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Abstract 
Considerable effort is currently being devoted to the development of new digital signal 

processing techniques to meet the demands of very low bit-rate speech coding for a wide range of 
applications. Such applications include digital mobile radio, secure speech transmission, storing and 
archiving speech, telephone based speech services and real time speech transmission over the intemet. 
The ascendancy of prototype waveform interpolation (PWI) and waveform interpolation (WI) 
techniques in this field has generated much interest in their use for speech coding at bit-rates around 
2.4kb/s. The purpose of this thesis is to assess the performance of current PWI and WI coding 
techniques and to contribute to their further development. 

The concept of PWI coding for voiced speech is to periodically extract from the linear 
prediction residual segments oflength equal to the current pitch-period. Efficient descriptions of these 
segments are encoded along with the estimated pitch-period and the parameters of an all-pole 
synthesis filter. At the decoder, reconstituted residual segments at adjacent update-points are 
interpolated to approximate missing portions of the residual. The resulting signal is then used to 
excite an all-pole synthesis filter which imposes an approximation to the original spectral envelope 
and thus produces an output signal which is close to the original voiced speech. In the original work 
on PWI, unvoiced speech was coded by switching to a form of CELP. In this thesis, a PWI/CELP 
coder has been studied, implemented as a C-program, and evaluated. 

One of the major sources of distortion found in PWI coded speech arises from error in the 
estimated pitch-period of voiced speech segments. This leads to the extraction of segments of 
inappropriate length and consequently a reconstructed residual with grossly incorrect periodicity and 
spectral content. A novel and robust pitch detector has therefore been developed and tested both for 
clean natural speech and also for speech signals corrupted by various types of background noise. 

Various linear prediction (LP) analysis techniques are studied in this thesis to find ways of 
providing an LP residual signal with the flattest possible frequency spectrum and best possible all­
pole synthesis filter. This makes the residual closer to a pseudo-periodic impulse train for voiced 
speech and thus increases the effectiveness of quantisation schemes for the residual. It was found that 
Burg's algorithm is generally more accurate than the more commonly used autocorrelation method, 
especially when pitch-synchronous analysis is used. 

An LP analysis and synthesis filter pair which uses line spectral frequencies (LSF) directly as 
filter coefficients has been developed and compared with conventional ladder filter structures. Using 
the new filter structure, a smooth evolution of the spectral envelope of the reconstructed speech signal 
can be preserved by interpolating on a sample-by-sample basis the LSF's as encoded at adjacent 
update-points. Computational costs associated with the conversion between LSF's and LP ladder filter 
coefficients are eliminated by this approach. 

An all-pass filtering scheme is investigated for deriving the phase spectrum of the residual 
from magnitude only information. This scheme is based on assumptions about the glottal excitation to 
the human vocal tract, and by eliminating the transmission of phase information can be used to further 
reduce the bit-rate required for encoding voiced residuals. 

The thesis presents a 2.4kb/s two-mode pitch-synchronous waveform interpolation (TPSWI) 
coder which uses PWI to encode voiced speech and switches to a pseudo-random sequence based 
model for unvoiced speech. Transitions between the two coding modes are modelled by an overlap­
and-add technique. Informal listening tests suggest that the decoded speech obtained from the TPSWI 
coder is better than that obtained from the original PWI/CELP coder. In particular, the TPSWI 
decoded speech was found to have voicedlunvoiced transitions that are smoother and more natural. 

More recent development in WI coding aim to generalise the voiced speech model to include 
unvoiced speech and transitions. This eliminates the need for a two-mode technique. A 2.4kb/s 
generalised pitch-synchronous waveform interpolation (GPSWI) coder is devised in this thesis. 
Informal listening tests suggest that the decoded speech obtained from the 2.4kb/s GPSWI coder is 
substantially better than that obtained from the 2.4kb/s LPC-l Oe and the 4.1 kb/s IMBE coders, and is 
comparable to that obtained from the 2.4kb/s ME-LPC and the 2.4kb/s WI coder from AT&T. ME· 
LPC and the AT &T coder were candidates in the recent American 000 2.4kb/s speech coding 
standardisation competition and the former was the winner. Fully quantised versions of TPSWI and 
GPSWI coder have been produced in simulation. 



Chapter 1 

Introduction 

1.1 Digital processing of speech signal 

Since the invention of telephony in the mid-nineteenth century, speech has 

been converted to an electrical signal and conveyed over long distance analogue 

communication channels such as twisted pairs, coaxial cables and radio. The 

disadvantage of analogue telephony is the irreversible degradation in speech quality 

that accumulates over long distance communication links. Repeaters installed at 

regular intervals amplify not only the speech waveform but also the distortion that 

has become embedded in it. 

The innovation of pulse code modulation (PCM) allowed a digital 

representation of speech to be transmitted. Repeaters were then able to reconstruct 

an almost error-free digital signal since distortion in the pulse-like analogue 

waveform conveying the digital information could be removed by generating new 

pulses. The use of digital transmission with computer controlled networks leads to 

flexible and efficient systems. Individual units of a global digital communication 

system may now be designed independently. These individual units include modules 

.£'0, source coding, signal modulation, error protection and error correction. 

A digital communication network also allows the existing land-based and 

radio spectrum to be utilised more efficiently and intensively. This is important for 

future expansion in telecommunications, in areas such as long distance telephony, 

digital cellular communication networks, mobile satellite communications and 

aeronautical services. Such expansion must be achieved with the restrictions 

imposed by limitations of transmission capacity in existing world-wide networks and 

the available radio spectrum. With phenomenal advances in VLSI technology over 

the past decade, the computational power of digital processors is large and still 

rapidly increasing while the price of the technology is falling. Hence digitised speech 
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Chapter 1 Introduction 

can be processed efficiently in ways that allow it to be transmitted more efficiently 

and at less cost over digital communication links. 

Speech coders and decoders are designed to convert analogue speech into 
. e.nc.ocle.r 

digital form and vice-versa. The term Lmay also be usefully applied to devices or 

algorithms which convert speech digitised at one bit-rate to an alternative digital 

representation which may be at a considerably lower bit-rate. Many speech coding 

algorithms have been established and some of them have been standardised for 

implementation in international exchanges as well as at regional levels. 

One reason for the growing interest in speech coding algorithms comes from 

the rapidly expanding area of mobile communications. The channel capacity 

available for the current generation of mobile telephony will be saturated very soon 

and one of the possible ways of increasing the channel capacities is to reduce the bit­

rate requirement of the existing speech coders, with minimum e.ffect on perceptual 

quality. Research in speech coding algorithms will also have a role in the 

establishing of a flexible platform for the future development of a global 

communication network, with integration of voice, video and data network, to form 

the so-called information highway. 

Many international and regional bodies have been established in the past 

decades to standardise the design and use of speech coders. At the international 

level, a number of speech coders have been standardised by the International 

Telecommunication Union (ITU). These include the universally used 64kb/s PCM 

coder, 0712 [7], the 32kb/s ADPCM coder, 0726 [8], and the 16kb/s Low-Delay 

CELP (LD-CELP) coder, 0728 [9]. Recently an 8kb/s "Conjugate-Structure 

Algebraic" CELP coder (CSA-CELP), 0729 [10], has reached the final phase of 

standardisation and the requirement of a 4kb/s ITU standard is in preparation. 

At the regional level, the Pan European Mobile Communication system 

adopted a I3kb/s regular pulse excited long-term prediction coder (RPE-LTP) in the 

ETSI/GSM system [11]. Together with channel coding, the complete system requires 

an overall transmission rate of 22.8kb/s. In order to use the available frequency 
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Chapter I Introduction 

bandwidth efficiently, the GSM committee is considering the introduction of a half-

rate system. 

In the United States, an 8kb/s vector-sum excited linear predictive coder 

(VSELP) is used in the North American digital cellular system [12]. The ANSIffIA 

is currently examining a half-rate coder. In Japan, the Japanese Digital Cellular 

(JDC) network has adopted a 6.7kb/s VSELP coder, and a half-rate coder for this 

network has been chosen recently. In the area of satellite communications, Inmarsat 

has adopted a 4.1kb/s "improved multi band excitation" coder (IMBE) for the 

Inmarsat-M system. The complete system requires a total bit-rate of 9.6kb/s [13]. 

The planned Iridium satellite cellular network is still examining the speech coders 

for their system. 

Speech coders utilised in military applications have a less demanding 

perceptual quality specification than domestic ones. The American department of 

defence (DoD) has implemented a 2.4kb/s LPC-I0e coder [14] in their military 

communication network. This coder preserves the intelligibility of speech but 

sacrifices the overall speech naturalness and speaker recognisability. Recently the 

DoD has completed the assessment of a new candidate for their network. The new 

coder is known as a mixed-excitation linear predictive coder (ME-LPC) and is able 

to deliver natural speech quality at 2.4kb/s [67]. 

Packet switching networks, which use techniques for detecting and rectifying 

data transmission errors, have been increasingly used to replace conventional circuit 

switching networks. By packetising information and transmitting packets through 

computer networks, source coders with different source bit-rates are allowed to run 

side-by-side on the same network. The variety of source coders used for voice traffic 

includes those for long distance telephony, digital cellular telephony, satellite 

communication systems and public switched telephone networks (PSTN). Packet 
o.te 

switching networks~lso capable of handling non-voice traffic including telex, image 

data and control signals for PSTN. Speech coding circuitry implemented in packet 

switching networks must be able to handle both voice as well as non-voice traffic. In 

addition, they must be able to work in tandem with other speech coders. 
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Chapter 1 Introduction 

These considerations reveal the importance of speech coding in relationship 

to our daily lives. They show the importance of continuing research and 

development in speech coding algorithms. A great deal of research is going on all 

over the world in order to meet new challenges which include further reduction in 

the system bit-rate, minimisation of the system delay and system complexity and the 

search for efficient low cost and low power consuming real time implementation of 

the algorithms. 

1.2 Evolution of speech coding algorithms 

Speech coders are generally classified into three categories, waveform 

coders, vocoders and hybrid coders. 

Waveform coders 

Waveform coders aim to represent the exact shapes of speech waveforms as 

precisely as possible. The perceptual quality of the synthesised speech obtained from 

waveform coders is preserved by using a sufficiently high bit-rate to achieve the 

required accuracy. The earliest algorithm implemented in a waveform coder is 

known as pulse code modulation (PCM). This assigns code-words to a number of 

quantisation levels. The use of uniformly spaced quantisation levels would be 

appropriate for an input signal which may be assumed to have a uniform probability 

density function (p.d.f.) and where the effect of quantisation is considered 

independent of sample value. However this is not the case for speech since the p.d.f. 

of a speech signal is not uniform and higher noise levels can be tolerated for higher 

sample values. The probability of higher amplitude sample values is generally 

smaller than that of lower amplitude samples. It has also been suggested [22] that the 

dynamic range of telephone quality speech from a single talker generally varies by 

about 20dB to 40dB, and there is a further 20dB to 40dB variation among different 

talkers in different environments. Hence with uniform quantisation, many 

quantisation levels must be included to preserve the perceptual quality of speech 

over this very wide dynamic range. Consequently, a very high bit-rate would be 

required with uniform quantisation. A solution to this problem is to use non-uniform 
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quantisation, such as is provided by A-law or J.1-law PCM. Such versions of PCM 

aim to make the signal-to-quantisation-noise-ratio for signals above a certain 

minimum level independent of signal level. This is achieved by having quantisation 

steps logarithmically spaced (or approximately so) above a certain minimum level. 

This is a static quantisation scheme in that the quantisation levels are fixed in 

relation to specified maxima and minima. Alternatively, a dynamic quantisation 

scheme may be used where the quantisation levels effectively vary with the 

characteristics of the signal, e.g. adaptive delta modulation and adaptive PCM 

(APCM). 

The performance of PCM can also be enhanced by reducing the variance and 

the dynamic range of the input signal. A differential PCM (DPCM) coder quantises 

the difference between each speech sample and a prediction to it based on previous 

quanti sed samples. This exploits the fact that correlation normally exists between 

adjacent speech samples. The prediction is calculated as the sum of suitably scaled 

previous quanti sed speech samples. The scaling factors ideally depend on the 

characteristic of the speech and should be updated frequently. However, fixed values 

are used by simpler DPCM coders normally with first order predictors. At the 

decoder, an identical copy of the predictor used at the encoder is installed to 

reconstruct the speech sample. To further improve the system performance, the 

quantisation levels can be made adaptive to the behaviour of the input signal. This is 

the concept used in adaptive differential PCM (ADPCM) speech coders and the well 

known standard 0726. 

Conventional waveform coders are able to produce high quality speech 

around 64kb/s to 32kb/s. However the speech quality deteriorates rapidly below 

these bit-rates. The 0726 version of ADPCM achieves at 32kbitls a quality which is 

equivalent to and in some way superior to 64kb/s A-law PCM. 

Vocoders 

A vocoder attempts to represent speech by sets of parameters that allow a 

signal which sounds like the original speech to be regenerated but whose waveform 

shape does not necessarily resemble the original wave shapes. This is realised by 
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using a simplified speech production model, in which the speech is assumed to be 

produced by passing an excitation signal through a vocal system filter. The 

excitation signal is assumed to be a pseudo-periodic impulse train for voiced speech 

and white Gaussian noise for unvoiced speech. The vocal system filter models the 

composite effect of the glottal excitation, vocal tract and lip-radiation. Vocoders are 

typically designed for bit-rates between 1.2 to 2.4kb/s. An example of a vocoder is 

the 2.4kb/s LPC-lOe coder [14]. Although vocoders are capable of delivering highly 

intelligible speech at very low bit-rates, the reproduced speech generally has a 

synthetic, unnatural and sometimes metallic quality. 

Hybrid coders 

Hybrid coders combine the best qualities of waveform coders and vocoders 

at the expense of increased complexity. An example of a hybrid coding technique is 

adaptive predictive coding (APC) [85] which is capable of representing good speech 

quality at around 16kb/s. 

In APC, a predictor computes an estimate of each speech sample from 

previous quanti sed samples and the difference between the true value and the 

predicted value is quantised for each sample. The predictor coefficients are 

computed by linear prediction analysis. Various speech coding algorithms have been 

developed from the basic idea of APC. Speech quality comparable with that obtained 

from 16kb/s APC has been obtained from modified APC algorithms operating at bit­

rates around Skb/s. These algorithms include regular pulse linear predictive coding 

(RP-LP C), multi-pulse linear predictive coding (MP-LPC) and vector sum excited 

LPC (VSELP). Another well-known technique based on APC is known as coded 

excited linear predictive coding (CELP) [86], which is able to achieve good speech 

quality at a bit-rate as low as about 4.Skb/s. Recent research results have indicated 

that the performance of CELP coders drops dramatically as the required bit-rate is 

reduced below 4.8kb/s. 

It is widely believed [IS] that interpolation is one of the keys to achieving 

low bit-rate speech coding at bit-rates in the range 4kb/s to 2.4kb/s or even lower. 

Many interpolation algorithms have been intensively studied over the past decade. 
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Chapter 1 Introduction 

These include sinusoidal transfonn coding (STC) as proposed by R. J. McAulay and 

T. F. Quatieri [62], linear predictive coding (LPC) as used by the American DoD 

[14], prototype wavefonn interpolation (PWI) as proposed by W. B. Kleijn 

[70],[74]-[76], time-frequency interpolation (TF!) by Y. Shoham [65],[66] and 

multiband excitation vocoding (MBE) by D. W. Griffin and J. S. Lim [63]. 

Another aspect of low bit-rate speech coding is the exploitation of known 

characteristics of human perception of sound. Current understanding is generally 

based on models of the human auditory system. By studying the sensitivity of the 

human ear to various fonns of distortion, better sounding can be encoded at low bit· 

rates by allocating fewer bits/s to perceptually less important infonnation. 

Experiments have shown that the frequency scale can be divided into a number of 

critical bands for which the sensitivity of the ear to frequency may be considered 

approximately the same. A masking threshold can be computed for each band which 

is dependent on the energy levels in adjacent bands. Any frequency component 

which has a spectral amplitude less than this threshold will not be heard. Hence 

these frequency components need not be allocated any precious bits for transmission. 

Also if sufficient coding bits are allocated so that the quanti sed noise spectrum is 

maintained below this masking threshold, quanti sing noise will not be audible. 

The use of vector quantisation (VQ) [51] allows a block of samples or 

parameters to be quanti sed collectively as a group instead of quanti sing them 

individually as with scalar quantisation. Many aspects of vector quantisation are 

being studied, such as split VQ, multi-stage VQ and various code-book searching 

algorithms [53]. The main difficulty of VQ for real-time implementation arises from 

the computational complexity involved in code-book searching. The computation 

required for training an efficient code-book can be very great, and this is also ~ 

major difficulty. Recently matrix quantisation (MQ) has also been proposed as a 

variation of vector quantisation. It is believed [3] that MQ may be the key effective 

technique " for speech coding at bit-rate below 1 kb/s. 

This section has briefly explored the evolution of speech coding algorithms 

in general tenns. A number of these algorithms have been standardised by the ITU. 

·7· 



Chapter 1 Introduction 

Among these, the 64kb/s PCM and the 32kb/s ADPCM coders have been classified 

as waveform coders and the 16kb/s LD-CELP and the Skb/s CSA-CELP coders are 

considered as hybrid coders. The performance of these coders would deteriorate 

rapidly if they were made to operate at lower bits-rate. Great effort is required to 

reduce the bit-rate requirement of existing algorithms without affecting speech 

quality. New coding algorithms are also required to cope with future developmen~in 

telecommunications. With the rapid advances in the microelectronics technology, 

digital processors are becoming more and more powerful. This allows more complex 

speech coding algorithms to be implemented in real time. 

1.3 Project objectives 

The objective of this project has been to develop a high quality low bit-rate 

speech coding algorithm using speech interpolation methods. The new coding 

algorithm ~IMeJ to achieve a 2.4kb/s coder which has a speech quality comparable to 
'to 

that of 32kb/s ADPCM coders. The coding algorithm developed ~sLbe based on 

PWI coding. 

PWI coding was originally designed to handle voiced speech by exploiting 

the fact that it is a pseudo-periodic signal [68]. Much information content of an 

individual pitch-cycle is repeated. The repeated information can be discarded at the 

encoding stage and regenerated at the decoder using interpolation. In the earliest 

PWI coding techniques, a CELP coder was used for unvoiced speech. A PWIICELP 

coder is capable of producing good quality speech at bit-rates between 3 and 4kb/s 

[70][71]. The source of speech degradation in a PWIICELP coder comes from two 

areas, a) multiple and sub-multiple pitch errors in the PWI coding and b) the 

switching between the two coding modes. Recently a general waveform interpolation 

algorithm (WI) was proposed [73]-[76]. The new coding algorithm further exploits 

the characteristics of speech signals and removes the need for a CELP coder for 

unvoiced speech. The WI coder has been successfully implemented and good speech 

quality has been obtained at 2.4kb/s [76]. A disadvantage of WI coding is its 

computational complexity. 
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Chapter I Introduction 

Two 2.4kb/s speech coders have been designed in this project. The first coder 

has been named as the two-mode pitch-synchronous waveform interpolation 

(TPSWI) coder [83]. It is composed of two individual units: a PWI based coder for 

voiced speech and a noise generator for unvoiced speech. An overlap and add 

technique is employed to ensure a smooth transition between the two coding modes. 

The TPSWI coder was modified by removing the need to switch to a different model 

for unvoiced speech. This leads to a uniform coding algorithm, applicable to all 

speech types, which is referred to as the generalised pitch-synchronous waveform 

interpolation (GPSWI) coder [84]. To accomplish the design of both these coders, 

studies have been made in various aspects of coding including robust pitch-period 

detection, effective LP analysis methods, LP analysis and synthesis filter structures, 

quantisation of spectral information, interpolation based speech coding algorithms 

and the quantisation of speech coder parameters. 

1.4 Thesis organisation 

This thesis is composed of eight chapters and three appendices. The 

advantages of digitally representing speech in a communication network and the 

evolution of various speech coding algorithms have been discussed in this chapter. 

In addition, a number of important speech coder standards have also been 

mentioned. 

In chapter 2, some of the available pitch-period determination algorithms are 

described and the design of a two-way pitch detector (TPD) is then presented. The 

TPD consists of four elements: a pitch pre-processing unit, a speech classifier, a 

pitch estimator and a pitch post-processing unit. The design objectives of the 

individual units will be discussed. Finally the TPD is tested both for clean speech 

and for speech contaminated by various types of additi \le noise. Experimental results 

from these tests will be presented. 

Chapter 3 is concerned with the linear prediction analysis of speech. Two LP 

analysis techniques: the autocorrelation method and Burg's method are discussed. 
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Chapter 1 Introduction 

Line spectral frequencies (LSF) are described and investigated. These are generally 

used as alternatives to conventional LP ladder filter coefficients for representing the 

frequency response of the all-pole synthesis filter. An LSF analysis and synthesis 

filter pair is proposed as an alternative to conventional ladder filter structures. The 

performance of the LSF filters is compared with that of the corresponding ladder 

filters. The results of LP analysis using the autocorrelation method and Burg's 

method are also compared. Experiments carried out include evaluations of the 

performance of the two methods for both pitch-asynchronous and pitch-synchronous 

analysis. The effect on the accuracy of the LP analysis of varying the length of the 

analysis window and of positioning the analysis window at different location within 

a speech frame are investigated. An adaptive window length is proposed for use with 

the Burg pitch-synchronous LP analysis method. 

In chapter 4, the representation of short-term spectral information using LSF 

coefficients will be illustrated. The chapter begins with an introduction to LSF's as 

an alternative representation of conventional ladder filter coefficients. The reasons 

for preferring LSF's to other available candidates is presented. Issues concerning the 

design of a vector quantiser (VQ) for LSF's are also discussed. These issues include 

the choice of quantiser structure, the complexity of the available procedures, the 

assessment criteria, the code-book training and the choice of distortion measure. 

Finally the design stages of a 24-bit LSF vector quantiser is presented, together with 

experimental results evaluating the performance of this vector quantiser. 

In chapter 5, the principle of PWI coding is introduced. The design of a two­

mode pitch-synchronous waveform interpolation (TPSWI) coder is presented. 

Finally, a phase derivation scheme which aims to model the phase spectrum of 

speech residuals is explored. The phase derivation scheme is derived from a voiced 

speech production model which considers the nature of the glottal excitation. 

Chapter 6 starts with a description of the principles of WI coding algorithms. 

The design stages of the generalised pitch-synchronous waveform interpolation 

(GPSWI) coder are presented. Finally the performance of the TPSWI coder and the 

GPSWI coder are compared. 
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In chapter 7, quantisation of the 2.4kb/s TPSWI coder and the GPSWI coder 

is achieved. Chapter 8 concludes the findings of this project and make suggestions 

for further improvements to the quality of the speech coders. The thesis has three 

appendixes. Appendix A illustrates the structure of a CELP coder. In appendix B, 

the conversion between LSF and LP filter coefficients is discussed. Finally, in 

appendix C, the mathematical proof of frequency-domain manipulations on the 

TPSWI coder and the GPSWI coder ts presented . 
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2.1 Introduction 

Chapter 2 

Pitch Determination 

A pitch detector classifies the nature of speech segments into different 

categories such as silence (s), voiced (v), unvoiced (uv) and mixed excitation (m) 

[24], and for voiced segments gives an estimation of the true pitch-period. Hence a 

pitch detector is able to perform a) speech classification and b) pitch estimation. It is 

believed [25] that the perceptual quality of speech produced by a coder is strongly 

dependent on the accuracy of the pitch detector used. This accuracy is particularly 

important for speech coders which implement interpolation techniques. For example, 

three major types of distortion, Le. noisy speech, reverberation and tonal artefacts, 

have been observed [70] in PWI encoded speech. Experiments have shown that these 

three types of distortion are closely related to pitch errors [70]. 

A number of pitch determination algorithms have been proposed in past 

decades [5], and a comprehensive study of some of the algorithms has been 

published [25]. Generally, a pitch detector can be classified as time-domain or 

frequency-domain, depending on the domain from which the features of the input 

speech signal are extracted. In time-domain pitch detectors, features are taken 

directly from the speech waveform. The features commonly used are signal energy, 

zero-crossing rate, autocorrelation function as well as the cross-correlation function 

[23][29]. Autocorrelation function algorithms have remained the most popular pitch 

determination algorithms in the time-domain family. In an autocorrelation-based 

pitch detector, speech classification can be carried out simply using an 

autocorrelation threshold and the pitch-period is generally estimated by locating the 

global maximum position in the autocorrelation function [30]. A simple way of 

computing a type of autocorrelation function is used in the Average Magnitude 

Difference Function (AMDF) technique [31], and has been successfully 

implemented in the LPC 1 Oe speech coder [14]. Different from the autocorrelation 
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method, the AMDF algorithm finds the location of the nulls in an AMDF function 

and the pitch-period is obtained by measuring the differences between adjacent nulls. 

The complex cepstrum is recognised as being the most popular technique for 

pitch determination in the frequency-domain family [33]. This pitch detector 

computes the FFT of the logarithm of the power spectrum of a section of speech 

signal, which effectively separates the effects of the vocal tract and the vocal source 

in a so called quefrency spectrum. Hence, pitch estimation is realised by locating the 

quefrency of the global maximum in the quefrency spectrum and speech 

classification can be immediately performed by assessing the magnitude of the peak. 

The disadvantage of a cepstrum pitch detector is that a number of pitch-cycles must 

be included in the analysis frame, in order to produce a well-defined ripple structure 

in the logarithmic power spectrum. This vastly increases the computational 

complexity of the pitch detector. A cepstrum pitch detector is not able to estimate 

the frequency of a pure sine tone. 

It is claimed that a more reliable pitch determination can be obtained by 

using a sub-harmonic summation (SHS) approach [34]. In the SHS method, the 

linear frequency axis of the frequency spectrum is transformed to a logarithmic 

frequency axis. Through a series of summation and shift operations on the modified 

frequency spectrum, a predominant peak is obtained at the location of the pitch­

frequency. Speech classification in the SHS method can be done by evaluating the 

correlation function between two pitch-cycles using the estimated pitch-frequency. 

Spectral comb analysis (SeA) [35] is also a candidate belonging to the 

frequency-domain family. The SeA approach reduces the computational complexity 

of the SHS method, by computing the correlation between the power spectrum of a 

section of speech signal and a comb-shaped spectrum. The teeth of the comb are 

separated by the pitch-frequency being analysed. The amplitude of the teeth are 

made decreasing with increasing frequency in order to avoid the possible multiple­

pitch errors. Voicing decision can be made by comparing the energy detected by the 

comb spectrum and the total energy. 
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With the impact of developments in the field of artificial neural networks, the 

implementation of neural models in speech processing has been actively researched 

in recent years [36]. Barnard et al [37] proposed a pitch detector which implements a 

neural-net speech classifier. The speech classifier was claimed to achieve a 96.5% 

accuracy in the tests carried out [37]. The use of artificial neural networks provides 

another possible option in dealing with pitch determination. It is notable that 

Schroeder [5, page 521] has stated that ItWe do not have a single pitch determination 

algorithm which operates reliably and accurately for all applications, all signals, all 

speakers, all recording conditions and all possible quality degradation It. Many pitch 

determination algorithms are surveyed in this reference [5]. 

In previous work at the University of Liverpool [16][17], pitch detectors have 

been developed for various types of speech coder. Lo [16] developed a cross­

correlation based pitch determination algorithm for a single pulse excitation coder. 

The accuracy of the pitch detector was found more reliable than those implemented 

using an autocorrelation function approach. Tang [17], adapted this algorithm into a 

4-way pitch detector, which is used for a type of PWI coder. The performance of the 

pitch detector was found to be comparable to the one used in the 4.lkb/s IMBE 

coder [64]. 

In this chapter a pitch detector which implements a type of cross-correlation 

function, based on Lo [16], will be introduced. The basic idea of the cross­

correlation method is described in section 2.2. In sections 2.3 and 2.4, the 

enhancement techniques for pitch determination will be discussed. A full description 

of a two-way pitch detector (TPD), i.e. a pitch detector which classified the input 

speech signal into either voiced or unvoiced and a pitch-period is given in case of 

voiced speech, will be presented in section 2.5. The TPD has been tested for clean 

speech and various examples of noisy speech and the results of the tests will be 

presented in section 2.6. 
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Chapter 2 Pitch Determination 

2.2 Pitch determination using a cross-correlation function 

Correlation is a measure of similarity between signals. In a cross-correlation 

pitch determination method, two adjacent and non-overlapping segments of speech 

with identical time duration, m samples, may be examined. Suppose we denote two 

such segments with samples denoted by x(n) and yen), for n=O, 1, 2, ... , m-I. If the 

speech is voiced and m is the pitch-period, x(n) should be, approximately, a scaled 

version ofy(n). Therefore we can define an error signal e(n) such that, 

e(n) = x(n) - ky(n) (2.1) 
n = 0, 1, ... , m-I 

which should be small for each n when the scaling factor k is correctly chosen. The 

sum of squared errors for a given value of m and k may be defined by, 

m-I 

Em (k) = L e2 (n) 
n-O 

m-I 2 

= L (x(n) - k yen) ) 
n-O 

(2.2) 

By setting to zero the derivative of equation 2.2 with respect to k, the value of k can 

be computed which minimises Em(k) for a given value of m. Therefore, 

oE (k) m-I m-I 

;k = -2 L x(n) yen) +:kL y2 (n) = ° 
n-O n.O 

(2.3) 

and hence the required value of k is, 

m-I 

L x(n) yen) 

k 
_ n.O 
- -m---:I---

L l(n) 

(2.4) 

n.O 

By substituting equation 2.4 into 2.2, the minimum obtainable total square error for a 

given value ofm becomes, 

m-I ",-I ",-I 

E",(k) = L X2 (n) - 2k L x(n) yen) + k 2 L y2 (n) 
n.O ,.-0 ".0 

= 
( 

'" I ) 2 
,,~o X (n) y (n) 

1 - ",_I ",_I 
(2.5) 

L x 2 (n) L y2 (n) 
,,-0 ,,-0 
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As a result, Em(k) will be at its minimum for a given value of m when C(m) is 

maximised, where, 

",-I 

L X (n) yen) 
n-O 

C(m) = --;="'=-=1===="'=-=1 == 
(2.6) 

L x 2 (n) L y2 (n) 
".0 ".0 

C(m) is known as the normalised cross.:correlation function of the two signal 

segments {x(n) L,m-t and {y(n) }o,m-t' A high C(m) means that the difference 

between the two signals is small and hence the two signals are highly correlated. 

2.2.1 Implementation of a cross-correlation function in pitch detection 

In a speech coder, the input speech signal s(n) is normally segmented into 

fixed duration frames which are typically of length between 10ms and 30ms. For 

each of these frames, normalised cross-correlation measurements between s(n) and 

s(n+m) are computed for a range of values of m. 

",-I 

L s(n) s(n+m) 
n-O 

C (m) = -;=m=-=I===m=-=I====-

Ls2(n) Ls2(n+m) 
(2.7) 

.. -0 n-O 

Note that 2m speech samples must be acquired in order to compute C(m). 

Depending on the size of the speech frame and the maximum value of m, some 

terms in the summations may require look-ahead into the next speech frame. 

The range of values of m should be the range of possible pitch-periods. It has 

been suggested [5, page 64] that the lowest possible pitch-frequency of human 

speech is about 50Hz and the highest possible pitch-frequency is about 500Hz. This 

corresponds to a pitch-period range of 16 S m S 160 samples, for an 8kHz sampling 

frequency. Examples of sections of voiced and unvoiced speech are shown in figures 

2.1 and 2.2 respectively, together with their cross-correlation functions . 
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Figure 2.1 A frame of voiced speech together with the cross-correlation function. 
(a) speech signal (b) cross-correlation function 

Amplltudt 

300 

150 

·no ~ 

I 
·300 ~ 

.p •• ch .,mpl. 

(a) 

C[m) 

O.S 

o 

.os ' 

.1 1 
dellY lip 

(b) 

Figure 2.2 A frame of un voiced speech together with the cross-correlation function. 
(a) speech signal (b) cross-correlation function 
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Chapter 2 Pitch Determination 

It may be seen in figure 2.1 b that the cross-correlation function of the voiced speech 

segment has a maximum (close to unity) at 

m=p 

where p is the true pitch-period of the voiced speech. 

The correlation function itself is a periodic signal with a period equal to the pitch­

period of the current analysed voiced speech, i.e. 

C(m) = C(m+p) 

This is not the case for the unvoiced speech shown in figure 2.2a. The correlation 

function of the unvoiced speech is more random and the correlation values are 

generally very small across the entire range of values of m, figure 2.2b. As a result, 

the cross-correlation function can be used as a simple speech classifier by using a 

suitable correlation threshold. The correlation thresholds commonly used are 0.25 

[30] and DJ [29]. Pitch estimation can be realised easily, in principle, by locating the 

global maximum of the correlation function. The cross-correlation function thus 

provides a straightforward means of pitch determination with low computational 

complexity suitable for real-time implementation. 

2.2.2 A backward mode cross-correlation function 

In contrast to the normal cross-correlation function defined above, a 

backward mode cross-correlation function takes the last sample of a speech frame as 

a starting point, and works backward towards the beginning of the frame [16], i.e. 

N-m-I 

L s(n)s(n-m) 
C ( ) n=N-1 

b m =--;=:,:=====¥=====:,:,==:==== 
N-m-I N-m-I 

L i(n) L s(n -m) 
(2.8) 

n-N-I n-N-I 

where N is the number of speech samples in a frame. 

The use of the backward mode cross-correlation function together with the 

forward mode function can make the detection of voicing transitions more reliable 

than when only the forward mode function is used [16][ 17]. Furthermore, it 
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increases the pitch estimation accuracy during voicing transitions. In figure 2.3a, a 

voicing onset frame is shown. The corresponding cross-correlation function in 

forward and backward modes are shown in figures 2.3 band c. 
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(cl 
Figure 2.3 An example of voicing onset frame together with the cross-correlation functions in 
forward and backward mode. (a) speech signal (b) cross-correlation function in forward mode 

(c) cross-correlation function in backward mode 

Owing to the lack of pitch information at the beginning of the speech onset frame, it 

is not possible to provide an accurate pitch estimation with using only the forward 

mode cross-correlation function. Using the backward mode method, a peak is found 

around the position of the true pitch-period. As a result, pitch estimation during the 

voicing onset can be made more reliable. A pitch detector using only the backward 

mode method would have the advantage of reducing the system delay, since no 

future information is required. This is seen in equation 2.8 that when the number of 

speech samples required is more than the size of a speech frame (i.e. 2m > N), the 

extra speech samples are taken from the previous speech frame . 
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2.3 Pitch enhancement using spectral flattening 

When voiced speech is produced, the glottal waveform is not a perfectly 

periodic pulse train and the formant frequencies may be changing significantly. This 

leads to considerable variations in the detailed structure of individual pitch-cycles. 

The resonances of the vocal tract largely determine the shape of these individual 

pitch-cycles. It has been claimed [27] that the reliability of a pitch detector can be 

increased by pre-processing the input speech signal using spectral flattening. 

The purpose of spectral flattening is to remove the formant structure from 

voiced speech thus making the harmonics of the fundamental frequency equal in 

amplitude. The magnitude spectrum of the resulting waveform would then be the 

magnitude spectrum of a train of pulses separated by the slightly variable pitch­

period. In the case of unvoiced speech, no such pseudo harmonic structure would be 

obtained. A primitive spectral flattening technique is that of centre clipping [27]. In 

one form of centre clipping technique, a threshold value (Ath) is computed from the 

maximum absolute amplitude of a speech frame. All portions of the speech bounded 

by ±Ath are removed and the speech samples which have an absolute value larger 

than Ath are retained. Thus the resulting speech, in principle, will contain peaks 

which are separated by the pitch-period, i.e. the formant structure is effectively 

removed. A comprehensive study of various centre clipping techniques was 

published in [30], where the results suggested that correlation peaks due to the 

formant structure of speech signal can be reducing by all the centre clipping 

techniques under investigation. 

Spectral flattening can also be achieved by using a linear predictive (LP) 

analysis filter [32]. Passing speech through such a filter produces a "residual" signal 

r(n), whose magnitude spectrum is relatively flat. For voiced speech, the residual 

signal will, in principle, be a sequence of pulses with a separation equal to the 

current pitch-period. For unvoiced speech, the residual signal will be white Gaussian 

noise. 
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2.4 Pitch smoothing using median smoothing 

A common problem with correlation based pitch detectors is the occurrence 

of what are known as "multiple-pitch" errors. For any truly periodic signal, the cross­

correlation function will have a peak at the delay of one period and also at integer 

multiples of the period. The peaks will be equal in amplitude. Since speech is not 

truly periodic, it is anticipated that the peak at one pitch-period delay will be higher 

than the others. This is not likely to be a reliable distinction however, and in practice 

the peak at the multiple pitch-period positions may have a higher amplitude than one 

at the true pitch-period location. This is often found during voicing onsets when the 

periodicity of voiced speech is building up slowly .. 

When a multiple pitch-period peak is taken to be the true pitch-period peak, 

serious pitch-period estimation error occurs. Steps must be taken to eliminate the 

occurrence of such errors. One of the possible ways to get rid of such errors is 

known as non-linear smoothing, using a median smoother [28]. Median smoothing 

has been widely incorporated into pitch detectors, where the current estimated pitch­

period is assessed together with a number of pitch-periods obtained from the 

previous and future speech frames. The median of the group of pitch-periods is 

chosen to be the output of the pitch detector. Using median smoothing, any sharp 

change in the estimated pitch-period, which may be caused by a multiple-pitch error, 

can be smoothed out and thus a smooth pitch-period trajectory can be anticipated. 

An example of .the pitch contour obtained by a correlation based pitch 

detector is presented in figure 2.4. It may be seen that two rapid changes in the pitch 

contour occur. These are caused by double-pitch errors. The double-pitch errors can 

be eliminated using a 3-point median smoother, in which an individual pitch-period 

is assessed together with the pitch-periods in the previous and the next frames. The 

median of the three is chosen to be the true pitch-period. Using the 3-point median 

smooth, the double-pitch errors indicated in figure 2.4a were successfully removed 

and a smooth pitch contour was obtained as shown in figure 2.4b. 
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Figure 2.4 A pitch contour before and after application of a 3-point median smoother. 
(a) original pitch contour (b) pitch contour after median smoothing 

The order of a median smoother must be chosen carefully. The larger the 

order the more effective will be its ability to smooth the pitch contour. However, as 

the order increases so does the amount of smoothing that occurs during sharp pitch­

period changes, for example at voicing transitions. This also increases the system 

delay. On the other hand, if the order of a median smoother is too small, the 
~ 

efficiency of error correction will be reduced. . \., generatJ.size of median smoothers 

can be varied from 3 to 9. 
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2.5 A two-way pitch detector 

A two-way pitch detector has been developed in the project. The schematic 

diagram of the two-way pitch detector (TPD) is shown in figure 2.5 [38]. 
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Figure 2.5 Schematic diagram ofthe two-way pitch detector (TPD). 
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The pitch detector consists of a pitch pre-processing unit, a speech classifier, a pitch 

estimator and a pitch post-processing unit. In the TPD, the input speech is first 

processed by the pitch pre-processing unit, in which the frequency range of the input 

speech signal is limited by a band-pass filter. Formant structure retained in the band­

pass filtered speech signal is then removed by a 10th order FIR filter, with filter 

coefficients computed by LP analysis. In the speech classifier, the input speech is 

classified into either voiced or unvoiced speech, using a set of feature data. The 

features are extracted from the speech frame and from the corresponding cross­

correlation function. The cross-correlation function is computed for the band-limited 

speech residual, taken from the output of the LP analysis filter. The output of the 

pitch detector is set to zero when unvoiced speech is indicated, otherwise the pitch 

estimator is called upon. The pitch estimator locates the position of the global 

maximum in the correlation function and uses it as the estimated pitch-period for the 

current speech frame. The range of pitch-periods is chosen to be 16 to 150 samples 

(8kHz sampling frequency). The estimated pitch-period is then processed by the 

pitch post-processing unit, in which pitch-period refinement is carried out in order to 

avoid possible multiple-pitch errors. Afterwards, the correlation value associated 

with the refined pitch-period is examined. If the correlation value is larger than a 

pre-defined threshold, it is directly used as the output of the pitch detector. 

Otherwise, a 3-point median smoother is deployed. The 3-point median smoother 

operates on the current estimated pitch-period and the pitch-periods of the two 

previous consecutive speech frames, the median of the three being chosen as the 

output of the pitch detector. 

2.5.1 The pitch pre-processing unit 

Prior to the speech classification, the input speech is segmented into 160 

sample frames (Le. 20ms frame in a 8kHz sampling frequency). A 10th order 

autocorrelation LP analysis is performed on the current speech frame to yield a set of 

filter coefficients. A 200 sample asymmetric window, which includes 40 speech 

samples from the previous frame, is deployed to extract the speech samples for the 

LP analysis as illustrated in figure 2.6. 
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Figure 2.6 The asymmetric window used in the TPD. 

The first part of the window consists of a half Hamming window and the second part 

is a quarter of a cosine function. The break-point between the two parts is located in 

the middle of the speech frame. The asymmetric window is defined as, 

( 
2" n ) 0.54 - 0.46cos 2 M-I 

w{n} = 

[ 
2" (n- M) ] cos --

4(Nw-M )-1) 

where 

M is the break-point between the two functions 

Nw is the length of the asymmetric window 

O~n~M-l 

(2.9) 

Through the use of the asymmetric window, no future samples are required in the LP 

analysis. Details of the asymmetric window will be discussed in chapter 3. 

