are compared with FFT-OFDM. It is shown that 
bior5.5 is superior among all others. It outperforms FFT and Daubechies by about 2 dB and 
bior3.3 by 8 dB at 0.001 BER. 

5. Conclusions 
Simulation approaches using MATLAB for wavelet based OFDM, particularly in DWT-
OFDM as alternative substitutions for Fourier based OFDM are presented.  Conventional 
OFDM systems use IFFT and FFT algorithms at the transmitter and receiver respectively to 
multiplex the signals and transmit them simultaneously over a number of subcarriers. The 
system employs guard intervals or cyclic prefixes so that the delay spread of the channel 
becomes longer than the channel impulse response. The system must make sure that the 
cyclic prefix is a small fraction of the per carrier symbol duration. The purpose of employing 
the CP is to minimize inter-symbol interference (ISI). However a CP reduces the power 
efficiency and data throughput. The CP also has the disadvantage of reducing the spectral 
containment of the channels. Due to these issues, an alternative method is to use the wavelet 
transform to replace the IFFT and FFT blocks. The wavelet transform is referred as Discrete 
Wavelet Transform OFDM (DWT-OFDM). By using the transform, the spectral containment 
of the channels is better since they are not using CP.  The wavelet based OFDM (DWT-
OFDM) is assumed to have ortho-normal bases properties and satisfy the perfect 
reconstruction property. We use different wavelet families particularly, Biorthogonal and 
Daubechies and compare with conventional FFT-OFDM system. BER performances of both 
OFDM systems are also obtained. It is found that the DWT-OFDM platform is superior as 
compared to others as it has less error rate, especially using bior5.5 wavelet family. 
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1. Introduction 
SPIHT (Set Partitioning In hierachical trees), being an efficient coding method for wavelet 
coefficients, has acquired more and more widely application, especially in image/video 
compression fields. But, conventional SPHIT have some obvious limitions. For example, 
when for the color image compression, polarmetric SAR image compression, or multi-
spectrum image compression and other multi-channel image compression, there are only 
very limited image planes(R,G,B for color image, HH, HV,VVfor polarmetric SAR images) 
but there exist large amount of information redundancy among the image planes. So, 
considering the support length of discrete wavelet transform, we can’t use the set 8-partition 
methods such as 3D-SPIHT which has been used for video compression. Another example, 
when the input image is unsymmetrical such as 16x512 image block even only one line 
image content, which is very common in hardware design, because it means the larger final 
chip die size for the many line buffers. But, the traditional SPIHT codec can acquire the best 
compression performances only for the image is symmetrical in horizontal and vertical 
dimension. To the above specific applications, I will discuss several kinds of modified 
SPIHT in this chapter, most of them are the author’s newly research result. 
In the following section, We will give a simple description about the traditional SPIHT 
codec, then, we will take the polarimetric SAR intensity image compression as example and 
give some specific compression method for multi-channel image compression. Certainly, 
before encoding for the wavelet coefficients, we need a 3D matrix transform to remove the 
information redundancy among the image plane and in each image plane. For the 
unsymmetrical image compression used in hardware design, an unsymmetrical SPIHT 
codec is detailed addressed, at the time, its specific case for only 1 line image compression, 
1D SPIHT codec is also given. 

2. Traditional SPIHT codec[1] 
SPIHT can be used to compress the traditional image, but it need 2D discrete wavelet 
transform (DWT) before encode the wavelet coefficients. The correlation of DWT coefficients 
not only exist in each subband inside but also among different subbands. Conventional 
SPIHT codec is to encode coefficients by SOT (Spatial Orientation Tree), which utilize the 
correlation of the same subband and different subbands. Conventional SPIHT codec, having 
many advantages such as simpleness, embedded code stream when compared with other 
encoders, is a very efficient compression method. 



 
Discrete Wavelet Transforms: Algorithms and Applications 

 

68

According the SOT structure, the set partitioning can be defined as: 

 
( , ) ( , ) ( , )
( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

T i j c i j D i j
D i j O i j L i j

L i j D k l k l O i j

  


 
   

 (1) 

Here, ( , )T i j  is spatial orientation tree and ( , )c i j  is a root node of the tree; ( , )D i j , ( , )O i j  
and ( , )L i j  are node ( , )c i j ’s descendant node set, direct descendant node set and indirect 
descendant node set. Direct node set ( , )O i j  can be further partitioned into 4 nodes just as 
the following:  

 ( ,  ) = { (2 ,  2 ),  (2 ,  2 1),  (2 1,  2 ),  (2 1,  2 1)}O i j c i j c i j c i j c i j     (2) 

Conventional SPIHT encoding process can be divided into sorting pass and refinement pass. 
During the encoding process, 3 lists are used to record the corresponding encoding 
information, which include List of insignificant set (LIS), list of insignificant pixel (LIP) and 
list of significant pixel (LSP). The basic operation is significance test and the significance test 
function is just as the following:  

    

 
,

,1, 2max

0, ,
i j T

n

n
i j

S T

otherwise

c


 
 



 (3) 

The encoding process can be simply described as: 
Output the initialized threshold 2log (max ( , )n c i j    ; set LSP as NULL; add the root nodes 
having and no having descendant nodes to LIS and LIP respectively. 
For a spatial orientation tree ( , )T i j , its nodes are partitioned into nodes ( , )c i j  and 
descendant nodes ( , )D i j  according to formula 1. If node ( , )c i j  is significant, move it from 
LIP into LSP. If ( , )D i j  is significant, then partition ( , )D i j  into ( , )O i j  and ( , )L i j . The 
significant nodes of ( , )O i j  will also be moved to LSP according to the significance test. If 

( , )L i j  is significant, then ( , )L i j  will also be partitioned 4 set and test the significance of 
every set. This process will be continued on. 
Sorting pass is for every element ( , )c i j  of LSP; output the thn  efficient bit of ( , )c i j  for the 
current threshold n.  
Decrease the n and continue the sorting pass and refinement pass until meet the required bit 
number or the end of encoding.  
The decoding process is same to the encoding process, which, compared with EZW, make it 
un-necessary to transmit position information because the position information is 
embedded in the encoding process. 

3. Multi-channel image compression 
SPIHT, utilizing the information redundancy of 2D wavelet coefficients and adopting set 4 
division, can be used to compress 2D image data. Naturally, it can be enlongated to 3D 
video compression, that is to say, if we adopt 3D DWT to remove the information 
redundancy of video data and choose set 8-partition instead of set 4-partition to encode 3D 
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wavelet transform coefficients, this method is called 3D-SPIHT. But at some cases, we only 
need to compress multi-channel image, such as color images (R,G, B), polarimetric SAR 
image (HH,HV,VV), multi-spectrum image, ect. Because the third dimension usually have 
only limited image planes and can’t be processed by supported discrete wavelet transform, 
however there exist much information redundancy among each image channel. In this case, 
consider it’s simplity, 2D DWT for each image plane and 1D DCT can be used to remove the 
information redundancy. In the following section 3.1-3, taking polarimetric SAR image as 
example, 3D matrix transform and the related compression method including bit allocation 
based encoding method and 3D SPIHT Embedded method will be addressed.  

3.1 3D matrix transform for multi-channel image 
At first, 3D-matrix [2-3] is adopted to represent the multi-polarimetric SAR intensity images. 
The 1st, 2nd and 3rd planes represent the HH, HV and VV polarimetric SAR intensity image 
respectively. Assuming the image dimensions are: M N , the multi-polarimetric SAR 
images can be written as a 3M N   matrix ( , , )f x y z  ( 0,1,2, 1;x M   

0,1,2 1; 0,1,2)y N z   . In order to remove the redundancy of the matrix, DWT, KLT, 
DCT and other linear transforms can be used. 
Because there are only 3 components in polarimetric channel and KLT is dependent on the 
statistic properties of data, DCT other than DWT or KLT or other linear transforms is chosen 
to remove the redundancy of polarimetric channels. According to DCT transform definition, 
the DCT transform can be represented as:  
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0

1( , ,0) ( , , )
3
2 (2 1)( , , ) ( , , )cos ( 1,2)
3 6

z

z

F x y f x y z

z Z
F x y Z f x y z Z









 




 (4) 

The 3D-matrix can be composed in other orders, such as HH, VV, HV acted as the 1st, 2nd 

and 3rd planes respectively. The components of like-polarimetric(HH and VV) have strong 
correlation, while the components of cross-polarimetric (HH/VV and HV) have weak 
correlation. Both the DCT theory and experiment results prove that the DCT coefficients of 
the matrix composed of HH, HV and VV are the most concentrated and that the decoded 
images have the least loss at the same coding rate 
After 1D-DCT transform, the data power of the 3D-matrix is concentrated into the 1st plane 
and the redundancy among three data planes decreases greatly. In order to remove the 
redundancy in every data plane of the 3D matrix, 2D-DWT is chosen. According to the 
definition of 2D-DWT transform, the image data can be decomposed into horizontal, 
vertical, diagonal and low frequency components after horizontal and vertical filtering. The 
low frequency component can be decomposed further. After many level discrete wavelet 
transform, the data power is concentrated to the low frequency components. After 1D-DCT 
transform and 2D-DWT transform, the power of the whole 3D-matrix is concentrated onto 
the top left corner. 3 level wavelet transform is adopted, so each data plane is decomposed 
into 10 subbands including LL3, HL3, LH3 HH3, HL2, LH2, HH2, HL1, LH1, HH1. Of all the 
subbands, the LL3 subband of the 1st plane has the highest power. 
The 3D-matrix transform of Multi-polarimetric SAR intensity images (1D-DCT among 
polarimetric channel and 2D-DWT in each polarimetric plane) is illustrated in Figure.1. The 
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1D-DCT and 2D-DWT are linear transform, so, the operation 1DCTz and 2DWTx,y can be 
inverted in sequence, that is:  

 , ,1 (2 ( ( , , ))) 2 (1 ( ( , , )))z x y x y zDCT DWT f x y z DWT DCT f x y z  (5) 

 

 
Fig. 1. Illustration of 3D-matrix transform of multi-polarimetric SAR intensity images. 

3.2 Bit allocation based on differential entropy encoding 
The three mixed coefficient planes have different energy, which means different importance. 
Different bit allocation scheme will greatly affect the quality of decoding images even at the 
same mean quantization bit rate. Our aim is to find the optimal quantization bits allocation 
to make the decoding images have the least distortion, which is a constrained optimal 
problem. The rate distortion function R(D) is unknown in most cases, so its solutions have 
become a hot research issue. Two variant iterate search [4], Dynamic programming [5] and 
R/D curve modeling [6] are proposed, but these methods yet haven’t been adopted for its 
enormous computation complexity or the local optimal not the whole optimal bit allocation 
searched. In this subsection, a new bit allocation method based on differential entropy is 
proposed. Compared with the existing bit allocation methods, it is easy to find a better bit 
allocation in whole with the proposed method. At the same time, the computation is not 
very complex. 
Let 1R , 2R , 3R  be the optimal bit rate for the three mixed coefficient plane respectively and 

TR be the mean bit rate; Let ( )D R  be distortion rate function. So, the optimal bit allocation 
problem can be represented as: 

 1 2 3
1 1 2 2 3 3, ,

1 2 3

min ( ( ) ( ) ( ))

subject to 3
R R R

T

D R D R D R

R R R R

 


  
 (6) 

Adopt the Lagrangian multiplier, 

 1 2 3 1 1 2 2 3 3 1 2 3( , , ) ( ) ( ) ( ) (3 )TF R R R D R D R D R R R R R        (7) 
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According to the inequation of rate distortion function for non-Gauss continuous 
information source, we have: 

 
21 1( ) log 2 ( ) log

2 2
h U eD R D

D
    (9) 

where ( )h U  is the differential entropy of information source and 2  is its mean square 
error.  
At high bit rate, the lower bound of the inequation approaches the real rate distortion 
function for most probability distributed information source. So, we can let the lower bound 
equal to the real rate distortion function and then acquire: 
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Further, we can acquire  
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For every mixed coefficient plane:  
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According to the constrain condition 1 2 3 3 TR R R R   , we can acquire the final bit 
allocation for every coefficient plane: 
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 (14) 

From formula (14), we can acquire the optimal bit allocation for the three mixed coefficient 
planes, then the conventional SPIHT can be adopted to encode the coefficients for every 
plane according to the corresponding allocated bit rate.  

3.3 3D-SPIHT embedded encoding 
The formula (14) provides a method to compute the bit rate allocation，but the bit allocation 
accuracy strongly depends on the degree of the lower bound of formula (9) approaches the 
real rate distortion function. So, in most cases, we only can acquire an approximating 
optimal bit allocation. In this subsection, a new method named 3D-SPIHT embedded 
algorithm is proposed, which extends the conventional SPIHT algorithm to 3D case. It 
avoids bit allocation by adopting 3D-SPIHT to encode the three mixed coefficient plane 
entirely, so the optimal bit rate allocation can be ensured.  
During the 3D-SPIHT encoding process, the following sets and lists will be used: 

( , )iplaneH i j , ( , )iplaneD i j , ( , )iplaneO i j  and ( , )iplaneL i j  represent the thiplane  coefficient plane’s 
root node, descendant’s nodes of node(i,j), offspring’s nodes of node(i,j) and indirect 
offspring’s nodes of node(i,j) respectively. LISiplane, LIPiplane and LSPiplane represent the 

thiplane  plane’s list of insignificant pixel sets, list of insignificant pixels and list of significant 
pixels respectively, where 1,2,3iplane  . 
Just as the conventional SPIHT algorithm, the set splitting procedure for every coefficient 
plane can be defined as following:  

 
( , ) ( , ) ( , )
( , ) ( , ) ( , )
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L i j D k l k l O i j

  
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

  
 (15) 

The 3D-SPIHT process can be divided into sorting pass and refinement pass, whose basic 
operations is also significance test of set just as the conventional SPIHT algorithm. That is， 

    
 

,

1, 2max ( , )

0,
iplane

n
iplane

i j Tn iplane

C i j
S T

otherwise



 
 



 (16) 

where ( , )iplaneC i j  is the wavelet coefficient of coordinate ( , )i j  in the thiplane  mixed 
coefficient plane. 
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The followings are the coding process: 
1. Initialization  

Output 

    
    
    

1 2 1,

2 2 2,

3 2 3,

1

_ max log max ( , )

_ max log max ( , )

_ max log max ( , )

_ max

i j

i j

i j

n C i j

n C i j

n C i j

n n

      


     
     




 (17) 

(For the HH HV VV combination, 1 3 2_ max _ max _ maxn n n   can always be satisfied) 
For every coefficient plane, set list of significant pixels (LSPiplane) as NULL, then add the 
coordinate ( , ) iplanei j H  to LIPiplane and those that have descendants to LISiplane, at the same 
time, set their type to be A.  
2. Sorting pass 
If 3_ maxn n , only sort 1( , )C i j  just as conventional SPIHT algorithm. 
If 2 3_ max _ maxn n n  , sort 1( , )C i j  and then sort 3( , )C i j  in succession. 
If 2_ maxn n , sort 1( , )C i j  and then sort 2( , )C i j , 3( , )C i j  in succession. 
3. Refinement pass 
If 3_ maxn n , for any entry (i,j) in 1LSP  except those included in the last sorting pass, 
output the nth most significant bit of 1( , )C i j . 
If 2 3_ max _ maxn n n  , for any entry (i,j) in 1LSP  and 3LSP except those included in the 
last sorting pass, output the nth most significant bit of 1( , )C i j  and 3( , )C i j . 
If 2_ maxn n , for any entry (i,j) in 1LSP , 2LSP  and 3LSP  except those included in the last 
sorting pass, output the nth most significant bit of 1( , )C i j , 2( , )C i j  and 3( , )C i j . 
4. Quantization updating 
Decrement n by 1 and go to step 2 until acquire the desired compression ratio.  
The code stream of embedded 3D-SPIHT encoding can be illustrated as figure.2. The 
decoding process and encoding process are just the same. So, it’s easy to present the 
decoding process according to the 3D-SPIHT encoding process. The code stream of 3D-
SPIHT is more compact and efficient for the three mixed coefficient planes are interleaved 
during the encoding process.  
 
 
 
 

 
 
 

Fig. 2. Code stream illustration for embedded 3D-SPIHT. 
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Additionally, it is necessary to be mentioned that there have been two kinds of 3D-SPIHT 
algorithms before. One is proposed for video compression by extending the conventional 
SPIHT algorithm to 3D case directly and encoding the 3D-DWT wavelet coefficients of video 
data, so the SOF is defined as 8 splitting [7]. The other is proposed for compression of 
multispectral images, which make some amendments of the conventional SPIHT by adding 
one spectral child to every baseband coefficient, so its SOF is still 4 splitting [8]. The 
proposed 3D-SPIHT embedded coding in this book is very different from the two existing 
3D-SPIHT algorithms, which encodes 1 or 2 or 3 coefficient planes of the 3 mixed coefficient 
plane sequentially by adopting 3 independent thresholds.  

4. Unsymmetrical SPIHT codec 
It is easy to find that the set partitioning is keeping on 4 partitioning for conventional SPIHT 
codec, that is to say the same set partitioning in vertical and horizontal direction. This means 
that the wavelet decomposition only can be implemented under the constraint of the same 
decomposition level in vertical and horizontal direction, which will affect the redundancy 
removing of image data efficiently and the final compression performance. The 
unsymmetrical SPIHT codec, adopting set 2-partitioning or set 4-partitioning according the 
requirements, doesn’t require the same decomposition level in vertical and horizontal 
direction. So, DWT can be implemented with each highest feasible decomposition level in 
vertical and horizontal direction respectively and then the spatial redundancy can be 
removed efficiently.  
Because the flow chart of unsymmetrical SPIHT codec is very near to conventional SPIHT 
codec, only the difference is given. 
Assume the image dimensions are *W H  and * 2HLevelH h , * 2WLevelW w , here 
HLevel , WLevel  are the highest feasible decomposition level in vertical and horizontal 
direction respectively. Usually, there exists HLevel WLevel  when the image size are 
unsymmetrical. For the conventional SPIHT, the highest feasible decomposition level only 
can be the lower one of HLevel and WLevel , so, min( , )Level WLevel HLevel . But for 
unsymmetrical SPIHT codec, the highest wavelet decomposition levels in vertical and 
horizontal direction are HLevel  and WLevel  respectively. 
All set partitions for conventional SPIHT are set 4 partitioning just as the formula 2, but the 
set partitions for unsymmetrical SPIHT are set 2-partitioning or set 4-partitioning, just as the 
following formula: 

 

0

0

( ,2 ), ( ,2 1)
2

( , ) (2 , ), (2 1, )
2

(2 ,2 ), (2 1,2 ), (2 ,2 1), (2 1,2 1)

H
c i j c i j if H i

W
O i j c i j c i j if iW j

c i j c i j c i j c i j otherwise

    
 
     
 

    
  

 (18) 

Here, 0 12HLevel WLevel
H

H   , 0 12WLevel HLevel
W

W   . 

When HLevel WLevel , the unsymmetrical SPIHT codec will completely degenerate into 
conventional SPIHT codec. When 1HLevel   or 1WLevel  , only set 2-partitioning are 
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implemented in one direction, the coefficients can be encoded line by line independently. 
The wavelet transform in another direction is only be used as compacting the image energy. 
Fig 3 and Fig 4 are the illustrations of conventional SPIHT encoding and unsymmetrical 
SPIHT encoding at 3HLevel   or 5WLevel  . 

 
 
 
 
 

 
 
 

Fig. 3. The illustration of set partitioning using conventional SPIHT encoding for 
unsymmetrical image size 

 
 
 
 
 

 
 
 

Fig. 4. The illustration of set partitioning with unsymmetrical SPIHT encoding for 
unsymmetrical image size 
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5. 1D SPIHT codec 
In section 4, unsymmetrical SPIHT codec is detailed described, which also need 2D image 
data or image block. But, in real time image transmission or scan display system, the image 
data are usually transmitted or displayed line by line. In order to use conventional SPIHT or 
unsymmetrical SPIHT, it needs many line buffers to store the previous image data. In 
hardware, it is a high burden for the costly RAM. So, 1 line image data compression method 
will have the precedence over other block based compression methods, such as the 1D DWT 
followed 1D SPIHT codec which will be addressed in the following.  
After 1D DWT, the wavelet coefficient also has the natural pyramid characteristic: every 
pixel of the high frequency subband has its 2 corresponding pixels in its adjacent level high 
frequency subbands in position, which means that only set 2-partitioning can adopted. The 
illustration is given in fig3. 
 

 
 
 
 

 
 

 
 

Fig. 5. The illustration of set partitioning with 1D SPIHT encoding for 1 line image. 

The SOT and set partitioning can be written as formula 19 and 20.  

 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

T i c i D i
D i O i L i

L i D k k O i

  


 
   

 (19) 

 ( ) = { (2 ),   (2 1)}O i c i c i   (20) 

From fig 5 and formula 19 and 20, we can see that 1D SPIHT use set 2 partitioning to encode 
1D DWT coefficients, which only need 1 line buffer RAM but leave another dimensional 
redundancy un-removed. 

6. Conclusion 
In this chapter, SPIHT and it’s derivatives or its modification methods, such as 3D-SPIHT, 
3D-SPIHT Embedded method, Unsymmetrical SPIHT and 1D-SPIHT are described,  
which can overcome the disadvantages of traditional SPIHT codec and meet the  
specific requirements for the real applications. Fig.6 gives the derivative relationship of 
traditional SPIHT and its several modified methods. We can see that SPIHT is the 
foundation for traditional symmetrical image, but it can’t meet the requirements at some 
specific applications, such as multi-channel image, strip image (unsymmetrical image),  
even image line. But, its modified version can meet some specific requirements in real 
applications.  
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* mean the corresponding dimension is limited compared other dimensions 

Fig. 6. Family of SPIHT and its derivatives. 
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1. Introduction 

Detecting edges is a very well known subject in the image-processing field. Edge detection is 
the process of the localization of significant discontinuities in the grey level image and the 
identification of the physical phenomena that originated them. Those significant intensity 
changes occur at different resolution or scales for a given image. As suggested by Rosenfeld 
and Thurston (Rosenfeld & Thurston, 1976) and Marr (Marr, 1982), we can obtain a 
description of the image changes at different scales combining the information given by an 
edge detector applied at different resolutions. This is the aim of the work presented in this 
paper. 
The first aspect to be covered by multiresolution analysis is the filter chosen to accomplish 
the low-pass filtering of the image at different scales. At a single resolution, low pass 
filtering is imposed because differentiation is an ill-posed problem (Torre & Poggio, 1984). 
The needed regularization process is implemented by means of a low pass filter. Marr 
(Marr, 1982) proposed the Gaussian filter because its optimal behaviour in terms of the 
smoothing and the localization in both the spatial and frequency domains. This filter has 
been commonly used in edge detectors. In a multiresolution approach the first or second 
directional derivatives of the low pass filtered image with Gaussians of different widths are 
used to detect edges. In the Bergholm edge focusing method (Bergholm, 1987) various edge 
maps extracted at different scales are integrated allowing distinguishing shadows contours 
from perfect ones using Canny’s operator (Canny, 1986) with different widths. Another 
possibility is to describe the image in terms of the scale space as proposed by Witkin 
(Witkin, 1983) and to detect edges in terms of the zero crossing of the Laplacian operator 
with different widths (Park et al., 1995) (Eklundth et al., 1982). 
Other multiresolution methods have been proposed. Mallat and Zhong (Mallat & Zhong, 
1992) related multiscale edge detection with the discrete wavelet transform (DWT). They 
proposed a wavelet to perform edge detection and they showed that the evolution of 
wavelet local maxima across scales characterizes the shape of irregular structures. In our 
work we will use the wavelet-based algorithm proposed by Mallat and Zhong and we will 
show the condition that must be satisfied by the Gaussian filter to be comparable with the 
Mallat and Zhong’s wavelet. Our aim is to detect and classify different edge types. Various 
edge profiles have been proposed. Rosenfeld (Rosenfeld & Kak, 1976) proposed the step, 
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ramp, pulse and stair as the basic edge types. He stated that these profiles are suited for a 
first intuitive classification of the edges found in the contours of real images. 
William and Shah (Williams & Shah, 1990, 1993) have studied these edge types using the 
first directional derivative of the Gaussian. Some other profiles like the blurred step have 
also been proposed and analyzed (Ziou & Tabbone, 1993). In a first step of this work we are 
going to analyze the evolution of the modulus of the wavelet coefficients at the edge 
position in order to classify the edges into four different profiles: step, ramp, stair and pulse 
(Beltrán et al., 1994). Then we will propose a general schema to detect, analyze and classify 
different edge types. 
Due to the high pass filtering operation involved in the edge detection algorithms, the noise is 
always amplified when detecting edges. Thresholding has been the most common way to 
eliminate the irrelevant or noise detected edges (Canny, 1986; Marr, 1982). To validate the 
proposed classification schema we will present the noise (Gaussian noise) as a new edge class 
(Beltrán et al., 1998). Then, we have analyzed this contour type and we have modified the 
proposed classification algorithm to include the noise as a new edge type. With the noise edges 
labelled we can easily implement a noise-filtering algorithm. Finally, we have developed a 
new classification algorithm including other edge profile models, such as the roof, ridge and 
two non-antisymmetrical step profiles, like the ones proposed by Paillou (Paillou, 1994). 
This chapter is divided as follows. Section 2 presents a survey of the wavelet formalism 
introduced by Mallat and Zhong. Then, we will show the geometrical contour types: step, 
ramp, pulse and stair. Section 3 presents the edge detection algorithm including the wavelet 
algorithm implementation. Section 4 presents the classification algorithm implementation 
details as well as the classification results obtained processing a 256x256 grey level synthetic 
image with four objects: a circle, a square, a triangle and a narrow line, each one having a 
different contour type. Section 5 deals with the characterization of the noise as a new type of 
contour. Section 6 copes with the new contour types just introduced, the modified 
classification algorithm together with the obtained results. In section 7 we present the main 
conclusions and the future work.  

2. Theoretical basis 

Mallat and Zhong (Mallat & Zhong, 1992) introduced the relationship between the wavelet 
transform and a multiresolution edge detection algorithm. We are going to briefly 

summarize those results. Let be f(x,y) ∈ L2(R2) an image and ψ(x,y) a wavelet. The 
bidimensional wavelet transform of f(x,y) is defined as: 

 
y v1 x u

W f(u,v) f(x,y) ψ ,s
s s s

+∞+∞ −− 
= ∫ ∫  

 −∞−∞
 (1) 

If we define the dilation by a factor s as: 

 ( ) y1 x
ψ x,y ψ ,s s s s

 
=  

 
 (2) 

and ( ) ( )ψ x,y ψ -x,-y=ɶ ɶ , we can rewrite (1) as a convolution:  

 ( ) ( )W f u,v f ψ u,vs s= ∗ ɶ  (3) 
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So, as expressed in (3), the wavelet transform can be seen as the filtering of f(x,y) by the filter 

ψs
ɶ (x,y), that is a variable width bandpass filter (Mallat, 1989). It is possible to define N 

directional wavelets ψi(x,y) (1 ≤ i ≤ N), satisfying energy conservation properties. In such a 

case the directional wavelet transform of f(x,y) is defined as: 

 ( ) ( )i iW f u,v f ψ u,vs s= ∗ ɶ  (4) 

Equation (4) represents the filtering of f(x,y) by the bidimensional, directional and bandpass 

filter iψs
ɶ (x,y). 

We can define the Discrete Wavelet Transform (DWT) by selecting the scales inside a dyadic 

grid; that is to say, the scale could be expressed as S=2j with j ∈ Z. Therefore, for discrete 

signals, we can understand the 2-D wavelet transform as the result of filtering the 2-D signal 

(the original image) with a bandpass directional FIR filter. 

Mallat and Zhong (Mallat & Zhong, 1992) designed a function specially suited for edge 

detection purposes, which is a wavelet. This function is not a orthogonal wavelet, so the 

only condition to be satisfied by ψ(x,y) is: 

 ( )ψ u,v dudv 0
+∞+∞

=∫ ∫
−∞−∞

 (5) 

We can define two functions ψ1(x,y) and ψ2(x,y) as: 

 
1 2θ(x,y) θ(x,y)

ψ (x,y)  ,  ψ (x,y)
x y

∂ ∂
∂ ∂

= =  (6) 

Where θ(x,y) is a smoothing function, that is to say, the integral over x and y is one, and it 

converges to zero at infinity. With these conditions is easy to show that both ψ1(x,y) and 

ψ2(x,y) satisfy (5), so they are wavelets. Following equation (3) we can say that the wavelet 

transform of f(x,y) is: 

 

1 1W f(x,y) f ψ (x,y)s s
2 2W f(x,y) f ψ (x,y)s s

= ∗

= ∗

ɶ

ɶ

 (7) 

From (6) and (7) it can be shown that the wavelet transform is the gradient of the image 

smoothed by a factor or scale s. It can be expressed as:  

 

(f θ )1 sW f(x,y) xs s s (f θ )s2W f(x,y) (f θ )s s
y

∂
∂
∂
∂

 ∗  
   = = ∇ ∗
   ∗   

 

�

 (8) 

We can define the modulus M and the phase Φ of the gradient at scale s as: 

 ( ) 2 21 2
s s sM (f θ ) W f(x,y) W f(x,y)∇ ∗ = +

�
 (9) 
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 ( )
2
s

s 1
s

W f(x,y)
(f θ ) atan

W f(x,y)

 
Φ ∇ ∗ =   

 

�
 (10) 

A point (x0,y0) will be an edge point of the smoothed image f *θs (x,y) if in this point there is 

a relative maximum of M in the direction addressed by Φ. The above statement is the 

classical definition of edge detection proposed by Canny [5]. In the wavelet case we have a 

discrete set of scales 2 js =  (0 ≤ j ≤ J), and we can calculate the edges at each scale and not at 

an only one scale as described in Canny’s work. So, we can conclude that we can implement 

a multiresolution edge detection algorithm by means of the 2-D wavelet transform. The 

smoothing function could be a new defined function, as in Mallat and Zhong’s work, or a 

Gaussian function, as in Canny’s work.  

Mallat and Zhong (Mallat & Zhong, 1992) defined θ(x,y) as a separable bidimensional cubic 

spline, so ψ(x,y) is a separable bidimensional quadratic spline. Their 1-D expressions are: 

 

8 83 2x 8x 8x        if    1 x 1 2 
3 3

43 28x 8x              if   1 2 x 0
3

43 28x 8x                 if      0 x 1 2
3

8 83 2x 8x 8x     if      1 2 x 1
3 3

0                                   otherwise

θ̂(x)

 + + + − ≤ ≤ −

− − + − ≤ ≤

=  − + ≤ ≤

− + − + ≤ ≤












 (11) 

 

28x 16x 8        if    1 x 1 2 

224x 16x         if   1 2 x 0

2(x) 24x 16x            if      0 x 1 2

28x 16x 8      if      1 2 x 1

0                           otherwise

ψ̂

 + + − ≤ ≤ −
− − − ≤ ≤

=  − ≤ ≤

− + − ≤ ≤



 (12) 

In the 2-D case we can define ˆ ˆθ(x,y) θ(x)θ(y)= and ˆ ˆψ(x,y) ψ(x)ψ(y)= . We can compare the 

wavelet and the Gaussian functions behaviour. In figure 1 we can observe that both 

functions present a similar aspect. We have obtained a relationship between the Gaussian 

width σ and the scale s of the wavelet analysis. The Gaussian normalization constant is: 

1
N

2̟ σ
=

⋅
, and the smoothing function value at the origin is 

4
θ(0)

3
= . 

Equating both quantities we obtain σ= 0.3. So, to obtain a similar analysis with the wavelet 
and the Gaussian function, the Gaussian width and the scale should be related by the 
aforementioned expression. 
Now we will to present the edge profiles considered initially. We have considered that each 
profile contour is a function that represents a change in the grey level with respect to the 

image dimensions. In this work we will name Ui the contour height, ω the contour width, x0 
the contour position (at the middle of the contour) and s the scale. 
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Fig. 1. Left: Solid line: Smoothing function. Dotted line: Gaussian with σ = 0.3. Right: Solid 

line: Wavelet. Dotted line: First derivative of Gaussian with σ = 0.3. 

2.1 Step 

A step profile is shown in figure 2. We have named x0 the step location and U0 the step 
height. Let be u(x) the step function.  

 0 0

0

U   if x x
u(x)

0     if x x

≥
= 

<
 (13) 

 

 

Fig. 2. Step profile. Horizontal axis represents pixels. Vertical axis represents grey level. 

2.2 Ramp 

The ramp profile is drawn in figure 3. The point x0 is the middle point of the ramp; U0 is the 

height and ω is the ramp width. The ramp slope is m = U0/ω. Let be r(x) the ramp function.  

 

0

0 0 0

0 0

ω
0            if x x

2
ω ω

r(x) mx r   if x x x
2 2

ω
U          if x x

2

 < −



= + − ≤ ≤ +



> +

 (14) 

 

 

Fig. 3. Ramp profile. Horizontal axis represents pixels. Vertical axis represents grey level. 
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2.3 Stair 

A stair profile with two steps, named s(x), is shown in figure 4. We have named the point x0 

the middle of the stair, ω is the stair width and U0 and U1 are, respectively, the steps height.  

 

0

1 0 0

0 0

ω
0    if  x x

2
ω ω

s(x) U   if  x x x
2 2

ω
U   if  x x

2

 < −



= − ≤ ≤ +



> +

 (15) 

 

 

Fig. 4. Stair profile. Horizontal axis represents pixels. Vertical axis represents grey level. 

2.4 Pulse 

A pulse profile, named p(x), is shown in figure 5. The point x0 is the middle of the pulse, ω is 
the width. U0 and U1 are, respectively, the maximum and minimum height. 

 

0

0 0 0

1 0

ω
0    if  x x

2
ω ω

p(x) U   if  x x x
2 2

ω
U   if  x x

2

 < −



= − ≤ ≤ +



> +

 (16) 

 

 
Fig. 5. Pulse profile. Horizontal axis represents pixels. Vertical axis represents grey level. 

3. Edge detection algorithm 

The processing algorithm we have used is the edge detection algorithm proposed in Mallat 
and Zhong’s work (Mallat & Zhong, 1992). For analysis purposes we have used six of the 
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eight possible scales for a 256x256 grey level image. The scale s forms a dyadic sequence (s = 
2j, j = 1..6). The algorithm is summarized in figure 6, and table 1 shows the values of the 

normalization coefficients λj. The algorithm outputs are twelve 256x256 grey level images 
for each original one, six corresponding to the modulus of the derivative and six to the 
phase. 
As we have pointed out in section 2, it is possible to perform a multiresolution analysis 

changing the smoothing function. The only difference between a typical Gaussian 

algorithm and the wavelet one is the filtering stage. In this case, instead of using the filter 

proposed by Mallat and Zhong, a Gaussian filter with a different size for each scale could 

be used. It leads to a different way to obtain the derivative of the image at different scales. 

A more detailed discussion about the Gaussian-based processing algorithm is given in 

Beltrán (Beltrán et al., 1998). Processing the image with the wavelet filter is faster, in 

computational cost terms, because the non-zero coefficients are constant independent on 

scale. 

In order to obtain the contour image, a top-down searching algorithm has been 

implemented. For accepting a maximum at one scale to be an edge, it has been imposed that 

the maxima have to be propagated to the lowest scale with no change in the gradient 

direction between scales. When a maximum is found at one scale s we look for extrema in 

the lower scale within an interval of 2s centered in the extrema position at the scale s, in the 

direction given by the gradient. This interval is greater than the theoretical one found by 

Beltrán (Beltrán, 1994), in order to cover the maxima displacement.  

The maximum appearing in the lower scale has to have the same direction that the upper 

one. The best edge position is given at the lowest scale. The first scale to be analyzed 

depends strongly on the image. Empirically we have noticed that this scale has to be no 

higher than either the 5th or the 6th. Otherwise, we have a strong blurring in the image 

that gives us information of global objects rather than finer patterns, like edges. The 

procedure has been iterated until first scale. A stop could be done at an upper scale, 

depending on the details we are looking for. If we were looking for finer details we 

should reach the first scale. A global threshold has been included in order to discard 

irrelevant edges. 

 

j λj 

1 1.5 

2 1.125 

3 1.031 

4 1.007 

5 1.001 

6 1 

Table 1. Wavelet filtering normalization coefficients.  

At the output of this block, we obtain a black and white image with the edge positions, and, 

for each detected edge, the values of the modulus of the gradient in each scale. The final step 

is the contour classification, which is made by analyzing the evolution of the modulus of the 

gradient across scales. 
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Fig. 6. Wavelet Algorithm.  

4. Classification schema 

To obtain real evolution patterns in an image we have analyzed the evolution across scales 
of the value of the wavelet transform modulus for each contour type at the point at which 
the edge is located in our test image (see figure 7). 
 

 

Fig. 7. Test image. Each object has a different contour profile. Circle: step. Square: ramp. 
Triangle: stair. Straight line: pulse.  

In figure 8 we present for each contour class both the median value (normalized to the 
highest value for each pixel) and the deviation for each scale.  
It can be seen a decreasing behavior in the evolution for each contour class in the upper 
scales due to the interaction between the opposite contours in the image. This decreasing 
pattern is not present in the 1-D case. From those results we can say that a step profile, 
figure 8(a), is characterized by an almost constant evolution across scales. The evolution 
pattern for a ramp, presented in figure 8(b), is a continuous growing from low to high scales. 
A constant value followed by an increasing in the normalized modulus of the gradient in the 
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           (a)                (b) 

  
             (c)              (d) 

Fig. 8. (a) Step evolution. (b) Ramp evolution. (c) Stair evolution. (d) Pulse evolution. (See 
text for details) 

edge position characterizes a stair contour, figure 8(c). As shown in figure 8(d) the pulse 
profile presents a sharp decreasing in the upper scales due to the interaction between the 
positive and negative slopes.  
Figure 9 shows a block diagram of the edge detection and classification algorithm. An 
immediate conclusion is that it is possible to implement an algorithm to detect and classify the 
above-characterized four profiles using the wavelet transform coefficients. Then, we are able to 
distinguish one contour type from another one only by looking at the coefficients evolution at 
the appropriate contour point and with no pre-processing in the coefficient values. 
The classification engine is based in a second-order polynomial-fitting algorithm. We have 
chosen a second order taking into account the easiness of implementation of properties such 
as derivability, continuity, concavity, and convexity. Analyzing the concavity and convexity, 
zero crossing and minimum abscissa and ordinate of the fitted polynomial we are able to 
distinguish between the four profiles presented. Typical values of the coefficients are 
presented in table 2 and the corresponding polynomial in figure 10. The second order 
polynomial is of the form: f(x)=a0+a1x+a2x2. We have used a standard polynomial-fitting 
algorithm with the 6 discrete values obtained for each contour at the edge location. 
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Fig. 9. Edge detection and classification algorithm. 

 

 a0 a1 a2 

Step 0.8295 0.1026 -0.0187 

Ramp -0.0249 0.3678 -0.0362 

Stair 0.3562 0.0894 0.0005 

Pulse 1.0087 -0.0732 -0.0131 

Table 2. Typical coefficients values of the fitted polynomial.  

The decision algorithm is presented in figure 11. We first analyze the convexity of the 
polynomial (a2>0), in the affirmative case we have a stair edge. In case of having a concave 
polynomial we analyze its slope. In case of a positive slope, we will have a ramp edge. In the 
opposite case, we will have to compute the zero crossing value. If this value is greater than, 
approximately, 6 the edge will be a step, otherwise it will be a pulse. 
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           (a)     (b) 

 
            (c)    (d) 

Fig. 10. Dotted lines: Original values. Solid lines: polynomial. (a) Polynomial fitting for the 
step profile. (b) Polynomial fitting for the ramp profile. (c) Polynomial fitting for the stair 
profile. (d) Polynomial fitting for the pulse profile. 

 

 

Fig. 11. Decision algorithm for edge classification. 
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As some preliminary results we can see the correct classification made in figure 12 for our 
test image. It is important to note that no post-processing (edge tracking, non-maxima 
suppression, etc.) has been made in the obtained contour image. 
 

 

Fig. 12. From left to right and top to bottom: step, ramp, pulse, and stair classified profiles. 

5. Noise characterization and polynomial classification 

As a first practical result of our processing schema we have analyzed our algorithm 
behavior with respect to noise. In order to obtain a proper characterization of the noise we 
have to compare the evolution in the coefficients shown by the noise with that presented by 
other kind of profiles. Firstly, we have processed a simple image with only Gaussian noise. 
Secondly, we have analyzed the image with the edge detection and classification algorithm 
as described in section 4. The mean values of the modulus of the gradient evolution at the 
edge points are shown in figure 13a. This pattern characterizes isolated Gaussian noise. 
 

  

Fig. 13. (a) Mean values of Gaussian noise evolution. (b) Noise dependence on distance. 

But noise is rarely presented isolated in a real image, and its evolution depends strongly on 
the distance between the noise and the contour of the objects present in the image. To obtain 
the noise evolution we have processed the image of a simple square with a step profile 
corrupted with Gaussian noise. The evolution in the values of the noise, in terms of the 
distance between the noise and the square, are presented in figure 13b. These patterns serve 
us to classify and differentiate the noise from other contour types. We can see that the 
evolution pattern for a noise contour located very close to a real contour is quite similar to 
the stair evolution. This is the expected behavior because the stair has been defined as closed 
steps. We can include this contour type in our classification engine.  
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The final decision algorithm is presented in figure 14. We have to distinguish between the 
stair type and the noise one. If we have a convex polynomial (a2 > 0) we have a stair or noise 
edge. They are differentiated by means of the minimum ordinate value. If the minimum 
ordinate is close to 0 it is classified as a noise edge. 
 

Xm= 6?

Increasing?

minimun==0?Convex?

RAMP

NOISE
YES YES

NO

NO

YES

YES

NO

NO

PULSE

STEP

STAIR

 

Fig. 14. Decision algorithm for edge classification. 

To analyze the robustness of the algorithm we have corrupted our test image with 20 dB of 
Gaussian noise. The classification results are shown in figures 15 and 16, respectively. No 
thresholding has been applied to the contour image.  
 

    
           (a)                (b)     (c)        (d) 

Fig. 15. Test image corrupted with 20 dB Gaussian noise. (a) Detected edges without 
thresholding. (b) Non noise edges. (c) Noise edges. (d) Detected edges with Canny 
algorithm. 

 

    
           (a)                (b)      (c)        (d) 

Fig. 16. Edge profiles detected for the test image corrupted with 20 dB Gaussian noise. (a) 
Step edges. (b) Ramp edges. (c) Stair edges. (d) Pulse edges. 
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It can be seen that the noise is perfectly classified (figure 15c) and can be eliminated by 

simply removing this edge type (figure 15b). Figure 15d shows the output of the Canny edge 

detector. In this case Canny operator is more sensitive to noise than our algorithm. Figure 16 

shows the different edge profiles detected.  

6. New contour types 

The geometrical characterization of contour types gives us very promising results. To 

confirm the ability of our algorithm to distinguish different contour types we present here 

four new types of edge profiles that represent a more general gray-level transition than a 

simple step. We have included the roof profile, the ridge profile and two non-

antisymmetrical step profile models that have been already considered previously by 

Paillou (Paillou, 1994). 

6.1 Roof 

A roof profile, named R(x), is shown in figure 17. We have named the point x0 the middle of 

the roof, ω is the roof width and U0 the roof height. 
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Fig. 17. Roof profile. Horizontal axis represents pixels. Vertical axis represents grey level. 

6.2 Ridge 

A ridge profile, named R(x), is shown in figure 18. The point x0 is the middle of the ridge, ω1 

is the width of the first ramp, ω2 is the width of the plain part, while ω3 is the width of the 

second ramp. U0 is the ridge height. 
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Fig. 18. Ridge profile. Horizontal axis represents pixels. Vertical axis represents grey level. 

6.3 First non-antisymmetrical step 

The first non-antisymmetrical step profile, named nu(x), is shown in figure 19. The point x0 

is the step location, ω1 is the width of the first ramp and ω1 is the width of the second ramp. 
U1 and U3 are their respective heights. U2 is the step height at position x0. The first non-
antisymmetrical step function can be written as: 

 

0 1

0 1 0 1 2

0 1 2 0 1 2

3 0 1 2

0                 if  x x ω

mx k         if  x ω x x ω ω
nu(x)
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U                if  x x ω ω

< −
 + − ≤ ≤ + −

= 
+ + − ≤ ≤ + +

 > + +

 (19) 

 

 

Fig. 19. First non-antisymmetrical step profile. Horizontal axis represents pixels. Vertical 
axis represents grey level. 
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6.4 Second non-antisymmetrical step 

The second non-antisymmetrical step profile, named nu2(x), is shown in figure 20. The point 

x0 is the middle of the main ramp, ω1 is the width of the first ramp, ω2 is the width of central 

ramp and ω3 is the width of the third ramp, respectively. U1, U2 and U3 are their respective 
heights (see figure). Let be nu2(x) the second non-antisymmetrical step function. 
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Fig. 20. Second non-antisymmetrical step profile. Horizontal axis represents pixels. Vertical 
axis represents grey level. 

6.5 Modified classification algorithm 

Finally, we will include the four contour types in our classification algorithm. We will also 
work on the basis of the polynomial-fitting algorithm, by following characteristics such as 
convexity, concavity, zero crossings and minimum abscissa and ordinate as we did 
beforehand. Furthermore, we have also used a standard polynomial-fitting algorithm with 
the 6 discrete mean values obtained for each contour at the edge location. However, in this 
case, a third order polynomial fitting will serve us to classify some of the new profile models 
introduced above. In particular, the third order coefficient pattern matching will serve us to 
discriminate among the ridge, roof and ramp profiles, respectively. Maximum value at 
scales 5 or 6 and comparison between values at two different scales are also used. Figure 21 
shows the complete decision algorithm for edge classification. 
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Fig. 21. Modified decision algorithm for edge classification. 

The polynomial that characterizes the roof profile (as well as the ridge profile) is concave 

and with a positive slope in the first three scales, in the same way as the ramp profile does. 

In order to discriminate among these profile models just mentioned above, it is necessary to 

calculate the coefficient pattern for several fitting polynomials, third, fourth and fifth order). 

We find a remarkable difference among the ridge profile on one side, and the ramp and roof 

profiles on the other side. The coefficient pattern (-,+,-,+) ≡ (a0,a1,a2,a3), characterizes the 

ridge profile. In order to distinguish between the ramp and roof profiles, we have realized 

that the mean value at scale 6 is greater that the one at scale 2 in a ramp profile, whereas 

both are similar in a roof profile. This is the condition to put aside both profiles.  

As far as antisymmetrical step profiles are concerned, we must say that they both have 

some properties like the stair profile (convexity and minimum greater than zero). It can be 

shown that if the mean value at scale 6 is smaller than that at scale 1, we will obtain a stair 

profile, otherwise we will have the first non-antisymmetrical step profile. For the sake of 

algorithm efficiency, we have included a second condition: a stair profile has the 

maximum value at scales 5 or 6. In order to obtain the second non-antisymmetrical step 

profile, we compute whether the mean value at scale 2 is, at least 1.5 times the mean value 

at scale 1. 
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In order to show the results of the modified algorithm, we have created a new test image, 

including the new edge profiles. Figure 22 shows the new test image, together with the 

different detected edge profiles. Results with a real image are shown in figures 23 and 24. 

 
 

   
              (a)   (b)       (c) 
 

   
              (d)   (e)       (f) 
 

   
              (g)   (h)       (i) 
 

Fig. 22. (a) Test image. (b) Ramp edges. (c) Step edges. (d) Pulse edges. (e) Stair edges. (f) 

Ridge edges. (g) Roof edges. (h) First non-antisymmetrical step edges. (i) Second non-

antisymmetrical step edges. 

 

   
              (a)   (b)       (c)  

Fig. 23. (a) Original image. (b) Contour image. (c) Contour image after noise filtering. 
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              (a)   (b)       (c) 

   
              (d)   (e)       (f) 

   
              (g)   (h)       (i) 

Fig. 24. (a) Noise edges. (b) Ramp edges. (c) Step edges. (d) Pulse edges. (e) Stair edges. (f) 
Ridge edges. (g) Roof edges. (h) First non-antisymmetrical step edges. (i) Second non-
antisymmetrical step edges. 

7. Conclusions 

In this work, we have developed a new algorithm for edge detection and classification 

purposes using the coefficients given by the DWT. We have shown that Mallat’s wavelet is a 

very suitable tool to perform both edge detection and contour analysis. We have presented 

the results obtained with a 256x256 synthetic image with several objects, each one with a 

different contour profile, obtaining a very good segmentation. At this point, we are not only 

able to see the evolution across scales of the edges proposed by Rosenfeld (Rosenfeld & 

Thurston, 1976) like in Williams and Shah’s work (Williams & Shah, 1990, 1993), but we are 

also able to classify them.  

A new edge class has been introduced: the noise. This edge type presents a particular 

evolution across scales. This has allowed us to implement a simply noise filtering algorithm 

based on edge classification.  

The classification algorithm we have developed is based on second order polynomial fitting 

of the modulus of the wavelet transform coefficients. The mathematical behaviour of the 

polynomial is a robust indicator of the edge class. This kind of classification is good enough 

to obtain the five different profiles analyzed: step, ramp, stair, pulse, and noise. The 

robustness of the proposed classification schema has been tested including other profiles 
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appeared in the literature: roof, ridge and two kinds of non-antisymmetrical step models. A 

third order polynomial-fitting algorithm is needed to obtain a proper classification. This 

algorithm can be viewed as a new framework to classify different contour types.  

Some preliminary results, like the behaviour of ramp edges, are promising to obtain a 
classification of the contours appearing in real images (shadows, changes in illumination, 
corners and so on). A future work to perform, which has not been covered in this paper, is 
the study of the evolution across scales of these real edges. If there were some special 
evolution pattern for these real edge types it would be very important information for the 
next stages of an image understanding algorithm. 
An edge-closing algorithm based on the edge type is under developing in this moment. The 
extra information provided by the classification stage gives very good indicators to close 
edges and extract objects in an image. The processing results presented in this work have 
been obtained using Matlab®. 
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1. Introduction 

Video applications, like video teleconferencing, video telephones, and advanced television 
(ATV), have given the field of compression and transmission of digital video signals a 
significant importance. It is expected that the advances in video compression technology 
will play a crucial role in the transmission and display of three-dimensional video signal.  
A typical image, for example, of size 512x512 pixels with 8 bits per pixel (bpp) needs storage 

capacity of about 2 Mbits. A video sequence, on the other hand, with the same frame size 

with 30 frames per second and a channel transmission rate of 64 kilo bits per second (kbps) 

would take about 17 minutes of transmission time. The required transmission time would 

become unmanageable with the continuously increasing demand of image base application. 

You can't put enough of it over a telephone line and you can't squeeze it into the broadcast 

bandwidth of available channels1. Therefore, image and video compression algorithms 

became a necessity to store or transmit these images.  

Data compression is the science of representing information in a compact form by exploiting 

the different kinds of statistical structures that may be present in the data2. This is to reduce 

the number of bits per sample while keeping the distortion constant3. There is a great deal of 

correlation between neighboring pixel values of an image. Therefore, removing such 

redundant information and transmitting only the new information (the changes) enables us 

to reconstruct the original image. For video signals, redundancy over time between 

successive images can also be eliminated. 

There are two types of compression: lossless and lossy. In the lossless compression the 

original image can be retrieved without error, while for the lossy compression, the original 

image can’t be retrieved without error; an image copy close to the original can be retrieved. 

                                                 
1 Realtime video compression poses challenge to designers and vendors alike, Computer Design, vol. 
32, no. 7, pp. 67-70 (Child, July 1993). 
2 Hybrid coding of images for progressive transmission over a digital cellular channel, CISST’99 
International Conference on Imaging Science, Systems and Technology, Monte Carlo resort, Las Vegas, 
Nevada, USA, PIN 128C (Al-Asmari et al.,June 28 – July 1, 1999). 
3 Introduction to data compression, Morgan Kaufmann Publishers Inc., San Francisco, California 
(Sayood, 1996). 
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Motion pictures expert group (MPEG) video standard is the most prevalent and widely used 

for video compression3–6. Also, the MPEG is an application specific standard and different 

versions of MPEG (Such as MPEG-1, MPEG-2, MPEG-4, and MPEG-7) are available for 

different applications and bit rates. The basic algorithm for all these versions is the same and 

is very similar to the other video compression standards.  

The proposed algorithm is based on temporal filtering of image sequences with short 

symmetric kernel filters (SSKFs)7–8, which are well known for their simplicity. In this paper, 

we use four SSKFs filters each with 4-taps and with decimation factor of 4:1 instead of two 

SSKFs filters each of 2-taps and with decimation factor of 2:1 used in classical 3D – 

decomposition algorithms7–8. The temporal filtering removes the redundancy in temporal 

domain. On the other hand, the pyramid coding (PC) is used for subband decomposition in 

the spatial domain. The vector quantization (VQ) and the absolute moment block truncation 

code (AMBTC) will be used to encode the spatial domain subbands. 