At the same time, the frame of speech signal is frequency limited using a 

band-pass filter. The band-pass filter is composed of a 2nd-order HR low-pass 

section and a 2nd-order HR high-pass section cascaded. The high-pass filter is 

included to reject low frequency noise arising, for example. from capacitive pick-up 

from the 50Hz mains supply. The high-pass filter will also reduce car noise for 

which most of the energy is concentrated at frequencies below about 100Hz. The 

cut-off frequency of the high-pass section is set to 100Hz. The transfer function is 

[10], 

- 2S-



Chapter 2 Pitch Determination 

0.9398058 -1.8795834z·1 + 0.93980581z·2 

Hhf (z) = --1 ---1.-93-3-07-3-5-z·-1-+-O-.9-35-8-9-19-9-z-·2-- (2.10) 

The aim of the low-pass filter is to reduce the effects of formant structure which can 

tend to obscure the true pitch·period. The filter is also beneficial in removing a 

substantial amount of high frequency noise (e.g. babble noise) which may 

contaminate the speech signal. The cut-off frequency of the low·pass section is set to 

1 kHz. The transfer function is, 

0.097631 + 0.195262 Z·I + 0.097631 Z·2 

H If (z) = 1 _ 0.942809 Z·I + 0.333333z·2 (2.11) 

After passing through the band-pass filter, the speech signal is processed by an LP 

analysis filter with the current set of filter coefficients. A band-limited speech 

residual is thus obtained. 
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Figure 2.7 Frequency spectra of the signal in various stages of the pitch pre-processing unit. 
(a) input speech signal (b) band-limited speech signal (c) band-limited speech residual 
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In figure 2.7, frequency spectra of a section of voiced speech at various 

stages of the pitch pre-processing unit are presented. A well-defined forrnant 

structure is seen in the spectral envelope of the voiced speech, in figure 2.7a. The 

harmonic peaks due to pitch periodicity are also clear at low frequencies, though 

they become blurred at high frequencies because of small variations. By measuring 

the distance between the peaks in the low frequency region, the pitch-frequency may 

be found to be about 150Hz. A peak is also found at about 50Hz due to the 50Hz 

main supply. The energy of the high frequency components as well as the 50 Hz 

component should be attenuated by the band-pass filter. This is seen to have 

happened in figure 2.7b which is the magnitude spectrum band-limited between 

100Hz and 1 KHz. In figure 2.7b some forrnant structure of the original speech signal 

still remains but this can be effectively removed using a 10th order LP analysis filter. 

In figure 2.7c, the frequency spectrum of the band-limited LP residual is shown. This 

demonstrates that the first forrnant has been eliminated and a relatively flat 

magnitude spectrum has been obtained at the lower half frequency region. The 

magnitudes at the upper half frequency band is rolling off with increasing frequency. 

It will be shown in the next section that the reliability of a pitch detector may be 

increased by using a speech residual with frequency characteristics as illustrated in 

figure 2.7c, rather than one with a flat magnitude spectrum across the entire 

frequency band. 

2.5.2 The speech classifier and the pitch estimator 

After the pitch pre-processing unit, a rectangular window is used to extract 

the segments of the band-limited speech residual, rb(n) and rb(n-m), used to compute 

the backward mode cross-correlation function. The rectangular window is positioned 

within the frame of band-limited speech residual as shown in figure 2.8. 

. . 
:..- m -+: . 

.................... ~-----..L.-----------f 
h . fr f The current frame of band-limited spee~h residual T e .P'~~~I.~~~ .. ~~~ ? ... "--______________ --' 

band-limited speech residual 

Figure 2.8 Positioning of the rectangular window to extract the segments of band-limited speech 
residual for computing the backward mode cross-correlation function 
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The first problem encountered is to choose the size of the analysis window. Errors 

occur if too few samples are contained in the window since there will be insufficient 

periodic structure. However, a large analysis window may lead to a pitch-period 

estimation error in the case of voiced speech with rapidly changing pitch-period. 

This is very often observed during voicing transitions. A fixed window has been 

chosen with the window length long enough to accommodate at least one pitch-cycle 

at the maximum pitch-period, Le. 150 samples. The window is located at the end of 

a residual frame. I,. 0'--

2.5.2.1 Backward mode cross-correlation function using a band-limited LP filtered 

residual 

The backward mode cross-correlation function is computed because, a) it 

requires no looking forward to future speech samples, b) it allows detection of a 

voicing onset. Furthermore, a voicing offset frame could be defined if an unvoiced 

frame is indicated directly after a voiced frame. The backward mode cross­

correlation function is, 

n- N-I 
Cb(m) = -;==10=====10===== 

L rb(n)2 L rb(n - m)2 
(2.12) 

n-N-I n-N-I 

where rb is the band-limited speech residual. In this case some terms require looking 

back to the previous frame. 

The range of pitch-periods is set to be from 16 to 150 samples, corresponding to the 

range of pitch frequencies from 500 to 53.3 Hz, for a 8kHz sampling frequency 

system. Experiments [39] have shown that this pitch-period range is adequate in 

practice. 

The band-limited speech residual is used in order to enhance the performance 

of the pitch estimator. In figure 2.9, cross-correlation functions for a frame of voiced 

speech, for the corresponding speech residual and for the band-limited speech 

residual are shown. In all the three cases, the values of C(m) for the first 15 delay 

taps have been set to zero. 
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Figure 2.9 Cross-correlation functions computed from (a) a frame of speech signal (b) the 
corresponding speech residual (c) the corresponding band-limited speech residual 

The correlation function in figure 2.9a shows a clear peak structure with two main 

peaks, one at the true pitch-period about 55 sampling intervals and one at double the 

true pitch-period, i.e. at about 110 samples. Sidelobes with substantial correlation 

values are also evident. These sidelobes are caused by the formant structure existing 

in the speech signal. They could badly affect the performance of the pitch detector. 

With the use of an LP analysis filter to achieve a degree of spectral flattening, it may 

be seen in figure 2.9b that the correlation function of the speech residual exhibits a 

much sharper peak structure and that the sidelobes due to speech formants have been 

effectively attenuated. The disadvantage of using this function is that it is rather 

noisy and the correlation peaks are low. In figure 2.9b, three consecutive peaks with 

almost the same correlation values are found around the double-pitch position. This 

increases the difficulty of pitch estimation, and may lead to an estimation error. The 
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correlation function in figure 2.9c show a much clearer peak structure with a higher 

correlation value at the pitch position. This illustrates the reason why a band-limited 

speech residual was chosen for computing the correlation function. 

2.5.2.2 The feature measures used in the speech classifier 

To classify a speech frame, the classifier extracts a number of feature 

measurements from both the current speech frame and the cross-correlation function. 

The feature measurements used are, 

a) Scaled input speech power (Pnref), 

1 N-I 
- L s(n)2 
N n-O 

Pnr~f = --A---
(2.13) 

where N is the frame length (160 samples) and A IS numerically equal to the 

maximum speech amplitude allowed in the speech coder, thus 0 ~ Pnref:S A. 

b) Scaled band-limited speech power (Pnbpref), 

1 N - I 
- L Sb (n)2 
N n. 0 

P nbpref = -'----A---

where Sb is the band-limited speech signal 

c) Power ratio between P mef and P nbpref (PR), 

PR = Pnref 

Pnhpre/ 

d) Global maximum at the cross-correlation function (Cbmax), 

Cb mal( = max {Cb (m)} 
m 

(2.14) 

(2.15) 

(2.16) 

The speech classifier must search through the cross-correlation function to yield this 

global maximum. Based on the feature data, the speech classifier utilises a statistical 

approach to make a voicedlunvoiced decision. In figure 2.10, a set of histograms 

corresponding to the features are shown. The histograms were constructed by 
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examining a section of the speech file "GSP.DAT" [20] provided by British 

Telecom. The GSP.DAT file contains 10 minutes of natural speech band-limited 

from 0 to 3.4kHz and is sampled at 8kHz. Two thousand speech frames from the 

speech file, all of which were recorded from a radio· station, were used to form a 

training set with voicedlunvoiced decisions marked by hand. Note that the x-axis of 

the histograms in figures 2.1 Oa to c are not on a linear scale to save' ,J space. 

The histogram in figure 2.1 Oa shows that many of the unvoiced frames have 

Pnref less than 1.0. Most of these frames correspond to silence in the training set. It 

may be observed that there are a considerable number of unvoiced frames which 

have Pnref greater than 1.0. All of these frames correspond to unvoiced speech. The 

P nref for the voiced frames is generally greater than 1.0. Figure 2.1 Ob is a histogram 

of the Pnbpref. The unvoiced frames are concentrated on the left hand side of the 1.0 

line whereas most of the voiced frames lie to the right. The histogram in figure 2.1 Oc 

shows that the PR measure during voiced frames is generally very low, less than 2.5. 

It was suggested [4, page 267] that the frequency ranges of the first three formants 

are, 

200Hz S FI S 900Hz 

550Hz S F 2 S 2700Hz 

1100Hz S F3 S 2950Hz 

The 100Hz to 1kHz band-limited speech signal at least contains the first formant and 

possibly the second formant, in some vowels. This suggests that a considerable 

amount of energy may remain after band-pass filtering and hence a low PR would be 

expected. Unvoiced speech is considered to be approximately Gaussian with a white 

frequency spectrum. Therefore it is reasonable to expect that the PR of an unvoiced 
}>\!. 

speech woulawreater than 3.0. Note that there were some speech frames which had a 

PR less than 1.0. This was due to the delay between the input and output signal of 

the band-pass filter. Many of these frames occurred during voicing offsets. Finally a 

histogram of the maximum cross-correlation function is shown in figure 2.10d. A 

Gaussian shaped distribution is observed for the unvoiced frames, whereas an 

approximately exponential distribution appears for the voiced frames. 
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Figure 2. 10 Histograms of the feature data constructed from a 2000 frame training set. 
(a) scaled speech power (b) scaled band- limited speech power (c) power ratio between the speech 

and the band-limited speech (d) maximum backward mode cross-corre lation function. 
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2.5.2.3 Computation a voiced confidence level 

Results from the histograms suggest that each feature may contain 

information about the probability of voicing for a speech frame. In figure 2.1 Oa, the 

histogram for the scaled speech power pnref of the unvoiced frames shows an 

approximately exponential shape. An exponential distribution function may be fitted 

to the histogram to produce an estimate of the probability of voiced speech for a 

range of values of measured Pnref, assuming that voiced and unvoiced speech are 

mutually exclusive. The probability density function of an exponential distribution is 

given by, 

f(x) = { ~ e-" x~o 

x<o (2.17) 

where IIA is the mean of the samples. Furthermore the cumulative distribution 

function the exponential distribution is given by, 

F(x) { ~o - e-
b x ~ 0 

x<o (2.18) 

The A. of the unvoiced Pnref was calculated as 10.058 and thus the probability of 

voiced speech for a measured P mef is then, 

Pr{ P
nre

( ) = 1.0 _ exp-10,058 1'.,., (2.19) 

Similarly for the scaled band-limited speech power Pnbpref, an exponential 

distribution function was fitted onto the histogram of the unvoiced speech frames, 

figure 2.11 b. The A. of the unvoiced Pnbpreris computed as 14.163 and the probability 

of a voiced speech for a given P nbpreriS, 

Pr( Pnhpref ) = 1.0 - exp-14163I'nhP"'1 (2.20) 

For the feature PR, the exponential curve was fitted onto the histogram of the voiced 

frames, figure 2.11 c. Since PR should always have a value larger than or equal to 

1.0, the measured PR must be shifted by 1.0 in order to fit the exponential curve. 

The A. of the voiced PR was computed as 1.794 and the probability of a voiced frame 

for a given PR is t~en, 
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Pr ( PR) = 1.0 - ( 1.0 _ exp-(1.794-I.O) (PR-I.O) ) 

= exp- 0.794 (PR-I.O) (2.21) 

The maximum cross-correlation function, which indicates level of periodicity in a 

speech frame, is used directly as an indication of the probability of voicing for the 

category. 

It has been discussed that a probability of voicing could be obtained from 

each of the four measured feature data for a speech frame. To include the 

information provided by all the four measured feature data, we defined a voice 

confidence level (VL). The voice confidence level is defined as the scaled sum of the 

probability of voicing due to each feature data measured for the current speech frame 

and the speech class for the previous speech frame, 

VL(/) = 0.2 • (Pr( Pnre/'») + Pr( PnhPre/'») + Pr( PR(I») + Cbmax(/) + SC(I-l») (2.22) 

where SC;<I-1) is a classification of the (/-1) th speech frame, which is "1" for a 

voiced frame and "0" for an unvoiced frame 

Note that by including the previous speech class in computing the vOlcmg 

confidence level, an adaptive aspect is built into the confidence measure. 

2.5.2.4 Speech classification 

Speech classification is carried out by a sequence of logic decisions as shown 

in figure 2.11. It was mentioned in section 2.5.2.2 that no speech frame should have 

a PR less than one, the classification of a speech frame is set to be the same as the 

previous frame if the PR of a speech frame is less than 1.0. Figure 2.10c provides 

clear guidance about making a voicedlunvoiced decision. It is shown that the 

probability of a speech frame with a low PR being unvoiced is very small. On the 

other hand, the PR for a voiced frame can never be very high. A fixed threshold is 

set for PR at 3.0 meaning that a frame would be declared unvoiced if the PR of the 

frame is greater than 3.0. For the speech frames which have a PR between 1.0 and 
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3.0, the voice confidence level is computed and this is compared to a threshold value 

such that, 

sc = { 0 (Unvoiced) 

1 (Voiced) 

where sc is the speech class of a speech frame 

PR 

se'" 

No 

if VL < 0.5 

if VL';? 0.5 

Yes 

Yes 

Pnref Compute the voiced 
Pnbpref 

Cbmax 

confidence level 

VL 

To the pitch 
estimator 

No 

se'" 

"0 " 

"0 " 

Figure 2.11 Schematic diagram of the speech classifier 

2.5.2.5 Pitch estimation 

(2.23) 

When the speech classifier indicates that a frame of speech is voiced, the 

pitch estimator uses the delay associated with the maximum cross-correlation 

function as the estimation of the true pitch-period. The estimated pitch-period would 

be further verified by the pitch post-processing unit. Otherwise, the pitch-period 

would be assumed to be zero. 
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2.5.3 The pitch post-processing unit 

The pitch post-processing unit consists of two parts: a pitch-period 

refinement unit and a 3-point median smoother. The pitch-period refinement unit 

searches through a number of potential pitch-period candidates and performs a 

second estimation of the true pitch-period based on a forward mode cross-correlation 

function. The second part of the pitch post-processing unit is a 3-point median 

smoother which is only applied when the cross-correlation function associated with 

the estimated pitch-period is less than 0.6 (refer to figure 2.5). The 3-point median 

smoother operates on the current estimated pitch-period and the values of pitch­

period obtained for the two previous consecutive speech frames. The median of the 

three would be set as the final pitch-period. 

2.5.3.1 The pitch-period refinement unit 

In the pitch-period refinement unit, after the global maximum of the cross­

correlation function and its corresponding delay have been determined, an adaptive 

correlation threshold is computed. 

C(l) - 0 7 • C (/) Ih -. bmlll! (2.24) 

Any local maximum of the correlation function with a delay smaller than the delay 

associated with the global maximum and has a correlation value larger than the 

adaptive threshold would be classified as a potential candidate (Ck)' The potential 

candidates, Cl, C2, ... , Cg, are arranged in an ascending order, i.e. Cl < C2 < ... < 

Cg. To determine the true pitch-period, the forward mode cross-correlation function 

is deployed. It is defined as, 

( ) 
n--140 

C, k = -;:======= 
10 10 

Ld(n) L r~(n + k) 
(2.25) 

n--140 n--140 

The first candidate which has a forward-mode cross-correlation function larger than 

the adaptive threshold would be classified as the estimated pitch-period. The pitch­

period refinement procedure ceases when such a candidate has been found. If none 
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of the potential candidates fulfils this criterion, the delay of the global maximum 

would be used as the estimated pitch-period. After refining the pitch-period, the 

correlation function associated with the estimated pitch-period is examined. If it is 

greater than a fixed threshold (0.6), the pitch-period would be directly used as the 

output of the pitch detector. Otherwise, the 3-point median smoother would be called 

in to apply non-linear smoothing on the estimated pitch-period. 

2.5.3.2 The 3-point median smoother 

The 3-point median smoother operates on the current estimated pitch-period 

and the estimated pitch-periods obtained for the two previous consecutive frames, 

p~1) , p(/ - I) , p(/ - 2) • The median of the three estimates is set to be the output. The 3-

point median smoother is different from the one discussed in section 2.4, in that its 

ability in smoothing a pitch contour is better than the latter. In figure 2.12a, an 

example of pitch contour is shown. Two consecutive double-pitch errors are seen on 

the pitch contour. Using the 3-point median smoother discussed in section 2.4, the 

double-pitch errors cannot be rectified as illustrated in figure 2.12a. By smoothing a 

new pitch-period with the two previously smoothed ones, the two consecutive 

double-pitch errors have been successively smoothed out, as shown in figure 2.12c. 

Pitch p.nod 
( •• mp''') 

trim. number 

(a) 

I 

o t-- ----~-_t_---.- ,---- ~+----------t-. ----"+-......--- +---+-- --+--1 o 1-- ;---~--+-+---+---+----t--+------+--~ 
o 234 587 8 1 ~ o 234587 e 111 

00 M 
Figure 2.12 An example of pitch contour in which two consecutive double-pitch errors are found. 
(a) original pitch contour (b) pitch contour after being smoothed by a 3-point median smoother 

proposed in section 2.4 (c) pitch contour after smoothed by a 3-point median smoother proposed in 
this project 
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The disadvantage of such a 3-point median smoother is that it is easily 

trapped into a single pitch-period. In figure 2.12c, it is seen that the pitch-period 

stayed at about 58 samples after the double-pitch errors had been smoothed out. To 

allow the median smoother to jump out from this kind of trapped pitch-period, it is 

only used when the cross-correlation function of the estimated pitch-period is 

smaller than a fixed threshold. This is because if the cross-correlation function at the 

estimated pitch-period is relatively high, a highly periodic signal is under 

consideration. and the probability of an accurate estimation is high. By directly using 

the output of the pitch-period refinement unit as the estimated pitch-period in this 

case, the pitch detector is allowed to jump out from the trap error. In other words, the 

pitch detector recognises a rapid pitch-period change in the speech signal. Using 

such a median smoother instead of the one proposed in section 2.4, the delay 

introduced by the pitch detector can also be reduced since no future pitch-periods are 

required. 

There are two special situations where no previous pitch-periods are 

available. They can occur at voicing onset frames and at voiced speech frames 

immediately following voicing onset frames. When a voicing onset frame is 

detected, the pitch detector would directly supply the pitch-period estimated by the 

pitch-period refinement unit as its output. In the case of a speech frame just after the 

voicing onset frame, the output of the pitch-period refinement unit would be used 

directly if the cross-correlation function of the estimated pitch-period is greater than 

0.5. Otherwise, the output is deduced by averaging the current estimated pitch-period 

and the pitch-period of the onset frame. 
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2.6 Performance evaluation of the two-way pitch detector 

In this section the performance of the TPD will be evaluated. This includes 

the performance of each individual unit in the TPD. The tests were carried out using 

a clean speech file as well as files containing speech contaminated by various types 

and levels of noise. A number of measuring parameters used to assess the 

performance of the TPD will also be introduced. 

2.6.1 Creating the reference pitch-periodfile and the noisy speech files 

The performance of the pitch detector was evaluated using a new speech file, 

"OPERATOR.DAT" [21]. The speech file contains a 36 second conversation (1800 

frames) between a male and a female speaker. The speech signal is band-limited 

from 0 to 3.4kHz and sampled at 8kHz. The pitch-period of the file was manually 

marked by the author [39]. The manually adjusted estimates of pitch-period were 

used as a reference, against which the pitch-periods estimated by the pitch detector 

could be compared. The reference pitch-period file was created using a modified 

version of the Semi-automatic pitch detector (SAPD) [26], . where only the pitch 

marker and the autocorrelation pitch detector were used (the cepstrum pitch detector 

has been left out). 

2.6.1.1 Creating the reference pitch-period file 

During the pitch marking, the speech file was segmented into 200 sample 

frames. The speech signal was displayed on the computer screen together with a 

previous and a future speech frame. A marker was placed on the zero-crossing 

position just before the peak pulse of each pitch-cycle. The distance between 

adjacent pitch markers was measured to obtain a reference pitch-period. The pitch­

period thus obtained was assigned to each sample of the entire pitch-cycle as the 

instantaneous pitch-period of the sample. 

Simultaneously in the autocorrelation pitch detector, a rectangular window 

was centred on the speech sample under analysis to extract a frame of speech signal. 

The normalised autocorrelation function was then computed as follow, 
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Nw-m+\ 

L sw{n)sw{n + m) 
A{m) = --;:==n=-o========-

N .. -m+\ Nw-m+\ 

L s~(n) L s~{n + m) 
(2.26) 

n=O n-O 

where 

Sw is the windowed speech signal 

m is the interested pitch-period range, 16 to 200 samples corresponding to a pitch­

frequency of 500 to 40Hz 

Nw is length of the rectangular window and is set to 300 samples, i.e. it contains 50 

overlapping samples at both ends 

The location of the maximum autocorrelation function was found and this is used as 

the instantaneous pitch-period of the speech sample being analysed. The procedure 

was carried out for each individual sample over the entire speech file. 

The pitch-periods estimated by hand and by the autocorrelation methods 

were compared to create a reference pitch-period file for the tested speech file. If 

they were close to each other, the pitch-period estimated by the autocorrelation pitch 

detector was used. Otherwise, the final decision was made based on the pitch-period 

estimated manually. A pitch-period of "0" was recorded for each sample during 

periods of silence whilst "10" was assigned to each sample during unvoiced speech. 

It was found that the autocorrelation pitch detector was always able to estimate an 

accurate pitch-period or integer multiples of it, during a stable voiced speech. In 

these cases, the pitch-periods provided by the pitch marker were useful to verify the 

estimates from the autocorrelation pitch detector. The autocorrelation pitch detector 

performed poorly during voicing transitions. In these circumstances, the estimation 

was biased to the result provided by the pitch marker. 

2.6.1.2 Creating the noisy speech files 

The pitch detector was tested using clean speech as well as speech with 

various noise backgrounds. The noise types investigated were white-Gaussian noise 

(White) [93], car noise (Car) [90], babble noise (Babble) [91] and multi-speaker 
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(Multi) noise [92]. The noise samples were again provided by British Telecom. In 

figures 2.13, average frequency spectra for the four noise types are shown. 
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Figure 2.13 Frequency spectra of the noise files used in the test.,: 

(a) white noise (b) car noise (c) babble noise (d) multi-speaker noise 

In figure 2.13a, a flat spectrum is seen for the white noise. In figure 2.13b, the energy 

of car noise is at low frequencies especially below 100Hz. Frequency spectra of the 

babble noise are different from6l'le.frame to another. One of the typical examples is 

shown in figure 2.13c, in where it is seen that the energy is evenly spread from d.c. 

to 2kHz. Finally, the frequency spectrum of the multi-speaker noise is fairly flat with 

a virtual formant structure, which may correspond to the background speakers. 

Normalised noise files were created by normalising the rms value of each of 

the noise files, i.e. for the four noise types, to be exactly the same as the rms value of 

the entire speech file. Noisy speech files with signal-to-noise ratio (SNR) level of 

OdB, 10dB, 20dB and 30dB were then created by adding to the clean speech file a 

noise file attenuated by OdB, 10dB, 20dB and 30dB respectively. 
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2.6.2 Error parameters used in the experiments 

A number of error parameters have been suggested in the literature [25], in 

order to evaluate the performance of a pitch detector for a lengthy example of typical 

speech. They have been used in here with some modifications: 

(i) Classification accuracy 

a. Unvoiced classification accuracy Accuv, 

where 

Acc
uv 

= Muv - N uverr x 100 (%) 
Muv 

Muv is the total number of unvoiced frames 

(2.27) 

N uv err is the number of unvoiced frames being mis-classified as voiced frames 

b. Voiced classification accuracy Accv, 

M-N Acc = v verr X 100 (%) 
v M, 

where 

Mv is the total number of voiced frames 

Nverr is the number of voiced frames being mis-classified as unvoiced frames 

c. Total classification accuracy ACCv/uv, 

( M uv + M v ) - ( N "V err + N verr ) 
Accuv!. = ( ) x 100(%) 

Muv+ Mv 

(ii) Gross error rate and pitch estimation accuracy 

If the pitch estimation error perr is defined as 

Perr = P re! - P e.fl 

(2.28) 

(2.29) 

(2.30) 

where Pref is the true (reference) pitch-period and Pest is the estimated pitch-period, a 

gross pitch estimation error is defined as occurring when, 

\ Pm \ > 0.01 '" Pro! (2.31) 
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The pitch estimation accuracy is given by Accpe, 

Accpe = Mv ~~gerr x 100 (%) 

where Ng err is the number of gross errors 

(iii) Fine pitch-period error 

(2.32) 

In contrast to the definition of gross error, a fine pitch-period error is defined 

as occurring when, 

I Perr I ~ 0.01 * Pref (2.33) 

Fine pitch-period errors can be characterised by two parameters: 

a. Mean of fine pitch-period errors J.l.err, 

This is a measure of bias in the pitch-period measurement during voiced intervals 

and is defined as, 

(2.34) 

where Nv is the total number of voiced frames being correctly marked 

b. Standard deviation of the fine pitch-period error U err, 

This is a measure of the accuracy of the pitch detector during voiced interval and 

is defined as [25], 

Verr = 
(2.35) 

2.6.3 Performance o/the speech classifier 

While the reference pitch-period file was being semi-manually created, many 

ambiguities were encountered while classifying the pitch-periods at voicing 

transitions. The reference pitch-periods were in some cases questionable or rather 

arbitrary. Two sets of tests were therefore conducted in order to have a fair 

evaluation. In the first test, all the voicing transition frames were excluded. These 

transition frames were then classified as voiced frames in the second test. The tested 
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speech file contains, 849 voiced frames, 817 unvoiced frames and 134 transition 

frames. 

2.6.3.1 Results of the speech classifier using the clean speech file 

The results obtained under clean speech condition are listed in table 2.1. 

Accuv (%) Accv (%) 
Excluding voicing transitions 95.96 100 
Including voicing transitions 95.96 98.88 
Table 2.1 Results of the speech classifier using the clean speech file. 

Results in table 2.1 show that the speech classifier performed better in classifying 

voiced speech than unvoiced speech. When transition frames were excluded, a 100% 

accuracy was obtained in classifying the voiced frames. The accuracy in classifying 

the unvoiced frames was about 96%. This is because the speech classifier was 

designed such that it is biased towards a voiced decision in conditions of uncertainty. 

It was found that a voiced to unvoiced error may affect the speech quality of a 

speech coder perceptually more severely than vice-versa. With transition frames, the 

voiced classification accuracy dropped slightly, from 100% to 98.8%. Note that there 

was no change in the unvoiced case since all the reference transition frames were 

classified as voiced frames in the test. 

2.6.3.2 Results of the speech classifier using the noisy speech files 

The speech classifier was tested with speech received under various noise 

backgrounds. The unvoiced classification accuracy obtained at different SNR levels 

is shown graphically in figure 2.14 for the four types of noise. The results of the 

voiced classification accuracy are presented in figures 2.1Sa and b, corresponding to 

the cases without and with the transition frames. 

Referring to figure 2.14, it is interesting to notice that the ability to accurately 

classify the unvoiced frames were enhanced by a reduction in the SNR level in the 

case of white noise and multi-speaker noise. It is shown in figure 2.13a that the 

energy of the white noise is evenly spread over the frequency spectrum. Therefore a 

reduce in the SNR level results in an enhancement of the effect of the PR in 

classifying unvoiced speech. Similar to the white noise, the multi-speaker noise has 
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a relatively flat frequency spectrum (figure 2.13d). Hence the same effect as for the 

white noise is seen. For the other two noise types, the unvoiced classification 

accuracy deteriorated as the SNR level reduced. The speech classifier performed the 

poorest in the case of the car noise, where the accuracy dropped to about 53% in a 

OdB SNR level, whilst a 69% accuracy was still maintained for the babble noise 

under the same SNR level. 
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Figure 2.14 Performance of the speech classifier in classifying unvoiced speech 
using the noisy speech files. 
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Figure 2.15 Performance of the speech classifier in classifying voiced speech using the noisy speech 

files. (a) excluding the transition frames (b) including the transition frames 

Results in figure 2.1Sa show that the voiced classification accuracy dropped 

for all the four noise types, as the SNR level was reduced. Rather difference results 

were obtained for the unvoiced speech for the white and multi-speaker noise. Since 

it was mentioned previously that the effect of reducing the SNR level for the white 

noise and multi-speaker noise is to enhance the effect of the PR in classifying 

unvoiced speech, the voiced classification accuracy for both these noise types was 
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much lower than for the other two. Over 80% accuracy was obtained even at a OdB 

SNR level, under the white, car and babble noise. In case of the multi-speaker noise, 

about 64% accuracy was obtained. 

Comparing the results in figures 2.1Sa and b, it was found that the speech 

classifier performed poorly in voicing transitions. Figure 2.15b indicates that the 

classification accuracy dropped vastly for all the four noise types. When the 

transition frames were introduced into the test, an about 5% accuracy drop was 

observed, in the white, car and babble noise, at a OdB SNR level. In case of the 

multi-speaker noise, the classification accuracy dropped by about 10% at a OdB SNR 

level. 

2.6.4 Performance of tile pitch estimator 

This section describes how the performance of the backward-mode cross­

correlation pitch estimator was assessed, without the speech classifier. The 

assessment was carried out by first examining the pitch estimation accuracy for clean 

speech, both with and without the voicing transitions. Afterwards, the pitch 

estimator were tested using the noisy speech files. The reference pitch-period file 

was referred to throughout the experiment. From the reference pitch-period file, if a 

pitch-period is assigned to every sample within the entire speech frame, the speech 

frame was classified as a voiced fr::pne. The minimum and maximum reference 
!t:SM -t"t-iL ~~K2... +de. 

pitch-periods were fetche{ If the estimated pitch-period fell into this pitch-period 

range, a correct estimation was declared. Otherwise the estimated pitch-period was 

examined according to the criteria set in sections 2.6.2 (ii) and (iii). When a pitch­

period of "0" or "10" and some pitch-periods existed in the same speech frame 

simultaneously, the speech frame would be classified as a voicing transition. The 

pitch-period range during the voiced section would also be found. Once again, this 

was compared with the estimated pitch-period. 
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2.6.4.1 Results of the pitch estimator using the clean speech file 

The results of the pitch estimator under clean speech are listed in table 2.2. 

Accpe J.lerr Verr 

(%) (samples) (samples) 
Excluding voicing transitions 89.87 0.191 0.974 
Including voicing transitions 85.96 0.124 1.083 

Table 2.2 Results of the pItch estImator USIng the clean speech file. 

From table 2.2, it can be seen that the gross error rate was about 10% disregarding 

the voicing transitions. It was found that more than half of the gross errors were 

multiple-pitch errors and that many of the remaining errors were found during 

voicing offset frames. This was due to the rapid pitch-period changes that tend to 

occur during voicing offset. It could be argued that the voicing transitions have 

already been discarded by excluding the transition frames in the test. However, many 

of the voicing offset frames may last for a few frames before they actually reach a 

silence or unvoiced frame. The pitch-periods in these ranges are very difficult to 

determine and may be arbitrary sometimes. It was also found that the mean pitch­

period error was about 0.2 samples, corresponding to about 25J..ls. The standard 

deviation was less than one speech sample, i.e. less than 125J..ls. When transition 

frames were introduced, 48 more gross errors were introduced, out of the 143 

transition frames. This corresponds to about 36% of the entire transition set. The 

mean pitch-period error was about the same whilst the standard deviation was 

increased by 0.1 sample. It may be concluded that the pitch estimator performed 

moderately well for clean speech without any post-processing element. In addition, 

the pitch estimator is able to estimate the pitch-period during voicing transitions. 

2.6.4.2 Results of the pitch estimator using the noisy speech files 

In table 2.3, the mean and standard deviation of the fine pitch-period errors 

under various noise backgrounds are tabulated. Furthermore, the pitch estimation 

accuracy is shown graphically in figures 2.16a and b. 
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Figure 2.16 Perfonnance of the pitch estimator using the noisy speech files. 

(a) excluding the transition frames (b) including the transition frames 

Excluding Transitions Including Transitions 

Noise type J.lerr Verr J.lerr verr 
(samples) (samples) (samples) (samples) 

wn30dB 0.148 0.990 0.084 1.074 
wn20dB 0.112 1.050 0.048 1.111 
wnl0dB 0.142 1.100 0.105 1.102 
wnOdB 0.064 1.188 -0.023 1.310 
cn30dB 0.183 1.009 0.121 1.095 
cn20dB 0.174 1.010 0.143 1.018 
cnl0dB 0.165 1.052 0.122 1.052 
cnOdB 0.194 1.283 0.119 1.390 

bn30dB 0.191 1.013 0.131 1.114 
bn20dB 0.212 1.063 0.158 1.110 
bnl0dB 0.222 1.106 0.187 1.076 
bnOdB 0.232 1.289 0.202 1.248 

mn30dB 0.170 1.038 0.113 1.116 
mn20dB 0.198 0.979 0.143 1.066 
mnl0dB 0.245 1.085 0.182 1.167 
mnOdB 0.250 1.247 0.175 1.272 

Table 2.3 Means and standard deviations of the fine pitch-period errors of the pItch estImator 
using the noisy speech files. 

Results in table 2.3 (excluding transitions) and figure 2.16a show that the 

performance of the pitch estimator deteriorated rapidly when the SNR level dropped 

below 30dB. At a 30dB SNR level, the performance of the pitch estimator was 

maintained for all the four noise types, although a slight increase in the standard 

deviation was observed comparing with the results in table 2.2. The pitch estimator 

only managed to achieve just over 50% accuracy when the SNR level was reduced to 
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OdB. The pitch estimation performance degraded even more rapidly for transition 

frames than for voiced frames when the SNR level was reduced. From table 2.3 

(including transitions) and figure 2.16b, it may be seen that the estimated pitch­

period for more than 60% of the entire voicing transition set was incorrectly 

estimated with a OdB SNR level, for all the four noise types. 

2.6.5 Performance of the post-processing unit 

To enhance the performance of the pitch estimator, the pitch-period 

refinement unit was introduced following the pitch estimator. The combined unit 

was tested with clean speech, the results obtained being presented in table 2.4. A 3-

point median smoother was imposed to form a completed pitch post-processing unit. 

The unit was tested for clean speech as well as speech received in various noise 

backgrounds. The experimental results are shown in tables 2.5, 2.6 and figures 2.1 5a 

and b. 

2.6.5.1 Results of the pitch estimator with the pitch-period refinement unit using the 

clean speech file 

Accpe J.lerr Verr 
(%) (samples) (samples) 

Excluding voicing transitions 95.52 0.205 1.015 
Including voicing transitions 92.37 0.137 1.098 

Table 2.4 Results of the pitch estimator with the pitch-period refinement unit 
using the clean speech file. 

Results in table 2.4 in comparison to those in table 2.2 suggest that the 

number of gross errors have been reduced by about 55% disregarding transition 

frames and by about 45% when transition frames are included. Most of the 

remaining gross errors were found in voicing onset frames, where, generally, less 

than a complete pitch-cycle was contained in the analysis speech frame. These errors 

occur because the pitch-period refinement unit implements a forward-mode cross­

correlation function. It was also shown that the pitch-period refinement unit did not 

enhance the performance of the pitch estimator at voicing transitions. Only 15 gross 

errors occurring in the transition set were corrected by the pitch-period refinement 
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unit. Finally, both the mean and standard deviation of the fine pitch-period error 

were increased slightly, as compared to table 2.2. 

2.6.5.2 Results of the pitch estimator with the pitch post-processing unit using the 

clean speech file 

Accpe J.lerr verr 
(%) (samples) (samples) 

Excluding voicing transitions 93.99 0.292 1.185 
Including voicing transitions 91.15 0.293 1.160 

Table 2.5 Results of the pItch estImator wIth the pItch post-processmg Untt 
using the clean speech file. 

Comparing the results in table 2.4 with the results in table 2.5 indicate that 

the 3-point median smoother seemed to generate more errors in the pitch detector 

instead of improving its performance. Thirteen extra gross errors were introduced 

when excluding the transition frames. With the transition frames, 12 extra gross 

errors were made. An increase in the mean and standard deviation of fine pitch­

period error was also observed. The increase was due to the estimated pitch-periods 

in voicing transitions. During voicing onset frames, a pitch estimation error would 

result if there were not enough pitch structure. This would propagate to the future 

estimation through the use of the 3-point median smoother until a strong enough 

voiced speech arrives. During voicing offset frames, a rapid pitch-period change may 

happen while the signal is generally very weak. The median smoother tends to 

smooth out the pitch-period change in such regions. 

In order to further evaluate the effect of the median smoother, a PWI coder 

was deployed [81]. Two pitch detectors were used in the PWI coder. The first 

contained no median smoother and the second incorporated the full pitch post­

processing unit. The same speech file [21] was processed. The results suggested that 

the speech generated by the PWI coder with the median smoother was substantially 

better than the one without it. Many "wobble" sounds were heard in the output 

speech from the first version. The output speech obtained from the second version of 

PWI coder contained no such "wobbles". It appears that, although the 3-point 

median smoother introduced more pitch detection errors than it removed, it still 
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managed to improve the subjective quality of the output speech by ensuring a 

smoother pitch trajectory overall. 

2.6.5.3 Results of the pitch estimator with the pitch post-processing unit using the 

noisy speech files 
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Figure 2.17 Perfonnance of the pitch estimator with the pitch post-processing unit using the noisy 

speech files. (a) excluding the transition frames (b) including the transition frames 

Excluding Transitions Including Transitions 
Noise type J.l.err verr J.l.err Verr 

(samples) (samples) (samples) (samples) 
wn30dB 0.259 1.237 0.206 1.204 
wn20dB 0.296 1.420 0.216 1.430 
wnl0dB 0.385 1.690 0.311 1.676 
wnOdB 0.630 2.030 0.538 2.031 
cn30dB 0.296 1.206 0.245 1.177 
cn20dB 0.340 1.314 0.295 1.274 
enl0dB 0.356 1.682 0.298 1.643 
enOdB 0.454 1.934 0.397 1.861 

bn30dB 0.300 1.241 0.254 1.198 
bn20dB 0.369 1.429 0.301 1.393 
bnl0dB 0.404 1.597 0.322 1.578 
bnOdB 0.543 1.948 0.445 1.940 

mn30dB 0.287 1.252 0.235 1.207 
mn20dB 0.322 1.298 0.267 1.261 
mnl0dB 0.422 1.417 0.336 1.414 
mnOdB 0.434 1.613 0.365 1.571 

Table 2.6 Means and standard deviations of the fine pitch-period errors of the pitch estimator 
with the pitch post-processing unit using the noisy speech files. 
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Results in figure 2.17 suggest that the robustness of the pitch estimator for 

noisy speech was greatly increased by the pitch post-processing unit. Comparing the 

results in figures 2.17 and 2.16, more than 40% of the gross errors were corrected by 

the pitch post-processing unit and about 90% pitch estimation accuracy was 

maintained when the SNR level was reduced to 20dB for all the four noise types. 

The pitch estimation accuracy dropped rapidly as the SNR level was reduced below 

20dB. Only about 35% of the gross errors in figure 2.16 were corrected for a OdB 

SNR level, in all the four noise types. This was because the first pitch-period 

estimation provided by the pitch estimator was already wrong (for example a sub­

multiple pitch error). The pitch-period refinement unit was not capable of rectifying 

these errors and the estimation error propagated to the following speech frames. 

Comparing figures 2.l7a and b, the pitch post-processing unit seemed to 

have very little effect on the transition frames. The pitch estimation accuracy 

dropped by about 5% for the transition frames. Results in figure 2.17 also suggest 

that the pitch estimator was more successful with the multi-speaker noise than with 

the other types of noise. The performance for the car noise and babble noise were 

very close. The white noise seemed to have the worst effect on the pitch estimator. 

2.6.6 Performance o/the two-way pitch detector 

To assess the performance of the TPD, the clean speech file [21] and the 

speech received under the four noise types [90]-[93] were used again. The results for 

clean speech conditions are reported as, 

Acc.luv = 97.56% 

Acc pe = 90.53% 

Pm = 0.332 (sam pIe) 

Vm = 1.406 (sa m pIe) 

2.6.6.1 Speech classification accuracy of the TPD using the noisy speech files 

The speech classification accuracy of the TPD for the speech files 

synthesised with the four noise backgrounds are presented in figures 2.18. 
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Figure 2.18 Speech classification accuracy of the TPD using the noisy speech files. 

Considering the speech classification, the results in figure 2.18 suggest that the TPD 

performed well in all noisy backgrounds when the SNR level was above 20dB. In all 

the cases, over 90% accuracy was still maintained. However its performance 

dropped considerably when the SNR was reduced below 20dB. The pitch detector 

performed better for the white noise than for the other three types of noise. This was 

due to the enhancement in the effect of the PR in classifying unvoiced speech. The 

multi-speaker noise which also has a fairly flat frequency spectrum, was found to be 

the least damaging of the remaining three noise types for the pitch detector. The car 

noise had the worst effect on the pitch detector. This is very much due to the 

detector's poor ability to detect unvoiced speech in such conditions (figure 2.15b). In 

case of babble noise, the pitch detector performed moderately. 

2.6.6.2 Pitch estimation accuracy of the TPD using the noisy speech files 

The pitch estimation accuracy of the TPD for the speech files synthesised 

with the four noise backgrounds are presented in figure 2.19. The mean and the 

standard deviation measures of the fine pitch-period error are tabulated in table 2.7. 

In case of the pitch estimation accuracy, the TPD performed fairly 

consistently for all the four types of noise, when the SNR level was above 20dB. 

When the SNR level was reduced below 20dB, the performance of the TPD 

deteriorated, in the cases of white, car and babble noise. However, the TPD seemed 

to continue to perform well for the multi-speaker noise. Less than a 5% reduction in 

pitch estimation accuracy was found, when the SNR level was reduced from 30dB to 

OdB. This is because the speech classifier performed poorly for the multi-speaker 
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noise. Only the voiced speech which exhibited a highly periodic structure could be 

correctly recognised as a voiced frame and thus its pitch-period could be correctly 

estimated. Finally, results in table 2.8 suggest that both the mean and standard 

deviation of the fine pitch-period errors increase when the SNR level was reduced. 

An exceptional case is seen once again in the multi-speaker noise, in which the mean 

and standard deviation of the fine pitch-period errors decreased when the SNR level 

was reduced. 
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Figure 2.19 Pitch estimation accuracy of the TPD using the noisy speech files. 