2. 3-D decomposition of the video sequence 

Practical video compression relies on techniques to reduce the amount of data required to 

represent a video sequence without any appreciable loss of information that can affect the 

visual quality of image. Our aim in this paper is to introduce an algorithm that compress the 

video sequence with a reduced bit rate and highest fidelity while keeping the computational 

complexity to a minimum to allow for easy hardware implementation. The complexity of 

the proposed algorithm is less than the standard MPEG-1 and MPEG-2 algorithms.  

Since our approach to the video compression problem is based on progressive transmission, 

the multiresolution representation of the signals is required. The idea of multiresolution is 

that a coarser approximation to the signal is refined step by step until the desired resolution 

is obtained. An elaborate discussion on 3-dimensional decomposition of the video signals, 

using pyramid method for spatial decomposition, is given in this section. 
A group of video sequences (four frames each) is decomposed into subbands in the 
temporal and spatial domains. The temporal frequencies are restricted to four subbands by 
passing four consecutive frames through four band pass filters of 4-taps each and with 
decimation factor of 4:1. By applying pyramid decomposition on these temporal subbands, 
nine spatial subbands are produced. In the next sub-sections, the temporal and spatial 
domain decomposition will be discussed in more details. 

2.1 Temporal frequency decomposition 
The 4-tap Haar basis functions (SSKFs filters) are used for temporal frequency 
decomposition. These filters have no phase or amplitude distortion and belong to a class of 
perfect reconstruction filters. The coefficients of SSKFs filters used in this research are given 

                                                 
4 Digital pictures representation, compression, and standard, Plenium Press (Netravali & Haskell, 1995). 
5 Image and video compression standards: algorithms and architectures, Kluwer Academic Publishers 
(Bhaskaran & Konstantinidides & Hewlett Packard Laboratories, 1996). 
6 Digital compression of still images and video, Academic Press (Clarke, 1995). 
7 Subband coding of video for packet networks, Optical Engineering, vol. 27, no. 7, pp. 574-586, 
(Karlsson & Vetterli, July 1988). 
8 Pyramid coding of video signals for progressive transmission, CISST’97 International Conference, pp-
392-398, (Dantwala et al., June 30 – July 3, 1997).  
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in Table 1. The frequency responses of these filters are shown in Figure 1. H0(ejω) is the low 
pass filter, H3(ejω) is the high pass filter, while H1(ejω) and H2(ejω) are the band pass filters. 

The 3-dB bandwidth for these filters is approximately π/4.  
 

 Lowpass filter Bandpass filters Highpass filter 

N h0(n) h1(n) h2(n) h3(n) 

0 0.5 0.5 0.5 0.5 

1 0.5 0.5 -0.5 -0.5 

2 0.5 -0.5 -0.5 0.5 

3 0.5 -0.5 0.5 -0.5 

Table 1. SSKFs Coefficients for Haar filters. 

 

 

Fig. 1. Frequency response of 4-tap Haar filters. 

The video sequence with four consecutive frames is decomposed in the temporal domain by 
passing these frames through the 4-tap Haar filters as shown in Figure 2. 
The second four frames of Miss America sequence, that contains clear motion of the eyes, 
are filtered using SSKFs filters. These filters decompose the sequence into four temporal 
subbands. Namely, temporal low-low (TLL), temporal low-high (TLH), temporal high-low  
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Fig. 2. Temporal filtering process using 4-tap Haar filters. 

(THL) and temporal high-high (THH)  subbands. Figure 3 shows the original and the filtered 
frames. It can be seen from this figure that the subband TLL contains most of the image 
sequence information, while the subband TLH contains most of the motion information in the 
four frames. The subbands THL and THH contain the edge information, which are relatively 
spares in the nature. Figure 3 (b) shows that the information of the temporal TLL subband is 
highly correlated since it is only an average of the four frames, while the temporal (TLH, THL 
and THH) subbands are of low correlated data. Compression is achieved since instead of 
transmitting four highly correlated frames of the video at 8 bpp each, only one frame with 
highly correlated data (TLL) at high bit rate will be transmitted. The other frames (TLH, THL 
and THH) with low correlated information will be transmitted with very low bit rate. 
The average entropy is calculated for the original and the decomposed four frames. Table 2 
shows the average entropy for the original and the temporal filtered frames of Miss America 
sequence. From this table, it is clear that the multiresolution decomposition process results 
in lower entropy than that of the original images. From Shannon’s theory, the entropy for a 
signal can be minimized by decomposing this signal into sub-signals using orthogonal 
bases. Therefore, the calculated entropy is act as a lower measure for the information to be 
encoded9. 4 
 

Original frames Entropy Temporal frames Entropy 

Frame 4 5.66 TLL 5.78 

Frame 5 5.68 TLH 2.39 

Frame 6 5.66 THL 2.09 

Frame 7 5.65 THH 2.11 

Average 5.66 Average 3.1 

Table 2. The average entropy for the four frames before and after the decomposition. 

                                                 
9 A mathematical theory of communication, Bell System Tech. J.. Vol. 27, pp. 379-423, and pp. 623-656 
(Shannon,  July. 1948a, Oct. 1948b). 
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Fig. 3. (a) Original and (b) Temporal filtered frames of the second four frames of Miss 
America sequence. 
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2.2 Spatial domain decomposition 
Spatial decomposition techniques aim at achieving data compression by discarding the 
redundant or visually non-perceptual information in an image. Subband coding (SBC) is one 
such scheme where the image spectrum is divided into a set of uncorrelated sub-spectra, 
and each of the sub-spectrums is treated individually depending on the amount of 
information it carries. The low-frequency bands with more energy content are given a 
higher priority as compared to the high frequency bands with low energy contents10. 567   
The four frames can be independently encoded using any image compression method 
available for still images. Since we are interested in multiresolution decomposition, pyramid 
decomposition method has been adopted for spatial domain decomposition. Pyramid 
coding (PC) has been found to be more robust to channel errors as compared to SBC8. This is 
so because neither data loss nor channel corruption in the error images has a serious effect 
on the quality of the reconstructed image. Moreover, lower bit rates are possible for PC as 
most of the energy of the pyramid structure lies in the lowest resolution baseband, which 
can be encoded at high bit rates to preserve maximum information without increasing the 
overall bit rate of the compressed image. Another advantage of the PC scheme is the ease of 
filter design as compared to SBC 10. 
Subband filters are designed under the constraints of perfect reconstruction and narrow 
transition band. Both of these constraints are relaxed in PC as it makes use of bandpass 
images for reconstruction 10. Because of these advantages, this research uses PC for spatial 
decomposition of images, instead of the SBC.  

3. Pyramid coding  

Burt and Adelson have suggested a method of pyramid coding that is suitable for progressive 
transmission11. In this method, the original image is filtered to be down-sampled by a factor of 
2. The image thus obtained serves as a decimated image of the original. Then, the decimated 
image is filtered to be interpolated by a factor of 2 to have the same size of the original image. 
The difference between the original image and the interpolated one generates an error image. 
This is called the first level PC decomposition. This process can be further repeated over the 
decimated image to obtain higher levels. To achieve compression, the difference images and 
the decimated image are bit allocated depending on the amount of information in each 
subband. Those subbands with high information content will be assigned higher bit rate than 
those with lower information content.  

3.1 24-tap filter 

In 12, a 24-tap FIR filter has been introduced with a nominal bandwidth of π/4, which would 
allow a higher decimation factor than the conventional Gaussian filter used for pyramid 
coding 11. The special property of this filter is that the passband ripples are designed for 
passband flatness. This ensures that the filter has as little in-band ripples as possible. It has a 
nominal bandwidth of ̟/2M where M is the decimation factor (M = 4).  

                                                 
10 Video Signal Transmission for IS-95 Environment, Electronic Letters, Vol. 36, no. 5, pp. 465-466 (Al-
Asmari et al.,  2nd March 2000). 
11 The Laplacian Pyramid as a compact Image Code,  IEEE Trans Communication., vol. COM-31, no. 4 
pp. 532-540, (Burt & Adelson, April 1983). 
12 Optimum Bit Rate Pyramid Coding with Low Computational and Memory Requirements, IEEE 
Trans. Circuit and Systems for video Tech., vol. 5, no. 3 pp. 182-192,(Alasmari, June 1995). 
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By using a pyramidal coding scheme which basically follows a rate of change of 4 instead of 
2 as used in the conventional pyramid coding, the number of samples to be encoded are 20% 
less than the conventional pyramidal samples12–13. Another advantage of this filtering 
technique is that the 24-tap FIR filter involves 33% fewer computations as compared to the 
Gaussian filter when FFT algorithm is used. The third advantage of this filter is the lower 
entropy obtained when compared with that found when the Gaussian filter is applied12.8 

4. The adopted spatial domain filtering techniques 

The four temporal subbands (TLL, TLH, THL and THH) resulting from the temporal filtering 
process are further decomposed in the spatial domain using pyramid coding as shown in 
Figure 4. The temporal subband (TLL) is further decomposed into three subbands using the  
 

 

Fig. 4.  Spatial decomposition for the temporal subbands using pyramid coding. 

                                                 
13 Low complexity subband encoding for HDTV images, IEEE J. Select. Areas Commun., vol. 11, no. 1, 
pp. 77-87 (Coppisetti et al.,  Jan. 1993). 
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24-tap filter. It is found that the 24-tap filter will not give a good performance when used to 
decompose the temporal (TLH, THL and THH) bands due to the spares nature of the 
information in these subbands10. The Gaussian filter given in11 is used to decompose these 
subbands. Figures 5, 6, 7, and 8 show the spatial subbands for the temporal bands of Miss 
America sequence using the pyramid coding concept. 
Fig. 5 shows the spatial pyramid decomposition of the temporal TLL subband. Two levels of 
pyramid coding have been applied for this temporal subband. The decimated image (band 
1), which contains most of TLL subband information, is of dimension 18 × 22 pixels. The 
difference images of this band (band 2 and band 3) contain edge components and are of 
dimension 72 × 88 pixels and 288 × 352 pixels; respectively.  
 

 

 
 

Fig. 5. Spatial subbands for the temporal low-low band. 

The spatial pyramid decomposition of the temporal TLH subband is shown in Figure 6. One 
level pyramid coding has been applied for this temporal subband. The decimated image of 
this band (band 4) is of dimension 144 × 176 pixels. The difference image (band 5) is of 
dimension 288 × 352 pixels.  
 

 

 
 

Fig. 6. Spatial subbands for the temporal low-high band. 
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In Figure 7 the spatial pyramid decomposition of the temporal THL subband is shown. One 

level pyramid coding has been applied for this temporal subband. The decimated image 

(band 6) is of dimension 144 × 176 pixels while the difference image (band 7) is of dimension 

288 × 352 pixels. 

 
 
 

 
 

 
 

Fig. 7. Spatial subbands for the temporal high-low band. 

Fig. 8 shows the spatial pyramid decomposition of the temporal THH subband. One level 
pyramid coding has been applied for this temporal subband. The decimated image (band 8) 
is of dimension 144 × 176 pixels and the difference image is of dimension 288 × 352 pixels. 
 
 
 

 
 

 
 

Fig. 8. Spatial subands for the temporal high-high band. 
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5. Local adaptive vector quantization 

Once the original image has been decomposed and the redundancy in the data removed, the 

next step in the image compression problem is to encode the constituent bands. It has been 

found that most of the energy signal resides in the lower spatial frequency subands, namely 

bands 1, 2, and 3. Subbands 4, 5, 6, 7, 8, and 9, which corresponding to the high frequencies, 

carry most of the motion and edge information and acts as a motion detector. Thus, by 

accurate coding of low spatial-temporal bands, the spatial details of the original image are 

conserved. Unlike the majority of the works on the structuring of VQ codebooks, the 

primary goal of this work is to make the codebook simple and robust to the motions which 

occur in video sequences and which are seldom capture from a single training sequence. 

Therefore, the local adaptive vector quantization (LAVQ) 14 is adapted to encode some of the 

spatial subbands. 

A simple and effective one-pass image compression algorithm is provided by the local 

adaptive vector quantization (LAVQ) 15. The encoder has a codebook containing 

codewords (vectors). Each of these codewords is assigned an index corresponding to its 

position in the codebook. The image is scanned block by block. Each time, a block is taken 

and compared to the stored codewords. If there is a codeword sufficiently close to the 

image block (within the pre-decided error) the index itself is sent, and that codeword is 

moved to the top of the codebook in both transmitter and receiver. If the codebook search 

is complete without accepted codeword, a special index is sent and followed by the block 

itself. Now, this block is considered a new codeword and is placed at the top of the 

codebook. All other codewords are pushed down, and if the number of codewords 

exceeds the maximum allowed, the last codeword is lost 14. The LAVQ algorithm 

maintains the most recently used vectors in the codebook in order of last usage. This 

allows the LAVQ algorithm to be quick and efficient for any image to be encoded without 

codebook training. New codewords are generated more often in regions containing edges 

and fine features, while blank regions are coded with fewer new codewords. Therefore, 

LAVQ is suitable for the high bands where the correlation is low. The properties of one-

pass and high speed codebook generation and encoding are the two main advantages of 

LAVQ14. 9 

5.1 Adaptive dead zone for the high subbands 

Before we apply the LAVQ on the spatial subbands, a dead zone for each subband based on 

the number of occurrence of the pixels around zero value is selected. Then, the band is 

divided into vectors. The number of zero vectors after applying the dead zone will be 

increased. 

So, instead of encoding and sending all vectors, we just encode and send the non-zero 

vectors with its location. Figure 9 shows an example for band 5 before and after applying the 

dead zone concept. This process reduces the number of vectors to be transmitted to 20% – 

30% of that needed if the dead zone approach is not adopted. 

                                                 
14 Analysis of Coding and Compression strategies for Data Storage and Transmission, Ph. D. thesis, 
california Instiute of Technology (Sayano, 1992). 
15 Image compression scheme using improved basic-LAVQ and optimized VLC, J. King Saud Univ., Vol. 8, 
Eng. Sci. (2), pp. 251-266 (Al-Asmari et al., 1996). 
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Fig. 9. Example of dead zone process for band 5. 

5.2 Searching method for the LAVQ 

The difference (error) between the image vectors and the codebook vectors can be calculated 

using LAVQ searching method concept as follow: 
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Where 
dm  is the root mean square error (RMSE).  
Vi  is the image vector. 
Vm is the codebook vector. 
cs  is the codebook size. 
cd  is the codeword dimension.  
The RMSE (dm) will be compared with a pre-decided threshold error (Vth). If dm is less 

than this threshold, then the index of the codebook vector with lowest error will be 

transmitted and this vector is moved to the top of the codebook in both transmitter and 

receiver. Otherwise, the image vector will be transmitted and placed at the top of the 

codebook.  

 

Figure 9. Example of dead zone process for band 5. 
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6. Encoding of the subbands 

High bit allocation is assigned for the baseband (band 1) since most of the energy of the 
decomposed TLL image is concentrated in this band. For the high bands (band 2 – band 9), 
different encoding algorithms are design to be tested for these bands. The first encoding 
algorithm is to test the LAVQ for all the high bands (band 2 – band 9). The second technique 
is to encode some of these bands using the edge detection concept, then applay the LAVQ 
on the detected information. The third approach is to encode some of these high bands 
using the absolute moment block truncation coding (AMBTC) algorithm16. The overall 
encoding algorithm is decided based on the highest performance in terms of the peak signal 
to noise ration (PSNR) and the visual quality for the encoded subband. For the first 
algorithm, those bands reconstructed with PSNR greater than 51 dB will be encoded with 
LAVQ. The second algorithm is adapted for those subbands encoded with PSNR greater 
than 40 dB and with bit rate less than 0.06 bpp. The overall encoding algorithm is decided 
based on the best performance for each subband. 10 
The second level in the pyramid has the high frequency content of the decomposed 
temporal TLL subband. From the simulation results of the previous three algorithms,  
it is found that AMBTC algorithm will give the best performance for this subband (band 2) 
because it is highly correlated than the other subbands. The mean, absolute moment and bit 
map are transmitted for each subblock.  
The first difference level (band 3) in the pyramid has the minimum information most of 
which is concentrated around the edges. This information is encoded by applying an edge 
detection approach to find the location of pixels that are perceptually important and then 
transmitting only these encoded pixels. To avoid the transmission of the position of the 
encoded locations, a predicting scheme for the edges of band 3 from the encoded bands 
(band 1 and band 2) is adapted at the receiver side. This is shown in Figure 10.  
 

 

 

 

 

 

 

 

Fig. 10. Coding of Edge-detection for band 3. 

Before encoding, the baseband is interpolated to the second level and added to band 2. 
Then, the result is further interpolated to the size of band 3. Edge-detection is applied to this 
up-sampled version and the corresponding pixels from band 3 are formed into vectors to be 
encoded for transmission. At the receiver, similar process is repeated by upsampling the 
encoded baseband to be added to the encoded band 2. Then, these two subbands are up-

                                                 
16 Absolute moment block truncation coding and application to color images, IEEE Trans. on Commun., 
Vol. COM-32, pp-1148-1157 (Lemma &  Mitchell, Oct. 1984). 
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sampled to have the same size as band 3. This partially reconstructed version of the original 
image is used for edge-detection, which gives the location of the vectors of the band 3 that 
are encoded. Once the locations are known, the encoded vectors are suitably placed to form 
band 3. Thus, using this approach, no side information needs to be sent for the encoded 
areas of the first difference image level and an average of only 4 % to 5% of this level needs 
to be encoded. Thus, more compression is achieved by edge-detection instead of coding the 
entire band. After edge-detection, the data is encoded by using LAVQ.  
The decomposed subbands (band 4 and band 5) of the temporal (TLH) subband are encoded 
using the LAVQ for band 4 and the edge-detection approach for band 5. Band 4 is interpolated 
to the size of band 5. Then, the edge-detection technique is applied to the interpolated version 
and the corresponding pixels from band 5 are formed into vectors to be transmitted. At the 
receiver, this process is repeated by interpolating the decoded band 4 to the size of band 5. 
Then, edge-detection is taken for this band to decide the location of the received vectors for 
band 5. The same decoding process is adapted for bands 6 and 7 to get the temporal THL 
subband. Band 8 and band 9 formed the temporal THH subband. Band 9 has extremely low 
energy content and the sparse information carried in this band is not significant for the final 
image reconstruction. Thus, it can be safely discarded. Band 8 is encoded using the LAVQ 
algorithm. At the receiver, this band is interpolated to get the temporal THH subband.  
The subbands encoded using LAVQ have different codebooks sizes and vectors (codewords) 
dimension. The choice of the codebook size and the codeword dimension depends on many 
factors such as the important of the information to be transmitted, the correlation between the 
data in each band, and the size of the band to be encoded. Band 4, for example, is more 
important than band 8 because it has some of the motion information, and also used at the 
receiver as a detector to encode band 5. Therefore, some care shall be given to this band. The 
codebook size is selected to be 128 codewords each of dimension 4. Band 6 and band 8 have 
most of the edges information, which already emphasized by encoding band 7. Therefore, a 
codebook with smaller size and a codeword of bigger dimension than that of band 4 can be 
adapted. From the simulation results, we find that the codebook of size 64 with codeword 
dimension of 8 will give an excellent reconstructed video sequence quality. 
Since the encoded vectors corresponding to the edge-detection concept are the only 
information used to reconstruct band 3, band 5, and band 7, then, these vectors shall be 
quantized with lowest possible MSE. Therefore, codebooks of size 64 and codewords of 
dimension 4 pixels are selected to encode those subbands. Table 3 shows the encoding 
techniques, PSNR, and bit rate for Miss America sequence.  
 

 Encoding technique PSNR Avg. Bit rate (bpp) 

Band 1 AMBTC 45 0.0027 

Band 2 AMBTC 43.37 0.02536 

Band 3 LAVQ  + Edge-detection 40.3749 0.0543 

Band 4 LAVQ 52.6049 0.0133 

Band 5 LAVQ  + Edge-detection 47.1512 0.0061 

Band 6 LAVQ 54.2208 0.0123 

Band 7 LAVQ  + Edge-detection 40.9862 0.0086 

Band 8 LAVQ 51.7706 0.0145 

Average 37.2 0.137 

Table 3. The average bit rates and PSNR for Miss America sequence with Vth = 9. 
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7. Simulation results 

The compression algorithm is tested on three video sequences with different motions and 
backgrounds. The first sequence is Miss America sequence with slow motion and static 
background. In this sequence, the only moving objects are the lips and head. The second 
sequence with moderate motion and noisy background is the Salesman sequence. The man’s 
head and hand are moving faster than Miss America sequence and with noisy background. 
The third sequence with fast motion than the man’s sequence is Walter sequence. All of these 
sequences were 256 level gray-scale images with dimension of 288 x 352 pixels per frame at the 
rate of 30 frames /s and 8 bits per pixel. These sequences are standard and are used by many 
researchers. The only way to check the performance of our proposed algorithm is to test it on 
such images and compare the results with other compression algorithms. 

7.1 Calculating the bit rates 

The baseband (band 1 with 18×22 pixels) and band 2 (with 72×88 pixels) are encoded using 
AMBTC because the information in those subbands is highly correlated. 
Band 1 and band 2 are divided into sub-blocks to be encoded by using AMBTC algorithm. 
The average bit rate needed to encode each band is calculated as follow: 
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Where Bm is the bit-map,Bh-1 is the required bits to encode the high and the low mean, Bd is 
the sub-block dimension, l1×l2 is the original image frame dimension, and n is the pyramid 
level number (n = 1, for first level, and n = 2 for second level). In this paper, Bd is selected to 
be 3x3 for band 1, and 4x4 for band 2. The high mean and the low mean for band 1 are 
encoded at 8 bits each, while for band 2, the high mean and the low mean are encoded at 6 
and 4 bits; respectively. 
The bit rate calculation for the Miss America sequence according to equation (2) is shown 
below for four frames of the original image sequence; namely, frame 4,5,6 and frame 7. 
These frames are considered to have the highest motion among this test sequence. 
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The second encoding technique (edge detection + LAVQ) is used to encode bands 3, 5, and 
7. First, the edge concept is applied for those bands. Then, those pixels corresponding to the 
positions represented with “1” are encoded using the LAVQ technique.  
The first algorithm (LAVQ) is found to be of high performance for bands 4,6 and 8 since the 
motion and edges information are presented in these bands. The average bit rate for each 
band can be calculated using the following formula: 
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Where X is the number of matched codewords, b is the number of bits needed to encode the 
index, Y is the number of non-matched codewords, and cd is the dimension of codeword. 
Since the eight subbands represent four frames, then the bit rate for each frame is given by 
the sum of the bit rates for each band divided by a factor of four.  
Simulation results on these sequences can be discussed based on three main factors: peak 
signal to noise ration (PSNR), bit per pixel (bpp) and visual quality. The PSNR in decibel 
(dB) is given by; 
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Where MSE is the mean square error written as follow; 
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where; 

m is the number of rows. 
n is the number of columns. 

~

X  is the reconstructed pixel value. 

Table 4 shows the average bit rate and average PSNR with different pre-decided thresholds 
error (Vth) for the three sequences. These thresholds are compared with the RMSE (dm) that 
result from LAVQ searching method. The bigger the Vth the lower number of non-matched (Y) 
codewords will be. This will reduce the average bit rate required for transmission as given in 
equation (5). However, the quality of the reconstructed image will be effected. Therefore, a 
compromised between the bit rate and the required visual quality shall be decided. 
 

  Miss America Salesman Walter 

Vth  = 6 

PSNR 37.34 36.5 35.6 

Bpp required 0.143 0.172 0.207 

Bit rate 0.435 Mbps 0.523 Mbps 0.629 Mbps 

Vth  = 9 

PSNR 37.2 36.31 35.42 

Bpp required 0.137 0.161 0.198 

Bit rate 0.416 Mbps 0.489 Mbps 0.602 Mbps 

Vth  = 12 

PSNR 36.9 36.2 35.15 

Bpp required 0.13 0.154 0.191 

Bit rate 0.395 Mbps 0.468 Mbps 0.58 Mbps 

Table 4. Performance characteristics for different test sequences. 

Three different thresholds have been tested in this study. The best result in terms of PSNR 
(dB) is given at Vth = 6. However, at this threshold the bit rate requirement is higher than 
that at Vth > 6. At Vth = 12, the bit rate for the three sequences is very low. It has been found 
from the simulation results that the visual quality of the reconstructed sequences is excellent 
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at Vth = 12. Figure 11 shows the original and the reconstruction of the second four frames of 
Miss America sequence at Vth =12. The visual quality of the reconstructed sequence is the 
same as the original. From the simulation, it can be concluded that this compression 
algorithm is capable of compressing a video sequences of different motions. 
 

 

Fig. 11. (a) Original and (b) Reconstructed frames of the second four frames of Miss America 
sequence at Vth = 12. 

( a ) 
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Frame 4 Frame 5 
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The PSNR (dB) via the number of frames is demonstrated for the three sequences at 
different thresholds. Also the average bit rate (bpp) versus the number of frames is 
presented for 16 frames of the test video sequence. Since four frames are simulated as one 
group at a time, only 4 different bit rates will be observed. However, the subband TLL is 
transmitted first. Then, band TLH which is the second important subband regarding the 
information contents. This approach will be followed until all the subbands are transmitted. 
Accumulative calculation for the bit rate is then adopted in order to plot the bit rate curves. 
Figure 12 shows the overall performance in terms of PSNR (dB) and bit rate (bpp) of the 
proposed algorithm for Miss America sequence. 
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Fig. 12. Performance curves. (a) PSNR vs. number of frames for Miss America   sequence. (b) 
bpp vs. number of frames for Miss America sequence.  
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8. Performance evaluation 

The performance evaluation of the proposed algorithm is done in two stages. First, it is 
compared with the performance of MPEG standard algorithm. Second, it is compared with 
some existing research works in this field using multiresolution decomposition concept.  

8.1 Comparison with MPEG-1 

In17, we have tested MPEG-1 for the monochrome Miss America sequence at 30 
frames/second. The results are produced for CIF (288 × 352) image format. The PSNR is 37 
dB and the bit rate is 0.343 bpp17. The proposed algorithm in this paper achieves 36.9 dB at 
0.13 bpp. At approximately the same PSNR, the saving in bit rate is about 56% as shown in 
Table 5. The visual quality is excellent in both MPEG-1 and the proposed technique. 
However, the encoder/decoder of MPEG-1 is more complex than our scheme. MPEG-1 
based on a coder uses the DCT transform for the intraframe and the motion compensation 
(MC) for the interframe. Studies reveal that if there are many moving objects in the image, 
each moving in a different direction, the search technique becomes computationally 
complex, involving larger storage and delay problems17. 11 
 

 MPEG-1 KARL [7] NEHAL [8] Al-Asmari [10] Al-Asmari [17] This Method 

Interframe 
Coding 

Motion 
compensation 

Temporal 2-tap 
filtering SSKFs 

Temporal 2-tap 
filtering SSKFs 

Temporal 2-tap 
filtering SSKFs 

Motion 
compensation 

Temporal 4-tap 
filtering SSKFs 

Intraframe 
Coding 

DCT – 
Transform 
(JPEG) 

SBC + ADPCM 
and PCM 

PC + DPCM or 
BTC 

PC + FSCL 
(VQ) 

AMBTC and 
quantizetion 

PC + AMBTC + 
LAVQ 

Average 
PSNR 

37 dB 36.9 dB 36.5 dB 36.52 dB 37 dB 36.9 dB 

Bpp 0.343 0.434 0.273 0.25 0.2 0.13 

Relative 
complexity 

Complex Moderate Low Moderate Moderate Low 

Comments 

Excellent 
quality with 
moderate bit 
rate 

Good Quality at 
high bit rate 

Competitive 
quality with 
low bit rate 

Excellent 
quality with 
low bit rate 

Excellent 
quality at 
Low bit rate 

Excellent 
quality with 
very low bit 
rate 

Table 5. Comparison with different compression methods. 

8.2 Comparing with other works 

The performance of the proposed algorithm is compared with the results obtained in related 
works in7-8, 10, and17 in terms of PSNR, bit rate, and complexity. The comparison between 
those algorithms is presented in Table 5. Karlsson and Vetterli in7, and Nehal, et al. in8 have 
suggested schemes for progressive transmission using temporal filtering with 2-tap 
symmetric short kernel filters (SSKFs). The reconstruction quality is very good.  For7, the 
PSNR is 36.9 dB with an average bit rate of  0.434 bpp while for8 the PSNR is 36.5 dB and the 
bit rate is 0.273 bpp. Al-Asmari, et al. in 10 have suggested an algorithm for video 
compression. The 2-tap SSKFs filters are used for temporal domain and pyramid coding for 
intraframe. The decomposed bands are encoded using VQ called frequency selective 
competitive learning (FSCL). This technique used the neural network concept to design the 

                                                 
17 Low Complexity Video Compression Algorithm Using AMBTC, Proceeding of IEEE Military 
communication conference, Atlantic city, NJ (Al-Asmari et al., 31 Oct. – 3 Nov.  1999). 
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codebook for the vector quantization. This algorithm gives an excellent image quality for the 
Miss America sequence at an average bit rate of 0.25 bpp and PSNR 36.52 dB. This algorithm 
is considered to be of higher complexity than our algorithm because of the codebook design. 
In 17, the authors present a coder based on a combination of AMBTC for intraframe and MC 
for interframe. They produce results for the monochrome Miss America sequence. For the 
CIF format (i.e. 288 × 352) at 30 frames/sec, they achieve approximately 37 dB at 0.2 bpp. 
The disadvantage of this algorithm is the use of motion compensation for fast motion video 
sequence. For the same video sequence, the proposed algorithm in this paper gives a higher 
PSNR (37.2 dB) and a lower bit rate (0.13 bpp) than those algorithms for a coder with lower 
complexity. 

9. Conclusion 

The results presented here are better than other coding schemes, which are published using 
almost the same coding technique concept. The 3-D decomposition does not make 
unrealistic assumptions about the data, as do methods based on motion compensation (MC). 
Moreover, coding and decoding for the proposed algorithm are of comparable and 
relatively low complexity. The robustness obtained by adapting the LAVQ for the codebook 
has been discussed. The results reported in this paper are independent of which sequence is 
used to produce the codebook.  
This scheme is faster than MPEG algorithms and other existing technique based their 
encoder on VQ concept since no need for training set or codebook generation. This scheme 
will be an optimal choice for real time transmission. It is well suited for progressive 
transmission of the video sequence and for browsing moving images via the Internet. 
LAVQ technique gives good performance with those bands, which are highly uncorrelated, 
and with spark information. Bit rate is varying from 0.13 to 0.191 bpp depending on the 
nature of the sequence. Different video sequences have been tested and show very good 
image quality with PSNR in the range of 36.9 to 35.15 dB and with bit rate range from 0.395 
Mbps to 0.58 Mbps as shown in table 4. 
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1. Introduction 
The Discrete Wavelet Transform (DWT) has extensively been used in a wide range of 
applications, including numerical analysis, image and video coding, pattern recognition, 
medical and telemetric imaging, etc. The invention of DWT decomposition by Mallat 
(Mallat, 1998) shows that the DWT can be viewed as a multiresolution decomposition of 
signal. This means it decomposes the signal into its components in different frequency 
bands. The Inverse DWT does the opposite, i.e. it reconstructs the signal from its octave 
band components. After its inclusion in JPEG2000 compression standard (Seo & Kim, 2007), 
significant research has been done to optimize the DWT implementation to reduce the 
computational complexity. Among a wide range of wavelets, the Daubechies wavelets 
include members ranging from highly localized to highly smooth and can provide excellent 
performance in image compression (Daubechies, 1992). Among the family members, the 
first two – Daubechies 4-tap (DAUB4) and Daubechies 6-tap (DAUB6) – are popular choices 
in medical imaging applications.  
While compressing medical images, the key here is to preserve as much critical information 
as possible in the reconstructed image so that accurate diagnosis is possible. There have 
been several efficient implementations of wavelet filters proposed for applications in image 
processing (Lee & Lim, 2006; Martina & Masera, 2007; Acharyya et al., 2009; Shi et al., 2009; 
Lai et al., 2009). But, the use of conventional fixed-point (FP) binary (or any other weighted) 
representation for implementing discrete wavelet coefficients (that are irrational in nature) 
introduces round-off or approximation errors at the very beginning of the process. The error 
is due to the lack of exact representation of the irrational numbers that form the coefficient 
basis. These errors tend to expand as the calculations progress through the architecture, 
degrading the quality of image reconstruction (Wahid et al., 2003). A lossless mapping 
technique, known as Algebraic Integer Quantization (AIQ), can be used to minimize the 
approximation error and efficiently compute the DAUB4 and DAUB6 coefficients (Wahid et 
al., 2004). The AIQ scheme is divided into two parts: the first stage is based on factorization 
and decomposition of transform matrices exploiting the symmetric structure. After the 
decomposition, we map the irrational transform basis coefficients using multidimensional 
algebraic integers that results in exact representation and simpler implementation. As a 
result, less error is introduced in the computation process that yields significantly better 
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reconstruction of images while keeping critical information, making the scheme suitable for 
medical and telemetric imaging applications. 
As a case study, we apply the scheme to several medical images, such as endoscopic, 
ultrasound, x-ray, CT-scan images and evaluate the performance. The chapter is organized 
as follows: Previous related works are presented next. Section 3 presents a brief introduction 
to Daubechies wavelets. In Section 4, we explain the AIQ scheme applied to Daubechies 
wavelets. Then the simulation and synthesized results of the case study are summarized in 
Section 5. Finally, we conclude the work in Section 6. 

2. Past work 
Lewis and Knowles proposed an architecture for Daubechies wavelets without multipliers 
(Lewis & Knowles, 1991). A major drawback was that it was heavily dependent on the 
properties of only one specific wavelet, DAUB4 tap coefficients. At the same time, Aware 
Inc. came out with a chip called Wavelet Transform Processor (WTP) (Aware, 1991). It 
essentially consists of a 4-tap filter (4 Multiply-Accumulate cells) and some external 
memory with control but no specific features that can take advantage of the DWT 
structure rather it relies heavily on the software to compute the DWT. It is also a complex 
design requiring extensive user control. Parhi and Nishitani proposed two architectures, 
folded and digit serial, for 1D DWT (Parhi & Nishitani, 1993). These architectures do not 
easily scale with the filter size and the number of octaves computed. The number of 
multipliers is higher, and hence the silicon area is large. In (Vishwanath et al., 1995), the 
authors proposed linear systolic array architecture. Paek and Kim in proposed recursive 
and semi-recursive architectures for DWT which has several drawbacks like large area 
(hardware cost), scheduling control overhead and incomplete data-bus utilization (Paek & 
Kim, 1998).  
Most of the research work to reduce the hardware complexity is inclined towards 
multiplierless implementations by maneuvering the filter banks (Lee & Lim, 2006; Martina 
& Masera, 2007; Acharyya et al., 2009) or using lifting schemes (Shi et al., 2009; Lai et al., 
2009; Huang et al., 2004). However, in these designs, the use of conventional FP binary 
representation results in erroneous computation process and degrades image 
reconstruction. In this chapter, we present an efficient low-cost implementation of the 
DAUB filters with a demonstration of performance advantages on medical images and noisy 
environment. 

3. Daubechies wavelets 

This section provides a brief introduction to Daubechies wavelets. This class of wavelets 
includes members ranging from highly localized to highly smooth – Daubechies-2 (DAUB2 
with two coefficients) to Daubechies-20 (DAUB20 with 20 coefficients) and also provides 
excellent performance in image compression (Daubechies, 1992). The Daubechies wavelet 
coefficients are based on computing wavelet coefficients, nC  (where, n = 0, 1, 2,..., N-1 and N 
is the number of coefficients) to satisfy the following conditions (Mallat, 1998): 
1. The conservation of area under a finite length signal ( )x t : 2n

n

C   
2. The accuracy conditions: ( 1) 0n m

n
n

n C   (where m = 0, 1, 2,..., p-1 and 2
Np  ) 

3. The perfect reconstruction conditions: 2 2n
n

C   and 2 0n n m
n

C C    
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Then the low-pass filter is ( )
2

nC
h n   and the high-pass filter is 1( ) ( 1) ( 1)ng n h n N    . 

One of the simplest and most localized members is the DAUB6 which has six coefficients:  

 

1 2 1 2 1 2
0 1 2

1 2 1 2 1 2
3 4 5

(1 ) (5 3 ) (10 2 2 )
16 2 16 2 16 2

(10 2 2 ) (5 3 ) (1 )
16 2 16 2 16 2

z z z z z z
C C C

z z z z z z
C C C

     
  

     
  

 (1) 

Where, 1 10z   and 2 5 2 10z   . For an 8x8 input data, the DAUB6 forward transform 
matrix (using an assumption of periodicity) is shown in Eq. (2): 

 

0 1 2 3 4 5

5 4 3 2 1 0

0 1 2 3 4 5

5 4 3 2 1 0
6

4 5 0 1 2 3

1 0 5 4 3 2

2 3 4 5 0 1

3 2 1 0 5 4

0 0
0 0

0 0
0 0

( )
0 0
0 0

0 0
0 0

C C C C C C
C C C C C C

C C C C C C
C C C C C C

C
C C C C C C
C C C C C C
C C C C C C
C C C C C C



 
    
 
 

     
 

   
 
 
    

 (2) 

 

x0

x1

x2

x3

x4

x5

LOW0 / HIGH0

C0 -C5

C1 -C4

C2 C3

C3 -C2

C4 C1

C5 -C0

 
Fig. 1. FP-based DAUB6 filter architecture. 
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The structure of the matrix uses the set of coefficients, 0 1 5{ , ,..., }C C C  as a smoothing filter 
(low-pass) and the set, 5 4 0{ , ,..., }C C C   as a non-smoothing filter (high-pass). The DWT is 
invertible and orthogonal - the inverse transform, when viewed as a matrix, is simply the 
transpose of the forward transform matrix. So, basically we need only 2 sets of multiply-
accumulate (MAC) cells each containing 6 multipliers and 5 adders where partial 
products are computed separately and subsequently added. However, it can be seen that, 
by introducing additional control circuitry, the same multipliers can be used for both low-
pass and high-pass filtering. As a result, the number of multipliers can be reduced to 6 
instead of 12. Fig. 1 shows the signal flow graph of the conventional finite-precision (FP) 
implementation of Eq. (2), where ix  is the input data vector. Since all the coefficients are 
fixed, for a fixed precision, we can in fact replace all the multipliers by adders and 
shifters. As a result, the total equivalent additions required to compute the 1-D DAUB6 
filter is 44. 

4. AIQ-based algorithm 
Algebraic integer (AI) is defined by real numbers that are roots of monic polynomials with 

integer coefficients (Wahid et al., 2004). As an example, let 
2
16

j

e


  denote a primitive 16th 
root of unity over the ring of complex numbers. Then   satisfies the equation: 8 1 0x   . 
The ring ( )Z  can be regarded as consisting of polynomials in   of degree 7 with integer 
coefficients. The elements of ( )Z   are added and multiplied as polynomials, except that the 
rule 8 1    is used in the product to reduce the degree of powers to below 8.  
In summary, algebraic integers of an extension of degree n can be assumed to be of the 
form: 

 0 0 1 1 1 1... n na a a       (3) 

Where, 0 1 1{ , ,..., }n     is called the AI basis and the coefficients ia  are integers. The process 
of mapping with AI is known as Algebraic Integer Quantization (AIQ).  
The AIQ technique is useful in computing discrete transforms as first explored by Cozzens 
and Finkelstein (Cozzens & Finkelstein, 1985). In their work, the algebraic integer number 
representation, in which the signal sample is represented by a set of (typically four to eight) 
small integers, combines with the Residue Number System (RNS) to produce processors 
composed of simple parallel channels. The analog samples must first be quantized into the 
algebraic integer representation and the final algebraic integer result converted back to an 
analog or digital form. In between these two conversions, the algebraic integer 
representation must be converted into and out of two levels of RNS parallelism. 

4.1 AIQ-based Daubechies wavelets 
Now we present the concept of AIQ to encode the DAUB6 coefficients. First of all, consider 
the polynomial of two variables: 

 
1 1

00 10 2
1 2 1 2

0 0 01 11 1 1 2

1
( , ) ji

ij
i j

a a z
f z z a z z

a a z z z 

   
     

   
  (4) 
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So the corresponding coefficients, ija , are encoded in the form 00 10

01 11

a a
a a
 
 
 

. Then all the 

DAUB6 coefficients are exactly encoded (scaled by 16 2 ) and shown below in Eq. (5): 

 
0 1 2

3 4 5

1 1 5 1 10 2
1 0 3 0 2 0
10 2 5 1 1 1

2 0 3 0 1 0

C C C

C C C

     
       
     

     
              

 (5)  

The obvious advantages of this approach are: a) Very small dynamic range (numbers 
ranging from 0 to 10); b) Multiplication by a constant is very easy and efficient (only 1 
addition is required in most cases; so, multiplication can be eliminated by add/shift 
algorithm); and c) We have 3 parallel channels through which data flows independently 
(since 11a  is zero for all) and also a very simple scheduling is needed. No quantization errors 
would be incurred. Fig. 2 shows the signal flow graph of the AIQ-based scheme that 
requires 42 adders. 
 

 
Fig. 2. AIQ-based DAUB6 filter architecture. 
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The encoding scheme can be easily applied to DAUB4 coefficients. In that case, we need a 
2nd degree polynomial of one variable: 

 2
3 0 1 3 2 3( )f z a a z a z    (6) 

Where, 3 3z  . As a result, the error-free mapping of DAUB4 coefficients can computed as 
given below (scaled by 4 2 ): 

 0 3 1 3 2 3 3 31 ; 3 ; 3 ; 1C z C z C z C z         (7) 

4.2 Hardware implementation 
The AIQ-based architecture is coded in Verilog and prototyped onto Xilinx VirtexE FPGA to 
assess the performance. A precision of 8-bit is used in the multipliers to minimize the 
hardware and optimize the operation, which is completed in one clock cycle (CC). Table 1 
presents the comparison of the synthesized results along with the fixed-point (FP) designs. It 
can be seen from the table that the AIQ scheme for both DAUB4 (D4) and DAUB6 (D6) costs 
lesser hardware resources and has lower critical path delay; in case of DAUB4, the savings is 
even higher. 
 

Scheme Fixed-point AIQ Overall savings (%) 

D4 D6 D4 D6 D4 D6 

Datapath 4 6 3 6 25 0 

Adders 32 44 16 42 50 5 

LUTs 268 364 124 340 54 7 

Registers 422 520 200 494 53 5 

Critical path Tm+2Ta Tm+3Ta 5Ta 6Ta -- -- 

Frequency (MHz) 98 112 148 120 -- -- 

1Xilinx VirtexE (xcv300epq240-8);  D4 = DAUB4; D6 = DAUB6; Tm = latency for multiply operation; Ta = 
latency for addition operation 

Table 1. FPGA1 implementation and hardware comparison. 

A key advantage of the AIQ approach is error reduction. In order to better understand the 
sources of error induction, we present in Fig. 3 the entire process of digital computation 
process. Here each arrow represents one key stage in the computation. In case of FP-based 
approach, there are three stages of error accumulation (or induction). In stage 1, the 
quantization (or approximation) error is introduced due to the lack of finite representation 
of transform basis coefficients that are irrational numbers. The error gets larger and larger in 
later stages as the process continues.  
However, in AIQ-based approach, there is only one stage of error induction at the end: in 
stage 1, the basis coefficients are mapped with algebraic integers (that is error-free); then all 
the required computations take place (that is also error-free) using the AI representation. 
Finally, the data is converted back to binary (in stage 3) where some errors may be 
introduced; but these errors are much less compared to FP-approach, and are introduced 
very late in the computation process, and hence less affect the quality of image 
reconstruction.  
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Fig. 3. Stages in computation process (error induced in shaded blocks): (a) FP approach; (b) 
AIQ approach. 

Moreover, the error introduced at the final stage in AIQ approach can be further minimized 
using higher precision AIQ multipliers. We have performed an error analysis that shows the 
error incurred for different bit-length of the AIQ multipliers (in Fig. 4). The error is 
computed taking a multiplier of 16-bit width as reference. The signed digit representation 
(for 8-bits) is shown below in Eq. (8): 

 

3 5
1

1 3
2

2 5
3

10 11.001010 3 2 2

5 2 10 100.10100 4 2 2

3 10.010010 2 2 2

z

z

z

 

 

 

    

     

    

 (8) 

 

6 7 8 9 10 11 12 13 14
0

1

2

3

4

5

6

7
x 10-3

Multiplier Precision (bits)

C
om

pu
ta

tio
n 

E
rro

r

 

 
Z1
Z2
Z3

 
Fig. 4. Computation error in AIQ multipliers. 
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5. Performance evaluation 
The AIQ-based algorithm to compute the Daubechies Wavelet Transform is intended to 
be used in applications where the quality of image reconstruction is critical, such as 
biomedical imaging, telemedicine, capsule endoscopy (Wahid et al., 2008), etc. Due to the 
error-free nature of integer mapping, the AIQ approach results in a much better 
reconstruction compared to conventional binary approach. Here, we present the results of 
our study, where we apply the scheme to several standard benchmark and medical 
images, such as endoscopic, ultrasound, x-ray, CT-scan images and evaluate the 
performance.  
The section is divided into four sub-sections. In the first section, we evaluate the 
performance of the AIQ scheme for standard images followed by the analysis of medical 
images. Next, we show the performance of the scheme in a noisy environment. Finally, the 
results are compared with existing works related to medical image compression. In all these 
cases, we have used peak-signal-to-noise-ratio (PSNR) as the visual quality assessment 
index which is given by Eq. (9):  

 
 

10
2

, ,1 1

25520 log
1 'N M

m n m nn m

PSNR
x x

M N  

 


  
 (9) 

Where, M and N are the image width and height namely; x and x’ are the original and 
reconstructed component values namely.  

5.1 Performance analysis on standard images 
Here, we perform 1-D forward transform on the benchmark “Goldhill” image followed by 
the inverse transform to get the original image back. No compression was performed, so the 
image quality degradation is purely due to arithmetic quantization effects. Different 
hardware precision (number of bit) is used where a full adder is considered as the unit for 
the hardware cost, and making a simple assumption of a hardware cost of n for an n-bit 
word (this will be a best case comparison for the fixed-point binary implementation). The 
results are shown in Fig. 5 and 6.  
As shown in Fig. 5(a), the PSNR of the reconstructed image gets higher with the increased 
bit precision which is expected. In all cases, the AIQ performs much better that FP, i.e., the 
data recovery rate is higher, especially in lower bit rate region. In other words, for a fixed 
level of distortion, the number of bits required to transmit the transformed coefficients of 
AIQ approach would be less than those required for FP technique.  
In Fig. 5(b), we present an analysis of reconstruction quality (in PSNR) with the cost of 
implementation. An interesting comparison is to select similar hardware cost and then 
compare the reconstruction performance. As an example, for same hardware cost of 150, 
compare the PSNR of both FP (44dB) and AIQ implementation (82dB). In this case the 
difference in the PSNR is 38dB in favour of AI – that is for similar cost of implementation, 
the AIQ scheme produces much better image reconstruction. On the other hand, for same 
PSNR, say 60 dB, AIQ scheme (95) requires around three times less hardware than FP 
implementation (270). 
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Fig. 5. Performance analysis of DAUB4 – FP vs. AIQ: (a) PSNR vs. Precision; (b) PSNR vs. 
Hardware cost. 
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Fig. 6. Performance analysis of DAUB6 – FP vs. AIQ: (a) PSNR vs. Precision; (b) PSNR vs. 
Hardware cost. 

Same kind of superiority is seen for DAUB6 (Figure 6) too. So, not only an improvement in 
image reconstruction quality is obtained but also hardware cost is reduced. Fig. 7 shows the 
image reconstruction for a 8-bit FP vs. a 14-bit AIQ for DAUB4. The difference in PSNR is 
about 45dB and the level of improvement is quite noticeable. 



 
Discrete Wavelet Transforms: Algorithms and Applications 

 

130 

   
 (a) Original    (b) PSNR = 43dB          (c) PSNR= 88dB 
Fig. 7. (a) Original goldhill image; (b) Reconstructed image using FP scheme (8-bits); (c) AIQ 
scheme (14-bits). 

5.2 Performance analysis on medical images 
We have performed an exhaustive simulation using several medical images, such as, X-ray, 
CT-scan, Ultrasound (US) and endoscopic images, and the results are presented in Table 2 
(showing for two cases of bit precision: 8-bits and 12-bits). In all cases, the AIQ-based 
scheme produces a high PSNR and outperforms the conventional approach by a far margin. 
Some sample original and reconstructed images are shown in Fig. 8 – 11. In most cases, the 
difference in PSNR is around 8dB with noticeable level of improvement. 
 

D4-FP D4-AIQ D6-FP D6-AIQ 

CT 8 bit 44.4 52.5 41.1 49.3
12 bit 66.7 76.6 65.5 76.6

Endoscopic 8 bit 44.8 51.8 41.4 50.8
12 bit 67.1 76.0 66.1 75.9

US 8 bit 48.0 55.9 44.8 53.7
12 bit 70.4 79.9 69.0 79.9

X-ray 8 bit 43.3 50.1 39.9 49.2
12 bit 65.5 74.1 64.5 74.1

Table 2. Quality of reconstruction (in terms of PSNR in dB) for medical images. 
 

   
 (a) Original    (b) PSNR = 44dB          (c) PSNR= 52dB 
Fig. 8. (a) Original endoscopic image; (b) Reconstructed image using FP scheme; (c) AIQ 
scheme. 
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 (a) Original    (b) PSNR = 43dB          (c) PSNR= 50dB 
 

Fig. 9. (a) Original x-ray image; (b) Reconstructed image using FP scheme; (c) AIQ scheme. 
 

 

   
 (a) Original    (b) PSNR = 44dB          (c) PSNR= 53dB 
 

Fig. 10. (a) Original CT-scan image; (b) Reconstructed image using FP scheme; (c) AIQ 
scheme. 
 

 

   
 (a) Original    (b) PSNR = 48dB          (c) PSNR= 56dB 
 

Fig. 11. (a) Original US image; (b) Reconstructed image using FP scheme; (c) AIQ scheme. 
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5.3 Performance analysis on noisy images 
As a final study, the AIQ algorithm is tested under a noisy environment. The Gaussian 
white noise and Poisson noise are added to the images of all types, and the performance is 
compared with the FP implementation. The results are tabulated in Table 3 (all using 8-bit 
precision). Like previous cases, due to less error accumulation in the computation process, 
the AIQ-based approach is seen to have performed better than FP approaches even in a 
noisy environment. 
 

Noise Algorithm 
PSNR (dB) 

Goldhill US X-ray Endoscopic CT 

Gaussian 

D4 - FP 43.9 47.5 43.1 44.6 44.4 
D4 - AIQ 51.4 55.5 50.0 51.6 52.4 
D6 - FP 40.6 44.3 39.7 41.3 41.1 

D6 - AIQ 49.9 53.2 49.3 50.6 49.7 

Poisson 

D4 - FP 44.1 47.6 43.2 44.8 44.6 
D4 - AIQ 51.6 55.6 50.0 51.8 52.5 
D6 - FP 40.7 44.5 39.8 41.5 41.3 

D6 - AIQ 50.1 53.4 49.3 50.9 49.9 

Table 3. Quality of reconstruction in noisy environment. 

5.4 Comparative analysis 
In order to show the effectiveness of the AIQ approach, the algorithm is compared with 
some compression standards: JPEG, JPEG2000, and existing algorithms targeted to medical 
imaging. Since there is no benchmark for medical images, we have conducted the 
experiment with benchmark images like “Lena”, “Barbara” and “Goldhill”. Table 4 
summarizes the comparison results (all using 8-bit precision with 0.25 bits per pixel). From 
the table, it is clearly observed that the error-free algorithm performs competitively 
compared to other existing compression schemes. 
 

Algorithm Lena Barbara Goldhill 

HS-HIC (Mohammed, 2008) 35.0 26.1 30.5 
Hybrid (Yu & Mitra, 1997) 35.0 31.5 32.9 
JPEG (Wahid et al., 2008) 32.4 27.7 29.7 

JPEG2000 (Seo & Kim, 2007) 34.1 28.8 30.5 
OB-HIC (Mohammed & Abd, 2010) 35.9 32.8 33.8 

D4-AIQ 44.9 45.0 35.8 
D6-AIQ 43.2 43.6 35.3 

Table 4. Comparative analysis (in terms of PSNR in dB) of the AIQ scheme. 

6. Conclusion 
In this chapter, we have presented an efficient approach to compute Daubechies wavelet 
transforms that is based on encoding the basis set of forward transform coefficients using 
algebraic integers. The AIQ approach not only reduces the number of arithmetic operations, 
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but also reduces the dynamic range of the computations. Because of error-free mapping in 
the earlier stages, less error is introduced in the system, as compared to FP implementation, 
that results in much better data reconstruction. The performance is validated using standard 
and medical images in both normal and noisy conditions. In all cases, the AIQ-based 
approach outperforms the conventional FP scheme by far margin. The rate of data recovery 
is very high while preserving critical information that makes the scheme suitable for 
medical and telemetric imaging applications. 
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1. Introduction

Human life is closely tied to signals. These signals are present everywhere - listening to music
is possible because of audible sound signals traveling through air, reading a book is feasible
due to light waves bouncing off objects and interpreted by our bodies as visual images,
electromagnetic waves allow us to communicate through the radio or wireless Internet.
Signal Processing is an area of electrical engineering and applied mathematics that deals with
either continuous or discrete signals. Particularly, Image Processing is any kind of Signal
Processing where the input is an image, such as a digital photograph. The underlying
essence of Image Processing lies in understanding the concept of what is an image and
studying techniques for the manipulation of images with the use of a computer. While these
explanations may seem quite generic, the importance of Image Processing in the modern
world is undeniable and progress in this field is very desirable.

1.1 Images
The concept of an image can initially be mathematically defined as a function f : S → C
that goes from a certain space S (such as R2, for instance) to a space C of colors that can be
perceived by the human eye. This definition does not exhaust all of the possible meanings of
this word, but will be enough for this chapter. When working on a computer, however, both
the domain and counter-domain of the image-function must be discrete. The most common
representation of an image in Image Processing thus consists of taking a discrete subset of S -
S′ and a function that associates the values of S′ to a certain subset of C - C′. In this way, an
image I can be thought of as a discrete function I : S′ → C′.
In this work and in Image Processing in general, the kind of image we are most interested in is
a digital image, usually obtained through a digital camera or generated by a computer. As the
previous mathematical definition, digital images are discrete, that is they are composed of a
finite number of elements. A digital image can be thought of as a mosaic of colors taken form a
certain set. In mathematical terms, a digital image can be represented via a matrix M ∈ Mn,m,
composed of numbers that represent colors that can be shown by modern electronic devices,
such as televisions, computer monitors and projectors. Each element of this matrix is called a
pixel (this name comes from the words ’picture element’).
It is important to understand the concept of color. Initially, color is a sensation produced by
the human brain when it receives certain visual stimuli. This input is given by electromagnetic
radiation (or light) in a set wavelength that is called the visible spectrum. A typical human
eye will respond to wavelengths from about 390 to 750 nm. Theoretically speaking, the space
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of all visible colors, as given by their wavelengths is of infinite dimension, and thus not fit for
a computer. This limitation is bypassed through the study of the human vision.
Scrutiny of the human eyes shows that they contain two different kinds of photo-receptor cells
that allow vision. These cells are rods and cones. Rods are very sensitive to light, being mostly
responsible for night vision and have little, if any, role in color vision. Cones on the other
hand are of three types (Short, Medium and Long), each covered in a different photo-sensitive
pigment. These pigments respond differently to incoming light wavelengths. A chart showing
the response of each kind of cone to light can be seen below in Figure 1.
By using the knowledge above, modern visual devices are built so that they emit light at only
three different wavelengths, specifically suited to excite each cone in a known way. This allows
devices to create a wide range of visible colors. While its not possible to re-create all possible
color sensations using only these three colors, the difference when using modern technology
is mostly imperceptible. Thus we have arrived at the discretization of the color space used
for digital images. These colors can now be codified as certain finite amounts taken in small
intervals of these three primary colors. A schematic of a digital image can be seen in Figure 2.

Fig. 1. Human eye response curves. (Image in Public Domain)

Fig. 2. Raster Image. (Image in Public Domain)

1.2 Applications of Image Processing
Image Processing has seen a great variety of methods developed in the last fifty years. These
techniques are greatly diverse and are present in various aspects of human daily life, as well
as other important scientific fields.
Some typical tasks in Image Processing involve text or pattern recognition by a computer
(machine vision), like identifying individuals from photographs, for instance using their face,
retina or fingerprints. In this last case, a specialized camera is used to create a digital image
of a person’s fingers. This image is then analyzed by a computer program that searches for
patterns, which are larger characteristics of the ridges in the skin, and minutia - smaller details
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such as ends and bifurcations of said ridges. Figure 3 shows a program extracting information
from a finger photograph and Figure 4 shows a fingerprint recognition device being used.

Fig. 3. Human fingerprint analysis. (Image in Public Domain)

Fig. 4. Biometric reading device. (Image in Public Domain)

Other applications involve various methods of obtaining valuable data from several image
sources, such as satellites or other sensors in order to discover important characteristics.
Several software products such as Photoshop (trademark of Adobe Systems Incorporated)
and GIMP (trademark of The GIMP Development Team) rely on common Image-Processing
techniques to alter or improve the quality of images. An example of this is High Dynamic
Range imaging - a method that blends the information from several differently exposed digital
photographs in order to obtain a better view of the scene. An excellent source of information
on this topic can be found at (Max Planck Institut fur Informatik, n.d.). See Figure 5 below for
an example.
Image Processing can be used to allow cars and other machines to operate automatically by
interpreting the information of a video-camera and determining the shapes or movement of
objects on the visible scene. An example of a new technology that involves heavy use of
Image-Processing in this way is the new Kinect gaming system developed by Microsoft for the
Xbox360 console. This device is comprised of three cameras, two of which serve the purpose
of analyzing the distance of objects on the scene from the device using an infrared laser. These
images are then processed so that the system is able to separate the location of the players
from the background or other objects in a process called segmentation (Shotton et al., 2011).
An image of this device can be seen on Figure 6. An example of image segmentation can be
seen in Figure 7, where the frog is separated from the background.
These and other applications show the importance of Image Processing as a field of research.
A good overview of the whole field of Image Processing can be found in (Velho et al., 2008).
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Fig. 5. An example of HDR creation from multiple differently-exposed images. (Source
exposures by Grzegorz Krawczyk)

Fig. 6. The Kinect gaming device. (Image in Public Domain)

Fig. 7. An example of image segmentation. The frog is being segmented from the
background.

Some more information on interesting applications of this field and otherwise can be found in
(Acharya & Ray, 2005).

2. A quick glance at wavelet transforms applied to edge detection

The first mention of wavelets appeared in (Haar, 1911). But only in the 1980s did Stephane
Mallat (Mallat, 1989) spearheaded the use of wavelets in his work with digital image
processing. Inspired by this work, Yves Meyer (Meyer, 1987) constructed the first non-trivial
wavelets, which were differentiable, unlike Haar wavelets. They did not, however, have
compact support. A few years later, Ingrid Daubechies (Daubechies, 1988) used the works
of Mallat to construct a set of orthonormal bases of wavelets with compact support. These
works of Daubechies are the foundation of the current use of wavelets in Image Processing.
More historical information on wavelets can be found in (Daubechies, 1992).
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There are plenty of uses of wavelets in image processing. For example, in 1994 (Fröhlich &
Weickert, 1994) presented an algorithm to solve a nonlinear diffusion equation in a wavelet
basis. This equation has the property of edge enhancement, an important feature for image
processing. More applications in edge detection are shown later in this chapter. The JPEG
2000 image coding system (from the Joint Photographic Experts Group) uses compression
techniques based on wavelets. In (Walker, 2003) the author describes a wavelet-based
technique for image denoising. Applications of the wavelet transform to detect cracks in
frame structures is presented by (Ovanesova & Suárez, 2004). Wavelet transforms have an
important role in multiresolution representations in order to effectively analyze the content of
images. Multiresolution will be introduced later in this chapter.

2.1 Wavelet Transforms
While the Fourier transform decomposes a signal over sine functions with different
frequencies, the wavelet transform decomposes a signal onto translated and dilated versions
of a wavelet. Figure 8 shows both a sine wave for the Fourier transform and a wavelet for
wavelet transform.

Fig. 8. A sine wave and a wavelet (image from (Radunivić, 2009))

Unlike the Fourier transform, the wavelet transform can capture both frequency and location
information.
A wavelet is a function ψ ∈ L2(R) with a zero average:∫ +∞

−∞
ψ(t)dt = 0 (1)

This function is normalized ‖ψ‖ = 1, and centered in the neighborhood of t = 0. A family of
time-frequency atoms is obtained by scaling ψ by s and translating it by u:

ψu,s(t) =
1√

s
ψ

(
t − u

s

)
(2)

Thus, the Continuous Wavelet Transform (CWT) of a function f at a scale s > 0 and translated
by u ∈ R can be written as:

W f (u, s) =
∫ +∞

−∞
f (t)

1√
s

ψ∗
(

t − u
s

)
dt (3)

In the field of image processing we are interested in wavelets which form a base of L2(R2)
to represent images. If we have an orthonormal wavelet basis in L2(R) given by ψ with the
scaling function φ, we can use

ψ1(x1, x2) = φ(x1)ψ(x2),
ψ2(x1, x2) = ψ(x1)φ(x2),
ψ3(x1, x2) = ψ(x1)ψ(x2),

(4)
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to form an orthonormal basis in L2(R2) (Mallat, 1999):{
ψ1

j,p, ψ2
j,p, ψ3

j,p

}
[j,p]∈Z3

(5)

where ψ1 corresponds to variations along rows, ψ2 corresponds to variations along columns
and ψ3 corresponds to variations along diagonals.
It is computationally impossible to analyze a signal using all wavelet coefficients. Thus, for
discrete computations, we have to use a Discrete Wavelet Transform (DWT), that is a wavelet
transform for which the wavelets are discretely sampled (Mallat, 1999).
Let f [n] = f (n) be the discrete signal of size N. Its discrete wavelet transform is computed at
scales s = aj. A discrete wavelet scaled by aj is defined by:

ψj[n] =
1√
aj

ψ

(
n
aj

)
(6)

The DWT can then be written as a circular convolution ψ̄j[n] = ψ∗
j [n]:

W f (n, aj) =
N−1

∑
m=0

f [m]ψ∗
j [m − n] = f � ψ̄j[n] (7)

A wavelet transform computed up to a scale aJ is not a complete signal representation (Mallat,
1999). We need to add the low frequencies L f [n, d] corresponding to scales larger than d. A
discrete and periodic scaling filter is computed by sampling the scaling function φ(t) defined
by:

φJ [n] =
1√
aJ

φ
( n

aJ

)
(8)

Let φ̄j[n] = φ∗
j [n]. The low frequencies are carried by:

L f [n, aJ ] =
N−1

∑
m=0

f [m]φ∗
J [m − n] = f � φ̄J [n] (9)

As we can see in the Equations 6 and 9, the DWT is a circular convolution. In that way, we will
have lowpass and highpass filters which form a bank of filters. Figure 9 shows the discrete
wavelet transform for 3 scales. hψ(n) is a highpass filter and hφ is a lowpass filter. This form
is known as Fast Wavelet Transform (FWT).

Fig. 9. Fast Wavelet Transform for 1 dimension Mallat (1999)

As we saw before, in the field of image processing we are interested in two dimensional
signals. For two dimensions, the DWT of a function f (x1, x2) of size M × N can be written as:
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Wφ(j0, m, n) = 1√
MN ∑M−1

x1=0 ∑N−1
x2=0 f (x1, x2)φj0,m,n(x1, x2)

Wi
ψ(j, m, n) = 1√

MN ∑M−1
x1=0 ∑N−1

x2=0 f (x1, x2)ψ
i
j,m,n(x1, x2)

(10)

where i = {1, 2, 3}
Similar to Figure 9, we can express the FWT in two dimensions like the Figure 10.

Fig. 10. Fast Wavelet Transform for 2 dimensions Mallat (1999)

For more information on the theory of multiresolution and high-frequency in images, read
Section 3.

3. Multiresolution and high frequency in images

Multiresolution Analysis is a very efficient way to process different levels of detail in an image.
Detecting and assessing discontinuities of an image allows one to detect its borders, edges and
peaks.

3.1 What are high-frequencies?
An image is composed by the sum of its components of low and high frequencies.
Low frequencies are responsible for the general smooth areas, while high frequencies are
responsible for details, like edges and noise Gonzalez & Woods (2006).
A filter that attenuates high frequencies is called a lowpass filter. A filter that has the opposite
characteristic, i.e., highlights high frequencies, is called highpass filter. As we saw on previous
sections, in a Discrete Wavelet Transform we have a filter hφ that corresponds a lowpass filter
and a filter hψ that corresponds a highpass filter.
The Figure 11 shows an example of applying a lowpass filter and a highpass filter on a image.
Therefore, high frequencies on images can be used for several applications which need the
details of an image, such as detecting edges, corners and textures.

3.2 Multiresolution analysis
A multiresolution analysis of the space L2(R) consists of a sequence of nested subspaces such
that
{0} · · · ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ Vn+1 ⊂ · · · ⊂ L2(R)
with some important properties. The most important characteristics that we consider in the
context of image processing for high frequency assessment are:
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Fig. 11. Results of lowpass and highpass filters. The first image is the original, the second is
the result of a lowpass filter and the third is the result of a highpass filter

• Regularity
The subspace V0 is generated as the linear combination of integer shifts of one or a
finite number of generating functions φ1,. . . ,φr. These generating functions are called
scaling functions. Usually those functions must have compact support and be piecewise
continuous.

• Completeness
those nested subspaces fill the whole space L2(R), and they are not too redundant. So, the
intersection of these subspaces should only contain the zero element.

This concept, applied to image processing and wavelets, justifies the successful use of image
pyramids in the context of high frequency detection.

3.3 Image pyramids
A simple, but powerful, structure to represent images at more than one resolution is the image
pyramid Burt & Adelson (1983). Basically, it is a collection of decreasing resolution images
arranged in the shape of a pyramid (Figure 12 ).

Fig. 12. Image Pyramid.

The idea behind image pyramids is to generate a number of images corresponding to the
response of a bank of filters at different scales. There are many different types of filters that
can be used for this purpose.
One special family of filters consists of Wavelets. They are constructed from a mother wavelet.
A family is constructed by dilating and translating the mother wavelet by different quantities.
The main advantage of using this family of functions over the Fourier transform is that
wavelets respond very well to discontinuities, i.e, high frequencies. The most know wavelet
families are the Haar, Daubechies, Coiflet, and Symmlet.
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The Daubechies family is of particular interest because it is fractal in nature, and the Haar
family, although very simple, can be very useful in many applications.
In practical terms, the base of the pyramid is the image which we want to filter in various
scales, and each level of the pyramid above the base is produced by filtering it and generating
an image with half of its width and height.
Using wavelet and scale functions, the nested subspaces of scale and detail are produced. The
horizontal, vertical and diagonal details of a subspace Vi+1 are the information that cannot be
represented in Vi (Figure 13).

⊂ ⊂ ⊂
Fig. 13. Nested subspaces in the context of image processing. The details are represented in
the grey regions (the contrast was enhanced for better visualization).

Now is easy to understand how the discrete wavelet transform can be applied for images.
As we saw in Equation 10, the Discrete Wavelet Transform in two dimensions captures the
variations on rows, columns and diagonals. Figure 14 shows an example of a DWT applied
for an image in 3 scales.

Fig. 14. The result decomposition of a blank image using a discrete Wavelet Transform for 1
and 2 scales Gonzalez & Woods (2006)

Section 4.2 describes a method which produces a pyramid of a chosen image and processes the
correspondent details in every scale. This allows us to detect discontinuities in a very precise
and adaptative approach.
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3.4 Edge detectors using multiresolution and discrete wavelet transform
Many works use multiresolution as a step to gather specific image information on a single
scale. The idea is to combine the information present at several scales, as appearance is related
to the scale of the observation, so a scene should be described at multiple scales.
The first ones to formalize this concept were Witkin (1983) and Koenderink (1984) with the
idea of scale-space linear filtering. The principle is to convolve the original image by a family
of Gaussians of increasing variance related to the studied scale, and then to progressively
eliminate the smallest structures in the image.
However, this approach suffers from several drawbacks such as blurred edges and the edges
at the coarse scale are shifted. Multiple nonlinear diffusion filters have been suggested to
overcome these drawbacks. More elaborated approaches have been suggested to accelerate
the resolution, such as wavelet-based ones.
Recent works still use the idea of convolution by a family of Gaussians (Sumengen &
Manjunath (2005), Zhang et al. (2010)) and nonlinear diffusion filters(Tremblais & Augereau
(2004)). Other works are wavelet-based, as can be seen in (Belkasim et al., 2007), (Shih &
Tseng, 2005), (Han & Shi, 2007), Brannock & Weeks (2006) and Heric & Zazula (2007).
Sumengen & Manjunath (2005) create an Edgeflow vector field where the vector flow is
oriented towards the borders at either side of the boundary. To create this vector field, they
use a fine to coarse strategy. In that way, the proposed method favors edges that exist at
multiple scales and suppress edges that only exist at finer scales. The strength of the edges are
represented by the strength of the vectors at the edge location where the vector field changes
its direction. This method is also used to multi-scale image segmentation.
Tremblais & Augereau (2004) present a new explicit scheme to the linear diffusion filtering
which preserves edges. A fast filtering algorithm is then combined with a simple multiscale
edge detection algorithm.
For Zhang et al. (2010), the one pixel width edge is more accurate than other edge detection.
So, they explore the zero-crossing edge detection method based on the scale-space theory.
For image segmentation, Belkasim (Belkasim et al., 2007) uses a wavelet-based image analysis
scheme based on extracting all objects in the image using their borders or contours. The size
of the contour can then be used to define the level of resolution and hence the extent of the
analysis.
Shih (Shih & Tseng, 2005) argue that edge extraction based only on a gradient image will
produce a bad result with noise and broken edges. In order to solve this problem, they
combine an edge detector with a multiscale edge tracker based on the discrete wavelet
transform.
In Han (Han & Shi, 2007), the wavelet transform plays an important role in the task of
decomposing a texture image into several levels. Once a decomposition level is chosen,
textures are then removed from the original image by the reconstruction of low frequencies
only.
The problem for Brannock & Weeks (2006) is to automatically detect edges. To determine
its efficacy, the 2D discrete wavelet transform is compared to other common edge
detection methods. They conclude that the discrete wavelet transform is a very successful
edge-detection technique, especially when utilizing auto-correlation.
Heric & Zazula (2007) present a novel edge detector based on the wavelet transform and signal
registration. The proposed method provides an edge image by a time-scale plane based edge
detection using a Haar wavelet. Then, this edge image is used in a registration procedure
in order to close the edge discontinuities and calculate a confidence index for the detected
contour points.
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4. The DWT applied to high-frequency assessment from multiresolution analysis

In this section, we present a practical use of wavelets for visualization of high frequency
regions of a multiresolution image. Our approach combines both multiresolution analysis
and orientation tensor to give a scalar field representing multiresolution edges. Local maxima
of this scalar space indicate regions having coincident detail vectors in multiple scales of
wavelet decomposition. This is useful for finding edges, textures, collinear structures and
salient regions for computer vision methods. The image is decomposed into several scales
using the DWT. The resulting detail spaces form vectors indicating intensity variations which
are adequately combined using orientation tensors. A high frequency scalar descriptor is then
obtained from the resulting tensor for each original image pixel.

4.1 Orientation tensor
One way of estimating salient regions in image processing is to use multiresolution to capture
global and local brightness variations. Even in a non-redundant wavelet decomposition, local
and global borders occurring in the same region may carry useful information. The problem
lies in combining this global information into a single image. In this way, we can capture
the multivariate information of several scales and color channels using orientation tensors
(Knutsson, 1989).
A local orientation tensor is a special case of non-negative symmetric rank 2 tensor, built
based on information gathered from an image. As shown by Knutsson (Knutsson, 1989), one
can be produced by combining outputs from polar separable quadrature filters. Because of
its construction, such a tensor has special properties and contains valuable information about
said image.
From definition given by Westin (Westin, 1994), orientation tensors are symmetric, and thus
an orientation tensor T can be decomposed using the Spectral Theorem as shown in Equation
11, where λi are the eigenvalues of T.

T =
n

∑
i=1

λiTi (11)

If Ti projects onto a m-dimensional eigenspace, we may decompose it as

Ti =
m

∑
s=1

eseT
s (12)

where {e1, ..., em} is a base of Rm. An interesting decomposition of the orientation tensor T
(Westin, 1994) is given by

T = λnTn +
n−1

∑
i=1

(λi − λi+1) Ti (13)

where λi are the eigenvalues corresponding to each eigenvector ei. This is an interesting
decomposition because of its geometric interpretation. In fact, in R3, an orientation tensor T
decomposed using Equation 13 can be represented by a spear (its main orientation), a plate
and a ball

T = (λ1 − λ2)T1 + (λ2 − λ3)T2 + λ3T3 (14)

A R3 tensor decomposed by Equation 14, with eigenvalues λ1 ≥ λ2 ≥ λ3, can be interpreted
as following:

• λ1 ≫ λ2 ≈ λ3 corresponds to an approximately linear tensor, with the spear component
being dominant.
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• λ1 ≈ λ2 ≫ λ3 corresponds to an approximately planar tensor, with the plate component
being dominant.

• λ1 ≈ λ2 ≈ λ3 corresponds to an approximately isotropic tensor, with the ball component
being dominant, and no main orientation present

Consider two orientation tensors A and B and its summation T = A + B. After the
decomposition of T using Equation 14, the component (λ1 − λ2)T1 is an estimate of the
collinearity of the main eigenvectors of A and B.

4.2 Proposed method
The method proposed in (de Castro et al., 2009) uses high frequency information extracted
from wavelet analysis. Given an input image I, for each scale j and position p ∈ I, we create
a vector vj,p as follow:

vj,p = [I · ψ1
j,p, I · ψ2

j,p, I · ψ3
j,p]

T (15)

This vector contains the high frequency value at vertical, horizontal and diagonal directions
of the image I at the position p and scale j. Simmetric rank 2 tensors are then created as

Mj,p = vj,pvT
j,p (16)

We find the final tensor M0,p for each pixel of the original image using

M0,p =
nj

∑
j=1

kj Mj,p (17)

to combine the tensors obtained at each scale j, where nj is the number of scales and kj ∈ R is
the weight assigned to each scale, given by

kj =
∑

np
n=1 Trace

(
Mj,n

)
∑

nj

k=1 ∑
np
n=1 Trace

(
Mk,n

) (18)

where np is the number of pixels and Trace(Mj,p) is the sum of the eigenvalues of Mj,p.
The trace represents the amplification driven by the tensor to the unit sphere and is a good
estimator of its importance. Thus, the tensor sum is weighted by the proportion of energy of
each scale in the multiresolution pyramid.
In order to find Mj,p in Equation 17, we use bilinear interpolation of the tensor values, relative
to each position p in the initial image, at the subsampled image at scale j to find the resulting
tensor Mj,p for each pixel of the initial image. This is depicted in Figure 15, where tensors are
represented as superquadric glyphs whose longer axis shows the main direction.
Note that the tensor presented in Equation 17 is a 3x3 positive symmetric matrix with
real coefficients, and thus we may apply Equation 14. We then find the main orientation
component (spear) of the final orientation tensor for each pixel of the input image. This
component indicates the collinearity of the interpolated tensors and provides interesting
results.

4.2.1 Implementation
The proposed algorithm consists of three main steps: a discrete wavelet transform (Barnard,
1994; Mallat, 1999), a tensor field computation and a weighted sum of the computed tensors.
The whole process is illustrated in Figure 16.
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Fig. 15. A tensor is computed for each pixel in original image by a weighted sum of
corresponding tensors in each scale. In this example, two wavelet decompositions are
performed.

Fig. 16. Example of the proposed algorithm using Daubechies1 to decompose the image into
two scales.

The number of scales to be used is a parameter of the algorithm. The DWT splits the image
into three detail components and one scale component in the beginning of each iteration. In
the next iteration, the same process is applied, using the resulting scale component as the
input image.
For each pixel of the input image, its correspondent position at the current scale is computed
with subpixel precision for each resolution. The four nearest pixels in a given resolution are
used to compute the final tensor. The vectors vj,p described in Equation 15 are computed for
each of these pixels and then used to compute four spear type tensors. The final tensor for the
subpixel position is obtained by combining these four tensors with bilinear interpolation. The
pixel tensor is computed by combining the nj tensors as showed in Equation 17.
The pixel tensors are decomposed and their eigenvalues are then extracted. The values
λ1 − λ2 are computed and normalized to form the output image. Color images are split
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into three monochromatic channels (Red, Green and Blue) and the proposed algorithm is
applied to each channel separately. The tensors for each color channel are summed before
eigen decomposition.
The complexity of the whole process is O(nj · np), where nj is the number of analyzed scales
and np the amount of input pixels. Thus, this is an efficient method that can be further
parallelized.

4.2.2 Experimental results
The proposed method was tested with several images and using several wavelets functions
(de Castro et al., 2009). A piece of the experiments is shown in Figure 17. The DWT is applied
with different analyzing Daubechies filters and number of scales. The Church’s ceiling is
formed by coincident frequencies on its geometric details. These details can be better observed
in Figure 17c.

(a)

(b) (c)

(d) (e)

Fig. 17. (a) input image. (b) λ1 − λ2 with Daubechies1 and 1 scale. (c) Daubechies1 and 3
scales. (d) Daubechies3 and 1 scale. (e) Daubechies3 and 3 scales.
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A better estimation of soft edge transitions is obtained by changing the analyzing filter from
Daubechies1 to Daubechies3. Figures 17b and 17d illustrate this behavior.
In general, it can be noted that this method highlights high frequencies occurring in the same
region at different scales. We used thermal coloring with smooth transition from blue to red,
where blue means absence of high frequencies, and red means presence of high frequencies.
The green regions also indicate high frequencies, but less intense than those indicated by red
regions. The red regions provide the better higher frequencies estimation tensors.

4.2.3 Conclusion
We presented an overview of discrete wavelets and multiresolution applied to edge detection.
We also presented a method for high frequency assessment visualization using these powerful
tools. The method is based on the DWT decomposition and detail information merging
using orientation tensors. This multiresolution analysis showed to be suitable for detecting
edges and salient areas in an image. The experimental results show that the high frequency
information can be inferred by varying the DWT filters and number of scales. Coincident
frequencies in space domain are successfully highlighted. By tuning the number of scales, one
may infer texture feature regions. The λ1 − λ2 scalar field is one of the most used orientation
alignment descriptors. However, other relations can be extracted from final tensors. This
method can be easily parallelized, the use of technologies like GPGPUs and multicore CPUs
turns it attractive for high performance applications.
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1. Introduction

These last years, research activities on multicomponent image compression have been
expanded, due to the development of multispectral and hyperspectral image sensors which
supply larger and larger amount of data. The end-users of such images become also more
numerous and have various needs and various applications. The future earth observation
systems, for instance, will use multi-, super- and hyper- spectral image sensors with higher
resolutions leading to bigger amount of transmitted data. However the channel bandwidth for
transmission is limited and therefore there is an interest of conceiving compression systems
(onboard and on the ground) of multicomponent images which are not application dependent
and which are compatible with the diversity of end-users’ needs. The components of a
multicomponent image generally represent the same scene with different views depending
on the wavelength. For data from different sensors, a preliminary step of image registration
is therefore required as there is a high degree of dependence (or redundancies) between
the various components: the usual spatial redundancy (between different pixels in each
component) and the spectral redundancy (between the components).
During the past two decades, different solutions have been proposed for multicomponent
image coding. A solution currently adopted consists of using two different transformations,
each with the goal of reducing only one of the two redundancies. In (Dragotti et al., 2000),
a 2-D discrete wavelet transform (DWT) is used to reduce the spatial redundancies in each
component while the Karhunen Loève transform (KLT) is applied to reduce the spectral
ones. In that paper, the quantization and entropy coding are achieved thanks to the well
known SPIHT (Set Partitioning in Hierarchical Trees) codec by Said and Pearlman (Said
& Pearlman, 1996) in its original version and in a modified version including VQ (vector
quantization). In the same way, with the use of the 2-D DWT of (Antonini et al., 1992)
(usually called the Daubechies 9/7), the authors of (Vaisey et al., 1998) use a lattice VQ
with a stack run coder as quantization and entropy coding. More recently in (Rucker et al.,
2005), the KLT associated with the Daubechies 9/7 2-D DWT and with EBCOT (Taubman,
2000; Taubman & Marcellin, 2002) for quantizing and entropy coding has been tested on
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hyperspectral images with different bit-allocations between components. It is shown that the
Post Compression Rate-Distortion (PCRD) optimizer of EBCOT applied across multiple bands
gives the best rate-distortion performance. Another solution consists of using a 3-D DWT for
reducing both the spatial and spectral redundancies with only one transform. This approach
is generally applied to hyperspectral images as in (Christophe et al., 2006). An overview of
3-D wavelet-based techniques and more can be found in (Fowler & Rucker, 2007). The two
above mentioned solutions are compatible with the JPEG2000 Part 2 standard. The JPEG2000
standard is well known and well spread today. Moreover the KLT used in JPEG2000 Part 2
is considered as the best existing lossy compression techniques for hyperspectral images at
medium and high bit rates (Du & Fowler, 2007; Penna et al., 2007). The KLT consists in a
Principal Component Analysis (PCA), well known of statisticians, where all the components
are kept. However, the rather great computational complexity of the KLT hinders its adoption
in practice — specially on satellite platforms — and recent works propose different solutions
in order to pass round this problem. One approach consists in reducing the complexity of
the covariance matrix computation. This is done by randomly sampling the entire image in
order to obtain a small sample of the pixels’ population on which the covariance matrix is
computed (Du & Fowler, 2008; Penna et al., 2007). Another approach consists in computing
a kind of KLT average on a set of images (the learning basis) issued from only one sensor
and using it on other images obtained with the same sensor. This sub-optimal transform
is called exogenous KLT in (Thiebaut et al., 2006) and the computational complexity of the
second approach is compatible with satellite platforms. Both approaches are fruitful: the
rate-distortion performance sacrifice compared with the true KLT is very slight, whereas the
computational burden is significantly reduced. In the second approach, the exogenous KLT
matrix is known by the decoder, hence there is no need to transmit it.
It is well known that the KLT can be suboptimal in transform coding when the data are not
Gaussian. Now, under only the high resolution quantization hypothesis, nearly everything
is known about the performance of a transform coding. Nevertheless, the optimal transform
computation is generally considered as a difficult task and the Gaussian assumption is then
used in order to simplify the calculation. Recently, the problem of computing the optimal
coding transform associated with scalar variable-rate quantizers for still images was resolved
under high-resolution quantization hypothesis, with mean square error as distortion and
without the Gaussian assumption (Narozny et al., 2005; 2008). However, for the JPEG2000
Part2 compression scheme, the previous optimal transform computation cannot be directly
applied to obtain the optimal spectral transform, because of the 2D DWT presence—see the
criterion (15) in Section 4, which depends on subband statistics—. In (Akam Bita et al.,
2010a), the authors solved both the problems of computing an optimal spectral transform
(OST), with the constraint of orthogonality and without any constraint but invertibility, for
that compression scheme, when the 2D DWT has fixed coefficients and under the only
high resolution quantization hypothesis. They showed that on hyperspectral images, the
orthogonal OST, called OrthOST, performs slightly but significantly better than a KLT at
low, medium and high bit-rates and that the gain obtained by removing the orthogonality
constraint in the computation of the OST is not significant. Further, it is not widely
known that even when the input data are Gaussian, the KLT is not optimal in the above
mentioned compression scheme. Indeed, after the 2D DWT, the variance of the wavelet
coefficients depends on the subband they belong to (even for Gaussian data) and the KLT
does not capture these various variances, while the EBCOT coder with its PCRD optimizer
performing simultaneously across all the codeblocks from the entire image take them into
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account. In (Akam Bita et al., 2010b), the authors introduced an orthogonal spectral transform
(called JADO for Joint Approximate Diagonalization under Orthogonality constraint) using
only second order statistics that has not this shortcoming, and that is optimal at high
bit-rates for the JPEG2000 Part 2 compression scheme, when the data are Gaussian. They
showed on natural hyperspectral images that JADO (resp. OrthOST) performs slightly but
significantly better than the KLT (resp. JADO). The main drawback of the OSTs is their heavy
computational cost, which is much higher than the one of a KLT or JADO (which both have
roughly the same complexity).
In order to reduce the complexity of a codec based on OrthOSTs, the authors of (Akam Bita
et al., 2008; 2010c; Barret et al., 2009) used the same strategy as in (Thiebaut et al., 2006):
they replaced the OrthOST, which must be computed for each new encoded image, with an
exogenous quasi optimal spectral transform. This last transform is an OrthOST computed once
and for all on a learning basis constituted of images from only one spectrometer and which
is then applied to any image to be coded stemming from the same spectrometer. Using either
the JPEG2000 codec called Verification Model version 9 (JPEG2000, 2001) or the Bit Plane
Encoder (BPE (CCSDS-1, 2007)) recommended for satellite image compression (Yeh et al.,
2005) by the CCSDS (Consultative Committee for Space Data Systems), they showed that this
strategy yielded good performances, sometimes better than the (non exogenous) KLT ones,
in terms of bit-rate versus distortions. Four different distortions were considered: Signal to
Noise Ratio (SNR), Maximum Absolute Difference (MAD), Mean Absolute Error (MAE) and
Maximum Spectral Angle (MSA). Indeed, it is well-known that providing the mean square
error as one distortion only is not sufficient to assess the quality of a codec for hyperspectral
images (Christophe et al., 2005). However in the simulations presented in (Akam Bita et al.,
2008; 2010c; Barret et al., 2009) when the VM9 is used, the computational complexity of the
EBCOT coder associated with its PCRD optimizer is very high, and when the BPE is applied
to encode each component of the transformed image, the complexity of the algorithm for
optimal allocation between components is also very high. In both cases, the computational
complexity is too high for a compression system on-board a satellite. In (Barret et al., 2011), the
authors present a low complexity hyperspectral image coder based on exogenous OrthOST
and zerotrees well adapted to OrthOST.
It is important to note that the point of view presented in this chapter — i.e., a compression
scheme for hyperspectral images that is independent of the end-user application — is no
longer justified at very low bit-rates (lower than 0.5 bits per pixel and per band). For more
details on low-bit rates hyperspectral compression see (Chang et al., 2010c).
In this chapter, we study the question of an optimal linear transform for reducing spectral
redundancies under high resolution and variable rate constrained quantization hypothesis,
when a 2-D DWT — with fixed coefficients — is applied to each component to reduce
spatial redundancies and one scalar quantizer per subband and per component is used.
This compression scheme, described in Section 2, is compatible with the JPEG2000 Part 2
standard. The asymptotic expression of the mean square error distortion associated with that
compression scheme is given in Section 3. In Section 4, we clarify the criterion minimized by
such an optimal spectral transform with mean square error distortion and we show the link
between the criterion and the mutual information contrast used in Independent Component
Analysis (ICA). In Section 5, we derive a criterion minimized by an OrthOST under Gaussian
data assumption. Moreover, we describe in Section 6 the quasi-Newton algorithms used for
the minimization of the criterion, either with the constraint of an orthogonal transform or
with no constraint but invertibility or with the constraint of an orthogonal transform and the
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assumption of Gaussian data. The two first algorithms are derived from an algorithm by Pham
ICAinf described in (Pham, 2004) that performs ICA. Then in Section 7, performances of these
transforms and comparisons with the KLT are given for multi- and hyper-spectral satellite
images, with the four above mentioned different measures of distortion. Finally, in Section 8
we introduce quasi-optimal OrthOSTs, called exogenous, that have not the main drawback of
heavy computational cost and we compare their performances in lossy coding with OrthOSTs.

2. Description of the separable compression scheme

2.1 Conventions and notations
We consider a multicomponent image X with N components X1, . . . , XN . Each component Xi
is a 2-D image with Nr rows and Nc columns. To simplify the notations and the mathematical
expressions, we assume that each component is written as a row vector by scanning all its
pixels row by row (for example). Then X is a N × L matrix, with L = NrNc. In the following,
depending on the context, we shall interpret Xi as a 2-D image or as a row vector of dimension
L. For a square matrix M, the expressions det M, tr M and diag(M) denote respectively its
determinant, its trace and the diagonal matrix obtained with its diagonal elements.
In the following compression scheme, the 2-D DWT has fixed coefficients (in our tests, the
Daubechies 9/7 DWT is always used), but the spectral linear transform is adapted to the data.
We denote W the invertible L× L matrix associated with the 2-D DWT.

2.2 The separable scheme
The separable scheme is compatible with the JPEG2000 Part 2 standard. It can be described as
follow:

• Coding. The same 2-D DWT is applied to each component Xi in order to reduce the spatial
redundancies and a linear transform A is applied between the components in order to
reduce the spectral redundancies. The result of the 2-D DWT applied to the entire image
X is XWT and the transformed coefficients are the elements of the matrix Y = AXWT . For
each component, the wavelet coefficients of each subband are regrouped according to a
fixed scan that does not depend on the component. This re-ordering corresponds to the
right multiplication of XWT by a permutation matrix PT . We can suppose without loss of
generality that P is the identity, otherwise we could replace W with PW. This partitioning
can be written XWT = [(XWT)(1) . . . (XWT)(M)], where M is the number of subbands.
Then, the transformed coefficients Y = [Y(1) . . . Y(M)] (where Y(i) = A(XWT)(i)) are
quantized and entropy coded with one quantizer per subband and per component (see
§ 7.1).

• Decoding. Let Yq denote the matrix with the same dimension as Y containing the
dequantized transformed coefficients. The mathematical inverse transforms are applied
to Yq in order to reconstruct an approximation X̂ = A−1YqW−T of the original image X.

We can remark that the order of the transformations (i.e., applying first the DWT then A, or
first A then the DWT) has no effect on the result, since Y = A(XWT) = (AX)WT . This is why
that scheme is called separable.

3. Expression of the distortion

In lossy or quasi-lossless coding, the quantization leads to irreversible loss of information,
therefore the decoded image X̂ is an approximation of the original image and in order to
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quantify the quality of the reconstructed image, it is necessary to introduce a measure of
distortion. In this section we give, under various hypotheses, the relation that links the
distortion between X and X̂ to the quantizers distortions, when the distortion is the mean
square error:

Da(X, X̂) =
1

NL
‖X − X̂‖2 with ‖X − X̂‖2 =

N

∑
i=1

L

∑
k=1

(Xi(k)− X̂i(k))2. (1)

We begin by recalling the solution of the problem in a simple general case (Gersho & Gray,
1992; Taubman & Marcellin, 2002).

3.1 A simple general case
Lemma 3.1. Let X be a real random vector with N components and A be an invertible matrix of order
N. The transformed vector Y = AX is quantized and dequantized in Yq. The original vector X is
approximated by X̂ = A−1Yq and let b = Y − Yq be the quantization noise. Then, the end-to-end
distortion D = 1

N E(‖X − X̂‖2), where E denotes the mathematical expectation, satisfies the relation
D = 1

N tr
[
E(bbT)A−TA−1].

Proof: We have X − X̂ = A−1b and ‖A−1b‖2 = bTA−TA−1b = tr[A−1bbTA−T ] =
tr[bbTA−TA−1], therefore D = 1

N E(‖A−1b‖2) = 1
N tr

[
E(bbT)A−TA−1]. �

Further, we may need the following assumption, that can be deduced from high resolution
quantization hypothesis (Gersho & Gray, 1992) (this point is recalled in Subsection 3.2).

H1: The components of the quantization noise are zero mean and uncorrelated.

Theorem 1. 1. With the hypotheses of Lemma 3.1 and assuming H1, the distortion becomes

D =
1
N

N

∑
i=1

αiDi, (2)

where Di = E(b2
i ) is the quantizer distortion of the ith component Yi of Y and, with ei the ith

canonical vector of RN and (A−1)ij the element of A−1 located on row i and column j, we have

αi =
N

∑
j=1

(A−1)2
ji = ‖A−1ei‖2. (3)

2. The assertion 1. holds without the assumption H1 if A−TA−1 is diagonal, e.g. if A is orthogonal.

Proof: The assumptions in 1. or 2. state that at least one of the two matrices A−TA−1 and
E(bbT) is diagonal. Hence the trace of their product is equal to the sum of the products of
their diagonal elements. �

3.2 Justification of the assumption H1
We recall here well known results that can be found e.g. in (Gersho & Gray, 1992). The
assumption H1 can be justified under the following conditions. C1: the random vector
Y = (Y1, . . . ,YN)

T has a continuous probability density function (pdf) fY; C2: separable
high-rate quantization is achieved, meaning that the quantization steps h = (hi)1≤i≤N of
the N components are small with respect to the variations of fY (i.e. fY(y + h) � fY(y),
∀y ∈ R

N) and C3 : for any cell S of the separable N-D quantizer, the dequantized value Yq
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associated with S is the iso-barycenter of S. Indeed, if the three conditions C1, C2 and C3 hold,
then the pdf fY can be considered as quasi constant in the hypercube Yq + ∏N

i=1[−hi/2 , hi/2].
Further, the conditional law of the quantization noise b = Y − Yq knowing the dequantized
value Yq satisfies fb|Yq (u) � 1/ ∏N

i=1 hi if u ∈ ∏N
i=1[−hi/2 , hi/2], 0 otherwise. We see that

the conditional pdf fb|Yq does not depend on the quantized value Yq, hence it is equal to fb,
the pdf of b. Further the components of b are zero mean and (quasi) independent since their
joint density is approximatively equal to the product of their marginal densities.

3.3 The separable subband scheme
In the following, the symbols X, Y and Yq refer again to the matrices defined in Section 2 and
A denotes the matrix of the linear transform that associates Y with X. We are going to apply
the formulae of the general simplified case to the separable scheme. The actual distortion Da
given in relation (1) is an estimation of the distortion

D(X, X̂) = E[Da(X, X̂)] =
1

NL
E[‖X − X̂‖2]. (4)

Now, in order to express the relation (3) in terms of the DWT W and the spectral transform
A, it is important to note first that the canonical basis of the space of matrices of dimension
N × L is the family of matrices ei,k = eie

′T
k (1 ≤ i ≤ N, 1 ≤ k ≤ L), with ei (resp. e

′
k) the ith

(resp. kth) vector of the canonical basis of RN (resp. RL). Therefore, the weighting factor αi in
relation (3) depends here on the two indices i and k: αik = ‖A−1ei,k‖2. Then, let

wi = ‖A−1ei‖2 (1 ≤ i ≤ N), (5)

we have A−1ei,k = A−1eie
′T
k W−T and ‖A−1ei,k‖2 = tr[A−1eie

′T
k W−TW−1e

′
keT

i A−T ] =

eT
i A−TA−1eie

′T
k W−TW−1e

′
k and finally

αik = ‖A−1ei,k‖2 = wi‖W−1e
′
k‖2. (6)

Therefore, according to Theorem 1, under assumption H1 we have

D(X, X̂) =
1

NL

N

∑
i=1

L

∑
k=1

wi‖W−Te
′
k‖2 E[(Yi(k)−Yq

i (k))
2]. (7)

Now, for any subband m (1 ≤ m ≤ M), let Km be the number of columns in Y corresponding
to that subband and let

πm =
Km

L
(1 ≤ m ≤ M) (8)

be the ratio of wavelets coefficients that belong to it. If k (1 ≤ k ≤ L) refers to a column indice
of the matrix Y located in that subband and if we assume that

H2 : for any component i (1 ≤ i ≤ N), the distortion E[(Yi(k)− Yq
i (k))

2] = D(m)
i does not

depend on the spatial position k in the subband m,

(which is the case under high resolution quantization hypothesis), then equation (7) becomes

D(X, X̂) =
1
N

N

∑
i=1

M

∑
m=1

πmwiωmD(m)
i with ωm =

1
Km

∑
k
‖W−Te

′
k‖2, (9)

where in the last summation, the range of k consists in the columns of Y with the subband m.
Or, by adopting a different perspective, if we assume that
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H3 : the weight ‖W−1ek‖2 = ωm does not depend on the spatial position k in the subband m,

then equation (7) becomes

D(X, X̂) =
1
N

N

∑
i=1

M

∑
m=1

πmωmwiD
(m)
i with D(m)

i =
1

Km
∑
k

E[(Yi(k)−Yq
i (k))

2], (10)

where in the last summation, the range of k consists in the columns of Y with the subband m.

Remark 1. The condition H3 is satisfied by dyadic wavelets having Finite Impulse Response (FIR)
synthesis filters, when edge effects are neglected (for more details see e.g. (Usevitch, 1996; Woods &
Naven, 1992)).

Lastly, we can notice that the actual distortion Da given in equation (1) satisfies

Da(X, X̂) =
1

NL
tr[(X − X̂)(X − X̂)T ] =

1
NL

tr[A−1(Y − Yq)W−TW−1(Y − Yq)TA−T ],

therefore if we assume

H4 : the DWT is orthogonal, i.e. WWT = IL, with IL the identity matrix of dimension L,

then Da(X, X̂) = 1
NL tr[A−1(Y−Yq)(Y−Yq)TA−T ] = 1

NL ∑M
m=1 tr[A−1(Y(m) −Yq(m))(Y(m) −

Yq(m))TA−T ].

Remark 2. The hypothesis H4 is roughly satisfied with the approximately orthogonal Daubechies
9/7 DWT (indeed, a simulation shows that the infinity norm of the diagonal, and respectively the off
diagonal, elements of WTW − IL is worth 0.42 and 0.16, for five levels of decomposition on a 1-D
signal of length 512).

Now, 1
Km

(Y(m) − Yq(m))(Y(m) − Yq(m))T is the actual autocorrelation matrix of the m-th
subband quantization noise. If we assume

H′
1: in each subband, the actual autocorrelation matrix of the quantization noise is

diagonal, i.e., 1
Km

(Y(m) − Yq(m))(Y(m) − Yq(m))T = diag(D(m)
1 , . . . , D(m)

N ) (1 ≤ m ≤ M),

then we have

tr[A−1 diag(D(m)
1 , . . . , D(m)

N )A−T ] =
N

∑
i=1

wiD
(m)
i

Da(X, X̂) =
1
N

M

∑
m=1

πm tr[A−1 diag(D(m)
1 , . . . , D(m)

N )A−T ]

Da(X, X̂) =
1
N

N

∑
i=1

M

∑
m=1

πmwiD
(m)
i . (11)

Moreover, if we assume H4 and

H5 : the spectral transform A is orthogonal, i.e. AAT = IN ,

then
Da(X, X̂) = Da(Y, Yq). (12)

Let us state these results in the following theorem.
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Theorem 2. With the notations of Section 2.2, the end-to-end distortion of the separable scheme is
given by:

• equation (9) under the assumptions H1 and H2;

• equation (10) under the assumptions H1 and H3;

• equation (11) under the assumptions H′
1 and H4;

• equation (12) under the assumptions H4 and H5.

Remark 3. 1. The assumptions H1 and H′
1 are consequences of high resolution quantizations (see

Subsection 3.2). They can also be deduced from the condition of statistical independence of the
transformed components, since if the components of Y are independent, then the components of the
quantization noise Y − Yq, which is generally centered, are uncorrelated.

2. A method for the computation of the weighting wavelet coefficients ωm (1 ≤ m ≤ M) can be found
in (Usevitch, 1996; Woods & Naven, 1992).

3. Since the assumptions H′
1, H1, . . . , H4, are only approximatively satisfied, the equalities (9–13)

are only approximations. However, we observed on many experiments that these approximations
are very good for bit-rates greater than 0.25 bits per pixel and per band.

We search the optimal spectral transform (that is the one which minimizes the total bit-rate
for a given end-to-end distortion) which adapts to the data, assuming high resolution
quantizations hypotheses and 2-D DWT with fixed coefficients, i.e., which do not adapt to
the data. As already mentioned, in our tests we always used the Daubechies 9/7 DWT. First,
we derive the criterion minimized by an optimal spectral transform. We emphasize the fact
that we do not assume Gaussian data and that generally in the literature this assumption
is made in order to clarify the criterion (coding gain) maximized by the optimal transform.
However, the Bennett’s formula and the optimal bit allocation between quantizers formula on
which our criteria are based are well-known and therefore it is straightforward to deduce these
criteria from well-known results. Our major innovation consists especially in the computation
of the optimal transforms, since this computation is generally presented as a difficult task in
classical transform coding and has never been done in the case of the separable scheme which
is JPEG2000 compatible.

4. Criteria for optimal transforms under high resolution quantizations

We recall the extension of the Bennett’s formula which can be stated as follows: if X is
a real random variable quantized under the high resolution hypothesis, then the bit-rate
of quantized variable Xq is well approximated by H(X) − 1

2 log2(cD), where H(X) is the
differential entropy of X, D is the distortion (expected mean square error) introduced by
the quantization and c is a constant depending on the quantization, e.g., for uniform scalar

quantization c = 12 (Gray & Neuhoff, 1998). Hence, if R(m)
i denotes the quantizer bit-rate

associated with component i and subband m, the Bennet’s approximation gives

R(m)
i � H(Y(m)

i )− 1
2

log2(cD
(m)
i )

and the total bit-rate R = 1
N ∑N

i=1 ∑M
m=1 πmR(m)

i satisfies

R � 1
N

N

∑
i=1

M

∑
m=1

πm

[
H(Y(m)

i )− 1
2

log2(cD
(m)
i )

]
. (13)
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The problem now consists in minimizing R under the constraint (given by Theorem 2)

1
N

N

∑
i=1

M

∑
m=1

πmωmwiD
(m)
i ≤ Dt (14)

for a given end-to-end distortion Dt. In other words, for a target end-to-end distortion Dt,

how can the quantizer distortions D(m)
i be distributed in each subband of each component

in order to minimize the total bit-rate? It is a classical problem in compression, called
optimal bit allocation (Gersho & Gray, 1992), that can be solved as follows. According to
relation (13), when the spectral and spatial transforms A and W are given, the differential

entropies H(Y(m)
i ) and the factors wi and ωm are given. Then, the total bit-rate is minimized

if and only if ∏N
i=1 ∏M

m=1(D
(m)
i )

πm
N is maximized, that is if and only if

[
N

∏
i=1

M

∏
m=1

(
D(m)

i

) πm
N

] [
N

∏
i=1

wi

] 1
N
[

M

∏
m=1

ωπm
m

]
=

N

∏
i=1

M

∏
m=1

(
ωmwiD

(m)
i

) πm
N

is maximized. Now the mean inequality states the last expression (which is a geometric mean)
is not greater than the arithmetic mean corresponding to the left member of inequality (14),
with equality if and only if all the terms in the summation are equal. Hence, the minimization

holds when D(m)
i = Dtω

−1
m w−1

i for all m and i. That leads to

R �
M

∑
m=1

πm

[
1
N

N

∑
i=1

{
H(Y(m)

i ) +
1
2

log2 wi

}
+

1
2

log2 ωm

]
− 1

2
log2(cDt)

and since wi is the ith diagonal element of A−TA−1, the other terms ωm do not depend on A,
we obtain the following theorem.

Theorem 3. For the separable scheme when the 2-D DWT has fixed coefficients, if high resolution
quantizations hypotheses are assumed, then the optimal spectral transform A is an N × N matrix that
minimizes the criterion:

C2(A) =
N

∑
j=1

M

∑
m=1

πmH(Y(m)
j ) +

1
2

log2 det diag(A−TA−1). (15)

Remark 4. Since ∑M
m=1 πm = 1, the criterion C2(A) can be expressed as

C2(A) =
M

∑
m=1

πm

[
N

∑
i=1

H(Y(m)
i )− log2 |det A|

]
+

1
2

log2

[
det diag

(
A−TA−1)

det(A−TA−1)

]

=
M

∑
m=1

πmC(m)
ICA(A) + CO(A), (16)

where, for 1 ≤ m ≤ M, C(m)
ICA(A) = ∑N

i=1 H(Y(m)
i )− log2 |det A| is the criterion to minimize when

performing only ICA to the N components of the transformed coefficients that belong to the subband
m. Pham (Pham, 2004) used that criterion to perform the algorithm ICAinf.
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Remark 5. It results of Hadamard’s inequality, that the term CO(A) = 1
2 log2

det diag(A−TA−1)
det(A−TA−1)

is
always positive or null (Narozny et al., 2008) and vanishes if and only if A is a matrix whose columns
are pairwise orthogonal, therefore it can be seen like a kind of measure of deviation to orthogonality.

The relation (16) shows that the criterion C2(A) takes into consideration the fact that one
quantizer per subband and per component is allocated. It is also important to notice that
the criterion C2(A) involves the transformed coefficients Y. Therefore, even for the separable
scheme (where the order of processing between the 2-D DWT and the spectral transform does
not matter), the search of the optimal spectral transform must be done after the 2-D DWT.
Note that the separable compression scheme does not take into account the difference of
statistics between subbands, since the same spectral transform is applied to all the subbands.
Moreover it is well known that after a DWT some redundancies remain between adjoining
wavelets coefficients. In (Akam Bita et al., 2010a), the authors introduced the subband
compression scheme, that uses as many optimal spectral transforms as subbands in order to
capture the difference of statistics between subbands, and the mixed subband compression
scheme, that captures both redundancies between adjacent wavelet coefficients and the
difference of statistics between subbands. Their experiments on hyperspectral images showed
that these variants of the separable scheme, which are not JPEG2000 compatible, perform
finally worse than the separable scheme because of the increasing of memory size occupied
by the optimal spectral transforms in the bit stream.
Lastly, note that the algorithm that computes a KLT is customarily applied first to the image
before the DWT, but this would be equivalent to applying it after the DWT (i.e. to the DWT
coefficients) if the DWT is orthogonal (as is often the case or at least nearly so in practice1). But
then it will not distinguish subbands: the DWT coefficients are considered as coming from a
same (Gaussian) distribution, regardless of the subband they belong to. We feel that the higher
performance — shown in § 7 — of criterion (15) over the criterion 1

2 log2 ∏N
j=1 var(Yj), which

leads to the KLT, is due primarily to the fact that it treats each subband separately rather than
that treating the distribution in each subband as non Gaussian. This is logical since, after
any DWT, the energy in each subband depends on the power spectrum of the input signal.
It is important to notice that there is no contradiction in the fact that the criterion (15) treats
each subband separately, while the same spectral transform A is applied to all the subbands.
The idea is then to introduce the distinction between subbands but retain the (approximate)
Gaussian assumption used by the KLT. The distribution of all the wavelet coefficients (with no
distinction between subbands) is a mixture of distributions of the coefficients in the subbands.
It can be shown that the kurtosis of the mixed distribution is higher than the average kurtosis
of the individual distributions. In particular, mixture of Gaussian distributions has always
a positive kurtosis, unless all the individual distributions are the same. Thus the wavelet
coefficients, regardless of the subband they belong to, have a positive kurtosis even if in
each subband their distribution is Gaussian. The above consideration suggests modifying the
criterion (15) by treating the transformed coefficients in each subband m as having a Gaussian
distribution with differing variance for different m. The transformation minimizing this modified
criterion is no longer optimal, but can be nearly so if the distribution in each subband is not too
far from Gaussian. This is not an unrealistic situation: the wavelet coefficients in a subband
is the (decimated) output of a bandpass filter which tends to produce more Gaussian output
than input, due to the reasoning (given e.g. in (Papoulis, 1984) section 8-5) that yields to the
proof of the Central Limit Theorem. The advantage of the modified criterion is that it avoids

1 See Remark 2.
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the entropy estimation and uses only second order statistics. Thus its minimization requires
much less computer resources than using (15).