SNR Level 
30 dB) 20 (dB) 101dB) o (dB) 

J..lerr Verr J..lerr Verr J..lerr Verr J..lerr Verr 

White 0.340 1.338 0.368 1.486 0.455 1.555 0.535 1.598 
Car 0.339 1.417 0.432 1.475 0.429 1.573 0.375 1.641 

Babble 0.336 1.432 0.301 1.443 0.480 1.756 0.639 1.883 
M ul ti -speaker 0.338 1.412 0.319 1.366 0.333 1.263 0.173 0.813 
Table 2.7 Means and standard deViations (samples) of fine pitch-period errors of the TPD using 

the noisy speech files. 
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2.7 Conclusions 

A two-way pitch detector (TPD) has been proposed and evaluated. The TPD 

consists of a pitch pre-processing unit, a speech classifier, a pitch estimator and a 

pitch post-processing unit. In the pitch pre-processing unit, input speech is band­

limited to the range from 100Hz to 1 kHz, using two 2nd-order HR filters. The band­

limited speech signal is further processed by a 10th order LP analysis filter to yield a 

band-limited speech residual signal. The band-limited speech residual is used to 

compute a backward mode cross-correlation function. The speech classifier uses four 

features of the current speech frame and the speech classification of the previous 

speech frame to compute the voice confidence level of a speech frame. The features 

are the scaled rms speech power, the scaled band-limited rms speech power, the ratio 

between the two powers and the maximum correlation function in the cross­

correlation function. Speech classification is carried out based on the power ratio and 

the voice confidence level. If unvoiced speech is indicated, the pitch estimator sets 

the pitch-period to zero. In the case of a voiced frame, the delay associated with the 

global maximum in the cross-correlation function is used by the pitch estimator as 

the estimated pitch-period. The estimated pitch-period is further processed by the 

pitch-period refinement unit in the post-processing unit, in order to eliminate 

multiple-pitch errors which may occur. The result from the pitch-period refinement 

unit is further verified conditionally, by a 3-point median smoother. The TPD was 

tested for clean speech and for speech received with four types of noise. 

Experimental results suggest that the pitch detector works well in clean speech and 

for all the noisy speech examples when the SNR level was greater than 20dB. The 

performance of the pitch detector deteriorated when the SNR level dropped below 

20dB. 
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Chapter 3 

Lin~ Prediction: Analysis and Filtering 

3.1 Introduction 

Conventional waveform coders (such as PCM, DM, ADPCM) require a high 

bit-rate to transmit the information needed to maintain the perceptual quality of the 

decoded speech. To reduce the bit-rate while preserving perceptual quality, a 

parametric approach is required. Linear prediction provides a powerful tool for 

estimating the parameters which are assumed to control the human speech 

production mechanism. In linear prediction, a human speech production model is 

assumed which is separated into two components: a) an all-pole vocal tract transfer 

function H(z) which models the composite effects of the glottal excitation (for 

voiced speech), the vocal tract and lip-radiation, b) a speech excitation signal u(n). In 

voiced speech, the excitation signal u(n) is assumed to be a pseudo-periodic impulse 

train with each impulse separated by the current value of the pitch-period. In 

unvoiced speech, the excitation signal is assumed to be white noise which has a 

Gaussian distribution. The excitation signal conveys information which is strongly 

related to speech naturalness. A schematic diagram of the model is shown in figure 

3.1 [40]. A general account of linear prediction can be found in the literature 

[1 ][2][6][ 40][ 41]. 

Pitch-period 

Impulse 
generator 

Random noise 
1-----' 

generator 

u(n) 

G 

Vocal tract 
parameter 

Time-varying 
digital filter s(n) 

Figure 3.1 Schematic diagram of an all-pole model for speech production . 
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The assumed vocal tract transfer function is defined by the all-pole expression, 

where 

G is the gain parameter, 

G 
H( z) = -----:p::----

1 + L aj Z-I 
I -I 

P is the order of the transfer function, 

aj are the coefficients of the denominator polynomial, 

The all-zero transfer function A(z) is defined as, 

Therefore, 

p 

A(z) = 1 + L a, Z-I 
; -I 

G 
H(z) = A(z) 

Equation 3.1 can be represented in the time-domain by a difference equation, 

p 

s(n) = Gu(n) - L a, s(n-i) 
j - I 

-oo<n<oo 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Equation 3.4 suggests that a speech sample s(n) can be predicted to some extent by a 

weighted sum of P previous samples of s(n). The weighting coefficients ai 

correspond to the coefficients of the denominator of the all-pole transfer function 

H(z). The optimum coefficients for a given segment ofN speech samples {s(n)}n=o, 

N-l are determined by minimising the sum of the squared differences between the 

p 

samples s(n) of the segment and the prediction to s(n): s(n) = - L aj s(n-i) over a 
j -I 

suitable range of values ofn. Let e(n) be the prediction error defined by, 

e(n) = s(n) - s(n) 

-oo~n<oo 
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To determine the optimum coefficients ai, for i = 1, 2, ... , P, for a given speech 

frame, the total squared error E is minimised over a range of M, where, 

M-I( P )2 
= L s(n)+l: a,s(n-i) 

,,_ 0 ,-I 
(3.6) 

The value of M will be discussed later. 

This is done by partially differentiating the total squared error with respect to each 

ffi . d . hI' h .. oE c· filter coe lClent an settmg t e resu t m eac case to zero, I.e. settmg -=0 lor 1 = oa, 

1, 2, ... , P. A set of P simultaneous equations is thus obtained for the aj coefficients, 

M-I PM-I 

- L s(n)s(n-i) = La, L s(n-i)s(n-/) 
,,-0 /-1 ,,-0 

(3.7) 

For a Pth order all-pole model, these equations may be expressed as follows, 

(3.8) 

i = 1, 2, ... , P 

with, 

M-I 

~(i,l) = L s(n - i) s(n -I) ,,-0 
(3.9) 

Equation 3.8 may be expressed in matrix form as, 

<l> a = 'l' (3.10a) 

with 

~(1, 1) ~(I,2) ~(I,P-I) ~(I, P) a. ~(1, 0) 

~(2, 1) ~(2,2) ~(2,P-l) ~(2,P) a2 ~(2,0) 

~(3, 1) ~(3,2) ~(3,P-l) ~(3, P) aJ = - ~(3,0) 
(3.10b) 

~(P,I) ~(P,2) ~(P, P-l) ~(P,P) ap ~(P,O) 
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The optimum filter coefficients can be obtained by solving the set of P linear 

equations. 

There are two commonly used LP analysis methods, namely the 

autocorrelation method and the covariance method. The two methods differ in the 

way they define the range of summation M in equation 3.6 for a given speech frame 

ofN samples [2]. 

For the covariance method, M is made equal to N and samples of s(n) for 

n<O are taken to be the appropriate samples of the previous frame. For the 

autocorrelation method, M is made equal to N+P and samples of s(n) are taken to be 

zero for n<O and n>N-l. The two methods will produce slightly different all-pole 

models [42][43] for the given speech frame. 

In the autocorrelation method, a tapered window is generally used to 

gradually diminish the speech samples as the frame boundaries are approached. The 

set of linear equations can be solved efficiently using Durbin's algorithm [2]. The 

autocorrelation method predicts an all-pole model which is, in principle, stability 

guaranteed. The estimated spectrum includes the effect of the analysis window. 

Wind owing is not necessary in the covarlance method. Instead, speech 

samples in the previous speech frame are included during the analysis. The 

covariance method has the potential for more accurate performance than the 

autocorrelation method [43]. However the stability of the resulting all-pole model is 

not guaranteed. The all-pole model tends to become less stable as the number of 

speech samples in the analysis is reduced [43]. 

It was suggested [44] that the autocorrelation method can be used to produce 

approximately the same result as the covariance method by extracting a single 

speech cycle from the voiced speech and circularly repeating the periodic cycle. 

Using this approach, the advantages of the two methods can be obtained. 
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In the autocorrelation method and the covariance method of LP analysis, the 

aj coefficients are estimated via two steps [2]: a) computation of the correlation 

matrix and b) solving the set of P linear equations. A class of LP analysis techniques 

which combine the two procedures is also available. These techniques are known as 

lattice LP analysis techniques [2]. The lattice methods have the advantage over the 

autocorrelation method that they require no tapered window to modify the speech 

segment being analysed [45]. Unlike the covariance method, the stability of the all­

pole transfer function computed by the lattice methods can be easily preserved [45]. 

The disadvantage in using lattice methods over the autocorrelation method and the 

covariance method is the increase in the computational complexity [45]. Burg's [45] 

method is a particul~effective lattice method which is investigated later in the 

chapter. 

In linear prediction, after the set of aj coefficients has been computed for a 

given frame of speech, the corresponding frame of speech excitation can be obtained 

by passing the frame of speech through an LP analysis filter, which has the transfer 

function defined by the all-zero model A(z). This is effectively to flatten the 

frequency spectrum of the frame of speech signal in the frequency-domain. 

Conversely, the short-term frequency spectrum can be re-imposed onto the frame of 

speech excitation signal using an LP synthesis filter, which has a transfer function 

defined by the all-pole model H(z). The simplest form of LP analysis and synthesis 

filters uses ladder structures, shown in figures 3.2a and b respectively, where the aj 

coefficients are directly used as the ladder filter coefficients. 

s(n) ---1r------+I e(n) e(n) 

" Analysis stage tI 

. -a2. i : 0 
~ 

" Synthesis stage" 

w W 
Figure 3.2 The schematic diagram of an LP analysis/synthesis filter pair. 
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Owing to the poor performance of aj coefficients under quantisation [55] and 

interpolation [49], they are usually transformed to other representations for 

quantisation and interpolation. Alternative representations of aj coefficients include 

PARCOR coefficients, log-area ratios and line spectral frequencies [55][56]. It is 

reasonable to believe that the computational efficiency of the LP analysis and 

synthesis filter may be increased by using filter structures appropriate to the chosen 

parametric representation, thus avoiding the need to convert between the new 

representation and the aj coefficients. 

Line spectral frequencies (LSF's) have been widely used in the past decade 

as an alternative representation of aj coefficients, due to their good performance in 

quantisation [56] and interpolation [49]. The LSF's can be directly used as 

parameters of analysis and synthesis filters [47][50], and thus the computational cost 

of converting between the LSF's and the aj coefficients can be eliminated. 

LP analysis techniques have been briefly discussed above. Various important 

decisions have to be made when LP analysis is implemented in practice. These 

include the choice of a suitable LP analysis method and the associated window 

function, the location of the window in the speech frame being analysed [42] and the 

structure of the LP analysis and synthesis filters. These aspects will be discussed 

later in this chapter. In sections 3.2 and 3.3, LP analysis using the autocorrelation 

method and 8urg's method (which is a form of lattice LP analysis) will be 

introduced respectively. In section 3.4, an LSF analysis and synthesis filter pair 

which is used as an alternative to LP ladder analysis and synthesis filters will be 

presented. The two filter structures will be compared using both objective and 

subjective tests. In section 3.5, the accuracy of the autocorrelation method and 

Burg's method in LP analysis will be compared using a synthetic vowel. Both pitch­

asynchronous and pitch-synchronous LP analysis will be conducted. The two 

methods i.e. autocorrelation method and Burg's method will also be compared when 

the size of the analysis window is smaller than a complete pitch-cycle. In section 3.6, 

the two methods will be examined using a speech file of clean natural speech [21]. 
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3.2 LP analysis using the autocorrelation method 

In the autocorrelation method of LP analysis, each speech frame is defined 

over a finite range, from n = 0 to N-l say, the speech samples outside this range 

being assumed to be zero. Thus if the summation range of the error signal is defined 

to be n = -ex) to o(), the summation will have non-zero values only for values of n 

between 0 to N+P-l. Therefore, 

(3.11) 

where Sw is the frame of speech signal multiplied by a window function. 

Under the assumption that the speech samples outside the range n = 0 to N-l are 

zero, equation 3.11 can be expressed as, 

N+P-I N-l-(i-I) 

~(i,l) = Lsw(n-i)sw(n-l) = Lsw(n)sw(n+i-l) 
n=O n-O 

(3.12) 

where f/J(i,l) in this case is an autocorrelation function for a delay (i-I), i.e. 

f/J(i,l) = R(i -I) 
(3.13) 

As the Autocorrelation function R(i) is an even function of R, the set of P linear 

equations may be re-expressed as, 

(3.14) 

i = 1,2, ... , P 

with, 

N - I - I 

R(i) = L sw(n)sw(n + i) 
n - 0 

(3.15) 

In matrix form, equation 3.14 is expressed as, 

Ra=9t (3.16a) 

with 
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R(O) R(1) R(P-~) R(P~\) al R(I) 

R(I) R(O) R(P-3) R(P-l} a2 R(2) 

R(2) R(1) R(P-+) R(P-3) a3 =- R(3) 
(3.16b) 

R(P:...t) R(P-J') R(1) R(O) ap R(P) 

The matrix R is a Toeplitz matrix. The P linear equations can be solved by Durbin's 

recursive algorithm [1] which is described below. 

First, the autocorrelation coefficients R(i) are computed for i = 1, 2, ... , P. 

Then the first filter coefficient at is computed as: 

(3.17a) 

(3.17b) 

where E(O) = R(O). Index i is now set to 2 and a set of coefficients a~) are 

computed for j = 1, 2, ... , i-I, using equations 3.I7c to f. 

R(i) + af' -I) R(i -1) + ... + a,(~i I) R(I) 
ki = - £(i-I) (3.17c) 

a?) = ki (3.17d) 

a
(i) - a(i-I) + k· a(i~l) 
J - J "-) 

j = 1, 2, ... , i -1 
(3.17e) 

E(i) = (1- kl) EO -1) (3.170 

This procedure is repeated for i = 3, 4, ... , P. The ith filter coefficient aj is taken as, 

a - at;) ,- , (3.17g) 

The vocal tract transfer function can be modelled by an all-pole digital filter shown 

in figure 3.2b. 
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3.3 LP analysis using Burg's method 

During the derivation of the aj coefficients, for i = 1,2, ... , P, using Durbin's 

recursive algorithm, a set of intermediate parameters, kj for i = 1, 2, ... , P, are 

obtained. It is known [45] that stability of the all-pole transfer function H(z) 

obtained from Durbin's algorithm is guaranteed if, 

-1 S k; S 1 (3.18) 
i = 1,2, ... , P 

s(n) _r--fO_) _(n_) _,......,~ fP-I) (n) fP) (n) 

e(n) 

Gu(n) 
fP) (n) 

(a) 

(b) 

b(P) (n) 

fO) (n) 
r--r----T+ s(n) 

Figure 3.3 The schematic diagram ofa lattice filter pair. 
(a) the analysis filter (b) the synthesis filter 

The all-pole transfer function H(z) obtained from Durbin's algorithm can be 

implemented in the form of a recursive lattice filter, as shown in figure 3.3b, rather 

than a ladder structure, as shown in figure 3.2b. If the lattice coefficients kj are made 

identical to the kj coefficients obtained from Durbin's algorithm, the transfer 

function of the lattice filter will be identical to that of the ladder filter in figure 3.2 

with the corresponding aj coefficients obtained from Durbin algorithm. For any set 

of stable aj coefficients, there is a corresponding set of stable kj coefficients and vice 

versa. Hence a lattice filter can be devised with the same transfer function as a given 

ladder filter and vice versa. Given a recursive lattice filter as shown in figure 3.3b 
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realising H(z), a corresponding non-recursive (all-zero) lattice filter, as shown in 

figure 3.3a with the same ki coefficients, realises A(z). The coefficients ki of a lattice 

filter are often referred to as partial correlation (PARCOR) coefficients. The non­

recursive lattice filter realising A(z) generates a series of prediction errors fen) and 

ben) defined by, 

j(i) (n) = j(i-l) (n) + ki b(i-I) ( n-l ) 

b(i)(n) = ki j(i-I) (n) + b(i-I)( n-l) 

i = 1,2, ... , P 

(3.19a) 

(3.19b) 

where j(i)(n) is known as the forward prediction error and b(i)(n) is known as the 

backward prediction error at lattice stage L When speech samples s(n) are applied as 

input to the non-recursive lattice filter, the two prediction errors fen) and bO(n) at the 

input to the first lattice stage satisfy, 

(3.20) 

The output of the non-recursive lattice will be the LP residual e(n) which will be 

identical to what would be obtained from the corresponding non-recursive ladder 

filter. The Pth order non-recursive lattice output is the forward prediction error at the 

Pth stage, Le. 

e(n) = j(P) (n) (3.21) 

The recursive lattice filter realising H(z) given PARCOR coefficients ki for i 

= 1,2, ... , P, computes the forward and backward errors at end stage from the input 

e(n) as follow, 

j(i-l) (n) = j(i) (n) - ki bU-I)( n-l ) 

b(i) (n) = k
i 
j(i-I) (n) + b(i-I)( n-l ) 

i = 1,2, ... , P 
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The synthesised speech signal s(n) is taken from the forward prediction error at the 

lattice output, i.e. lattice stage zero. 

A way of computing ki coefficients, for an LP lattice filter, which is different 

from the autocorrelation method, is achieved by computing the PARCOR 

coefficients individually at each lattice filter stage. The computation is done by 

considering the forward and/or backward errors at the particular stage, windowed " 

appropriately for that stage. There are several variations of this approach. In one of 

N-I 
the variations, the squared forward prediction error, E(i) = L f(i)(n)2, at each 

n.O 

Cl 
. . ... d Th" . db' 0 E I 0 fi h k . h . 1 stage 1 IS mmImlse. IS IS carrle out y settmg -- = or eac i WIt 1 = , ok, 

2, ... , P. Hence, 

N-\ 
- L fJ-I>(n) Hi-I>(n-l) 

n=O 
k," = ---:-:N:--:'".------

- 2 
L Hi-I>( n-l ) 

n=O 

(3.23) 

i=12··· P " , 

The set of P ARCOR coefficients generated by this equation will be different from 

those obtained for the autocorrelation method because a) the frame of speech 

samples is not modified by a tapered window b) the range of error signal is defined 

only from n = 0 to N-l. 

Alternatively, a set of PARCOR coefficients may be obtained by minimising 

N -, 0 E(i) 
the squared backward prediction error, E(i) = L b(/)(n) 2 , by setting -- = 0 

n.O 0 kl 

for each stage i with i = 1,2, ... , P. In this case, we obtain, 

N-\ 
- L /(i-I) (n) h(i-\) ( n-l ) 

n=O 
k; = ---N-:-:-"_:-\ ------

L j(i-1) (n)2 
(3.24) 

n=O 

i=12· .. P " , 
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The ki coefficients derived using equations 3.23 and 3.24 are not stability guaranteed 

[45]. In order to provide a stable set of filter coefficients, Burg's method may be 

used. In Burg's LP analysis, the sum of the squares of the forward and backward 

prediction errors at each stage is minimised [45]. Thus, the error at the ith stage is 

defined as, 

(3.25) 

• 

By differentiating the total error E(i) with respect to each ki coefficient at the ith stage 

for i = 1,2, ... , P, the set of PAR COR coefficients can be determined using equation 

3.26, 

(3.26) 

i = 1,2, ... , P 

The kj coefficients derived from equation 3.26 is always bounded by ±t. This can be 

N-I 2 
shown using the inequality that L (f(n) + b(n») ~ 0 and thus, 

n-O 

N-I N-I N-I 

L f2(n) + L b2(n) ~ -2 L f(n)b(n). 
n-O n-O n.O 

As a result, the all-pole transfer function H(z) derived from Burg's method can be 

stability guaranteed. 

To obtain the set of aj coefficients corresponding to a given set of ki 

coefficients, equations 3.l7d, e and g are repeated to compute each aj from ki for i = 

1,2, ... , P. 
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3.4 Implementation of the vocal tract filter 

LP analysis allows speech segments to be modelled in terms of a vocal tract 

transfer function and an excitation signal. The vocal tract transfer function 

characterises the short-term frequency spectral envelope of the speech, and can be 

implemented by an all-pole digital filter. The required excitation signal may be 

obtained by passing the input speech segment through an LP analysis filter realising 

A(z). The output is the LP residual which, in principle, is equal to the required 

excitation signal. If the LP analysis has been well carried out the residual should be 

spectrally flat. 

A simple LP analysis filter in ladder form is shown in figure 3.2a. This is a 

FIR filter. The corresponding HR ladder synthesis filter is shown in figure 3.2b. The 

ladder filter coefficients are taken as the ai coefficients. Alternative implementations 

of the LP analysis and synthesis filters can be realised as the lattice structures, shown 

in figure 3.3a and b respectively. The filter coefficients in this case are the PARCOR 

coefficients. Lattice filters have been widely used in speech coders because of the 

quantisation characteristics of P ARCOR coefficients. In addition, the stability of the 

synthesis filter can be easily preserved by ensuring that all the PARCOR's are 

bounded by ± 1. 

3.4.1 LP filtering using the LSF filters 

Line spectral frequencies (LSF's) have been widely used as an alternative 

representation of aj coefficients [56]. They are more directly related to the short-term 

speech spectrum [48] than aj or kj coefficients. LSF's may be determined from the aj 

coefficients of a given inverse filter transfer function A(z), by decomposing A(z) 

into two all-zero transfer functions P(z) and Q(z) where, 

P(z) = A(z) + z-< p+ I) A( Z-I) 

Q(z) = A(z) - z-<P+I)A(z-l) 

(3.27a) 

(3.27b) 

where P(z) and Q(z) are P+ 1 order polynomials and we labelled the coefficients for 

each polynomial P(z) and Q(z) as Pi and qi respectively. 
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The zeros of P(z) and Q(z) are the required LSF's. They have the properties that 

H(z), which is equal to lIA(z), is stable if and only if, 

a) All the roots of P(z) and Q(z) lie on the unit circle, 

b) The roots of P(z) and Q(z) are interlaced, i.e. if <Pi and 9 j are the roots for P(z) and 

Q(z) respectively for i = 1, 2, ... , P/2, then, 

o ~ f!J1 < (}I < ... < f!J~ < ()~ ~ 1( 

Given a set of P LSF coefficients, the transfer function A(z) may be derived from 

P(z) and Q(z) as follows, 

1 
A(z) = 2 [ P(z) + Q(z) ] (3.28) 

3.4.1.1 The LSF synthesis filter 

Since the LSF's lie on the unit circle, P(z) and Q(z) can be facto red into 

second order linear phase polynomials [46]. To simplify the analysis only even order 

LP analysis 'is. considered, i.e. P is always even. In this case, we can express P(z) 

and Q(z) as, 

'h 
P(z) = ( 1 + z·l)n (1 - 2COSf!Ji Z·I + Z·2 ) 

, - 1 

~ 
Q(z) = ( 1- Z·I ) n (1- 2cos(}j Z·I + Z·2 ) 

I - I 

The vocal tract transfer function is, 

1 
H(z) =-­

A(z) 

= Yz [ P(z) + Q(z) ] 

1 

- 1 + Yz [( P(z) - 1 ) + ( Q(z) - 1 ) 1 
=---

1 + W(z) 
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where 

W(z) = ~ [( P(z) - I ) + ( Q(z) - 1 )] (3.31 ) 

Equation 3.30 can be implemented by a recursive signal flow graph as shown in 

figure 3.4, 

e(n) --+I H(z) ~ s(n) e(n) ~--J-"'--'~ s(n) 

-~ W(z) I 
Figure 3.4 The signal flow diagram of an LSF synthesis filter. 

Equation 3.31 suggests that W(z) is composed of two modules, P(z) - 1 and 

Q(z) - 1. The two modules can be expressed as [46], 

P(z) - 1 = z-t (3.32a) 

• 

Q(z) - 1 = Z-I 

'X - t I 

( d t + z-t) + L (dl + I + Z-I) n (I + d j z-t + Z-2 ) 
I. I j. I 

~ 
+ n (1 + d; Z-I + Z-2 ) 

j. t 

(3.32b) 

where c; = - 2 cosq>; and d; = - 2 cos B; 

From equations 3.32a and b, each module can be implemented by cascading a 

number of second order sections. W(z) can thus be realised by summing the output 

from each module and dividing by two. A filter structure may thus be derived whose 

multiplier values are LSF coefficients and whose transfer function is H(z). Such a 

filter may be referred to as an "LSF synthesis" filter. As an example of a 10th order 

LSF synthesis filter is shown in figure 3.5. 
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s(n) 
~-----------------------------------------------r. 

Figure 3.5 A 10th order LSF synthesis filter. 

Cl = - 2 COStpl 

d I = - 2 cos B, 

3.4.1.2 The LSF analysis filter 

The simplest form of LSF analysis filter may be implemented directly from 

equation 3.28. Equation 3.28 suggests that an LSF analysis filter can be realised 

using two separate ladder filters which model the all-zero polynomials P(z) and Q(z) 

respectively as illustrated in figure 3.6a. 

s(n) 

(a) 

e(n) s(n) 

(b) 

Figure 3.6 A simple LSF analysis filter. 
(a) The structure of the filter (b) The signal flow diagram of the filter 
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The filter residual signal is taken as the sum of the outputs from the two ladder 

filters and dividing by two. The signal flow graph of such a filter structure is shown 

in figure 3.6b. The computation of the filter coefficients Pi and qi from the ai 

coefficients are presented in Appendix B. 

The behaviour of an LSF analysis filter and its corresponding LSF synthesis 

filter were investigated using the speech file "OPERA TOR.DAT" [21]. A 200 

sample asymmetric window (which will be discussed section 3.4.2) was used to 

extract a 200 sample segment consisting of 160 samples from the current frame, the 

first 40 speech samples in the window being taken from the previous speech frame. 

A 10th order LP analysis was perfonned on the windowed speech segment using the 

autocorrelation method to yield a set of aj coefficients. The set of aj was then 

converted to LSF's (the conversion from aj coefficients to LSF's is presented in 

Appendix B. After the set of LSF' s was available, the frame of 160 speech samples 

was processed by the LSF analysis filter to obtain an LP residual. The LP residual 

was then used as the input to the LSF synthesis filter which would be used to 

reconstruct the frame of speech. Theoretically, the output from the LSF synthesis 

filter should be identical to the input to the LSF analysis filter. This was indeed the 

case in practice when the filters were in a time-invariant state, i.e. when the LSF's 

were constant over time. Problems arise, however, when the LSF's are made to vary 

over time, for example by updating the LSF's at 20ms intervals. 

In figure 3.7a, a segment of speech used to test the LSF analysis and 

synthesis filters is presented. LP analysis was perfonned on the 160 sample speech 

segment (with 40 samples being taken from the previous frame) to yield the aj 

coefficients. The aj coefficients were converted to LSF's. The LSF's were used to 

update the LSF analysis and synthesis filters at exactly the same point in time. In 

figure 3.7b, the output from the LSF synthesis filter shows that a transient effect 

occurred at the beginning of the frame, i.e. just after the point when the LSF's were 

updated. At the beginning of the frame, the LSF synthesis filter output is rather 

different in shape from the LSF analysis filter input. The shape then starts to become 

more similar towards the middle of the frame and is very similar towards the end. A 

certain period was therefore required at the beginning of each frame for a transient 
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effect to die away and the expected waveshape to emerge. Experiments indicated 

that the perceptual quality of the output speech can be seriously affected by this 

transient effect at the beginning of each frame. 

A m plltude 

2000 T 

I 
'000 t 

.'000 J. 
I 
I 

i 
-2000 .l 

I 

.2000 .L 

., •• ch •• m, I,. 

(8) 

., •• ch •• ", pi" 

(b) 

Figure 3.7 Perfonnance assess of the LSF filter pair in figure 3.6. 
(a) the original speech signal (b) the reconstructed speech signal by the LSF filter pair 

The cause of the transient effect was found to be due to differences in the 

memory contents in the analysis and synthesis filters, when the LSF's are being 

updated. The differences arise from the way the analysis filter is realised (figure 3.6) 

and the way the synthesis filter is realised (figure 3.5). Although under time­

invariant conditions (fixed coefficients), these filters are exact inverses of each other, 

they are not exact inverses of each other when the LSF coefficients are allowed to 

vary. This suggested that a more complicated structure for the LSF analysis filter 

should be used which is based on the structure of the synthesis filter. The objective 

is to make the memory content in both filters remain identical throughout regardless 

of how the coefficients are changed (as long as they are changed identically for both 

filters). Using this argument, equations 3.30 and 3.31 are recalled and the LSF 

analysis filter transfer function is re-expressed as, 
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= 1 + 15: [( P(z) - 1 ) + ( Q(z) - 1 )] (3.33) 

Equation 3.33 is repeated diagrammatically in figure 3.8a. The signal flow graph of 

the new LSF analysis filter is shown in figure 3.8b. 

s(n) - ....... C--~W~(Z-)-j-+l + )----.~ e(n) 

(a) 

s(n) 

(b) 

Figure 3.8 A new LSF analysis filter. 
(a) The structure of the filter (b) The signal flow diagram of the filter 

Experimental results showed that the transient effect is completely eliminated by 

using such an LSF analysis filter and a perfect reconstruction of the original speech 

signal is always achieved even when the speech is highly non-stationary. 
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3.4.2 Advantages of using the LSF filters 

In this section, the advantages of using the LSF analysis and synthesis filters 

illustrated above rather than conventional LP ladder-type filters are explored. The 

advantages are particularly important when the aj coefficients are interpolated 

between updates at the decoder and the encoder especially on a sample-by-sample 

basis. The meritsof sample-by-sample interpolation are explored. 

It was suggested [50] that maximum smoothness of the reconstructed speech 

can be achieved by interpolating the aj coefficients of the all-pole transfer function 

on a sample-by-sample basis between one update point to the next. However, 

instability may occur when aj coefficients are interpolated in this way. It is easy to 

demonstrate that interpolating aj coefficients on a sample-by-sample basis between 

two sets of stable coefficients can produce intermediate sets which correspond to 

unstable all-pole synthesis filters. Although an unstable filter coefficient set can be 

detected and suitable adjustment made, this incurs a considerable computational 

cost. In addition, transient effects due to the interpolation of the aj coefficients at 

voicing transitions may seriously degrade the perceptual quality of the reconstructed 

speech. Synthesis filter instability can be eliminated by interpolating LSF's instead 

of aj coefficients and a smoother evolution of the vocal tract function can be 

anticipated [50]. 

In the experiment, the input speech signal was segmented into 20ms frames 

(160 samples per frame ~8 kHz sampling frequency). Autocorrelation method LP 

analysis was performed on consecutive windowed speech segments each containing 

200 samples, which include 40 overlap samples from the previous speech frame. An 

asymmetric window composed of half of a Hamming window and a quarter of a 

cosine function was used, as shown in figure 3.9a. The frequency response of such 

an asymmetric window is shown in figure 3.9b. 

( 
21!n ) 

0.54 - 0.46 cos 2M _ 1 OSnSM-l 

( 
21!{ n - M) J 

cos ----4{Nw-M-P 

(3.34) 
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Figure 3.9 An asymmetric window used in autocorrelation LP analysis. 
(a) the window shape (b) frequency response of the window 

4000 

The asymmetric window was chosen because it has a similar frequency response to a 

240 samples Hamming window with a smaller system delay [18]. In figures 3.l0a 

and b, the 240 samples Hamming window and its frequency response are shown. In 

the Hamming window, 40 overlap samples are needed from both the previous and 

next frames. This means a Sms coder delay to look ahead the future samples. 

Through the application of the asymmetric window, the delay can be avoided. 
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Figure 3.10 A Hamming window used in autocorrelation LP analysis. 
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The autocorrelation method LP analysis was applied to the windowed speech 

to yield the aj coefficients. A 10th order LP analysis was used and 10 filter 

coefficients were therefore required. In the case of the ladder filters, the aj 

coefficients were directly applied to the ladder analysis filter. Otherwise, the aj 

coefficients were converted to LSF's using an iterative process (Appendix B) and the 

LSF analysis filter in figure 3.8 was used. In both filter structures the filter 

coefficients were linearly interpolated on a sample-by-sample basis. It is known that 

unstable filter coefficient sets may be found when the aj coefficients are interpolated. 

A large proportion of the unstable filter coefficients were found during voicing 

transitions. Although the unstable filter coefficients would not affect the analysis 

filter, transient effects occur when the filter coefficients are used in the synthesis 

filter. Filter instability can be eliminated by calculating the PARCOR coefficients 
e..l\SIJSi~ 

corresponding to the current set of aj coefficients and that these lie between 

+ 1 and -1. In the experiment, when unstable filter coefficients were detected, the 

previous stable set of aj coefficients were used to replace them. In case of the LSF 

analysis filter, the filter stability is automatically preserved while interpolating the 

LSF's. This is because if the LSF's are interlaced at the beginning and the end of a 

speech frame, they will remain interlaced throughout. 

3.4.2.1 Objective measures 

Two objective measures were used to compare the effect of sample-by­

sample interpolation on the two types of filter coefficients. These were a long-term 

prediction gain (Gip) and the percentage of statistical outliers (SO) for the segmental 

prediction gain. The long-term prediction gain, comparing the energy of the filter 

residual with that of the input speech signal, is defined as, 

L-I 

L i(n) 
n-O 

Gip = 1010g L-I (dB) 
(3.36) 

L r2(n) 
n-O 

where L is the total number of speech samples in the tested speech file 

A high Gip means that the analysis filter is likely to reflect the effect of the vocal 

tract more accurately so that the filter residual may be closer to a true excitation. The 
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percentage of statistical outliers is useful as a measure of the consistency of the 

analysis filter. The measurement is made by calculating, on a frame by frame basis, 

the average segmental prediction gain ( G .,p) which is defined as, 

N-I 

_ 1 M-I n~os~(n) 
G.,p = M L 1010g N-I (dB) 

m-O L r~(n) 
n.O 

where 

Gsp is the segmental prediction gain 

sm(n) is the nth sample of frame m 

N is the number of speech samples in a speech frame 

M is total number of speech frame in the tested speech file 

A threshold value (Gth) is defined, 

G1h = G.,p - 3 (dB) 

(3.37) 

(3.38) 

and any speech frame which has a segmental prediction gain less than the threshold 

is classified as an outlier. 

i) Objective assessment of the LSF analysis filter 

The speech file "OPERATOR.DAT" was used [21] and the objective 

measurement are summarised in table 3.1. 

Ladder LSF 
Gip (dB) 10.456 10.439 
SO(%) 42.11 42.11 

Table 3.1 Objective measurements of the two methods 

Experimental results indicated that the two methods performed closely, with respect 

to both the Gip and the SO measure. Thus, it can be concluded that interpolating LSF 
:to 

coefficients produces results which are comparablelihose obtained by interpolating aj 

coefficients in the re.spect of minimising the energy of an LP residual, i.e. in 

reflecting the vocal tract effect. 
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ii) Objective assessment of the LSF synthesis filter 

To assess the performance of the LSF synthesis filter, a CELP coder was 

used. The CELP coder is presented in Appendix A. In the experiment, the aj 

coefficients for each speech sub-frame (40 samples) were computed by linearly 

interpolating the LSF's across the adjacent frames. These were converted back to the 

aj coefficients and used in the synthesis filter. Otherwise, the LSF's were 

interpolated on a sample-by-sample basis and applied to the LSF synthesis filter 

directly. The performance of the CELP coder was evaluated using a signal-to-noise 

ratio (SNR) measure, 

N-I 

L s~(n) 1 M-I n-O 
SNR = M L 1010g 7.'N~_I:---------

m-O ~ ( ,. )2 ~ Sm n) - Sm(n) 
n-O 

(3.39) 

The speech file "OPERA TOR.DAT" [21] was tested and the SNR measures 

obtained are tabulated in table 3.2. 

40 sample-by-sample 
sampleslblock interpolation 

I SNR (dB) 11.121 11.513 
Table 3.2 The performance ofthe CELP coders 

The results showed that an about 0.4 dB SNR improvement is obtained in the CELP 

coder using the sample-by-sample LSF synthesis filter. 

3.4.2.2 Subjective assessment of both filtering methods 

Informal listening tests were carried out to assess the performance of both 

filter structures. This was done by incorporating the analysis and synthesis filters, 

using the two filter structures, in a PWI coder [81] and a CELP coder [88]. Twenty 

people were invited to choose their preferred output speech. The results of the 

subjective evaluation are shown in figures 3.11 and 3.12. Results from the PWI 

coder (figure 3.11) showed that 11 out of the 20 people preferred the speech 

generated by the LSF filters while 2 expressed no preference. Similar results are 

obtained from the CELP coder, in which the perceptual quality of the reconstructed 

speech has been improved by using the sample-by-sample LSF synthesis filter. The 
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sample-by-sample adaptation may be achieved with a little additional computation 

complexity. 
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Figure 3.11 Infonnal listening test in comparing the performance of 
ladder tilters and LSF tilters using a PWI coder. 
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Figure 3.12 Infonnallistening test in assessing the~mple-by-sample LSF synthesis tilter using a 
CELP coder, in which a blockwise interpolated ladder tilter is used. 

3.4.3 Interpolation of LSF's in various block sizes 

In all the above experiments, a sample-by-sample interpolation scheme (Le. 

an interpolation block size of 1 sample) was always used for interpolating the LSF 

coefficients. Different interpolating block sizes in a speech frame were tested for the 

LSF analysis filter to assess the effect in increasing the size of an interpolation block 

on the' long-term prediction gain Gip. The variation of the block sizes was from 1 

speech sample to 160 samples, i.e. from sample-by-sample interpolation of LSF's to 

no interpolation. The results are presented in figure 3.13. 
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Figure 3.13 GIp perfonnance of the LSF analysis tilter under different interpolation block sizes. 

It can be seen that the performance of the LSF analysis filter deteriorates when the 

size of the interpolating block is increased. The maximum performance is achieved 
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by interpolating the LSF's on a sample by sample basis. The difference in the Gip 

between the two extremes is about 1.2 dB. It is also observed that the filter 

performance remained reasonably consistent for block sizes up to about 10 speech 

samples. The Gip reduced constantly when the interpolating block size is increased 

towards 160 samples, i.e. no interpolation. 

3.4.4 Conclusions of section 3.4 

LP filtering using ladder filter structures and different structures called LSF 

filters have been introduced. Two LSF analysis filter structures have been examined. 

Experimental results suggested that both the LSF analysis filters work perfectly in 

steady state. Transient effects occur in the first filter structure (figure 3.6) when the 

LSF's are adapted. This badly deteriorates the perceptual quality of the synthetic 

speech, especially during voicing transitions in which a substantial change in the 

LSF's may occur. Transient effects can be completely eliminated using the LSF filter 

structure in figure 3.8. 

The performance of the LSF analysis and synthesis filters has been compared 

with conventional ladder structures. Objective measurements showed that both filter 

structures perform comparably. Informal listening tests have been carried out using a 

PWI coder and a CELP coder. The results suggested that the decoded speech 

obtained by using the LSF filters are marginally preferable 10 ~ those obtained using 

conventional ladder filters. Owing to the computational simplicity of the LSF filters 

and the advantage of preserving filter stability during interpolation, it is concluded 

that the LSF filters can be used as an alternative to conventional ladder filters. 

Different interpolating block sizes for the LSF analysis filter have also been 

investigated. The results suggested that the performance of the LSF analysis filter 

deteriorates when the number of speech samples in an interpolating block is more 

than 10 samples. Finally, a sample by sample interpolation ofLSF's is recommended 

in order to maximise the performance of the LSF filters and hence to ensure a 

smooth evolution of the vocal tract transfer function. 
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3.5 Comparison of the autocorrelation and Burg's LP analysis 

method for synthetic speech 

In this section the autocorrelation method and Burg's LP analysis method are 

compared. Tests which have been carried out include pitch-asynchronous and pitch­

synchronous LP analysis. The experiments were to apply different LP analysis 

techniques to segments of synthetic speech. Segments were produced each 

containing one second of a synthetic vowel sound la:1 sampled at 8kHz. The 

synthetic vowel was generated by a 10th order LP synthesis filter excited by a train 

of impulses. Different pitch-periods were used. The filter coefficients were, 

al = -2.821 a2 = 3.099 a3 = -1.696 ~ = 1.085 as = -1.359 

Cl6 = 0.702 a7 = 0.314 ag = -0.342 a9 = -0.029 alO = 0.076 

In figure 3.14, the gain response of the LP synthesis filter is presented. An example 

of a 160 sample section of the synthetic vowel generated by an impulse train 

excitation, with pitch-period 40 samples, is shown in figure 3.15. 

log (Mlg.) 
(dB) 

40 ·c 

i 

J 
Figure 3.14 Spectral envelope ofa tested vowel sound 10:1 across the 4kHz bandwidth. 
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Figure 3.15 A section of synthetic vowel sound 10:1 with pitch-period 40 samples. 

A Hamming window wh(n) was used in the autocorrelation method [43], 

{ 
0.54 - 0.46COS( 2N

1r :1) 
when) w 

o otherwise 

In Burg's method, a rectangular window was used, 

w.(n) { ~ 
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where Nw is the length of the analysis window. The LP analysis was performed on 

the windowed speech signal, sw(n). A 10th order LP analysis was used in the 

experiment. The estimated spectral envelope for a given frame m was compared to 

the original using a spectral distortion measure, which is defined as [57], 

where 

Fs is the sampling frequency (8 kHz) 

Pm and Pm are the true and estimated LP power envelopes of the mth speech frame 

respectively, 

I 
P .. (f) = 71---~--~12 A .. ( exp ( j21rft J) (3.43a) 

P .. (f) = ..,.....-___ 1 ___ .....,..... 

I A .. ( exp( J21rij;,)) r (3.43b) 

The closer Dm is to zero, the better matched will be the estimated spectral envelope 

to the original for frame m. 

3.5.1 Pitch-asynchronous LP analysis 

In this section, the performance of the autocorrelation method and Burg 

pitch-asynchronous LP analysis method are compared. During the experiment, the 

analysis window was set to a fixed length of 160 samples, i.e. Nw = 160 samples in 

equations 3040 and 3 AI, to extract the speech samples being analysed. A 10th order 

LP analysis was performed on each windowed speech segment to yield the a set of aj 

coefficients. In case of Burg's method, the kj coefficient at each stage was computed 

by equation 3.26 and the set of kj coefficients was then converted to the aj 

coefficients. Note that the term b(i)( n -1) for n=O at each stage was set to zero in 

computing the kj coefficients at the stage. Once the set of P aj coefficients was 

available, they were zero padded to a fixed length of 512 samples and FFT analysis 

was performed to compute the power spectrum of the estimated all-pole transfer 

function. The estimated power spectrum was then compared with the reference 
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spectrum shown in figure 3.14 using the spectral distortion measure. Note that only 

FFT bin numbers 0 to 256 were included when computing the spectral distortion 

measure. The analysis was then repeated with the analysis window shifted by one 

sample on the synthetic speech. A third analysis was carried out with a further one 

sample shift of the analysis window, and this procedure was continued until the total 

shift became equal to a complete pitch-cycle. 