5. A simplified criterion using only second order statistics

Let H−(Z) = log2
√

var(Z)2πe − H(Z) denote the negentropy of Z (which is the difference
of entropy between a Gaussian distribution with variance var(Z) and the distribution of Z), it
is non negative and vanishes if and only if Z is Gaussian. The criterion (15) can be rewritten
for orthogonal2 matrices

C⊥ (A) = −
N

∑
i=1

M

∑
m=1

πmH−(Y(m)
i ) +

1
2

N

∑
i=1

M

∑
m=1

πm log2[var(Y(m)
i )2πe]. (17)

An analysis of criterion (17) shows that it takes into account two phenomena: 1) the non

Gaussianity of the transformed coefficients Y(m)
i for 1 ≤ m ≤ M and 1 ≤ i ≤ N — this

is controlled by the first term — and 2) the inhomogeneity of the variances in the subbands
— this is controlled by the second term. It is natural to explore the case where the second
phenomenon is the most important, since the DWT tends to render the variables more
Gaussian. In practice, this condition is generally roughly satisfied, except in the LL subband (a
subband of lowest resolution) for which the weighting coefficient πm is generally small. Thus,
if we neglect the variation, induced by the spectral transform A, of the first term in the right
member of equation (17), and if we consider only orthogonal matrices A, then the optimal
transform minimizes the new criterion

C′(A) =
1
2

N

∑
i=1

M

∑
m=1

πm log2[var(Y(m)
i )]. (18)

Furthermore if we assume in each component the transformed coefficients have all the
same variance, regardless of the subband they belong to, then the criterion (18) becomes
1
2 log2

[
∏N

i=1 var(Yi)
]
, leading to the KLT.

In the following, we express criterion (18) in terms of the covariance matrices of the wavelets

coefficients XWT =
[
(XWT)(1) (XWT)(2) · · · (XWT)(M)

]
located in the same subband. The

matrix (XWT)(m) is of dimension N × πmL. Its columns can be considered as different
realizations of a random vector of dimension N whose covariance matrix is denoted C(m).
Now, Y = AXWT can be written Y = [Y(1) · · · Y(M)], where Y(m) = (AXWT)(m) is a
matrix whose columns can also be considered as different realizations of a random vector
having AC(m)AT as covariance matrix. With these notations, we have ∏N

j=1 var(Y(m)
j ) =

det diag(AC(m)AT) and hence the new criterion becomes

C′(A) =
1
2

M

∑
m=1

πm log2 det diag(AC(m)AT) (19)

to be minimized with respect to A, under the constraint that it is orthogonal.

2 The orthogonality constraint will be justified in § 7 in which we find that minimizing (15) with and
without this constraint yields almost the same performances. With the orthogonality constraint, the
second term in (15) vanishes.
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The FG algorithm in (Flury & Gautschi, 1986) can be used to minimize the above criterion.
We have developed a slightly different algorithm (called JADO) which is briefly described in
Appendix 6.3.

6. Minimization of the criteria for the separable scheme

We explain now three algorithms that minimize the criterion (15), one with no constraint but
invertibility, another with the constraint of orthogonality and the third with the constraints
of orthogonality and Gaussian data. To simplify some mathematical expressions we shall use
the Neperian logarithm instead of the base two logarithm until the end of this section.

6.1 The algorithm OST
As in (Pham, 2004) and (Narozny et al., 2008), the algorithms of minimization are based on a
quasi-Newton method with the relative gradient and a simplified relative Hessian. Starting
with a current estimator A, the method consists of expanding C2(A + EA) with respect to the
matrix E = [Eij] up to the second order, in a neighborhood of E = 0N (the null matrix), and
then minimizing the resulting quadratic form in E to obtain a new estimate. Using the results
of (Pham, 2005) it is straightforward to deduce that the Taylor expansion up to the second

order of C(m)
ICA(A + EA) can be approximated as follows

C(m)
ICA(A + EA) = C(m)

ICA(A) + ∑
1≤i 	=j≤N

E[ψ
Y(m)

i
(Y(m)

i )Y(m)
j ]Eij

+
1
2 ∑

1≤i 	=j≤N
{E[ψ2

Y(m)
i

(Y(m)
i )]E[Y(m)2

j ]E2
ij + EijEji}+ · · · , (20)

where the function ψ
Y(m)

i
is equal to the derivative of − log p(y(m)

i ) — p(y(m)
i ) denoting the

probability density function of Y(m)
i — and is known as the score function. Let M = A−TA−1.

In (Narozny et al., 2008), the Taylor expansion of CO(A + EA) is given up to the second order,
however it is quite involved and it is simplified into

CO(A + EA) ≈ CO(A)− ∑
1≤i 	=j≤N

Mji

Mii
Eji +

1
2 ∑

1≤i 	=j≤N

[Mjj

Mii
E2
ji + EjiEij

]
+ · · · (21)

by neglecting the non diagonal elements of M = [Mij] in the second order terms of the Taylor
expansion.
Using the approximation (21), the equality (20) and the relation (16) we obtain

C2(A + EA)=C2(A) + ∑
1≤i 	=j≤N

[
M

∑
m=1

πmE
[
Y(m)

j ψ
Y(m)

i

(
Y(m)
i

)]
− Mij

Mjj

]
Eij

+
1
2 ∑

1≤i 	=j≤N

[
M

∑
m=1

πmE2
ijE

[
Y(m)2

j

]
E
[
ψ2

Y(m)
i

(
Y(m)
i

)]
+

Mii
Mjj

E2
ij + 2EijEji

]
. (22)

The quadratic form associated to this last expansion is positive definite. One iteration of the
algorithm is first to solve the following equation[

Ψij 2
2 Ψji

] ( Eij
Eji

)
=

(
Φij
Φji

)
, (23)
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with Φij =
Mij
Mjj

− ∑M
m=1 πmE[ψ

Y(m)
i

(Y(m)
i )Y(m)

j ] and Ψij = ∑M
m=1 πmE[ψ2

Y(m)
i

(Y(m)
i )]E[Y(m)2

i ] +

Mii
Mjj

and then to replace the current solution A with A + EA. Since the diagonal elements of
E are undetermined, they are arbitrarily fixed to zero. For the practical computation of the
algorithm, we replace ψ

Y(m)
i

with its estimator ψ̂
Y(m)

i
that is described in (Pham, 2005) as well

as the estimator of the differential entropy. The mathematical expectations are replaced with
simple empirical means. We call OST (Optimal Spectral Transform) the algorithm described
above and OST the optimal transform returned by this algorithm.

6.2 The algorithm OrthOST
To minimize the criterion (15) with the constraint that the solution is an orthogonal matrix, it
is important to note, as in (Narozny et al., 2008), that if A is orthogonal, then A + EA remains
orthogonal when I + E is also orthogonal. This condition is satisfied up to the first order if E
is an antisymmetrical matrix, since then (I + E)T(I + E) = I + ETE . Using that condition, the
expansion (22) becomes

C(A + EA) = C(A) +
M

∑
m=1

∑
1≤i<j≤N

πm

{
E[Y(m)

j ψ
Y(m)

i
(Y(m)

i )]− E[Y(m)
i ψ

Y(m)
j

(Y(m)
j )]

}
Eij +

1
2 ∑

1≤i<j≤N

[
M

∑
m=1

πm

{
E[Y(m)2

j ]E[ψ2
Y(m)

i
(Y(m)

i )] + E[Y(m)2
i ]E[ψ2

Y(m)
j

(Y(m)
j )]

}
− 2

]
E2
ij. (24)

The matrix E is calculated in that case according to

Eij =
∑M

m=1 πm

{
E[Y(m)

i ψ
Y(m)

j
(Y(m)

j )]− E[Y(m)
j ψ

Y(m)
i

(Y(m)
i )]

}

∑M
m=1 πm

{
E[Y(m)2

j ]E[ψ2
Y(m)

i

(Y(m)
i )] + E[Y(m)2

i ]E[ψ2
Y(m)

j

(Y(m)
j )]

}
− 2

. (25)

Actually, A + EA obtained in this way is not a true orthogonal matrix. This can be overcome

by replacing A+ EA with eEA = (I+ E + E2/2!+ · · · )A, which is orthogonal and differs from
A + EA only by second order terms. We call OrthOST (Orthogonal Optimal Spectral Transform)
this algorithm and OrthOST the orthogonal transform returned by the algorithm. The case
where the spectral transform is constrained to be orthogonal is particularly interesting because
the weightings which depend on the linear transform are all equal to one.

6.3 The JADO (Joint Approximate Diagonalization under Orthogonality constraint) algorithm
Given K positive definite (complex) matrices C1, . . . , CK associated with positive weights w1,
. . . , wK , the JADO algorithm aims to find a unitary matrix B which minimizes

C(B) =
K

∑
k=1

wk log det diag(BCkB∗) (26)

where ∗ denotes the hermitian operator. This algorithm differs only slightly from FG

algorithm in (Flury & Gautschi, 1986). However, its derivation in (Flury & Gautschi, 1986)
is complex and difficult to understand. Here we provide briefly a much simpler derivation.
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The idea is to make successive Givens rotations, each time on a pair of rows of B, the ith row
Bi· and the jth row Bj·, say: [

Bi·
Bj·

]
← Tij

[
Bi·
Bj·

]
, (27)

where Tij is a 2 × 2 unitary matrix, chosen so that the criterion is decreased. The processing

of all the K(K−1)
2 pairs is called a sweep. The algorithm consists of repeated sweeps until

convergence is achieved.
The decrease of the criterion (26) induced by (27) is

K

∑
k=1

wk log

[
(Bi·CkB∗

i·)(Bj·CkB∗
j·)
/

det diag

(
Tij

[
Bi·
Bj·

]
Ck

[
B∗

i· B∗
j·
]

T∗
ij

)]
.

A natural idea is to chose Tij to maximize this decrease, but there is no closed form formulae

for that. Our idea is to maximize a lower bound of it instead. Since for a > 0, b ≥ 0, log(a/b) ≥
1 − b/a, the above decrease can be seen to be bounded below by

2(w1 + · · ·+ wK)− Tij;1·PT∗
ij;1· − Tij;2·QT∗

ij;2·, (28)

where Tij;1· and Tij;2· are the first and second rows of Tij and

P =
K

∑
k=1

wk
Bi·CkB∗

i·

[
Bi·
Bj·

]
Ck[B∗

i· B∗
j· ]; Q =

K

∑
k=1

wk
Bj·CkB∗

j·

[
Bi·
Bj·

]
Ck[B∗

i· B∗
j· ].

Since Tij;2· has unit norm and is orthogonal to Tij;1·, it must be of the form eiαTij;1·J where

α is some phase angle, x denotes the complex conjugate of x and J is the 2 × 2 matrix with 0
on the diagonal and 1,−1 on the anti-diagonal. Thus Tij;2·QT∗

ij;2· = Tij;1·JQJ∗T∗
ij;1·, but since

the above left hand side is real (as Q is hermitian), it also equals Tij;1·JQJ∗T∗
ij;1·. Therefore

expression (28) can be rewritten as 2(w1 + · · · + wK) − Tij;1·(P + JQJ∗)T∗
ij;1·. Maximizing it

with respect to the unitary matrix T thus amounts to minimizing Tij;1·(P + JQJ∗)T∗
ij;1· with

respect to the vector of unit norm Tij;1·. The solution is that Tij;1· is (up to a factor of unit
modulus) the normalized left eigenvector of the smallest eigenvalue of P + JQJ∗. Since Tij;2·
is orthogonal to Tij;1· it is the other eigenvector. Finally, Tij is the matrix formed by the left
eigenvectors of P + JQJ∗. Its elements can be computed explicitly in closed form as follows.
We note that the off diagonal elements of JQJ∗ is the negative of those of Q while the diagonal
elements are those of Q in reverse order. Thus JQJ∗ = tr(Q)I − Q where tr denotes the trace.
Since the addition of a multiple of the identity matrix does not change the eigenvectors, Tij
is also the matrix formed by the left eigenvectors of P − Q. One can now recognize that
the rotation (27) is the same as an iteration in the G loop of the FG algorithm. However, it
differs from our JADO algorithm in that it repeats (27) with the same pair i, j (but with the
newly computed Bi· and Bj·) until convergence (the G loop) and only then another pair i, j
is considered. We feel that this is not efficient since the decrease of the criterion will be very
small near the end of the G loop. We call JADOST the transform returned by the algorithm.
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6.4 Computational complexity of the optimal transforms
We give here a rough estimation of the number of operations required for the computation
of the two first algorithms described above, taking into account only multiplications and
divisions. The differential entropies and the score functions are calculated according to a
method explained in (Pham, 2005). The computational complexity of each of these quantities
is O(NrL), where r is the number of bins in the binned kernel density estimation. In
general r � L and for most cases r belongs to the interval [30 , 60]. At each iteration, the
criterion and the matrix E must be computed. The complexity of the criterion computation is
O(NrL+ N3). For the calculation of the matrix E , we first need to compute the score function.
The complexity of the matrix E computation (including the score function computation) is
O(NrL + N2L). Finally, the complexity of one iteration is O(NrL + N2L + N3). In practice,
the convergence of the algorithm is usually obtained after p iterations, p ∈ [20 , 60]. Generally
N � L and the total computational complexity is O(p(NrL + N2L)). The computational
complexities of OrthOST is the same. We recall that for the computation of a KLT, this
complexity is O(LN2). The JADOST and KLT computation complexities are roughly the same.

7. Experimental results

In this section we present the performances in image compression of the optimal transforms
described in the previous sections.

7.1 Description of the tests

Fig. 1. From up to down Moissac, Vannes, Toulouse, Port-de-Bouc

We tested two kinds of multicomponent images: multispectral ones and hyperspectral ones.
The multispectral images are3 PLEIADES simulations of French cities with N = 4 components
and coded on Nb = 12 bpppb: Moissac with Nc × Nr = 320 × 3152, Port-de-Bouc with

3 These images have been given by the French Space Agency CNES (Centre National d’Etudes Spatiales).
They are described on the web site http://smsc.cnes.fr/PLEIADES/.
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Nc ×Nr = 320× 1376, Toulouse with Nc ×Nr = 352× 3816, Vannes with Nc ×Nr = 352× 3736,
. . . The hyperspectral images are4 AVIRIS images (Moffett, Cuprite and Jasper) with N = 224
components from the visible to the infrared and coded on Nb = 16 bpppb. They are
originally acquired with Nr × Nc = 512 × 624, but for the simulations we kept only the 512
leftmost columns. Some images used in our tests are shown in figures 1 and 2. As already

Fig. 2. From left to right: Moffett, Jasper and Cuprite

mentioned, the 2-D DWT used in all our experiments is the Daubechies 9/7 which proved
to be efficient in lossy image compression (Antonini et al., 1992; Taubman & Marcellin, 2002).
For simplicity, we used only uniform scalar quantizers with a dead zone twice as large as
the quantization step. The performances are evaluated in terms of bit-rate versus end-to-end
distortion. For hyperspectral images, we considered four distortions. A first one is the mean
square error (MSE) expressed in terms of the Signal to Noise Ratio, SNR = 10 log10(σ

2/D)

where D is the actual end-to-end MSE distortion and σ2 = ∑N
i=1 ∑L

n=1(Xi(n) − μ)2/(NL)
is the empirical variance of the initial image with the empirical mean of the image μ =
∑N

i=1 ∑L
n=1 Xi(n)/(NL). A second distortion is the maximal absolute difference (MAD =

max{|Xi(n) − X̂i(n)| : 1 ≤ i ≤ N and 1 ≤ n ≤ L}), a third one is the maximum spectral

angle MSA = max

{
acos

(
∑N

i=1 Xi(n)X̂i(n)√
∑N

i=1 X2
i (n)∑N

i=1 X̂2
i (n)

)
: 1 ≤ n ≤ L

}
and the last one is the mean

absolute error (MAE = ∑N
i=1 ∑L

n=1 |Xi(n) − X̂i(n)|/(NL)). With these four distortions, one
can estimate the performances of a codec on usual applications of hyperspectral images, like
classifications and targets detections (Christophe et al., 2005). For multispectral images, we
considered only the MAD and the MSE distortions, the last one being expressed in terms
of Peak of Signal to Noise Ratio, PSNR = 10 log10[(2

Nb − 1)2/D], where D is the actual
end-to-end MSE distortion and Nb is the number of bits per pixel and per band (bpppb) of
the initial image. The bit-rate, expressed in bpppb, was measured on the actual bit stream
obtained with the JPEG2000 coder EBCOT (Taubman, 2000) and its PCRD optimizer applied
across components for optimal bit allocation. We used the Verification Model version 9.1
(VM9 (JPEG2000, 2001)) codec developed by the JPEG2000 group. The coefficients of A−1 (the
inverse matrix of the optimal spectral transform) and the mean of each component are stored
in the bitstream as float32 data (this costs 32(N+ 1)/L bpppb). A difference exists between
the aimed bit-rate and the actual bit-rate obtained with the VM9. In our tests, this difference
does not exceed ± 0.001 bpppb and thus the precision of the PSNR is about ± 0.05 dB.

4 These images have been downloaded from the NASA web site http://aviris.jpl.nasa.gov/.
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7.2 Bit-rate versus distortion performances
In this subsection, we discuss and compare the bit-rate versus distortion performances of
different spectral transforms. Table 1 presents the bit-rate of different transforms versus the

PSNR (dB) MAD
bit-rate 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

Moissac
Id 36.37 39.59 41.93 43.89 47.22 50.16 52.93 55.66 691 366 253 187 108 68 49 38
KLT 38.61 42.39 45.24 47.63 51.51 54.49 56.98 59.44 716 381 214 135 79 48 32 25
JADOST 38.54 42.30 45.14 47.52 51.39 54.42 56.98 59.47 700 357 298 137 79 46 31 24
OrthOST 38.67 42.50 45.35 47.72 51.55 54.55 57.11 59.60 818 399 229 145 78 47 33 24
OST 38.69 42.55 45.43 47.80 51.62 54.59 57.15 59.65 745 496 215 138 78 48 32 23

Port-de-Bouc
Id 30.36 33.68 36.14 38.25 41.93 45.27 48.43 51.52 1198 653 544 361 198 135 85 64
KLT 33.47 37.74 40.88 43.45 47.53 50.89 53.82 56.53 922 513 297 230 139 74 50 35
JADOST 33.26 37.56 40.73 43.32 47.47 50.91 53.93 56.68 922 504 324 256 135 75 52 32
OrthOST 33.42 37.80 41.05 43.71 47.90 51.31 54.28 56.99 885 513 305 237 122 77 51 31
OST 33.46 37.85 41.12 43.78 48.00 51.40 54.36 57.06 866 557 351 256 129 82 53 35

Vannes
Id 39.25 42.89 45.67 47.99 51.77 54.80 57.51 60.11 603 269 178 109 63 42 29 21
KLT 41.36 45.71 48.78 51.11 54.38 56.82 59.24 61.79 482 219 148 86 51 33 24 18
JADOST 41.83 46.15 49.16 51.42 54.61 57.09 59.53 62.06 368 214 134 84 48 29 24 19
OrthOST 41.90 46.27 49.29 51.54 54.71 57.18 59.62 62.16 354 190 135 91 46 30 25 18
OST 41.94 46.34 49.35 51.59 54.74 57.22 59.68 62.20 393 204 138 88 45 33 25 16

Strasbourg
Id 30.82 34.19 36.73 38.91 42.70 46.09 49.20 52.13 1357 877 546 353 205 118 86 60
KLT 32.51 36.59 39.77 42.49 46.99 50.58 53.51 56.08 1041 927 438 403 184 90 52 38
JADOST 32.47 36.51 39.65 42.33 46.78 50.36 53.33 55.92 1082 872 543 371 189 85 56 45
OrthOST 32.51 36.59 39.78 42.50 47.01 50.61 53.55 56.11 1010 948 449 404 178 87 50 38
OST 32.49 36.59 39.79 42.53 47.07 50.67 53.60 56.17 1149 904 455 289 162 81 55 42

Montpellier
Id 32.17 35.23 37.59 39.62 43.17 46.30 49.17 51.95 1216 630 406 292 168 117 77 54
KLT 34.09 37.75 40.60 43.03 47.20 50.69 53.63 56.18 747 488 340 248 143 75 49 34
JADOST 34.09 37.72 40.55 42.99 47.15 50.62 53.55 56.13 782 501 323 245 124 81 51 36
OrthOST 34.08 37.90 40.92 43.46 47.72 51.16 54.01 56.55 681 454 338 255 127 68 47 32
OST 34.14 37.99 41.01 43.56 47.79 51.21 54.06 56.60 704 483 332 239 127 68 46 33

Perpignan
Id 33.71 36.90 39.34 41.43 45.04 48.17 51.04 53.78 984 526 332 230 158 89 62 42
KLT 36.51 40.44 43.29 45.60 49.33 52.36 54.99 57.52 726 435 245 172 84 54 41 29
JADOST 36.55 40.51 43.37 45.69 49.43 52.44 55.07 57.60 715 388 234 172 90 58 39 30
OrthOST 36.59 40.59 43.48 45.83 49.61 52.66 55.30 57.82 721 371 232 165 94 54 37 30
OST 36.60 40.60 43.49 45.84 49.62 52.67 55.32 57.85 645 383 292 164 94 55 38 28

Table 1. Bit-rate (in bpppb) versus PSNR (in dB) and versus MAD of different spectral
transforms on multispectral images (best results are bolded). The bit-rate was computed with
the VM9.

two distortions PSNR and MAD on six multispectral images and Tables 2 and 3 show the
bit-rate of different transforms versus the four distortions SNR (in dB), MAE, MAD and
MSA (expressed in degree ◦) on three hyperspectral images. All the 2-D DWT was applied
with five levels of decomposition. We observe the well-known fact that spectral transforms
perform significantly better than the identity matrix (i.e., no spectral transform), especially
for hyperspectral images. Indeed, on six multispectral images (see Table 1) the average gains
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SNR (dB) MAE
bit-rate 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 0.50 0.75 1.00 1.50 2.00 2.50 3.00

Moffett
Id 25.45 30.37 33.97 36.94 41.78 45.76 49.15 52.01 24.32 16.93 12.52 7.62 5.02 3.48 2.51
KLT 44.21 47.68 50.08 51.97 54.76 57.10 59.21 61.04 3.83 3.03 2.49 1.82 1.39 1.07 0.85
JADOST 45.13 48.39 50.70 52.50 55.17 57.47 59.53 61.30 3.54 2.83 2.35 1.74 1.33 1.03 0.82
OrthOST 45.31 48.57 50.87 52.61 55.28 57.57 59.62 61.37 3.47 2.78 2.32 1.72 1.31 1.02 0.81
OST 45.32 48.56 50.87 52.62 55.30 57.64 59.77 61.63 3.47 2.78 2.32 1.72 1.30 1.00 0.79

Cuprite
Id 29.99 33.48 36.12 38.41 42.44 45.99 49.19 52.11 26.07 19.85 15.60 10.13 6.89 4.83 3.47
KLT 47.79 50.46 52.55 54.16 56.76 59.07 61.26 63.27 3.96 3.23 2.73 2.04 1.55 1.19 0.92
JADOST 48.22 50.85 52.86 54.42 56.97 59.27 61.44 63.43 3.80 3.13 2.65 1.99 1.51 1.16 0.90
OrthOST 48.25 50.88 52.89 54.44 56.99 59.29 61.46 63.44 3.79 3.12 2.65 1.98 1.51 1.16 0.90
OST 48.26 50.89 52.89 54.44 57.01 59.34 61.56 63.60 3.79 3.12 2.65 1.98 1.50 1.14 0.88

Jasper
Id 21.34 24.83 27.56 29.92 34.01 37.67 41.09 44.33 64.84 34.39 26.82 17.23 11.52 7.89 5.49
KLT 42.93 46.49 48.61 50.37 53.18 55.56 57.72 59.66 4.04 3.27 2.72 1.99 1.51 1.16 0.91
JADOST 43.56 46.89 48.97 50.67 53.43 55.78 57.91 59.83 3.87 3.15 2.63 1.94 1.47 1.13 0.89
OrthOST 43.66 46.94 49.02 50.73 53.47 55.81 57.94 59.85 3.85 3.13 2.62 1.93 1.46 1.13 0.88
OST 43.70 46.96 49.05 50.74 53.50 55.87 58.03 60.01 3.84 3.12 2.61 1.92 1.45 1.11 0.87

Table 2. Bit-rate (in bpppb) versus SNR (in dB) and versus MAE of different spectral
transforms on hyperspectral images. The bit-rate was computed with the VM9.

of the KLT, JADOST, OrthOST and OST on Identity are respectively 3.6 dB, 3.6 dB, 3.8 dB and
3.8 dB. On three hyperspectral images (see Table 2) the average gains of the KLT, JADOST,
OrthOST and OST on Identity are respectively 15.9 dB, 16.3 dB, 16.3 dB and 16.4 dB. Moreover,
we can notice that the optimal transforms OrthOST and OST perform always a little better
than the KLT at medium and high bit-rates: on six multispectral (resp. three hyperspectral)
images the average gains of OrthOST and OST on KLT are about 0.23 dB and 0.28 dB (resp.
0.43 dB and 0.49 dB). On the multispectral images, we observed that JADOST performs
roughly as the KLT for MSE distortion, sometimes slightly better, sometimes slightly worse, at
any rate. On six images, the average gain of JADOST on the KLT is negligible (about 0.02 dB)
at medium and high bit-rates (from 0.25 to 3 bpppb), whereas the average gain of OrthOST on
JADOST is about 0.21 dB at the same rates. Nevertheless, on hyperspectral images, JADOST
performs slightly but significantly better than the KLT for the four distortions tested at
medium and high bit-rates (see Tables 2 and 3) and nearly reaches the OrthOST scores with a
significantly lower computational complexity. The average gain of JADOST on the KLT (resp.
OrthOST on JADOST) is 0.37 dB (resp. 0.07 dB) on the range [0.25 bpppb , 3 bpppb]. Further,
we can remark that there is an insignificant difference of performances between OrthOST and
OST. This can be explained by the fact that transforms minimizing the criterion (16) must have
a small value for CO(A), i.e., they must be close to orthogonality (see Remark 5). Therefore
there is no advantage to use OST rather than the orthogonal transform OrthOST. In examining
the MAD distortion we observe that on the multispectral images tested, at medium bit-rates
(i.e. between 0.25 and 1.5 bpppb), OrthOST performs worse than the KLT (see Table 1). On
the other hand, on the three hyperspectral (AVIRIS) images tested, for all the distortions
measured, at medium and high bit-rates, JADOST and OrthOST perform always better than
the KLT (see Tables 2 and 3). This is a nice finding, since the optimality of OrthOST is justified
only for the MSE distortion and at high bit-rates.
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MSA (◦) MAD
bit-rate 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

Moffett
Id 12.12 6.82 3.94 2.66 1.29 0.85 0.52 0.36 1676 781 492 1259 183 62 32 20
KLT 1.43 0.87 0.57 0.37 0.20 0.15 0.12 0.10 392 211 119 67 24 14 8 7
JADOST 1.15 0.59 0.42 0.27 0.19 0.14 0.11 0.09 279 120 67 44 18 12 8 6
OrthOST 0.96 0.47 0.31 0.25 0.18 0.14 0.11 0.09 261 77 49 33 18 10 8 6
OST 0.86 0.50 0.32 0.25 0.18 0.14 0.11 0.09 207 101 46 37 19 12 7 6

Cuprite
Id 5.30 2.81 2.20 1.57 1.01 0.59 0.40 0.26 659 360 253 185 110 62 61 40
KLT 0.42 0.25 0.22 0.15 0.12 0.08 0.07 0.06 154 135 100 54 26 16 10 8
JADOST 0.33 0.25 0.16 0.14 0.10 0.08 0.07 0.05 112 109 61 39 20 11 9 7
OrthOST 0.32 0.25 0.17 0.14 0.10 0.08 0.07 0.05 113 110 61 37 22 11 9 7
OST 0.35 0.24 0.16 0.14 0.10 0.08 0.07 0.05 113 109 58 42 17 11 9 7

Jasper
Id 18.20 12.53 7.88 5.70 3.87 2.14 1.41 1.01 1907 1220 732 559 241 160 84 55
KLT 0.91 0.53 0.43 0.34 0.26 0.20 0.15 0.12 225 151 82 57 30 15 10 7
JADOST 0.87 0.51 0.44 0.33 0.24 0.19 0.15 0.12 157 91 56 51 20 11 9 7
OrthOST 0.83 0.51 0.40 0.33 0.24 0.19 0.15 0.12 157 84 46 34 23 13 9 7
OST 0.79 0.51 0.41 0.32 0.24 0.18 0.14 0.11 156 86 48 34 22 14 8 6

Table 3. Bit-rate (in bpppb) versus MSA (in degree ◦) and versus MAD of different spectral
transforms on hyperspectral images for the separable scheme. The bit-rate was computed
with the VM9.

As already mentioned, the main drawback of the OrthOSTs returned by JADO and OrthOST
algorithms is their heavy computational costs. In the next section we introduce quasi-optimal
orthogonal spectral transforms.

8. Performances of exogenous quasi-optimal spectral transforms

8.1 Exogenous quasi-optimal spectral transforms
When one gets a set of images coming from one (and only one) spectrometer sensor, it is
possible to compute an exogenous OrthOST from a learning basis extracted from this set.
Generally, images from one spectrometer have the same number of bands and the same
number of rows. However, the number of columns may vary. To compute an exogenous
OrthOST, we first split the set of all images in two disconnected sets, one consisting of several
images and which becomes the learning basis L, the other constituted of the remaining images
and which becomes the test subset. Then, all the images of the learning basis are connected
band per band and row per row to construct a single virtual large image X having the same
numbers of bands and rows as any image from the spectrometer and a large number of
columns. This image is used as input of the OrthOST algorithm described in (Akam Bita
et al., 2010a) and the output is the exogenous OrthOST associated with the learning basis L.
The exogenous KLT and exogenous JADOST are calculated similarly.

8.2 Performance comparison between exogenous and non exogenous OrthOSTs
In our tests, we used 10 images5 (shown in Figure 3) from the imaging spectrometer MERIS
on-board the satellite ENVISAT. This fifteen spectral bands spectrometer operates in the solar

5 The images were acquired via the Data Disseminated System (http://dwlinkdvb.esrin.esa.it/DDS/)
thanks to ESA/ESRIN.
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Fig. 3. Fifth component (corresponding approximately to the band [555 nm, 565 nm]) of the
hyperspectral images MERIS, numbered 1–4, 6, 8, 10, 13, 15–16, from left to right

reflective spectral range of visible and near infrared light. Each band has a programmable
width and a programmable location in the 390 nm to 1040 nm spectral range. As mentioned
in (MERIS, 2006) the instrument scans the Earth’s surface by the push-broom method, CCD
arrays provide spatial sampling in the across-track direction, while the satellite’s motion
provides scanning in the along-track direction. The scene is imaged simultaneously across
the entire spectral range, through a dispersing system, onto the CCD array. Therefore there
is no problem of deregistration on the MERIS images. The ten images of our tests have all
the same dimensions: Nr = 128, Nc = 1121 and N = 15. They are originally coded on
Nb = 16 bpppb and they were acquired with the same fifteen spectral bands. To construct
exogenous KLT and exogenous OrthOST, we split the ten MERIS images in two disconnected
sets, one constituted of seven images (the learning basis), the other constituted of the three
remaining images (the test subset). We considered 13 various learning bases, denoted Li
(1 ≤ i ≤ 13) which are presented in Table 4. The bit-rate is computed with the Verification
Model version 9 (VM9 (JPEG2000, 2001)). Note that the exogenous transforms are fixed (i.e.,
they do not adapt to the encoded image), hence they are known by the decoder and have not
to be transmitted. However, in the lossy compression results given in Table 5 with the VM9,
the inverse of the spectral transform is coded in the bit-stream (it costs less than 0.001 bpppb).
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L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13
Meris1 × × × × × × × × ×
Meris2 × × × × × × × × ×
Meris3 × × × × × × × × ×
Meris4 × × × × × × × × × ×
Meris6 × × × × × × × × ×
Meris8 × × × × × × × × ×
Meris10 × × × × × × × × ×
Meris13 × × × × × × × × ×
Meris15 × × × × × × × × ×
Meris16 × × × × × × × × ×

Table 4. Various learning bases, denoted Li (1 ≤ i ≤ 13) and constituted of seven MERIS
images each

In Table 5 we present the performances obtained with two images when the learning basis
varies. Among all the tests we made, we chose to show the best and worst cases obtained
with an exogenous OrthOST. For this, the PSNR of a spectral transform is compared to that
obtained with the KLT by subtracting, and we considered that difference of PSNR at 1 bpppb.
The best and worst cases correspond respectively to the tested images MERIS2 and MERIS8.
We can see that for MERIS2, the exogenous OrthOST performs significantly better than the
KLT at all rates for both MSE and MAE global distortions. Whereas for both MAD and
MSA local distortions, exogenous OrthOST and KLT have roughly the same performance, the
winner depending on the bit-rate. A more interesting result is the worst case: at bit-rates
not greater than 1 bpppb, the worst exogenous OrthOST performs worse than the worst
exogenous KLT and this trend is reversed for bit-rates larger than 1.0 dB. Moreover, the loss
of PSNR compared to the KLT is 4.3 dB at 1 bpppb, however, the difference of PSNR between
the KLT and identity (i.e., no spectral transform) is particularly high here (30 dB). For the
other eight tested images, the loss of PSNR of the worst exogenous OrthOST with respect to
the KLT, is not greater that 2.5 dB, at all bit-rates. Moreover, it is always smaller than the loss
of PSNR of the best exogenous KLT with respect to the KLT. An example is shown in Fig. 4,
where the bit-rate is computed either with the VM9 or the Bit Plane Encoder (BPE) (CCSDS-1,
2007) recommended by the CCSDS (Yeh et al., 2005). In order to compute the bit-rate with
the BPE, we proceeded as follows: first, for each transformed component we computed a few
hundred points of the graph that links mean square error to bit-rate, then we applied the
algorithm by Shoham and Gersho (Shoham & Gersho, 1988) to optimally allocate distortions
between components for given maximal total bit-rates.
In average on the 10 images, the loss of PSNR of the worst exogenous OrthOST with respect
to the KLT is significantly smaller than the one of the best exogenous KLT (see Table 6). It
is no longer the case for exogenous JADOST. We observed the importance of the learning
basis, whose influence can range from 0 dB to −4 dB. In other words, when the learning basis
is well chosen (depending on the scene and not only on the spectrometer), one can expect
a loss of PSNR of an exogenous OrthOST with respect to the KLT not greater than 0.4 dB.
Whereas, when it is badly chosen, the same loss of PSNR should be limited to 4 dB. However,
these values are only indicative and should not be considered definitive, because they were
obtained on a set of 10 MERIS images, which was not proven to be statistically significant.
We observed good performances of exogenous OrthOST used with the VM9 and in (Akam Bita
et al., 2010c) the authors observed that, associated with the BPE and the optimal bit allocation
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PSNR (dB) MAD
bit-rate 0.25 0.50 0.75 1.00 1.50 2.00 3.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00

MERIS2
Id 39.40 42.13 44.20 45.99 49.22 52.26 58.26 5878 3271 2369 2226 1258 850 443
KLT 54.87 63.81 69.60 73.66 79.29 83.02 88.39 1407 564 229 140 65 27 13
JADOST 55.65 65.04 70.53 74.49 80.02 83.66 88.92 1309 465 197 134 56 26 13
OrthOST 55.65 65.41 71.15 75.23 80.66 84.17 89.33 1354 397 189 119 48 22 12
exo3_KLT 54.11 62.36 67.79 71.85 77.77 81.86 87.53 1392 511 256 159 72 37 16
exo3_JADOST 55.11 64.01 69.53 73.46 78.82 82.78 88.23 1313 434 228 121 191 37 15
exo3_OrthOST 55.35 64.48 70.15 74.18 79.71 83.40 88.72 1267 476 240 134 53 28 13
exo5_KLT 54.08 62.37 67.89 72.04 78.05 82.11 87.69 1326 536 325 154 68 41 15
exo5_JADOST 55.12 64.01 69.54 73.48 79.08 82.88 88.30 1289 398 228 117 58 28 13
exo5_OrthOST 55.36 64.46 70.11 74.13 79.70 83.42 88.74 1314 497 257 134 49 26 12
exo7_KLT 54.69 62.92 68.09 72.00 77.79 81.84 87.52 1226 602 265 183 66 43 16
exo7_JADOST 55.22 63.97 69.14 72.88 78.32 82.26 87.86 1236 524 244 165 64 39 14
exo7_OrthOST 55.61 64.94 70.32 74.18 79.57 83.25 88.60 1418 504 238 128 56 28 13
exo12_KLT 54.13 62.37 67.83 71.95 77.99 82.07 87.66 1432 513 312 152 68 42 15
exo12_JADOST 55.13 64.02 69.54 73.50 79.08 82.87 88.30 1289 435 258 136 52 30 14
exo12_OrthOST 55.35 64.48 70.14 74.15 79.72 83.42 88.73 1305 481 221 139 47 30 13

MERIS8
Id 35.22 38.02 40.17 42.11 45.67 49.06 55.71 9723 5652 4123 3068 2050 1313 626
KLT 53.85 62.69 68.09 72.11 77.71 81.48 87.18 2638 1192 411 228 87 37 17
JADOST 54.21 63.68 69.39 73.44 78.83 82.35 87.91 2838 709 262 148 50 31 15
OrthOST 54.2 63.86 69.61 73.7 79.07 82.58 88.12 2773 705 305 130 51 26 15
exo2_KLT 52.22 59.49 64.16 68 73.95 78.34 84.79 3501 1504 608 400 149 51 24
exo2_JADOST 51.19 58.64 63.66 67.83 73.93 78.83 85.2 3536 1608 646 321 501 59 21
exo2_OrthOST 50.54 58.19 63.46 67.8 74.39 78.95 85.29 3446 1471 592 326 133 46 20
exo6_KLT 52.62 59.99 64.57 68.16 73.81 78.24 84.77 2813 973 471 255 115 59 23
exo6_JADOST 52.3 59.46 63.86 67.4 73.16 77.43 84.44 2670 1077 547 312 138 229 23
exo6_OrthOST 51.57 59.7 64.95 68.96 75.01 79.36 85.6 2871 1195 482 290 91 51 20
exo7_KLT 52.49 59.68 64.18 67.83 73.63 78.06 84.59 2887 1013 469 287 126 70 23
exo7_JADOST 52.28 59.45 63.85 67.44 73.31 77.92 84.6 2689 980 543 328 135 70 22
exo7_OrthOST 51.71 59.29 64.16 68.03 74.14 78.69 85.11 2768 1147 451 326 115 51 22
exo11_KLT 52.56 59.87 64.43 68.06 73.76 78.16 84.67 2885 876 459 255 104 68 24
exo11_JADOST 52.28 59.49 63.94 67.6 73.49 78.08 84.7 2610 961 525 290 126 67 23
exo11_OrthOST 51.89 59.59 64.64 68.73 75.01 79.44 85.68 2909 1130 441 346 131 47 19

MSA (in ◦ ) MAE
MERIS2

Id 34.94 24.67 19.57 14.91 10.70 8.05 4.37 503.5 377.8 302.7 248.5 173.7 123.3 62.17
KLT 8.63 2.91 1.62 1.36 0.42 0.23 0.14 87.50 31.02 15.88 10.03 5.41 3.58 1.93
JADOST 10.41 2.66 1.54 0.83 0.38 0.22 0.11 80.46 27.18 14.45 9.22 4.99 3.33 1.82
OrthOST 9.47 2.55 1.57 1.07 0.44 0.21 0.11 80.22 25.87 13.43 8.48 4.65 3.15 1.73
exo3_KLT 10.26 4.19 2.05 1.16 0.54 0.28 0.13 95.35 36.85 19.79 12.44 6.43 4.09 2.13
exo3_JADOST 8.42 3.33 1.75 1.19 0.51 0.30 0.13 85.27 30.56 16.17 10.35 5.66 3.69 1.97
exo3_OrthOST 9.07 3.27 1.63 1.10 0.38 0.25 0.11 83.01 28.91 15.06 9.52 5.17 3.44 1.86
exo5_KLT 10.12 3.89 2.06 1.38 0.54 0.30 0.13 95.60 36.72 19.50 12.18 6.24 3.98 2.10
exo5_JADOST 8.61 3.59 1.96 1.00 0.49 0.28 0.12 85.21 30.49 16.12 10.31 5.55 3.64 1.95
exo5_OrthOST 9.03 3.25 1.49 1.08 0.41 0.24 0.12 82.71 28.94 15.10 9.56 5.18 3.43 1.86
exo7_KLT 8.59 3.79 1.89 1.37 0.53 0.32 0.13 89.55 34.46 19.04 12.20 6.40 4.10 2.14
exo7_JADOST 9.72 2.95 1.67 1.29 0.47 0.27 0.13 84.59 30.68 16.86 11.01 6.03 3.91 2.06
exo7_OrthOST 10.33 2.78 1.56 0.90 0.43 0.24 0.12 80.62 27.32 14.70 9.49 5.24 3.49 1.89
exo12_KLT 9.41 4.17 2.46 1.23 0.54 0.29 0.13 95.20 36.77 19.67 12.30 6.28 3.99 2.10
exo12_JADOST 8.45 3.23 1.89 1.25 0.45 0.26 0.13 85.00 30.51 16.15 10.30 5.55 3.65 1.95
exo12_OrthOST 8.97 3.20 1.57 1.25 0.39 0.26 0.12 82.91 28.88 15.07 9.54 5.17 3.43 1.86

MERIS8
Id 35.69 29.24 28.75 19.75 15.56 10.93 6.22 796.1 584.5 461.4 373.3 250.6 170.83 80.01
KLT 8.34 2.81 1.54 1.02 0.5 0.28 0.14 95.77 33.84 18.52 11.93 6.47 4.25 2.22
JADOST 8.39 2.28 1.29 0.74 0.36 0.24 0.13 92.49 30.45 16.06 10.28 5.71 3.86 2.04
OrthOST 7.71 2.96 1.25 0.77 0.36 0.25 0.11 92.67 29.82 15.68 10.02 5.56 3.76 1.99
exo2_KLT 8.2 3.92 2.53 1.5 0.63 0.34 0.17 113.61 46.49 27.87 18.44 9.75 6.04 2.93
exo2_JADOST 10.53 4.81 3.14 1.44 0.68 0.39 0.17 128.47 52.80 29.90 18.97 9.61 5.71 2.79
exo2_OrthOST 12.27 4.97 2.61 1.53 0.81 0.34 0.16 138.68 56.09 30.87 19.22 9.33 5.65 2.76
exo6_KLT 8.31 4.16 1.84 1.29 0.71 0.41 0.17 109.55 44.79 26.67 18.02 9.84 6.09 2.94
exo6_JADOST 8.75 4.22 2.17 1.46 0.85 0.45 0.18 113.05 46.89 28.35 19.25 10.47 6.55 3.05
exo6_OrthOST 10.18 3.47 1.87 1.24 0.55 0.35 0.17 123.22 47.09 25.79 16.51 8.67 5.39 2.67
exo7_KLT 8.84 3.97 2.06 1.35 0.71 0.46 0.19 110.39 45.8 27.74 18.67 10.06 6.21 3
exo7_JADOST 8.10 3.58 2.00 1.76 0.71 0.45 0.17 113.27 46.72 28.58 19.26 10.32 6.30 3.00
exo7_OrthOST 9.89 4.05 2.28 1.76 0.68 0.38 0.19 120.79 48.94 28.22 18.41 9.52 5.8 2.82
exo11_KLT 8.18 4.12 1.95 1.3 0.68 0.46 0.18 110.01 45.14 27.14 18.32 9.93 6.15 2.97
exo11_JADOST 8.93 3.42 2.07 1.69 0.70 0.38 0.19 113.56 46.76 28.29 18.97 10.13 6.20 2.96
exo11_OrthOST 9.8 4.25 1.97 1.56 0.6 0.33 0.15 118.26 47.54 27.19 17.15 8.69 5.34 2.64

Table 5. Bit-rate (in bpppb) vs PSNR (in dB), vs MAD, vs MSA and vs MAE of various
spectral transforms on two images. The exoi_KLT, exoi_JADOST and exoi_OrthOST
correspond respectively to exogenous KLT, JADOST and OrthOST computed with the
learning basis Li. The best (resp. worst) results of exogenous transforms at 1.0 bpppb are
bolded (resp. in italics).
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Fig. 4. PSNR (in dB) versus bit-rate (in bpppb) for various spectral transforms (KLT, JADOST
OrthOST and (left) best exogenous KLT, best exogenous JADOST, best exogenous OrthOST
or (right) worst exogenous KLT, worst exogenous JADOST, worst exogenous OrthOST). The
image is MERIS15 and the bit-rate is computed with first row: the VM9, second row: the BPE.

bit-rate (in bpppb) 0.25 0.50 0.75 1.00 1.50 2.00 3.00
mean (in dB) {PSNR(KLT)− worst exogenous PSNR(OrthOST)} 0.67 1.19 1.56 1.68 1.49 1.15 0.86
mean (in dB) {PSNR(KLT)− worst exogenous PSNR(JADOST)} 0.56 1.32 1.99 2.29 2.25 1.89 1.40
mean (in dB) {PSNR(KLT) − best exogenous PSNR(KLT)} 1.02 1.83 2.34 2.51 2.27 1.82 1.4

Table 6. Comparison of the averaged losses of PSNR with respect to the KLT for the worst
exogenous OrthOST, the worst exogenous JADOST and the best exogenous KLT. The worst
and best exogenous transforms are selected at 1.00 bpppb. The averages are computed on the
ten images.
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algorithm by Shoham and Gersho (Shoham & Gersho, 1988) for quantization and entropy
coding, exogenous OrthOST still performs well (see Fig. 4). However, the VM9 and the
Shoham and Gersho algorithm both have a too high computational complexity for a coder
on-board a satellite. In (Gutzwiller et al., 2009), the authors propose an extension to
multicomponent images of the well-known 2-D SPIHT encoder that has not the shortcoming
of a high computational cost for bit-rate allocation.

9. Conclusion

In this chapter, we have studied the problem of finding optimal spectral transforms associated
with fixed 2D discrete wavelet transforms in coding of multi- and hyper-spectral images, for
a compression scheme that is compatible with the JPEG2000 Part 2 standard. We clarified
the criterion that gives, when minimized, an optimal transform under high-rate entropy
constraint scalar quantization hypothesis and when one scalar quantizer per subband and per
component is applied. We showed the link between the criterion and the mutual information
contrast used in independent component analysis. We derived a criterion minimized by an
orthogonal optimal transform when the data are Gaussian. Then we gave three algorithms
that return the spectral transforms that minimize the JPEG2000 compatible criterion, two
under the constraint of orthogonality — one of which assuming Gaussian data — and the
third with no constraint, but invertibility. Finally, we have tested the optimal transforms
on satellite multi- and hyper-spectral images and found that for hyperspectral images the
orthogonal optimal transform OrthOST and JADOST performs a little better than the KLT
for four distortion measures that permit to evaluate the performances of the codec in
applications of hyperspectral images like classifications or target detections. However the
computational complexity of the optimal transform is too heavy for actual applications. Last
we have presented the exogenous orthogonal quasi-optimal spectral transforms, that have a
significantly smaller complexity, and their performances in lossy coding. In future works, we
will study the problem of designing optimal spectral filters (i.e. a convolutive rather than an
instantaneous mixture) in lossy compression of multi- and hyper-spectral images.
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1. Introduction 
Nowadays, digital images and video are gradually replacing their conventional analog 
counterparts. This is quite understandable because digital format is easy to edit, modify, 
and exploit. Digital images and videos can be readily shared via computer networks and 
conveniently processed for queries in databases. Also, digital storage does not age or 
degrade with usage. On the other hand, thanks to powerful editing programs, it is very 
easy even for an amateur to maliciously modify digital media and create "perfect" 
forgeries. It is usually much more complicated to tamper with analog tapes and images. 
Tools as digital watermarks help us establish the authenticity and integrity of digital 
media and can prove vital whenever questions are raised about the origin of an image and 
its content. 
A digital watermarking technique embeds an invisible signal with an imperceptible form for 
human audio/visual systems, which is statistically undetectable and resistant to lossy 
compression and common signal processing operations. So far there some content 
authentication of digital image methods, which can be classified in two groups: 
watermarking based technique (Hsu & Wu, 1999) and digital signature based technique 
(Friedman, 1993). Some authors had written about digital image authentication systems 
(Wong, 1998; Holiman & Memos, 2000; Wong & Memon 2001; Celik, et al, 2002; Monzoy, et 
al, 2007; Cruz, et al, 2008; Cruz, et al, 2009; Hernandez, et al, 2000; Lin & Chang 2001; Maeno, 
2006; Hu & Chen, 2007; Zhou, et al, 2004; Lu & Liao 2003) and are classified in three 
categories: complete authentication, robust authentication and content authentication (Liu & 
Steinebach, 2006). Complete authentication refers to techniques that consider the whole 
piece of multimedia data and do not allow any manipulation (Yeung & Mintzer, 1997; Wu & 
Liu, 1998). Because the non-manipulable data are like generic messages, many existing 
message authentication techniques can be directly applied. For instance, digital signatures 
can be placed in the LSB of uncompressed data, or the header of compressed data. Then, 
manipulations will be detected because the hash values of the altered content bits may not 
match the information in the altered digital signature.  
We define robust authentication as a technique that treats altered multimedia data as 
authentic if manipulation is imperceptible. For example, authentication techniques, that 
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tolerate lossy compression up to an allowable level of quality loss and reject other 
manipulations, such as tampering, belong to this category. 
Content authentication techniques are designed to authenticate multimedia content in a 
semantic level even though manipulations may be perceptible. Such manipulations may 
include filtering, color manipulation, geometric distortion, etc. We distinguish these 
manipulations from lossy compression because these perceptible changes may be 
considered as acceptable to some observers but may be unacceptable to others. 
A common objective for authentication is to reject the crop-and-replacement process that 
may change the meaning of data. Many robust watermarking techniques in literature are 
designed to be robust to all manipulations for copyright protection purpose. They usually 
fail to reject the crop-and–replacement process so that they are not suitable for robust 
authentication and content authentication. 
An authentication system can be considered as effective if it satisfies the following 
requirements: 
1. Sensibility: The authenticator is sensitive to malicious manipulations such as crop-and-

replacement. 
2. Robustness: The authenticator is robust to acceptable manipulations such as lossy 

compression, or other content-preserving manipulations. 
3. Security: The embedded information bits cannot be forged or manipulated. For 

instance, if the embedded watermarks are independent of the content, then an attacker 
can copy watermarks from one multimedia data to another. 

4. Portability: Watermarks have better portability than digital signatures because the 
authentication can be conducted directly from only received content. 

5. Identification of manipulated area: Users may need partial information. The 
authenticators should be able to detect location of altered areas, and verify other areas 
as authentic. 

Regardless of security issues, watermarking capacity is determined by invisibility and 
robustness requirements. There are three dimensions shown in Figure 1. If one parameter is 
determined, the other two parameters are inversely proportional. For instance, a specific 
application may determinate how many bits of message are needed. After the embedded 
amount is decided, it always exists a trade-off between visual quality and robustness which 
must be considered. Robustness refers to the extraction of embedded bits with an error 
probability equal to or approaching zero. Watermark imperceptibility (invisibility) represents 
the quality of watermarked image respect to the original one. In general, if we want to make 
our watermark more robust against attacks then a longer codeword or larger codeword 
amplitudes will be necessary to provide better error-resistence. However, visual quality 
degradation cannot be avoided. Another scenario may be that with a default visual quality, 
there exists a trade-off between the information quantity of embedded message and 
robustness. For instance, the fewer the message bits are embedded, the more redundant the 
code word can be. Therefore, the code word has better error correction capability against noise. 
It is difficult for an authenticator to know the purpose of manipulation. A practical approach 
is to design an authenticator based on the manipulation method. In this work, we design an 
authenticator which accepts format transformation and lossless compression (JPEG). The 
authenticator rejects replacement manipulations because they are frequently used for 
attacks. Our authenticator does not aim to reject or accept, in absolute terms, other 
manipulation methods because the problem of whether they are acceptable or not depends 
on applications.  
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Fig. 1. Parameters of watermarking: Robustness, information quantity of embedded message 
and invisibility. 

2. Previous techniques for robust authentication and content authentication 
In Paquet, Ward & Pitas, 2003, a novel watermarking scheme to ensure the authenticity of 
digital images is presented. Their authentication technique is able to detect malicious 
tampering of images even if they have been incidentally distorted by common image 
processing operations. The image protection is achieved by the insertion of a secret author’s 
identification key in the wavelet coefficients by their selective quantization. Their system 
uses characteristics of the human visual system to maximize the embedding energy while 
keeping good perceptual transparency and develop an image-dependent method to 
evaluate, in the wavelet domain, the optimal quantization step allowing the tamper proofing 
of the image. The nature of multiresolution discrete wavelet decomposition allows the 
spatial and frequency localization of image tampering. Experimental results show that 
system can detect unauthorized modification of images. 
Kundur & Hatzinakos (Kundur & Hatzinakos, 1999), presented a fragile watermarking 
technique for the tamper proofing of still images. A watermark is embedded in the discrete 
wavelet domain by the quantization of the corresponding wavelet coefficients. The Haar 
wavelet is used for the image decomposition and a pseudo-random binary sequence is 
generated by a secret identification key. The rounding of the DWT coefficients to even or 
odd quantization steps embeds the zeros or ones of the watermark. The embedding 
locations are stored in the coefficient selection key, ckey. In addition, an image-dependent 
quantization key, qkey, is introduced to improve security against forgery and monitor 
specific changes to the image. 
In the same line a digital image authentication procedure that allows the detection of 
malicious modifications, while staying robust to incidental distortion introduced by 
compression is presented in Yu, et al., 2000. A binary watermark is embedded in the wavelet 
transform domain. The insertion is again done by the even or odd quantization of selected 
wavelet coefficients. To increase the robustness of the scheme to image processing 
operations, the authors proposed to make the embedded watermark more robust by 
rounding the mean value of weighted magnitudes of wavelet coefficients to quantization 
levels specified by the predetermined function Q(x,q). The same function is also used in the 
blind detection process to retrieve the watermark privately by reversed quantization. In 
order to distinguish malicious tampering from incidental distortion, the amount of 
modification on wavelet coefficients introduced by incidental versus malicious tampering is 
modeled as Gaussian distributions with small vs. large variance. The probability of 
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watermark detection error due to incidental alterations is shown to be smaller than the 
probability of watermark detection error due to malicious tampering because they produce 
comparatively smaller variance difference with the embedded marks. The authors argue 
that this grants a certain degree of robustness to the system and show that their method is 
able to authenticate JPEG compressed images without any access to the original unmarked 
image. However, the degree of image compression allowed by the detection procedure is 
not stated and the selection procedure of quantization parameters is not explained either. 
In this work we develop a content authentication technique using imperceptible digital 
watermarking which is robust to malicious and incidental attacks for image authentication, 
embedding a digital signature as watermark. A digital signature is a set of features extracted 
from an image, and these features are stored as a file, which will be used later for 
authentication. To avoid the extra bandwidth needed for transmission of the signature in a 
conventional way; having extracted the digital signature we applied the discrete wavelet 
transform (DWT) to the image to embed the watermark in the sub band of lowest frequency, 
because we want the watermark insertion to be imperceptible to the Human Visual System 
and robust to common image processing such as JPEG compression and noise 
contamination. The proposed system is able to extract the watermark in full blind detection 
mode, which does not have access to the original host signal, and the watermark extracted 
has to be re-derived from the watermarked signal, this process increases the system security. 
In the security community, an integrity service is unambiguously defined as one which 
insures that the sent and received data are identical. Of course, this binary definition is also 
applicable to image, however it is too strict and not well adapted to this type of digital 
document. Indeed, in real life situations images will be transformed, their pixel values will 
therefore be modified but not the actual semantic meaning. In other words, the problem of 
image authentication is released on the image content, for example: when modifications of 
the document may change its meaning or visually degrade it. In order to provide an 
authentication service for still images, it is important to distinguish between malicious 
manipulations, which consist of changing the content of the original image (captions, faces, 
etc.) and manipulations related to the usage of an image such as format conversion, 
compression, noise, etc. 
Unfortunately this distinction is not always clear; it partly depends on the type of image and 
its usage. Indeed the integrity criteria of an artistic master piece and a medical image will 
not be the same. In the first case, a JPEG compression will not affect the perception of the 
image, whereas in the second case it may discard some of the fine details which would 
render the image totally useless. In the latter case, the strict definition of integrity is 
required. We applied the proposed algorithms in to grayscale and color no medical images. 

3. Proposed watermarking algorithm 
The figure 2(a) shows a general block diagram to the watermark insertion where we can see 
that original image is divided in non-overlapping blocks, we extracted a digital signature 
from each block then we insert a signature as watermark in the same block, finally all the 
watermarked blocks form the watermarked image. Figure 2(b) shows a general block 
diagram to the watermark extraction process from the watermarked block where we can see 
that is not necessary to now the original image to extract the digital signature. Finally in the 
verification process we compare the extracted watermark and the digital signature to 
determine if the image has been modified, or not. 
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Fig. 2. (a) Watermark insertion system; (b) Watermark extraction system. 

3.1 Digital signature generation 
The algorithm used to extract the digital signature was proposed in Fridrich, 1999, and used 
by Chen, et al., 2001. The goal of this algorithm is to make a method for extracting bits from 
image blocks so that all similarly looking blocks, whether they are watermarked or attacked, 
will produce almost the same bit sequence of length N. Method is based on the observation 
that if a low-frequency DCT coefficient of an image is small in absolute value, it cannot be 
made large without causing visible changes to the image. Similarly, if the absolute value of a 
low-frequency coefficient is large, we cannot change it to a small value without influencing 
the image significantly. To make the procedure key-dependent, we replace DCT modes with 
low-frequency DC-free (i.e., having zero mean) random smooth patterns generated from a 
secret key (with DCT coefficients equivalent to projections onto the patterns). For each 
image, we calculate a threshold Th so that on average 50% of projections have absolute 
value larger than Th and 50% are in absolute value less than Th. This will maximize the 
information content of the extracted N bits. 
Given an image I, we divide it into blocks of 16x16 pixels (for large images, larger block 
sizes could be used) as showed in Figure 3. Using a secret key K (a number uniquely 
associated with an author, movie distributor, or a digital camera) we generate N random 
matrices with entries uniformly distributed in the interval [0, 1]. Then, a low-pass filter is 
repeatedly applied to each random matrix to obtain N random smooth patterns. All patterns 
are then made DC-free by subtracting the mean value from each pattern. Considering the 
block and the pattern as vectors, the image block B is projected on each pattern Pi, 1< i < N 
and its absolute value is compared with a threshold Th to obtain N bits bi: ݂݅|ܤ. ܲ݅| < ܶℎ				ܾ݅ = 0	 

.ܤ|݂݅  ܲ݅| ≥ ܶℎ				ܾ݅ = 1	 (1) 

Since the patterns Pi have zero mean, the projections do not depend on the mean gray value 
of the block and only depend on the variations in the block itself. The distribution of the 
projections is image dependent and should be adjusted accordingly so that approximately 
half the bits bi are zeros and half are ones. This will guarantee the highest information 
content of the extracted N-tuple. This adaptive choice of the threshold becomes important 
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for those image operations that significantly change the distribution of projections, such as 
contrast adjustment. 
 

 
Fig. 3. Digital signature extraction process. 

3.2 Wavelet transform for image signals 
Two-dimensional DWT leads to a decomposition of approximation coefficients at level j in 
four components: the approximation at level j + 1, and the details in three orientations 
(horizontal, vertical, and diagonal). 
Figure 4 describes the basic decomposition steps for images. 
 

 
Fig. 4. Subband decomposition using 2D-DWT. 
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The subbands labeled LH1, HL1, and HH1 represent the finest scale wavelet coefficients. In 
the present work, the wavelet transform is realized with Daubechies Wavelets of order 2. 
Using this wavelets, the image is decomposed into four subbands: LL1, LH1, HL1 and HH1. 

3.3 Watermark embedding algorithm 
Because we want the embedded watermark to be imperceptible to the Human Visual 
System (HVS) and robust to common image processing such as JPEG compression and 
contamination, we implement the algorithm proposed by Inoue, et al. 2000. In this method 
information data can be embedded in the lowest frequency components of image signals by 
using controlled quantization process. The data is then extracted by using both the 
quantization step-size and the mean amplitude of the lowest frequency components without 
access to the original image.  
Once the digital signature is extracted, we applied the discrete wavelet transform (DWT) to 
embed the watermark, the subband LL1(i,j) is divided into small subblocks Bk with the size 
of bx×by and calculate the mean Mk of the wavelet coefficients of Bk. A quantization step-size 
which is called the embedded intensity Q=5 is used, then we calculate the mean of the 
wavelet coefficients of Bk. The watermark information is embedded into the subblock Bk 
modifying the quantization value q and adds δMk to the wavelet coefficients of Bk, as 
described in detail (Inoue, et al. 2000). Finally we construct the watermarked image using 
the inverse wavelet transform. 
Figure 5 illustrates the embedding process; the data wk =0 or 1 into a subblock Bk when 
bx=by =2 and Q =5. 
 

 
Fig. 5. Watermark insertion process. 
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3.4 Watermark extracting algorithm 
We can extract the embedded data w by using the parameters n (decompose level), bx, by, Q 
and LM’. Let I’ be the watermarked image, we decompose I’ for the scale 1 and obtain the 
lowest frequency components LL1’(i,j). Then we divide LL1’(i,j) into subblocks Bk with the 
size of bxxby and compute the mean Mk’ of Bk and find the quantization value S from 

 ܵ = ௞ᇱܯ)]ݐ݊݅ ) ⁄ ܳ	] (2) 

Then, we extract the embedded binary data wk as follows: if S is an even number, then wk 
=0, otherwise wk =1. 

3.5 Authentication process 
After the watermark wk and the digital signature sequences are extracted from the 
watermarked image I’, we determines a threshold (Thv) to decide using an XOR operation if 
the block is tampered or not, which is expressed in equation (3). 

 ݂݅ ቊ∑ݓ௞෦⨂ܾ௞෪ ≤ ܶℎ௩	ܽݐݑℎ݁݊ܿ݅ݐ	ݓ∑݇ܿ݋݈ܾ௞෦⨂ܾ௞෪ ≥ ܶℎ௩	݂݉݀݁݅݅݀݋	݇ܿ݋݈ܾ	(3)  

Threshold Thv was determined through trial and error; resulting value of Thv was 4, it 
means that if bits number of digital signature extracted of the block authenticated has at 
least 12 of 16 bits equal, the block is consider as authentic else it is consider as modified. 
Although the block is considered modified, sometimes you do not get the same 16-bit digital 
signature extracted with respect to the original signature can be caused by any intentional 
modification, which is why we proposed the following process check. 

3.6 Verification process 
After the watermark wk from the watermarked image I’ is extracted, we compare it with the 
digital signature extracted from I’. If they have some different blocks we make an 
“difference image”(Idif). 
According to evaluation carried out using 200 images, in authentication process, the 
following conclusion was reached: when error blocks are present in regions non intentional 
modified, these blocks are presented in isolation, as shown in figures 6(a,b), however in the 
case of images modified intentionally error blocks are detected in concentrated form as 
shown in figures 6(c,d), so when error blocks are detected isolated, means that region is 
authentic otherwise it is non-authentic. Therefore to establish a criterion to determine 
whether the change at a block is intentional or unintentional, we define the following rule: 
If there are more than three consecutive error blocks in the region of Idif the image was 
intentionally modified, otherwise the change was made by common signal processing as 
JPEG compression or noise. Applying the concept of connectivity between the 8 neighbors 
of error blocks, it can help us to identify intentionally modified regions of which are not. 
This criterion is represented mathematically by the equation (4). 

݊݋݅݃݁ݎ  ቊݐݑܣℎ݁݊ܿ݅ݐ		݂݅	ܤ෨ ≤ ෨ܤ	݂݅		݀݁ݎ݁݌3ܶܽ݉ > 3 (4) 

were ܤ෨  represents an error block, so if there are more than three consecutive error blocks in 
the region, it has been intentionally modified. 
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(a) Isolated error blocks 

 
 
 

(b) Isolated error blocks 

 
(c) Concentrated error blocks (d) Concentrated error blocks 

 
 
 

Fig. 6. (a,b) Non intentional modified image; (c,d) Intentionally modified image. 

4. Experimental results 
4.1 Digital signature robustness 
To evaluate the robustness of the bit extraction procedure, we subjected the test image 
"Barbara" with 512x512 pixels and 256 gray levels to various image processing operations 
available in specialized commercial image manipulation software (we used Photoshop). The 
test image "Barbara" had 1024 blocks of 16x16 pixels. We extracted N=16 bits from each 
block for the original image and the manipulated image and calculated the average number 
of error over all 1024 blocks. The results are shown in Table 1. 
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Image name Shine (%) 
 

Average number of 
error bits 

Barb_100 10 0 
Barb_200 20 0 
Barb_300 30 0 
Barb_400 40 0 
Barb_500 50 0 
 Contrast (%)  
Barb_10 10 0 
Barb_20 20 0 
Barb_30 30 0 
Barb_40 40 0 
Barb_50 50 0 
Ecualization 0.015 
JPEG compression 
Quality factor Average number of 

error bits 
20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 
75, 80, 85, 90, 95 and 100 

2.15, 1.98, 1.78, 1.69, 
1.51, 1.35, 1.30, 1.22, 
1.11, 1.08, 0.98, 0.91, 
0.75, 0.67, 0.5, 0.36 
and 0.07 

Impulsive noise 
Intensity PSNR Average number 

of error bits 
0.0010  35.8258  0.58 
0.0020  32.3782  0.98 
0.0030  30.8060  1.16 
0.0040  29.6593  1.23 
0.0050  28.6105  1.87 
0.0060  27.8483  2.01 
0.0070  27.1725  2.22 
0.0080  26.5314  2.53 
0.0090  26.0121  2.85 
0.0100  25.6005  2.92 

Table 1. Average number of error recovered bits out of 16 bits after some image processing 
operations. 

4.2 Semi-fragile watermark system performance 
In order to confirm that the proposed digital watermark system is effective, we 
implemented some numerical experiments with attacks such as JPEG compression, 
impulsive and Gaussian noise and photomontage. Experimental results show that the 
algorithm is capable to determine whether the image has been altered. The algorithm was 
evaluated using 200 standard images. These images are 8 and 24 bits per pixel (bpp) 
grayscale and color images, which were 512x512 and 128x128 pixels in size showed in figure 7. 
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Another advantage of this algorithm is that the size and texture of the image doesn´t affect 
on the correct operation of the system. 
 

 

 
(a) 8 bits per pixel (bpp) grayscale image 

 
(b) 8 bits per pixel (bpp) grayscale image 

 
(c) 24 bits per pixel (bpp) color image 

 
(d) 24 bits per pixel (bpp) color image 

Fig. 7. Some images used in the experimental process. 

4.2.1 Watermarked image quality 
In our system we use the peak signal to noise ratio (PSNR) to mesure the degradation of the 
image quality caused by watermarking, this value is given by (5), 

 ܴܲܵܰௗ஻ = ଵ଴݃݋݈	10 ଶହହమఋ೜మ  (5) 

where ߜ௤ଶ is the mean square of the difference between the original image and the 
watermarked one. 
Figure 8 shows some examples of original images (in grayscale and color) together with 
their respective watermarked images and PSNR values, where we can see that watermarked 
images are to perceptually very similar to the original version. In table 2 PSNR values of 
some grayscale and color images are shown, where we can observe that the average PSNR 
value in the grayscale image is 45 dB’s and in the color image is 50 dB’s, so we can conclude 
that degradation in the watermarked image is not perceptible. 
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Original grayscale image 

 

Watermarked grayscale image PSNR=45 dB 

 
Original color image Watermarked color image PSNR=49.80 dB 

Fig. 8. Watermarked image quality. 

 
Grayscale 

watermarked image 
PSNR 
(dB´s) 

Color 
watermarked image 

PSNR 
(dB´s) 

Barbara 45.059944 Plane 49.806491 
Boat 44.966452 Mountain 49.848597 
Bridge 45.007931 Lake 49.810409 
Camera 45.056509 Chiles 49.853756 
Chiles 45.003896 People 49.848703 
Goldhill 44.959921 Lena 49.815038 
Lena 44.958274 Home 50.342928 
Baboon 45.041577 Girl 49.568472 
Bird 44.962013   

Table 2. PSNR values of some grayscale and color watermarked tested images. 

4.2.2 Robustness against JPEG compression 
The authenticator is sometimes expected to pass only those images that are compressed by 
JPEG up to a certain compression ratio or quality factor (fc). For example, if the image is 
JPEG compressed below to image quality 75 (The Mathworks, 2008), the image is acceptable, 
otherwise, if it is more compressed, it will fail the test. The argument for failing highly 
compress images is that such images usually have poor quality and should not be 
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considered as authentic. To satisfy this need, we calculate the increase of the number of the 
“different” signature bits after compression (error blocks). The number of the error blocks 
increases if the image is more compressed. We can set a threshold on this change to reject 
those images that have too many error blocks. 
If the error blocks are isolated, we apply equation (4) to determinate if those blocks are 
result of a JPEG compression, however, if they are concentrated we are talking about an 
intentional attack. We called to this process “verification” and it helps us to differentiate 
between an intentional or non intentional attack. 
Figure 9 shows the extracted results from the authentication JPEG compressed watermarked 
images with quality factors higher than 75 and their corresponding verified image; we can 
see that compressed images with quality factors higher than 75 have their error blocks 
(white blocks) isolated; consequently, before the verification process they are considered as 
not attacked.  
 

 
Error blocks of “chiles”, with fc=75 

Authenticated image 
Verified image 
(not attacked) 

 
Error blocks of “boat”, with fc=80 

Authenticated image 
Verified image 
(not attacked) 

Fig. 9. Tampered regions detection of the JPEG compressed images. 

Table 3 shows some compression ratio where the JPEG compressed watermarked image is 
considered as authentic by the system. In this table we can see that in grayscale 
watermarked images were considered as authentic when their quality factor of JPEG 
compression was higher than 75 and in the color compressed images with a quality factor 
higher than 70. 
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4.2.3 Robustness against additive and Gaussian noise 
We contaminate watermarked image with different levels of additive and Gaussian noise to 
simulate the communication channel noise. Tables 4 and 5 show the highest density and 
variance value of additive and Gaussian noise in grayscale and color images before the 
system considers the error blocks detected as intentionally tampered, these results indicate 
that the system is efficient in front of impulsive noise attacks because it supports a density= 
0.002 which produces a PSNR average value equal to 32 dB between watermarked image 
and contaminated watermarked image; a similar case occurs whit the Gaussian noise; the 
highest variance that the system accepts is 0.00011 before it considered watermarked 
contaminated image as intentionally modified. 
 

 Quality 
factor 

Error 
blocks 

Original size/ 
compresion 

Bits/ 
pixel 

Grayscale 
watermarked images 

    

Boat 80 5 257k/38.7k 1.20 
Bridge 75 18 65k/14.6k 1.79 
Camera 80 14 65k/10.3k 1.26 
Chiles 75 18 257k/31.4k 0.97 
Lena 75 4 65k/10.5k 1.29 
Baboon 80 24 257k/72.1k 2.24 
Bird 80 11 65k/7.56k 0.93 

Color 
watermarked images 

    

Plane 70 13 193k/11k 0.45 
Home 70 5 193k/9k 0.37 
Girl 75 17 193k/10k 0.41 
Chiles 65 17 193k/14k 0.58 
Lake 70 14 193k/14k 0.58 
Lena 65 2 193k/11k 0.45 
Mountain 75 12 193k/12k 0.49 
People 70 11 193k/9k 0.37 

Table 3. Compression ratio of some JPEG compressed images considered as authentics. 

 
Grayscale 

watermarked 
image 

Density Error 
blocks 

PSNR 
(dB´s) 

Color 
Watermarked 

image 

Density Error 
Blocks 

PSNR 
(dB´s) 

Barbara 0.002 27 32.6765 Plane 0.0016 9 33.0454 
Boat 0.002 30 32.9256 Home 0.0016 15 33.5461 
Bridge 0.002 17 32.1300 Girl 0.0015 18 32.4259 
Camera 0.002 36 32.4250 Chiles 0.0024 8 31.4738 
Chiles 0.002 26 32.0939 Lake 0.0018 7 32.0180 
Goldhill 0.002 11 32.3100 Lena 0.0025 12 31.1327 
Lena 0.002 14 32.0448 Mountain 0.0015 18 33.0446 
Baboon 0.002 24 32.7793 People 0.0015 26 32.2085 
Bird 0.0009 18 35.7967     

Table 4. Test to resistance to impulsive noise from grayscale and color watermarked images. 
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Grayscale 

watermarked 
image 

Variance Error 
blocks 

PSNR 
(dB´s) 

Color 
Watermarked 

image 

Variance Error 
blocks 

PSNR 
(dB´s) 

Barbara 0.00011 48 39.5594 Plane 0.00031 14 35.2396 
Boat 0.0001 36 40.0032 Home 0.00027 15 35.5625 

Bridge 0.00014 22 38.8350 Girl 0.00027 20 35.9495 
Camera 0.00011 29 39.5884 Chiles 0.00033 21 35.1859 
Chiles 0.00011 37 39.5761 Lake 0.00027 10 35.5499 

    Lena 0.00031 16 35.2449 
    Mountain 0.00027 24 35.5431 
    People 0.00027 23 35.8596 

Table 5. Test to resistance to gaussian noise from grayscale and color watermarked images. 

4.2.4 Robustness against photomontage 
Of course, an important aspect of our system is its ability to localize tampered regions into 
the image. For that reason, we have tampered the previously watermarked Bird and lake 
images and evaluated the ability of our system to detect. We found that the ability of our 
system to detect tampering is excellent (Figure 10) because our system detected correctly 
which group of blocks were modified intentionally and which were not into the 
watermarked image, based on the assumption explained in section 2.5. To tamper the 
images we used Photoshop. Figures 10(a) to 10(d) show the results of this evaluation in 
grayscale images and figures 10(e) to 10(g) the results of color images. Figures 10(c) and 
10(g) show by white blocks the tampered detected by our system where we can see that its 
location is correct comparing 10(a) vs. 10(b) and 10(e) vs. 10(f) where the first are the 
watermarked images and the others are the tampered watermarked images. Finally in figure 
10(d) we see that the verification is working well because it eliminates the isolated error 
blocks which were caused by the processing image. 

5. Conclusion 
The transition from analog to digital technologies is widely used, with the higher capacity of 
storage devices and data communication channels, multimedia content has become a part of 
our daily lives. Difital data is now commonly used in many areas such as education, 
entertainment, journalism, law enforcement, finance, health services, and national defense. 
The low cost of reproduction, storage, and distribution has added an additional dimension 
to the complexity of the problem. In a number of applications, multimedia needs to be 
protected for several reasons. Watermarking is a group of complementary technology that 
has been identified by content provider to protect multimedia data. 
In this paper we have successfully developed a robust digital signature algorithm which is 
used as a semi-fragile watermarking algorithm for image authentication. The highest 
advantage of this combination besides the digital signature robustness and the watermark 
image imperceptibility, is that is not necessary an additional band width to transmit the 
digital signature, since this is embedded in the host image as a watermark. Besides to the 
extraction and authentication process, we propose a verification process, which helps us to 
differentiate between an intentional or non intentional modification applying the concept of 
connectivity between the 8 neighbors of error blocks. 
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(a) Watermarked image (b) Tampered image 

 
(c) Authentication of the altered image (d) Verification of the authenticated image 

 
(e) Watermarked image (f) Tampered image 

(g) Authentication of the altered image 

Fig. 10. Authentication and verification process of a tamper watermarking grayscale and 
color image. 
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Numerical experiments show that this algorithm is robust to JPEG lossy compression, the 
lowest acceptable JPEG quality factor is 75 for grayscale images and 70 for color images. In the 
case of impulsive noise, verification system determines that a watermarked image has no-
intentional modification if its density value is less than 0.002 which produce a PSNR average 
value equal to 32 dB between watermarked image and contaminated watermarked image; a 
similar case occurs with the Gaussian noise; the highest variance that the system accept is 
0.00011 before it consider watermarked contaminated image as intentionally modified. 
An important characteristic of this system besides its robustness against common signal 
processing is its capacity to detect the exact tampered locations, which are intentionally 
modified. Several watermarking systems using digital signature had been reported but they 
aren’t robust to JPEG compression neither to modifications caused by common signal 
processing. 
Finally it is important to mention that the watermarked images generated by the proposed 
algorithm are secure because the embedded watermarks are dependent on their own 
content.  
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1. Introduction 

Proliferation of multimedia data on the Internet and the ease of copying this data have 
brought an interest for copyright protection (Cox et al., 2002). During transmission, data can 
be protected using encryption; however after decrypting it, it is no longer protected. As an 
alternative to encryption, watermarking has been proposed as a means of identifying the 
owner, by secretly embedding an imperceptible signal into the host signal (Cox, 2005) – see 
Fig. 1.  
 

 
Fig. 1. Watermark embedding. The watermark is embedded using a secret or public key, 
making invisible changes to the cover work.  

The main properties of a watermarking system are perceptual transparency, robustness, 
security, and data hiding capacity (Cox et al., 1997). Some of the terms used in 
watermarking are (Cox et al., 2002): 
- The original data where the watermark is to be inserted is referred to as host or cover 

work. 
- The hidden information is called payload. 
- Visible watermarks are visual patterns (images, logos) inserted or overlaid on 

images/video. Visible watermarks are applied to photos publicly available on the web, 
to prevent commercial use of such images. One example of visible watermarking has 
been implemented by IBM for the Vatican library (Braudaway et al., 1996). 

- Most watermarking systems involve making the watermark imperceptible. 
- The key is required for embedding the watermark. If the same key is used for retrieving 

the watermark, the system is private, while if another key is used to retrieve it, the 
system is known as public. 
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- If the cover work is required at the detector, the system is informed (non-blind); if it’s 
not required at the detector, the system is blind.  

- Watermarking systems are robust or fragile. Robust watermarks should resist any 
modifications and are designed for copyright protection. Fragile watermarks are 
designed to fail whenever the cover work is modified and to give some measure of the 
tampering. Fragile watermarks are used in authentication. 

Most of existing watermarking systems proposed in the literature can be classified 
depending on the watermarking domain, where the embedding takes place: spatial domain 
techniques (Nikolaidis & Pitas, 1998), where the pixels are directly modified, or transform 
domain techniques.  
The majority of watermarking algorithms operate based on the spread spectrum (SS) 
communication principle. A pseudorandom sequence is added to the host signal in some 
critically sampled domain and the watermarked signal is obtained by inverse transforming 
the modified coefficients. Typical transform domains are the Discrete Wavelet Transform 
(DWT), the Discrete Cosine Transform (DCT) and the Discrete Fourier Transform (DFT). The 
DWT based algorithms usually produce watermarked images with the best balance between 
visual quality and robustness due to the absence of blocking artefacts (Nafornita, 2008).  
Watermarks can be robust or fragile, depending on the application. For copyright 
protection, robustness is required. This can be assured with encoding of the watermark 
using a repetition code or an error correcting code. Robustness is increased with the increase 
of the correction capacity of the code. Despite of their efficient use in telecommunications, 
turbo codes have been rarely used in watermarking (Abdulaziz et al., 2002, Serdean et al., 
2003, Balado & Perez-Gonzalez, 2001, Nafornita et al., 2009). 
At the embedding side, the watermark can be added to coefficients of known robustness 
(large valued coefficients) or perceptually significant regions (Cox, 2005), such as contours 
and textures of an image. This can be done empirically, selecting larger coefficients (Cox et 
al., 1997) or using a thresholding scheme in the transform domain (Podilchuk & Zeng, 1998, 
Nafornita et al., 2005). Another approach is to insert the watermark in all coefficients of a 
transform, using a variable strength for each coefficient (Barni et al., 2001). Hybrid 
techniques, based on compression schemes, embed the watermark using a thresholding 
scheme and variable strength (Podilchuk & Zeng, 1998). The performance of such a system 
depends on the quality of the wavelet transform.  
This chapter will focus on the application of the wavelet transforms in robust watermarking 
for static images. We will present the classical techniques of watermarking; starting with the 
spread spectrum DCT based watermarking system proposed by Cox et al. (Cox et al., 1997) 
and continuing with those proposed in the wavelet domain.  
Other wavelet transforms as the Double Tree Complex Wavelet Transform (DTCWT) 
(Selesnick et al., 2005) or the Hyperanalytic Wavelet Transform (HWT) (Nafornita et al., 
2008, Firoiu et al., 2009) could also be considered. The advantages of such transforms 
compared to DWT are: quasi-shift invariance and enhanced directional selectivity. The data 
hiding capacity increases with the increase of redundancy (4x for DTCWT and HWT). We 
will compare the efficiency of those wavelet transforms in watermarking. 

2. Watermarking methods  

Most techniques embed the watermark in a transform domain as mentioned before. Early 
techniques have used the Discrete Cosine Transform. One of the most influential 



 
Application of Discrete Wavelet Transform in Watermarking 

 

199 

watermarking works is a spread spectrum approach proposed in (Cox et al., 1997). They 
argue that the watermark be placed explicitly in the perceptually most significant 
components of the data, and that the watermark be composed of random numbers drawn 
from a Gaussian distribution ( )0,1N , in order to make it invisible and robust to attacks: 

 ( ) ( ) ( )( )1v i v i w iα′ = +  (1) 

where v(i) is the DCT coefficient to be watermarked, w(i) is the watermark bit, α  is the 
embedding strength and v’(i) is the watermarked coefficient. Detection is made using the 
similarity between the original W and extracted Ŵ watermarks: 

 ( )
ˆ

ˆsim ,
ˆ ˆ

W W
W W

W W

⋅
=

⋅
 (2) 

The fact that the transform is performed over the entire image increases the computation 
time. Other methods have been proposed that use the block-based DCT transform, just like 
in the JPEG compression (see for example Podilchuk & Zeng, 1998).  
Other authors have proposed the use of the Discrete Fourier Transform or its variant – the 
Fourier-Mellin transform. This is useful in order to perform phase modulation between the 
watermark and the original signal (Ó Ruanaidh et al., 1996). The phase is more important 
than the amplitude; hence it will be difficult for an attacker to remove the watermark. Phase 
modulation often possesses superior noise immunity in comparison with amplitude 
modulation. Many watermarking techniques use DFT amplitude modulation because the 
watermark will be translation invariant. The DFT is more often used in its derived forms 
such as the Fourier-Mellin transform. This Fourier-Mellin transform approach has arisen out 
of the need for Rotation, Scale and Translation invariant (RST-invariant) watermarking 
techniques. It involves creating a Log Polar map of the DFT amplitudes of the image, where 
the embedding takes place. This method is said to be extremely RST invariant and uses a 
RST invariant watermark (Lin et al., 2001, Ó Ruanaidh & Pun, 1998).  

3. Watermarking using wavelets  

3.1 Discrete wavelet transform methods 

There are different approaches to embed the watermark in the wavelet domain. Almost all 
methods rely on masking in some way the watermark, either by selecting a few coefficients, 
or using adaptive embedding strength. 
Podilchuk & Zeng, 1998 propose an image-adaptive (IA) approach. They use the just 
difference noticeable difference (JND) to determine the image dependent perceptual mask 
for the watermark. They applied this method in both DCT and wavelet domain: 

 , , , , ,*
,

,

,   if  

,                            otherwise         
u v u v u v u v u v

u v
u v

I JND w I JND
I

I

+ × >
= 


 (3) 

,u vI  are the coefficients of the original image, ,u vw  are the watermark bits, and ,u vJND  are 

the JND values computed using visual models. In the case of DCT, they are computed using 
Watson’s perceptual model; for the wavelet domain, the weight is computed for each 
frequency band based on typical viewing conditions. Detection is made using correlation 
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between the image difference and the watermark sequence. This method is more robust than 
the spread-spectrum method by Cox et al., 1997. Although more robust than IA-DCT, the 
IA-W method does not take into account perceptual significant regions, so the watermark 
can be erased from perceptually insignificant coefficients. For example, low-pass filtering 
will affect the watermark inserted in high frequency components.  
Xia et al., 1998 propose a watermarking algorithm using the Haar mother wavelet, and two 
levels of decomposition. A pseudo-random sequence is added to the highest coefficients not 
located in the lowest resolution: 

 ( ) ( ) ( ), , , if m n f m n f m n w
βα′ = + ⋅  (4) 

where α  is the watermark strength, and β  is the amplification for large coefficients. This 
algorithm concentrates most of the energy in edges and textures, which are the coefficients 
in detail subbands. This increases the invisibility of the watermark, because human 
observers are less sensitive to change in edges and textures compared to changes in smooth 
areas of an image. More watermarks are inserted in each subband, and detection is done 
hierarchically, for each resolution level, using intercorrelation between original watermark 
and the difference of the two images. The method is robust to a series of distortions, but 
low-pass and median filtering affect the watermark. 
Kundur & Hatzinakos, 1998 use the Daubechies wavelet family to compute the DWT on 
three levels of decomposition. The watermarking algorithm selects in a pseudo-random 
manner the embedding locations from the detail subbands. The authors state that the 
spread-spectrum technique is not appropriate for transmitting the watermark because the 
correlator used for watermark detection is not effective in the presence of fading. Hence, 
they use quantization for embedding the watermark bits. To increase robustness, they use a 
reference watermark in order to estimate if the watermark bit has been embedded (Kundur 
& Hatzinakos, 2001). 
One of the popular methods is the one proposed by Barni et al., 2001. The watermark is 
masked according to the characteristics of the human visual system (HVS), taking into 
account the texture and the luminance content of all the image subbands. For coefficients 
corresponding to contours of the image a higher strength is used, for textures a medium 
strength is used and for regions with high regularity a lower strength is used, in accordance 
with the analogy water-filling and watermarking (Kundur, 2000).  
The image I, of size 2M×2N, is decomposed into 4 levels using Daubechies-6 wavelet 
mother, where lIθ  is the subband from level l∈{0, 1, 2, 3}, and orientation θ∈{0, 1, 2, 3} 
(horizontal, diagonal and vertical detail subbands, and approximation subband). A 
pseudorandom binary (±1) sequence is casted into 2D binary watermarks, each of size 
MN/4l, lxθ . The watermark is embedded in all coefficients from level l=0 by addition 

 ( ) ( ) ( ) ( ), , , ,l l l lI i j I i j w i j x i jθ θ θ θα= +ɶ  (5) 

where α is the embedding strength and ( ),lw i jθ  is half of the quantization step: 

 ( ) ( ) ( ) ( )0.2
, , , , , ,lq i j l l i j l i jθ θ= Θ Λ Ξ  (6) 

as it is presented in the following figure. 
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Fig. 2. Watermark embedding in the wavelet domain (Barni et al., 2001). The watermark is 
embedded in the first resolution level using a perceptual mask.  

This is a product of three factors: sensitivity to noise, local brightness and texture activity 
around a pixel. They are computed as follows: 

 ( )
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The texture activity around a pixel is composed by the product of two contributions; the first 
is the local mean square value of the DWT coefficients in all detail subbands and the second 
is the local variance of the 4th level approximation image. Both are computed in a small 2×2 
neighborhood corresponding to the location (i, j) of the pixel. The first contribution is the 
distance from the edges, and the second one is the texture. This local variance estimation is 
computed with a low resolution.  
Detection is made using the correlation between the marked DWT coefficients and the 
watermarking sequence to be tested for presence (the original image is not needed): 

 ( ) ( ) ( ) ( )
/2 1 /2 12

θ θ

θ 0   0 0

4 , , 3
l lM N

l
l l

i j

l I i j x i j MNρ
− −
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The correlation is compared to a threshold Tρ(l), computed to grant a given probability of 
false positive detection, using the Neyman-Pearson criterion. For example, for 810fP −≤ , the 
threshold is ( ) ( )

23.97 2
l l

Tρ ρσ= , with σρ(l)2 the variance of the wavelet coefficients, if the 
image was watermarked with a code Y other than X, 

 ( ) ( )( ) ( )( )
/2 1 /2 12 222 θ

ρ
θ 0   0 0

4 3 , .
l lM N

l
ll

i j

MN I i jσ
− −

= = =

≈ ∑ ∑ ∑ ɶ  (12) 

Barni’s method is quite robust against common signal processing techniques like filtering, 
compression, cropping and so on. However, because embedding is made only in the last 
resolution level, the watermark information can be easily erased by an attacker. Nafornita, 
2008 proposed a pixel-wise mask allowing insertion of the watermark in lower resolution 
levels. The third factor of the texture is estimated using the local standard deviation of the 
original image computed on a rectangular moving window W(i,j) of WS×WS pixels, centered 
on each pixel I(i,j). This criterion of segmentation finds its contours, textures and regions 
with high homogeneity. The local mean is: 

 ( ) ( )
( ) ( )

2

, ,

ˆ , ,S
I m n W i j

i j W I m nµ −

∈

= ∑  (13) 

The local variance is given by: 

 ( ) ( ) ( )( )
( ) ( )

22 2

, ,

ˆ ˆ, , ,S
I m n W i j

i j W I m n i jσ µ−

∈

= −∑  (14) 

The local standard deviation is the square root of this local variance. The texture for a 
considered DWT coefficient is proportional with the local standard deviation of the 
corresponding pixel from the host image. We denote this local standard deviation image 
with S, and the local mean image with U. Embedding is made in the subband s, level l; the 
size of the texture matrix must agree with the size of the subband. Hence, the approximation 
image at the lth decomposition level is used. This compression can be realized exploiting the 
separation properties of the DWT. To generate the mask required for the embedding into the 
detail subimages corresponding to the lth decomposition level, the DWT of the local 
standard deviation image is computed (making l+1 iterations). The required mask will be 
the approximation subimage from level l, denoted Sl3, normalized to the local mean, also 
compressed in the wavelet domain, Ul3. This is illustrated in Fig. 3. One difference between 
the watermarking method proposed by Nafornita, 2008 and the one proposed by Barni et 
al., 2001, is given by the computation of the local variance – the second term – in (10). To 
obtain the new values of the texture, the local variance of the image to be watermarked is 
computed, using the relations (13) and (14). The local standard deviation image is 
decomposed using one iteration wavelet transform, and only the approximation image is 
kept. Relation (10) is then replaced with: 
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Fig. 3. Watermark embedding. The watermark is embedded using a secret or public key, 
making invisible changes to the cover work. 

The second difference is that the luminance mask is computed on the approximation image 
from level l, where the watermark is embedded. The DWT of the original image using l 
decomposition levels was computed and the approximation subimage corresponding at 
level l was separated, obtaining the image 3

lI . The luminance content is computed using: 

 ( ) ( )3, , , 256lL l i j I i j=  (16) 

Since both factors are more dependent on the resolution level in the method proposed by 
Barni, the noise sensitivity function becomes: 

 ( ) { }1.00 0,12 , 1
,

0.66 21, otherwise

l
l

l

θ
θ

  ∈ =  
Θ =   

=    
. (17) 

It was considered the ratio between the correlation ρ(l) in Eq. (11) and the image dependent 
threshold Tρ(l), hence the detector was viewed as a nonlinear function with a fixed 
threshold. In Nafornita, 2007a, three detectors are used, to take advantage of the wavelet 
hierarchical decomposition. The watermark presence is detected,  
1. from all resolution levels, “all_levels”, 
2. separately from each resolution level, considering the maximum detector response from 

each level, “max_level”, 
3. separately from each subband, considering the maximum detector response from each 

subband, “max_subband”. 
Evaluating the correlations separately per resolution level or subband can be sometimes 
advantageous. In the case of cropping, the watermark will be damaged more likely in the 
lower frequency than in the higher frequency, while lowpass filtering affects more the 
higher frequency than lower ones. Layers or subbands with lower detector response are 
discarded. This type of embedding combined with new detectors is more attack resilient to a 
possible erasure of the three subbands watermark. The detector “all_levels” evaluates the 
watermark’s presence on all resolution levels: 

 1 1 1d dd Tρ=  (18) 
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where the correlation 1dρ  is given by: 

 ( ) ( )
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 
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The threshold for Pf ≤10-8 is 2
d1 ρd13.97T σ=  , with: 
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The second detector “max_levels” considers the responses from different levels, as 
d(l)=ρ(l)/T(l), with l∈{0, 1, 2}, and discards the detector responses with lower values:  

 ( ){ }2 max
l

d d l=  (21) 

The third detector considers the responses from different subbands and levels, as d(l,θ) the 
ratio ρ(l,θ)/T(l,θ), with l,θ∈{0, 1, 2}, and discards the detector responses with lower values, 

 ( ){ }3 ,
max ,

l
d d l

θ
θ=  (22) 

The correlation and threshold are computed with the same rationale on one subband, 
indicated by its orientation and level. 

3.2 Complex wavelet transform methods 

The discrete wavelet transform is useful to embed the watermark because the visual quality 
of the images is very good. However, it has three main disadvantages (Kingsbury, 2001): 
lack of shift invariance, lack of symmetry of the mother wavelets and poor directional 
selectivity. Caused by the lack of shift invariance of the DWT, small shifts in the input signal 
can produce important changes in the energy distribution of the wavelet coefficients. Due to 
the poor directional selectivity for diagonal features of the DWT the watermarking capacity 
is small. The most important parameters of a watermarking system are robustness and 
capacity. These parameters must be maximized. These disadvantages can be diminished 
using a complex wavelet transform (Kingsbury, 2000, 2001). 
A very simple implementation of the Hyperanalytic Wavelet Transform, (HWT), recently 
proposed (Adam et al., 2007) has a high shift-invariance degree versus other quasi-shift-
invariant wavelet transforms (WT) at same redundancy. It has also an enhanced directional 
selectivity. All the WTs have two parameters: the mother wavelets (MW) and the primary 
resolution (PR), (number of iterations). The importance of their selection is highlighted in 
Nason, 2002. Another appealing particularity of those transforms, coming from their 
multiresolution capability, is the interscale dependency of the wavelet coefficients.  
We present in the next paragraphs a new implementation of HWT (Adam et al., 2007) and 
its application to watermarking (Nafornita et al., 2008). The watermark capacity was studied 
in Moulin & Mihcak, 2002, where an information-theoretic model for image watermarking 
and data hiding is presented. Models for geometric attacks and distortion measures that are 
invariant to such attacks are also considered. The lack of shift invariance of the DWT and its 
poor directional selectivity are reasons to embed the watermark in the field of another WT. 
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To maximize the robustness and the capacity, the role of the redundancy of the transform 
used must be highlighted first. An example of redundant WT is represented by the tight 
frame decomposition. In Hua & Fowler, 2002 are analyzed the watermarking systems based 
on tight frame decompositions. The analysis indicates that a tight frame offers no inherent 
performance advantage over an orthonormal transform (DWT) in the watermark detection 
process despite the well known ability of redundant transforms to accommodate greater 
amounts of added noise for a given distortion. The overcompleteness of the expansion, 
which aids the watermark insertion by accommodating greater watermark energy for a 
given distortion, actually hinders the correlation operator in watermark detection. As a 
result, the tight-frame expansion does not inherently offer greater spread-spectrum 
watermarking performance. This analytical observation should be tempered with the fact 
that spread-spectrum watermarking is often deployed in conjunction with an image-
adaptive weighting mask to take into account the human visual model (HVM) and to improve 
perceptual performance. Another redundant WT, the DTCWT, was already used for 
watermarking (Loo & Kingsbury, 2000). The authors of this paper prove that the capacity of a 
watermarking system based on a complex wavelet transform is higher than the capacity of a 
similar system that embeds the watermark in the DWT domain. Many authors (e.g. Daugman, 
1980) have suggested that the processing of visual data inside our visual cortex resembles 
filtering by an array of Gabor filters of different orientations and scales. The proposed 
implementation of HWT is efficient, has only a modest amount of redundancy, provides 
approximate shift invariance, has better directional selectivity than the 2D DWT and it can be 
observed that the corresponding basis functions closely approximate the Gabor functions. So, 
the spread spectrum watermarking based on the use of an image adaptive weighting mask 
applied in the HWT domain is potentially a robust solution that increases the capacity. 

3.2.1 A new implementation of the Hyperanalytic Wavelet Transform 

The hypercomplex mother wavelet associated to a real mother wavelet ( ),x yψ  is: 
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where 2 2 2 1,  and i j k ij ji k= = − = − = =  (Davenport, 2008). The HWT of the image ( ),f x y  is: 

 ( ){ } ( ) ( ), , , , .aHWT f x y f x y x yψ=  (24) 

The 2D-HWT of the image ( ),f x y  can be computed using the 2D-DWT of its associated 
hypercomplex image: 

 

( ){ } ( ){ }

( ){ }{ } ( ){ }{ }
( ){ }{ }{ }

( ) ( ) ( ){ }

, ,

, ,y

,

, , , , .

HWT f x y DWT f x y

iDWT f x y jDWT f x y
x

kDWT f x y
y x

f x y x y DWT f x y
a a

ψ

= +

+ +

+ =

=

H H

H H
 (25) 



 
Discrete Wavelet Transforms: Algorithms and Applications 

 

206 

HWT uses four trees, each implemented by 2D-DWT, being adequate to a multi-wavelet 
environment (Firoiu et al., 2009). Hx is the Hilbert transform computed across lines and Hy 
across columns (Fig. 4). The HWT coefficients are organized in two sequences of complex 
coefficients separated by the sign of their preferential orientation, with 6 subbands, 3 of 
positive orientations and 3 of negative orientations ±atan(1/2), ±π/4 and ±atan(2): 
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Fig. 4. The new HWT implementation architecture. 

3.2.2 Watermarking using the Hyperanalytic Wavelet Transform 

Adapting the strategy already described in the previous paragraph to the case of HWT, a 
new method was proposed in Nafornita et al., 2008. The first three wavelet decomposition 
levels are used and the watermark is embedded into the real coefficients with positive and 
negative orientations, rz+  and rz− , respectively. In this case the relations already described 
in the previous paragraph were used independently for each of these two images. The same 
message was embedded in both images, using the mask from Nafornita, 2007a. The 
difference is that the orientations or preferential directions are in this case: atan(1/2), π/4, 
atan(2) (respectively for θ = 0, 1, 2), for the image rz+  and -atan(1/2), -π/4, -atan(2), (θ=0, 1, 
2) for the image rz−  . At the detection side, we consider the pair of images ( rz+ , rz− ), thus 
having twice as much coefficients than the standard approach, and θ takes all the possible 
values, ±atan(1/2), ±π/4, ±atan(2).  

3.3 Results and comparisons 

We will compare in the following watermarking systems based on DWT with the ones 
based on complex WTs, namely the HWT. 
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3.3.1 Results for methods based on the discrete wavelet transform 

In Nafornita et al., 2006a, the system proposed by Barni et al. was modified, using the 
texture mask in (15). The image Barbara is watermarked with various values of the 
embedding strength α. The binary watermark is embedded in all the detail wavelet 
coefficients of the first resolution level. Watermarked Barbara for α=1.5 is shown in Fig. 5. 
 

  
Fig. 5. Original and watermarked Barbara images with α = 1.5. 

 

  
Fig. 6. Left: The ratio ρ/T as a function of the PSNR between the marked and the original 
images, for different quality factors, JPEG compression. Right: Ratio ρ/T as a function of 
embedding strength, for different quality factors, JPEG compression. Pf is set to 10-8. 

Fig. 6 shows results for JPEG compression, for different quality factors: the ratio ρ/T is 
plotted as a function of the peak signal-to-noise ratio (PSNR) between the marked (un-
attacked) image and the original one, and respectively as a function of α. The probability of 
false positive detection is set to 10-8. If this ratio is greater than 1 then the watermark is 
positively detected. Generally, for a PSNR higher than 30 dB, the original image and 
watermarked one are considered indistinguishable. For compression quality factors higher 
or equal than 25 the distortion introduced by JPEG compression is tolerable. For PSNR in 
the range of 30-35 dB, of practical interest, the watermark is detected for all significant 
compression quality factors. Increasing the embedding strength, the PSNR of the 
watermarked image decreases, and the ratio ρ/T increases. The watermark is still detectable 
even for very small values of α. For the quality factor Q=5 (or a compression ratio CR=32), the 
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watermark is still detectable even for α=0.5. Fig. 7 shows the detection of a true watermark for 
various quality factors, in the case of α=1.5; the threshold is well below the detector response. 
In Table 1 we give a comparison between the two methods, for the Lena image, α=1.5 in the 
case of JPEG compression with a quality factor of 5 (compression ratio of 46). 
 

 
Fig. 7. Left: Detector response ρ, threshold T, as a function of different quality factors (JPEG 
compression). The watermark is successfully detected. Pf is set to 10-8. Right: Highest 
detector response, ρ2, corresponding to a fake watermark and threshold T. The threshold is 
above the detector response. 

 
 Nafornita et al., 2006a Barni et al., 2001 

ρ 0.3199 0.038 
T 0.0844 0.036 
ρ2 0.0516 0.010 

Table 1. A comparison for JPEG compression with a compression ratio CR = 46. 

The detector response for the original embedded watermark ρ, the detection threshold T, 
and the second highest detector response ρ2 are given. Pf was set to 10-8 and 1000 marks 
were tested. The detector response is higher than in Barni’s case. 
 

 
Fig. 8. Original image Lena; mask from Nafornita et al., 2006b and Barni’s mask for level l=0. 
The masks are the complementary of the real ones. 
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In Nafornita et al., 2006b, Barni’s method is modified, using the texture mask in (15), as well 
as the luminance factor in (16). The masks obtained are shown in Fig. 8. The improvement is 
clearly visible around edges and contours. The method is applied in two cases, when the 
watermark is inserted in level 0 only and when it’s inserted in level 1 only. JPEG 
compression is again considered. The image Lena is watermarked at level l=0 and 
respectively at level l=1 with α ranging from 1.5 to 5. The binary watermark is embedded in 
all the detail wavelet coefficients of the resolution level, l as previously described. For α=1.5, 
the watermarked images, in level 0 and level 1, as well as the image watermarked using 
Barni’s mask, are shown in Fig. 9. Obviously the quality of the watermarked images are 
preserved using the new pixel-wise mask. The PSNR values are 38 dB (level 0) and 43 dB 
(level 1), compared to Barni’s method, with a PSNR of 20 dB. 
 

 
Fig. 9. Watermarked images, α =1.5, for Nafornita et al., 2006b, level 0 (PSNR = 38 dB); level 1 
(43 dB); for Barni et al., 2001, level 0 (20 dB). 

 

 
Fig. 10. Left: PSNR as a function of α. Embedding is made either in level 0 or in level 1.Right: 
Detector response ρ, threshold T, highest detector response, ρ2, corresponding to a fake 
watermark, as a function of different quality factors (JPEG compression). The watermark is 
successfully detected. Pf is set to 10−8. Embedding was made in level 0. 

PSNR values are shown in Fig. 10(left) as a function of the embedding strength. The 
watermark is still invisible, even for high values of α. Fig. 11 gives the results for JPEG 
compression. In all experiments, the probability of false positive detection is set to 10−8. The 
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watermark is successfully detected for a large interval of compression quality factors. For 
PSNR values higher than 30 dB, the watermarking is invisible. For quality factors Q≥10, the 
distortion introduced by JPEG compression is tolerable. For all values of α, the watermark is 
detected for all the significant quality factors (Q≥10). Increasing the embedding strength, the 
PSNR of the watermarked image decreases, and ρ/T increases. For the quality factor Q = 10 
(or a compression ratio CR = 32), the watermark is still detectable even for low values of α. 
Fig. 10(right) shows the detection of a true watermark from level 0 for various quality 
factors, for α=1.5; the threshold is below the detector response. The selectivity of the 
watermark detector is also illustrated, when a number of 999 fake watermarks were tested: 
the second highest detector response is shown, for each quality factor. False positives are 
rejected.  
In Table 2 a comparison between Nafornita et al., 2006b and Barni et al., 2001, can be seen 
for JPEG compression with Q=10 (compression ratio of 32). The detector response for the 
original watermark ρ, the detection threshold T, and the second highest detector response 
ρ2, when the watermark was inserted in level 0 are given. The detector response is higher 
than for Barni et al. 
 

  
Fig. 11. Ratio ρ/T as a function of the embedding strength α. The watermarked image is 
JPEG compressed with different quality factors Q. Pf is set to 10−8. Embedding was made in 
level 0 (left), and in level 1 (right). 

 
 Nafornita et al., 2006b Barni et al., 2001 

ρ 0.0750 0.062 
T 0.0636 0.036 
ρ2 0.0461 0.011 

Table 2. A comparison for JPEG compression with a compression ratio CR = 32. 