In figures 3.16, the measurements of spectral distortion obtained from both 

methods using three different pitch-periods are shown. The pitch-periods under test 

were 30, 80 and 120 sampling intervals. Figures 3.16a, c, and e show the 160 sample 

frames synthetic speech with pitch-periods of 30, 80 and 120 samples respectively, 

at zero shift on the analysis window. The results of the spectral distortion 

measurements for each of these three pitch-periods are shown in figures 3.16b, d and 

f respectively. 

The experimental results suggested that the autocorrelation method performs 

poorly when either end of the Hamming window coincides with a speech sample 

with large amplitude. The minimum spectral distortion was found when both ends of 

the analysis window contain on~relatively small speech amplitudes. Similarly, the 

accuracy of Burg's method could be preserved by avoiding situations where a pitch 

pulse appears at either end of the rectangular window. An example of such a 

situation is given in figure 3.16f, where a sudden increase in the spectral distortion 

is seen at a window shift about 80 samples. Referring to the speech segment in 

figure 3.16e, such an increase in the spectral distortion corresponds to the situation 

when the end of the analysis windows coincides with the pitch pulse of the pitch­

cycle. 

It is also noticed that the performance of both methods deteriorated as the 

pitch-period of the tested vowel was reduced. This may be due to the lack of 

information between adjacent pitch peaks on the speech signal. When the pitch­

period is small, there is not enough time to allow the complete effect of one 

excitation impulse to show on the speech samples before the arrival of the next 

excitation impulse. 
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Figure 3.16 Spectral distortion measure Dm for the autocorrelation and Burg pitch-asynchronous LP 
analysis methods. (a), (c) and (e) are the speech waveform of the synthetic vowel la! under analysed, 

with pitch-periods 30,80 and 120 samples respectively (b), (d) and (t) are the spectral distortion 
measurement for the three cases. 
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In figure 3.17, the minimum and maximum spectral distortion values over all 

possible window positions is plotted for a range of pitch-periods from 20 samples to 

150 samples in steps of 10 samples. It is observed that when the pitch-period of the 

tested vowel is small, the variation of the spectral distortion is small. This suggests 

that both the autocorrelation method and Burg's method perform inadequately with 

small pitch-periods and that they may be less sensitive to the position of the analysis 

window. When the pitch-period of the tested vowel was increased, the variation of 

the spectral distortion increased. In this case window positioning may be crucial. It is 

also noticed that Burg's method has a more consistent performance than the 

autocorrelation method. The maximum spectral distortion plot is more constant in 

Burg's method than for the autocorrelation method. Burg's method always has a 

lower minimum spectral distortion than the autocorrelation method. 
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Figure 3.17 Maximum and minimum spectral distortion measurements using pitch-asynchronous LP 
analysis for various pitch-periods. 

3.5.2 Pitch-synchronous LP analysis 

In this experiment a single pitch-cycle was used in LP analysis. The pitch­

cycle was extracted using the same window functions, i.e. a Hamming window for 

the autocorrelation method [43] and a rectangular window for Burg's method, with 

Nw = p. Once again the analysis window was shifted a sample each time in order to 

examine the sensitivity of window positioning for the pitch-synchronous LP 

analyses. In figures 3.l8a to c, the spectral distortion measurement for the three 

pitch-periods, 30, 80 and 120 samples respectively, are presented. Furthermore, the 

maximum and minimum spectral distortion plotted against various pitch-periods 

from 20 to 150 samples (in steps of 10 samples) are shown in figure 3.19. 
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Figure 3 .IS Spectral distortion measure Dm for the autocorrelation and Burg pitch·synchronous LP 
analysis methods. (a), (b) and (c) are the results of the vowel/a! with pitch'periods 30, SO and 120 

samples respectively. 
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Figure 3.19 Maximum and minimum spectral distortion measurements using pitch-synchronous LP 
analysis for various pitch-periods. 
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The results in figures 3.18a to c suggest that the autocorrelation method 

pitch-synchronous analysis performs badly in all the three cases. Although the 

minimum spectral distortion may be reduced for a large pitch-period through careful 

positioning of the analysis window, i.e. shifting the analysis window until both ends 

of the window contain the lowest possible speech amplitudes, the minimum spectral 

distortion is not as small as is obtained for the pitch-asynchronous approach. 

Moreover, the analysis is very sensitive to the position of the analysis window. It can 

be seen in figure 3.19 that the variation in the spectral distortion is very large when 

the pitch-period is large. 

In the case of Burg's method, an increase in the spectral distortion is found at 

about 20, 70 and 11 0 samples window shift in figure 3.18a, band c respectively. 

These correspond to the situations when the pitch pulse of the pitch-cycle occurs at 

either end of the analysis window. In contrast to the autocorrelation method, Burg's 

method was found to be less sensitive to window positioning in the case of pitch­

synchronous analysis. It is seen that the increase in the spectral distortion in figures 

3.18a, b and c for Burg's method are much less than that using the autocorrelation 

method. 

In figure 3.19, the maximum spectral distortion (over all possible shifts in 

window positions) plotted against various pitch-periods from 20 to 150 samples (in 

steps of 10 samples) for Burg's method is fairly constant and it is not much different 

from what was obtained with the pitch-asynchronous analysis. As a result the 

computational cost of LP analysis using Burg's method can be reduced using the 

pitch-synchronous analysis instead of the pitch-asynchronous analysis, since a 

smaller speech segment is being analysis in using the pitch-synchronous approach. 

It is concluded from sections 3.5.1 and 3.5.2 that pitch-synchronous 

autocorrelation method LP analysis is not recommended. Burg's pitch-synchronous 

analysis performs similarly to the asynchronous appro~ch in case of large pitch­

period speech. However when the pitch-period is small, pitch-synchronous analysis 

is not suitable since the possible maximum spectral distortion is always quite high. 
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3.5.3 Pitch-synchronous LP analysis using multiple pitch-cycles 

Another way of implementing pitch-synchronous LP analysis is investigated 

in this section. In this method, two pitch-cycles are analysed instead of a single 

cycle. The synthetic speech used in the previous section with three different pitch­

periods was analysed again. The spectral distortion measures obtained for the three 

pitch-periods are presented in figures 3.20a to c. The maximum and minimum 

spectral distortion plotted against various pitch-periods from 20 to 150 samples (in 

steps of 1 0 samples) is shown in figure 3.21. 
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Figure 3.20 Spectral distortion measure Dm for the autocorrelation and Burg pitch-synchronous LP 
analysis methods using windows oflength of two pitch-cycles. (a), (b) and (c) are the results for the 

vowel la! with pitch-periods 30, 80 and 120 samples. 
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Figure 3.21 Maximum and minimum spectral distortion measurements using windows of length of 
double-pitch pitch-cycles for various pitch-periods. 

The results suggest that the double-pitch approach has a much better 

performance than the single-pitch pitch-synchronous LP analysis. In the 

autocorrelation method, it is found that when the pitch-period of the input signal is 

small, the pitch-asynchronous LP analysis seemed to have a better performance than 

the double-pitch pitch-synchronous approach. However when the pitch-period is 

increased, the double-pitch approach worked as well as the pitch-asynchronous 

approach. It is seen in figure 3.21 that both the minimum and maximum spectral 

distortion are decreased in comparison to figure 3.19. A similar argument holds in 

Burg's method, in which the maximum spectral distortion (over all possible window 

shifts) is decreased when two pitch-cycles were used. Not much improvement is 

obtained in the minimum spectral distortion for Burg's method. 

Therefore the performance of pitch-synchronous LP analyses can be 

enhanced by using two pitch-cycles instead of a single cycle. To further explore the 

problem, the number of pitch-cycles included in the pitch-synchronous analyses was 

increased to 3, 4 and then 5. The maximum and minimum spectral distortion 

measures (over all possible shifts in window positions) obtained for different 

number of pitch-cycles are tabulated in tables 3.3 to 3.5, for pitch-periods of 30, 80 

and 120 samples. 

Results from the autocorrelation method suggested that when the number of 

pitch-cycles used in the analysis is increased, the minimum spectral distortion (over 

all possible shifts) decreases. The number of pitch-cycles required to achieved a 

reasonably low minimum spectral distortion is about three. A point of saturation is 

·90· 



Chapter 3 Liner Prediction: Analysis and Filtering 

found when the number of pitch-cycles used is more than four, where the minimum 

spectral distortion started to rise. Furthermore by increasing the number of pitch­

cycles used, the maximum spectral distortion (over all possible shifts) was reduced. 

It is seen in tables 3.2 to 3.5 that the difference between the minimum and maximum 

spectral distortion measures is always very large in all the three pitch-periods. 

In case of Burg's method, there is not much effect on the minimum spectral 

distortion for large pitch-period speech. When the pitch-period is small, an 

improvement in the minimum spectral distortion is observed. Similarly to the 

autocorrelation method, the maximum spectral distortion reduced when the number 

of pitch-cycles included in the analysis was increased. It is also seen in tables 3.2 to 

3.5 that the difference between the minimum and maximum measures obtained using 

Burg's method was smaller than that obtained using the autocorrelation method. 

No. of Autocorrelation Burg 
pitch-cycles Om (dB) Om dB) 

min. max. mm. max. 
2 1.065 4.682 0.968 1.703 
3 1.042 4.505 0.981 1.397 
4 1.033 4.135 0.959 1.304 
5 1.035 3.849 0.939 1.252 

.. 
Table 3.3 The maximum and minimum measure of spectral distortion measure using various number 

of pitch-cycles for pitch-period = 30 samples 

No. of Autocorrelation Burg 
pitch-ycles Om (dB) Om (dB) 

min. max. min. max. 
2 0.161 4.658 0.117 1.416 
3 0.078 4.360 0.117 0.850 
4 0.081 3.938 0.118 0.611 
5 0.084 3.609 0.120 0.481 .. 

Table 3.4 The maximum and minimum measure of spectral distortIOn measure using various number 
of pitch-cycles for pitch-period = 80 samples 

No. of Autocorrelation Burg 
pitch-cycles Om dB) Om dB) 

min. max. min. max. 
2 0.116 4.650 0.042 1.442 
3 0.081 4.376 0.042 0.865 
4 0.045 3.928 0.043 0.618 
5 0.058 3.600 0.038 0.482 

Table 3.5 The maximum and minimum measure of spectral distortion measure using various number 
of pitch-cycles for pitch-period = 120 samples 
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3.5.4 LP analysis with only a small number of speech samples available 

In this experiment, LP analysis was tested applied to segments of voiced 

speech including segments whose lengths were smaller than a complete pitch-cycle. 

To simplify the situation only the results obtained for a pitch-period equal to 80 

samples are presented. The beginning of the analysis window was located at the 

beginning of a pitch-cycle for the synthetic speech. The length of the analysis 

window was initially set to 20 samples and this was increased sample by sample 

until it reached 160 samples. A window length of 160 samples is equivalent to pitch­

asynchronous LP analysis with 2 pitch-cycles per analysis frame. The analysis was 

then repeated with the beginning of the analysis window shifted by 10 samples. This 

process was repeated until the total shift become equal to a complete pitch-cycle. 

Results obtained for three special cases are shown in figures 3.22a to f, together with 

the corresponding frame of 160 speech samples. The three frames of speech, in 

figures 3.22a, c and e, differ only in the starting position of the window within the 

pitch-cycle. 

The results show that the autocorrelation method performs poorly when the 

number of speech samples available is less than a complete pitch-cycle. Optimal 

performance in the spectral distortion, referring to the results in table 3.4 which is 

0.078dB, may be achieved when the number of pitch-cycles available is at least two 

pitch-cycles. Burg's method exhibits a very different property that when the position 

of the analysis window is carefully located, optimal performance in the spectral 

distortion, referring to the results in table 3.4 which is 0.117dB, may be obtained 

even if the number of available speech samples is less than a complete pitch-cycle. It 

is seen in figure 3.22fthat the optimum performance was achieved when the window 

length was about 40 samples. This result was achieved when the beginning of the 

window was located in the pitch-cycle as shown in figure 3.22e. However, this is not 

the case when the beginning of the window is located on the pitch-cycle as shown in 

figure 3.22a. In this case, the optimum performance may only be achieved when the 

window length was about 80 samples, i.e. the complete pitch-cycle is accommodated 

in the analysis window. Experiments have also shown that this advantage of Burg's 

method will be gradually lost when the pitch-period of the voiced speech decreases. 
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Figure 3.22 Spectral distortion measures Om of the autocorrelation and Burg LP analysis method with 
variable analysis window length. The pitch-period of the voiced speech is 80 samples. (a), (c) and 
(e) are the speech signals under investigation (b), (d) and (f) are the corresponding Om measures. 
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3.5.5 Conclusions of section 3.5 

The results presented in section 3.5 suggest that the Burg LP analysis method 

always yields a more accurate estimation of the spectral envelope of synthetic voiced 

speech than the autocorrelation method. This is the case for both pitch-asynchronous 

and pitch-synchronous analysis. In the autocorrelation method, pitch-synchronous 

LP analysis is not capable of providing accurate spectral estimation unless more than 

one pitch-cycle is available in the analysis window. Although the performance could 

be improved by increasing the number of pitch-cycles available, this would not be 

appropriate in practice. The number of pitch-cycles required to achieve a reasonably 

low spectral distortion would be about three and the increase in computational cost 

required for voiced speech with large pitch-periods would be unacceptable. The 

accuracy of the autocorrelation method was found to be very sensitive to the location 

of the analysis window. Optimal performance may be achieved by ensuring that both 

ends of the analysis window coincide with small speech amplitudes. 

I.~n. 
Burg's method seemed to be better than the autocorrelation method~~of 

spectral estimation accuracy and consistency. The accuracy of Burg's method was 

also found to be very sensitive to the location of the analysis window. Burg's pitch­

synchronous LP analysis performed similarly to the pitch-asynchronous approach for 

large pitch-period voiced speech, by carefully adjusting the position of the analysis 

window. Burg's pitch-synchronous LP analysis method is recommended for voiced 

speech with large pitch-period since window positioning may be easier in this case 

and the computational cost can be reduced, compared to using the pitch­

asynchronous analysis. When the pitch-period is small, window positioning is not so 

easy because the duration between successive pitch pulses is small. An increase in 

the number of pitch-cycles in the analysis window helps to reduce the possible 

maximum spectral distortion. Burg's method exhibited further merit in that accurate 

estimation is still possible when the number of speech samples is less than a 

complete pitch-cycle, through carefully locating the analysis window in the pitch­

cycle. 
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3.6 Comparison of the autocorrelation and Burg's LP analysis 

method for clean natural speech 

In this section, the performance of the autocorrelation and Burg LP analysis 

methods were compared for natural voiced speech using an average segmental 

prediction gain measure G .~p defined by equation 3.37. The higher the value of G .fp' 

the more the vocal tract effect is removed from the speech signal and the more 

accurate is the spectral envelope estimation likely to be. The experiment was 

conducted on the speech file "OPERATOR.DAT" [21] (1800 frames). The 

experimental procedure is now described. 

Prior to the LP analysis, the two-way pitch detector described in chapter 2 

was used to estimate the nature of a 160 sample speech frame and to yield the pitch­

period when the speech was classified as voiced. The analysis windows defined in 

equations 3.40 and 3.41 were used to extract the required speech samples for the 

autocorrelation method and Burg's method respectively. The LP analysis window 

was located in a way such that the centre of the analysis window coincided with an 

"update-point" between two consecutive 160 sample frames of the input speech as 

shown in figure 3.23. 

I The analysis window I 
The current speech frame 

(160 samples) 
The next speech frame 

L-____________ ----' ................... . 

Figure 3.23 Positioning of the analysis window within a speech frame for LP analysis 

Both pitch-asynchronous and pitch-synchronous LP analysis methods were tested. 

For pitch-asynchronous LP analysis, the size of the window was equal to the frame 

length, i.e. 160 samples. For Burg's pitch-synchronous LP analysis method, the 

window length was set equal to the instantaneous pitch-period at the update-point. 

Since it was seen that the autocorrelation method performs poorly for pitch­

synchronous LP analysis, two pitch-cycles were used. This was done by repeating 

the pitch-cycle itself and thus the window length was twice the instantaneous pitch­

period. The instantaneous pitch-period was computed by searching through pitch-
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period candidates, in the range ±25% of the pitch-period estimated by the pitch 

detector described in chapter 2 applied to speech centered on the update-point. 

Suppose the instantaneous pitch-period is labelled as p. Then p is taken as the 

candidate which yields the maximum cross-correlation function among the group of 

pitch period candidates as, 

p= max 
m 

where 

N + p. - m 

t s(n)s(n-m) 
nSN+I!.!.-1 

2 

N + Pr _ m 

t i(n) 
n .. N + I!.!._I 

2 

i(n-m) 

0.75 ... Pe ~ m ~ 1.25 ... Pe (m E integer) 

N is the frame length equals to 160 samples 

pe is the pitch-period estimated by the pitch detector. 

(3.44) 

For unvoiced speech frames the window length was always set to 160 samples, i.e. 

pitch-asynchronous was always used for unvoiced speech. A 10th order LP analysis 

was used. The LSF analysis filter structure shown in figure 3.8 was used to filter the 

speech signal and to obtain the residual signal for computing the segmental 

prediction gain Gsp for each speech frame. The average segmental predication G sp 

measured over the 1800 speech frames of the speech file "OPERA TOR.DAT" are 

listed in table 3 .6, 

Pitch-asynchronous Pitch-synchronous 
Autocorrelation method 10.243 (dB) 9.815 (dB) 

Burg's method 10.342 (dB) 10.244 (dB) 
Table 3.6 The average segmental predIction gam obtamed by autocorrelation and Burg LP analysis 

The results suggested that Burg's method always yields a better performance 

than the autocorrelation method. For the pitch-asynchronous analysis, Burg's method 

is better than the autocorrelation method by about O.ldB. For the pitch-synchronous 

analysis, Burg's method is better than the autocorrelation method by about O.4dB 
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It is interesting to note that the prediction gain obtained from the pitch­

synchronous method is always smaller than from the pitch-asynchronous method. 

This is because in the pitch-asynchronous analysis, the LP filter coefficients are 

derived to minimise the error signal across the entire speech frame. This is not the 

case in pitch-synchronous analysis, since the filter coefficients are calculated such 

that the error signal in the analysed pitch-cycle is minimised. Any rapid change in 

the speech signal which may occur within a speech frame would be unpredictable 

and the error signal could be large in those regions. An example of such a scenario is 

shown in figure 3.24. It is shown in figure 3.24a that there is a rapid shape change in 

the middle of the speech frame. Using Burg's pitch-asynchronous analysis, the error 

signal shown in figure 3.24b is minimised for the entire speech frame. However, the 

error signal is increased in the middle of the speech frame, shown in figure 3.24c, 

when Burg's pitch-synchronous analysis is implemented . 

.250 l 

/vr'PituIe 

mr 
I 

..8X) 

.-n..-rpee 

(a) 

~1IIrP· 

(b) 

~1IIrP. 

(c) 

leo 

Figure 3.24 An example of the difference between pitch-asynchronous and synchronous LP analysis 
when there is a rapid shape change in a speech frame Note the different vertical scales). (a) the 

speech signal under analysed (b) the filtered residual obtained by Burg's pitch-asynchronous LP 
analysis (c) the filtered residual obtained by Burg's pitch-synchronous LP analysis 
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An example of spectral envelopes of a voiced segment resulting from the 

autocorrelation and Burg's pitch-asynchronous LP analyses is shown in figure 3.25. 

The original speech signal was analysed by a 512 point FFT with a Hamming 

window. It is shown that both the autocorrelation and Burg methods were able to 

estimate the location of the first two formants. The autocorrelation method seemed 

not to be able to track the speech formant when the frequency increased, .w~~.Q?.j! 

the third formant has:; been smoothed out. Using Burg's method, the third formant is 

well preserved. Note also that the formants estimated by Burg's method always have 

a narrower bandwidth than the autocorrelation method. 

Gain (dB) 

250 . 

150 t 

100 

[
-------------1 --FFT. 

······Aulo. 
---Burg L ___ .. __ .... _ 

0+ -.-.-.--.----.-----------+- --------._--------.+---._-- ----- ------j--.. -.. ----.-. ---- - -_._( 

o 1000 2000 3000 4000 

frequency (Hz) 

Figure 3.25 An example of the spectral envelopes estimated by the autocorrelation and Burg's 
methods. 

3.6.1 An adaptive analysis window for Burg's pitch-synchronous LP analysis 

method 

Pitch-synchronous LP analysis may be preferable in a speech coder which 

implements an interpolation technique. This is because the local properties hieech 

may be destroyed by pitch-asynchronous LP analysis. The scenario is important in 

voiced speech which has small pitch-periods since the speech production is a non­

stationary process. Experimental results showed that Burg's method isL~re suitable 

for pitch-synchronous LP analysis. An adaptive analysis window size is proposed in 

this project incorporating Burg's synchronous LP analysis method, in which, 
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p<30 

30 S P < 45 

otherwise 

(3.45) 

The design was based on the experimental observation that when the pitch-period of 

the voiced speech is small, poor spectral estimation is obtained. Hence more pitch­

cycles are used in order to reduce the maximum possible spectral distortion. 

Otherwise, a single pitch-cycle is used with an optimisation procedure. The 

optimisation procedure checks a number of speech samples around both ends of the 

analysis window. If a pitch pulse appears in either end of the analysis window, the 

analysis window is shifted forward to avoid the pitch pulse. In a 10th order LP 

analysis, the pitch pulse is not allowed to occur in the first and last 10 samples of the 

analysis window. 

The adaptive window length scheme was tested using the same speech file 

[21] and the average segmental gain obtained was, 

G,fp = 10.304 (dB) 

Comparing the result with those in table 3.6, it is seen that the average segmental 

gain obtained here lies between those obtained for the pitch-asynchronous and the 

pitch-synchronous analyses. 
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3.7 Conclusions 

A true inverse LSF analysis filter has been proposed for operating with the 

LSF synthesis filter. Experimental results suggested that the performance of the LSF 

analysis and synthesis filters is comparable with conventional ladder filter structures 

in both objective and subjective measurements. By using the LSF filters in a speech 

coder, the LSF's may be directly applied to the synthesis filter at the decoder. This 

eliminates the computational cost of converting the LSF's to aj coefficients. It was 

found that the performance of the LSF analysis and synthesis filters is optimised by 

interpolating the LSF's, on a sample-by-sample basis between adjacent update 

intervals. As a result a smooth evolution of the vocal tract function is obtained. Filter 

stability is guaranteed throughout the interpolation process by interpolating LSF's. 

This would not be the case with aj coefficients. 

The autocorrelation and Burg LP analysis methods have been compared 

using both synthetic speech and clean natural speech. Results using the synthetic 

speech indicate that Burg's method has a better performance than the autocorrelation 

method, both when the analysis is pitch-asynchronous and when the analysis is 

pitch-synchronous. The spectral estimation accuracy of the autocorrelation method is 

very sensitive to the position of the analysis window. In case of pitch-synchronous 

analysis, the autocorrelation method is only recommended when the analysis 

window contains at least two pitch-cycles. The accuracy of Burg's method is not as 

sensitive to window positioning as the autocorrelation method. Experiments show 
is 

that in Burg's method, an accurate spectral estimationGtill possible even if the 

window length is smaller than a pitch-cycle, by carefully positioning the analysis 

window. Finally, an adaptive window length has been proposed for Burg's pitch­

synchronous LP analysis when it is usedlC'\~al speech. 
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Chapter 4 

Quantisation of Line Spectral Frequencies 

4.1 Introduction 

Quantisation is a process which permits digital representation of a continuous 

signal. In the case of speech coding, this can be performed either directly on the 

analogue speech waveform or on parameters which characterise segments of the 

speech signal. There are two major categories of quantisation schemes, scalar 

quantisation (SQ) and vector quantisation (VQ). In scalar quantisation, code-words 

are assigned to individual signal parameters separately. The simplest form of scalar 

quantiser is known as a uniform quantiser. In a uniform quantiser, the probability 

density function (p.d.f.) of an input signal is assumed to be uniform and constant 

quantisation intervals are used across all the quantisation levels. The performance of 

a uniform quantiser deteriorates as the p.d.f. of the input signal moves away from a 

uniform distribution. To increase quantiser performance, more quantisation levels 

must be allocated to the range which has a high probability density and fewer levels 

to the statistically less probable values. A scalar quantiser based on this idea is 

known as a non-uniform quantiser and a typical example of this kind is Log-PCM. 

It is known that the efficiency of quantisation schemes can be increased by 

quantising groups of consecutive samples together, i.e. vector quantisation [53], 

rather than quanti sing the samples individually. Vector quantisation (VQ) is a 

pattern matching technique which requires a code-book at the encoder and an 

identical copy of this code-book at the decoder [52]. The code-book is an array of 

vectors each with a unique index or address. The vectors, referred to as reference 

vectors, are the result of an exhaustive training procedure which analyses a large 

data-base of typical vectors and attempts to define a set of code-book vectors which 

best represents this data-base. It is believed [53] that the efficiency of a code-book is 

dependent on the suitability of the training vectors. The code-book vector which is 

best matched to the target vector is found and its index is encoded as the quanti sed 
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target vector. A simple application of vector quantisation to speech coding was 

realised by applying it directly to vectors of speech samples, i.e. VPCM. It is not 

surprising that this proved to be an inefficient form of vector quantisation since the 

dynamic range of the speech samples is so large that a huge code-book is necessary 

to cover this range. With the invention of linear prediction analysis, speech segments 

could be characterised by sets of source parameters [6] which describe the speech 

production model. Vector quantisation can be applied to these source parameters. 

Fewer bits are then needed to achieve a specified level of speech quality than if the 

parameters were scalar quanti sed [51]. Alternatively better speech quality can be 

achieved at a given bit-rate. 

Vector quantisation is of considerable interest in both speech processing and 

image processing owing to its reliability in signal compression. Much research 

world-wide is going on to investigate various issues associated with VQ. This 

research includes work on quantiser structure, code-book training, code-book 

searching techniques and efficiency of training data. In the area of speech coding, 

associated problems include also the choice of the best set of source parameters. It 

has already been mentioned in chapter 3 that the speech production model can be 

decomposed into a vocal tract transfer function and an excitation signal. Many types 

of parameters which characterise the vocal tract transfer function have been 

suggested [55][56]. Each of these has a different sensitivity to quantisation noise 

which affects the quanti sed short-term spectral envelope. Among them, line spectral 

frequencies have been widely used. Line spectral frequencies are in some ways 

related to speech formants. By quanti sing LSF's, the spectral error caused by 

quantisation noise can be localised in frequency [56]. 

This chapter is structured as follows. A number of vocal tract parameters will 

be introduced in section 4.2. In section 4.3, problems associated with the design of 

vector quantisers will be discussed. These problems include quantiser complexity, 

code-book training, quantiser structure and performance assessment. In section 4.4, 

the design procedures for a 24-bit MS-LSF vector quantiser (MS - multi-stage split) 

will be presented. These include the effect of utilising a weighting factor during 

code-book training and searching. A re-ordering procedure which aims to preserve 
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the correct order of a set of LSF's after VQ will also be discussed. In section 4.5 the 

performance of the 24-bit MS-LSF vector quantiser is improved by introducing an 

interfame quantisation scheme to yield a 24-bit IMS-LSF vector quantiser (IMS -

interframe multi-split). 

4.2 Alternative representations of LP ladder filter coefficients 

Conventional LP ladder filter coefficients, ai, are not recommended for direct 

use in quantisation. This is because the frequency response of the LP synthesis filter 

is very sensitive to quantisation error in the LP ladder filter coefficients. Moreover, 

the stability of the synthesis filter cannot easily be guaranteed after quantisation. A 

number of alternative representations have been proposed in the literature [55]. 

Synthesis filter stability can be easily guaranteed when using LP poles or PARCOR 

coefficients to characterise the synthesis filter, even when these are quanti sed. LP 

poles are the roots of the denominator polynomial of the all-pole transfer function 

and are directly related to speech formants. Synthesis filter stability can be 

guaranteed by ensuring that the set of LP poles lie inside the unit circle. The 

drawback of using poles to represent the LP transfer function is that their 

determination is computationally expensive. 

PARCOR coefficients may be obtained as the by-product of LP ladder filter 

coefficient computation. They are widely used in quantisation schemes because filter 

stability can be guaranteed by making sure that the quanti sed P ARC OR coefficients 

lie between ± 1. PARCOR coefficients can be used directly as the multiplier 

coefficients of a lattice filter. This eliminates the computational cost of converting 

between PARCOR coefficients and LP ladder filter coefficients. Despite the 

advantages of P ARCOR coefficients, the spectral envelope becomes much more 

sensitive to quantisation error in P ARCOR coefficients which are close to the 

boundaries ±1 than to the same error in PARCOR coefficients far from ±t. 

Therefore each P ARCOR coefficient is transformed to another domain before 

quantisation. Among the transformations commonly used are [1], 
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a) Log-Area Ratios ( LARi) 

1 + k i 

LARi = log 1 _ k
i 

b) Inverse sine transform ( ISi ) 

IS i = arcsin( k i ) 

(4.1) 

(4.2) 

In either transformation the scale of the P ARCOR coefficient ki is warped such that 

a uniform quantisation of the transformed parameter corresponds to a suitable non­

uniform quantisation of a P ARC OR. 

LSF's are the most popular parameters used to quanti se the short-term 

spectral information of segments of speech. They can be quanti sed in either scalar or 

vector form. By quanti sing LSF's, the spectral error caused by quantisation noise can 

be, to a degree, localised in the frequency-domain. Through the utilisation of LSF's, 

filter stability can be easily preserved by maintaining the interlacing property of the 

set of LSF coefficients. Finally, computational efficiency of a speech coder can be 

maintained by using the LSF's directly as the multiplier coefficients of the LSF 

analysis and synthesis filters discussed in chapter 3 section 3.4. 

4.3 Vector quantisation 

Vector quantisation is a pattern matching technique in which an input vector 

! is compared with each member of a set r of reference vectors stored in a code­

book [52]. This is carried out by computing a distance (or distortion) measure 

between the input and the reference vector. Each reference vector in the code-book 

has an index (or address) referred to as a code-word. The code-word of the reference 

vector which produces the smallest distance or distortion is taken by the encoder to 

represent the input vector. At the decoder, the code-book index allows the required 

vector to be fetched from an identical copy of the code-book used by the encoder. 
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4.3.1 Complexity of a vector quantiser 

The complexity of a vector quantiser depends on the computational load 

required for searching the code-book and the memory required to store the code­

book at both the encoder and the decoder. These factors could be affected by: i) 

code-book size and dimension and ii) selection of distance or distortion measure 

[53]. 

i) Code-book size and dimension 

. The first issue to be decided in designing a vector quantiser is the size and 

dimension of the code-book. The size is the number of vectors in the code-book and 

the dimension is the length of each of the vectors. The larger the size of the code­

book the more memory space will be required and the more computational effort 

will be needed for the code-book searching. 

For a code-book of dimension N and size L which is a power of 2, the 

number of bits required to encode a vector is B where, 

L = 28 (levels) (4.3) 

The number of bits per dimension (Le. bits per single vector element) is, 

R = ! (bits/ dimension) (4.4) 

If the system requires Fc code-words per second, the transmission bit-rate T is, 

T = B Fe (bits/ sec) (4.5) 

In a fully searched code-book, the number of distance or distortion computations 

required for a single input vector will be L. Assuming each distance or distortion 

computation requires a total number ofN multiply-add operations (this is true for the 

mean-square error measure), the total computational cost for a single input vector is, 

c = N L = N 2 RN (operations) (4.6) 

Hence the computational cost for a quantiser using a full-search code-book, is 

linearly proportional to the size L of the code-book. Furthermore for a given number 

of bits per element R, the computational cost grows exponentially as the vector 

dimension increased. 
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If we assume a unit memory location is used to store a single code-word, the 

total memory locations required to store the entire code-book will be, 

M = N L = N 2/1N (locations) (4.7) 

Once again, the memory cost in the system grows exponentially with the dimension 

N of the code-word as well as the number of bits per dimension R. 

ii) Selection of a distance or distortion measure 

The definition of a distance or distortion measure d~, y) for vectors! and y 

determines the performance of a quantiser. When! is a given input vector and y is a 

reference vector from the code-book set r, dC!, y) is said to be the distance or 

distortion from! to the reference vector 1. In the area of speech coding, the measure 

used must be subjectively meaningful. A low average distance or distortion for a 

portion of speech should be indicative of good subjective quality. There are two 

commonly used definitions of d~, y). They are the mean-square-error distance 

measure and the Itakura-Saito distortion measure. Note that dC!, y) need not be 

symmetric, Le. dC!, y) need not be equal to d(y, !). The term "distance" may be used 

when d~, y)= d(l, !). Otherwise the term "distortion" is used and the second vector 

must always be y Le. a member of the set r. 
a. Mean-square-error measure (mse) 

A general distance measure based on the Lz norm is given as [53], 
• 

1 N \ \% dz~, y) = N L x, - "I i 
, -I 

(4.8) 

where Xi and 'Yi are the element in the vectors! and y. 

In case of the mse measure, z is set to 2, i.e., 

(4.9) 

The mse measure is widely used for waveform coding because of its simplicity in 

computation. However, the mse measure itself is not necessarily subjectively 

meaningful. To be useful in speech coding, weighting may be introduced to render 
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certain contributions to the distortion more important than others. Hence the mse 

measure can be redefined as, 

(4.10) 

where W = [WI' W2, ... , WN]T is a weighting vector. 

b. The Itakura-Saito distortion measure 

The Itakura-Saito distortion measure is used in speech coding applications, 

where each code-book vector is a representation of a trained LP short-term spectral 

model. The measure is applied to vectors of LP ladder coefficients, 

(4.11 ) 

where each ai is the ith LP coefficient of a Pth order all-pole ladder filter 

The Itakura-Saito measure of the distortion from a given vector! to a code-book 

vector y, i.e. a member of r, is defined as [51], 

(4.12) 

where R" is a N xN normalised autocorrelation matrix corresponding to the code­

book vector y. The matrix takes the form, 

reO) 
r(1) 

r(2) 

r(l) 

reO) 
r(l) 

: (N- ) 

.(N-'·) 
,r,(N _ .) 

r(N-~ r(N-2J R(1) 

Each r(i) is the normalised autocorrelation value, 

. R(i) 
r(I) = R(O) 

(N'.!.,) 

,N-l) 

(N-3) 

7(0) 

(4.13) 
i~ 

with R(i) gqual to the ith sample of the autocorrelation function corresponding to 

the vector y. 
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4.3.2 Code-book training using LBG algorithm 

An important aspect in the effectiveness of a vector quantiser is the 

suitability of the code-book, i.e. whether there are sufficient code-book vectors and 

whether they are well placed in vector space. To achieve a satisfactory placement of 

code-book vectors a training procedure must be employed which requires a large set 

of typical vectors, referred to as training vectors, to be provided. The code-book is 

therefore trained by a procedure referred to as a clustering process applied to the set 

of training vectors. Generally, the robustness of a code-book will depend on the size 

of the training set and also on how representative of normal data the training vectors 

are. It was suggested [51] that a sufficiently long and representative training' 

sequence should be used such that ideally the performance of the quantiser on new 

data produced by the same source should be roughly that achieved on the training 

data. Hence the more aspects of typical speech that the training vectors cover, for 

instance male voice, female voice, street environment, office environment and so on, 

the better will be the performance of the code-book. It was proposed [53] that in 

order to have a reliable quantiser, the ratio of the number of training vectors to the 

number of code-book vectors required should be at least ten and preferably much 

greater; up to 50 ideally. 

The LBG clustering algorithm [54] is an iterative process for training vector 

quantiser code-books using some general distance or distortion measure. The 

algorithm arranges or "clusters" a given set of training vectors into a specified 

number of different groups referred to as cells. All the vectors in the same cell are 

considered to be close enough to a given "label" vector, such that they may be 

replaced by the label vector without causing excessive distortion. The label vector is 

the centroid of the cell defined as the center of gravity of the cell. The allocation of a 

training vector to an particular cell is carried out according to a distortion measure 

from the training vector to the label vector. The distortion measure may be a simple 

mse distance measure with perceptual weighting. The LBG algorithm is usually 

employed in conjunction with a centroid splitting (CS) procedure which allows the 

number of cells to be increased in stages toRe~ired number. The resulting algorithm 

is referred to as LBG-CS. Suppose a L-size N-dimensional code-book r must be 
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generated usmg a set of N-dimensional training vector {!i}I, T. The LBG-CS 

procedure for code-book training is as follows: 

i) The entire training set is treated as a single cell and a label vector for the cell is 

computed. This label vector is required to be the centroid of the cell. The centroid is 

defined to be a vector such that the sum of the individual values of the distance or 

distortion measure from the centroid to each of the training vectors in the cell is 

minimum. In the case of the mse measure, the centroid will be the mean of all the 

training vectors in the cell, i.e. the centroid will be, 

where 

!i is the jth training vector 

1 T 
'Y=-~t 
.;....j T·'-'-j 

J -I 

Yi is the label vector in the code-book 

T is total number of training vectors 

(4.14) 

ii) Split each label vector into two by multiplying it by a scalar close to unity, 

referred to as the splitting factor X. The two vectors are the original label vector and 

its scaled version. Refer to these now as new label vectors. 

iii) Define a cell for each new label vector by assigning each training vector to the 

new label vector for which the distortion from the new label vector to the training 

vector is minimum. 

iv) Calculate the centroid for each of the new cells. 

v) Optimise the arrangement of cells and their label vectors using an iterative 

process. This is carried out by redefining the new label vectors to be equal to the 

centroids just calculated and repeating steps (iii), (iv) and (v). The iteration continues 

until the relative change in total distortion at each iteration is reduced to an 

acceptable small level, i.e. until, 

- -' .... _ ... .... .... 
-... .... 

(4.15) 
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with, 

(4.16a) 

(4.16b) 

where 

!i is the jth training vector 

Yi and y'i are the new label vectors for the current and previous iterations 

S and S' are the total distortion measures in the current and previous iterations. 

E is the predefined distortion threshold, and is typically set to 0.001 

vi) Once the iteration process defined by steps (iii) to (iv) has been completed, a 

code-book has been designed with code-book vectors equal to the centroids of the 

set of cells. The set of label vectors are equal to these centroids. The 

code-book size starts at 2 and can now be doubled by going back to step (ii) which 

splits each label vector into two before the iterative process (iii) to (iv) is repeated 

for the increased number of cells. Therefore go back to step (ii) until the required 

code-book size is achieved. 

4.3.3 Quantiser structures 

Once the vector quantiser has been trained it can be used to quanti se any 

given input vector of the correct dimension. To apply the vector quantiser, the input 

vector is replaced by the closest available code-book vector. The index of the chosen 

code-book vector is the coded quanti sed vector. 

To find the closest available code-book vector, the input vector is compared 

with each individual reference vector in the code-book using a distance or distortion 

measure. This is referred to as a full-search VQ. A full-search VQ is computational 

costly when the size of the code-book is large, say a 12-bit codebook (4096 levels). 

To reduce the computational costs of the vector quantiser, alternative code-book 

arrangements must be used. Many code-book arrangements have been studied [51]-
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[53], and it can be concluded that the choice of the code-book arrangements is a 

trade-off between quantiser performance and computational complexity. Three 

simple code-book arrangements will be introduced in the this section, they are 

known as split VQ, multi-stage VQ and interframe VQ. 

Split VQ 

In a split vector quantiser, each input vector is required to be partitioned into 

a number of sub-vectors. A separate code-book exists for each of these sub-vectors. 

These code-books are trained separately. When the number of split code-books is 

equal to dimension of the vector, i.e. when there is a code-book for each vector 

element, the quantiser becomes a scalar quantiser. The schematic diagram of a split 

vector quantiser using three code-books is shown in figure 4.1. 

xl, ... ,Xa 
"I VQ 

Index g, 

! 
• I Code-book I I 

(dimension a) 

! 1\ 

Xo+\ ••••• Xo+b Index g2 J Combine VQ 
"I indices 

I Code-book 1 I 
(dimension b) Combine 

! 12 quantised 
sub-vector 

xo+b+\ •••• • xN.1 VQ I Index g~ 

! 
I Code-book 1 I 

(dimension c) 

! 13 

Figure 4.1 Schematic diagram of a split VQ using 3 code-books. 

f::l 

r ~: 1 

The N-dimensional input vector is partitioned into 3 sub-vectors with dimensions a, 

b and c where a+b+c=N. Each sub-vector is applied to a VQ algorithm with an 

appropriately trained code-book. Three code-book vectors XI, "b and YJ with indices 

g" g2, and g3 respectively must be found for the sub-vectors. Once the optimal 
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vector In each code-book has been found, the three code-book vectors are 

recombined to form the quanti sed vector, i.e. 

[LI] 
& = ~: 

(4.17) 

To code this quanti sed vector, a vector index [gJ, g2, g3]T is required. This enables 

the quanti sed sub-vectors 11, 12 and YJ to be read from identical copies of the three 

code-books at the decoder. For a given vector dimension and available bit-rate, the 

computational complexity of a split vector is approximately inversely proportion to 

the number of sub-vectors used. The quantiser performance deteriorates as the 

number of sub-vectors increased. A suitable compromise must be made between the 

complexity and the performance of the vector quantiser. 

Multi-stage VQ 

A multi-stage vector quantiser has the advantage of being able to reduce both 

the computational complexity and memory requirement of a vector quantiser with a 

relatively small decrease in performance [53]. In a multi-stage quantiser, an input 

vector of dimension N is quanti sed according to a main code-book of dimension N 

and a number of error code-books each of dimension N. The first error code-book is 

used to quanti se the difference between the input vector and the chosen entry from 

the main code-book. The second error code-book is used to model the difference 

between the input to the first error stage and its quantised version, and so on for the 

third and any subsequent error code-books. In figure 4.2, the schematic diagram of a 

3-stage vector quantiser is shown. 

The input vector! is applied to the first-stage quantiser to obtain the optimal 

vector 11 with index gt. The difference between! and 11 is then computed and 

applied to the second-stage quantiser to obtain the first error vector 12 and its index 

g2. Now the difference between !-11 and 12 is computed and applied to the third 

stage quantiser to obtain the second error vector YJ and its index g3. As a result, the 

quantised vector i is obtained by adding the contributions from the three code-

books, i.e. 
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(4.18) 

To encode i a vector of the three indices g\, g2, and g3 is required which allows It. 