The method in Nafornita, 2007a allows embedding of the watermark in all resolution levels, 
except the last one (low resolution). Three types of detectors are used, as described in 
paragraph 3.1. Various images of size 512x512, have been watermarked at levels l∈{0, 1, 2} 
using the new mask. The embedding strength is α=1.5. Based on human observation and the 
peak-signal-to-noise ratio, PSNR, the images are indistinguishable from the original ones. 
For Barni et al. method, a watermark is embedded in all the detail wavelet coefficients of the 
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first resolution level, l=0, for α=0.2, that results in a similar image quality (see Fig.12). This 
has been concluded in Nafornita, 2007b, where by limiting the watermark strength such that 
the PSNR is 35 dB and in average the percentage of affected pixels is less than 25%, the 
quality of the images is greatly improved. Girod’s model has been used for determining the 
location and number of affected pixels (Girod, 1989). For instance, in Barni’s case, the 
watermarked image with α=0.2 has a PSNR of 36.39 dB, 11.84% affected pixels, compared to 
the one watermarked with α=1.5 has a PSNR of 20 dB, and all pixels are affected. What is 
kept constant for comparison are the 2D watermarks embedded in the first level, and the 
image quality. The method Nafornita, 2007a cannot be compared with the one in Barni et al., 
2001 when the watermark is embedded in all resolution levels, simply because their mask 
isn’t suited for embedding in other levels than the highest resolution level. Results for some 
of the standard images from the USC SIPI Image Database are given.  
 

   
Fig. 12. (left) Original image Lena, (middle) Watermarked images for Nafornita, 2007a, 
α=1.5, PSNR=36.86 dB, (right) Barni et al., 2001, α=0.2, PSNR=36.39 dB. 

Table 3 includes PSNR values for the two cases. For the first detector, an estimate of the false 
positive probability is shown for the image Lena, before and after JPEG compression attack, 
with quality factor Q=10, as a function of the detection thresholds, Tρ1. The threshold values 
have been computed using as estimate the variance of the ρ1 obtained from experiments. 
The mean PSNR for the twelve images is 34.16 dB for the proposed method (Nafornita, 
2007a) and 34.06 dB for Barni’s method. 
 

Detector response vs. attack 
Nafornita, 2007a 

Barni’s method 
1-All levels 2-Max level 3-Max subband 

JPEG compression, Q=10 2.38 1.98 1.44 1.75 
Median filtering, M=5 1.32 1.12 1.46 0.25 

Scaling, 50% 4.06 5.21 5.76 1.85 
Cropping, 512x512 -> 32x32 0.68 0.98 1.73 1.48 

Gamma correction, γ=2 20.32 29.19 28.06 32.54 
Motion blur, L=31, θ=11 1.98 5.48 8.04 6.14 

Table 3. Resistance to different attacks, for Nafornita, 2007a method. The detector response 
is a mean value of different responses. 

Tests were made for JPEG compression, median filtering, cropping, resizing, gamma 
correction and blurring. Table 3 shows the mean values of the detector responses for each 



 
Discrete Wavelet Transforms: Algorithms and Applications 

 

212 

attack. A particular attack parameter is chosen where the watermark is still detectable by at 
least one detector. For compression, the method in Nafornita, 2007a successfully detects the 
watermark at Q=10. The 1st detector is better in all cases. This new method has better results 
than Barni’s technique. The watermark of both methods survived in all images for median 
filtering with kernel sizes up to 3. For kernel size 5, the watermark of Nafornita, 2007a using 
the first and third detector is detectable; Barni’s method fails to detect the watermark. In the 
case of scaling to 50%, the watermark was successfully detectable in both cases, with better 
results for Nafornita, 2007a. The third detector has the best performance in detecting the 
mark. The watermark of Nafornita, 2007a was successfully detected in the cropped image of 
32x32, only with the third detector, which proves its efficiency. Barni’s method detects the 
watermark with similar detector responses as in the case of the third detector. As expected 
for normalized correlation detection, both methods are practically insensitive to gamma 
correction adjustment. For the motion blur attack, both methods have successfully detected 
the watermark in all cases. Detector 3 has slightly better results than the others. 
 

 
 

 
 

Fig. 13. Experimentally evaluated probability of false positive Pf vs. Tρ1/σρ1, the ratio 
between the detection threshold and standard deviation of the correlations in the case where 
an incorrect watermark was embedded. The theoretical trend is also shown (‘o’ marker). 
Tests were made on Lena, before and after JPEG compression with quality factor 10, using 
5×104 different watermarks. 
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For the first detector, the probability of false positive was estimated by searching many 
different watermarks into one watermarked image, Lena. Each threshold Tρ1 was set in such 
a way to grant a given value of Pf. The trial was repeated for values of Pf ranging from 10-1 
through 10-4. In total 5x104 watermarks per image have been tested. The estimation has been 
done before any type of manipulation and after JPEG compression, with quality factor 10. 
The estimated Pf is plotted in Fig. 13 versus the ratio Tρ1/σρ1 between the detection 
thresholds and standard deviations of correlations for the case corresponding to certain 
estimates of this probability of false positive. This case corresponds to the situation where 
the image is watermarked with a code Y other than X. 
Surprisingly, the estimated false alarm Pf, is lower in the case of compression than in the 
case of no attack, for the same detection threshold. This can be explained by the fact that 
before compression, the empirical pdf of the correlations in the case for an incorrect 
watermark is embedded, was not Gaussian. Although the two empirical pdf’s are closer 
after the attack, they are still very good separated and the empirical pdf for an incorrect 
watermark has the mean below zero, compared to the equivalent one before – which is 
centered on zero. Thus setting a particular threshold can indeed result in a lower false alarm 
after attack. Similar results were obtained for Barbara, and for the same attack. 
For the first detector, the obtained probability of false positive is close to the expected one. 
The assumption that the wavelet coefficients from different levels and subbands are i.i.d. is 
thus reasonable and the detector has a good performance. 

3.3.2 Results for methods based on the Hyperanalytic Wavelet transform 

In Nafornita et al., 2008 the watermark is embedded in the HWT domain, in all levels (0, 1 
and 2) and all orientations (positive and negative). The test image is Lena, of size 512x512. 
For α=1.5, the watermarked image has a PSNR of 35.63 dB. The original image, the 
corresponding watermarked image and the difference image are presented in Fig. 14. 
 

   
Fig. 14. Original and watermarked images with method (Nafornita et al., 2008), for α=1.5, 
PSNR=35.63 dB; Difference image, amplified 8 times. 

The watermarked images have been exposed at some common attacks: JPEG compression 
with different quality factors (Q), shifting, median filtering with different window sizes M, 
resizing with different scale factors, cropping with different areas remaining, gamma 
correction with different values of γ, blurring with a specified point spread function (PSF) 
and perturbation with AWGN with different variances.  
Resistance to unintentional attacks, for watermarked image Lena, can be compared to the 
results obtained using the watermarking methods in Barni et al., 2001 and Nafornita, 2007a 
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analyzing Table 4. For the method in Nafornita, 2007a, the same watermark strength, 1.5 is 
used and the watermark is embedded in all three wavelet decomposition levels, resulting in 
a PSNR of 36.86 dB. For the method in Barni et al., 2001, the watermark strength 0.2 is used 
and the embedding is made only in the first resolution level, resulting in a similar quality of 
the images (PSNR=36.39 dB).  
 

Attacks vs.  
detector response 

DWT-Nafornita, 2007a 
DWT-Barni 
et al., 2001 

HWT-Nafornita et al., 2008 

all levels max level 
max 

subband 
all levels max level 

max 
subband 

Before attack 21.57 39.12 33.60 44.31 24.78 43.18 26.30 
JPEG, Q=50 5.45 6.76 5.02 6.22 6.25 7.87 4.85 
JPEG, Q=25 3.02 3.67 2.60 3.03 3.23 4.19 2.62 
JPEG, Q=20 2.55 3.08 2.09 2.38 2.72 3.58 2.33 

Shift, li=128, co=128 21.57 39.12 33.59 44.31 24.78 43.18 26.30 
Median filter, M=3 4.29 4.58 4.87 1.57 4.59 5.42 4.37 
Median filter, M=5 1.66 1.24 2.27 0.59 1.61 1.64 1.49 

Resizing, 0.75 9.53 15.86 15.64 14.09 10.93 19.34 14.67 
Resizing, 0.50 4.21 5.72 5.75 2.31 4.56 6.14 8.71 

Cropping, 256x256 7.40 12.14 17.10 18.08 8.68 15.20 13.82 
Cropping, 128x128 3.11 4.66 8.31 8.01 3.53 6.04 6.86 

Cropping, 64x64 1.10 1.72 4.45 3.92 1.32 2.47 3.71 

Gamma correction, γ=1.5 22.18 39.76 33.74 43.04 25.31 43.61 26.45 

Gamma correction, γ=2 22.59 39.70 32.98 42.43 25.62 43.24 25.88 
Blur, L=31, β=11 2.69 7.81 9.56 9.05 3.05 9.18 7.55 

Table 4. Resistance to different attacks, for HWT based method compared to DWT based 
methods. 

Special attention was paid to the shifting attack. First the watermarked image was circularly 
shifted with li lines and co columns, obtained the attacked image ( )tIɶ . Supposing that the 
numbers li and co are known, the messages at level l are circularly shifted with li/2l lines 
and co/2l columns obtaining the new messages ( )t l

x
θ

 . Next the watermark was detected 
using the image ( )tIɶ  and the messages ( )t l

x
θ

. The values obtained for li=128 and co=128 are 
presented in Table 4. 
From the results, it is clear that embedding in the real parts of the HWT transform yields in 
a higher capacity at the same visual impact and robustness. In fact the results obtained in 
Nafornita et al., 2008 are slightly better than the results obtained with the DWT-based 
methods in Nafornita et al., 2008 and Barni et al., 2001 for JPEG compression, median 
filtering with window size M=3, resizing and gamma correction. For the other attacks the 
results obtained are similar with the results of the watermarking methods based on DWT. 
The case of the shifting attack is very interesting. In this case the robustness of the 
watermarking method is given by two properties: the shift invariance degree of the WT 
used and the masking ability. All the methods compared in Table 4 are very robust against 
the shifting attack. The values of the ratios between the correlations and the image 
dependent thresholds obtained before and after the shifting attack are equal for all the 
methods compared in Table 4. So, the ability of masking seems to be more important than 
the shift invariance degree of the WT used for the conception of counter-measures against 
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the shifting attack, when the numbers of lines and columns used for the attack are already 
known. Of course, the detection of these numbers must also be realized, for the 
implementation of a strategy against the shifting attack. 

4. Conclusion  

In a watermarking system, robustness evaluation should be made if invisibility criteria are 
satisfied. For this purpose, perceptual watermarks are being used to overcome the issue of 
robustness against invisibility. In the literature, there was proposed a blind spread spectrum 
technique that uses a perceptual mask in the wavelet domain, taking into account the noise 
sensitivity, texture and the luminance content of all image subbands. We described new 
techniques proposed by the authors, based on the modifications of this perceptual mask, in 
order to increase robustness, while still maintaining imperceptibility. Moreover, using the 
new mask, information is successfully hidden in the lower frequency levels, thus increasing 
the capacity and making the watermark more robust to common attacks that affect both 
high frequencies and low frequencies of the image. A good balance between robustness and 
invisibility of the watermark is achieved when embedding is made in all detail subbands for 
all resolution levels, except the coarsest level; this can be particularly useful against erasure 
of high frequency subbands containing the watermark in Barni’s system. 
A nonlinear detector with fixed threshold – as ratio between correlation and the image 
dependent ratio – has been used; three watermark detectors were proposed in Nafornita, 
2007a that take advantage of the hierarchical wavelet decomposition: 1) from all resolution 
levels, 2) separately from each level, considering the maximum detector response for each 
level and 3) separately from each subband, considering the maximum detector response for 
each subband. This has been advantageous for cropping, scaling and median filtering where 
the 3rd detector shows improved performance. We tested our methods against different 
attacks, and found out that it is better than Barni’s method. The behavior of our methods can 
be explained by the fact that we have used a better estimate of the mask and we took 
advantage of the diversity of the wavelet decomposition. The effectiveness of the new 
perceptual mask is appreciated by comparison with Barni’s method. Simulation results 
show the superiority of the proposed methods (Nafornita et al., 2006a, b, Nafornita, 
2007a). 
The HWT is a very modern WT as it has been formalized only two years ago. A very simple 
implementation of this transform has been used, which permits the exploitation of the 
mathematical results and of the algorithms previously obtained in the evolution of wavelets 
theory. It does not require the construction of any special wavelet filter. It has a very flexible 
structure, as we can use any orthogonal or bi-orthogonal real mother wavelets for the 
computation of the HWT. The presented implementation leads to both a high degree of 
shift-invariance and to an enhanced directional selectivity in the 2D case. An ideal Hilbert 
transformer was considered. A new type of pixel-wise masking for robust image 
watermarking in the HWT domain has been presented (Nafornita et al., 2008). Modifications 
were made to two existing watermarking technique proposed in Barni et al., 2001 and 
Nafornita, 2007a, based on DWT. These techniques were selected for their good robustness 
against the usual attacks. The method is based on the method in Barni et al., 2001, with some 
modifications. The first modification is in computing the estimate of the variance, which 



 
Discrete Wavelet Transforms: Algorithms and Applications 

 

216 

gives a better measure of the texture activity. An improvement is also owed to the use of a 
better luminance mask. The third improvement is to embed the watermark in the detail 
coefficients at all resolutions, except the coarsest level, making the watermark more attack 
resilient. The HWT embedding exploits the coefficients rz+  and rz− . 
The simulation results illustrate the effectiveness of the proposed algorithms. The methods 
were tested against different attacks (in terms of robustness). The HWT based watermarking 
method is similar and in some cases outperforms the DWT based methods, but it has a 
superior capacity than the DWT based methods.  
As a future research direction, the statistical properties of the HWT will be used to improve 
the watermark detection. 
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1. Introduction 

The discrete wavelet transform (DWT) has an established position in processing of signals 

and images in research and industry. The first DWT structures were based on the compactly 

supported conjugate quadrature filters (CQFs) (Smith & Barnwell, 1986; Daubechies, 1988). 

However, a drawback in CQFs is related to the nonlinear phase effects such as image 

blurring and spatial dislocations in multi-scale analyses. On the contrary, in biorthogonal 

discrete wavelet transform (BDWT) the scaling and wavelet filters are symmetric and linear 

phase. The biorthogonal filters (BFs) are usually constructed by a ladder-type network 

called lifting scheme (Sweldens, 1988). The procedure consists of sequential down and 

uplifting steps and the reconstruction of the signal is made by running the lifting network in 

reverse order. Efficient lifting BF structures have been developed for VLSI and 

microprocessor environment (Olkkonen et al. 2005; Olkkonen & Olkkonen, 2008). The 

analysis and synthesis filters can be implemented by integer arithmetics using only register 

shifts and summations. Many BDWT-based data and image processing tools have 

outperformed the conventional discrete cosine transform (DCT) -based approaches. For 

example, in JPEG2000 Standard (ITU-T, 2000), the DCT has been replaced by the lifting BFs.  

One of the main difficulties in DWT analysis is the dependence of the total energy of the 

wavelet coefficients in different scales on the fractional shifts of the analysed signal. If we 

have a discrete signal [ ]x n  and the corresponding time shifted signal [ ]x n τ− , where 

[0,1]τ ∈ , there may exist a significant difference in the energy of the wavelet coefficients as 

a function of the time shift. Kingsbury (2001) proposed a nearly shift invariant method, 

where the real and imaginary parts of the complex wavelet coefficients are approximately a 

Hilbert transform pair. The energy (absolute value) of the wavelet coefficients equals the 

envelope, which provides smoothness and approximate shift-invariance. Selesnick (2002) 

observed that using two parallel CQF banks, which are constructed so that the impulse 

responses of the scaling filters have half-sample delayed versions of each other: 0[ ]h n  and 

0[ 0.5]h n − , the corresponding wavelets are a Hilbert transform pair. In z-transform domain 

we should be able to construct the scaling filters 0( )H z  and 0.5
0( )z H z− . For design of the 

scaling filters Selesnick (2002) proposed a spectral factorization method based on the half 

delay all-pass Thiran filters. As a disadvantage the scaling filters do not have coefficient 

symmetry and the nonlinearity interferes with the spatial timing in different scales and 

prevents accurate statistical correlations. Gopinath (2003) generalized the idea for N parallel 
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filter banks, which are phase shifted versions of each other. Gopinath showed that 

increasing N the shift invariance of the wavelet transform improves. However, the greatest 

advantage comes from the change 1 to 2N = .  

In this book chapter we review the methods for constructing the shift invariant CQF and BF 

wavelet sequences. We describe a dual-tree wavelet transform, where two parallel CQF 

wavelet sequences form a Hilbert pair, which warrants the shift invariance. Next we review 

the construction of the BF wavelets and show the close relationship between the CQF and 

BF wavelets. Then we introduce a novel Hilbert transform filter for constructing shift 

invariant dual-tree BF banks. 
 

 

Fig. 1. The analysis and synthesis parts of the real-valued CQF DWT bank. 

2. Design of the shift invariant CQF  

The CQF DWT bank consists of the 0( )H z  and 1( )H z  analysis filters and 0( )G z  and 1( )G z  

synthesis filters for N odd (Fig. 1) 

 

1
0

1
1 0

0 1

1 0

( ) (1 ) ( )

( ) ( )

( ) ( )

( ) ( )

K

N

H z z P z

H z z H z

G z H z

G z H z

−

− −

= +

= −

= −

= − −

  (1) 

where ( )P z is a polynomial in 1z− . The scaling filter 0( )H z has the Kth order zero at ω π= . 

The wavelet filter 1( )H z has the Kth order zero at 0ω = , correspondingly. The filters are 

related via the perfect reconstruction (PR) condition 

  0 0 1 1

0 0 1 1

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) 0

NH z G z H z G z z

H z G z H z G z

−+ =

− + − =
   (2) 

The tree structured implementation of the real-valued CQF filter bank is described in Fig. 2. 
Let us denote the frequency response of the z-transform filter as 

  ( ) ( ) j nn
n n

n n

H z h z H h e ωω −−= ⇒ =∑ ∑   (3) 

Correspondingly, we have the relations 

  
1

( ) ( )

( ) ( )

H z H

H z H

ω π

ω π− ∗

− ⇒ −

− ⇒ −
  (4) 
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where * denotes complex conjugation. In M-stage CQF tree the frequency response of the  
wavelet sequence is  

  1 0
2

( ) ( /2) ( /2 )
M

k
M

k

W H Hω ω ω
=

= ∏   (5) 

 

 

Fig. 2. The tree structured implementation of the real-valued CQF DWT, which yields the 

wavelet sequences 1 2[ ], [ ] ... [ ]Mw n w n w n and one scaling sequence [ ]Ms n . 

Next we construct a phase shifted parallel CQF filter bank consisting of the scaling filter 

0( )H z and the wavelet filter 1( )H z . Let us suppose that the scaling filters in parallel CQF 

trees are related as 

  ( )
0 0( ) ( )jH e Hφ ωω ω−=   (6) 

where ( )φ ω is a 2π periodic phase function. Then the corresponding CQF wavelet filters are 

related as  

  *
1 0( ) ( )j NH e Hωω ω π−= −  

 
(7) 

and  

  ( ) ( )* *
1 0 0 1( ) ( ) ( ) ( )j N j N j jH e H e e H e Hω ω φ ω π φ ω πω ω π ω π ω− − − −= − = − =   (8) 

We may easily verify that the phase shifted CQF bank (6,8) obeys the PR condition (2). 
Correspondingly, the frequency response of the M-stage CQF wavelet sequence is 

  

2

( /2 ) ( /2 )
1 0 1 0
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∏
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where the phase function 

  
2

( /2 ) ( /2 )
M

k

k

θ φ ω π φ ω
=

= − −∑   (10) 
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If we select the phase function ( )φ ω in (6) as 

  ( ) / 2φ ω ω=   (11) 

the scaling filters (6) are half-sample delayed versions of each other. By inserting (11) in (10) 
we have 

  
1 1

2

/ 2 1

2 22 2

M

k M
k

ω π π ω
θ ω

+ +
=

−
= − = − +∑   (12) 

The wavelet sequences (5,9) yielded by the CQF bank (1) and the phase shifted CQF bank 
(6,8) can be interpreted as real and imaginary parts of the complex wavelet sequence 

  ( ) ( ) ( )MC M MW W jWω ω ω= +   (13) 

The requirement for the shift-invariance comes from  

  { }( ) ( )M MW ω ψ ω= H   (14) 

where H  denotes the Hilbert transform. The frequency response of the Hilbert transform 
operator is defined as  

  ( ) sgn( )jω ω= −H   (15) 

where the sign function is defined as  

  
1 0

sgn( )
1 0

for

for

ω
ω

ω
≥

= − <
  (16) 

In this work we apply the Hilbert transform operator in the form  

  /2( ) sgn( )je πω ω−=H   (17) 

Our result (12) reveals that if the scaling filters are the half-sample delayed versions of each 

other, the resulting wavelet sequences are not precisely Hilbert transform pairs. There 

occurs a phase error term 1/2Mω + , which depends both in frequency and the stage M of the 

wavelet sequence. In sequel we describe a novel procedure for elimination this error. We 

move the phase error in front of the phase shifted CQF tree using the equivalence described 

in Fig. 3. Then the error term reduces to /2ω . The elimination of the error term can be made 

by prefiltering the analyzed signal by the half-sample delay operator 1/2( )D z z−= , which has 

the frequency response /2( ) jD e ωω −= . The total phase function is then for π ω π− ≤ ≤  

 ( ) ( ) /2 /2 /2Dθ ω ω π ω π= ∠ − + = −   (18) 

which warrants that the M-stage CQF wavelet sequence and the phase error corrected 
sequence are a Hilbert transform pair.  
 

 

Fig. 3. The two equivalents for transferring the phase function in front of the phase shifted 
CQF tree. 
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3. Biorthogonal discrete wavelet transform 

The first DWT structures were based on the compactly supported conjugate quadrature 

filters (CQFs) (Smith & Barnwell, 1986), which have unavoided nonlinear phase effects in 

multi-resolution analyses. On the contrary, in biorthogonal discrete wavelet transform 

(BDWT) the scaling and wavelet filters are symmetric and linear phase. The two-channel 

biorthogonal filter (BF) bank is of the general form 

  

1
0

1
1

0 1

1 0

( ) (1 ) ( )

( ) (1 ) ( )

( ) ( )

( ) ( )

L

M

H z z Q z

H z z R z

G z H z

G z H z

−

−

= +

= −

= −

= − −

  (19) 

where the scaling filter 0( )H z has the Lth order zero at ω π= . The wavelet filter 1( )H z has 

the Kth order zero at 0ω = , correspondingly. ( )Q z and ( )R z  are polynomials in 1z− . The 

low-pass and high-pass reconstruction filters 0( )G z  and 1( )G z are defined as in the CQF 

bank. For two-channel biorthogonal filter bank the PR relation is 

  0 0 1 1

0 0 1 1

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) 0

DH z G z H z G z z

H z G z H z G z

−+ =

− + − =
  (20) 

4. Relationships between CQF and BF wavelet transforms 

In the following treatment we use a short notation for the binomial term 

  1( ) (1 )KKB z z−= +   (21) 

which appears both in the CQF and BF banks. Using the binomial term the CQF bank can be 

written as 

  

0

1
1

1
0

1

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

K

N K
K

N K
K

K

H z B z P z

H z z z B z P z

G z z z B z P z

G z B z P z

− −

− −

=

= − − −

=

= − −

  (22) 

For the PR condition of the CQF bank ( ) the following is valid for K odd  

  1 1
2 2( ) ( ) ( ) ( ) ( ) ( ) 2 N
K KB z P z P z B z P z P z z− − −− − − − =  (23) 

On the other hand, the PR condition of the BF bank gives  

  ( ) ( ) ( ) ( ) ( ) ( ) 2 D
L M L MB z Q z R z B z Q z R z z−+ +− − − − =  (24) 

Both PR conditions are identical if we state 2K L M= + . Then we have 

  1( ) ( ) ( ) ( )N DP z P z z Q z R z− − + = −   (25) 
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The above relation (25) gives a novel way to design of the biorthogonal wavelet filter bank 

based on the CQF bank and vice versa. The polynomials ( ) and ( )Q z R z−  can be found by 

factoring 1( ) ( )P z P z− , which is a symmetrical polynomial. The roots of the product filter 
1( ) ( )P z P z−  should be optimally divided so that both ( )Q z  and ( )R z−  are low-pass. Then 

( )R z  is high-pass. If the BF bank is known it is easy to factor ( ) ( )Q z R z−  into 
1( ) and ( )P z P z−  using some spectral factorization method. An important result is related to 

the modification of the BF bank (Olkkonen & Olkkonen, 2007a). 

Lemma 1: If the scaling filter 0( )H z , the wavelet filter 1( )H z and the reconstruction filters 

0( )G z  and 1( )G z in FB bank (19) have a perfect reconstruction property (20), the following 

modified FB bank obeys also the PR relation 

 

0 0

1
1 1

1
0 0

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

H z F z H z

H z F z H z

G z F z G z

G z F z G z

−

−

=

= −

=

= −

  (26) 

where ( )F z is any polynomial in 1z− . Proof is yielded by direct insertion (26) to PR condition 

(20). 

5. Hilbert transform filter for construction of shift invariant BF bank 

In BF bank the shift invariance is not an inbuilt property as in CQF bank. In the following 

we define the Hilbert transform filter ( )zH , which has the frequency response 

  /2( ) sgn( )je πω ω−=H   (27) 

where sgn( ) 1ω = for 0ω ≥ and sgn( ) 1ω = − for 0ω < . We describe a novel method for 

constructing the Hilbert transform filter based on the half-sample delay filter 0.5( )D z z−= . 

The classical approach for design of the half-sample delay filter ( )D z is based on the Thiran 

all-pass interpolator 

  
1 1

0.5 1
1 1

1 1

( )
( )

( )1 1

p NN
k N N

N
k k N

c z c c zz A z
D z z

A zc z c z c z

− −− −
− −

− − −
=

+ + + +
= = = =

+ + + +
∏

⋯

⋯

  (28) 

where the ck coefficients are optimized so that the frequency response follows approximately  

  /2( ) jD e ωω −=   (29) 

In this work we define the half-sample delay filter more generally as 

  
( )

( )
( )

A z
D z

B z
=   (30) 

The quadrature mirror filter ( )D z−  has the frequency response  

  ( )/2( ) jD e ω πω π − −− =   (31) 
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The frequency response of the filter 1( ) ( )D z D z− −  is, correspondingly 

  /2 ( )/2 /2( )

( )
j j jD

e e e
D

ω ω π πω
ω π

− − −= =
−

  (32) 

Comparing (27) and using the IIR filter notation (30) we obtain the Hilbert transform filter as 

  
( ) ( )

( )
( ) ( )

A z B z
z

A z B z

−
=

−
H   (33) 

The Hilbert transform filter is inserted in the BF bank using the result of Lemma 1 (26). The 
modified prototype BF filter bank is 
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1
1 1

1
0 0
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H

  (34) 

The BF bank (34) can be highly simplified by noting the following equivalents concerning on 
(33) 

  
1

1

( ) ( )

( ) ( )

z z
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− =

= −

H H

H H

  (35) 

By inserting (35) in (34) we obtain a highly simplified FB bank 

  

0 0

1 1
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1 1
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H
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H

  (36) 

The modified BF bank (36) can be realized by the Hilbert transform filter ( )zH , which works 

as a prefilter for the analysed signal. The Hilbert transform filter ( )z−H works as a postfilter 

in the reconstruction stage, respectively. The wavelet sequences yielded by the two parallel 

BF trees can be considered to form a complex wavelet sequence by defining the Hilbert 

transform operator  

  ( ) 1 ( )a z j z= +H H   (37) 

By filtering the real-valued signal [ ]x n  by the Hilbert transform operator results in an 

analytic signal  

  [ ] [ ] { [ ]}ax n x n j x n= + H   (38)  

whose magnitude response is zero at negative side of the frequency spectrum 

  
2 ( ) 0

( )
0 0a

X
X

ω ω π
ω

π ω
≤ <

= 
− ≤ <

  (39) 
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The wavelet sequence is obtained by decimation of the high-pass filtered analytic signal  

  [ ]1 122

1
( ) ( ) ( ) ( ) ( / 2) ( / 2)

2
a a aW X H W X Hω ω ω ω ω ω↓↓

= = =   (40) 

The result (40) means that the decimation does not produce aliasing but the frequency 

spectrum is dilated by two. The frequency spectrum of the undecimated wavelet sequence 

( )aW ω  contains frequency components only in the range 0 ω π≤ < , but the frequency 

spectrum of the decimated analytic signal has the frequency band 0 2ω π≤ < . Hence, the 

decimation does not produce overlapping and leakage (aliasing) to the negative frequency 

range. A key feature of the dual-tree wavelet transform is the shift invariance of the decimated 

analytic wavelet coefficients. The Fourier transform of the decimated wavelet sequence of the 

fractionally delayed signal [ ]x n τ−  is /21
( /2)

2

j
ae Wωτ ω−  and the corresponding wavelet 

sequence is [ /2]w n τ− . The energy (absolute value) of the decimated wavelet coefficients is 
1

( /2)
2
W ω , which does not depend on the fractional delay τ . If the wavelet filter has linear 

phase the wavelet coefficients are shift invariant in respect to their energy content. 

An integer-valued half-delay filter ( ) ( ) / ( )D z A z B z=  is obtained by the B-spline transform 

(see details Olkkonen & Olkkonen, 2007b). Table I gives the polynomial coefficients for the 

B-spline orders K=4, 5 and 6. The frequency response of the Hilbert transform filter 

constructed by the fourth order B-spline (Fig. 4) shows a maximally flat magnitude 

spectrum. The phase spectrum corresponds to an ideal Hilbert transformer (15). 

1 2 1 2

1 2 3 4 1 2 3

1 2 3 4 1 2 3 4

( ) ( )

1 6 1 4
4

8 6

1 76 230 76 1 11 11
5

384 24

1 237 1682 237 1 26 66 26
6

3840 120

K A z B z

z z z z

z z z z z z z

z z z z z z z z

− − − −

− − − − − − −

− − − − − − − −

+ + + +

+ + + + + + +

+ + + + + + + +

 

Table I. The half-delay filter polynomials for the B-spline transform order K=4, 5 and 6. 

 

 

 

Fig. 4. Magnitude and phase spectra of the Hilbert transform filter yielded by the fourth 
order B-spline transform. 
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6. Conclusion 

It is well documented that the real-valued DWTs are not shift invariant, but small fractional 

time-shifts may introduce significant differences in the energy of the wavelet coefficients. 

Kingsbury (2001) showed that the shift invariance is improved by using two parallel filter 

banks, which are designed so that the wavelet sequences constitute real and imaginary parts 

of the complex analytic wavelet transform. The dual-tree discrete wavelet transform has 

been shown to outperform the real-valued DWT in a variety of applications such as 

denoising, texture analysis, speech recognition, processing of seismic signals and 

neuroelectric signal analysis (Olkkonen et al. 2006; Olkkonen et al. 2007b).  

Selesnick (2002) made an observation that a half-sample time-shift between the scaling 

filters in parallel CQF banks is enough to produce the shift invariant wavelet transform. In 

this work we reanalysed the condition and observed a phase-error term 1/2Mω + (12) 

compared with the ideal phase response ( ) /2θ ω π= − . The phase error attains s highest 

value at high frequency range and small stage M of the wavelet sequence. Fortunately, we 

showed in this book chapter that the phase error term can be cancelled by adding a half-

delay prefilter in front of the CQF chain. For this purpose the half-delay filter 

( ) ( ) / ( )D z A z B z= (30, Table I) constructed by the B-spline transform (Olkkonen & Olkkonen, 

2007a) is well suited. In addition, there exists many other design methods for half-delay 

filters (see e.g. Laakso et al. 1996; Johansson & Lowenborg, 2002; Pei & Tseng, 2003; Pei & 

Wang, 2004; Tseng, 2006). 

In multi-scale DWT analysis the complex wavelet sequences should be shift invariant. This 

requirement is satisfied in the Hilbert transform-based approach (Olkkonen et al. 2006, 

Olkkonen et al. 2007b), where the signal in every scale is Hilbert transformed yielding 

strictly analytic and shift invariant transform coefficients. The procedure needs FFT-based 

computation which may be an obstacle in many digital signal processor realizations. To 

avoid this we conducted the novel shift invariant dual-tree BF bank (36) based on the 

Hilbert transform filter (33). This highly simplified BF bank is yielded by Lemma 1 and the 

equivalence (35) of the Hilbert transform filter (33). In many respects the BF bank (36) 

outperforms the previous nearly shift invariant DWT approaches. 
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1. Introduction 
A discrete wavelet transform (DWT) has been widely applied to various digital signal 
processing techniques. It has been designed under a certain condition such as perfect 
reconstruction, aliasing cancellation, regularity, vanishing moment, etc. This article 
introduces a new condition referred to “DC lossless”. It guarantees lossless reconstruction of 
a constant input signal (DC signal) instead of rounding of signal values and coefficient 
values inside a transform. The minimum word length of the values under the new condition 
is theoretically derived and experimentally verified. 
Since JPEG 2000 algorithm based on the discrete wavelet transform (DWT) was adopted as 
an international standard for digital cinema video coding [1], high speed and low power 
implementation of a DWT has been becoming an issue of great importance [2,3]. In 
designing a DWT, its coefficient values and signal values are assumed to be real numbers. 
However, in implementation, they are rounded to rational numbers so that they are 
expressed with finite word length representation in binary digit. Therefore it is inevitable to 
have rounding errors inside a DWT processing unit. 
In this article, we derive a condition on word length of coefficient values and that of signal 
values of a DWT such that the transform becomes lossless for a DC signal. Under this 
condition (DC lossless condition), it is theoretically guaranteed that an output signal 
contains no error in spite of rounding of coefficients and signals inside the DWT. We treat 
the irreversible 9-7 DWT adopted by the JPEG 2000 for lossy coding of image signals as an 
example. 
In case of the 5-3 DWT in JPEG 2000 for lossless coding, benefiting from its lifting structure 
[4-6], lossless reconstruction of any signal is guaranteed even though signals and coefficients 
are rounded. On the contrary, it does not hold for the 9-7 DWT because of scaling for 
adjusting DC gain of a low pass filter in a forward transform [7]. However, we have pointed 
out that it became possible to be lossless for a DC signal under a certain condition on word 
length of coefficients and signals [8].  
This DC lossless condition is a necessary condition for the regularity which has been 
analyzed by numerous researchers to improve coding performance of a transform. When 
the regularity is not satisfied, the DWT has some problems such as a checker board artifact 
which is observed in a reconstructed signal as unnecessary high frequency noise in flat or 
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smooth region of a signal [9]. It also brings about DC leakage which decreases the coding 
gain of a transform [10].  
The regularity has been structurally guaranteed for a two channel quadrature mirror filter 
bank (QMF) [9] and the DCT [10] respectively. However, since these previous methods were 
based on the lattice structure, these are not directly applicable to the lifting structure of the 
9-7 DWT. Beside these relations to the regularity, the DC lossless condition itself is also 
considered to be important for white balancing of a video system in which the DC signal is 
used as a reference input for calibration [11].  
This article aims at deriving the DC lossless condition theoretically and clarifying the 
minimum word length of signals and coefficients. In conventional analysis, errors due to 
shortening of word length of signals (signal errors) were described as 'additive' to a signal 
[7,12]. They were treated as independent and uniformly distributed white noise. On the 
other hand, errors due to rounding of coefficients (coefficient errors) were described as 
'multiplicative' to a signal and evaluated with the sensitivity [13-15]. It should be noted that 
the signal error and the coefficient error have been treated independently. Unlike those 
conventional approaches, we utilize mutual effect between rounding of signals and that of 
coefficients. Introducing a new model which unifies the coefficient error and the signal 
error, we define tolerance for those errors as a parameter to simultaneously control both of 
word length of signals and that of coefficients.  
As a result of our theoretical analysis, the minimum word length of signals and that of 
coefficients inside the lifting 9-7 DWT are derived under the DC lossless condition. We 
confirm that the minimum word length derived by our analysis is shorter than that 
determined by a conventional approach. We also confirm that the DWT under the condition 
does not have the checker board for a DC signal. 
This article is organized as follows. Chapter 2 defines a rounding operation and a rounding 
error, describes their basic properties in algebraic approach, and derives 'addition' formula 
and 'multiplication' formula of the rounding (modulo) operation. Application of these 
formulas to scaling of a signal value is introduced in chapter 3. Chapter 4 introduces the DC 
lossless DWT. Its usefulness is also described. Derivation process of conditions on word 
length of signals and coefficients is described in chapter 5. The new condition derived from 
the basic properties in chapter 2 is summarized in chapter 6. Other related condition derived 
from a conventional approach is also summarized. Theoretical results are verified and the 
minimum word length of the DC lossless DWT is clarified in chapter 7. This article is 
concluded in chapter 8. 

2. Rounding operation and its basic formulas 
This chapter introduces basic properties of the rounding operation focusing on 'quotient', 
rather than 'remainder', in modulo operation. So far, 'remainder' had been attracted 
numerous mathematicians' attention and various basic properties were found such as the 
Chinese remainder theorem in the commutative algebra (commutative ring theory). On the 
contrary, 'quotient' plays an important role as a 'practical' value in finite word length 
implementation in modern computer systems. This chapter introduces an algebraic 
approach of expressing 'quotient' as a practical value, and 'remainder' as a rounding error, 
so that it can be applied to analyzing exact behavior of rounding errors in a complex 
calculation procedure. 
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2.1 Definition of rounding operation and rounding error 
In a digital calculation system, all the values of both of signals and coefficients are calculated 
and stored as a binary digit with finite word length. In this article, we treat a case such that a 
value x is expressed with a fixed point binary expression as 

 
1

2 , {0,1}, 1, 0, ,
I

p
p p

p F

x b b I F I F




      Z Z  (1) 

where bp, p {-F, ,I-1), is a set of binary digit for a value x. It has I bit integer part 
including one sign bit and F bit fraction part. Hereinafter, F is referred to as word length of a 
value x. This F bit value x has a range expressed as  

 1 1 1 1[ 2 ,2 2 ] [ 2 ,2 )I I F I Ix          . (2) 

For example, in case of I=1 and F=2, the maximum value is x=0.75 for [b0 b-1 b-2]=[0 1 1], and 
the minimum value is x=-1.00 for [b0 b-1 b-2]=[1 0 0]. 
When an F bit signal value is multiplied with a coefficient value, in a convolution of a 
filtering process in DWT for example, a resulting signal value has longer word length than 
its original value. Therefore it is rounded to F bit again. So far there are various types of 
rounding operations [16]. In this article, we deal with the rounding operation defined by 

 1 1
0 0[ ] 2 [ ] ' ( ' mod 1) ' 2R x x or R x x x for x x          (3) 

as an example. This rounding operation generates a rounding error. We denote it as 

  1 1
0 0 0[ ] [ ] [ ] ( 2 ) mod 1 2x x R x or x x         . (4) 

Expanding these expressions to an F bit case, we can define the rounding operation and the 
rounding error as 

 0

0

[ ] [ 2 ]2
[ ] [ 2 ]2

F F
F

F F
F

R x R x

x x





 

  

 (5) 

for an F bit word length implementation case.  
Fig.1 illustrates rounding operations expressed by these equations. The term RF[x] is a 
quotient, and ΔF[x] (= x - RF[x]) is related to a remainder. The former is an actual value 
treated in a digital system under a finite word length implementation, and the latter is a 
rounding error. We are now trying to develop an algebraic expression approach to exactly 
trace a practical value and a rounding error in a convolution processing inside a DWT. 
 

2F 2-F
0

 1
0

2

][
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

x

xRy x F

FF
F

xR

xRy
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

2]2[

]['

0

=

x 0

 
(a) integer         (b) F bit fraction 

Fig. 1. Definition of the rounding operation and the rounding error. (a) An integer 
implementation case. (b) An F bit word length implementation case. 
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2.2 Basic properties of the rounding operation 
Since a convolution includes additions and multiplications, we should know behavior of an 
addition of two values x and y. Resulting value is RF[x+y] and its rounding error is ΔF[x+y]. 
A multiplication result RF[xy] and its error ΔF[xy] should be also investigated.  
First of all, let's derive basic properties of the rounding operation starting with an obvious 
property; 

 0 0[ ] [ ]y R x y R x y for x     Z R . (6) 

It represents that only a real number x can be rounded if y is an integer to calculate a 
rounded value of x+y. In this case, its rounding error becomes 

 0 0[ ] [ ]y x y x for x      Z R . (7) 

It suggests that an integer y can be ignored when only the rounding error is considered in an 
analysis. There is another obvious property; 

 1 1
0[ ] 0 [ 2 ,2 )R x x      . (8) 

Since the range of a rounding error is  

 1 1
0[ ] [ 2 ,2 )x     , (9) 

we can add two more identities;  

 
 
 

0 0

0 0 0

[ ] 0,
[ ] [ ].

R x

x x

  

   

 (10) 

The equations above for F=0 can be straightforwardly extended to an F≠0 case as follows. 

 
[ ] [ ]

2
[ ] [ ]

F FF

F F

R x y R x y
y for x

x y x
  

     
Z R  (11) 

 1 1[ ] 0 [ 2 ,2 )F F
FR x x         (12) 

 1 1[ ] [ 2 ,2 )F F
F x        (13) 

 
 
 

[ ] 0
[ ] [ ]

F F

F F F

R x

x x

  

   

 (14) 

In addition, Eq.(12) can be extended to a more general case with an integer n as 

 1 1[ ] 2 2 2 , 2F F
FR x n x n n for n         Z . (15) 

2.3 Basic formulas of the rounding operation 
Utilizing the basic properties in Eqs.(11)-(14), we can derive an addition formula and a 
multiplication formula of a practical value (quotient) of the rounding operation as follows.  
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Addition formula 

  [ ] [ ] [ ] ,F F F FR x y R x R y x for x y     R  (16) 

Proof: 

 
 

 
[ ] [ ] (4)

[ ] [ ] (11)

F

F F F

F F F

R x y

R R x x y

R x R x y



    

    

 

Q.E.D. 
Multiplication formula 

    [ ] [ ] [ ] [ ] ,F F F F F F FR xy R xR y R x y xR y for x y        R  (17) 

Proof: 

 
   

   

[ ]
[ ] [ ] (4)

[ ] [ ] [ ] (4)

[ ] [ ] [ ] (11)

F

F F F

F F F F F F

F F F F F F

R xy

R x y xR y

R x y xR y R xR y

R x y xR y R xR y

   

       
       

 

Q.E.D. 
Formulas for a rounding error (remainder) can be also derived as 

 
 
 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
F F F F

F F F F F F F F

x y x y

xy x R y R x y x y

      


        
 (18) 

for real numbers x and y. These formulas have following variations; 
Addition formula 

 
[ ] [ ]

2 [ ] [ ]
[ ] [ ]

F F
F

F F

F F

R x y R x y
y R x y x x y

x y x

  
      
   

Z  (19) 

Multiplication formula 

 
 
 
 

[ ] [ ] [ ]

2 [ ] [ ]

[ ] [ ]

F F F F

F
F F F

F F F

R xy R x y R x y

y R xy x y xy

xy x y

   
     
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Z  (20) 

Especially when two kinds of word lengths are mixed in a signal processing, the following 
variation of the multiplication formula is conveniently applied to analyzing behavior of 
signals and errors in a pair of encoder and decoder [17]. 
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2 1 2 2 1 2

[ ] [ ] [ ] [ ]F F F F F FR xR y R xy R x y xy             (21) 

Proof: 
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2 2 2 2 2
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0 00
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R x y xy R xy





 

  
     
       
       

       

 

Q.E.D. 

3. Application of the formulas to basic signal processing 
This chapter applies the formulas to some basic signal processing cases.  

3.1 Mapping invariant condition 
Fig.2 illustrates a scaling of a signal value x with a coefficient value h. As illustrated in 
Fig.2(a), this processing maps an input value x to an output value y* with an ideal (infinite 
word length) coefficient value h. Note that x has F bit word length. Output value of the 
multiplication is also rounded to F bit (y* has F bit word length). In implementation, as 
illustrated in Fig.2(b), a coefficient value h is also rounded to W bit word length (h' has W bit 
word length). We aim at finding the minimum word length W of a coefficient h' such that 
the mapping is invariant (y -y* =0). 
 

F

h

h∈real number
W→∞ [bit]

x
F

y*

F

h'=RW[h]

h'∈rational number
W →min. [bit]

x
F

y

 
(a) assumption (b) implementation 

Fig. 2. Scaling of a signal value x with a coefficient value h. (a) This processing maps x to y* 
with h under a given F. (b) A mapped y should be equal to y* even though h is rounded to h'. 

In case of Fig.2(b), an input value x is multiplied by a rounded value RW[h] (=h') of a given 
coefficient h. The result RW[h]x is rounded to RF[RW[h]x] (=y). When it is the same as RF[hx] 
(=y* ), the mapping of x is invariant. It means that effect of rounding of h is nullified. This 
mapping invariant case is expressed as 

  [ ] [ ]
0

[ ] [ ]
m F W F

m
W W

E R R h x R hx
E for

R h h h

   
  

. (22) 
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From the basic properties, the mapping invariant condition is derived as 

  1 1[ ] [ ] 2 , 2F F
W Fh x hx           . (23) 

Proof: 
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1 1[ ] [ ] 2 , 2F F
F Whx h x           

Q.E.D. 
The Eq.(23) also means 

 

1 1

1 1
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F F
W

F F
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hx hx
h x

x x

hx hx
h x

x x

 

 

     
    

  


         

 (24) 

which gives tolerance to the rounding error of a coefficient [8]. This is the mapping invariant 
condition on word length W of a coefficient under a given word length F of signals. It 
represents exact (not approximated) behavior of rounding errors. 
Unlike the condition above, a sufficient condition can be derived by substituting the upper 
bound of errors and signals; 

 1 1 1[ ] 2 , [ ] 2 , 2W F I
W Fh hx x         , (25) 

to Eq.(23). It results in the condition described as 

 1W F I   . (26) 

This condition is too strict and requires too long word length to guarantee the mapping 
invariance. In both cases of Eq.(24) and Eq.(26), the mapping invariant condition determines 
the minimum of word length W of a coefficient under a given word length F of signals. 

3.2 Lossless condition on a scaling pair 
Fig.3 illustrates a pair of two multipliers. In Fig.3(a), an input signal x has F2 bit word length. 
It is scaled with a coefficient h1, and its output value y is rounded to F1 bit. It is re-scaled 
with a coefficient h2 (=1/h1), and its final output value w is rounded to F2 bit. This scheme is 
embedded in a forward transform and a backward transform of DWT for example. It is 
required to regain w exactly the same as x, under a given word length set of F1 and F2. Note 
that rounding errors due to finite word length expression of coefficients h1 and h2 can be 
ignored as far as the mapping invariant condition is satisfied. 
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F2

h1

x
F1

y
F2

w

h2 (=1/h1)

x, y, w ∈ real number
F1→∞ [bit]

F2

h1

x
F1

y
F2

w

h2

x, y, w ∈ rational number
F1→min. [bit]  

(a) assumption (b) implementation 
Fig. 3. Scaling pair has two coefficients h1 and h2 (=1/h1). (a) Output w is exactly the same as 
its original x. (b) This lossless property is guaranteed under a condition on F1 and F2. 

We apply the formulas and the properties to derive the condition on F1 and F2. The lossless 
case in Fig.3(b) is described as 

 2 12 1

1 2

[ ]0
1

p F F
p

E R h R h x x
E for

h h

      


. (27) 

From the basic properties, the lossless condition on a scaling pair is derived as 

  2 2

1

1 1
2 1[ ] 2 , 2F F

Fh h x         . (28) 

Proof: 

2 1

2 2 2

1

2 2

1

2 1

2 1

0 2 1 2 1

0 2 1

2 1

[ ]

[ ]2 2 2

[ ]2 2

[ ]

0

F F

F F F
F

F F
F

F F

R h R h x x

R h h x h h x x

R h h x x x

R h h x





   

      

      

    


 

2 2

1

1 1
2 1[ ] 2 , 2F F

Fh h x          

Q.E.D. 
This condition determines the word length F1 and F2 of signals for an input value x. It 
represents exact condition such that total accumulated rounding error is nullified by the 
rounding just after the final multiplier with h2. As a result, the original value x is recovered 
as the final output without any loss.  
Unlike the exact condition above, a sufficient condition can be derived by analyzing the 
upper bound as follows. 

 1 2

1

1 1
2 1 2[ ] 2 2F F

Fh h x h        (29) 

As a results, when the sufficient condition given by 

 1 2 2 2logF F h   (30) 
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holds, the scaling pair becomes lossless. However this condition is too strict and requires too 
long word length of signals. 

4. Application of the formulas to DWT 
This chapter introduces the DC lossless DWT [8, 18]. Definition and its usefulness are also 
described. The algebraic approach based on the formulas is applied to derive conditions on 
word length of signals and coefficients. Derivation process is described in chapter 5. 

4.1 DWT and its word length of signals and coefficients 
Fig.4 illustrates the irreversible 9-7 DWT of the JPEG 2000 standard [1]. The forward 
transform in Fig.4(a) decomposes an input signal x(n), nN, N={n | 1,2,  , L} into band 
signals y1(m) and y2(m), mM, M={m | 1,2,  , L/2}. The backward transform in Fig.4(b) 
reconstructs the signal w(n) from the band signals. In the figure, z-1 and ↓2 indicate the delay 
and the down sampler respectively. 
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c3 c1

w(n)y1(m)
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FX  
(b) Backward transform 

Fig. 4. The irreversible 9-7 DWT of the JPEG 2000 standard. 

The multiplier coefficients ci, i I, I={i | 1,2,  , 6} are designed under the word length long 
enough to be treated as real numbers. When the DWT is implemented, coefficient values are 
rounded to the length as short as possible to minimize total hardware complexity. Similarly, 
signal values are also rounded. In the figure, fraction part of each signal is shortened to FS, 
FB or FX [bit] by a rounding operation illustrated as a circle.  
Denoting the integer part as IS [bit], total word length WS [bit] of a signal s is defined as 

 1S S SW I F    (31) 

including 1 [bit] for the sign part. Similarly, total word length WC [bit] of a coefficient c is 
defined as 

 1C C CW I F   . (32) 
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In Fig.4, fraction part of the input signal x(n) is given as FX [bit]. Inside the DWT, fraction 
part of the signals are rounded to FS [bit] just after each of all the multiplications with ci, i I. 
Output signals from the forward and backward transforms are rounded to FB [bit] and FX 
[bit] respectively. Note that we do not truncate integer part of signals and that of 
coefficients. We are determining FS and FC such that the DC lossless property is satisfied. 

4.2 Definition of DC lossless property and its necessity 
In this article, we define the DC lossless as the conjunction of the following two 
propositions: 

  1 2N, M ( ) ( ) ( ) 0n m x n d y m d y m          (33) 

  1 2N, M ( ) ( ) 0 ( )n m y m d y m w n d          (34) 

for a given constant value d with FX [bit] fraction part. When the proposition in Eq.(33) 
holds, the DWT has no DC leakage for the DC input signal with value d. Similarly, when the 
proposition in Eq.(34) is true, the reconstructed signal w(n) contains no checker board 
artifact for the DC input signal. In the following chapters, we investigate the minimum 
fraction part of signals FS [bit] which guarantees the DC lossless for given FX and FB [bit]. 
We also investigate the minimum fraction part 

iCF  [bit] of a coefficient ci, i I with flexibility 
of trading off the signal error and the coefficient error. 
Fig.5(a) illustrates an example of a video system. It contains an encoder and a decoder which 
are composed of a forward DWT and a backward DWT. In white balancing, a camera and a 
display are calibrated with a constant valued input signal (DC signal) [11,19]. Therefore, it is 
useful for this calibration if the forward DWT and its backward do not generate any error. In 
this case, the camera and the display can be calibrated ignoring existence of the encoder and 
the decoder as illustrated in Fig.5(b). Namely, the DC lossless condition provides a low 
complexity DWT useful for the white balancing. 
 

Camera Display

Encoder Decoder

input output

x(n) w(n)

 

Camera Display

DC signal DC signal

adjust adjust

 
(a) video system (b) calibration 

Fig. 5. The DC lossless property is useful for white balancing in a video system. 

In addition, the DC lossless condition is a necessary condition for the regularity which 
controls smoothness of basis functions and coding performance of a transform. A DWT 
under the regularity does not generate the checker board artifact or the DC leakage. Harada 
et. al. analyzed a condition for the regularity of a two channel quadrature mirror filter bank 
(QMF) [9]. They confirmed that a QMF under the condition has reduced checker board 
artifact for an input step signal. It is expanded to a multirate system under short word 
length expression [20]. The regularity was structurally guaranteed for a biorthogonal linear 
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phase filter bank [21,22] and the DCT [10] respectively. However, since these previous 
methods are based on factorization of a transfer function including (1+z-1) or (1-z-1) in the 
lattice structure, these are not directly applicable to the lifting structure of the 9-7 DWT in 
Fig.4. 
In this article, we derive the DC lossless condition theoretically in chapter 5, and determine 
the minimum word length of signals and that of coefficients under the condition in 
following chapters. 

5. Derivation of condition for the DC lossless DWT 
This chapter describes derivation process of the DC lossless condition. 

5.1 New model for error analysis 
Fig.6(a) illustrates a multiplier in the DWT circuit. An input value s has FS [bit] fraction part 
and multiplied by a coefficient c'. The coefficient is originally designed as a real number c. It 
is rounded to a rational number c' in implementation. It produces the coefficient error: 

 'c c c   . (35) 

Just after the multiplication, the signal is rounded to s' with FS [bit] fraction part as  

 ' [ ' ] ' '
SFs R c s c s e    (36) 

where e' is the signal error. From Eq.(35) and (36), the final output becomes 

 ' 's cs cs e    . (37) 

where cs is the ideal output. This conventional model, illustrated in Fig.6(b), describes the 
coefficient error c  as multiplicative to the signal s [13-15], and the signal error e' as 
additive [7,12]. In addition, these errors are treated independently as mutually uncorrelated 
noises. 
Unlike these existing approaches, as illustrated in Fig.6(c), we describe the coefficient error 
e'' as 

 
' [ ] '',

'' [ ] [ ] .
S

S S C

F

F F F

s R cs e

e R cs c s

 
       

 (38) 

From Eq.(15), we utilize the fact that e'' is observed as a 'particle'; 

 '' 2 SFe p   (39) 

where p is an integer. Given the tolerable maximum to an integer p, word length of the 
coefficient c can be controlled independently of other coefficients in other sections inside the 
DWT. Furthermore, denoting the signal error as e' similarly to Eq.(36), the output value is 
described as  

 
'

' ''
s cs e
e e e
 

  
 (40) 
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where 

 
' [ ]

'' [ ] [ ]
S

S S C

F

F F F

e cs

e R cs c s

 


      
 (41) 

as illustrated in Fig.6(d). In this new model, both of the coefficient error e'' and the signal 
error e' are unified to the error e. Utilizing Eqs.(13) and (15), its absolute value is limited 
to 

 1| | ( 2 )2 SFe p   . (42) 

Note that the parameter p to control word length of a coefficient c is included in this 
equation. It is equivalent to  

 12 C S SF F I p      (43) 

where its proof is given in appendix. 
Benefitting from this inequality, it becomes possible to consider mutual effect of the 
coefficient error and the signal error. 
 
 

FS

s
FS

ccc '

s'

SFe  12'

e'c' s
FS

s'c

-Δc

 
(a) multiplier (b) conventional model 

SFpe  2)2( 1

FSFS

s
FS

s'
ec e''

SFpe  2''

s s'c

 
(c) new model I (d) new model II 

 

Fig. 6. A multiplier in the DWT and its models for error analysis. 

Inside the forward DWT, the error e is propagated and added up with other errors from 
other multipliers. When its maximum absolute value is less than 12 BF  , the total error is 
nullified by the rounding at the final output of the forward DWT. In this article, we utilize 
this nullification of errors at output of the DWT to derive a condition on word length such 
that the DC lossless defined by Eq.(33) and (34) is satisfied. 
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5.2 DC equivalent circuit 
When the input signal is restricted to a DC signal, x(n) can be described as a scalar x 
independent of n. The delay z-1 can be treated as 1 and (1+z-1) can be replaced by 2. 
Therefore, instead of the circuits in Fig.4, we can use their equivalent circuits for a DC input 
signal in Fig.7 to derive the condition. 
In Fig.7(a), a scalar x with FX [bit] fraction part is multiplied by the rational numbers ci, i I 
and rounded to FS [bit]. Finally, the signals are rounded to FB [bit] at its output to produce 
two scalars [y1 y2]. The unified errors inside the circuit are described as 

 ' '' , Ii i ie e e i    (44) 

where 

' [ ]

'' [ ] [ ]
S

S S C

i F i i

i F F i i F i i

e c s

e R c s c s

  


     
 

1 3 5 2 4

2 4 6 1 2 3 3 4

2 2( ' )
2( ' ) 2( ' ) '

s s s x x s s
s s s x s s s s s

   
        

 

' [ ]
Si i i i F i is c s e R c s   . 

Similarly, for the backward transform in Fig.7(b), errors are described as 

 ' '' , Ii i if f f i    (45) 

where 

' [ ]

'' [ ] [ ]
S

S S C

i F i i

i F F i i F i i

f c t

f R c t c t

  


     
 

1 3 5 3 2 5 4 1

2 4 6 4 3 6 2

2( ' ) 2( ' ' )
2( ' ) 2 '

t t t t t t t y
t t t t t t y

    
      

 

' [ ]
Si i i i F i it c t f R c t   . 

Similarly to Eq.(42), these errors are described with the parameters pi and qi to control word 
length of coefficients as 

 1( 2 )2 , ISF
i ie p i    (46) 

 1( 2 )2 , ISF
i if q i    (47) 

for a given word length Fs [bit] of signals. 
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(b) Backward transform 

Fig. 7. Equivalent circuits of the DWT for a DC input signal. 

5.3 Nullification of accumulated errors 
In Fig.7(a), the unified errors in Eq.(46) are propagated and accumulated inside the circuit. 
When the accumulated errors are nullified by the rounding at output of the forward 
transform, Eq.(33) is satisfied. In the figure, Y12=[y1 y2]T is described as 

 


   
12 6 5 4 4 3

3 2 2 1 1

BF U L U L

U L UL

R e e e e

e e x

   


   


Y I I K I H I

H I H I H I
 (48) 

where 

[1 0] , [0 1] ,T T
U L UL U L   I I I I I  

6
.{1,3} {2 ,4}

5

1 0 1 2 0
, ,

2 1 0 1 0
j

i j
i

c c
c c 

     
       
     

H H K  

It is described with the unified error matrices E1 and E2 as 

  12 1 1 2 2 4321( )
BF e eR x  Y H E H E KH  (49) 

where 

 
 

43

4 432

1

2

43 4 3

e U U U

e L L L





 

H I KI KH I

H I KH I KH I

H H H 
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and 

1 6 4 2

2 5 3 1

[ ]
[ ] .

T

T

e e e

e e e

 




E

E
 

Similarly, output values W12=[w1 w2]T from the backward transform in Fig.7(b) are 

 1
12 3 3 4 4 4321 12( ) ( )

XF e eR     W H E H E KH Y  (50) 

where 

1 1 1
3 1 123 1234

1 1
4 12 1234
1 1 1

12 1 2

[ ]
[ ]

e U U U

e L L L

  

 

  

  


 
 

H H I H I H I

H I H I H I

H H H 

 

and 

3 2 4 5

4 1 3 6

[ ]
[ ] .

T

T

f f f

f f f

 




E

E
 

When the DWT is DC lossless, output values of the transforms are 

 432112
1

4321 1212

ˆ
.ˆˆ ( )

U

UL

x
x



     
      
      

KH IY
IKH XW

 (51) 

Using this equation, the accumulated errors are defined as 

 12 12 12

12 12 12

ˆ
.ˆ

y

w

    
      

      

E Y Y
E W W

 (52) 

Substituting Eqs.(49), (50), (51) and using the property in Eq.(6), we have 

  
 

1 1 2 212

12 3 3 4 4

( )
.

( )
B

X

F e ey

w F e e

R

R

          

H E H EE
E H E H E

 (53) 

Applying Eq.(12), it becomes clear that when the conditions; 

 
1

1 1 2 2

1
3 3 4 4

2
2

B

X

F
e e UL

F
e e UL

 

 

  


 

H E H E I

H E H E I
 (54) 

are satisfied, the accumulated errors are nullified by the rounding operations at the final 
output of each of the forward transform and the backward transform. 

6. Derived conditions on word length for the DC lossless DWT 
This chapter summarizes the new condition derived from the basic properties in chapter 2, 
and other related condition derived from a conventional approach.  
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6.1 Critical condition on word length 
Finally, we derive the condition on word length of coefficients and signals such that Eq.(54) 
is satisfied. Since the unified errors in E1, E2, E3 and E4 have the maximum in Eqs.(46) and 
(47) described with the parameters pi and qi, the DC lossless condition is also described with 
the parameters by substituting 

 

 
 
 
 

1
1 6 4 2 3

1
2 5 3 1 3

1
3 2 4 5 3

1
4 1 3 6 3

[ ] 2 2

[ ] 2 2

[ ] 2 2

[ ] 2 2
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p p p

p p p

q q q

q q q









   

   


  


  

E I

E I

E I

E I

 (55) 

for 

3 [1 1 1]TI  

into Eq.(54). This is the condition we derived based on the new model described in section 
5.1. We investigate the fraction part FCi [bit] of a coefficient ci , i I as the minimum word 
length under the condition for a DC value x at the word length Fs [bit] of signals. 

6.2 Sufficient condition on word length 
As an example, in case of all the parameter in Eq.(55) are given as pi = qi = p and FCi = FC for 
 i I, the condition in Eq.(54) becomes 

 
 
 

1 1

1 1

11
1 2

11
3 4

2 ( 2 ) 2

2 ( 2 ) 2

S B

S X

F F
e e ULL L

F F
e e ULL L

p

p

  

  

    


   

H H I

H H I
 (56) 

where 1L
H  denotes a column vector whose component is a sum of absolute value of all 

components in each row. Substituting coefficients of the 9-7 DWT [1] into Eq.(56), we 
have 

 
1 12 2

2.66 [bit]

S EF G

E

p
G

     



 (57) 

for FX = FB = 0. As a result, the DC lossless condition on the word length is given as 

 2log (2 2 )C SW W
EG     (58) 

where 

[ ] [ ]C S C S SW W F I F     

and GE is the lower bound. This means a sufficient condition for the DC lossless. Since it is 
too strict, the word length under this condition is redundant. Unlike this sufficient 
condition, our critical condition given as Eq.(54) under Eq.(55) determines the word length 
minimum and necessary for the DC lossless. 
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7. Simulation results 
This chapter verifies theoretically derived conditions, and clarifies the minimum word 
length of the DC lossless DWT. 

7.1 Word length under the sufficient condition 
Utilizing the sufficient condition in section 6.2, we calculated the optimized word length 
under the cost function defined as J=2-1(FC +FS). The cost J is minimized for three examples. 
Ex.1 trades the word length between FC and FS, namely FC + FS = constant. Ex.2 and Ex.3 are 
FC = FS and WC = WS respectively. Results are summarized in table 1. Table 2 summarizes 
word length of signals and coefficients for an 8 bit system with Wx=8 (Ix=7 and Fx=0). Ex.1 
requires (FS, FC)=(4, 12) [bit] for signals and coefficients respectively. Ex.2 and Ex.3 require 
FS =FC =11 [bit] and WS =WC =14 [bit] respectively. The condition in Eq.(58) is plotted as a 
solid line in Fig.8. According to the sufficient condition, it is impossible to be DC lossless for  

 C E S

S E

F G I
F G

 
 

 (59) 

and it is also confirmed by the figure. It guarantees the DC lossless, however the condition is 
too strict. Therefore the word length is redundant and there is room for further reduction.  
 

Ex.1
FC+FS = const.

Ex.2
FC = FS

Ex.3
WC = WS

FC
FS

GE+1+IS
GE+1 GE+IS

* GE+IC
*+IS -IC

GE+IC
*

WC
WS

GE+2+IS +IC
GE+2+IS

GE+IS
*+1+IC

GE+IS
*+1+IS 

GE+IC
*+IS +1

J GE+1+IS/2 GE+IS
* GE+IC

*+(IS -IC) /2

IS
*=log2(2IS +1), IC

*=log2(2IC +1)  
Table 1. Theoretically derived word length under the sufficient condition for DC lossless. FS 
and FC denote fraction part of signals and coefficients. IS and IC denote integer part of signals 
and coefficients. WS=IS+FS+1, WC=IC+FC+1, J is a cost function. 

 
Ex.1

FC+FS = const.
Ex.2

FC = FS

Ex.3
WC = WS

FC
FS

11.66
3.66 10.67 11.25

4.25

WC
WS

13.66
12.66

12.67
19.67 13.25

J 7.66 10.67 7.75
 

Table 2. Word length calculated with equations in table 1 for Wx=8 [bit]. 
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7.2 Word length under the critical condition 
In Fig.8, a cross " " indicates a pair (FS, FC) which satisfies the critical condition in section 
6.1 for any 8 bit integer x with WX=IX=8 and FX=0. Here in after, we denote an input DC 
value to a video system as 

 12 XI
inx x    (60) 

where x is an input value to the DC equivalent circuit in Fig.7. The minimum of FC for each 
FS is indicated as a broken line. It is clear that the word length derived by the critical 
condition is shorter than that determined by the sufficient condition. For example in 
Fig.8(a), the fraction part FS (= FC) is reduced from 11 [bit] to 9 [bit] for Ex.2. The word 
length is not shortened for Ex.1 and Ex.3. In case of Fig.8(b), FS (= FC) is reduced from 13 [bit] 
to 12 [bit] for Ex.2. (FS, FC) is reduced from (14, 4) to (13, 3) or (12, 4) for Ex.1. WS (= WC) is 
reduced from 16 [bit] to 15 [bit] for Ex.3. It is confirmed that the word length is shortened 
due to the analysis in this article. 
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Fig. 8. Word length under the two conditions. " " indicates (FS, FC) such that the DWT 
becomes DC lossless.  
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7.3 Word length for a specific value 
Fig.9(a) and Fig.9(b) illustrate the word length under the conditions for the black value "16" 
and the white value "235" respectively. These specific values are utilized in white balancing 
of an 8-bit video system [19]. For example, (FS, FC) is reduced from (4, 12) in Fig.8(a) to (2, 9) 
in Fig.9(a) for Ex.1. Table 3 summarizes the minimum word length for these specific input 
DC values [23]. It is observed that the word length can be reduced by limiting input DC 
signals to a specific value. Fig.10 indicates the minimum word length FC of coefficients for 
an input value x at a given word length FS of signals. This is an example at (FS, WX)=(3, 8). 
The sufficient condition gives the same word length for any of input values. Unlike this 
conventional statistical analysis, our analysis gives the minimum word length shorter than 
that determined by the sufficient condition for each of input DC values. 
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Fig. 9. Word length under the two conditions for a specific value used in white balancing. 
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Fig. 10. The minimum word length of coefficients for each of input DC values at (FS, WX)=(3, 
8). According to the sufficient condition, the word length is too long.  

 

forward transform and backward transform

input DC values
signals coefficients

integer
IS [bit]

fraction
FS [bit]

integer
IC [bit]

fraction
FC [bit]

W
X

= 
8 

bi
t

sufficient

8

4

2

12

any xin∈[0,28) 2 12

xin= 16 (black) 2 9

xin=235 (white) 3 9

W
X

=1
0 

bi
t sufficient

10

4

2

14

any xin∈[0,210) 2 13

xin= 64 (black) 0 8

xin=940 (white) 0 12

 
Table 3. The minimum word length for a specific value for white balancing of a video 
system. 

7.4 Optimum word length assignment 
Since we described tolerance for the unified errors as parameters pi and qi in Eq.(46) and (47), 
it becomes possible to simultaneously control both of word length of signals and that of 
coefficients. Table 4 summarizes these parameters for an input value 16 and the word length 
of signals at FS=2 [bit] as an example. It indicates that [p1 p2   p6] in Eq.(46) are [0 0 0 0 0 1] 
for the word length of coefficients at FC=9 [bit]. In this case, all the coefficients ci in the 
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forward transform have the same length. It is worth paying attention to the fact that the 
parameter p1 is the same for FC=9, 8 and 7 [bit] for example. It means that word length of the 
coefficient c1 can be reduced from 9 to 7 [bit] without any influence to the errors. Therefore, 
word length [FC1 FC2 FC6] of coefficients [c1 c2   c6] can be reduced from [9 9 9 9 9 9] to [7 9 
7 4 6 4] according to the table.  
Table 5 summarizes results of this optimum word length assignment for the forward 
transform. Comparing to table 3, it is observed that word length of coefficients is reduced 
from 9.00 [bit] to 6.17 [bit] on average for an input value xin=16. Table 6 summarizes results 
for the backward transform. In this case, the word length is furthermore shortened. It is 
observed that c6 and c4 can be omitted since y2 is equal to zero under the DC lossless. Fig.11 
illustrates image signals reconstructed by the DWT which does not satisfy the DC lossless 
condition. It demonstrates the checker board artifact for reference. It is confirmed that total 
word length is furthermore shortened utilizing the tolerance parameters pi and qi introduced 
in this article.  
 

FC p1 p2 p3 p4 p5 p6 y1-x y2

9 0 0 0 0 0 1 0 0
8 0 -3 0 0 0 0 -1 -1
7 0 -3 0 0 0 0 -1 -1
6 7 12 -8 0 0 2 6 6
5 7 -18 10 0 1 0 -7 -5
4 -21 -18 9 0 -2 1 -10 -12
3 35 107 7 25 9 -28 63 70

 
Table 4. Tolerance parameters in Eq.(46) and (47) for xin=16 and FS=2 as an example. 

 

forward transform

input 
values

signals coefficients

FS FC1 FC2 FC3 FC4 FC5 FC6 ave.

W
X

=8

xin= 16 (B) 2 7 9 7 4 6 4 6.17

xin=235 (W) 3 9 7 9 9 1 4 6.50

W
X

=1
0 xin= 64 (B) 0 7 9 7 1 1 4 4.83

xin=940 (W) 0 7 11 -1 1 1 4 3.83

 
Table 5. The minimum word length of coefficients in the forward transform for a specific 
values xin for a given word length of signals FS. 
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backward transform

input
values

signals coefficients

FS FC1 FC2 FC3 FC4 FC5 FC6 ave.
W

X
=8

xin= 16 (B) 2 9 9 7 0 8 0 5.50

xin=235 (W) 3 9 9 7 0 8 0 5.50

W
X

=1
0 xin= 64 (B) 0 7 9 7 0 8 0 5.17

xin=940 (W) 0 7 12 8 0 8 0 5.83
 

Table 6. The minimum word length of coefficients in the backward transform for a specific 
values xin for a given word length of signals FS. 

 

  
(a) 1 stage                        (b) 2 stages 

  
(c) 3 stage                        (d) 4 stages 

Fig. 11. Example of reconstructed images for 1282 pixel DC input image with x=10. Intensity 
is multiplied by 16. 

8. Conclusions 
Introducing a new model which unifies the coefficient error and the signal error, and 
utilizing the nullification of the accumulated errors, this article theoretically derived a 
condition on word length of signals and coefficients such that the 9-7 DWT of JPEG 2000 
becomes lossless for a DC input signal. It was confirmed that the minimum word length 
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derived by the newly introduced 'critical' condition was shorter than that determined by a 
conventionally well known 'sufficient' condition. It was also confirmed that the DWT under 
the condition does not have the checker board for a DC signal. Analysis in this article 
contributes to build a low complexity DC lossless DWT. 

9. Appendix 
Proof of Eq.(43) 
Eq.(39) with Eq.(41) means 

 1[ ] [ ] ( 2 )2 S

S C

F
F Fcs c s p       (A.1) 

according to Eqs.(13) and (15). Applying the triangle inequality to the left hand side, we have 

 
S C S C
[ ] [ ] [ ] [ ]F F F Fcs c s cs c s       . (A.2) 

According to Eq.(13), each terms in the right hand side are described as 

 S

C

1

1

[ ] 2

[ ] 2 2

S

C S

F
F

F I
F

cs

c s

 

 

  


  
 (A.3) 

Therefore (A.2) and (A.3) under (A.1) means  

1 1 12 2 2 ( 2 )2S C S SF F I Fp        

and finally we have Eq.(43) as 

12 C S SF F I p     . 

Q.E.D. 
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1. Introduction

Digital imaging devices inevitably produce images corrupted with noise. The noise originates
from the sensors and analogue circuitry in the camera. In order to have better and sharper
images and also for commercial reasons, there is a recent tendency to further increase the
image resolution. Nowadays, cameras with more than 20 megapixels are not uncommon. To
reach such a high number of megapixels, the area of the sensor elements must be decreased
and correspondingly the elements become more sensitive to noise, resulting in a lower image
quality due to noise.
During the last decades, the use of image processing techniques has become widespread. The
increasing processing power of computers allows for more sophisticated techniques that are
better adapted to the classes of images under consideration (e.g. photographic images or
medical images). This also allows for new classes of techniques that alleviate the physical
limitations of the sensor elements by means of post-processing such as denoising. Because
of power and hardware complexity constraints, the post-processing techniques implemented
by camera manufacturers are based on simplistic assumptions with respect to the assumed
noise model: for example, while it is well known that photon signals are Poisson distributed,
the techniques most often rely on a white Gaussian noise model. In practice, such model
mismatches generally lead to inferior denoising results. Also, many factors cause the noise
in practice to be colored instead of white (i.e. with a flat power spectrum). For example, the
image formation is often a reconstruction process based on an insufficient number of samples,
and missing samples need to be estimated using interpolation techniques (e.g. Bayer pattern
demosaicing). Doing so, the noise becomes colored. A technique that is designed to remove
white Gaussian noise may offers a image quality: either some noise artifacts may be left in the
image, or the noise is suppressed too much, leading to an overblurred image.
The obvious solution to this problem is to adapt existing techniques to use a colored noise
model that is well matched to the underlying sensor characteristics and/or reconstruction.
Therefore, estimation of the noise statistics is indispensable. Stationary colored noise (or
correlated noise) is completely described by its Power Spectral Density (PSD). The noise PSD
describes the power distribution of the noise in frequency space and can be estimated by
using the Discrete Fourier Transform (DFT). However, noisy images also contain information
other than noise (e.g. edges and textures), and directly estimating the PSD through the DFT
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will yield seriously biased estimates caused by the signal presence. Alternatively, the PSD
could be estimated from noise-only patches in the image. However, not all images contain
such patches and also the number of noise samples that can be used for this task is often too
limited to yield reliable PSD estimates. Hence, more specialized techniques are needed.
The discrete wavelet transform (DWT) is an important tool for developing such techniques.
The DWT provides a non-uniform partitioning of the space-frequency plane, which allows
positional information of structures to be included in the estimation. This is not possible with
the DFT, since the DFT cannot recover information at specified positions in the image.
In this chapter, we investigate the estimation of colored noise. First, we discuss a number of
origins for colored noise in images. Next, we explain the importance of wavelets in solving
the estimation problem. To proceed, it is necessary to know how the wavelet-domain and
spatial-domain autocorrelation functions are related to each other, since we are aiming at
estimating the wavelet-domain autocorrelation function. Because the wavelet transform in
general does not fully decorrelate signals as we will explain, noise-free wavelet coefficients
with significant magnitudes can still be found near high-frequent transitions in the signals (for
example, near edges in images). To benefit from prior knowledge in a statistical estimation
approach, we will discuss a number of wavelet domain prior models. Two iterative EM-based
techniques will be presented, to estimate the wavelet-domain autocorrelation function. Next,
we will explain how the parameters of a parametric noise PSD can be estimated using the
presented tools. Finally, we will give a number of experimental results for the proposed
techniques.

1.1 From white noise to colored noise
Throughout this chapter, we will consider a stationary additive Gaussian noise process:

y(p) = x(p) + w(p) (1)

where x(p) is a pixel intensity of a noise-free image at position p ∈ Z2, y(p) is the
corresponding observed pixel intensity and w(p) is a zero-mean additive noise component.
w(p) and x(p) aremutually statistically independent. Wewill further assume that the samples
w(p) are generated by a (wide-sense) spatial stationary process w, in which the correlation
between two noise samples only depends on the position difference between the two noise
samples, but not on their absolute position. Consequently, w can be completely described by
the mean and the autocorrelation function.
A wide-sense stationary random process w obeying the above conditions is called white if its
autocorrelation function is a Dirac delta function:

Rw(p) = E
[
w(p′)w(p+ p′)

]
= δ (p) . (2)

For colored noise, neighboring noise samples are not statistically independent, hence spatial
dependencies exist between these samples. Their dependencies can be characterized by the
autocorrelation function of the noise, which is - for colored noise - different from the Dirac
delta function.
The PSD is a related descriptor of colored noise. More specifically, the PSD describes how the
noise energy is distributed in frequency space. According to the Wiener-Khinchin theorem,
the power spectral density is the (discrete time) Fourier transform of the autocorrelation function

256 Discrete Wavelet Transforms: Algorithms and Applications
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Fig. 1. Noise in PAL broadcasting. (a) Power Spectral Density [dB], (b) Noise signal
(containing horizontal stripe patterns due to correlations).

Rw(p):

Pw(ω) = ∑
p∈Z2

Rw(p) exp
(
−jωTp

)
. (3)

White noise has a flat PSD: Pw(ω) = 1. Suppose a filter with frequency response H(ω) �= 1 is
applied to the noise signal, then the resulting PSD P

′
w(ω) becomes Baher (2001):

P
′
w(ω) = Pw(ω) |H(ω)|2 . (4)

Clearly, the PSD P
′
(ω) is subjected to the filter magnitude response |H(ω)|. Hence one can

think of correlated noise as white noise subjected to linear filtering. In analogy with the term
“white noise” the resulting term is called “colored noise” (or correlated noise, because the filtering
introduces correlations in the noise samples).
In practical circumstances, there are a number of origins of colored noise in images:

• Phase Alternating Line (PAL) television: the noise in PAL television images is a good example
of colored noise. The correlations between the noise samples are caused by several
mechanisms, such as deinterlacing Kwon et al. (2003), demodulation and filter schemes.
In Figure 1, the PSD of a noise patch from a PAL broadcast is shown. Here, there is a high
concentration of energy in the lower horizontal frequencies, leading to horizontal stripes
and artifacts.

• Color interpolation (demosaicing): modern digital cameras use a rectangular arrangement of
photosensitive elements. In this matrix arrangement, photosensitive elements of different
color sensitivity are placed in an interleaved way. This allows sampling of full color
images without the use of three arrays of photosensitive elements. One popular example
is the Bayer pattern Bayer (1976). Color interpolation (or demosaicing) is the process of
estimating the values of missing photosensitive elements.

• Post-processing techniques: image noise often becomes correlated by the use of
post-processing techniques, e.g., image quality enhancement techniques, sharpening
filters, digital zoom functions of cameras, JPEG compression...
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Fig. 2. (a) Image corrupted with colored noise caused by demosaicing (b) PSD of the noise in
the green color channel of (a).

• Thermal cameras: images captured by thermal cameras of the push broom or whisk broom
type often exhibit streaking noise artifacts, mainly caused by detector and sampling
circuitry Aelterman, Goossens, Pižurica & Philips (2010). This kind of noise can be
approximated using a 1/ f frequency characteristic (called pink noise) Borel et al. (1996).
Pink noise also frequently arises in image sensors that acquire pixel data in time.

• Medical imaging: in computed tomography (CT), noise correlations are introduced
by the specific reconstruction technique that is being used. Noise created by the
backprojection algorithm (without reconstruction filter) is called ramp-spectrum noise,
and has an 1/ f frequency characteristic. Noise in magnetic resonance imaging
(MRI) is traditionally considered white Nowak (1999); Pižurica et al. (2003), although
many MRI scanner manufacturers have included a wide range of techniques to
allow for shorter scanning times (mainly to avoid patient motion artifacts in the
images). To name a few: K-space subsampling, partial Fourier, elliptical filtering
Aelterman, Deblaere, Goossens, Pižurica & Philips (2010). The use of these techniques
results in correlated noise in the reconstructed MRI images.

In Figure 3 another example is shown of an image corrupted with colored noise. The colored
noise was artificially generated by subjecting white noise to a filter with magnitude response√

P(ω) and subsequently by adding the filtered noise to the images.

2. Wavelets for the estimation of colored noise

Spatially stationary colored noise can be directly specified through its mean and
autocorrelation function and/or power spectral density. Given an observed noise signal w(p),
the estimation of these parameters is then a relatively simple task by, e.g., using the sample
mean and sample autocovariance estimates. However, in practice, it often happens that the
observed signal also contains information other than noise, this underlying signal is unknown
and it is the signal that we eventually want to estimate. Hence, we are observing y(p) instead
of w(p). The estimation of the noise statistics from the signal y(p) is then considerably more
difficult.
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Fig. 3. Illustration of the noise PSD: (a) Image with correlated noise, (b) The noise PSD (in
frequency domain, the center of the image is the origin of frequency space, white
corresponds with low noise powers, black with high noise powers).
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Fig. 4. Example of a piecewise linear signal with correlated noise. Our goal is to estimate the
noise power spectrum from the corrupted signal y(p). (a) The signals in time domain, (b)
The finest scale of the wavelet transform of the signals (Daubechies’ wavelet with 2
vanishing moments was used).

This problem is illustrated in Figure 4 for a piecewise linear signal corrupted with correlated
Gaussian noise. While the noise statistics can be easily estimated from w(p), we only have
the degraded signal y(p) at our disposal, which also contains an unknown signal component.
A straightforward solution is then to first estimate the signal x̂(p), to subtract it from y(p)
and finally to estimate the noise statistics from the difference y(p) − x̂(p). However, optimal
estimation of x(p) from y(p) requires knowledge of the noise statistics on its own, so we have
a chicken-and-egg problem. The common approach is then to use iterative techniques, which
first estimate x̂(p) and then later refine this estimate x̂(p) when better estimates for the noise
parameters become available.
In this chapter, we will take a different approach by relying on the properties of wavelets. The
wavelet transform Daubechies (1992); Mallat (1999) analyzes signals according to different
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scales and at different points in time. Starting from a fixed mother wavelet ψ(t), the input
signal is correlated with time-shifted and time-stretched (dilated) versions of this wavelet.
Correlations with wavelets with a large dilation factor then give the coarse features of the
signal, while correlations with wavelets with small dilation factors give the fine signal details.
Because the wavelet basis functions are well localized in time or space (this is in contrast to
the basis functions of e.g., the Fourier transform), wavelets are ideal candidates for analyzing
non-stationary signals, having statistical properties that vary in time (or space).
The Daubechies wavelets are a class of orthogonal wavelets for which the number of vanishing
moments for a given support is maximal. More specifically, the n-th moment of a real-valued
wavelet function ψ(t) is defined by:

μn =

ˆ +∞

−∞
tnψ(t)dt. (5)

The Daubechies wavelet of support 2N (with N vanishing moments) will have moments μn =
0 for 0 ≤ n < N. Now, let us denote the time-shifted and dilated basis functions of ψ(t) by:

ψa,b(t) =
1√
a

ψ

(
t − b

a

)
(6)

where a is the dilation factor, b is a time shift, and the constant 1/
√

a is an energy
normalization factor. The continuous wavelet transform of a signal f ∈ L2(R) is defined
by:

W f (a, b) =
ˆ +∞

−∞
f (t)ψa,b(t)dt. (7)

Now, suppose that a signal is linear on a region larger than the support S(a) of the wavelet
function ψa,b(t):

f (t) = c · t if |t − b| ≤ S(a).

For Daubechies wavelets with at least two vanishing moments (N ≥ 2), the corresponding
wavelet coefficientW f (a, b) will be zero:

W f (a, b) =
ˆ +∞

−∞
c · tψa,b(t)dt

=
c√
a

ˆ +∞

−∞
tψ

(
t − b

a

)
dt

= c
√

a
ˆ +∞

−∞

(
at′ + b

)
ψ
(
t′
)
dt′

= ca3/2
ˆ +∞

−∞
t′ψ

(
t′
)
dt′ + cba1/2

ˆ +∞

−∞
ψ
(
t′
)
dt′

= 0

In the remainder of this chapter, for the ease of notation, we will consider one particular
wavelet subband (with scale a) at a time and we will denote the corresponding wavelet
coefficients by a tilde: for example x̃(p) are the wavelet coefficients for that particular scale
of x(p). The process can then be repeated for other subbands as well. Let us now apply a
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Daubechies wavelet transform to the piecewise linear signal from Figure 4(a). The result is
shown in Figure 4(b) for the finest scale of the DWT1: because of the vanishing moments of
the wavelet, the wavelet coefficients x̃(p) are zero, except at the positions where the derivative
of x(p) does not exist. At these positions, the wavelet coefficients have a negligibly small
magnitude. This nicely illustrates the sparsifying properties of the DWT for this type of signal.
Correspondingly, the wavelet coefficients ỹ(p) are (approximately) w̃(p), which means that
the chicken-and-egg problem is solved: the noise statistics can be directly estimated from
ỹ(p)! More specifically, the wavelet domain autocorrelation function of w(p) can in this case
be estimated based on the following relationship:

Rw̃(p) ≈ Rỹ(p) = E
[
ỹ(p′)ỹ(p+ p′)

]
. (8)

It then suffices to compute the sample autocorrelation function of ỹ(p). There are now two
issues remaining, which we will explain in the remainder of this Chapter:

1. The autocorrelation function of a signal in the wavelet domain (e.g. a for particular wavelet
subband) is not the same as the autocorrelation function of a signal in time domain.
Nevertheless, there exists a simple relation between both, as we will explain in Section
3.

2. Most real-life signals are not piecewise linear functions or piecewise polynomials. For such
signals, the wavelet coefficient magnitudes may become non-negligible, causing serious
biases to the final noise estimates. An example of a frequency modulated signal with
maximal frequency at half length of the signal, is given in Figure 5. Because of the high
local bandwidth of the signal at this time position, the wavelet is not able to cancel out
the signal, resulting in wavelet coefficients with a large magnitude. Consequently, the
approximation ỹ(p) ≈ x̃(p) does not hold anymore. However, it can be seen in Figure
5(b) that this phenomenon is well localized in time, hence, because the noise process is
assumed to be stationary, a plausible solutionwould be to estimate the noise statistics from
the wavelet coefficients ỹ(p) that have a small underlying components x̃(p) (ignoring the
outliers in Figure 5(b)). In Section 4 we will discuss solutions that generalize this idea by
using a statistical prior model for wavelet coefficients.

So far, we discussed the estimation of colorednoise for one dimensional signals. The reasoning
can also be extended to higher dimensional signals, such as images. To illustrate this, a
noisy image together with its DWT are shown in Figure 6. It can be seen that the wavelet
subbands (LH, HL and HH in Figure 6) predominantly contain information on the noise,
with exception in the areas of textures and edges (the fine hairs of the mandrill). In these
areas, the (noise-free) wavelet coefficients x̃(p) still have a relatively largemagnitude, but this
phenomenon is localized - in the surrounding smooth regions the wavelet coefficients ỹ(p)
mostly consist of noise.
For higher dimensional signals, the DWT is usually computed by using basis functions that
are tensor products of one dimensional wavelets and one dimensional scaling functions.
While this approach can efficiently deal with point-wise singularities (e.g. bumps, dots,
...), most structures in images are line-like singularities with a given direction. However,
the DWT can not well adapt to the arbitrary direction of the singularity: for example, the

1 Note that for other scales the plots are similar.

261Wavelet-Based Analysis and Estimation of Colored Noise



8 Discrete Wavelet Transforms

0 200 400 600 800 1000 1200 1400 1600
-10

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400 1600
-10

-8

-6

-4

-2

0

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600
-10

0

10

20

30

40

50

60

70

x(p)

w(p)

y(p)

+

Time domain

0 100 200 300 400 500 600 700 800
-20

-15

-10

-5

0

5

10

15

20

0 100 200 300 400 500 600 700 800
-20

-15

-10

-5

0

5

10

15

20

0 100 200 300 400 500 600 700 800
-20

-15

-10

-5

0

5

10

15

20

x(p)

w(p)

y(p)

+
~

~

~

Wavelet domain

(a) (b)

Fig. 5. Example of a non-piecewise linear signal with correlated noise. Our goal is to estimate
the noise power spectrum from the corrupted signal y(p). (a) The signals in time domain, (b)
The finest scale of the wavelet transform of the signals (Daubechies’ wavelet with 2
vanishing moments was used).

transform can not make a distinction between features oriented at +45° and -45°. This
is known as the checkerboard problem of the DWT: due to the separability of the higher
dimensional wavelets, these wavelets appear as a checkerboard pattern which does not have
a dominant direction. Consequently, many nonzero wavelet coefficients may be needed to
represent a line singularity at an arbitrary orientation. To overcome this limitation there has
recently been a lot of interest in transforms that offer a better directional selectivity. Examples
are steerable pyramids Simoncelli et al. (1992), dual-tree complex wavelets Selesnick et al.
(2005a), Marr-like wavelet pyramids Van De Ville & Unser (2008), 2-D (log) Gabor transforms
Fischer et al. (2007); Lee (1996), contourlets Do & Vetterli (2005), ridgelets Candès (1998);
Do & Vetterli (2003), curvelets Candès et al. (2006) and shearlets Guo & Labate (2007). These
transforms are designed to have better sparsifying properties so that our outlier problem in
Figure 5(b) is alleviated (but not solved).
In the next subsections we will focus on the DWT as a primarymultiresolution decomposition
tool, however, the same reasoning can also be applied to more recently developed transforms.

3. From time-domain to wavelet-domain autocorrelation functions

Because our goal is to estimate the autocorrelation function of noise in the wavelet
domain, it is very useful to know how the wavelet-domain and time-domain autocorrelation
functions are related to each other. When the autocorrelation function of the input signal
is known, a simple Monte-Carlo based technique is to generate colored noise with this
given autocorrelation function, then to transform the noise to the wavelet domain (or other
multiresolution transform domain) and subsequently to estimate the autocorrelation function
in this domain Portilla et al. (2003). While such computational method is attractive from an
implementation point of view, it does not bring a direct analytical relationship between both
autocorrelation functions. We will see in Section 6 that an analytical relationship will prove to
be very useful when estimating parametric noise PSDs.
Let us consider the wavelet analysis filterbank shown in Figure 7(a), where a signal with
z-transform F̃1(z) is filtered by a wavelet filter G(z) and a scaling filter H(z). Both signals
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Fig. 6. (a) Baboon image with noise, (b) DWT of the image.

are subsequently decimated by a factor of two. The analysis is iterated on the scaling
coefficients F2(z). Now, the input signal has an autocorrelation function in the z-domain
defined by R̃1(z) = E

[
F̃1(z)F̃1(z−1)

]
. The filtered signals then have autocorrelation functions

respectively R̃1(z)G(z)G(z−1) and R̃1(z)H(z)H(z−1). Decimating the resulting signals by a
factor 2 leads to the signal with autocorrelation function Goossens et al. (2010):

R1(z) = E
[

F1(z)F1(z−1)
]

=
1
2

(
R̃1

(
z

1
2

)
G
(

z
1
2

)
G
(

z−
1
2

)
+ R̃1

(
−z

1
2

)
G
(
−z

1
2

)
G
(
−z−

1
2

))
,

R2(z) = E
[

F2(z)F2(z−1)
]

=
1
2

(
R̃1

(
z

1
2

)
H
(

z
1
2

)
H
(

z−
1
2

)
+ R̃1

(
−z

1
2

)
H
(
−z

1
2

)
H
(
−z−

1
2

))
. (9)

Hence, the wavelet-domain autocorrelation function R1(z) can be directly computed from the
autocorrelation function of the input signal R̃1 (z) and the wavelet and scaling filters. This
involves two simple convolutions and a decimation operation of the input autocorrelation
function R̃1 (z). For subsequent decompositions (coarser scales of the wavelet transform), this
process can be iterated by re-inserting R̃1 (z) = R2(z) in (9).
To show that this reasoning also applies to other wavelet transforms, we will briefly discuss
the adaptation to the dual-tree complex wavelet transform (DT-CWT) Kingsbury (2001) in
one dimension. Extension to higher dimensions is then straightforward. The 1D DT-CWT is
implemented using two parallel DWT filter banks, the first filter bank uses the real parts of
the complex wavelet and scaling filters (respectively G1(z) and H1(z)), while in the second
filter bank, the imaginary parts of the wavelet and scaling filters (respectively G2(z) and
H2(z)) are applied. Finally, the output of both filter banks are mixed together (see the right
square in Figure 7(b)), applying a 45° rotation in the complex plane. This last step is in fact
only necessary in 2D (or higher dimensions), where complex wavelets are constructed using
tensor products of 1D complex wavelets. The translation of the resulting complex-valued
filter banks to parallel real-valued filter banks then automatically results into this phase
modulation in the complex plane (for more details, see Selesnick et al. (2005b)). Defining
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Fig. 7. Analysis filterbank for (a) the DWT, (b) the DT-CWT.

R̃2(z) = E
[
F̃2(z)F̃2(z−1)

]
, application of (9) to the DT-CWT leads to the following equations:

R1(z) = E
[

F1(z)F1(z−1)
]
=

1
2

(
R̃1

(
z

1
2

)
G1

(
z

1
2

)
G1

(
z−

1
2

)
+ R̃1

(
-z

1
2

)
G1

(
-z

1
2

)
G1

(
-z−

1
2

))
R2(z) = E

[
F2(z)F2(z−1)

]
=

1
2

(
R̃2

(
z

1
2

)
G2

(
z

1
2

)
G2

(
z−

1
2

)
+ R̃2

(
-z

1
2

)
G2

(
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1
2

)
G2

(
-z−

1
2

))
R3(z) = E

[
F3(z)F3(z−1)

]
=

1
2

(
R̃1

(
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)
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(
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)
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(
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)
+ R̃1

(
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1
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)
H1

(
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1
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)
H1

(
-z−
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2

))
R4(z) = E

[
F4(z)F4(z

−1)
]
=

1
2

(
R̃2

(
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S1,2(z) = E

[
F1(z)F2(z−1)

]
=

1
2

(
S̃1,2

(
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1
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)
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(
z

1
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)
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(
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)
+ S̃1,2

(
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2

))
(10)

where S̃1,2 (z) is the cross-power spectrum between F̃1(z) and F̃2(z): S̃1,2(z) =

E
[
F̃1(z)F̃2(z−1)

]
. The final autocorrelation functions (after the complex phase modulation)

are computed from R1(z), R2(z) and S1,2(z), as follows:

R
′
1(z) = E

[
F
′
1(z)F

′
1(z

−1)
]
=

1
2
(R1(z) + R2(z)) +

1
2

(
S1,2(z) + S1,2(z−1)

)
,

R
′
2(z) = E

[
F
′
2(z)F

′
2(z

−1)
]
=

1
2
(R1(z) + R2(z))− 1

2

(
S1,2(z) + S1,2(z

−1)
)
. (11)

In Algorithm 1, an OCTAVE/MATLAB program is given for computing the autocorrelation
functions in case of the DWT and DT-CWT, according to (9) and (10)-(11). In this program,
the variables lo and hi respectively signify the scaling and wavelet coefficients. It can
be seen that all operations are linear operations, which makes it possible to express the
conversion from time-domain to wavelet-domain as a matrix multiplication applied to the
input autocorrelation coefficient vector.
In Figure 8, an example of a parametric autocorrelation function and its DWT decomposition,
according to (9), is shown. Due to the cone of influence (Mallat, 1999, p. 174), the support
size of the autocorrelation function decreases when increasing the wavelet scale (i.e., when
analyzing finer scales). Interesting to note is the envelope of the noise variance in the wavelet
domain: the noise variance is identical to the noise autocorrelation function evaluated in
the origin (which is in this case also the maximum of the autocorrelation function). When
one modifies the center band frequency of the noise PSD in Figure 8(b), this also directly
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Algorithm 1 OCTAVE/MATLAB program for computing wavelet domain autocorrelation
functions.

f = [1 2 1 ] ; % i n p u t a u t o c o r r e l a t i o n f u n c t i o n
% d i s c r e t e wavelet t rans form (DWT)
l o = conv ( f , conv ( h , h ( end : −1 : 1 ) ) ) ;
h i = conv ( f , conv ( g , g ( end : −1 : 1 ) ) ) ;
l o = l o ( 1 : 2 :end ) ; h i = h i ( 1 : 2 :end ) ;

% dual−t r e e complex wavelet t rans form (DT−CWT)
lo1 = conv ( f , conv ( h1 , h1 ( end : −1 : 1 ) ) ) ;
h i1 = conv ( f , conv ( g1 , g1 ( end : −1 : 1 ) ) ) ;
lo2 = conv ( f , conv ( h2 , h2 ( end : −1 : 1 ) ) ) ;
h i2 = conv ( f , conv ( g2 , g2 ( end : −1 : 1 ) ) ) ;
cr1 = conv ( f , conv ( h1 , h2 ( end : −1 : 1 ) ) ) ; % cross−c o r r e l a t i o n
cr2 = conv ( f , conv ( h2 , h1 ( end : −1 : 1 ) ) ) ;
lo1 = lo1 ( 1 : 2 : end ) ; lo2 = lo2 ( 1 : 2 :end ) ; % decimat ions
hi1 = hi1 ( 1 : 2 : end ) ; h i2 = hi2 ( 1 : 2 :end ) ;
cr1 = cr1 ( 1 : 2 : end ) ; cr2 = cr2 ( 1 : 2 :end ) ;
h i1_out = 0 . 5 * ( h i1 +hi2 ) + 0 . 5 * ( cr1+cr2 ) ; % complex phase modulat ion
hi2_out = 0 . 5 * ( h i1 +hi2 )−0.5*( cr1+cr2 ) ;
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Fig. 8. (a) Wavelet analysis of the autocorrelation function (in z-domain)

R(z) = ∑n
β2

π(n2−β2)

(
1+ cos

(
πn
β

))
zn across different scales and for different values of β.

Daubechies’ wavelet with two vanishing moments was used. (b) Power spectral density
R(ejω) for different values of β.

influences the noise variances of the individual wavelet subbands (see Figure 8(a)), due to
the frequency-selective behavior of the wavelets at different scales. For example, increasing
the parameter β has as effect that the noise variance at wavelet scale 4 decreases. This also
suggests that, when a thresholding strategy (e.g. soft/hardthresholding) would be used to
suppress the colored noise process, the thresholds would need to be level-dependent, e.g., as
proposed by Johnstone and Silverman Johnstone & Silverman (1997).
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4. Statistical priors for noise estimation

As already illustrated in Figure 5, the DWT will in general not fully suppress the signal.
Consequently, wavelet-based noise estimation techniques need to take into account that the
wavelet coefficients contain a non-negligible signal component. One of the earliest and
well-known wavelet-based noise estimation techniques is the MAD estimator from Donoho,
which estimates the noise standard deviation as follows Donoho & Johnstone (1995):

σ̂ =
Medianp (|ỹ(p)|)

0.6745
. (12)

The estimator gives level dependent estimates of the noise standard deviation in every
wavelet subband. Based on robust statistics, the non-zero signal coefficients are considered to
be outliers. By computing a median instead of a more traditional mean, the outlier influences
in the end result are significantly reduced.
In this chapter, we are interested in estimating the noise correlations or covariances (next to
the noise standard deviation), therefore the estimator (12) can not directly be used. For this
purpose, a general class of robust S estimators for the covariance (see, e.g., Campbell et al.
(1998); Pena & Prieto (2001)) can be used. These estimators detect outliers after finding
projections that maximize the kurtosis of the data. An illustration of such a technique is given
in Figure 9: the robust S estimators attempt to estimate the covariance of the noise (the black
dots in Figure 9). In this case this is equivalent to determining the sizes of the axes and the
orientation of the ellipse shown in the figure (the ellipse can be seen as an isocontour of the
probability function of the data). Because of the presence of outliers (the crosses in Figure 9),
this is not a trivial task. The robust estimation techniques then try to identify the outliers, in
an iterative process.
While robust S estimators are unfamiliar with the structure of the data they are applied to,
in our application, we have some more information on the data that we can take into our
advantage. In particular, due to the sparsifying properties of the chosen multiresolution
transform, the identification of the outliers (signal components) is somewhat easier: the
multiresolution transform already performs a projection to maximize the kurtosis. Instead
of relying on robust statistics, we will incorporate prior knowledge on the noise-free wavelet
coefficients to further improve the estimation performance using Bayesian techniques. Our
noise estimation approach will then consist in 1) specifying a statistical prior distribution for
the noise-free signal coefficients, 2) maximum likelihood estimation of the unknown noise
covariance matrix.
In the next subsections, we will briefly review a number of statistical models for noise-free
wavelet coefficients and we will explain how these models can be used to perform noise
estimation.

4.1 The generalized Laplace distribution
It has been found in several studies Field (1987); Mallat (1989) that histograms of wavelet
coefficients (or generally coefficients of bandpass filtered images) have a highly kurtotic
shape. An example is shown in Figure 10(a)-(b) for the Baboon image: the wavelet
coefficient histogram reveals a sharp peak and a heavy tail. The sample kurtosis of
the wavelet coefficients (6.98) is much higher than the theoretical kurtosis of a Gaussian
distribution (which is 3). Several authors Antonini et al. (1992); Chang et al. (1998); Mallat
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Fig. 9. Joint histogram of neighboring wavelet coefficients for Figure 5(b). Black dots are
noise coefficients, crosses are the outliers due to signal presence.
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Fig. 10. (a) wavelet subband LH1 of the Baboon image (black corresponds to a large coefficient
magnitude, white to small magnitudes, the contrast of the image was enhanced to better
reveal the details), (b) histogram of the wavelet coefficients in (a), (c) multivariate Gaussian
Scale Mixture distribution.

(1989); Moulin & Liu (1999); Simoncelli & Adelson (1996) proposed to use a generalized Laplace
distribution (GLD, also known as generalized Gaussian distribution) to model the kurtotic
behavior of wavelet coefficients. The GLD is defined as:

fx̃ (x̃) =
ν

2sΓ(1/ν)
exp

(
−

∣∣∣∣ x̃
s

∣∣∣∣ν
)
, (13)

where Γ(x) =
´ +∞
0 tx−1e−tdt is the Gamma function. The parameter s is scale parameter of

the distribution, which controls the variance of the distribution. The parameter ν is a shape
parameter that is related to the kurtosis of the distribution, given by:

κ =
Γ(5/ν)Γ(1/ν)

Γ2(3/ν)
− 3. (14)

The shape parameter ν is typically in the range [0.5, 1]. Because in practice, the actual value
of this parameter is unknown, the parameter value is usually estimated from the observed
data. This may be done using the maximum likelihood method or the method of moments
Srivastava et al. (2003).

267Wavelet-Based Analysis and Estimation of Colored Noise



14 Discrete Wavelet Transforms

4.2 Elliptically symmetric distributions and Gaussian Scale Mixtures
The GLD from (13) is a univariate distribution that can well model highly kurtotic histograms
of wavelet coefficients, however this distribution does not allow capture correlations between
different observations x̃. This can be achieved by using multivariate distributions, where
dependencies between neighboring wavelet coefficients can be modeled. For these densities,
a neighborhood of a fixed size (e.g. 3× 3 in 2D) is defined around every wavelet coefficient.
Next, every neighborhood2 can be represented by a vector, e.g., by using column stacking.
In the following, we will use bold letters x̃(p), w̃(p), ỹ(p) to denote neighborhood vectors
extracted by column stacking. Statistical studies Portilla et al. (2003); Srivastava et al. (2003)
have indicated that, next to the kurtotic behavior, the noise-free wavelet coefficients are
typically symmetric around the mode and the joint histograms have elliptical contours. This
suggests the use of elliptically symmetric distributions (ESD) to model these characteristics.
The ESD is defined by Kotz & Kozubowski (2001):

fx̃ (x̃) = kd |Cx|−1/2 g
(∣∣∣(x̃− m)C−1

x (x̃ − m)
∣∣∣1/2) , (15)

where m is the mean of the distribution (typically m = 0), g(u) is a real-valued function
(called density generator function), d is the length of x̃ and kd is a proportionality constant.
A multivariate extension of the GLD is obtained by using the following density generator
function Kotz et al. (2000): g(u) = exp

(− |u|ν). The resulting distribution is known as
the multivariate exponential power distribution (EPD). For our modeling task, the EPD
has a number of practical limitations: 1) the marginal densities of the distribution are not
EPD-distributed and 2) for estimation purposes, the exponential power ν often leads to
integral expressions that are analytically intractable.
Wainwright & Simoncelli (2000) noted that when the wavelet filter responses are normalized
by dividing by the square root of the local variance, the statistics of the normalized coefficients
are approximately Gaussian. The Gaussian Scale Mixture (GSM), see Figure 10(c), was then
proposed to account both for the correlations and the variability in local variance of the
wavelet coefficients. A random variable x̃ is GSM distributed if it can be written as the
product of a zero mean Gaussian random vector ũ and a scalar positive random variable√

z Andrews & Mallows (1974):

x̃
d
=

√
zũ (16)

where d
= denotes equality in distribution. The scalar variable z is not observed and is therefore

also called ’hidden’ multiplier or mixing variable. Because of scaling ambiguity between
√

z
and ũ, the hidden multiplier is often assumed to be normalized such that E [z] = 1. Prior
distributions for z include Jeffrey’s non-informative3 prior Portilla et al. (2003), the log-normal
prior Portilla & Simoncelli (2001), the exponential distribution Selesnick (2006) and the Gamma
distribution Fadili & Boubchir (2005); Srivastava et al. (2002).

2 Quite often, the neighborhoods are chosen to be overlapping, despite of the fact that this destroys the
mutual independence of the different neighborhood vectors. This is done to arrive at a sufficiently large
number of neighborhood vectors (for example, for a 3× 3 neighborhood, the number of vectors will be
multiplied by 9), which will generally result in more reliable estimates.