"i2 and 13 to be read from identical copies of the 3 code-books at the decoder 

I d 
! J VQ n ex gl 

1 
Code-book 1 

(dimension N) 

+ ! 11 
+ -

Index g2 Combine 
--.j VQ 

1 indices 

Code-book 2 
(dimension N) 

+ 1 12 
+ + -

Index g3 41 VQ I ! 
Code-book 3 
(dimension N) 

! 13 f+ 

Figure 4.2 Schematic diagram of a multi-stage vector quantiser using 3 code-books. 

Interframe VQ 

Interframe vector quantisation, which aims to exploit correlation between 

successive input vectors, can reduce the bit-rate requirement of a vector quantiser. In 

the interframe quantisation scheme shown in figure 4.3, the contribution of the 

previous quanti sed vectors is subtracted from the input vector and the difference 

vector is quanti sed. At the decoder, the quantised vector is reconstructed using 

equation 4.19. 

(4.19) 
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! ----------+( VQ r---~------. g 

g 

i Delay 
Code-book 

(dimension N) 

y 

+ 
(a) 

Code-book 
+ (dimension N) i 

Y 

a 
Delay 

(b) 

Figure 4.3 Schematic diagram of an interframe vector quantiser. 
(a) encoder (b) decoder 

A leakage factor ex. is included to scale the weighting of the previously quanti sed 

vector. The value of ex. is, generally, just less than one. 

4.3.4 Objective assessment of a quantiser for short-term spectral coefficients 

The performance of a vector quantiser for short-term spectral coefficients 

may be assessed by calculating the average spectral distortion measure D for a large 

set of typical and representative input vectors. The average spectral distortion 

measure D is defined as . 

_ 1 M 

D =- L Dm 
M ",.1 

(4.20) 

where the spectral distortion measure Dm is defined in equation 3.42 for a set of 

input vectorS!i for i=l, 2, .... N. 

A short-term spectral coefficient quantiser is often considered to be spectrally 

transparent if it is able to achieve an average spectral distortion of less than about 

IdB [57]. However, perceptible distortion may still occur in speech which has less 

than 1 dB average spectral envelope distortion when there are occasional frames with 

high value of Dm [57]. This means that the statistical behaviour of a quantiser must 
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also be considered. It is suggested [57] that the performance of a quantiser can be 

evaluated using an average spectral distortion measure D and the percentage of two 

categories of statistical outliers. The two categories of statistical outliers are defined 

as, 

i) the measurement of Dm with 2 dB :::;; Dm :::;; 4 dB 

ii) the measurement ofDm with Dm > 4dB 

A quantiser is considered likely to achieve spectral transparent quality if the 

following three conditions are fulfilled [57]: 

i) The average distortion D is about 1 dB 

ii) The percentage of testing vectors having 2 dB :::;; Dm :::;; 4 dB is less than 2% 

iii) None of the testing vectors have Dm > 4dB 

4.4 A 24-bit LSF quantiser using multi-stage split VQ 

As applied to speech coding in general, VQ may be used for several different 

purposes. It is commonly used for coding the parameters which represent the short­

term spectral envelope and also for coding segments containing time- or frequency­

domain samples of speech or LP residual. CELP coders are strongly based on these 

ideas. We now consider the design of a scheme for the vector quantisation of LSF 

coefficients which will represent an LP spectral envelope at each update-point in a 

waveform interpolation coder. 

A 24-bit ten-dimensional vector quantiser has been proposed for coding the 

10 LSF coefficients of a 10th order LP synthesis filters. Such a quantiser has been 

designed by combining the two techniques of multi-stage and split VQ as described 

in the previous sections. The resulting LSF quantisation technique is referred to as 

MS-VQ. In this vector quantiser, the first stage is a full 10-dimensional vector 

quantiser which is populated by 1024 LSF vectors, requiring 10 bits. Al 0-

dimensional quanti sed LSF vector is then obtained by finding the best matched 

vector to the input vector from the lO-dimensiorn\ codebook. Two S-dimensional 
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vector quantisers are used at the second stage to quanti se the difference between the 

best matched LSF vector from the first-stage codebook and the input vector, using 7-

bit (size 128) code-books. 

In this section, the procedures used to obtain the required LSF quantiser will 

be presented. The section starts by examining the effect of various weighting factors 

on the first stage of the quantiser. The performance of the quantiser is improved by 

introducing the second-stage code-books to encode the difference between the target 

vector and the optimum vector from the first code-book. A re-ordering process is 

employed in searching the second-stage code-books to preserve the interlacing 

property of the LSF's in the quantised vector. This is done to ensure the stability of 

the quanti sed all-pole filter. 

An LSF training set containing 15000 ten-dimensional training vectors of 

LSF coefficients for voiced speech only was used in experiments performed to train 

the codebooks for a vector quantiser. The training vectors were generated by 

applying 10th order LP analysis to frames of voiced speech extracted from the 

speech file "GSP.DAT" [20]. The input speech signal was segmented into variable 

length frames centered on update point at intervals of 20ms. The two-way pitch 

detector described in chapter 2 was used to determine the nature of the input speech 

frame around each update-point. If voiced speech was indicated, Burg's pitch­

synchronous LP analysis was performed on the variable length speech frame as 

described in chapter 3 to obtain a set of 10 LP ladder filter coefficients. A 10th order 

LP analysis was used. In case of unvoiced speech, the speech frame is discarded. As 

recommended in [57] a 10Hz bandwidth expansion was applied to each LP pole by 

modifying each LP ladder filter coefficient as follows, 

where'Y is set as 0.996. 

I 
ai = ai'Y 

i = 1, 2, ... , 10 
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Each LSF vector was computed from the set of bandwidth expanded LP ladder filter 

coefficients using the iterative process described in Appendix B. All the code-books 

were trained with the LBG-CS algorithm [60] using, 

splitting factor X = 0.99 

distortion threshold & = 0.0001 

To evaluate the performance an LSF vector quantiser, once it had been traine<\.a new 

set of LSF vectors was used. The testing vectors were extracted from the speech file 

"OPERA TOR.DAT" [21]. Different from the training set, the 1800 testing vectors 

contained both voiced and unvoiced speech. The distortion measurements discussed 

in section 4.3.4 were used to assess the performance of a vector quantiser. 

4.4.1 Utilisation o/weighting/actors during code-book searclring 

It was suggested [57] that the performance of an LSF quantiser may be 

enhanced by introducing appropriate weighting factors during code-book training 

and searching. The commonly used weighting factors are LSF distance [58][10], 

power weighting [57] and frequency weighting [57]. In this section, the means of 

applying weighting factors is considered and their effect on the performance of an 

LSF quantiser is evaluated. The evaluation was carried out using the single stage 10-

bit LSF quantiser shown in figure 4.4 which is the first stage of the MS-VQ. 

Mean-square-error Choose index g 

--- measurement to minimise the 
(mse) mse 

g 

y First stage 
code-book of 

vector 
10th order 

LSF's index 

Figure 4.4 Schematic diagram for a single stage LSF vector quantiser. 

The LSF code-book was first trained without weighting using the 15000 training 

vectors referred to earlier. It was then evaluated using 1800 test vectors, by code­

book searching again without any weighting. For each test vector m in the range 0 to 

1800, Dm was calculated, and the average D was calculated for the whole set of test 

vectors. The results of this evaluation are presented in table 4.1 . 
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D (dB) 3.204 
2-4 dB (%) 70.89 
>4 dB (%) 21.00 

Table 4.1 Distortion measure when only using the first stage of the 24bit MS-LSF quantiser 
without any weighting factor 

To assess the effect of weighting the importance of some LSF coefficients more than 

others, a weighting vector W = [WI' W2, ••• , WIO]T was introduced in the distortion 

measure as defined by equation 4.10 used for the code-book searching. The results 

obtained for different arrangement of weightings will be compared with those listed 

in table 4.1. 

4.4.1.1 Weighting factors based on LSF distances 

The first set of weighting factors under investigation here was suggested in 

the ITU recommendation for the 8kb/s CSA-CELP coder [10]. The weighing factors 

were derived from the distance of adjacent LSF's and are defined as, 

(il2 - 0.04" - 1 > 0 

otherwise 

{ 

1.0 
W; = 2 1 O( (ilj + I - OJj _ I - 1) + 1 

OJj + I - OJj _ I - 1 > 0 

otherwise 

i = 1,2, ... , 9 

{ 

1.0 
WIO= 2 

10(-OJ9 + 0.92n - 1) + 1 
-(il9 + 0.92" - 1 > 0 

otherwise 
(4.22) 

The measurements of D and 2-4dB and> 4dB outliers obtained from a 10th order 

LSF VQ with these weighting factors are given in table 4.2, 

D (dB) 3.319 
2-4 dB (%) 68.39 
>4 dB (%) 24.06 

Table 4.2 Distortion measure when only usmg the first stage of the 24bit MS-LSF quantiser 
with the LSF distances as a weighting factor 
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Comparing these results with table 4.1, an increase of about 0.11 dB in the average 

distortion has been obtained by introducing the weighting. However the total number 

of statistical outliers has been increased by more than 3%. The results suggest that 

LSF distance weighting introduced in this way does not necessarily improve the 

quantiser. 

4.4.1.2 Weighting factors based on power weighting 

A set of weighting factors Wj may be computed from the power (or energy) 

spectrum of the short-term spectral envelope of the speech segment under analysis. 

These "power" weighting factors are defined as [57], 

W; = [ P ( ID; ) r (4.23) 

i = 1,2, ... , 10 

P(roi) is the power (or energy) at the frequency of the ith LSF coefficient IDj of the 

short-term spectral envelope. The constant r is included to control the relative 

weighting given to the 10 LSF coefficients. Values of r in the range from 0.025 to 

0.25 were tried and the results of these trials are listed in table 4.3 

r D (dB) 2-4 dB (%) >4 dB (%) 

0.025 3.168 72.17 19.61 
0.050 3.154 72.83 18.83 
0.075 3.147 73.28 18.44 
0.100 3.153 73.39 18.39 
0.125 3.173 72.83 19.17 
0.150 3.204 71.39 20.78 
0.175 3.248 70.17 22.28 
0.200 3.291 68.50 24.06 
0.225 3.353 66.83 25.89 
0.250 3.419 64.72 28.11 

Table 4.3 Distortion measure when only using the first stage of the 24bit MS-LSF quantiser 
with the range of values of r in the power weighting set from 0.025 to 0.25 

The results in table 4.3 show that the power weighted vector quantiser performed 

.best for values of r in the range 0.025 to 0.15. When r was larger than 0.15, the 

performance of the quantiser deteriorated rapidly. The optimum performance was 

obtained when r = 0.075. 
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4.4.1.3 Weighting factors based on power and frequency weighting 

It was suggested [57] that the human perceptual system cannot resolve 

differences in high frequencies as accurately as~w frequencies. More weighting 

may be allocated to the lower LSF coefficients to increase their importance over the 

higher LSF coefficients. A weighting scheme which incorporates both power 

weighting and frequency weighting was proposed by Paliwal and Atal [57]. A value 

of r = 0.15 was suggested for the power weighting. Frequency weighting is 

allocated to the individual LSF coefficients as follows: 

{

t.O 

w/ = 0.8 

0.4 

(j) I 10 (j) 8 

(j)g 

(j) 10 

(4.24) 

We tested this joint power and frequency weighting scheme by changing the value of 

the constant r in the power weighting. Values of r in the range 0.025 to 0.15 were 

tested. We chosen these values of r because they have given the best performance 

when the power weighting is used alone. The results of these trial are listed in table 

4.4. 

r D (dB) 2-4 dB (%) >4 dB (%) 

0.025 3.273 70.56 22.28 
0.050 3.272 70.28 22.39 
0.075 3.271 70.22 22.33 
0.100 3.298 69.44 23.22 
0.125 3.323 68.50 24.43 
0.150 3.357 67.72 25.22 

Table 4.4 Distortion measure when only using the first stage of the 24bit MS-LSF quantiser 
with the joint power and frequency weighting for the range of values of r set from 0.025 to 0.15 

Results in table 4.4 show that frequency weighting applied in this way did not 

improve the vector quantiser performance. The performance actually deteriorated 

when the frequency weighting was applied. The results indicate that the best 

performance of the first stage vector quantiser is likely to be obtained using a power 

weighting with r = 0.075. 
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4.4.2 Implementation of a re-ordering process during code-book searching 

Using the power weighting with the value of r set to 0.075, a new code-book 

was trained for the first stage LSF quantiser. The optimum power factor r was used 

for the code-book training as well as the code-book evaluation. The measurements of 

D and the statistics ofDm are presented for the new quantiser in table 4.5. Table 4.5 

also lists the measurements obtained without power weighting (as in table 4.1) for 

comparison. 

Code-book training methods 
without the power with the power 

weighting weighting 

D (dB) 3.204 3.098 

2-4 dB (%) 70.89 75.78 
>4 dB (%) 21.00 16.50 

Table 4.5 DIstortIon measure when only uSing the first stage of the 24bit MS-LSF quantiser 
with the code-book being trained and searched with and without the power weighting 

Comparing the two set of results, about 0.1 dB improvement in the average spectral 

distortion is obtained when the power weighting is introduced. Considering the 

statistics of the outliers, the percentage of the >4dB outliers is reduced by 4.5% 

using the power weighting. All of these >4dB outliers have been moved to the 2-4dB 

category. 

After the weighting factors had been chosen and the first stage implemented, 

a 24-bit LSF vector quantiser was completed by introducing the second-stage split 

vector quantiser with code-books of LSF differences t1LSF. Two 7-bit code-books 

were used, each of them populated by 5-dimensional vectors for 6LSF's 1-5 and 6-10 

respectively. To collect the training vectors for the split VQ code-books, each vector 

in the training set was quanti sed according to the first-stage code-book and 

subtracted from the optimal vector. The two code-books were trained without any 

weighting. The schematic diagram of the 24-bit MS-LSF quantiser is shown in 

figure 4.5. Note that the multi-stage VQ scheme discussed in section 4.3.3 . has 

been modified when it is implemented in the 24-bit MS-LSF quantiser. This is 

because the interlacing property of the LSF's in a quanti sed LSF vector may notba 

preserv~by simply quanti sing the differences, between the input LSF vector and the 

• 121 • 



Chapter 4 Quantisation of Line Spectral Frequencies 

optimum LSF vector from the first-stage code-book, at the second stage. The details 

of the 24-bit MS-LSF quantiser are described as follows. 

co , ••• , co 10 Index g 
VQ 

• First-stage 

split the LSF code-book r 
10-dimensional (dimension 10) 

vector to 2 ! X 5-dimensional 
sub-vectors 

L.r Index 1I Combine VQ 

• indices CIlI, ... ,CIlS 

second-stage 

X' first error code-book AI 
(dimension 5) 

Combine the Re-order I quantised r+ ~d + the LSF's 
sub-vectors 

Combine the 
two sub-vectors .- X 

1 
Re-order 
the LSF's 

Index 12 
.I VQ I 

+ , ... , CIlIO 

second-stage .. 
second error code-book A2 Cl) 

(dimension 5) 

All 
t 

~I-+ 
Combine the three ..-

sub-vectors X 

~ 
Re-order 
the LSF's 

Figure 4.5 Schematic diagram for a 24-bit MS-LSF vector quantiser 
(MS - multi-stage split). 

r+ 

To implement the vector quantisation procedure, the first stage LSF code­

book r is searched to find the best matched 10-dimensional vector "1, using a power 

weighted mse measure. The first of the two second-stage code-books AI and A2 is 

now searched to find the 5-dimensional vector bl of AI which, when combined with 
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the first five elements of X, produces a vector!' which minimises the power weighted 

mse measure over all possible choices of bl. By "combined with" we mean simply 

that the five elements of bl are added to the corresponding first five elements of X. A 

problem that must be addressed is that the resulting vector '1' will not necessarily 

preserve the interlacing property (see section 3.4.1) of LSF's which is necessary to 

make the all-pole LP system filter stable. This interlacing property that must be 

satisfied is that: 

0< rot < ro2 < ... < rotO < 1t 

where LSF coefficients rot, ro3, ros, ro7, ro9 are the frequencies of the zeros of P(z) and 

. ro2, ro4, ro6, rog, rolD are the frequencies of the zeros of Q(z) with P(z) and Q(z) 

defined in equations 3.27a and b respectively. 

A re-ordering process must th~refore be used sometimes to re-arrange the 

LSF's in the vector X', such that the LSF's are correctly interlaced. This re-ordering, 

which is described later, is applied at the encoder to produce the required test vector 

and in the same way at the decoder. After the optimal vector from the first of the 

second-stage codebooks has been found and therefore the best possible vector X' is 

known, the second A2 of the two second-stage code-books is searched to find the 5-

dimensional vector b2 of A2 which, when combined with the second five elements of 

1.' produces a vector i which minimises the power weighted mse measure over all 

possible choices of ~. Again a re-ordering process is sometimes necessary to 

preserve the required ordering property of LSF' s. Thus a quanti sed LSF vector i is 

composed of contributions from the three code-books. Each element of i is equal 

to, 

lSiS5 

6SiSlO 

with some re-ordering when necessary. The final quanti sed vector is, 

cO = re-order{i} 
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4.4.2.1 A simple LSF re-ordering process 

A possible re-ordering process is simply to re-arrange the elements of the 

quanti sed LSF vector such that they are in an ascending order. The results obtained 

using this method are: 

D (dB) 1.587 

2-4 dB (%) 18.50 
>4 dB (%) 1.89 

Table 4.6 DistortIOn measure for the 24-bit MS-LSF quantiser 
incorporating a simple LSF re-ordering process 

The problem associated with this simple re-ordering process is that the distance 

between adjacent LSF's in a re-arranged LSF vector can be very small. This results 

in a sharp speech formant and hence the decoded speech may sound metallic [57]. 

4.4.2.2 An LSF re-ordering process design.Jfrom the statistic~' of the training 

vectors 

The re-ordering process in section 4.4.2.1 may be improved by imposing 

restrictions on the minimum distances between adjacent LSF's in a re-arranged 

vector as has been done on the 8kb/s CSA-CELP [10]. To test this idea, the 

minimum LSF distances were determined from the statistics of the set of 15000 LSF 

training vectors. In table 4.7, the mean values Wj for each LSF element are 

presented, together with the minimum LSF ffimin and maximum LSF (Omax in set of 

15000 LSF training vectors. In addition, the minimum distances between adjacent 

LSF's effiij, with j=i+ 1 for i=l, 2, ... , 9, over the set of 15000 LSF training vectors 

are listed in table 4.8. 

m min = 0.059 , (j) mall = 3.055 

I 1 2 3 4 5 
(J), 0.175 0.284 0.543 0.840 1.206 
i 6 7 8 9 10 

(J), 1.484 1.838 2.100 2.433 2.667 
Table 4.7 The mean LSF of each vector element for the 15000 training vectors 

i, j 1,2 2,3 3,4 4,5 5,6 6,7 7,8 8,9 9,10 

emu 0.009 0.013 0.011 0.015 0.017 0.028 0.017 0.025 0.015 
.. 

Table 4.8 Minimum LSF distance between adjacent LSF's for the 15000 training vectors 
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Based on the results in table 4.8, a modified re-ordering process may be proposed as 

follows, 

A {Y I 
ID I = 0.059 

{

A 

Y 10 

= 3.055 

Y I ~ 0.059 

otherwise 

y / ~ i 1-1 + 50) /- 1./ 

otherwise 

;=2.3.···.10 

Y 10 s 3.055 
otherwise 

(4.27) 

It is assumed that the vector i has first been pre-processed by the simple re-ordering 

process mentioned above, i.e. the LSF's in the vector i have been arranged in 

ascending order. The results obtained using this methods were, 

D (dB) 1.587 
2-4 dB (%) 18.44 
>4 dB (%) 1.89 

Table 4.9 Distortion measure for the 24-bit MS-LSF quantiser by restricting the minimum LSF 
distance in an LSF test vector according to the statistics of the 15000 training vectors 

Comparing the results in table 4.9 with those in table 4.6 for simple re-ordering, not 

much improvement has been obtained by imposing the minimum LSF distances 

quoted in table 4.8. 

4.4.2.3 An LSF re-ordering process using a fixed LSF distance 

Instead of defining the minimum allowed distance between adjacent 

quanti sed LSF's according to the experimentally derived data in table 4.8, the use of 

a fixed minimum LSF difference Boo was considered. A number of possible values 

for this minimum difference Boo in the range 10Hz to 100Hz were tried and the 

results of this investigation are presented in table 4.10. 
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(0) (in Hz) D (dB) 2-4 dB (%) >4dB (%) 

10 1.587 18.50 1.889 
20 1.587 18.50 1.8 89 
30 1.586 18.44 1.889 
40 1.585 18.33 1.889 
50 1.584 18.06 1.889 
60 1.582 18.00 1.778 
70 1.579 18.22 1.833 
80 1.579 18.50 1.778 
90 1.580 18.33 1722 
100 1.582 18.06 1,722 .. 

Table 4.10 Distortion measure for the 24-blt MS-LSF quantlser by restnctmg the mmimum LSF 
distance in an LSF test vector to a fixed value 

It is seen in table 4.10 that not much improvement over the results in table 4.9 was 

obtained when a small value of (0) was used, e.g. 10Hz and 20Hz. The average 

spectral distortion and the percentage of statistical outliers decreases very slightly 

when (0) is increased, from 20Hz to 60Hz. The average spectral distortion then 

increases again if (0) is increased from 60Hz. It is interesting to observe that the 

performance of the quantiser appears to be similar to that obtained with simple re­

ordering when 8ro=100Hz. However, the distances between adjacent LSF's are 

directly related to the nature of formant peaks [48]. The closer an adjacent pair of 

LSF's are around a particular formant frequency, the sharper will be the formant 

peak. This suggests that high values of (0) may not be suitable since prominent 

formant peaks may not be well represented. Therefore a fixed minimum difference 

of 60 Hz (O.047rads) was chosen for the quantiser. 

4.4.3 Conclusions of section 4.4 

Three forms of weightings have been examined using the first stage of the 

24-bit MS-LSF quantiser. The weighting factors were LSF distance weighting, 

power weighting and frequency weighting. Experimental results suggest that a 

quantiser performance may be enhanced using the power weighting defined in 

equation 4.23 with the values of r set in the range 0.025 to 0.15. Optimal 

performance was obtained when r = 0.075. LSF distance and frequency weighting 
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did not appear to offer the same advantages as power weighting. Therefore power 

weighting with r = 0.075 has been chosen for the LSF quantiser used in this thesis. 

It must be pointed out that the combination of power and frequency 

weighting scheme has only been tested objectively. In order to have a clear picture 

about the perceptual effect of the frequency weighting scheme, subjective testing 

may need to be included. 

In summary, a 24-bit LSF quantiser has been designed using the MS-VQ. 

The first stage of the quantiser employs a 10-bit 10-dimensional LSF code-book. 

Experiments showed that the quantiser performance is enhanced by using a power 

weighting in both code-book training and searching. Two 7-bit split code-books are 

used at the second-stage. These code-books contain 5-dimensional difference vectors 

and are trained without any weighting. To search for optimal vectors, a re-ordering 

process is used to maintain the ordering property of the LSF's in an LSF vector. In 

the re-ordering process, the value of the first LSF in a quanti sed LSF vector is 

restricted to be larger than 0.059rads and the value of the 10th LSF is restricted to be 

less than 3.055rads. In addition, a fixed minimum LSF distance of 60Hz (0.047rads) 

is imposed between the intermediate LSF's of the quanti sed LSF vector. 

4.5 A 24-bit LSF quantiser using interframe multi-stage split VQ 

It was demonstrated in section 4.4.2 that the performance of a quantiser 

could be enhanced by introducing second-stage code-books, which aim to make up 

the difference between the target vector and the optimal vector from the first-stage 

codebook. It is possible that performance of the LSF quantiser may be further 

improved by introducing third stage code-books. However, this would increase the 

system bit-rate. The function of the third stage code-books may be imitated by using 

interframe quantisation. In this section, the performance of the 24-bit MS-LSF 

quantiser discussed in section 4.4 is further improved by introducing an interframe 

quantisation scheme to yield a 24-bits IMS-LSF vector quantiser [61]. The 24-bit 
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IMS-LSF quantiser is able to achieve an almost spectral transparent quality. Finally, 

different code-book arrangements are examined for the 24-bit IMS-LSF quantiser. 
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Figure 4.6 Schematic diagram for the 24-bit IMS-LSF vector quantiser 
(IMS - interframe multi-satge split). 
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The schematic diagram of the 24-bit IMS-LSF vector quantiser is shown in 

figure 4.6. The structure of the IMS-LSF quantiser is very similar to the MS-LSF 

quantiser. Instead of directly quanti sing the 10 LSF coefficients at the first stage, the 

difference between the previously quanti sed LSF vector and the input vector is 

quanti sed. To search the optimum vector y from the first-stage codebook, the 

previously quanti sed LSF vector cO (I-I) is combined with each vector from the first­

stage code-book r to form a test vector 'i. The vector '1' is compared with the input 

LSF vector using the power weighted mse measure. The vectors cO ( I-I) and y are 

then evenly split into two sub-vectors and the same procedures as is done in the 

24-bit MS-LSF quantiser is carried out to search the two second-stage code-books. 

Thus the quanti sed LSF vector cO (I) is, 

with, 

A (I) {A(/)} ro = re -order r 

A(/) = roi + 'Yi + 1\.1,.· 

{

"(I-I} '\ 

'Yi A (I_I) 
ro, + 'Yi + A,2t-S 

1~;~5 

6 ~ i ~ 10 
(4.28) 

The training vectors for the first-stage code-book were obtained by subtracting the 

adjacent LSF vectors in the 15000 training vectors. The training data for the second­

stage code-books were obtained by subtracting each of the 15000 training vectors 

from a quantised version of it, using the first-stage of the 24-bit IMS-LSF quantiser. 

The three code-books are trained without any weighting and the power weighting is 

only introduced during the code-book searching. Note that, the mean LSF's of the 

training vectors (listed in table 4.7) are used as the previous quanti sed vector when 

the quantiser is initialised. 

4.5.1 Objective measurement of the 24-bit IMS-VQ 

In searching the first-stage codebook when the two vectors cO ( 1-1) and y are 

combined, the result vector l' may not be arranged in an ascending order. The LSF 

re-ordering process discussed in section 4.4.2 is assessed again for the IMS-LSF 
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quantiser and the results for different minimum LSF distance constraints 00) are 

listed in table 4.11. 

00) (in Hz) D (dB) 2-4 dB (%) >4dB (%) 

none 2.719 58.11 12.33 
training statistical 2.722 57.78 12.72 

10 2.756 58.89 13.28 
20 2.727 56.44 13.28 
30 2.715 56.06 12.89 
40 2.694 58.28 12.00 
50 2.679 55.50 12.67 
60 2.698 58.17 11.56 
70 2.683 58.39 11.56 
80 2.661 56.28 12.28 
90 2.648 58.39 10.89 
100 2.645 56.94 10.78 

Table 4.11 DistortIOn measures when usmg only the first-stage of the 24-blt IMS-LSF quantiser, for 
various minimum LSF distance constraints used in the re-ordering process. 

Comparing to the results in table 4.5, an immediate improvement over the single­

stage LSF quantiser is shown when the interframe scheme was introduced. A O.4dB 

improvement in the average spectral distortion was obtained. The statistical outliers 

were reduced dramatically too. Considering the re-ordering process, results for 

various 00) in table 4.11 are very much in harmony with those in tables 4.6, 4.9 and 

4.10. In the IMS-LSF quantiser, the optimal performance was achieved when 00) is 

50 Hz (0.039rads). 

After the optimal 00) had been found, the two second-stage code-books were 

introduced to form the full 24-bit IMS-LSF quantiser. Finally, the tested results 

shown in table 4.12 suggest that the IMS-LSF quantiser is able to obtain almost 

transparent quality. 

D (dB) 1.259 
2-4 dB (%) 8.44 
>4 dB (%) 0.22 

Table 4.12 Distortion measures for the 24-bit IMS-LSF quantiser 
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4.5.2 Assessment of the LSF quantiser with various code-book arrangements 

The 24-bit IMS-LSF quantiser was evaluated using 8: and 9~ code-book 

arrangements. Here we use the notation AZ~ in which A is the number of bits in the 

first-stage code-book and 81, 82 are the numbers of bits in each of the second-stage 

code-books. Together with the original 1 O~ formats, the three quantisers were also 

tested for a range of bit-rates from 18 bits to 24 bits. Note that the size of the first­

stage code-book was unchanged during the experiment, i.e. 8-bit, 9-bit and 10-bit. 

The quantiser bit-rate was altered by adjusting the size of the second-stage code­

books, in the way 1 O~, 1 O~, 1 O~, 1 O~ and so on. The experimental results are shown 

in figures 4.7a, b and c, corresponding to the average spectral distortion measures D 

and the percentage of the 2-4dB and >4dB statistical outliers respectively. 
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Figure 4.7 Performance of the IMS-LSF quantiser with different first-stage code-book sizes under 
different bit rates. (a) the average distortion measure (b) the percentage of2-4dB outliers (c) the 

percentage of>4dB outliers 
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The results suggest that the quantiser may have a better performance by using 

a larger first-stage code-book. This was especially significant when the quantiser bit­

rate was small. In figure 4.7a for an 18 bit quantiser, a 10: arrangement was about 

0.08dB less in D than the 8~ quantiser. In figures 4.7b and c, the statistical outliers 

obtained from the 10: quantiser is very much less than those obtained from the 8~ 

arrangement. The performance of the three quantisers converged when the system bit 

rate was increased. The three quantisers performed comparably in a 24-bit 

arrangement. The 1 O~ quantiser has the lowest average spectral distortion, whilst the 

9~ quantiser yielded the least statistical outliers. The differem in the D between the 

10~ and the 9~ quantisers is about O.OldB and the differen:ein the statistical outliers 

is about 0.5%. A 1 O~ LSF quantiser was chosen as a candidate for the later speech 

coders. However computational savings might be obtained using the 9~ or 8: 

arrangements. 

4.5.3 Conclusions of section 4.5 

An interframe quantisation scheme has been introduced into the 24-bit MS­

LSF quantiser to form a 24-bit IMS-LSF quantiser. The IMS-LSF quantiser shows a 

distinct improvement over the MS-LSF quantiser. A fixed LSF distance of 50Hz is 

imposed between the intermediate LSF's of the quanti sed LSF vector. Various 

quantiser arrangements have been evaluated for the IMS-LSF quantiser for different 

quantiser bit-rates. Experimental results suggest that a larger first-stage code-book 

may be preferable when the quantiser bit rate is small. This restriction may be 

relaxed as the quantiser bit rate is increased. Finally a 24-bit LSF quantiser is 

designed using an interframe multi-stage split structure with a 1 O~ arrangement. 
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4.6 Conclusions 

Alternative representations of conventional LP ladder filter coefficients have 

been introduced. Line spectral frequencies are the most popular parameter for 

quantisation owing to their localised effect on the spectral envelope under 

quantisation noise. Various aspects in implementing a vector quantiser have been 

discussed. These include complexity consideration, code-book training, quantiser 

structure and performance assessment. 

A 24-bits IMS-LSF quantiser· which is able to achieve almost transparent 

quality has been proposed. The quantiser implements an interframe quantisation 

scheme incorporating a multi-stage split VQ, in which the difference between the 

current and the previous quanti sed LSF vector are quanti sed at each update-point. 

Experimental results suggested that the quantiser performance is improved by using 

a power weighting in the code-book searching. A re-ordering procedure is also 

designed for the quantiser. The objective of the re-ordering procedure is to preserve 

the interlacing property of the LSF's in an LSF vector and to ensure the stability of 

the quanti sed all-pole filter. In the re-ordering process, the first LSF is constrained to 

be larger than O.059rads and the tenth LSF must be smaller than 3.055rads. In 

addition, a fixed minimum distance of 50Hz (O.039rads) is imposed on the 

intermediate LSF's. 

Different code-book arrangements have been tested for the 24-bit IMS-LSF 

quantiser. The results suggest that a 9~ or 8~ arrangements are allowed in order to 

reduce the computational complexity of the quantiser. 
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Two-mode Pitch-synchronous Waveform 

Interpolation (TPSWI) Model 

5.1 Introduction 

It has been reported [69] that the main source of degradation in a CELP coder 

during voiced speech comes from the insufficiently accurate reproduction of 

periodicity. Prototype Waveform Interpolation (PWI) coding was proposed in order 

to reinforce pitch-periodicity in the reconstructed voiced speech [68]. In an early 

form of PWI coder [70], the speech in the vicinity of each update-point is 

categorised as voiced or unvoiced. Voiced speech, being considered as a quasi­

periodic signal which evolves slowly with time, is identified by the existence of 

strong correlation between samples in an analysis segment centred on the update­

point and samples a certain fixed time later or earlier. For unvoiced speech there will 

be no such strong correlation. For voiced speech, a segment of length equal to a 

single pitch-period is extracted at each of the regular update-points. A description of 

each extracted segment is encoded. To reconstruct the voiced speech at the decoder, 

pitch-period length segments centred on adjacent update-points are interpolated to 

obtain a "synthesis segment" of speech between each pair of update-points. 

Unvoiced speech is generally encoded by switching to a simplified form of CELP 

coder [86]. This may result in the unvoiced speech being modelled by a pseudo­

random sequence without periodicity, although provision for some periodicity may 

help with transitions and misclassifications. 

PWI coding can either be applied directly to speech [17] or to an LP residual 

[70]. The LP residual for voiced speech is obtained by passing the input speech 

through an LP inverse filter, and may be expected to resemble a vocal tract 

excitation signal. A set of coefficients which characterises the LP inverse filter can 

be vector quantised to obtain an efficient low bit-rate representation. The use of line 
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spectral frequencies is recommended for this purpose. The LP inverse filter is so 

called because its transfer function is intended to be the inverse of an all-pole 

transfer function modelling the effect of the vocal tract. It is therefore intended to 

remove, as far as possible, the spectral envelope imposed on an assumed excitation 

signal by the vocal tract. At the decoder, once a voiced residual has been 

reconstructed by interpolating pitch-period length segments centred on adjacent 

update-points, the short-term spectral envelope is re-imposed on this signal to obtain 

the decoded voiced speech. It is claimed [70][71] that a PWIICELP coder is able to 

produce good quality speech at around 4 kb/s. 

A two-mode pitch-synchronous waveform interpolation (TPSWI) coder has 

been designed during the course of this project [83]. The TPSWI coder operates on 

the residual obtained using the LSF analysis filter discussed in chapter 3 as the LP 

inverse filter. The input speech is classified as voiced or unvoiced at each update­

point by applying the two-way pitch detector described in chapter 2 to an analysis 

segment centred on the updated-point. A pitch-synchronous waveform interpolation 

(PSWI) modelling technique is used for voiced residual and when unvoiced speech 

is indicated only its power contour is encoded to allow a pseudo-random sequence to 

be used to replace it at the decoder. 

The PSWI model is a PWI based technique for voiced speech in which pitch­

period length segments are extracted from the residual at regular update-points. Each 

segment is represented using a gain-shape principle. The gain and shape factors may 

be encoded at different update rates. At the decoder, the wave-shapes at adjacent 

update-points, gain factors and the pitch-periods are interpolated separately. The 

interpolated wave-shapes are stretched to the correct period and scaled to the 

required gains to yield the reconstructed voiced speech residual. For unvoiced 

speech, the output of a pseudo-random noise generator producing a pseudo-Gaussian 

random sequence is scaled in amplitude to give it the power contour of the unvoiced 

residual. An overlap and add technique is employed to deal with voicedlunvoiced 

transitions in order to ensure a smooth signal evolution. 
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The next section of this chapter will be devoted to the concept of PWI 

coding. In section 5.3, the PSWI model used to synthesise voiced speech will be 

introduced. The technique used for unvoiced speech will be discussed in section 5.4. 

This is followed by a detailed description of the structure of the TPSWI coder. In 

section 5.6, a useful model for the phase spectra of voiced residual segments will be 

presented and evaluated. This model allows the phase spectra of voiced residual 

signal to be deduced at the decoder with little or no encoded information. 

5.2 Fundamentals of prototype waveform interpolation (PWI) 

coding 

As illustrated in figure 5.1, voiced speech is a quasi-periodic signal which 

means that at any point in time there is an exactly periodic signal which is strongly 

correlated with the voiced speech over a window centred on the given point in time. 

The degree of correlation depends on the window length and the degree of non­

stationarity in the speech. The period of the exactly periodic waveform can be 

definel~Mthe instantaneous period of the speech. Both the instantaneous period and 

the shape of each cycle' evolves over time. Clearly information is repeated from 

cycle to cycle of voiced speech. When update-points are close enough for the speech 

between them to be considered approximately stationary, a segment of pitch-period 

length centred on each update-point can be extracted from voiced speech, and an 

approximation to the speech can be recovered approximately by an interpolation 

process. 

Am plitude 

2500 T 
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figure 5,1 Example of a segment of voiced speech. 

PWI coding exploits this property of voiced speeC1~"by extracting pitch-period length 

segments, namely prototype waveforms, at regular'fn'tervals of typically 20-30ms. A 
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description of each extracted prototype waveform is encoded along with the current 

pitch-period. At the decoder, the shapes and lengths of the prototype waveforms are 

interpolated from update-point to update-point. The interpolation process leads to a 

smooth evolution of the pitch-periods and the shapes of the prototype waveform. 

5.2.1 Fourier series representation of quasi-periodic signals 

A periodic signal can be represented as a Fourier series. The discrete time 

signal u(n) which is periodic with period p sampling intervals can be represented as: 

K - I ( 21! kn ) . (21! kn ) u(n) = L Ck CO -- + Dk sm --
k.O P P (5.1) 

where 

Ck and Dk are the discrete Fourier series coefficients 

K is the number of harmonics to be taken into account. Note that K must be less than 

p/2 to avoid aliasing. 

The discrete Fourier series coefficients may be computed for a given periodic 

waveform using DFT analysis. The DFT analysis is performed over a single cycle, 

{u(n)}o,p-l say, which is defined from n=O to p-l. In this case: 

Ck =! I Uk Icos( ~Uk) 
P 

Dk = -! IUkl sin ( ~Uk) 
P 

k = 0, 1, 2, ... , K-l 

(5.2) 

where IUkl and ~Uk are the magnitude and phase respectively of the p-point DFT of 

{u(n)}o, p-l· 

Equation 5.1 may be adapted as an approximation to a quasi-periodic signal 

by making the set of Fourier series coefficients and the period change slowly over 

time. The quasi-periodic signal is then expressed as: 

K(n) - I { 27r kn) ( 21! kn ) 
e(n) = L Ck(n)co -- + Dk(n)sin -

k • 0 pen) pen) (5.3) 
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5.2.2 Synthesis of voiced speech using PWI coding 

In a PWI encoder, a description of a residual cycle is encoded at regular 

update-points. At the decoder, the Fourier series descriptions at adjacent update­

points are interpolated to yield the recovered residual. The interpolation is performed 

on both the Fourier series coefficients and the pitch-period. Prototype waveforms 

will not necessarily be aligned in phase when they are extracted at the encoder. They 

must be phase aligned in order to maximise their similarity for efficient encoding. 

They must also be re-aligned at the decoder for interpolation. Phase alignment is 

carried out by comparing the cross-correlation functions between circularly shifted 

versions of the current prototype waveform and the pre.vious prototype waveform. 

This can be performed in the Fourier series domain aslflO], by calculating: 

where c! 1- 1), 151 1
- I) are the F ourier series coefficients of the previous aligned 

prototype waveform and cl /), DI /) are the F ourier series coefficients of the current 

prototype waveform. Since the pitch-periods of the two cycles may not be the same, 

K' is the smaller number of harmonics of the two prototype waveforms. To calculate 

~', the summation is evaluated for a range of value of ~ between 0 and 21t.The 

Fourier series coefficients for the phase aligned prototype waveform are [70]: 

Ell) = cl /)cos( k4') - D~/)sin( k;') 
15!/) = cl /)sin( k4') + DI/)cos( k~) 

k = 0, 1, ... , K - 1 

(5.5) 

At the decoder, the phase aligned prototype waveforms at the update-points 

are interpolated to produce an approximation to the signal between them. 

Interpolation can be applied to the Fourier series coefficients, each coefficient being 

modified on a time-sample by time-sample basis. Hence the synthetic residual signal 

over an update interval ofN samples is obtained as [70], 

i{~ = ~~:I {( (l-~~ )d'-I) +~~d'))~ k~~)~ (1-~~ )a'-I) +~~a'))sin( k~~)} 
(5.6) 

n=o, ~ ... , N-I 
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where a(n) is the fundamental instantaneous phase at time sample n and wen) is an 

interpolation function which can be linearly increased from 0 to 1 across the time 

interval n=O to N-l [70]. The interpolation function wen) may be a function of time 

sample n or phase sample a(n). 

An interpolation formula for the fundamental instantaneous phase cr(n) at time n may 

be based on the relationship between the instantaneous pitch-period pen) and the 

fundamental instantaneous phase a(n) at discrete time sample n: 

2:r d a(n) 

pen) = dn (5.7) 

Strictly speaking the integration must be with respect to the continuous time variable 

t, but the same answer is obtained by considering n to be continuous and integrating 

with respect to n. pen) is obtained by linearly interpolating between the pitch-periods 

of the prototype waveforms at the previous and current update-point, Le.: 

pen) = (1- wen) )p(/-I) + w(n)p(/) (5.8) 

Substituting equation 5.8 into equation 5.7, equation 5.7 becomes: 

2:r dn 
da(n) = ( ) (1- ",(n))p 1-1 + ",(n)p(/) 

(5.9) 

In the PWI technique proposed by Kleijn [70], wen) is defined as the following 

function of a(n): 

(5.10) 

n = 0, 1, ... , N -1 

where M is the number of prototype waveforms within an update interval n=O to N-

1, and is evaluated using: 

2N 
M = p(/) + p(l_I) 

The value of M is not necessar~ an integer. 
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To compute the fundamental instantaneous phase a(n) for each time sample n, the 

expression for \jJ(n) given by equation 5.10 is substituted into equation 5.9 and thus: 

da(n) 21t 
=------------~~------------

dn (I_I) a(/)(n) - a(/-I)(N)( (/) (I_I)) 
p + 21t M P -p 

(S.12) 

i.e. 