3 Note that in this case, the mathematical expectation E [z] does not exist.
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The GSM also belongs to the family of ESDs. The density generator function is given by:

g(x) =
ˆ +∞

0
fz(z)z−

d
2 exp

(
− 1

2z
x2
)
dz. (17)

For some hidden multiplier densities fz(z) a closed-form expression can be found for
g(x), although most often, numerical integration is performed over a closed interval. In
Gómez et al. (2008) it has been shown that the EPD is also a GSM distribution, for some
values of the shape parameter ν ∈]0, 1]. However, the distribution fz(z) depends on d and
has a complicated analytical expression (see Gómez et al. (2008)).

4.3 Other prior distributions
In literature, several other prior distributions for noise-free wavelet coefficients have
been proposed. For example, the Student-T distribution Tzikas et al. (2007), Alpha-stable
distributions Achim et al. (2001); Nikias & Shao (1995) and the Cauchy distribution
Rabbani et al. (2006). All these heavy tailed distributions have a GSM representation,
hence studying general GSMs automatically covers all of these distributions. Next, a
complex extension of the Gaussian Scale Mixture density has been proposed for modeling
complex-valued wavelet coefficients in Vo et al. (2007). This complex GSM distribution is a
special case of the GSMdistribution, with a special condition imposed to the covariancematrix
of the distribution. Next to GSMs, mixtures of a Gaussian distribution and a point mass at zero
were used in Abramovich et al. (1998); Clyde et al. (1998), mixtures of two Gaussian distributions
in Crouse et al. (1998); Fan & Xia (2001); Romberg et al. (2001) and mixtures of truncated or
quasi-Laplace distributions in Pižurica & Philips (2006); Shi & Selesnick (2006).

5. Noise covariance estimation techniques

In this Section, we will use the GSM prior distribution from Section 4 to design a noise
covariance estimation technique. We therefore start from the signal-plus-noise model from
equation (1). The assumed addititivity of the signal and noise leads to an equivalent
expression in the wavelet domain:

ỹ(p) = x̃(p) + w̃(p), (18)

where w̃(p) is spatially stationary Gaussian distributed vector of length d with mean 0

and covariance Cw̃. Due to the assumed noise stationarity, the covariance matrix Cw̃ has
dimensions d × d and is directly related to the noise autocorrelation function Rw̃(p): the
covariance between two coefficients at positions p and q only depends on the difference in
location between both positions:

(Cw̃)p,q = Rw̃(q − p) (19)

where vector-valued indices in (Cw̃)p,q are used as a short notation for their respective
column-stacked ordening. By (19), the estimation of the noise autocorrelation function is
equivalent to the estimation of the covariance Cw̃. Next, the noise-free coefficients are GSM
distributed with covariance matrix Cx̃. For the GSM model, we have x̃|z ∼ N (0, zCũ) .
Consequently, the density of ỹ is a specific case of a Gaussian mixture model:
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ỹ|z ∼ N (0, zCũ +Cw̃) (20)

where the signal covariance is also unknown. We remark that this matrix can be eliminated

relying on Cũ +Cw̃ = Cỹ (this directly follows from (1), when E [z] = 1):

ỹ|z ∼ N (
0, zCỹ + (1− z)Cw̃

)
. (21)

The signal-plus-noise covariance matrix can be estimated using the method of maximum

likelihood: Ĉỹ = 1
N ∑p ỹ(p)ỹT(p), with N the number of coefficients in the considered

wavelet subband.

5.1 Generalized Expectation-Maximization algorithm
In Portilla (2004), a Generalized Expectation-Maximization (GEM) algorithm is given to
estimate the noise covariance matrix. Based on an initial estimate of the noise covariance
(typically chosen as C(0)

w̃ = cCỹ, with 0 < c < 1 a constant), the noise covariance matrix is
iteratively updated according to the following rule:

C
(i+1)
w̃ =

∑p P
(

z < z0|ỹ(p),Θ(i)
)
ỹ(p)ỹT(p)

∑p P
(

z < z0|ỹ(p), Θ(i)
) , (22)

where i is the iteration index and Θ(i) denotes the GSM model parameters at iteration i and

where z0 is a small positive constant. Equation (22) can be motivated by the observation that
for z sufficiently small, Cỹ|z = Cw̃. The posterior probability that z < z0, conditioned on an

observation vector ỹ(p), i.e., P
(

z < z0|ỹ(p),Θ(i)
)
is then used as a weight in the averaging

process. We can understand this as follows: P
(

z < z0|ỹ(p),Θ(i)
)
represents the probability

that a given observation vector contains a negligible signal component. The estimated noise
covariance is then the average over all sample covariances ˜y(p)ỹT(p), weighted by the
probability that the considered sample contains a negligible signal component.
Because the updating rule (22) is not guaranteed to increase the likelihood of the data, at
every iteration it is checked if this new covariance estimate results in a higher likelihood:
Q(Θ(i), Θ(i+1)) > Q(Θ(i),Θ(i)), with Q(Θ(i), Θ) the expected log-likelihood function of the
data:

Q(Θ(i),Θ) = E
[
log fz|ỹ (z|ỹ,Θ) |ỹ, Θ(i)

]

= ∑
p

ˆ +∞

0
fz|ỹ

(
z|ỹ(p),Θ(i)

)
log fz|ỹ (z|ỹ(p),Θ)dz. (23)

In case the expected log-likelihood (23) decreases, it is proposed in Portilla (2004) to perform
a gradient ascent step:
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C
(i+1)
w̃ = C

(i)
w̃ + λ

∂Q(Θ(i),Θ)

∂Cw̃

∣∣∣∣∣
Cw̃=C

(i)
w̃

= C
(i)
w̃ +

λ

2
N
ˆ +∞

0
fz (z) (1− z)C−1

z (I − ĈzC
−1
z )dz, (24)

where

Cz = zCỹ + (1− z)Cw̃, (25)

Ĉz =
∑p fz|ỹ

(
z|ỹ(p),Θ(i)

)
ỹ(p)ỹT(p)

∑p fz

(
z|ỹ(p), Θ(i)

) . (26)

Although a good fitting to the data was reported in Portilla (2004), the technique requires the
relatively costly evaluation of the expected log-likelihood function (23). Another issue is the
choice of the constant z0. In Portilla (2004), this was solved by using a discrete GSM mixture
for the hidden multiplier density fz(z). By assigning a non-zero probability mass at z = 0, the

probability P
(

z = 0|ỹ(p), Θ(i)
)
is guaranteed to be non-zero.

5.2 Constrained EM algorithm using augmented Lagrangian optimization
In this subsection, we present a novel, alternative estimation method that does not need
evaluation of the expected log-likelihood function. First, we assume a discrete hidden
multiplier density P (z = zk) = αk, with k = 1, ...,K. The parameters can be initialized in
a manner similar to Portilla et al. (2003):4

zk = exp (−3+ 7(k − 1)/(K − 1)) , k = 1, ...,K

αk = 1/K. (27)

In contrast to the GEM algorithm, where Cw̃ is optimized directly, we take a slightly
different approach. We rely on the fact that the density fỹ (ỹ) corresponds to a Gaussian
mixture model. This allows us to use the EM algorithm for Gaussian mixtures, with some
modifications that we will describe next. Let us denote by Ck the covariance matrices of
the mixture components. Because of (20), the mixture covariance matrices should be subject
to the constraint zkCũ + Cw̃ = Ck. Our method now consists of optimizing the expected
log-likelihood function (as in a regular EM algorithm Dempster et al. (1977)), but now subject
to the GSM constraint:

max
Θ

E
[
log fz|ỹ (z|ỹ,Θ) |ỹ, Θ(i)

]
s.t. zkCũ +Cw̃ = Ck (28)

To solve this constrained problem, we use the augmented Lagrangian (AL) method. In the AL
method, a constrained problem is translated to an unconstrained problem with a Lagrange

4 Here, values zmin and zmax from (Portilla et al., 2003, p. 1343) are slighly modified to have a good
sampling of the continuous pdf fz(z)with a small number of components K (for example, K = 6).
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multiplier and an extra penalty term. In our case, the unconstrained problem is given by:

max
Θ

E
[
log fz|ỹ (z|ỹ, Θ) |ỹ, Θ(i)

]
− 2

K

∑
k=1

Vec [ak]
T Vec [Ck-zkCx̃-Cw̃] -

K

∑
k=1

λk ‖Ck-zkCx̃-Cw̃‖2F
(29)

where ak, k = 1, ...,K are d × d matrices of Lagrange multipliers, λk are penalty factors, Vec [·]
converts a matrix to a column vector (e.g., using column stacking) and ‖·‖F is the matrix
Frobenius norm. Taking the derivatives of (29) with respect to Cx and Cw and setting to zero
leads to a linear system of equations, in block matrix form:

(
μ2I μ1I

μ1I I

)⎛
⎝C

(i+1)
x̃

C
(i+1)
w̃

⎞
⎠ =

⎛
⎝ ∑K

k=1 zk

(
λkC

(i)
k +ak

)
∑K

k=1

(
λkC

(i)
k + ak

)
⎞
⎠ (30)

with μ1 = ∑K
k=1 λkzk and μ2 = ∑K

k=1 λkz2k . Similarly, maximizing (29) with respect toCk leads
to the following update equation:

C
(i+1)
k =

∑p P
(

z = zk|ỹ(p), Θ(i)
)
ỹ(p)ỹT(p)− 2λk

(
zkC

(i)
x̃ +C

(i)
w̃ − ak

)
∑p P

(
z = zk|ỹ(p), Θ(i)

)
− 2λk

, k = 1, ...,K (31)

Additionally, the Lagrange multipliers are updated in every iteration:

a
(i+1)
k = a

(i)
k +

λk
2

(
C

(i+1)
k − zkC

(i+1)
x̃ −C

(i+1)
w̃

)
. (32)

This process is repeated iteratively until a given convergence criterion has been reached (for

example
∥∥∥C(i+1)

w̃ −C
(i)
w̃

∥∥∥
F
< ε, with ε a small positive number). The penalty weights λk are

chosen in order to speed up the convergence of the algorithm. In our method, we choose λk
inversely proportional to zk: λk = z1/zk, with z1 < z2 < · · · < zK. The complete algorithm is
summarized in Algorithm 2.
Important to mention is that the above algorithmmay fail, if the matrix in the update formula
(30) is singular, i.e. if μ2

1 = μ2. It is worthful to note that the kurtosis of the wavelet subband
coefficients is given by 3μ2/μ2

1 − 3 and becomes zero if μ2
1 = μ2. In this case, the probability

density function fỹ (ỹ) is Gaussian, and every component of the GSM model will have the
same hidden multiplier value zk = μ1, such that also fx̃ (x̃) is Gaussian. Consequently, it
becomes impossible to separate the signal from the noise: the highly kurtotic behavior of the
noise-free coefficients x can not be exploited. By our specific initialization (27), we actually
avoided the latter problem.
The elegance of this algorithm lies in the fact that simple update formulas are being used
and that the complete algorithm is guaranteed to converge (albeit to a local maximum of the
objective function, as with nearly all EM type of algorithms).

6. Estimation of a parametric noise PSD

In the previous Section, two methods were presented to estimate the noise covariance matrix
in the wavelet domain. Although these covariance matrices can be directly used in, e.g., blind
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Algorithm 2 Constrained EM algorithm for estimating the noise covariance matrix Cw̃.

Cỹ = 1
N ∑

p

ỹ(p)ỹT(p), C(0)
w̃ = 9

10Cỹ, C
(0)
x̃ = 0.1Cỹ, C

(0)
k = zkC

(0)
x̃ +C

(0)
w̃ , α

(0)
k = 1

K , λk =
z1
zk
.

repeat

α̂
(i+1)
k = 1

N ∑p P (z = zk|y(p),Θ) , for k = 1, ...,K

C
(i+1)
k =

∑
p

P(z=zk|ỹ(p),Θ(i))ỹ(p)ỹT(p)−2λk

(
zkC

(i)
x̃ +C

(i)
w̃ −a

(i)
k

)

∑
p

P(z=zk|ỹ(p),Θ(i))−2λk

, for k = 1, ...,K

(
C

(i+1)
x̃

C
(i+1)
w̃

)
= 1

μ2−μ2
1

(
I −μ1I

−μ1I μ2I

)⎛
⎝∑K

k=1 zk

(
λkC

(i+1)
k + a

(i)
k

)
∑K

k=1

(
λkC

(i+1)
k + a

(i)
k

)
⎞
⎠

a
(i+1)
k = a

(i)
k + λk

2

(
C

(i+1)
k − zkC

(i+1)
x̃ −C

(i+1)
w̃

)
for k = 1, ...,K

i ← i + 1

until convergence (
∥∥∥C(i+1)

w̃ −C
(i)
w̃

∥∥∥
F
< ε).

Input signal Wavelet transform

Wavelet subbands

Parametric noise 
autocorrelation function

Wavelet-based
autocorrelation 
decomposition

Parametric autocorr. function 
for each wavelet subband

Parameter
estimation

Estimate of the
noise autocorr.
function

Fig. 11. Overview of the proposed algorithm for the estimation of a parametric noise PSD.

denoising approaches (see Portilla (2004)), the covariance matrices are not directly related to
the noise PSD (in the sense that, after estimation of the covariances matrices the noise PSD is
still unknown). We here present a novel approach to estimate the parameters of a parametric
noise PSD based on the covariance matrix estimation methods. As far as the authors are
aware of, such a technique does not yet exist. This approach also combines all the different
techniques discussed in this Chapter. An overview of our algorithm is given in Figure 11.
First, the noise is assumed to have a PSD with an unkown set of parameters β. Consequently,
by the Wiener-Khinchin theorem, the noise autocorrelation function Rw,β(p) is known. The
wavelet-domain noise autocorrelation functions can be computed from Rw,β(p), as explained
in Section 3. Using the formula (19), the parametric wavelet domain noise covariance matrix
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Cw̃(β) can be found. Defining Rw(β) =
[
Rw,β(p)

]
, the noise covariance matrix can be

expressed in terms of Rw(β) by using a matrix multiplication:

Cw̃(β) = QRw(β) (33)

Then, the parameter β can be estimated iteratively in every iteration of Algorithm 2.
Therefore, we minimize the squared matrix Frobenius norm:

β(i+1) = argmin
β

∥∥∥C(i+1)
w̃ −QRw(β)

∥∥∥2
F
. (34)

Because Rw(β) is not a linear function in general, this is a non-linear optimization problem,
which can be solved using gradient descent or Gauss-Newton techniques. The gradient
descent step is given by:

β(i+1) = β(i) + γ
(
C

(i+1)
w̃ −QRw

(
β(i)

))T
Q

∣∣∣∣ ∂Rw

∂β

∣∣∣∣
β=β(i)

. (35)

Note that in practice this equation may be iterated several times until convergence in
an inner iteration, before the other model parameters are updated. As an example,
consider the autocorrelation function from Figure 8, corresponding to the PSD P(ω) =
β sin (β |ω|) I [β |ω| < π], with I [·] the indicator function. Application of the inverse DTFT

gives the spatial autocorrelation function Rw,β(n) = β2
(
1+ cos

(
πn
β

))
/
(
π(n2 − β2)

)
. Its

derivative with respect to β is given by:

∂Rw,β(n)

∂β
=

n
π(n2 − β2)2

(
sin

(
πn
β

)
π
(

n2 − β2
)
+ 2βn

(
1+ cos

(
πn
β

)))
. (36)

Substitution of (36) into (35) then gives the desired update step.
An interesting special case is the estimation of white Gaussian noise, with autocorrelation
function Rw,β(n) = sδ(n), with s the unknown noise variance. In this case, (34) comprises a
least-squares problem, with a linear solution.

7. Experimental results

In this Section, we will compare the performances of the noise estimation methods from
Section 5. For this task, both iterative algorithms (the GEM algorithm and the constrained EM
algorithm), are initialized using the same set of parameters. The initial values used are given
in Algorithm 2 and in (27). The number of mixture components used is 6: K = 6. Five images
(Barbara, Baboon, Lena, Boats and Peppers) are transformed to the wavelet domain, using the
Daubechies wavelet with two vanishing moments. Artificial Gaussian noise with a known
(ground-truth) autocorrelation function is added to each LH1-subband, which allows us to
compute the estimation error afterwards. This ground-truth noise autocorrelation function is

given by: σ2β4
(
1+ cos

(
πx
β

)) (
1+ cos

(
πy
β

))
/
(
π(x2 − β2)(y2 − β2)

)
, with β = 3/2 and

with σ ∈ {1, 5, 10, 15, 25, 50}. Then, after every iteration of both algorithms, the log-likelihood

function log fỹ|Θ (ỹ|Θ) and the quadratic error
∥∥∥Ĉw̃ −Cw̃

∥∥∥2
F
are computed, which allows us

to compare the performances of both algorithms as function of the iteration number i. Both
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Fig. 12. Comparison of the performance of the GEM algorithm Portilla (2004) and the
constrained EM algorithm Subsection 5.2, as a function the iteration number i. Results are
averaged over 5 images and 6 noise levels. (left) average log-likelihood log fỹ|Θ (ỹ|Θ), (right)

average estimation error in logarithmic scale 10 log10

(∥∥∥Ĉw̃ −Cw̃

∥∥∥2
F

)
.

Table 1. Comparison of the performance of the GEM algorithm Portilla (2004) and the
constrained EM algorithm (CEM) from Subsection 5.2, for 5 images and 6 noise levels. Shown

is the estimation error in logarithmic scale 10 log10

(∥∥∥Ĉw̃ −Cw̃

∥∥∥2
F

)
after 40 iterations.

σ = 1 σ = 5 σ = 10 σ = 15 σ = 25 σ = 50
Image CEM GEM CEM GEM CEM GEM CEM GEM CEM GEM CEM GEM
Barbara 14.25 14.56 -12.98 -11.78 -26.63 -23.21 -29.29 -28.08 -36.50 -31.83 -37.93 -35.50
Baboon 24.02 28.74 -3.79 2.13 -14.84 -7.23 -21.88 -12.82 -25.60 -18.60 -30.75 -28.38

Lena 9.56 14.42 -16.77 -12.23 -23.25 -23.34 -29.54 -29.68 -37.99 -37.17 -38.38 -38.93
Boats 7.72 9.66 -17.77 -16.55 -30.35 -26.31 -30.09 -28.59 -35.83 -32.65 -37.90 -37.06

Peppers 11.28 17.06 -14.34 -9.92 -24.71 -21.25 -30.10 -27.86 -31.84 -34.05 -40.29 -36.51
Average 13.37 16.89 -13.13 -9.67 -23.96 -20.27 -28.18 -25.41 -33.55 -30.86 -37.05 -35.28

algorithms maximize the log-likelihood function, note however that this does not necessarily
results inminimizing the quadratic error. The results are shown in Figure 12 and Table 1. It can
be seen that while the GEM algorithm converges to its final value, on average the constrained
EM algorithm is able to reach a solution with a higher log-likelihood function and a lower
error. We remark that the objective function is non-convex, such that both algorithms can get
trapped in local maxima. Although both algorithms use the same initialization, in most of
the experiments (see Table 1) the constrained EM gives a more accurate estimate of the noise
covariance matrix.
In Figure 13 and Figure 14, we used the noise estimation method based on the constrained
EM algorithm in combination with the BLS-GSM Portilla et al. (2003) denoising method, in
order to perform blind noise removal. An undecimated wavelet transform of 3 levels with the
Daubechies wavelet with eight vanishing moments was used. The PSD of the Gaussian noise
is in the captions of Figure 13 and Figure 14. Clearly, the combined method is well able to
distinguish signal information from noise information, leading to a succesful removal of the
noise while preserving signal structures.
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(a) Original image (b) With artificial noise (PSNR=20.17dB) (c) Denoised (PSNR=41.21dB)

Fig. 13. Blind denoising results (using the BLS-GSM denoising method and the proposed
constrained EM noise estimation technique). Noise PSD
P(ω) ∼ exp(−4000((ωx/π − 0.1)2 + (ωy/π − 0.12)2)).

(a) Original image (b) With artificial noise (PSNR=17.25dB) (c) Denoised (PSNR=29.00dB)

Fig. 14. Blind denoising results (using the BLS-GSM denoising method and the proposed
constrained EM noise estimation technique). Noise PSD P(ω) ∼ exp(−2000((ωx/π −
0.1)2 + (ωy/π − 0.12)2))+ exp(−3000((ωx/π + 0.15)2 + (ωy/π − 0.22)2)) + 10−3.

8. Conclusion

In this chapter, we investigated the estimation of stationary colored noise, which is most
efficiently described in a Fourier basis using the power spectral density (PSD). Because of
the time or spatial locality of signal structures, estimation of colored noise is best performed
in a transform domain that allows to adapt to the signal locality. We have shown that
wavelets are very good candidates for this task: their vanishing moment properties allow
us to complete suppress smoothly varying signals, such that efficient noise estimation can
directly be performed on a single wavelet subband. However, in practice, signals are not
smoothly varying and may contain transitions (such as edges and textures in images). To take
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this into account, we have presented several prior models for noise-free wavelet coefficients.
These prior models are then used in an expectation-maximization algorithm, which gives us
an estimate of the noise covariance matrix for a given wavelet subband. We have further
shown how this covariance matrix is related to the noise autocorrelation function in spatial or
time domain. This relationship can then be used, e.g., to estimate parameters of parametric
PSDs, yielding reliable and accurate estimates for noise PSDs. Because noise is present
in most real-life signals and images, many signal and image processing methods can be
further improved by taking advantage of estimated noise characteristics using techniques as
described in this chapter.
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1. Introduction

The time-independent neutron transport equation derived from the Boltzmann equation with
a linear collision kernel models the neutron population in the six dimensional space defined
by�r ∈ D the space variable, �Ω ∈ S2 the direction of motion variable and E ∈ B =]EG+1, E1[
the energy variable. It represents the balance between the neutrons entering the hypervolume

d3rd2ΩdE about
(
�r, �Ω, E

)
by fission or scattering and those leaving by streaming or any kind

of interactions. The unknown is the so-called neutron flux φ(�r, �Ω, E) = v(E)n(�r, �Ω, E) with
n(�r, �Ω, E) the neutron density and v(E) the neutron velocity. The problem is defined in terms
of the neutron interaction properties of the different materials i.e. the cross sections.
The solution of this equation in a deterministic way proceeds by the successive discretization
of the three variables: energy, angle and space. The treatment of the energy variable invariably
consists in a multigroup discretization which considers the cross sections and the flux to be
constant within a group (i.e. a cell of the 1D energy mesh). A pre-homogenization of the cross
sections is performed at the library processing level using a spatially independent weighting
flux (e.g. 1/E spectrum in the epithermal range).
With a broad group structure (≈ 100 to 2000 energy groups), this prior homogenization is
unsufficient to take into account the case-specific, spatially-dependent, self-shielding effect i.e.
the flux local depression in the vicinity of resonances that largely affects the neutron balance.
As a consequence, a neutron transport calculation has to incorporate a so-called self-shielding
model to correct the group cross sections of resonant isotopes. This homogenization stage
of a neutron transport calculation is known to be a main source of errors for deterministic
methods; as a consequence, an important work has been carried out to improve it. An
optimized energymesh structure (Mosca et al., 2011) in addition to an advanced self-shielding
model (Hébert, 2007) is incorporated in state-of-the-art transport codes.
A different treatment for the energy variable based on a finite element approach is the basis
of the present work. Such an avenue was proposed in the past by (Allen, 1986) but seldom
used in practice. Indeed, finite element methods are commonly based on polynomial function
bases which are not appropriate for non-smooth behavior.
Recently, two independent works by (Le Tellier et al., 2009) and (Yang et al., 2010) have
proposed wavelet-Galerkin methods to overcome this issue. In this chapter, after a review
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of these two approaches, we will focus on the development in this framework of adaptive
algorithms with a control (at least, partial) of the discretization error. Such algorithms have
been partially presented in a previous conference presentation by (Fournier & Le Tellier, 2009)
but this book chapter gives a more in-depth presentation and updated numerical results for
algorithms that may be of interest for other applications of wavelet-based finite elements.
Such algorithms are analyzed in a limited framework (the fine structure flux equation for
a single isotope diluted in a mixture of non-resonant isotopes in an infinite homogeneous
medium) but the relevant issues regarding their extension in the general case are discussed.

2. Wavelet-Galerkin based energy discretization of the neutron transport equation

2.1 Generalized weak multigroup neutron transport equation
As in (Allen, 1986), the transport equation is discretized starting from the Sobolev spaces

W1
2 (D × S2) = {φ ∈ L2(D× S2), all the weak derivatives of φ ∈ L2(D ×S2)} , (1)

W1†
2 (A) =

{
φ ∈ L2(A), φ ∈ W1

2 (D× S2)
}
. (2)

with A = D × S2 × B. In particular, the energy variable is discretized as follows. An energy
mesh consisting of G groups such that E1 > E2 · · · > EG+1 (Ig =]Eg+1, Eg[) is selected and the
finite-dimension space Wh(A) ⊂ W1†

2 (A) considered is

Wh(A) =

{
φ ∈ W1†

2 (A), φ(�r, �Ω, E) =
G

∑
g=1

ΠIg(E) f gT(E)φg(�r, �Ω) with φg ∈
(

W1
2 (D× S2)

)Ng

}
,

(3)
where ΠIg is the characteristic function of group g, f g ∈ (

L2(Ig)
)Ng is an orthonormal set

of wavelet functions on Ig and the group flux unknowns are the flux wavelet modes i.e.

φg(�r, �Ω) =
∫

Ig

dE f g(E)φ(�r, �Ω, E).

Within this framework, a Ritz-Galerkin procedure casts the transport equation (written with
isotropic scattering and an external source Q(�r, �Ω, E)) in a generalized (weak) multigroup
form: ∀g ∈ [1, G],

(
�Ω · �∇+ Σt

g(�r)
)

φg(�r, �Ω) =
1
4π

G

∑
g′=1

(
Σs

g←g′
(�r)

)
Φg′

(�r) + Qg(�r, �Ω), (4)

where Φg(�r) =
∫
S2

d2Ωφg(�r, �Ω) and the source vector is Qg(�r, �Ω) =
∫

Ig

dE f g(E)Q(�r, �Ω, E).

The matrices coupling the flux modes within a group are defined in terms of the total Σt(�r, E)
and scattering transfer Σs(�r, E′ → E) cross sections as

Σt
g(�r) =

∫
Ig

dE f g(E)Σt(�r, E) f gT(E), (5)

Σs
g(�r) =

∫
Ig

dE f g(E)
∫

Ig′
dE′Σs(�r, E′ → E) f gT(E′). (6)

Note that Eq. 5 introduces a coupling between the different modes within a group on the left
hand side of the transport equation i.e. a coupling of the angular flux projections φg(�r, �Ω) that
is not present for the standard multigroup approach.
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Two different approaches by (Le Tellier et al., 2009) and (Yang et al., 2010) based on compactly
supported Daubechies wavelets (Daubechies, 1992) have been proposed so far to deal with
this coupling:

1. in (Yang et al., 2010), a dilation order is fixed and the basis consists in the translates of the
associated scaling function; in this case, Σt

g(�r) is a band matrix and the mode coupling is
limited in such a way that a Richardson iterative scheme can be employed to resolve this
coupling.

2. in (Le Tellier et al., 2009), both dilates and translates of the mother wavelet functions are
retained in the basis according to a thresholding procedure applied to the discrete wavelet
transform of either the total cross section Σt or an approximate flux. In this case, the basis
selection can be optimized but the modes are tightly coupled; a procedure based on a
change of basis through amatrix diagonalization have been proposed to explictly decouple
the equations.

This second approach proceeds as follows. Let us consider that the nuclear data are known

by their projections on a set of orthonormal functions
(

gg
k

)
k∈[1,Ng]

in each group e.g.

Σt(�r, E) = Σ̂t
gT
(�r)gg(E). (7)

At this stage, gg is assumed to be spatially uniform. This condition is satisfied for example if
the same set of functions is considered for all the isotopes of a given configuration.

Considering the isomorphism between the Hilbert space Fg = span
(

gg
1 . . . , gg

Ng

)
and RNg , we

can construct an orthonormal basis ( f g
n )n∈[1,Ng] of Fg in such a way that the different functions

f g
n are Σt-orthogonal. Indeed,

Σ̃t
g
(�r) =

∫
Ig

dEgg(E)Σt(�r, E)ggT(E) (8)

is unitary similar to a diagonal matrix (see (Le Tellier et al., 2009) for more details) i.e.

Σ̃t
g
(�r) = Cg(�r)Σg

t (�r)C
gT(�r), (9)

with

• Cg(�r) = a unitary matrix containing the eigenvectors of Σ̃t
g
(�r),

• Σt
g(�r) = a diagonal matrix containing its eigenvalues.

Thus, f g(�r, E) = CgT(�r)gg(E).
The problem at this stage is that the diagonalization of this operator depends on the spatial
position through Σt(�r, E) i.e. f g(�r, E) depends on �r and in the general case the discretized
streaming operator is no longer diagonal. However, in most of the practical cases, the total
cross section is defined as a step function with respect to the space variable i.e. a set of uniform
media is defined and used to represent the spatial distribution of the nuclear data. Let us
consider that the spatial domain D is split into a set of non-overlapping uniform medium
domains i.e. D =

⋃
i

Di. The total cross section (along with the other nuclear data) is

represented as
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Σt(�r, E) = ∑
g

ΠIg(E)∑
i

ΠDi
(�r)Σ̂ti

gT
(�r)gg(E), (10)

where ΠDi
is the characteristic function of Di and the flux is expanded as

φ(�r, �Ω, E) = ∑
g

ΠIg(E)∑
i

ΠDi
(�r) f gT

i
(E)φg

i (�r, �Ω). (11)

For a given i, f g
i
is uniform on Di and is obtained by diagonalizing Σ̃ti

g as previously
described.
For �r belonging to a uniform medium domain Di, Eq. 4 can be written without any
complication of the streaming term. In fact, this formulation of the transport equation is
similar to the standard multigroup form. In this case, the mode coupling only appears for
the conditions at the interface Γij between two uniform medium domains Di and Dj along
�Ω. The continuity of φ(�r, �Ω, E) at �r ∈ Γij implies directly the continuity of φg(�r, �Ω) in the
standard multigroup case:

φ
g
j (�r, �Ω) = φ

g
i (�r, �Ω), (12)

while, in our case, it translates into

φ
g
j (�r, �Ω) = CgT

j Cg
i φ

g
i (�r, �Ω). (13)

When crossing an interface between two uniform media domain, a change of basis with
respect to the energy expansion has to be performed in order to maintain a diagonal group
transport operator over the whole domain.

2.2 Case of study
The numerical study of the proposed algorithms will be limited to the fine structure flux
equation for a single isotope diluted in a mixture of non-resonant isotopes in an infinite
homogeneous medium in such a way that only the energy variable has to be discretized. The
total cross section is written as Σ+

t + N∗σ∗
t (E) considering that Σ+

t is constant; ∗ refers to the
resonant isotope. Considering f g(E), the σ

∗g
t -orthogonal and orthonormal basis of Fg, the

weak form of the fine structure flux equation is written as

(
σt

∗g + σd

)
φg =

G

∑
g′=1

σs
∗g←g′

φg′
+ σd

∫
Ig

dE f g(E), (14)

In matrix-vector form, this linear system is summarized as

HΦ = SΦ + Q. (15)

We will also consider that the source-flux coupling in Eq. 15 is solved by a simple Richardson
iterative scheme under the form

HΦn+1 = SΦn + Q. (16)

H−1 will be denoted A in the remainder.
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2.3 Wavelet-based elements
Let θ be some function in L2(R). We consider the translates and dilates of θ denoted θj,k such

that θj,k(x) = 2j/2θ(2jx − k)(j ∈ Z, k ∈ Z) and Vj = span
{

θj,k, k ∈ Z
}

the generated linear
spaces. θ is called the father wavelet or scaling function and is constructed in such a way that{

Vj, j ∈ Z
}
is a multiresolution analysis (MRA) i.e.

•
{

θ0,k, k ∈ Z
}
is an orthonormal system in L2(R),

• Vj ⊂ Vj+1, ∀j ∈ Z,

•
⋃
j≥0

Vj is dense in L2(R).

Moreover, for convenience, we consider that θ is normalized in such a way that
∫

dxθ(x) = 1.

In this case, defining Wj by Vj+1 = Wj ⊕ Vj(j ∈ Z), we obtain L2(R) = V0 ⊕
∞⊕

j=0

Wj. The next

step is to find a function γ ∈ W0 (γj,k is defined in a same way as θj,k) such that
{

γ0,k, k ∈ Z
}

is an orthonormal basis of W0. The existence of such a function is guaranteed but it is not
unique; in any case, it verifies

∫
dxγ(x) = 0 . This function is called the mother wavelet.

Consequently,
{

γj,k, k ∈ Z
}

is an orthonormal basis of Wj. Note that the mother wavelet is
always orthogonal to the father wavelet.
Within such a framework, any function φ ∈ L2(R) has a unique representation in terms of an
L2-convergent series: (see (Hardle et al., 1997))

φ(x) = ∑
k

α0,kθ0,k(x) +
∞

∑
j=0

∑
k

βj,kγj,k(x), (17)

where αj,k and βj,k correspond to the orthogonal projection of φ on θj,k and γj,k respectively.
In the present work, we consider for the basis functions gg in each group Ig a subset of((

θ0,k
)

k ,
(

γj,k

)
j,k

)
obtained by the sampling, discrete wavelet transform and thresholding

of σ
∗g
t (E) or an approximate flux restricted to Ig. This is to be distinguished from the work

of (Yang et al., 2010) where the basis is composed of the scaling functions for a given dilation

order j i.e. gg =
(

θj,k

)
k
.

In the following, we restrict ourselves to compactly supported wavelets introduced by
(Daubechies, 1992) constructed starting from a function m0(ξ) = 1√

2 ∑
k

hke−ikξ where hk

are real-valued coefficients such that only a finite number M (the support length) of hk are
non-zero. In this context, the MRA obeys

θj−1,l = ∑
k

hk−2lθj,k, (18)

γj−1,l = ∑
k

gk−2lγj,k, (19)

and the decomposition of a sampled N−length signal is obtained efficiently by the discrete
wavelet transform (DWT) based on the cascade algorithm proposed in (Mallat, 1989).
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Following such a wavelet decomposition, the thresholding consists in replacing Eq. 17 by

φ(x) = ∑
k

α0,kθ0,k(x) +
J

∑
j=0

∑
k

β̃j,kγj,k(x), (20)

where (β̃j,k)j,k is obtained from (βj,k)j,k and #(β̃j,k)j,k � #(βj,k)j,k
A natural criterion is to discard coefficients lower than a given cut-off ε i.e.

β̃j,k =

{
0 if |βj,k| ≤ εmaxj,k(βj,k),
βj,k otherwise. (21)

This method is called hard thresholding. We refer the interested reader to (Le Tellier et al.,
2009) for a comparison of different wavelet filters and thresholding strategies in this context.

3. Adaptivity

In the context of Eq. 16, adaptive algorithms aim at improving the operators discretization
during the iterative process by dynamically selecting the basis functions and consequently,
optimizing the computational cost and control (at least partially) the error on the final solution.
The proposed algorithms aim at reducing the computational cost defined as the sum of the
supports size at each iteration:

cost =
nbIter

∑
i=1

(
#ΛA

i + #ΛS
i

)
, (22)

where ΛS
i (resp. ΛA

i ) represents the support of operator S (resp. A) at iteration i. Actually,
the computational cost required to solve Eq. 16 is directly linked to the size of the operators
manipulated: ΛS

i for the construction of matrix Si and ΛA
i the order of the system used for

iterations. It justifies the use of Eq. 22 as a measure of the algorithm computational cost.
Our work differs from the approach in (Cohen, 2003) where the goal was to minimize the
final support. Here, the purpose is to find a balance between the number of iterations and
the support size. In the following, two different algorithms are presented and tested. Both are
based on a decomposition of the error in terms of the Richardson iterations residual (δεres) and
the errors due to the discretization of A and S operators (denoted δεA and δεS respectively):∥∥Φn+1 − Φ

∥∥∥∥Φn+1
∥∥ ≤ 1

1− ‖AS‖
(

δεA + δεS + δεres
)
= NB. (23)

Sections 3.2 and 3.3 explicit this bound for both algorithms. The first version, inspired from
(Cohen, 2003), uses two levels of iterations: one in order to increase the support and one to
converge the residual. The single-loop algorithm is proposed as a simplification of the first
one and a way to correlate the errors on the operators and the residual is detailed.

3.1 Numerical cases of study
As ‖AS‖ plays an important role in both algorithms presented in Sections 3.2 and 3.3, tests
are performed on different isotopes and energy ranges (the energy mesh used for this study
contains 172 groups) as presented in Table 1.
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Isotope ‖AS‖ Energy range (eV) Energy groups
238U 0.26 6.16 - 7.52 88
56Fe 0.10 1018 - 1230 56
16O 0.01 273.2E3 - 498.9E3 26-29

Table 1. Numerical cases of study for the two adaptive algorithms

3.2 Two-loop algorithm
In this algorithm, an outer iteration loop (index j) is added. At a given iteration j, the following
system is solved:

Φn+1
j+1 = Aj+1

(
Sj+1Φn

j+1 + Q
)
, (24)

with Aj+1 (resp. Sj+1) representing matrix A (resp. S) restricted to ΛA
j+1 (resp. ΛS

j+1) support.
The error is given by:

Φn+1
j+1 − Φ = Aj+1

(
Sj+1Φn

j+1 + Q
)
− A(SΦ + Q)

=
(

Aj+1 − A
) (

Sj+1Φn
j+1 + Q

)
+ A

(
Sj+1 − S

)
Φn

j+1 + AS
(

Φn
j+1 − Φ

)
.

(25)

It follows that the relative error can be expressed by Eq. 23 with

δεS = ‖A‖
∥∥∥(Sj+1 − S

)
Φn

j+1

∥∥∥∥∥∥Φn+1
j+1

∥∥∥ , (26)

δεA =

∥∥∥(Aj+1 − A
) (

Sj+1Φn
j+1 + Q

)∥∥∥∥∥∥Φn+1
j+1

∥∥∥ , (27)

δεres = ‖AS‖
∥∥∥Φn+1

j+1 − Φn
j+1

∥∥∥∥∥∥Φn+1
j+1

∥∥∥ . (28)

A main issue is the choice of the matrices Sj+1 and Aj+1 or, in other words, the selection of the
wavelet supports. The idea in the remainder is to monitor the errors related to the operator
discretizations using the numerical residual in order to obtain a relation of the type:∥∥∥Φn+1

j+1 − Φ
∥∥∥∥∥∥Φn+1

j+1

∥∥∥ ≤ K

∥∥∥Φn+1
j+1 − Φn

j+1

∥∥∥∥∥∥Φn+1
j+1

∥∥∥ , (29)

where K is a given constant. The error on the flux is thus controlled by the residual at each
iteration.
The error on δεS (resp. δεA) can be practically controlled by a thresholding on the product

SΦn (resp. A
(

Sj+1Φn
j+1 + Q

)
) ensuring:∥∥∥(Sj+1 − S)Φn

j+1

∥∥∥ ≤ ε′j+1

∥∥∥Φn
j+1

∥∥∥ , (30)∥∥∥(Aj+1 − A
) (

Sj+1Φn
j+1 + Q

)∥∥∥ ≤ εj+1

∥∥∥Φn
j+1

∥∥∥ . (31)
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Remaining coefficients give the new supports ΛS
j+1 and ΛA

j+1 such that #ΛS
j+1 � #ΛS and

#ΛA
j+1 � #ΛA where ΛS and ΛA are the support of S and A operators approximated by

a large number of coefficients. The localization property of wavelets ensure that these two
supports slowly increase when ε′j+1 and εj+1 decrease (see (Cohen, 2003) for more details).
By applying the procedures exposed above to A and S, Eq. 23 becomes:∥∥∥Φn+1

j+1 − Φ
∥∥∥∥∥∥Φn+1

j+1

∥∥∥ ≤ 1
1− ‖AS‖

⎛
⎝εj+1

∥∥∥Φn
j+1

∥∥∥∥∥∥Φn+1
j+1

∥∥∥ + ε′j+1 ‖A‖
∥∥∥Φn

j+1

∥∥∥∥∥∥Φn+1
j+1

∥∥∥ + ‖AS‖
∥∥∥Φn+1

j+1 − Φn
j+1

∥∥∥∥∥∥Φn+1
j+1

∥∥∥
⎞
⎠ .

(32)
Note however that the thresholding procedure described for operator A in Eq. 31 cannot
be applied in the general context of the spatially-dependent transport equation (Eq. 4). A
possibility is to use the same support for operators A and S. Such a solution has been tested in
(Fournier & Le Tellier, 2009). Even if the convergence is deteriorated compared to the solution
with two different supports for S and A, results are interesting and show that the adaptive
algorithms proposed in this book chapter are extensible to the general problem.

As proposed in (Cohen, 2003), a geometrical decreasing sequence
(

εj

)
is fixed and iterations

on n are performed until the residual becomes inferior to the value imposed by this sequence.
To link εj and ε′j, we ensure that the first two terms defined in Eq. 32 decay at the same rate by
imposing:

ε′j+1 =
εj+1

‖A‖ . (33)

At a given iteration j, Richardson iterations are carried out in order to ensure:∥∥∥Φj+1 − Φj

∥∥∥∥∥∥Φj+1

∥∥∥ ≤ εj+1

‖AS‖ . (34)

Combining Eqs. 33 and 34 with the bound of Eq. 32 guarantees the convergence of the error:∥∥∥Φj+1 − Φ
∥∥∥∥∥∥Φj+1

∥∥∥ �
3εj+1

1− ‖AS‖ . (35)

The devised algorithm is written in pseudocode in Algorithm 1.

The choice of
(

εj

)
is arbitrary and some numerical tests have been performed with different

values. A possible choice is

ε =
εj+1

εj
=

∥∥∥AjSj

∥∥∥ ,

the rate of convergence of Richardson method.
Indeed, two asymptotic behaviours can be observed depending on the ε value with respect to
ρ = ‖AS‖ as presented in Figure 1 for 16O where ρ = 0.01:

• ε � ρ (case ε = 1/2 in Figure 1): Richardson iterative scheme converges rapidly (and
even in one iteration in the presented case) and the error decreases linearly at the same
rate than the sequence (εj) but it needs many outer iterations. In our example, the slope of
the straight line is equal to 0.3 = log(1/2) = log(ε).
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Result: Solve HΦ = SΦ + Q thanks to an adaptive procedure
Input : Matrix H, S and vector Q calculated on an “infinite” support

given accuracy tol
Output: Φ: flux solution of Φ = H−1 (SΦ + Q) at accuracy tol
Data: Λ: support, ε: accuracy

Φ0 = 0, Λ0 = ∅, ε0 = 1 ;
j = 0 ;
err = 1 ;

while εj ≥ tol 1−‖AS‖
3 do

j ← j + 1 ;
εj ← εεj−1 ;
Φ0

j ← Φj−1 ;
n ← 1 ;
while err ≥ εj

‖AS‖ do

tmp = SΦn−1
j−1 ;

prod = Thresholding(tmp, εj) ;

% remove smallest coefficients of tmp, guarantee ‖tmp − prod‖ ≤ εj

∥∥∥Φn−1
j−1

∥∥∥
Rn

j = prod + Q ;

ΛSn
j = Support(Rn

j ) ;

Φn
j = H−1Rn

j ;

Φn
j = Thresholding(Φn

j ,
εj

‖H−1‖ ) ;
ΛAn

j = Support(Φn
j ) ;

err ←
∥∥∥Φn

j −Φn−1
j

∥∥∥∥∥∥Φn
j

∥∥∥ ;

n ← n + 1 ;
end
Φj+1 = Φn

j ;

end

Algorithm 1: two-loop adaptive algorithm

• ε � ‖AS‖: the number of coefficients kept increases rapidly and several Richardson
iterations are necessary to converge at a given support.

ε = ρ seems a good compromise between increasing too slowly the support causing useless
iterations and keeping too many coefficients which implies the resolution of a uselessly large
linear system.
Figure 2 presents the L2−error as a function of the cost for 238U and 16O. Showing this two
cases is interesting because they exhibit a different spectral radius (‖AS‖ = 0.26 for 238U and
0.01 for 16O). As ε decreases, the cost decreases to a minimum value (ε = 1

8 for 238U), and
then increases again. As ε decreases, less iterations are performed which improves the cost;
below a given value too large systems are solved and the cost increases (these are the two
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Fig. 1. L2−error and numerical bound for different ε values on groups 26 to 29 of 16O
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Fig. 2. Relative error versus cost for different ε values for group 88 of 238U (left) and for
groups 26 to 29 of 16O (right)

behaviours illustrated in Figure 1). Obtaining the value of this minimum is not possible in the

general case but let us mention that the use of the spectral radius
∥∥∥AjSj

∥∥∥ ensures a reasonable
cost. Figure 3 further illustrates the evolution of the cost as a function of the parameter ε for
16O and confirms the choice of

∥∥∥AjSj

∥∥∥ to minimize the cost.

290 Discrete Wavelet Transforms: Algorithms and Applications



An Adaptive Energy Discretization of the Neutron Transport Equation based on a Wavelet Galerkin Method 11

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
700

750

800

850

900

950

1000

1050

parameter value

co
st

Fig. 3. Cost versus ε for a given accuracy of 10−6 for groups 26 to 29 of 16O

3.3 Single-loop algorithm
The previous algorithm was directly inspired from Cohen (2003) and uses two levels of
iterations which complicate the source iterations. Besides, the choice of the series (εj) is not

obvious even if a geometrical sequence with a common ratio equal to
∥∥∥AjSj

∥∥∥ gives good
results. As a simplification of this algorithm, a one-loop version is proposed, i.e. the iterative
system is written as:

Φn+1 = An+1
(

Sn+1Φn + Q
)
. (36)

A single loop means that the residual is no longer directly controlled and a strategy to handle
this point has to be devised. At a given iteration, the residual is given by:

Φn+1 − Φn = An+1
(

Sn+1Φn + Q
)
− An

(
SnΦn−1 + Q

)
=

(
An+1 − An

) (
Sn+1Φn + Q

)
+ An

(
Sn+1 − Sn

)
Φn + AnSn

(
Φn − Φn−1

)
.

(37)

And the same relationship as the one for the two-loop algorithm holds for the actual error:

(I − AS)
(

Φn+1 − Φ
)
=

(
An+1 − A

) (
Sn+1Φn + Q

)
+ A

(
Sn+1 − S

)
Φn − AS

(
Φn+1 − Φn

)
.

(38)

Substituting
(
Φn+1 − Φn) as given by Eq. 37 in Eq. 38 leads to an error bound given by Eq. 23
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with

δεS =

∥∥A
((

Sn+1 − S
)− SAn (Sn+1 − Sn)) Φn

∥∥∥∥Φn+1
∥∥ , (39)

δεA =

∥∥((An+1 − A
)− AS

(
An+1 − An)) (Sn+1Φn + Q

)∥∥∥∥Φn+1
∥∥ , (40)

δεres = ‖ASAnSn‖
∥∥Φn − Φn−1

∥∥∥∥Φn+1
∥∥ . (41)

Such a bound for the operator-related error δεA (resp. δεS) is interesting because it takes
into account both ‖An+1 − A‖ (resp. ‖Sn+1 − S‖), the distance between the current operator
and the complete one, and ‖An+1 − An‖ (resp. ‖Sn+1 − Sn‖), the distance between two
successive operators. The direct control of the numerical residual with Richardson iterations
in the previous algorithm is now “replaced” by the introduction of the distance between two
successive operators in the error bounds on A and S. As the first term decreaseswith n until 0,
the second one increases until ‖A − An‖ (resp. ‖S − Sn‖). Depending on the value of ‖AS‖,(∥∥An+1 − A

∥∥+ ‖AS‖ ∥∥An+1 − An
∥∥) can be strictly decreasing or presents a minimum or a

maximum (Figure 4).
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Fig. 4. Comparison of error terms defined in Eq. 40 for group 88 of 238U with ‖AS‖ = 0.26
(left) and with ‖AS‖ artificially increased to 0.8 (right)

Even if the general behaviour is not known, the initial and final bounds are given by:

δεS
(Sn+1=S) = δεS

f in = ‖ASAn (S − Sn) Φn‖ , (42)

δεA
(An+1=A) = δεA

f in =
∥∥∥AS (A − An)

(
Sn+1Φn + Q

)∥∥∥ , (43)

δεS
(Sn+1=Sn)

= δεS
ini = ‖A (Sn − S)Φn‖ , (44)

δεA
(An+1=An)

= δεA
ini =

∥∥∥(A − An)
(

Sn+1Φn + Q
)∥∥∥ . (45)
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As ‖AS‖ < 1 (ensuring the convergence of Richardson iterations), it guarantees that δεS
f in <

δεS
ini and δεA

f in < δεA
ini. These error bounds are at the basis of our algorithm. Three different

cases are considered:

• δεres ∈ [δεS
f in, δεS

ini]. It is possible to decrease the error due to operator S discretization to

the numerical residual so Sn+1 is chosen to ensure δεS ≈ δεres.

• δεres < δεS
f in. Numerical residual is too small to be reached directly. Error on operator S is

reduced to
δεS = αδεS

ini + (1− α)δεS
f in, (46)

with α fixed in [0, 1].

• δεres > δεS
ini. The numerical residual is not yet enough converged so the support of

operator S is not modified, Sn+1 = Sn.

The same approach is used to treat δεA.
Figure 5 presents the behaviour of the three error terms and the numerical bound defined
by Eq. 23. When ‖AS‖ is low (Figure 5 (left)), Richardson iterations converge rapidly and
do not slow the convergence of other terms. When ‖AS‖ tends to 1 (Figure 5 (right)),
more Richardson iterations are needed in order to converge the numerical residual and the
operators support grows slowly and stepwise. It explains the decay by step observed for the
operator discretization errors in Figure 5 (right).
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Fig. 5. Comparison of error terms on group 88 of 238U with ‖AS‖ = 0.26 (left) and with ‖AS‖
artificially increased to 0.8 (right)

The only remaining parameter is α. A numerical study is performed to give us some
information about the optimal value.
Figure 6 shows that the choice of this parameter is important regarding the cost of the
algorithm. If not enough coefficients are kept at each iteration, the rate of convergence is
low which causes an important cost. On the opposite, if a large number is kept, large systems
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Fig. 6. Cost of the algorithm depending on α for a given accuracy ε = 10−5 on group 56 of
56Fe (left) and ε = 10−4 on group 88 of 238U (right)

have to be solved. An interesting compromise seems to keep coefficients in order to reduce
the error by about half.

3.4 Comparison of the two algorithms
A comparison of the two algorithms and of the non-adaptive strategy is done in this section.
All tests are performed by doing hard thresholding on an approximated flux and using
symmlets of the 6th order. All strategies are compared as a regard of the number of kept
coefficients but also the cost defined by Eq. 22. To make non-adaptive and adaptive strategies
comparable, non-adaptive Richardson iterations are stopped when δεres is of the same order
as δεS + δεA in such a way that the cost of the non-adaptive algorithm is nearly optimal.
Figure 7 (resp. Figure 8) presents results obtained on 238U (resp. 56Fe).
Figures 7 and 8 present coherent results and clearly highlight the interest of the two adaptive
algorithms. The use of the spectral radius in the two-loop algorithm and the construction
of our single-loop strategy make the convergence nearly independent of the case of study.
Moreover, let us recall that the non-adaptive algorithm used in this study exhibits a nearly
optimal cost and requires the control of the different error terms (δεS, δεA and δεres) as
explained at the beginning of this section.
While both adaptive algorithms exhibit similar performances, the single-loop algorithm
presents some advantages. First, the treatment of source iterations is easier with only one
level of iteration. Then, the choice of the decreasing series (εj) is problem-dependent and
more difficult to compute compared to the choice α = 0.5 in Eq. 46 for the one-loop algorithm.

4. Conclusion

Considering a wavelet-based Galerkin discretization for treating the energy variable in the
neutron transport equation, this chapter has proposed two adaptive algorithms for the
Richardson iterative scheme that is commonly used to solve the source-flux coupling. While
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Fig. 7. Algorithms comparison in terms of the convergence (left) and the cost (right) for
group 88 of 238U
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Fig. 8. Algorithms comparison in terms of the convergence (left) and the cost (right) for
group 56 of 56Fe

the first algorithm based on two nested loops is a modification of an algorithm previously
proposed in the literature, the second one has been devised as a simplification that retains
the same convergence properties. Both approaches are based on a formal decomposition of
the error into three terms: two of them are related to the operators discretization while the
third one is the Richardson residual. The algorithms then consist in a strategy to monitor and
relate these three terms in such a way that error can be controlled by the Richardson iterations
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residual. As a benefit of these algorithms, the accuracy of the final solution is known and the
cost to obtain it has been decreased by adapting the size of the system during iterations. The
performances of these algorithms have been demonstrated in the restricted framework of the
fine structure flux equation in an homogeneous infinite medium. In the context of neutron
transport calculations, the modifications necessary for spatially-dependent cases have been
mentioned.
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