(S.13) 

By integrating equation 5.13, it may be shown that the fundamental instantaneous 

phase a(n) for each time sample n, for n=O to N-I, is given by: 

O'{n) = 

. _ M p(l-I) + ~ M2 ( p(l-I) Y + 2nM( p(l) _ p(l-I) ) 

O'{O) + 2tr (I) (/_1) 

n 
O'{O) + 2tr (T-I) 

p 

P -p 

(S.14) 

In the following section, the basic TPSWI model will be presented. The 

TPSWI model uses a PSWI technique for voiced speech and a pseudo-random 

sequence generator for unvoiced speech. The PSWI technique, is a form of PWI 

which uses a simpler formula for the fundamental instantaneous phase a(n) than 

equation 5.14. The pseudo-random sequence generator used for unvoiced speech will 

be introduced in section 5.4. In section 5.5, the two units are combined together to 

form the TPSWI coder. 
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5.3 Synthesis of voiced speech using a pitch-synchronous waveform 

interpolation (PSWI) model 

The PSWI model developed in this project is a PWI based coder which 

operates in the residual-domain. The LSF analysis filter which is discussed in 

chapter 3 is employed at the encoder to provide an LP residual. A prototype 

waveform u(n) is extracted in the residual-domain centred on each update-point, 

using the known pitch-period p. The prototype waveform is decomposed into a gain 

factor and shape information. The gain factor A is defined as the square root of the 

mean-square power of the prototype waveform, i.e. the rms value of the prototype 

waveform. The shape of the prototype waveform is characterised by the pitch­

synchronous DFT magnitude and phase spectra of the power normalised prototype 

waveform. Each DFT spectral sample Uk may be expressed as: 

(5.15) 

k=O,l,,,.,p-l 

where I Uk I and ~ 1Ik are the DFT magnitude and phase spectra of the prototype 

waveform of length p samples. 

To reconstruct the residual signal, the normalised prototype waveform at 

each update-point must be phase aligned with the normalised prototype waveform at 

the previous update-point as used to synthesire. the LP residual. The previous 

prototype waveform will therefore have been aligned with the one before that. The 

phase alignment is done using the DFT magnitude and phase spectra of the two 

normalised prototype waveforms using an adaptation of equation 5.4. Expressing 

equation 5.4 in the DFT frequency-domain (see Appendix C), it follows that to align 

it with the previous aligned prototype waveform the current prototype waveform 

must be delayed by ~' sampling intervals where: 
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~. = max r lul /-')llui/)lcos $'(1-1) - ~(/) - k~ r I ( ) 
~ le"' 0 lIk lIk 

(5.16) 

where 

luV-I)1 and $'~k-I) are the OFT magnitude and phase spectra of the previously 

aligned normalised prototype waveform. 

I uV) I and ~ ~k) are the OFT magnitude and phase spectra of the current normalised 

prototype waveforms. 

The phase aligned prototype waveform is obtained by modifying only the OFT phase 

spectrum of the current prototype waveform. Hence the aligned phase spectrum is: 

- (/) (I) • 
~ lIk = ~ Ilk + k ~ (5.17) 

k = 0, I, 2, ... , K -I 

To obtain the reconstructed voiced residual between adjacent update-points, the OFT 

real and imaginary coefficients of the phase aligned prototype waveform are 

computed and are interpolated as follows: 

e;~ = I/~ ~tal {( Ri'-')+vA~( Ri')-Ril-l)))~ kd.~)~ 7l/-I)+vA~( 7l/)-7lI-l)) )sin( kd.~)} 
(5.18) 

n=(H .. .,N-I 

where 

\jJ(n) is an interpolation function. 

Rk and fk are the DFT real arid imaginary coefficients of the aligned prototype 

waveforms. 

In contrast to the PWI technique proposed by Kleijn [70], the interpolation function 

\jJ(n) used in the PSWI model is a linear function of time sample n. Hence \jJ(n) 

increases linearly from 0 to I as n increases from 0 to N-I and is therefore: 

n v{,,=-
N 

(5.19) 
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The fundamental instantaneous phase a(n) is computed by a quadratic interpolation 

function. To derive the quadratic phase interpolation formula, the instantaneous 

fundamental pitch-frequencies at update-points 1-1 and I, Le. uP-I) and uP), are 

linearly interpolated to obtain: 

cu{n) = cu(t-I}+ ~( CU(/) - CU(/-I)) 
(5.20) 

n = 0, 1, ... , N-l 

Since a(n) must be the integral of the fundamental instantaneous pitch-frequency at 

any point in time n, the fundamental instantaneous phase is then: 

2 

O'(n) = n cu(/-I)+ 2nN ( cu(l) - CU(/-t)) + C 
(5.21) 

n = 0, 1, ... , N - 1 

Again the integration must be with respect to the continuous time variable t, but the 

same answer is obtained by considering n to be continuous and integrating with 

respect to n. The value of C is the initial condition of the integral and is set to the 

fundamental instantaneous phase value that would have been attained at the previous 

update-point, using the previous interpolation formula, Le.: 

2 

O'{ n) = n cu( I - I} + 2n N ( cu(l) - cu( I - 1) ) + 0'(1 - I ) ( N) 
(5.22) 

n = 0, I, ... , N-l 

where a(l-t)(n) is the formula for O'(n) obtained by interpolating between the 

previous update-point and the one before that. 

This formula differs from equation 5.14 and is considerably simpler. Equation 5.14 

was obtained [70] by linearly interpolating the fundamental pitch-period as a 

function of phase sample O'(n). In the new equation, the fundamental pitch-frequency 

is linearly interpolated as a function of time sample n. This simpler formula is 

essentially that used by IMBE coder [13] which does not attempt to preserve phase 

information. In the PSWI model, phase relationship between harmonics is preserved 

by attempting to encode the DFT real and imaginary coefficients: not just these 
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magnitudes. The interpolated instantaneous fundamental pitch-period pen) may be 

determined at any time n as: 

2" 
p(n) = ru{n) 

(5.23) 

When the interpolated normalised residual has been obtained, it is scaled by a gain 

contour derived from the gain factors specified at the update-points to yield the 

reconstructed voiced residual. The gain factors are interpolated between update­

points to obtain a smooth contour and hence a smooth evolution of the reconstructed 

voiced residual power. The interpolation of gain factors contour is done as follows: 

..t(n) = ..t(I-I) + ~(..t(/) - ..tU-I)) (5.24) 

where ..tU-I) and l(l) are the gain factors at update-points 1-1 and I, i.e. 

i' (n) = i( n) ( A {I - I} + ~ (A ( , ) - A (I - I ) ) ) 
(5.25) 

n = 0, 1, ... , N-l 

An example of a 20ms segment of decoded voiced speech obtained using an 

unquantised implementation of the PSWI coder is shown in figure 5.2. The original 

20ms segment is shown in figure 5.2a, the original LP residual is shown in figure 

5.2b and the reconstructed residual is shown in figure5.2c. It may be seen that the 

reconstructed residual is similar in shape to the original, though there are easily 

identified differences. An important observation is that the reconstructed residual 

segment shown in figure 5.2c is slightly advanced in time compared with the original 

residual segment shown in figure 5.1 b. This causes the reconstructed speech segment 

as shown in figure 5.2d to be similarly shifted in time. Such time shifts, which are 

sometimes advances and sometimes delays are characteristic of PWI techniques. The 

phenomenon is due to the effect of the quadratic phase interpolation and, in fact, is 

important for the effective operation of most forms of PWI. During the quadratic 

phase interpolation, only the fundamental pitch-frequency at the update-points and 

the frequency and the phase relationships between harmonics are preserved. The 

value of fundamental instantaneous phase at each update-point is left unconstrained 

by the encoded data and is calculated at the decoder, as described above with the 
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requirement of maintaining continuity of the fundamental frequency component at 

each update-point. This also to a large degree maintains the continuity of each 

harmonic since their instantaneous phases are kcr(n) for k=2, 3, ... K-l. This means 

that the reconstructed speech should not be expected to be synchronous with the 

original speech. Experiments suggest that the perceptual quality of the resultant 

speech is not affected by this kind of "linear phase" drifting and that it is much more 

important to guarantee signal continuity at each update-point than to maintain 

synchronism with the original speech. 
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Figure 5.2 Example ofa frame of voiced speech synthesised by the PSWI model. 
(a) original speech (b) original LP residual (c) reconstructed residual (d) reconstructed speech 
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5.4 Synthesis of unvoiced speech using a pseudo-random Gaussian 

sequence generator 

It is widely believed [72] that the LP residual for frames of unvoiced speech 

can be modelled simply by a pseudo-random Gaussian sequence. The power contour 

and frequency spectrum of the synthesised residual are important and experiments 

have shown [72] that unvoiced speech can be adequately modelled by exciting an LP 

synthesis filter by such a signal with the short-term average power updated every 

5ms. It is known [75] that the perceptual quality of unvoiced speech is preserved by 

using a pseudo-random sequence with a roughly identical magnitude spectrum to the 

original LP residual and a similar power contour. Therefore unvoiced speech 

segments are modelled using an LSF synthesis filter excited by a power contoured 

pseudo-random Gaussian sequence which is, in principle, spectrally white. The LSF 

synthesis filter aims to model the spectral envelope of the unvoiced speech. 

To encode an unvoiced speech segment, the unvoiced segment is first 

processed by an LSF analysis filter to provide a residual which has an approximately 

flat magnitude spectrum. The short-term power of the residual is then computed at 

5ms intervals using: 

(5.26) 

where 

G is the rms value 

r(n) is the residual signal 

Ns is a sub-window length equal to 40 samples for 8kHz sampling frequency 

The power contour of the residual is encoded at 5ms intervals. In practice, an rms 

magnitude contour G rather than a power contour is used for more efficient 

computation. The LSF coefficients are updated, as usual, at a lower rate, normally 

20ms, since only a roughly identical spectral envelope is required. 
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To reconstruct the unvoiced speech, a pseudo-random Gaussian sequence 

generator (PRGSG) produces random numbers with an approximately Gaussian 

distribution, a white frequency spectrum and constant average power normalised to 

unity. Each sample of the pseudo-random sequence is multiplied by a sample of the 

interpolated received power contour, i.e. multiplying a sample of the interpolated 

gain factor, to yield the required excitation as: 

e'(n) = ( G(I-I) + ;s ( G(I)- G(I-I))) e(n) 
(5.27) 

n=O,I, ... ,Ns-I 

where 

e' (n) is the scaled excitation signal 

e(n) is the pseudo-random sequence produced by PRGSG 

d I-I) and d I) are the encoded gain factors across a 5ms interval 

The excitation is then processed by the LSF synthesis filter which re-imposes the 

original spectral envelope of the unvoiced speech. 

- 147· 



Chapter 5 Two-mode Pitch-synchronous Waveform Interpolation (TPSWI) Model 

5.5 The two-mode pitch-synchronous waveform interpolation 

(TPSWI) coder 

In figure 5.3 a schematic diagram of the TPSWI coder is shown. The 

quantisation of the TPSWI coder will be discussed in chapter 7. Unquantised 

parameters are used at this stage. The TPSWI coder is operated with update-points at 

regular intervals of 20ms which means that synthesis frames at the decoder are each 

of length 20ms. Analysis frames at the encoder are centred on each update-point. 

The nature of the input speech around each update-point is first determined by the 

two-way pitch detector discussed in chapter 2. When voiced speech is indicated a 

pitch-period is given and Burg's pitch-synchronous LP analysis method is performed 

to yield a set of 10 LP ladder filter coefficients. Otherwise, when unvoiced speech is 

indicated the 10 LP ladder filter coefficients produced by the pitch detector are 

directly used. A 10Hz bandwidth expansion is then applied to each LP pole as 

described in section 4.4 and the modified set of LP ladder coefficients is converted 

to a set of LSF coefficients for the current update-point. After the LSF coefficients 

are available, the frame of input speech is processed by the LSF analysis filter with 

the LSF coefficients interpolated between those obtained at update-points to yield 

the LP residual. The required parameters for the residual are extracted at the current 

update-point. These parameters are the gain and shape of a prototype waveform for 

voiced speech and four samples of the rms value contour for unvoiced speech. The 

decoder utilises these parameters to reconstruct a residual signal applied to excite an 

LSF synthesis filter with LSF coefficients interpolated as for the LSF analysis filter 

used at the encoder. The short-term spectral envelope is re-imposed on the 

reconstructed excitation signal by this LSF synthesis filter. 
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5.5.1 The TPSWI encoder 

For the TPSWI coder operating with 20ms update intervals, a lOms look­

ahead is required at the analysis stage. An asymmetric window used by the TPD is 

positioned such that the separating point between its two functions is located at the 

current update-point as illustrated in figure 5.4. The formulation of the asymmetric 

window was presented in chapter 3. 

Boundary of the two 
window functions 

The asymmetric 
window 

:.-5ms --.: 

Current anal sis frame 

: .. 20ms IOms-+: 

Figure 5.4 Positioning ofthe analysis window for the TPD on a speech frame. 

If unvoiced speech is indicated, the pitch-period given by the TPD will be set 

to zero and the set of aj coefficients produced by the TPD is used directly. In the case 

of voiced speech, an estimation of the true pitch-period is given by the TPD and 

Burg's pitch-synchronous LP analysis method is employed to re-estimate, this time 

more accurately, the short-term spectral envelope of the voiced speech. A 

rectangular window is used to extract the analysis speech samples for Burg's 

algorithm. The size of the window is adapted to the current estimated pitch value as 

described in chapter 3. The window is positioned such that it is centred on the 

current update-point as shown in figure 5.5. 

: ... 

Adaptive to the 
pitch-period 

. . 
: ..... ----

The analysis window 

Current analysis frame 
. . . 

20ms ---... ~:.--- 10ms-': t . 
current update-point 

Figure 5.5 Positioning of the analysis window for Burg's pitch-synchronous LP analysis. 
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Once the set of bandwidth expanded LP ladder coefficients is available, the LSF 

coefficients are computed by an iterative process, the details of which are presented 

in Appendix B. To obtain the LP residual, the input speech signal is processed by an 

LSF analysis filter whose LSF coefficients are interpolated on a sample by sample 

basis between the new set of LSF coefficients and the set of LSF coefficients ~,M.. 

20ms earlier. Based on the nature of the input speech, different parameters are 

extracted from the speech residual, as explained in the following paragraphs. 

5.5.1.1 Extraction of prototype waveforms from voiced speech 

When voiced speech is detected, a segment of length one pitch-period is 

extracted from the residual. This is a prototype waveform. Since the pitch-period 

given by the TPD is an estimate calculated for a relatively wide analysis window, a 

more accurate and localised estimate of the instantaneous pitch-period at the current 

update-point must be found. Computation of this instantaneous pitch-period is 

carried out by examining the cross-correlation function between successive possible 

pitch-cycles for a range of potential pitch candidates. The range of potential 

candidates is set equal to ±S% of the estimated pitch-period, Pc say, provided by the 

TPD. The range of allowed instantaneous pitch-periods is restricted to between 15 

and 150 samples. As a result, the more localised instantaneous pitch-period estimate 

is p(l)=m', with 

N-m 

L s(n) s(n - m) . 
m = max 

m 

n-N-\ 
(5.28) 

N-m N-m 
~ s2(n) ~ s2(n - m) 

n=N-1 n.N-\ 

0.95* Pt! ~ m ~ 1.05* Pt! (m e integer) 

where N is the frame length and s(n)' is the speech signal. The current update point is 

at n=N. 

Once the accurate pitch-period estimate p(1) has been obtained for update-point I a 

prototype waveform with p(1) samples is extracted at the end of the residual frame in 

the way that is illustrated in figure 5.6 . 
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. . ..... ---
p(I) 
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The extraction window 

Current frame of residual signal 
. 

160 samples -----+-: 
t 

current update-point I 
Figure 5.6 Extraction of prototype waveform from a frame of residual signal. 

The prototype waveform should, in principle, be centred on each update-point. This 

would require look-ahead into a future residual frame thus increasing the total 

coding delay from 10ms to 30ms, as an extra 20ms speech segment is required to be 

analysed to provide. the future frame of residual signal. To save the extra 20ms 

coding delay, extraction of the prototype waveforms are allowed to be slightly offset 

from the centre. Experimental results showed that the quality of the synthesised 

speech is not affected by this offset. The prototype waveforms are then decomposed 

into a gain factor and shape representation as described in section 5.3. 

5.5.1.2 Extraction of gain factors from unvoiced speech 

The unvoiced gain factors are updated in every 5ms, therefore four gain 

factors are required for each 20ms synthesis frame. The corresponding frame of LP 

residual at the encoder is divided into four sub-frames at the analysis stage and the 

required gain factors for each unvoiced sub-frame are computed using equation 5.26. 

5.5.2 The TPSWI decoder 

At the TPSWI decoder, an approximation to the LP residual which becomes 

the excitation signal to the LSF synthesis filter is constructed from the received 

parameters. The construction of the excitation signal for voiced and unvoiced speech 

has been discussed in sections 5.3 and 5.4. 

A strategy for voicing transitions is one of the most important issues in a 

speech coder. Mishandling of voiced onset could lead to a loss of speech 

intelligibility. An overlap-add technique, which incorporates a triangular window, 
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was found to be suitable for dealing with voicing transitions. In the TPSWI coder, a 

transition frame is defined when a voiced frame is detected after an unvoiced frame 

(voiced onset), or vice versa (voiced offset). In both cases the speech excitation is 

reconstructed by summing together two windowed signals, el"'l and e2",2' In the 

case of a voiced onset, el is a pseudo-random sequence contoured using the gain 

factors of the previous unvoiced frame and e2 is obtained by periodically repeating 

the current received prototype waveform from the current update-point backward to 

the previous one. For a voiced offset, el is obtained by repeating the previous 

received prototype waveform to fill up the entire speech frame from the previous to 

the current update-point and e2 is the sequence generated by the pseudo-random 

Gaussian sequence generator. The contour derived from the four gain factors is 

imposed on the normalised pseudo-random Gaussian sequence prior to the 

overlapping and adding. In the reconstructed voiced segments, i.e. e2 for voiced 

onset and el for voiced offset, the rms value of the prototype waveform is made 

equal to the received gain factor prior to the repeating process. When the two 

synthesis frame components have been generated, each is multiplied by the 

corresponding window function and then they are added together. Thus the "overlap­

add" reconstructed excitation signal synthesis frame is, 

e(n) = el",l(n) + e2"'2(n) 
n = 0, I, 2, ... , N -I 

where 

el"'l = el(n)wl(n) with wl(n) = 1.0 - ~ 

e2",1 = e2(n) w2(n) with w2(n) = ~ 

(5.29) 

In figure S.7a, an example of a voiced onset frame is shown. To reconstruct 

the speech excitation, the unvoiced gain factors in the previous frame are recalled. 

These are scaled to a new pseudo-random Gaussian sequence to obtain et shown in 

figure S.7h. The current prototype waveform is reconstructed and scaled to the 

required rms value. The prototype waveform is repeated from the end of the frame 

towards the beginning to yield e2, as shown in figure S.7c. et and e2 are 

windowed and added together to form a speech excitation shown in figure S.7d. A 
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triangular window is used in both cases and the windows are shown together with 

et and e2 in figures 5.7b and c. 
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Figure 5.7 Overlap-add technique used for voiced onset. 
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(a) original speech segment (b) el is a pseudo-random Gaussian sequence whose samples are scaled 
by the rms value contour specified in the previous frame (c) e2 obtained by repeating the prototype 

waveform of the current speech frame (d) the reconstructed speech excitation 
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A voiced offset frame is shown in figure 5.8a. In this case, the pseudo­

random Gaussian sequence generator creates a normalised sequence and its rms 

values is scaled to the required rms value contour to yield e2, as shown in figure 

5.So. To obtain el, the scaled prototype waveform in the previous voiced frame is 

periodically repeated, as shown in figure 5.8b. Finally, et and e2 are windowed and 

added together to form a speech excitation synthesis frame of length N samples, 

shown in figure 5.8d. 
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5.5.3 Subjective evaluation of the TPSWI coder 

The TPSWI model was implemented as a C program [83] simulating the 

operation of a real-time coder. At this stage the model parameters produced i.e. the 

LSF coefficients, the pitch-period and the residual parameters were not quantised. 

The effect of quantising these parameters to achieve the required low bit-rate will be 

considered in chapter 7. The C program simulation was assessed using the speech 

file "OPERA TOR.DAT" [21] as input data. This file consists of about 90seconds of 

a conversation between a male and a female sampled at 8kHz with 16bits per 

sample. It was found that good speech quality can be achieved with update-points at 

20ms intervals although a rather buzzy effect occurs from time-to-time which 

appears to be due to the enforcement of too much periodicity in the synthesised 

speech. This excess periodicity is known [70] to be the feature of PWI when 

information about only one prototype waveform is encoded every 20ms. 

In addition, experiments have been performed on the TSPWI coder with the 

number of prototype waveforms per 20ms of voiced speech increased from one to 

two, four and eight. The main update-points at which the LSF coefficients and the 

pitch-period are specified remained always at 20ms intervals. The prototype 

waveforms extracted between the main update-points are referred to as 

"intermediate" prototype waveforms. The intermediate prototype waveforms were 

extracted from the LP residual using "intermediate" estimates of pitch-period. Each 

intermediate estimate of pitch-period was obtained by linearly interpolating the 

instantaneous pitch-frequencies at the 20ms update-points and converting the 

resulting frequency to a period. An immediate enhancement in the speech quality 

was obtained by encoding tW<?J rather~~~rototype waveforrnsper 20ms of speech. 

This means that a prototype waveform is extracted at each update-point and mid-way 

between each pair of update-points. Further improvement is achieved by encoding 

four prototype waveforms per 20ms of speech. The synthesised speech obtained in 

this case was fairly natural. It was found that when eight prototype waveforms were 

extracted per 20ms of speech, except for a minor distortion in a few segments, the 

synthesised speech was almost indistinguishable from the original. In this case a 

prototype waveform is being extracted every 2.5ms, and this means that, especially 

for low pitched male speech there will be much overlap between prototype 
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waveforms. Although it may seem, at this stage, that there is a lot of data to be 

encoded with this high extraction rate, ways of reducing the data without sacrificing 

all the advantages gained will be discussed later. It must be pointed out that great 

care must be taken when the intermediate prototype waveforms are being extracted. 

A roughness in speech quality can result from error in any of the intermediate 

prototype waveforms. Details of how the intermediate prototype waveforms are 

extracted will be given in chapter 6. 
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Figure 5.9 Example of voiced speech synthesised using the TPSWI coder with prototype waveforms 
extracted at 2.5ms intervals. (a) original speech segment (b) snap-shot of original voiced speech 

(c) snap-shot of synthesised speech (d) decoded speech segment 

In figure 5.9a, an example of a 300ms speech segment is shown. The 

utterance is the word "NO" spoken by a male speaker. The segment is part of the test 
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file of speech applied to the TPSWI coder with eight prototype waveforms being 

encoded per 20ms. The synthesised speech obtained at the decoder is presented in 

figure 5.9d. It can be seen that the amplitude envelope of the synthesised signal 

follows very well the original shown in figure 5.9a. A smooth voiced onset and 

offset is preserved and although the unvoiced speech at the beginning and end of 

figures 5.9d looks in detail rather unlike the original, the distortion could not be 

perceived. In figure 5.9b and c, a segment of the original voiced speech and the 

corresponding segment of decoded speech are presented. It can be seen that the 

synthesised wave-shape is almost the same as the original one, and that there is, as 

expected, a time shift between them. 

The perceptual quality of TPSWI encoded speech is considerably enhanced 

by having eight prototype waveforms per 20ms. Each prototype waveform is 

represented by a gain factor and the DFT magnitude and phase spectra of a power 

normalised version of it. It was also found that no noticeable loss of this 

enhancement occurred when only two gain factors per 20ms of voiced speech rather 

than eight were encoded. In this case the non-encoded gain factors are obtained by 

interpolation. 

Using the. speech file "OPERA TOR.DATn as test data, the TPSWI coder 

with 20ms prototype waveform extraction was compared with a PWI/CELP coder 

with the same prototype waveform extraction rate implemented by the author [82]. 

The main differences between these coders lie in the encoding technique used for 

unvoiced speech and the way that the TPSWI model handles the voicedlunvoiced 

transitions. Subjective tests suggested that the speech quality obtained from the two 

coders are comparable. However, the TPSWI coder had a smoother voicedlunvoiced 

transitions than the PWIICELP coder. Many transient effects found in the 

PWIICELP coder were eliminated. The TPSWI coder is considerably simpler in its 

approach to coding unvoiced speech since only the four short-term rms 

measurements of the unvoiced residual are required for 20ms rather than a CELP 

representation. This experiment demonstrated the importance of the rms value 

contour in the perception of unvoiced speech . 
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5.6 The TPSWI coder with phase derivation at the decoder 

In the TPSWI coder, prototype waveforms are extracted at the encoder at a 

constant rate. The prototype waveforms can be represented by Fourier series cosine 

and sine coefficients [70], which are proportional to the real and imaginary parts of 

pitch-synchronous DFT spectra, or the magnitudes and phases of the DFT spectra 

[83]. Some efficiency can be gained by encoding only the magnitude spectrum of 

each prototype waveform on the assumption that the phase spectrum is likely to be 

less perceptually important and that an approximation to the true phase spectrum can 

be recovered at the decoder according to some assumption about the voiced speech 

production model. 

In this thesis, a phase derivation scheme is proposed for estimating the phase 

spectrum of a prototype waveform. This is achieved by studying the conventional 

voiced speech production model and re-expressing it in terms of the time-reversed 

impulse response of the 2nd-order all-pole filter normally used to model the glottal 

excitation when cascaded with vocal tract and lip-radiation filters. Under the 

assumptions of this model of human speech production, the original speech, which is 

non-minimum phase, can be assumed to be equal to a minimum phase time-domain 

signal passed through a second-order all-pass filter. This means that, in theory, the 

phase spectrum of a prototype waveform can be modelled as the phase response of 

the 2nd-order all-pass filter. The basis for this theory is explained below. The phase 

derivation scheme allows quantisation of the PSWI model parameters to be 

concentrated on the magnitude spectra of prototype waveforms. 

5.6.1 Deriving the phase spectrum of an LP residual signal using a voiced speech 

production model 

A voiced speech production model is often expressed in terms of three 

cascaded filters as illustrated in figure 5.1 O. The filters are:-

i) a filter G(z), whose impulse response provides the glottal excitation pulse, 

ii) an all-pole filter V(z), modelling the vocal tract resonances, and 

iii) a filter L(z), modelling lip-radiation . 
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For voiced speech this set of filters is assumed to be driven by a signal e(n) made up 

of a pseudo-periodic series of discrete time impulses. 

e (n) 4 G(z) H V(z) ~~ s(n) 

Figure 5.10 A simple voiced speech production model. 
\ 

V(z) is assumed to be an all-pole model of the vocal tract which has the transfer 

function, 

v(z) = -,p,..--_I_­
n (I - p,Z-I) 
,.1 

(5.30) 

where p, are the poles of V(z) and P is total number of poles. The formant 

frequencies of voiced speech are dependent on the location of these poles within the 

unit circle. 

L(z) is normally considered [6] to be a differentiator which has a single positive 

zero, a, on the real axis just inside the unit circle. L(z) is therefore defined as, 

L(z) = 1 - az·1 
(5.31 ) 

It is often assumed [2] that G(z) is a 2nd order all-pole filter with transfer function, 

1 
G( z) = -:-( I---P-I z--I"""")(-I --P2-

Z 
·--:"1 ) 

(5.32) 

where PI and P2 are the poles of G(z). 

The first of these poles is assumed coincident with the lip-radiation zero (a=PI), and 

the effect of this pole-zero combination on the magnitude spectrum of speech is 

assumed to cancel [6]. As a result, the voice speech production model is often 

assumed to contain only poles within the unit circle as illustrated in figure 5.11 a. 

Linear prediction aims to model the Sl-tn-term spectral envelopes of voiced speech 

segments by estimating the positions of the assumed poles within the unit circle. The 

LP estimation technique can produce only the parameters of a minimum phase 
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model of speech production, i.e. an all-pole model where all the poles lie inside the 

unit circle. The spectral envelope is whitened by the LP inverse filter, which is 

assumed to place zeros on the locations of the poles as illustrated in figure 5.11 b. 

The output of the inverse filter will have a flat magnitude spectrum if the all-pole 

model is valid and there are sufficient zeros to cover all the poles. 

Imag (z) 

z-plane 
x - pole 

o - zero 

Imag (z) 

z-plane 

w 00 

Re (z) 

Figure 5.11 Poles and zero of a simple voiced speech production model. (a) voiced speech 
production model (b) poles and zeros of spectrally flattened residual as sometimes assumed 

It has been suggested [77] that the naturalness of synthesised speech can be 

better preserved by using a transfer function O(z) which has an impulse response as 

shown in figure 5.l2. This impulse response is consistentoJ~eoretical models of-fue... 

operation of the vocal cords and also to the waveforms obtained by direct 

measurement, for example using a laryngeograph. The slow rise of the response 

corresponds to the characteristically slow opening of the glottis and the sharp fall 

models its rapid closure. These characteristics are seen in the well known Rosenberg 

Pulse sometimes used to model glottal excitation [77], and formulated as: 

A( 3( ;,r -2( ;,Y) O~t~T, 

g{t) = AI-(';:'r) Tp<t~T,+TN (5.33) 

0 T,+TN<t~P 

where T p and T N are the opening time and closing time and p is the pitch-period. 
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Figure 5.12 Example of Rosenberg pulse. with pitch-period = 100 samples. 

(a) waveform shape (b) magnitude spectrum of the signal (c) phase spectrum of the signal 

The Rosenberg pulse as illustrated in figure 5.12a is clearly not minimum phase. A 

minimum phase signal, in comparison to all other causal signals with the same 

magnitude spectrum will have its energy maximally concentrated at the beginning of 

the signal; Le. for a given causal minimum phase signal {x(n)}, the sum L:tl( x(n) Y 
n.O 

for any value of L will be larger for {x(n)} than for any other signals lNrth.1he.. same 

magnitude spectrum as {x(n)}. The Rosenberg pulse clearly cannot be the impulse 

response of the 2nd order minimum phase all-pole filter G(z) discussed earlier. 

However it does quite closely resemble the time-reversed impulse response of such 

an all-pole filter, G'(z) say. This is clearly the justification for the 2-pole glottal filter 

G(z) discussed earlier. An example of the time-reversed impulse response of a 2nd 

order all-pole filter, with poles at PI = P2 = 0.9 is presented in figure 5.13a. The time 

reversal impulse response is delayed by 100 samples, after which samples for n<O 

are assumed to be close enough to zero to be considered zero. The magnitude and 

phase spectra of the time reversed and delayed impulse response are shown in 

figures 5,13b and c respectively. It can be seen by comparing figures 5.12b and c and 

5.13b and c that the two signals can have almost identical magnitude and phase 

spectra, if the two signals in figures 5 .12a and 5.13 a are properly phase aligned. 
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Figure 5.13 Time-reversed impulse response ofa 2nd-order all-pole filter <PI = ~2 = 0.9, pitch­

period=IOOsamples). (a) wave shape (b) magnitude spectrum (c) phase spectrum 

(a) 

(d) 

e 

Figure 5.14 Glottal excitation signals extracted from 5 vowel sounds. 
(a)/a! (b)/e/ (c)/i/ (d)/o/ (e)/uI 

40ms 

In figure 5.14, the glottal excitations extracted from 5 vowels sounds, la!, lel, 

lil, 101 and Iu! spoken by the same speaker, are presented. The glottal excitations 

were extracted using the technique suggested in [78] and [79], using a 1st-order pre-
. (~~'i~~1o( . . 

emphasis filter whIch was a: • WIth a smgle zero at z=O.95. It may be seen 

that the glottal excitation for the vowels has a pulse-shape with some features similar 
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~ 
to those f Rosenberg pulse or the time-reversed impulse response of a 2nd-order all-

pole filter. Clearly there are striking differences also. 

Under the assumption that the impulse response of a more realistic glottal 

filter G(z) resembles the time-reversed impulse response of a 2-pole transfer 

function G'(z), linear predictive analysis identifies the inverse of the minimum phase 

transfer function G'(z)V(z)L(z) rather than the inverse of the model shown in figure 

5.1 o. This is because, denoting the magnitude and phase responses of G'(z) by M(ro) 

and ~(Cl)) respectively, the time-reversed impulse response of G'(z) will have the 

same magnitude spectrum M( ro) and the phase spectrum -~( Cl) disregarding a linear 

phase or delay component. Therefore LP analysis gives a good estimation of the 

magnitude spectrum of a glottal pulse but the LP phase spectrum will not be correct. 

It will have the phase contribution ~(Cl) rather than -~(Cl). Therefore, in order to 

obtain an LP residual which is more likely to resemble the assumed impulse-like 

excitation to G(z), with its correct phase spectrum, we should augment the LP 

analysis filter by a 2nd-order all-pass section F(z) [80], as shown in figure 5.15a, 

where F(z) is defined as, 

~ A(z) ~I F(z) ~ 
s(n) r'Cn) 

(a) 

Imag (z) 

z-plane 
(b) 

(5.34) 

Figure 5. t 5 (a) An inverse filtering model for deriving the correct magnitude and phase spectrum of a 
speech residual. A(z) is found by LP analysis and F(z) is an all-pole filter as described in section 5.6.1 

(b) pole-zero plot of the 2nd order all-pass filter F(z) 
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The poles and zeros of F(z) are as illustrated in figure 5.15b. The gain of F(z) is 

unity for all frequencies because the poles and zeros are in "mirror image" positions 

on the z-plane. The poles at ~ I and ~2 within the unit circle are intended to cancel 

out the incorrectly placed minimum phase analysis filter zeros obtained from the LP 

analysis. These minimum phase zeros are then effectively replaced by the non­

minimum phase zero at z= 1I~ I and z= 1I~2 which more accurately model the glottal 

excitation. The phase spectrum of F(z) is computed as, 

(5.35) 

5.6.2 The effect of the voiced speech production model on an LP residual signal 

The effect of the all-pass section F(z) on an LP residual is illustrated in'figure 

5.16. In the experiment, the parameter ~I was set equal to the zero assumed for the 

lip-radiation filter a. at 0.95. The value of ~2 was found by an optimisation 

procedure. A prototype waveform was extracted from the voiced residual, pitch­

synchronous DFT analysis was applied to the prototype waveform to yield its phase 

spectrum ~u«(J) which was then matched as closely as possible by the negated phase 

spectrum ~F«(J) of F(z). Linear phase components in ~u«(J) must be accounted for, 

by phase aligning -~F( ro) with ~u( ro) using the original magnitude spectrum. The 

closeness of ~u( (J) to -~F( ro) was measured by a sum of squared phase differences. 

This was minimised by considering a range of values of P2 and selecting the value 

which produced the lowest value. 

After optimising ~2, the input speech shown in figure 5.16a was processed by 

a 10th order LP inverse filter and the all-pass filter. The resulting signal is shown in 

figure 5.16c. This graph illustrates that by passing the original LP residual signal 
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through F(z), the modified voiced residual can be made closer to an impulse train 

than the original LP residual shown in figure 5.16b. 

Amplitude 

600 1 

Amplitude 
600 I 

Amplitude 
600 

time(ms) 

(a) 

(b) 

time(ms) 

(c) 

Figure S. I 6 The effect of F(z) on an LP residual signal. 
(a) original speech wavefonn (b) LP residual (c) residual signal after the 2nd order all-pass filter 

5.6.3 Evaluation o/the phase deviation scheme using synthetic speech 

The phase model was also tested using synthetic voiced speech. The 

synthetic voiced speech segment shown in figure 5.17b was generated by the voiced 

speech production model shown in figure 5.10, with the period of the impulse-train 

excitation set to 150 samples. The glottal excitation was made to be a Rosenberg 

pulse train, as shown in figure 5.17a, by making G(z) an FIR filter whose impulse 

response was the required Rosenberg pulse. The constants T p and T N of the 

Rosenberg pulse are normally considered to be proportional to the period p and were 

in this case set at OAp and 0.16p, i.e. 60 samples and 20 samples respectively [77]. 

The vocal tract transfer function V(z) was defined to be 8th order all-pole model 

with 8 poles located within the unit circle. The pole positions were: 0.97e±jO.196, 
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0.85e±j 1178, 0.7e±j 1.767 and 0.5e±j 2.592. For the lip-radiation filter with transfer 

function L(z)=I-az-1
, a was set as 0.95. 

The synthetic voiced speech was applied to a 10th order LP analyser to 

estimate its spectral envelope. The LP analyser implemented the autocorrelation LP 

analysis with a 240 samples Hamming window. The centre of the Hamming window 

is located at an update-point. The synthetic voiced speech was then passed through a 

10th order LP analysis filter, to yield a residual signal which is shown in figure 

5.l7c. 

(b) 

(c) 

I_--...,--l __ -....I--l --JJ---
(d) 

e 

20ms 

Figure 5.17 Example of synthesised voiced speech using the phase model 
(a) glottal excitation (b) original voiced speech (c) residual signal (d) reconstructed speech excitation 

(e) reconstructed voiced speech 

To recover the voiced speech, a period-length prototype waveform was 

extracted from the residual. DFT analysis of order p was performed on the prototype 

waveform to yield magnitude and phase spectra. The true DFT phase spectrum was 

discarded and the magnitude spectrum was used together with appropriate samples 

of -~F(ro) to reconstruct the residual signal. The value of PI was taken to be 0.95 and 

a value of P2 was found by solving for the zeros of the inverse filter transfer function 

- 167· 



Chapter 5 Two-mode Pitch-synchronous Waveform Interpolation (TPSWI) Model 

A(z), and choosing the real root which was closest to the unit circle for ~2' Using 

this approach, ~2 was found to be approximately 0.95 and the reconstructed residual 

was found to be as shown in figure 5.17d. The reconstructed residual is very close to 

the original shown in figure 5.l7c. A time shift is present as expected due to the 

location of the prototype waveform extracted. When the reconstructed residual was 

passed through the LP synthesis filter, the synthesised speech shown in figure 5.17e 

was obtained. This is very close to the original voiced speech in figure 5.17b. 

5.6.4 Incorporation of the phase derivation scheme into the TPSWI coder 

An all-pass augmentation of the LP filter is not necessarily required at the 

analysis stage of a TPSWI coder, since the correct magnitude spectrum of the 

residual is all that is encoded. The all-pass phase spectrum need only be applied at 

the decoder to make the output speech correspond more closely to a naturally shaped 

glottal pulse excited speech production model. 

In experiments with natural speech, a value of 0.95 was chosen for ~I and ~2 

was obtained in a more practical way than the method used in the earlier 

investigations. Suitable values for ~2 were obtained by matching a time-reversed 

Rosenberg pulse with the output of a 2nd-order all-pole filter, using a cross­

correlation function. The Rosenberg pulse was adjusted according to the pitch-period 

p with parameters, T p=0.4p and T N=0.16p [77]. The values of ~2 found to be 

appropriate across the range of possible pitch-periods are listed in table 5.1. 

pitch- P2 pitch- rh pitch- Ih pitch- rh 
period period period period 
16 - 52 0.64 65 - 68 0.76 82 - 84 0.84 103 - 107 0.90 
53 - 54 0.65 69 0.78 85 - 87 0.85 108 - 114 0.91 
54 - 56 0.66 70 -72 0.79 88 - 89 0.86 115 - 124 0.92 
57 - 59 0.70 73 -74 0.80 90 - 93 0.87 125-132 0.93 
60 - 62 0.71 75 -79 0.82 94 - 99 0.88 133 -144 0.94 
63 - 64 0.75 80 - 81 0.83 100 - 102 0.89 145 - 150 0.95 

Table 5.1 Values of ~2 for dIfferent ranges of pitch-periods (in samples) 

Although, in theory P2 is embedded in the inverse LP filter parameters and so may 

be found by a method based on that used for artificial speech, experiments have been 
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shown a real root close to z=l may not be always available. Although the approach 

may be modified to find appropriate values of P2 on these occasions, the 

computational complexity involved in root solving and the additional complexity 

involved in processing these roots makes the approach very unattractive. Particular 

problems in finding t~e required root close to z=1 occur with telephone band speech 

which is high pass filtered below about 300Hz. 
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Figure 5.18 Synthesised voiced speech obtained by the two phase models. 

o 

o 

(a) original speech signal (b) speech signal obtained using the original phase spectrum (c) speech 
signal obtained from the 2nd-order all-pass phase model 

An example of a voiced speech segment synthesised using a TPSWI decoder 

is shown in figure 5.18. It can be seen that the synthesised speech obtained using the 

original magnitude and phase spectra, as shown in figure 5.18b, is very similar in 

shape to the original signal, as shown in figure 5.18a, though with the expected time 

shift. It may be seen in figure 5.18c that the speech waveform synthesised using the 

derived phase spectrum also closely resembles the original waveform. 
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5.6.5 Subjective evaluation of the new approach 

When tested with female speech in the file "OPERATOR.DAT" [21] the new 

phase derivation scheme, incorporated into the TSPWI coder, was found to produce 

only minor degradation as compared with what was obtained using the true phase 

spectrum. However, a slightly unnatural speech quality was perceived when the 

pitch-period of the voiced speech was larger, as in the male speech. It was found that 

the quality of male speech was improved by randomising the phases at higher 

frequencies within the 0 to 4kHz bandwidth. The frequency range over which 

randomised phases rather than derived phases are used must be carefully chosen. A 

roughness in speech quality results if too many components with randomised phases 

are introduced. An adaptive frequency boundary was found to be effective and after 

much experimentation it was decided to make this equal to the frequency of the 9th 

LSF. The choice of the 9th LSF was made to arrange that the first three formants are 

in the derived phase region. As a result, the phase model is defined as, 

(5.36) 

where 

009 is the 9th LSF (in radian per sample) 

tu is the pitch-frequency (in radian per sample) 

tPF is the phase spectrum of the 2nd-order all-pass filter 

~r(k) is a uniformly distributed pseudo-random phase between -7t to 7t, a different 

random phase being generated for each frequency bin k, 

Using the new derived phase spectrum ~'F(OO), the TPSWI coder was tested 

agam using the speech file "OPERATOR.DAT" [21]. Informal listening tests 

suggested that the perceptual quality of the synthesised male speech was improved 

by using the new phase spectrum ~'F(OO) instead of directly taking the phase 

spectrum -~F(OO) derived from the 2nd order all-pass filter. No audible difference was 

found between synthesised female speech segments generated using, on the one 

hand, the phase spectra ~'F(OO) and on the other hand -~F(OO). 

- 170-



Chapter 5 Two-mode Pitch-synchronous Waveform Interpolation (TPSWI) Model 

5.7 Conclusions 

A two-mode pitch-synchronous waveform interpolation (TPSWI) model 

designed during the course of this project has been described in the chapter. In this 

model, a pitch-synchronous PWI technique is used for voiced speech and unvoiced 

speech is modelled very simply by a power contoured pseudo-random sequence 

generator. Representing the contour accurately was found to be very important and 

much more important than trying to accurately model the residual waveform and any 

residual periodicity as CELP does. An overlap-add technique was found to be 

necessary to ensure smooth transitions between voiced and unvoiced speech. When 

the TPSWI coder was compared with a PWIICELP coder developed by the author, 

smoother voicing transitions were found in the TPSWI coder and these greatly 

enhanced the perceived quality of the speech obtained. Furthermore, the 

computational complexity of the TPSWI coder for unvoiced speech is much less 

than that of the PWIICELP coder. 

The TPSWI coder has regular update-points at 20ms intervals. At each 

update-point a set of ten LSF coefficients and an estimate of the instantaneous pitch­

period at the current update-point are encoded. Confirming the idea published by 

Kleijn [70], it was found that for voiced speech a very close approximation to the 

original speech was obtained when eight prototype waveforms were encoded per 

20ms duration. Each prototype waveform is ideally characterised using a gain-shape 

approach where a gain factor and a normalised prototype waveform are separately 

encoded. Subjective tests suggested that no noticeable speech degradation occurs 

when only two gain factors are sent per 20ms, the missing gain factors being 

estimated by interpolation. Ways of effectively encoding the shape information will 

be discussed in· C;.. later chapter. 

A theoretical model of human voiced speech production which, in principle, 

enables the phase spectra of prototype waveforms to be derived has been presented. 

This has implications towards the search for low bit-rate representation of prototype 

waveforms. It was concluded that the phase spectrum may be derived using a 2nd 

order all-pass filter thus potentially enabling the coding efficiency of the TPSWI 

coder to be increased by encoding only the magnitudes of the prototype waveforms. 
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Subjective tests suggested that even with the all-pass phase modelling a 

somewhat unnatural speech quality was produced by the TPSWI coder when the 

pitch-period of the voiced speech was large. It was found that in order to improve the 

speech quality, the phases of some of the higher frequency pitch harmonics may be 

randomised. Informal listening test suggested that the perceptual quality of the 

synthesised male speech was enhanced by this procedure and that no audible 

difference was occurred in the synthesised female speech. It was decided that 

frequency boundary above which harmonics have their phases randomised should be 

taken to be the 9th LSF as obtained for each update-point. 
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Chapter 6 

Generalised Pitch-Synchronous Waveform 

Interpolation (GPSWI) model 

6.1 Introduction 

PWI coding was initially proposed [68] for voiced speech segments only. 

Unvoiced speech segments. were originally intended to be coded by switching to a 

fundamentally different model such as a simplified form of CELP, or, even more 

simply, a suitably power contoured pseudo-random sequence. A voiced/unvoiced 

decision was thus required for choosing the appropriate model for a given segment of 

speech. Inevitably with such a coder speech quality degradation will occur from time 

to time due to speech classification errors. A very accurate voiced/unvoiced classifier 

is required to minimise the rate of occurrence of such errors. Deterioration of speech 

quality could be caused by mishandling of the switching between the two coding 

techniques. Also the 50Hz sampling of the waveform shape (by extracting prototype 

waveforms every 20ms) is used without regard to the nature of changes that may be 

occurring to the shape. More rapid elements of the changes will clearly cause a form 

of aliasing and further, the mis-representation of the more rapid changes in the 

synthesised speech can lead to excessive buzziness and unnaturalness. These 

difficulties provided the motivation for trying to achieve a generalised coding scheme 

which is capable of handling both voiced and unvoiced speech and which samples and 

represents the evolving speech or residual waveform in terms of different aspects of 

the waveforms which evolve at different rates and are perceived differently. Recently, 

such a generalised waveform interpolation (WI) coding algorithm was proposed by 

Kleijn et al [73]-[76] which is claimed to be able to achieve good speech quality at 

around 2.4kb/s. 

The new coding algorithm generalises the concept of a prototype waveform 

to include fixed length segments of unvoiced speech or transitions. The generalised 
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prototype waveforms are called "characteristic waveforms". The new approach also 

aims to take account of the non-stationarity of speech and the way it is perceived by 

decomposing the changes that occur to characteristic waveforms into slowly evolving 

(SEW) and rapidly evolving (REW) waveform components [73]. The SEW 

components arise from the quasi-periodic content of the speech residual. The REW 

components arise from degrees of randomness embedded in all forms of speech but 

particularly in unvoiced speech [73]. For voiced speech segments, the SEW 

components will tend to be dominant whereas for unvoiced speech, the REW 

components will be more important. By modelling the SEW and REW components 

simultaneously and individually, the required generalisation of PWI techniques to 

random-like signals and an improved sampling and interpolation scheme for voiced 

speech is obtained. 

It was suggested [74] that the human auditory system has a very different 

requirement for the perceptually indistinguishable reconstruction of the SEW (quasi­

periodic) and REW (random-like) components. Coding efficiency can be gained by 

exploiting this characteristic of human perception. For SEW (quasi-periodic) 

components, the wave-shapes are likely to be important and generally need to be 

reproduced with some accuracy. For REW (random-like) components, the 

substitution of quite dissimilarly shaped pseudo-random waveforms is acceptable as 

long as the average spectrum and power contour are reasonable. Different update 

rates and quantisation schemes are used for the SEW (quasi-periodic) and REW 

(random-like) components. 

A more recent type of waveform interpolation coder proposed by Kleijn et at 

[76] modifies the way in which characteristic waveforms are extracted from the 

residual and also encodes magnitude only information rather than the Fourier series 

cosine and sine coefficients. The missing phase information is regenerated artificially 

at the decoder. The quantisation schemes for the SEW and REW were refined to take 

into account their spectral characteristics and the way different spectral 

characteristics are perceived. The general spectral characteristics of a full-band REW 

are encoded at intervals of 2.5ms and the SEW in the range 800Hz to 4kHz is 

deduced by subtracting the REW in this band from a flat spectrum. Below 800Hz, the 
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SEW is encoded at intervals of 25ms by vector quantisation. Techniques for reducing 

the complexity of the coder were published [76] and these have led to real time 

implementations both on a DSP device and also on a general purpose workstation. 

The main findings of Kleijn [74] are therefore that coding efficiency can be 

gained by separating the quasi-periodic and random-like components of the residual 

and that the quasi-periodic components and the random-like components may be 

regenerated at the decoder by interpolation and the substitution of pseudo-random 

sequences respectively. It was found that for voiced residuals the general shapes of 

the characteristic waveforms are slowly evolving over time and more detailed 

information embedded onto the general shapes is very different from one 

characteristic waveform to the next. For unvoiced residuals the general shape tends 

to disappear and the characteristic waveforms are very different from one to another. 

Decomposition of characteristic waveforms into quasi-periodic and random-like 

components can be achieved by exploiting the fact that the general shape of a 

characteristic waveform is characterised mainly by its lower frequency components 

and that its higher frequency components contribute mainly to its finer detail. A 

generalised pitch-synchronous waveform interpolation (GPSWI) model was devised 

[84] making use of this property of characteristic waveforms. It was developed from 

the TPSWI model described in chapter 5. The new approach now eliminates the 

switching to a pseudo-random sequence generator for unvoiced speech. 

In the GPSWI model, eight characteristic waveforms are extracted from the 

20ms residual segment between each pair of adjacent update-points. DFT analysis is 

performed on each characteristic waveform to yield the magnitude spectrum. Each 

DFT magnitude spectrum is then decomposed into a slowly evolving spectrum (SES) 

and rapidly evolving spectrum (RES). The SES is obtained by averaging eight 

successive magnitude spectra and is only defined from OHz to a separation frequency 

which is variable. The RES for each characteristic waveform is acquired by directly 

taking the higher frequency portion of the magnitude spectrum of the characteristic 

waveform at each sub-update point. The separation frequency is taken to be the 9th 

LSF for fully voiced speech and reduces towards OHz for unvoiced speech. The SES 

is used to characterise the general shape of the characteristic waveforms and is 
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encoded at a lower rate than the RES. The RES describes the finer detail of each of 

these characteristic waveforms and must be sampled at a higher rate to allow close 

tracking of the waveform dynamic. The phase spectra for the SES and RES are 

imposed artificially at the decoder. The phase spectra for the SES components are 

derived from the voiced speech production model discussed in chapter 5. For the 

RES components a pseudo-random phase spectrum is used. The spectral division of 

the characteristic waveforms in terms of the SES and RES leads to considerable 

economy in bit-rate and has led to good quality speech being obtained at 2.4kb/s. Full 

details of the GSPWI model are given in this chapter and its quantisation is discussed 

in chapter 7. 

The sub-band approach to the decomposition of characteristic waveforms into 

slowly and rapidly evolving components is original, and allows good quality speech 

to be obtained from the GPSWI coder at 2.4kb/s. The main aim of this chapter is to 

present details of the design of the GPSWI coder. Firstly, the fundamental ideas of 

WI coding and its more recent developments will be briefly discussed in section 6.2. 

In section 6.3, a general description of the SESIRES decomposition scheme will be 

presented. The discussion in section 6.3 will begin with the spectral decomposition 

algorithm used for voiced speech and the algorithm will then be further developed to 

cover unvoiced speech. The structure and details of the GPSWI coder will then be 

presented in section 6.4. 

6.2 Fundamentals of waveform interpolation (WI) coding 

The generalised WI coding approach was developed from the concept of 

PWI. A single characteristic waveform is extracted from an LP residual at predefined 

update intervals, say every 2.5ms [75]. The terminology "prototype waveform" used 

in PWI coding is replaced by "characteristic waveform" in order to cover both voiced 

and unvoiced speech segments. The length of each characteristic waveform, even for 

unvoiced speech, is equal to the value of pitch-period given by a pitch track [74]. 

Following the explanation given in Kleijn [74], characteristic waveforms extracted at 
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2.5ms intervals may be normalised in time such that the length of each waveform 

always becomes 21t. The normalised time axis may then be referred to as the phase 

axis 4>. The time-scale normalised characteristic waveforms are power normalised and 

then "phase aligned" by circularly shifting them in time (referred to as phase) to 

maximise the cross-correlation between them, thus making them as similar in shape as 

possible. Each of the phase-aligned time and power normalised waveforms is placed 

on a phase axis 4> as shown in figure 6.1. A 2-D plane is then produced by 

interpolating the samples of the waveforms between the 2.5ms spaced sub-update 

points. 

o 

Characteristic waveforms 

+ 

.. .... :: ......... :..- ;. .. ..,. . 

... 
...... ......... 

time 
(ms) 

Pitch track 

Figure 6.1 Periodic extension of a characteristic waveform in both the time and ~ axes. 

The time-normalised and power normalised characteristic waveform defined at a 

given point in time t, is therefore considered to be one period along the 4> axis of a 

waveform which is periodic in 4> (with period 21t) with Fourier series coefficients 

which depend on t as expressed by the following equation [74]: 

(6.1) 

where Ck(t) are the complex Fourier series coefficients and pet) is the pitch-period at 

time t. 

The process of reconstructing the time-normalised residual by interpolation at the 

decoder can now be interpreted as re-sampling the 2-D surface along the diagonal 

lines shown dashed in figure 6.1. These dashed lines are referred to as pitch-tracks. 
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The angle of each diagonal line to the true time axis t, marked 8I, 82, etc. is 

determined by the interpolated pitch-period. If the pitch-period is fixed, the lines will 

be straight, otherwise they will be slightly curved. The time taken for 4> to increase 

from 0 to 21t along such a line is essentially equal to the pitch-period. 

The accuracy of the reconstructed residual naturally depends on the update 

rate of the characteristic waveforms. It was reported [75] that the decoded speech 

obtained from a WI coder can be made approximately toll quality if the residual 

characteristic waveforms are encoded at sub-intervals of 2.5ms. To encode the 

characteristic waveforms efficiently, they are decomposed into slowly evolving 

(SEW) and rapidly evolving (REW) waveform components [73][74]. A different 

quantisation scheme is applied to each of the two component types based on known 

properties of human perception. 

The human auditory system appears to have very different requirements for 

the perceptually acceptable reconstruction of the two . types of waveform 

components. The SEW components represent quasi-periodic properties of the 

residual, the evolution of which is relatively slow. The SEW components can be 

sampled at a lower rate than the REW components, and, in principle, it appears 

possible to define the SEW components (i.e. to arrange the low-pass filtering) such 

that the original SEW information about the residual can~dequatelY recovered by 

interpolation from 20ms or 25ms spaced samples. An accurate description of the 

down-sampled SEW components which constitute a time-domain waveform referred 

to simply as the" SEW" is important. The SEW is therefore a slice of the smoothed 2-

o plane taken parallel to the 4> axis at intervals normally of 20ms. 

The REW components are much more random and rapidly changing than the 

corresponding SEW components and therefore can, in principle, carry much more 

information (the bandwidth of the evolution is much larger). Fortunately, human 

perception does not discern much information from such rapidly evolving signals 

apart from the fact that they are random, perhaps spectrally coloured and of varying 

amplitude. From the perception point of view, the perceptual quality of the REW 
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components can be preserved by substituting pseudo-random signals each with a 

combination of a roughly similar magnitude spectrum and a similar power contour to 

the original [75]. Because of the more rapid evolution, a higher update rate is 

required for the REW information than for the SEW (typically 2.5ms) though much 

less information needs to be provided at these updates. REW components, which 

constitute a time-domain waveform referred to simply as the "REW" may be 

regenerated at the decoder by inverse transforming the magnitude spectrum specified 

for the REW with a pseudo-random phase spectrum. A time-domain power contour 

is then imposed on the resulting signal. 

In a more recent type of WI coder proposed by Kleijn et at [76], 

characteristic waveforms are extracted from the LP residual only at the rate of about 

one per pitch-period. In principle, the extracted waveforms no longer overlap as they 

usually did with 2.5ms sub-update points. In practice, there may still be a very small 

amount of overlap due to changes in the pitch-period and slight inaccuracy in the 

interpolated pitch-period. The power and length of each characteristic waveform are, 

as before, normalised to unity and 21t respectively. The normalised characteristic 

waveforms are phase-aligned and plotted parallel to the <I> axis on a 3-D graph of 

amplitude against phase and time. For each characteristic waveform a fixed value of 

time t is used corresponding to its update point. The update-point is the value of time 

t at the centre of the extracted waveform in the original residual signal. The update­

points for the extracted waveforms are no longer regularly spaced in time, though 

this does not affect the main update-points which remain fixed, now at 25ms rather 

than 20ms. Samples of the normalised characteristic waveforms corresponding to the 

same phase <I> may now be interpolated, as before, to obtain a 2-D surface as 

illustrated in figure 6.3b. The interpolation is a little more complicated now because 

of the unevenly spaced update-points. In practice, the 2-D surface is up-sampled in 

the time (t) domain but only to 1000Hz rather than 8kHz to save computation. The 

up-sampling is achieved by linearly interpolating between the phase-aligned 

characteristic waveforms at adjacent update-points. The up-sampled 2-D plane is 

now decomposed into slowly evolving and rapidly evolving planes by low-pass and 

high-pass filtering along the t axis for each value of~. In fact the filtering is applied 
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to each of the Fourier series coefficients associated with each characteristic 

waveform rather than to the time-domain sample. If the filtering is applied to the 

time-evolution of the real and imaginary DFT coefficients (which are proportional to 

the Fourier series cosine and sine coefficients) rather than to the time-evolution of 

their magnitudes and phases, this gives the same result as applying the filtering to the 

time-evolution of each of the phase (~) domain samples. The filtering is applied to the 

Fourier series coefficients simply for convenience since the coefficients must be 

derived anyway as part of the time normalisation process. 

Figure 6.2 illustrates such a waveform decomposition scheme applied to the 

word "Yes" spoken by a female speaker. The LP residual signal is shown in figure 

6.2a. Characteristic waveforms were extracted from the residual signal and were 

power normalised, time-scale normalised, phase aligned and interpolated in time t at 

I kHz to form the 2-D time-evolution normalised characteristic waveforms plane 

shown in figure 6.2b. Applying one-dimensional low-pass and high-pass filtering to 

the time-evolution of each waveform sample (or Fourier series cosine and sine 

coefficient) the SEW and REW planes presented in figures 6.2c and d were 

generated. It is seen in figure 6.2c that the SEW components are changing quite 

gradually over time. The smooth characteristics of the SEW surface allow it to be 

sampled at a relatively low rate and to be reconstructed at the decoder using 

interpolation. The sampling is done at 25ms intervals along lines parallel to the ~ axis. 

Figure 6.2d shows that the REW surface is random-like for the unvoiced speech 

portions and is very small for the voiced speech portions. The REW surface contains 

too much information to be economically sampled on a waveform basis but its 

general features, i.e. change in amplitude and short-term spectrum reflect the speech 

dynamic which are important to perception and naturalness. This information needs 

to be sampled at a relatively high rate. The REW components are regenerated at the 

decoder by injecting pseudo-random phase into the magnitude spectrum of a REW. 

The contributions from the REW and SEW are then added together. Finally, the 

short-term spectral envelope is re-imposed on the resulting signal to yield the 

decoded speech. 
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Figure 6.2 Example of waveform decomposition in a generalised waveform interpolation coder. 
(a) residual signal (b) time-evolution of normalised characteristic waveforms Cc) slowly evolving 

waveforms Cd) rapidly evolving waveforms 
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6.3 Spectral decomposition of characteristic waveforms 

A new coding scheme, namely the generalised pitch-synchronous waveform 

interpolation (GPSWI) model, was devised during the course of this project. The 

GPSWI model was developed from the TPSWI model, two aspects of this 

development being the elimination of the switching to an alternative model for 

unvoiced speech and the introduction of time-evolution decomposition. The GPSWI 

model implements an original sub-band approach to the decomposition of the time­

evolution of normalised characteristic waveforms into slowly and rapidly evolving 

components. The time-evolution is now viewed in terms of the spectra of the 

waveforms rather than the time-domain waveforms themselves. 

In the new approach, the time-evolution of the magnitude spectra of the 

power-normalised characteristic waveforms are decomposed into slowly evolving and 

rapidly evolving magnitude spectra. The sub-band approach means that the 

magnitude spectra of the power-normalised characteristic waveforms are divided into 

two bands: a lower frequency band which describes the general shape of the 

characteristic waveforms and an upper frequency band which characterises its finer 

detail. The frequency boundary between the two spectral bands is made dependent on 

the LP filter characteristics and also on the voicing confidence level of the pitch­

detector which has been discussed in chapter 2. The time-evolution of the lower 

frequency band will constitute the slowly evolving spectrum and that of the higher 

frequency band will form the rapidly evolving spectrum. In this section, the spectral 

decomposition scheme for the GPSWI model will be discussed in more detail. 

It was reported in chapter 5 that the voiced speech produced by the TPSWI 

coder model is perceptually very close to the original when eight prototype 

waveforms per 20ms of residual are available at the synthesis stage. Each prototype 

waveform is represented by its Fourier series coefficients which are proportional to 

the real and imaginary parts of the pitch-synchronous DFT spectrum. The group of 

eight prototype waveforms per 20ms of residual must be decomposed into a slowly 

evolving spectrum (SES) and a rapidly evolving spectrum (RES) to allow efficient 

coding of the successive DFT spectra. 

·182· 



Chapter 6 Generalised Pitch-Synchronous Waveform Interpolation (GPSWI) model 

The SES is obtained by averaging the magnitude spectra of eight successive 

prototype waveforms and is defined from OHz to the frequency boundary referred to 

above. The SES is sampled once every 20ms. The RES is defined for the rest of the 

frequency band and is sampled at each sub-update point, i.e. at intervals of2.5ms. An 

adaptive frequency boundary (fsR) between the two bands is used to facilitate the 

coding of both voiced and unvoiced speech. The SES is used to represent the quasi­

periodic components of the speech residual which are perceived in waveform terms 

and change relatively slowly and therefore may be encoded at a relatively low rate, in 

this case once every 20ms. The RES represents the rapidly changing information of 

the speech residual which is perceived in terms of more general characteristics which 

evolve rapidly and therefore must be encoded at a higher rate. 

At the decoder, successive SES magnitude spectra are interpolated to 

compute an SES magnitude spectrum at each of the 2.5ms spaced sub-update points 

between the main update-points. At each sub-update point, the interpolated SES is 

combined with the corresponding RES to yield the magnitude spectrum of a modified 

power-normalised characteristic waveform. The phase spectrum of this waveform is 

taken as minus the phase spectrum of the 2nd order all-pass filter described in chapter 

5. To reconstruct a speech residual, the phase spectra of the power-normalised 

characteristic waveforms are phase aligned and the real and imaginary DFT 

coefficients of the waveforms are computed. The real and imaginary DFT coefficients 

of adjacent characteristic waveforms are interpolated in the same way as for the 

TPSWI model. Quadratic instantaneous phase interpolation is applied to the 

frequency components belonging to the lower frequency band. For the higher 

frequency band, a randomised instantaneous phase is assigned to each DFT 

component at each sub-update point, before the quadratic instantaneous phase 

interpolation is applied in the normal way. Finally, the resulting signal is scaled to the 

required power and the short-term speech envelope is re-imposed to reconstruct the 

modelled speech. 
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6.3. J Spectral decomposition of characteristic waveforms for voiced !)]Jeec/t 

In the development of the technique described above, voiced speech IS 

regarded as a quasi-periodic signal, in which only the lower frequencies of 

characteristic waveforms extracted from the voiced residual signal wi ll have a low 

evolution bandwidth, i.e. only the change in the general shape between adjacent 

characteristic waveforms is assumed to be small. Experiments have been carried out 

to justify this approach. A voiced residual, in theory a quasi-periodic impulse train, 

will generally in practice be a spiky signal as illustrated in figure 6.3 for which the 

detailed wave-shape between successive spikes may be substantially different from 

one period to the neKt. 

Amplitude 

1000 

·500 

Unvoiced speech .... --;...--.... Voiced speech 

(b) 

time 
(ms) 

Figure 6.3 Example of a 2-D plane constructed by sampling a residual signal at a 2.5ms update rate. 
(a) residual obtained from part ofthe word "No" spoken by a male speaker (b) section of the 2-D 

plane during voiced speech 
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Figure 6.3a shows part of the residual signal for a word "No" spoken by a 

male speaker. The first half of the residual signal in figure 6.3a is unvoiced speech 

and the remaining part is voiced speech. Characteristic waveforms were extracted 

from the residual signal every 2.5ms and the power and length of each of these were 

normalised to unity and 27t respectively. A sampled 2-D plane was formed by phase 

aligning each normalised characteristic waveform to the previous one and plotting the 

phase aligned characteristic waveform against 4> at each sub-update point on the time 

axis. In figure 6.3b, the 2-D plane corresponding to a segment of the voiced residual 

in figure 6.3a is presented. It can be seen that the detailed wave-shape is slightly 

different from sub-update point to sub-update point even though the general shape 

evolves only slowly with time. These rapid change in the fine structure in the 

characteristic waveforms would cause difficulties with the down-sampling of the 

characteristic waveform plane at 20ms and its re-generation by interpolation. 

To investigate this rapid change in the fine structure, the time-evolution of the 

phases of particular pitch-frequency harmonics are plotted along the time axis. The 

phase evolution plots are investigated because the magnitude spectra of the 

characteristic waveforms are expected to be relatively flat [73]-[76]. The evolution of 

the phases may therefore contribute more to the evolution of the shapes of the 

characteristic waveforms. It can be seen in figures 6.4a and b that the phases of the 

2nd and 3rd harmonics, during voiced speech, are slowly and smoothly evolving over 

time. In the case of un voiced speech, a rapid phase evolution is observed. In contrast, 

the phases of the 16th and 17th harmonics, shown in figures 6.4c and d respectively, 

changed quite rapidly in both cases of voiced and unvoiced speech. Note that the 

pitch-period of the voiced speech was around 40 samples or 0.05 seconds. 

The results in figures 6.4a to d suggest that in voiced speech it is reasonable 

to define the slowly evolving spectrum only for the low frequency region of each 

characteristic waveform and that it can be sampled at a lower rate. The higher 

frequency components may be used to characterise the rapidly evolving signal and 

they may need to be sampled at a higher rate in order to closely track the speech 

dynamic. 
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Unvoiced speech .III!-----+. Voiced speech 

Unvoiced speech Ill! 

Unvoiced speech Ill! 

150 

time (ms) 

(a) 

• Voiced speech 
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• Voiced speech 

time (ms) 

(c) 
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Figure 6.4 Example of how phases of some harmonics evolve with time. 
(a) phase of 2nd-harmonic (b) phase of third harmonic (c) phase of 16th harmonic (d) phase of 

17th harmonic (Note that the pitch-period ofthe voiced speech is about 40 samples) 
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6.3.1.1 Acquisition of a mean characteristic waveform 

Suppose eight characteristic waveforms {u In) t=o. Pr) for j= 1, 2, ... , 8 are 

extracted from a residual signal at 2.5ms spaced sub-update points. DFT analysis is 

performed on each characteristic waveform to yield spectra {Ujk}. The power of each 

characteristic waveform is normalised to unity by normalising each magnitude 

spectrum according to equation 6.2: 

I I IU}k I 
U ~ k = -;==1 ==PJ=="=-1==1 =12 

-2 L U)k 
p} k = 0 

(6.2) 

k=O,I, ... ,Pj -l 

where 

pj is the instantaneous pitch-period at the jth sub-update point 

I Ujk I is the kth sample of the DFT spectrum of the jth characteristic waveform, i.e. 

the characteristic waveform at the jth sub-update point where j=l to 8. 

I U'jk I is the kth sample of the power-normalised spectrum of the jth characteristic 

waveform. 

Gain (dB) 
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o 50 frequqncy bin 100 150 

(b) 

Figure 6.5 Pitch normalisation by zero padding the magnitude spectrum of a characteristic 
waveform. (a) original magnitude spectrum (60 OFT magnitudes) (b) zero padded magnitude 

spectrum (143 OFT magnitudes) 

The length of each characteristic waveform is time-normalised to the 

maximum pitch-period pmax, which is equal to 143 samples for the GPSWI model. 
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This is done by zero-padding the original DFT spectrum to the length of the 

maximum pitch-period. The zero padding scheme that must be used is illustrated in 

figure 6.5. An original magnitude spectrum is shown in figure 6.5a, for which the' 

characteristic waveform length was 60 samples. The zero padded spectrum for a 

version of the characteristic waveform time-normalised to a length of 143 samples is 

shown in figure 6.5b. Note that the mirror image property of the magnitude spectrum 

about the centre frequency sample Pmax/2+ 1, which is equal to 72 samples, in this case 

must be maintained. The phase spectrum for the time-normalised characteristic 

waveform may be obtained by the same zero-padding scheme, except that it is anti­

symmetric rather than symmetric about the centre, Pmax/2+ 1. 

To compensate for the effect of time-normalisation on the power of each magnitude 

spectrum, each time-normalised magnitude spectrum is modified using equation 6.3: 

where 

k = 0, 1, 2, ... , P max - 1 

j = 1,2, ... , 8 

I U"jk I is the spectrum with both time and power normalisation 

(6.3) 

pmax is the maximum pitch-period used in the speech coder (Pmax is 143 samples in the 

GPSWI model) 

The two power-normalisation processes can be combined to a single operation using 

equation 6.4: 

(6.4) 

k = 0, 1, ... , Pmax -l 

When time- and power-normalised magnitude spectra have been obtained at a 

succession of sub-update points, a mean magnitude spectrum I U k I is computed by 

averaging groups of eight normalised magnitude spectra as: 
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(6.5) 

k = 1, 2, ... , P;ax 

where I U k I is the kth magnitude component of the mean magnitude spectrum. 

Thus a time- and power-normalised characteristic waveform which has the general 

shape of a group of eight consecutive time- and power-normalised characteristic 

waveforms has the magnitude spectrum 1 U k I. To produce an average phase 

spectrum which allows a mean characteristic waveform to be obtained via an inverse 

DFT, each time- and power-normalised waveform must be phase aligned. To do this, 

the phases for each sample on the 4> axis must be unwrapped along the time axis t to 

avoid phase jumps of 21t due to phase wrapping. In the GPSWI model, ' .. ' .. ' ~~; 1,., 

such a mean time-domain characteristic waveform is not required. This saves a lot of 

computation. In other forms of WI coding [73 ]-[76] phase alignment of the 

characteristic waveforms must be performed prior to the waveform decomposition, at 

some computational cost. 

Note that only half of the magnitude spectrum, pmax/2+ 1 =72 samples, need be 

computed in equation 6.5 since the upper half frequency band is a mirror image of the 

lower half band. For the rest of the thesis, a magnitude spectrum is assumed to be 

defined only for the frequency range OHz to 4kHz (i.e. 0 to 1t radians). 

6.3.1.2 Decomposition of characteristic waveforms to SES and RES 

To compute the SES at each sub-update point, the mean magnitude spectra at 

adjacent update-points are linearly interpolated. For fully voiced speech, the SES at 

each sub-update point is defined, from OHz to the highest OFT frequency which is 

smaller than or equal to the 9th LSF, as: 

IU11)kl = IU~!-l)1 + ~ (luWI-lu~~-l)l) 
(6.6) 

k ~ KJI) 

j = 1,2, ... ,8 
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where 

I is the number of the current update-point 

I ul'J I is the kth SES magnitude component of the jth characteristic waveform 

K) I) is the number of DFT bin which separates a DFT magnitude spectrum into SES 

and RES band and is computed from the 9th LSF C09 of the current analysed speech 

segment as: 

(6.7) 

j = 1, 2, ... , 8 

where p)') is the instantaneous pitch-period of the jth characteristic waveform 

The RES at each update-point is defined only in the higher frequency region, i.e. for 

p(l} 

the DFT bins between KJ/} and -t-+ 1 as: 

IU1'}kl=lu~V)1 (6.8) 

k > K(I) 
J 

j = 1,2, .... 8 

where 

I U~V) I is the jth time- and power-normalised characteristic waveform 

I Uh'}k I is the kth RES magnitude component of the jth characteristic waveform 

A magnitude spectrum, which characterises a modified characteristic waveform vln) 

at each sub-update point is thus obtained as follow: 

k ~ KJI} 

k > KJ/} 

j = 1,2, ... ,8 

(6.9) 

where I V W I is the kth magnitude component of the jth modified characteristic 

waveform. 
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An example of this spectral decomposition scheme applied to the group of 

characteristic waveforms shown in figure 6.3b is presented in figure 6.6. Using the 

spectral decomposition scheme, the slowly and rapidly evolving surfaces obtained 

from the SES and RES are illustrated in fi gures 6.6a and b. Note that, the original 

phase spectra, ~Uj for j= 1 to 8, of the characteristic waveforms are used. The handling 

of phase information will be discussed in next section . 

(a) 

(b) 

time 
(ms) 

Figure 6.6 Example of spectral decomposition on the voiced portion of the word "No" spoken by a 
male speaker. (a) slowly evolving components of characteristic waveforms (b) rapidly evolving 

components of characteristic waveforms 
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It can be seen that by separating the characteristic waveforms in this way, a 

surface of more smoothly evolving characteristic waveforms can be obtained, as 

shown in figure 6.6a. This slow evolution property allows representative waveforms 

to be sent at a relatively low rate, allowing the slowly evolving signal to be 

reconstructed by interpolation. In figure 6.6b, the surface of the rapidly evolving 

characteristic waveforms exhibits a much faster rate of change and a higher update 

rate is required. The energy of the RES in this case is very small compared to that of 

the SES because the speech is fully voiced. 

6.3.1.3 Reconstruction of the voiced speech 

To recover the speech residual, each modified characteristic waveform may 

be phase aligned with the previous aligned one using the original phase spectrum ~Uj 

at the sub-update point. Note that the original phase spectrum will be replaced by a 

derived phase spectrum when the GSPWI coder model is quantised. The real and 

imaginary coefficients of each aligned cycle are calculated and they are linearly 

interpolated with the previous ones to yield an approximation to the residual. 

(6.10) 

where 

N. is the number of speech samples in a sub-update interval 

\jf(n) is a linear interpolation function which rises from 0 to 1 across a sub-update 

interval 

O"k(n) is a frequency dependent phase term· which is defined as: 

k S; K(n) 

otherwise 
(6.11) 

where K(n) is the number of DFT bin which separates a DFT magnitude spectrum 

into SES and RES band for time sample n. The value of K(n) for each time sample n 

is obtained by linear interpolating the two DFT bin numbers K~~l and K~') at 

adjacent sub-update points. 
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Oq(n) is the instantaneous phase obtained from the quadratic phase interpolation (i.e. 

interpolating the phase as for the TPSWI model). oc(k) is a pseudo-random phase 

sample uniformly distributed between -7t and 7t. A pseudo-random phase spectrum is 

assigned for each sub-update interval, i.e. every 2.5ms. Using this phase arrangement, 

a quadratic interpolated phase is used for the SES frequency components and a 

pseudo-random phase is assigned to the RES frequency components. 

Once €(n) has been calculated, it is scaled to the required power to yield the 

reconstructed residual. The resulting signal is then processed by the LSF synthesis 

filter to obtain the decoded speech. 

6.3.1.4 Performance evaluation of the spectral decomposition scheme for voiced 

speech 

In figure 6.7a, the I-D speech waveform corresponding to the group of 

characteristic waveforms in figure 6.3b is presented. The reconstructed speech 

waveform obtained using the spectral decomposition technique is presented in figure 

6.7b. It can be seen that the reconstructed waveform is able to track the original one 

quite closely. 

Amplitude 
2000 

-1500 

Amplitude 

2000 

-1500 

time (ms) 

(a) 

time (ms) 

(b) 

Figure 6.1 Example of voiced speech synthesised by the spectral decomposition scheme. 
(a) original speech (b) synthesised speech 
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To evaluate the performance of the spectral decomposition scheme for voiced 

speech, the TPSWI model described in chapter 5 was recalled. The PSWI technique 

used for voiced speech in this model was replaced by the spectral decomposition 

scheme described in this chapter. The performance of the resulting model was 

compared with that of the original TPSWI model using the speech file 

"OPERATOR.DAT" [21] as input. The phase spectra of the characteristic waveforms 

in this experiment were taken as the true phase spectra as measured from the input 

speech. It was found that better speech quality was obtained from the new 

arrangement for voiced speech than was obtained from the original TPSWI model. 

The voiced speech synthesised by the spectral decomposition scheme was generally 

smoother. The speech quality. of the resulting model was very close to the original 

speech when eight RES spectra were used per 20ms of speech at the synthesis stage. 

Furthermore, good speech quality was still obtained using only one RES per 20ms 

u pdate-point. 

6.3.2 Spectral decomposition of characteristic waveforms for unvoiced speech 

An unvoiced residual is a random-like signal which possesses little or no 

periodicity. Reconstruction of unvoiced speech in the same way as voiced speech 

may result in a severe deterioration in the overall speech quality because of unwanted 

periodicity introduced into the reconstructed unvoiced residual, by the quadratic 

phase interpolation. In order to accomplish the coding of unvoiced speech, the 

frequency boundary between the bands which define the SES and RES is adapted. 

The frequency boundary fSR will have a low value (for example fsR=OHz) for 

unvoiced speech, where random components would be dominant in the reconstructed 

residual. The way that this frequency boundary is chosen will be presented in the next 

section. 
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6.4 The generalised pitch-synchronous waveform interpolation 

(GPSWI) coder 

The GPSWI coder was developed from the TPSWI coder, removing the need 

for a voiced/unvoiced switch and yielding a uniform coding algorithm for all speech 

types. In figure 6.8, a schematic diagram of the GPSWI coder is presented. 

s(n) 

p 
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detector 
(TPD) 
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Bandwidth 
>----.t expansion 

No 
{a.}I.lo {a,} 
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Burg's pitch-
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Figure 6.8 Schematic diagram of the GPSWI coder. 
(a) encoder (b) decoder 
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6.4.1 Pitch estimation and spectral estimation 

Like the TPSWI coder, the GPSWI coder operates with 20ms update 

intervals and lOms look-ahead. For each update-point, a suitable length segment of 

speech is first assessed by the two-way pitch detector (TPD). The TPD evaluates the 

nature of the speech signal as well as giving a pitch-period estimate for both voiced 

and unvoiced speech. When unvoiced speech is indicated, the "pitch-period" is 

obtained by simply locating the delay corresponding to the global maximum in the 

cross-correlation function between two similar length segments extracted from the 

speech. The pitch post-processing unit in the TPD is disabled for unvoiced speech. In 

case of voiced speech, the pitch post-processing in the TPD is applied as usual. The 

range of possible pitch-periods assumed by the GPSWI model is set to be from 16 to 

143 samples. Only 7 bits are needed to encode the pitch period at each update-point. 

Once the nature of the input speech has been classified as voiced or unvoiced 

and an estimated pitch-period has been obtained, Burg's pitch-synchronous LP 

analysis is used to re-estimate, now more accurately, the short-term spectral envelope 

for voiced speech. Otherwise, the set of LP filter coefficients produced by the TPD is 

used directly. A 10Hz bandwidth expansion is applied to the 10th order LP ladder 

filter coefficients and they are then converted to LSF's. 

6.4.2 Extraction of characteristic waveforms 

The GPSWI coder is operated in the residual-domain in which a segment of 

residual signal is obtained by passing the speech through an LSF analysis filter, with 

the unquantised LSF's as computed at the update-points being interpolated on a 

sample-by-sample basis between update-points. Eight characteristic waveforms are 

extracted from each segment of 20ms residual signal between consecutive update­

points (Le. at a sub-update interval of 2.Sms). The intermediate characteristic 

waveforms are extracted around each sub-update point using an intermediate pitch-

period. The intermediate pitch-period p;l), for j=1 to 8, is computed by linearly 

interpolating between the instantaneous pitch-frequencies at adjacent update-points 
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and converting the resulting frequency back to a pitch-period. This is carried out 

using equation 6.12: 
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Figure 6.9 Example of characteristic waveform extraction error. 

(a) original characteristic waveform (20 samples) (b) original magnitude spectrum (c) 
characteristic waveform extracted using a wrong pitch of 24 samples (d) magnitude spectrum of [c) 
(e) characteristic waveform extracted using the wrong pitch at a different location around the sub­

update point (f) magnitude spectrum of [e) 

Since the instantaneous pitch-period at each sub-update point is determined 

by interpolation, it may not be the most accurate value obtainable at that point. Direct 

extraction of a characteristic waveform at the sub-update point may then lead to error 

in the DFT magnitude spectrum. In figure 6.9, the effect of characteristic waveform 

extraction error is demonstrated. Suppose the true pitch-period at a sub-update point 
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is 20 samples and that the pitch-cycle and its magnitude spectrum are as shown in 

figures 6.9a and b respectively. To demonstrate the effect of a pitch error which may 

occur due to interpolation, an incorrect pitch-period estimate of 24 samples was 

assumed and therefore a rectangular window of length 24 samples was used to 

extract the characteristic waveform. Two different positions of the rectangular 

window relative to the pitch-cycle were used to extract characteristic waveforms 

around the sub-update point. The two extracted characteristic waveforms are shown 

in figures 6.9c and e. DFT analysis was performed on the characteristic waveforms to 

yield their magnitude spectra, which are presented in figures 6.9d and f respectively. 

The spectrum in figure 6.9d is~e as the original one even though the pitch-period 

is wrong. On the other hand, an incorrect spectrum was obtained from the 

characteristic waveform in figure 6.9f. 

The conclusion is drawn that a second peak must be avoided from inclusion in 

the intermediate characteristic waveforms. A second peak can be effectively 

eliminated by avoiding large amplitudes at either ends of an intermediate 

characteristic waveform. This is done by comparing the rms power of a range of 

speech samples at both ends of an extraction window (10% of the pitch-period) to 

the rms power of the entire characteristic waveform. If any of the two rms powers is 

larger than the rms power of the characteristic waveform, the extraction window is 

slightly shifted around the current update-point until the condition is satisfied. 

A characteristic waveform should be extracted by locating the centre of each 

extraction window around the sub-update point as shown in figure 6.1 Oa. However, 

it may not be possible to fulfil this condition for sub-update points near the end of the 

input signal buffer since no future residual information may be available if overall 

delay is to be kept to a minimum. This will occur with uK(n), and may occur in u7(n), 

u6(n) and even u5(n) depending on how large instantaneous pitch-periods are. The 

extraction procedure is therefore modified such that for uK(n), the characteristic 

waveform is extracted at the end of the input buffer as shown in figure 6.1 Ob. In the 

case of U7( n), the centre of the extraction window is allowed to be a little before the 

corresponding sub-update point and similarly for u6(n) and us(n) if necessary. The 

time shift of the centre of the window from the true sub-update point is allowed 
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because of the periodicity of the voiced residual waveform. A suitable arrangement 

for the window is illustrated in figure 6.10b. Note that, precautions must be taken to 

avoid the same characteristic waveform being extracted for consecutive sub-update 

points. 

u7(n) 

u,;(n) : ................... r---..-----.--'-....-----..;.;.:......:...----;....L--j 
Th~. p~~~~~'!~ .r~.s~~?~~ . .I--_--,_Th_e_cu_r'l_en_t_rc_s_id_u_al_s_e.:.:,gm-"'-en_t..-_----J 

segment u4(n) 
u)(n) 

(a) 

ux(n) 

u,(n) 

u~(n) ................... r-------'-------.:.~----;..L-___i 
Thl!.pr~ytql]~ .rl!~!~\lllJ. L-___ T_he_c_u_rr_e_nt_r_es_id_l_la_' _se..:;:g_m ..... cn.....;t ___ ...J 

segment 
(b) 

Figure 6.10 Extraction of eight characteristic waveforms in a residual segment. 
(a) original approach (b) modification of the extraction procedure in order to avoid the need for 

future residual information 

6.4.3 Decomposition of characteristic waveforms into gains, SES and RES 

DFT analysis is performed on each characteristic waveform to yield its 

magnitude spectrum which is then zero-padded to the length of the maximum pitch­

period samples, 143 samples, as described earlier. Power and time normalisation are 

then applied using equation 6.4. In the GPSWI coder, two gain factors .A. ~/) and .A. ~/) 

are encoded at each update-point for the 20ms synthesis frame preceding it. The 

values of .A. ~/) and .A. ~/) are taken as the rms values of characteristic waveforms u4(n) 

and u~(n) respectively. It was shown in section 3.6 that a sudden boost in the LP 

residual may occur in the middle of two update-points, when the speech waveform in 

the middle of the two update-points changes rapidly and pitch-synchronous LP 

analysis is being used. In this case, A ~/) may be substantially higher than A ~1-1) and 
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A ~) . A form of "bubbling" noise perceived in the decoded speech may result from 

direct interpolation between A ~'-l) and A ~') then between A ~') and A ~') to form an 

rms contour under such a condition. The value of A ~') must be restricted to avoid a 

sudden boost in the intermediate gain. This is achieved by defining: 

{

OS * ( A (/-1) + A (I) ) A (I) _. 2 2 
1 - (I) 

Al 

where A. is the larger value of A. ~'-I) and A. ~') . 

A. ~') > 2A. 

otherwise 
(6.13) 

After the power and time normalisation, the characteristic waveforms are 

decomposed into SES and RES spectrographs and sampled in the way described in 

section 6.3.2. In order to accomplish spectral decomposition for voiced and unvoiced 

speech, the boundary frequency (fSR) is made adaptive to a mean voiced confidence 

level, VL, which is defined as the average value of the voiced confidence levels at the 

current and the previous update-points: 

- VL (1-\) + VL (I) 
VL(I) = -----

2 
(6.14) 

The voiced confidence level, which is defined as the scaled sum of the voicing 

probabilities of a number of features measured from a segment of speech, is provided 

at each update-point by the TPD as described in chapter 2. The selection of fSR is 

according to the list in table 6.1. The boundary frequency at each sub-update point is 

computed by linearly interpolating between the values of VL obtained at adjacent 

update-points. 

VL frequency boundary for 
SESIRES 

< 0.3 0 
0.3 - 0.4 ID3 

0.4 - 0.5 ID6 

> 0.5 ID9 

IDj - the ith LSF 

Table 6.1 Adaptive frequency boundary scheme for SESIRES in the GPSWI coder 
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6.4.4 Speech reconstruction at the decoder 

The reconstruction of the decoded speech has been discussed 10 section 

6.3.1.4. In experiments carried out so far, the true phase spectrum of each 

characteristic waveform <!>Uj has been assigned to the corresponding modified 

characteristic waveform vln) at a sub-update point, i.e. <!>Vj has been taken to be 

equal to <!>Vj for j=1 to 8. In practice, it is intended that only the SES and RES 

spectral shapes will be encoded and that the phase spectrum for the modified 

characteristic waveforms, <!>Vj for j= 1 to 8 will be artificially derived at the decoder. 

The phase spectrum for each characteristic waveform will be taken as the inverse of 

the phase spectrum of a 2nd-order all-pass filter, i.e.: 

ifJVik = -ifJF ( k CUj) 

05.kClJj<1f 

(6.15) 

where ClJ j is the pitch-frequency at sub-update point and <!>F( ID) is as defined in 

equation 5.35. The value of CL for the all-pass filter is set to 0.95 and the value of Pis 

chosen from table 5.1 using the instantaneous pitch-period pj at the sub-update point. 

6.4.5 Performance evaluation of the GPSWl coder 

6.4.5.1 The GPSWI coder with original phase spectrum 

In the following experiments, the original phase spectrum of the characteristic 

waveforms <!>Uj are used:-

In figure 6.11, the speech waveform for the word, "No", synthesised by the 

GPSWI coder is illustrated. The original speech is presented in figure 6.11a. The 

decoded speech signal is presented in figure 6.11 d. It can be seen in figure 6.11 d that 

the reconstructed speech signal tracked the voiced onset and offset of the original 

speech very well. The amplitude envelopes of the two signals are almost the same. In 

figure 6.11 b, a segment of original voiced speech is presented. Comparing this with 

the reconstructed voiced speech shown in figure 6.11 c, the two voiced segments 

looked very alike. Informal listening tests suggested that the perceived speech quality 

of the GPSWI decoded speech is almost indistinguishable from the original when 

eight RES per 20ms of speech are used at the synthesis stage. 
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(d) 

Figure 6.11 Example of decoded speech synthesised by the GPSWI coder. 
(a) original speech (b) section of the original voiced speech (c) the corresponding section of the 

reconstructed voiced speech (d) the decoded speech 

The GPSWI coder was compared with TPSWI coder using the speech file 

"OPERATOR.DAT' [21] as input. Informal listening tests suggested that the 

perceptual quality of the GPSWI coder is always better than the TPSWI coder, when 

the number of prototype waveforms used in the TPSWI coder is the same as the 

number of RES used in the GPSWI coder. 

The GPSWI coder was also compared with the TPSWI coder using speech 

with additive noise samples including car noise [90], babble noise [91], multi-speaker 

noise [92] and white noise [93] at different SNR levels: OdB, 10dB, 20dB and 30dB 

(refer back to chapter 2). Informal listening tests suggested that the GPSWI decoded 

speech generally preserved a smoother speech quality than that produced by the 

TPSWI coder and is always better. The difference in the decoded speech was 
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significant when the signal-to-noise ratio of the noisy speech was less than 20dB. 

Since an alternative model is used in the TPSWI coder for unvoiced speech, 

significant deterioration in the perceived speech quality results when voiced speech is 

mis-classified as unvoiced. 

It was found that for the TPSWI coder in all noisy speech samples, the overall 

speech quality deteriorated substantially as the SNR level dropped, even though the 

intelligibility of the speecIi~ preserved. This is due to the way that the TPSWI 

coder handles unvoiced speech. Since unvoiced speech is modelled by pseudo­

random sequence with a similar power contour, the noise samples under test may not 

be adequately modelled by the pseudo-random sequence, such as car noise and multi­

speaker noise. Experimental results suggested that TPSWI worked better for white 

noise and babble noisei\t\b..n"fs ' for car noise and multi-speaker noise. In testing the 

car and multi-speaker noise corrupted speech file, the noise content, i.e. the car and 

speech from the background speakers respectively, was replaced by a form of noise 

which was perceptually quite irritating. 

In contrast to the TPSWI coder, the GPSWI coder was able to model both 

the speech content as well as the noise type. It seemed that the overall speech quality 

could be substantially increased by a better modelling of unvoiced speech when the 

SNR level dropped. Informal listening tests suggested that the GPSWI coder is able 

to give good speech quality even when the SNR level of the input noisy speech file is 

at OdB for the four noise types. 

The trade-off in the GPSWI coder is an increase in the computational 

complexity due to the requirement of extracting and analysing eight characteristic 

waveforms per 20ms speech. Furthermore the spectral decomposition scheme is 

applied to unvoiced speech as well as to voiced speech. This greatly increases the 

computational complexity for unvoiced speech as compared to the TPSWI coder. 

6.4.5.2 The GPSWI coder with derived phase spectrum 

In the following experiments, the phase spectrum of the modified 

characteristic waveforms is derived from the 2nd order all-pass filter:-
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In testing the GPSWI coder with the speech file "OPERA TOR. OAT' [21], 

minor degradation in the speech quality was revealed when comparing the decoded 

speech obtained with the synthetic phase with the decoded speech obtained using 

original phase spectrum. For male speech, the decoded speech with synthesiSd/phase 

exhibited a slightly synthetic quality at some portions of the speech file, such as the 

end of the words "England" and "Bailham". 

Surprisingly, the degradation in the speech quality seemed to be less 

noticeable when the SNR level of the speech file was reduced. For instance, the 

quality of the GPSWI decoded speech when using the original phase spectrum and 

the derived phase spectrum under OdB car noise condition were virtually 

indistinguishable. It seemed that the synthetic quality was masked out by the 

background noise. This suggested that a reasonable modelling of unvoiced speech 

may be as important as modelling the voiced speech for a noisy environment. 

6.5 Conclusions 

The fundamental ideas behind recent approaches to WI coding have been 

introduced in this chapter. These ideas with various innovations have been applied to 

the design of a speech coder intended for 2.4kb/s operation when fully quantised. The 

model was developed from the TPSWI model described in chapter 5, and is referred 

to as the "GPSWI" model. 

The TPSWI and GPSWI coders will encode magnitude only information. 

When the original phase spectrum is used to reconstruct the speech, the speech 

obtained from the GPSWI coder is always better than that obtained from the TPSWI 

coder, when the number of RES spectra in the GPSWI coder is equal to the number 

of prototype waveforms in the TPSWI coder used. The decoded speech from the 

GPSWI magnitude only model with the original phase spectrum is very close to the 

original when eight RES spectra are used per 20ms at the synthesis stage. In addition, 

the GPSWI coder performed substantially better than the TPSWI coder for noisy 
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speech. Unlike the TP.s,,'Jl coder, the GPSWI coder is able to model, to. some extent, 

the noise content as well as the speech content, and thus a smoother decoded speech 

can be obtained. 

To finalise the unquantised GPSWI coder, the original (true) phase spectrum 

was replaced with a derived "all-~s~H phase spectrum as will be used in the fully 

quantised 2.4kb/s version. Only minor degradation in the decoded speech resulted, 

some portions of male speech being perceived as being slightly less natural. It was 

concluded that the all-pass phase model was likely to be acceptable in the final coder. 

In the case of speech corrupted by noise, the degradation in speech quality becC\Il1e 

less noticeable as the SNR was reduced, in comparison with the perceived 

degradation with the true phase applied. 
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Chapter 7 

Quantisation of the TPSWI and GPSWI 

coders 

7.1 Introduction 

In the original form of PWI coding [70], a pitch-period length residual 

segment, i.e. a prototype waveform, is quanti sed at each update-point using 

differential quantisation. This means that the prototype waveform is expressed as the 

sum of a proportion of the previous quantised prototype waveform and scaled 

versions of one or more waveforms read from vector quantisation code-books. The 

simplest form of such a quantiser employs only a white-Gaussian code-book. The 

problem associated with such a quantiser is that it is not ideal for quantising 

prototype waveforms containing predominant and perceptually very important pitch­

pulses. Such pulses depend on the accumulated contributions of previous quanti sed 

prototype waveforms and therefore the pulses tend to build up and decay rather too 

slowly. This leads to a reverberant quality in the decoded speech. To enhance the 

quantiser performance, a single-pulse code-book may be included to model the peak 

structure in a prototype waveform. 

PWI coding was originally proposed for voiced speech portions only, a switch 

to an alternative model such as CELP being advocated for unvoiced speech. With 

more recent waveform interpolation (WI) coding techniques [73]-[76], a unified 

coding algorithm is able to handle both voiced and unvoiced speech and the evolution 

of waveforms or their spectra is decomposed into slowly evolving and rapidly 

evolving components. Different quantisation schemes are used for the two 

components [75][76]. 

Quantisation of the TPSWI model is divided into two parts: the short-term 

spectral envelope and the residual information. The pitch-period and the speech 
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classification at each update-point are jointly quantised using 8 bits. The short-term 

spectral envelope is represented by ten LSF coefficients which are vector-quanti sed 

using the 24-bit IMS-LSF quantiser discussed in chapter 4. In case of unvoiced 

speech, the logarithms of four residual gain factors for the 20ms synthesis frame 

preceding each update-point are vector quantised at the update-point. For voiced 

speech, two gain factors and the magnitude spectrum of a prototype waveform are 

quantised. The gain factors are encoded as logarithms and are differentially quantised 

using scalar quantisers. The two gain factors are for the first and second lOms sub­

frame of the synthesis frame preceding the current update-point. For the purposes of 

vector quantisation the magnitude spectrum of each prototype waveform is evenly 

split into two frequency bands. Different code-book sizes are assigned to the DFT 

magnitude coefficients for the lower and upper frequency bands. A 2.3kb/s version of 

the' TP SWI coder was obtained by encoding a single prototype waveform at every 

20ms update. It was found that the performance of the TPSWI coder may be 

enhanced by increasing the update rate of prototype waveforms and hence a 2.4kb/s 

version was also produced by doubling the update rate of prototype waveforms. To 

achieve this increase in update-rate, only the lower frequency band of each prototype 

waveform is quanti sed, the upper band of the magnitude spectrum being assumed to 

be flat. 

Quantisation of the short-term spectral envelope and the gain factors of the 

characteristic waveforms in the GPSWI coder is the same as for the TPSWI coder in 

voiced mode. In the GPSWI coder, there is no model switching according to speech 

classification. The pitch-period at each update-point is quantised to 7 bits. The SES 

and RES are vector-quantised using full-band code-books, more weight being 

assigned to the lower frequency components by the distance measure used for the 

SES code-book. A 2.4kb/s GPSWI coder was achieved by sending one SES and two 

RES spectra per 20ms speech segment. 

This chapter will begin with a brief introduction to the problems of quantising 

PWI and more recent WI coders. In sections 7.4 and 7.5, quantisation schemes for 

the 2.4kb/s TPSWI and GPSWI coders developed in this project will be presented. 

For the 2.4kb/s TPSWI coder, quantisation of the gain factors for unvoiced speech 
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must be considered as well as quantisation of the gain factors and magnitude spectra 

of the prototype waveforms. For the GPSWI coder, ways of quantising the SES and 

RES must be devised. 

7.2 Quantisation of PWI coder 

In the PWI coding method employed by Kleijn [70], residual prototype 

waveforms are quantised using differential quantisation from one update-point to the 

next. Time-domain or Fourier series cosine and sine representations of the prototype 

waveforms may be used and each prototype waveform is represented by 

contributions from the previously quanti sed prototype waveform and one or more 

code-book candidates. The quantisation scheme is characterised by equation 7.1. 

(7.1) 

where 

!! (I) is the quantised residual prototype waveform at update-point 1 

.f! (I-I) is the quanti sed residual prototype waveform at the previous update-point 1-1 

go is a quantised gain factor determining the contribution from .f! (1- I) 

Z is the number of code-books used in the differential quantiser 

Yz[Iz] is a vector with index Iz selected from zth code-book rz 
gz is the quantised gain factor associated with the zth code-book entry 

The simplest form of equation 7.1 is: 

ii(l) = gA ii(I-I) + gA Y [I] 
- 0- I-I I (7.2) 

where 11[11] is the 11th candidate from a white-Gaussian code-book r l . 

Three parameters are required in quantising the prototype waveform: go, gl and 11 

(the code-book index). In figure 7.1 the schematic diagram of a time-domain 

prototype waveform quantiser is shown [18]. 
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Figure 7.1 Schematic diagram of a prototype waveform quantiser 

The prototype waveform quantiser works similarly to a CELP quantiser 

(Appendix A) in which the three parameters are evaluated using analysis-by-synthesis 

(a-b-s) with perceptual weighting. Prior to its quantisation, the previously quantised 

prototype waveform rp-1l(n) must be zero-padded or truncated to the same length 

as the current quantised prototype waveforms u(l)(n). The current prototype 

waveform u(1) (n) is then phase aligned with the previously quantised prototype 

waveform ip-ll(n) by circular shifting u(l)(n) according to the procedure described 

in Appendix C. The contribution from the previously quantised prototype waveform 

to the quantised version of u(l)(n) is now taken as gou(l-I)(n) where go may be 

computed in the speech-domain using equation 7.3. 

p-) 
L 'S(I)(n) sU-Il(n) 

n=O 
go = --p-_'7") ----

L 05(1-1)' (n) 
(7.3) 

n=O 
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In equation 7.3 s(I)(n) is the speech segment produced by passing "U(/)(n) through 

an LP synthesis filter and a perceptual weighting filter (refer to the CELP section in 

Appendix A), using the original LP ladder filter coefficients. The speech segment 

s(l-I) (n) is produced by passing rP-I) (n) through an LP synthesis filter and a 

perceptual weighting filter, using the quantised LP ladder filter coefficients. 

Equation 7.3 is derived by minimising the mean-sQuare-error distance measure 

between the two equal length segments: {sU-I)(n)} with each element scaled by 
O.p-I 

go and the sequence {s(I)(n)}O.p_l· The mse distance measure between the two 

segments is defined as: 

(7.4) 

Differentiating E with respect to go and setting the resulting expression to zero gives 

equation 7.3. 

The gain factor go is quantised using a scalar quantiser. The contribution of the 

previously quantised speech segment s(l-o(n) with the quantised go is subtracted 

from the current speech segment :s(l)(n) to obtain the difference signal e(l)(n): 

(7.S) 

This difference signal is compared, in turn, with each of the speech segments 

{ i)l) (n)} for j=l, 2, ... , L, where L is the number of code-book entries. These O.p-I 

speech segments are generated by passing each of the innovation sequences 'Ii 

stored in the Gaussian code-book through the LP synthesis filter and perceptual 

weighting filter both with the quanti sed LP ladder filter coefficients. A mean-square­

error (mse) distance measure is used to quantify the comparison. The minimum mse 

distance measure between {e(l)(n)}o -I and one of the speech segments {sjl)(n)} 
.p O.p-I 

for j=l, 2, .. " L can be found, as discussed in section 2.2, as by choosing the index j 
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to the code-book entry which maximises the normalised cross-correlation coefficient 

between the two segments. This function is defined as: 

p-I 

L e(l)(n) sY'(n) 
C(j) = -r==="==0 ==== 

p-I p-I 

L e(l)l (n)' , L sjl)l (n) 
11=0 11=0 

(7.6) 

The gain associated with the Gaussian innovation sequence gl can be found by 

1 p-I { }2 
differentiating the distance measure E = - L e(l)(n) - gls)/)(n) with respect to 

p 11=0 

gl and setting the differentiation to zero. The resulting expression for the gain factor 

gl is then: 

p-I 

L e(l)(n) s)l)(n) 
11=0 

gl = --p--I:-----

L 5)/)1 (n) 
11=0 

(7.7) 

The logarithm of the gain factor gl is scalar-quantised. The index 11 of the best 

matched code-book sequence is encoded. 

One of the disadvantages of this quantisation scheme is the mechanism by 

which spiky residual signals, with clear pitch excitation pulses must be represented. 

This may result in a reverberant synthesised speech quality as mentioned in the 

introduction. Figure 7.2 shows an example of a speech segment obtained from the 

differential quantisation scheme mentioned above. The quanti sed prototype waveform 

shown in figure 7.2c was obtained by summing an approximate contribution from the 

previous quantised prototype waveform shown in figure 7.2b and a suitably weighted 

vector selected from the Gaussian code-book. Compared with the unquantised 

prototype waveform shown in figure 7.2a, the pitch-pulse in the quantised prototype 

waveform is not as strong as it should be and the energy of the random-like 

components of the quantised prototype waveform is higher than it should be as 

compared with the original prototype waveform. The reconstructed residual signal 

shown in figure 7.2d, which was obtained by linearly interpolating between the two 

quantised prototype waveforms is rather too random. As a result, the pitch-pulses in 

the synthesised speech waveform shown in figure 7.2e are not as prominent as they 
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should be relative to the overall synthesised speech waveform. This may be seen by 

comparing the decoded speech, as shown in figure 7.2e, to the original shown in 

figure 7.2£ 
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Figure 7.2 Example of a speech segment as represented by a differential quantiser. 
(a) original prototype waveform (b) quantised previous prototype waveform (c) current quantised 

prototype waveform (d) reconstructed residual (e) synthetic speech (1) original speech 
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It was reported by Kleijn [70] that the performance of a prototype waveform 

quantiser can be enhanced by including a single-pulse code-book at the first-stage. 

The single-pulse code-book is populated by band-limited pulses centred on different 

locations. Hence, equation 7.1 becomes: 

il ( I) = g il ( I - 1) + g Y [/ ] + g Y [/ ] 
- 0 - I_I I Z -2 2 (7.8) 

where !I[II] is the optimum candidate from the single-pulse code-book and !2[h] is 

the optimum candidate from the Gaussian code-book. 

It was reported that a system with a single-pulse code-book and a sparse-pulse code­

book, each of 7 bits., can provide excellent quality at excitation bit-rates of about 

2kbits/s. This would necessitate an overall bit-rate of more than about 3.6kb/s which 

is too high for our application. Very little further detail about the single-pulse code­

book is given in the literature [70]. Some work on the single-pulse code-book for the 

prototype waveform quantiser can also be found in Tang [17]. 

A fully quantised C-language implementation of the PWI coder described 

above has been developed [81] according to the block diagram shown in figure 7.1. 

The implementation has the optimised contribution from the previous quanti sed 

prototype waveform and the 8-bit Gaussian code-book, but does not have a single­

pulse code-book. The bit-allocation table for this 2.4kb/s PWI coder is given in table 

7.1. The constant go is scalar-quanti sed to 4 bits. The logarithm of the constant gl is 

scalar-quantised to 4 bits. The speech classification and pitch-period is jointly 

quantised to 8 bits corresponding to values from 0 to 255. If the input speech is 

unvoiced the value zero (0000 0000) will be encoded. Otherwise values from 15 to 

150, corresponding to the pitch-periods in samples, will be encoded. 

Parameters number update bits/second 
of bits interval (ms) 

LSF's 24 20 1200 
speech class & pitch-period 8 20 . 400 

go 4 20 200 
gl 4 20 . 200 

Gaussian code-book 8 20 400 
Total 2400 
Table 7.1 BIt allocation table for the 2.4kb/s PWI coder 
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Heard over good quality head-phones the speech was clearly 

intelligible and maintained speaker recognisibility. However, the reverberence 

referred to above proved to be a major problem and the speech was far from toll 

quality. The female speech was less reverberant than the male. Heard over loud­

speakers, the reverberence was less noticeable and the speech quality appeared closer 

to the original. 

This section has described a first attempt at quantising the original PWIICELP 

coder as described by Kleijn [70]. A later section (section 7.4) will describe a more 

sophisticated quantisation scheme for the modified version of PWI, referred to as the 

TPSWI coder, devised during the course of this project and described in section 5.5 

of this thesis. Before this, the next section briefly shows how quantisation techniques 

have evolved from that described above for PWIICELP coder to the more advanced 

schemes now being applied to recent types ofWI coder. 

7.3 Quantisation of more recent WI coding techniques 

As described in chapter 6, current WI techniques decompose speech into 

regular updates of a set of LP filter coefficients, the pitch-period, samples of the 

speech power contour and the spectral shapes of the REW and SEW [75][76]. These 

parameters are assumed to be independent of each other and different update rates 

may be used for different parameters. In one of the implementations [75][76], tenth 

order LP analysis is performed every 25ms. The ten LP filter coefficients are 

converted to LSF coefficients which are vector-quanti sed using 30-bit split VQ. The 

pitch-periods, assumed to be in the range from 20 to 147 samples, are quanti sed to 7 

bits, again at intervals of 25ms. The power of each characteristic waveform extracted 

from the residual is computed and transformed to a measurement of speech power by 

an LP synthesis filter. The speech-domain power measurements are then converted to 

a logarithmic scale and are differentially quanti sed to 4 bits. An update rate of 80Hz 

is assigned to the power factors, i.e. two power factors are encoded for each 25ms of 

speech. 
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The REW at suitable update-points, referred to as sub-update-points, is 

characterised only by the general shape of its magnitude spectrum. A 4th order 

polynomial is used to characterise the shape of each REW magnitude spectrum. 

Therefore each shape-vector is 5-dimensional with each element a coefficient of the 

4th order polynomial. The shape-vectors are quantised at a rate of 240Hz [75], i.e. at 

intervals of about 34 samples, using a 3-bit code-book. The REW code-book 

therefore contains 5-dimensional vectors, each vector element containing the 

coefficients of a 4th order polynomial. To retrieve the REW magnitude spectrum at 

the decoder at each sub-up date-point, the set of polynomial coefficients are retrieved 

from the REW code-book and the polynomial is evaluated. The time-domain REW 

may then be synthesised by interpolating between Fourier series 'coefficients obtained 

at the sub-update points using quadratic instantaneous phase interpolation in the 

usual way. Each Fourier series coefficient is obtained by combining the DFT 

magnitude spectrum given by a 4th order polynomial with a pseudo-random phase 

spectrum [76]. In one publication [75], the Fourier series coefficients are produced 

twice per sub-update point wit~ an interpolated or simply repeat '.' magnitude 

spectrum and a further random phase spectrum placed mid-way between adjacent 

sub-update points. A REW generated in this way would simply be added to the 

corresponding SEW. Alternatively, the REW Fourier series coefficients may be 

combined with interpolated SEW parameters at each sub-update point so that the 

time-domain waveform may be generated by a single interpolation process. 

Computationally less intensive methods for performing the interpolation process have 

been recently proposed by Kleijn [76]. 

It was found [76] that the perceptual quality of the SEW can be reasonably 

well preserved at very low bit-rates by directly encoding its spectral magnitudes only 

up to 800Hz. The magnitudes above 800Hz are calculated by subtracting the 

magnitude spectrum of the REW from a flat spectrum, i.e. assuming that the 

magnitude spectrum of each characteristic waveform is flat above 800Hz. The OHz to 

800Hz bandwidth SEW is quantised using an 8-bit code-book at intervals of 25ms. 

The SEW code-book contains 8-dimensional vectors, each vector element 

representing the magnitude spectral density in a frequency bin at a multiple of 100Hz. 

The SEW is regenerated in the time-domain using one of two phase spectra 
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depending on the proportion of the SEW in a characteristic waveform [74]. These 

phase spectra are reported [76] to represent on the one hand a pulse or on the other a 

"spread-out waveform". No further detail about the phase spectra is given in the 

literature [76]. However more detail about the quantisation of current WI coders can 

be found [75] and [76]. 

The ideas outlined in this survey have influenced the quantisation techniques 

applied to the two main coders developed in this thesis. The next section describes 

the quantisation of the "two-mode pitch synchronous waveform interpolation" 

(TPSWI) coder which was described in section 5.5. Section 7.5 deals with the 

quantisation of the "generalised pitch synchronous waveform interpolation" (GPSWI) 

coder which was described in section 6.4. 

7.4 Quantisation of the TPSWI coder 

Quantisation of the TPSWI coder developed III this project requires, at 

regular update-points, the quantisation of the short-term spectral envelope, the 

speech classification, the pitch-period and either a prototype waveform for voiced 

speech or a set of four gain factors for unvoiced speech. The short-term spectral 

envelope is represented by ten LSF coefficients which are vector-quanti sed at 

intervals of 20ms using the 24-bit IMS-LSF quantiser as presented in chapter 4. The 

pitch-period and the speech classification (voiced or unvoiced) are jointly quantised 

to 8 bits, at intervals of 20ms, as will be explained. The four gain factors for the 

frame of unvoiced speech preceding each 20ms update-point are expressed as 

logarithms and vector-quanti sed using an 8-bit code-book, with a mean-square-error 

(mse) distance measure. 

For voiced speech, each prototype waveform is quanti sed using a gain-shape 

principle which means that the shape of a power normalised version of the prototype 

waveform and a gain factor are quanti sed separately. The logarithm of the gain factor 

is differentially quantised at intervals of 10ms using a 3-bit scalar quantiser. Each 
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prototype waveform is normalised to have an rms value of unity and the DFT 

magnitude spectrum of the resulting normalised waveform is transformed to a 

logarithmic magnitude scale to yield a shape-vector. For the purposes of vector 

quantisation, the shape-vector is evenly partitioned into two sub-vectors. The lower 

frequency sub-vector is quantised using a 6-bit code-book and the upper frequency 

sub-vector is quantised to 2 bits. The two shape code-books are searched using an 

analysis-by-synthesis principle the optimal vectors being chosen according to a 

perceptually weighted mean-square-error (mse) distance measure applied to the 

speech segments that would be produced by each candidate. A 2.3kb/s fully quantised 

TPSWI coder was obtained by encoding prototype waveforms at intervals of20ms. 

A 2.4kb/s version was also produced with the perceptual speech quality 

enhanced by doubling the update rate of prototype waveforms to 100Hz (lOms 

intervals). In the 2.4kb/s TPSWI coder, a 5-bit code-book was assigned to quanti se 

the lower frequency sub-vector and the upper frequency sub-vector was assumed to 

be flat and required no bits. In the following sections, the details of the quantisation 

scheme for the 2.3kb/s coder will be presented. This quantisation scheme wil1 then be 

further developed to achieve the 2.4kb/s TPSWI coder. 

7. 4.1 Quantisation of unvoiced gain factors 

In the 2.3kb/s TPSWI coder, each 20ms frame of unvoiced speech preceding 

an update-point is divided into four sub-frames in order to determine a power 

contour. The rms values, PI, P2, P3 and P4 say, are computed for the sub-frames, 

transformed to logarithms and vector quantised using an 8-bit code-book. The vector 

G of un voiced "log-gain" factors is defined as: 

G = [loglOPh 10gJOP2, logJO P3, 10gJO P4 r 
The log-gain factor code-book for unvoiced speech was trained with 15000 training 

vectors extracted from unvoiced portions of the speech file "GSP.DAT" [20]. A 

mean-square-error (mse) distance measure was used as defined below: 
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(7.9) 

where !j is the jth vector in the log-gain code-book whose elements are Yjk for k= 1, 2, 

3 and 4. Some examples of the 256 different contours in the code-book are given in 

figure 7.3. 
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Figure 7.3 First four gain contours in the unvoiced log-gain code-book. 

At the decoder, the code-book entry with the given index is fetched for the 

unvoiced log-gain vector at each update-point. The four rms values are recovered by: 

£ = [ lO'fjl, lOY j2, lOY j3, lOY)4 r 
where !j is the optimal code-book vector 

A pseudo-random sequence generator produces a 20ms normalised sequence which is 

multiplied sample-by-sample by a gain contour obtained by interpolating between the 

four quantised gain factors. This produces the reconstructed unvoiced residual. 

7.4.2 Quantisation ofprototype waveform gain factors 

In the 2.3kb/s TPSWI coder, two gain factors are encoded per 20ms segment 

of voiced speech. One of these refers to the speech at the current update-point and 

the other is for an intermediate point mid-way between the current and the previous 

update-points. The intermediate gain factor is computed from an intermediate 

prototype waveform extracted using an interpolated pitch-period which is the 

harmonic mean of the pitch-periods at the current and the previous update-points. As 

discussed in section 6.4.3, a sudden boost in the intermediate gain factors may 
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occasionally arise with pitch-synchronous LP analysis, and therefore the restriction 

proposed in equation 6.13 must be applied. 

At the encoder after the intermediate gain has been adjusted using equation 

6.13, the two prototype waveform gain factors, Afl) and A~I), are transformed to a 

logarithmic scale to obtain g~l) = loglo A~I) and g;l) = loglo A~I). These "log-gain" 

factors are differentially scalar-quantised using a 3-bit code-book as will be now 

explained. 

The difference between gl(l) and g~ 1-1) is compared with each candidate Yj in 

the voiced log-gain difference code-book to calculate a distance measure defined as: 

d
j 
= ( g~l) - a g~/-1) - Y j r (710a) 

j = 0, 1, ... , L - 1 

where L is the number of code-book candidates, and a is a constant slightly less than 

one (0.95). The value of j which minimises dj is taken as the index to the required 

quantised difference Yj. g~1) is now differentially quantised by computing: 

d
k 

= (g;1) - a g~/) - Y k r 
for each k and finding the value that minimises dk . 

(7.10b) 

At the decoder, the gam factors A}/) and Ai') are recovered from the 

previously quantised log-gain factor g~ 1-1) and the optimal code-book entries Yj and 

Yk as: 

'\ (I) (a gAU- Il+ Y ) 
11.1 =10 1 J (7.l1a) 

(7. lIb) 

The voiced log-gain factor code-book was trained using 5000 voiced frames 

extracted from the speech file "GSP.DAT" [20]. Two prototype waveforms were 

extracted from each 20ms voiced frame and their rms values were computed and 

adjusted using equation 6.13. The 10000 rms values were converted to logarithms 

·219· 



Chapter 7 Quantisation of the TPSWI and GPSWI coders 

and thus became log-gain factors. Each logarithmic gain factor was then subtracted 

from the previous one to obtain a set of testing scalars. The scalar codebook for the 

log-gain factor were trained using the LBG-CS algorithm discussed in section 4.3.2, 

with the vector dimension set to one. The 3-bit code-book has 8 entries which were 

found to be as follows: 

-0.580,0.829, -0.147, 0.139, -0.297, 0.360, -0.053 and 0.027 

The code-book training took about half an hour on a P-90 personal computer. The 

splitting factor and the distortion threshold in the LBG-CS algorithm were set to 0.99 

and 0.0001 respectively. 

7.4.3 Quantisation of prototype waveform shapes 

In figure 7.4 a schematic diagram of the spectral shape quantiser used in the 

2.3kb/s TPSWI coder is shown. In this coder, the shape of a prototype waveform is 

characterised by its power-normalised logarithmic DFT magnitude spectrum. The 

power normalisation means that prior to quantisation, the prototype waveform is 

scaled in amplitude such that its power becomes unity. The DFT magnitude spectrum 

of the unity power prototype waveform is quanti sed according to two shape code­

books, each populated with 38-dimensional vectors. The first shape code-book 

contains shape-vectors for characterising the lower frequency components and the 

second shape code-book contains shape-vectors for the upper frequency components. 

The shape code-books are searched using an analysis-by-synthesis approach (a-b-s), 

in which each code-book vector is used to construct a prototype waveform 

transformed to the speech-domain by the LP synthesis filter. The speech segment is 

perceptually weighted and compared with a perceptually weighted and phase 

standardised version of the corresponding segment of original speech. The phase 

standardisation is carried out to place the vocal tract excitation point in the centre of 

the segment. Unquantised LP ladder filter coefficients are used to synthesise the 

original prototype waveform and quantised LP ladder filter coefficients are used to 

transform the shape code-books vectors. A mse distance measure is used to search 

for the optimal code-book candidate. The mse distance measure can be minimised by 

maximising the normalised cross-correlation coefficient between the two speech 
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segments as will be seen. The lower half-band code-book is first searched to find the 

optimal vector. The optimal vector selected from the first code-book is combined 

with each candidate in the second code-book to find the best overall vector. 
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Figure 7.4 A spectral shape quantiser for the TPSWI coder. 
(Details of the quantiser is discussed in section 7.4.3.1 to 6) 

In sections 7.4.3.1 to 6, the design of the shape quantiser will be presented. A 

justification will be given for splitting each magnitude shape-vector into two sub­

bands. The fact that each magnitude shape-vector may be of different length, 

determined by the pitch-period, means that a shape-vector in the codebook must be 

re-sampled to the required length, i. e. half of the current pitch-period. The way this is 

done will be described in section 7.4.3.4. Also the derivation of a frequency-domain 

method of applying the DFT magnitude and phase coefficients will be given. 
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7.4.3. 1 Quantisation of shape-vectors using split VQ 

Vector quantisation of prototype waveform shapes as represented by DFT 

magnitudes requires a high computational cost. The maximum length of a shape­

vector is 76 samples since the maximum allowable pitch-period is made to be 150 

samples and the OFT magnitude spectra are mirrored. Experiments were carried out 

to evaluate the relative importance of different frequency components in the OFT 

magnitude spectrum of a prototype waveform. For each prototype waveform a 

modified magnitude spectrum was defined as follows: 

kmfs f --< 
27t T (7.12) 

otherwise 

where k = 0, 1, ... , p-l 

P is the pitch-period in samples 

\Uk \ is the original magnitude at OFT bin k 

'{jJ is the pitch-frequency normalised in radians per sample interval 

fT is a boundary frequency (Hz) below which the OFT magnitudes are unmodified 

and above which they are replace by a constant value .JP 

The modified magnitude spectrum therefore had the original magnitudes for 

frequencies smaller than the threshold fr and a flat magnitude spectrum .JP 
otherwise. The value .JP was used because a completely flat pth order OFT 

magnitude spectrum with unity-power would have each magnitude sample equal to 

.JP. The power of the modified magnitude spectrum was normalised to unity. A 

speech segment was then synthesised using the modified magnitude spectrum with 

the original phase spectrum to produce a prototype waveform which was then passed 

through the LP synthesis filter. The speech segment thus obtained was compared 

with the corresponding segment of original speech using a normalised cross­

correlation coefficient to measure the similarity of the two speech segments. The 

normalised cross-correlation coefficient may be defined using frequency-domain 

representation: 
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(7.13) 

where 

p is the pitch-period 

I ski and <t> Sk are magnitude and phase spectra of the original speech segment 

I ski and ~ Sk are magnitude and phase spectra of the speech segment synthesised by 

the modified prototype waveform 

About 1000 prototype waveforms were considered and the average cross-correlation 

coefficient obtained for different values ofthe threshold fT are presented in figure 7.5. 

Average C 
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Figure 7.5 Average cross-correlation measure of a modified speech segment compared to the 
original using different fT 

Figure 7.5 shows that the average cross-correlation coefficient was always close to 1 

for values of fT above 1500Hz. In fact the average cross-correlation coefficient was 

always greater than 0.99 for fT> 1500Hz. The average cross-correlation coefficient 

dropped rapidly when fT was moved towards the low frequency end. This suggests 

that the low frequency components in the OFT magnitude spectra of a residual 

prototype waveform are more important than the high frequency ones in order to 

regenerate a speech segment which looks similar to the original speech segment. 

U sing the above argument, the magnitude spectrum of a prototype waveform 

is evenly split into two equal bands. The first sub-band, which characterises the 
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magnitudes at the lower half frequency band, is quantised using a larger code-book. 

The upper half frequency band is quantised using a smaller code-book. 

7.4.3.2 LP filtering in frequency-domain 

Suppose a prototype waveform has magnitude and phase spectra I U k I and 

lPUk for k=O, 1, oo., p-l. The magnitude and phase spectra, I Sk I and lPSk for k=O, 1, 

oo., p-1, of the corresponding speech segment can be calculated as follows: 

(7.14a) 

~Sk = ~Uk + tan-1 

~ . (2!..i7t) ..... a;slll -
1=0 P 

P (2!..i7t) La;cos -
1=0 P 

(7. 14b) 

where P is the order of the LP predictor and the ladder filter coefficients are 1. a" a2 • 

... , ap. 

Conversely, I U k I and lPuk may be expressed in terms of I Sk I and lPsk as follows: 

(7.1 Sa) 

(7.ISb) 

The derivations of equations 7.14 and 7.15 are given in appendix C. 

7.4.3.3 Perceptual weighting in frequency-domain 

Perceptual weighting may be included in the distance measure between two 

speech segments by passing each of them through a perceptual weighting filter prior 

to the distance measurement. The perceptual weighting filter aims to exploit the 

characteristics of the human ear that it is more sensitive to the noise around the 

spectral valleys than in the formant regions [95]. This is due to the noise masking 

·224 -



Chapter 7 Quantisation of the TPSWI and GPSWI coders 

effect of the high spectral energy at a formant. The perceptual weighting filter is 

made adaptive according to the short-term spectral envelope of the input speech as 

determined by the LP analysis. If the prediction is 10th order and the LP ladder 

coefficients are 1, al, a2, ... , alO, then a suitable perceptual weighting filter has 

transfer function: 

10 

1 - L a{a;z-I 
p w (z) = --'-:-:1=0:-

1 
---

(7.16) 

1- L a~a;z-I 
; = 1 

Such perceptual weighting is commonly used in CELP [86] the principle being to 

place a pole and a zero close to each pole, rei9 say, identified by LP analysis. The zero 
~ '9 

is at ulre and the pole is at U2re . The effect of the zeros are to flatten the spectral 

valleys and to remove spectral tilt. The poles re-introduce formants which are 

bandwidth expanded, i.e. they have lower Q-factors. Suitable values for a, and a2 

have been found to be 0.9 and 0.6 [87] respectively. The perceptual weighting filter 

can be implemented in the time-domain by cascading an LP analysis filter A(zlal) 

with an LP synthesis filter 1/A(zJu2), or using frequency-domain computations. An 

example of the power spectral envelope of a speech segment processed by the 

perceptual weighting filter with transfer function Pw(z) as defined above is shown in 

figure 7.6. 

Gain (dB) 

50 

30 

10 

-10 

-30 

--reference 
•••••• perceptually weighte 
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Figure 7.6 Spectral envelope of a speech segment modified by the perceptual weight filter with 
(cx.1 = 0.9 and cx.2=0.6) 

It can be seen in figure 7.6 that the energy at speech formants in the perceptually 

weighted spectral envelope is attenuated while there is an increase in energy in the 

spectral valleys. This effectively de-emphasises the differences in the formant regions 

and assigns relatively more weight to the differences in the spectral valleys. 
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The use of perceptually weighted time-domain differences is fundamental to 

the principle of analysis-by-synthesis and is commonly used in speech coding 

especially CELP and PWI. Experiments were carried out to confirm the advantages 

of the perceptual weighting and a clear improvement in perceptual speech quality was 

found to be obtained through its use. Further, although the use of an error measure in 

the residual-domain simplifies the code-book search it was found not to be as 

effective' as the speech-domain approach. 

7.4.3.4 Searching of shape code-books 

Prior to searching the shape code-books, the residual prototype waveform to 

be quantised is processed by the LP synthesis filter to yield a "reference" speech 

segment. This segment is perceptually weighted and phase-aligned with a synthetic 

speech segment, of the same length p, produced by passing a synthesised pulse-like 

prototype waveform through the same LP synthesis filter and perceptual weighting 

filter. This is done to align the reference speech segment such that it corresponds as 

closely as possible to a waveform that would be produced when the vocal tract 

excitation point occurs exactly in the centre of the waveform. Minimising a 

perceptually weighted speech domain error rather than a residual-domain error was 

found most effective in searching for the best match. The pulse-like prototype 

waveform is defined in the frequency-domain in such a way that its main peak in the 

time-domain will occur exactly in the middle of the p-Iength segment. Its magnitude 

spectrum is defined to be flat and its phase spectrum is made to conform to the 

assumed phase model developed in section 5.6.1. Its pth order DFT magnitude and 

phase spectra are therefore: 

(7.17a) 

~t.k = Irn - ~F(kUl) (7.17b) 

k = 0, 1, ... , p - 1 

where t!J is the pitch-frequency. ~F(kUl) is the phase spectrum of a 2nd-order all-pass 

filter and is computed from equation 5.35 with coefficient a set .to 0.95 and p is 

chosen according to table 5.1 using the current pitch-period. The linear term k1t 

places the main peak of the pulse exactly in the middle of the segment, 
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The magnitude and phase spectra, I ski and ~ Sk' of the perceptually weighted and 

phase standardised reference speech segment are used as a means of searching the 

two shape code-books to quantise the residual-domain prototype waveform. 

The lower frequency-band shape code-book, which contains 38-dimensional 

frequency-domain vectors, is first searched. The construction and training of the 

shape code-books will be discussed in the next section. Each 38-dimensional shape­

vector in the code-book is re-sampled using linear interpolation to provide a shape­

vector of the required dimension, which is: 

d l = Integer(: +0.5) (7.18) 

where p is the current pitch-period in samples, and the integer function rounds down. 

The re-sampled shape-vector is converted from its logarithmic scale back to a linear 

magnitude spectrum and is then normalised to have a power of 0.5. A phase spectrum 

4>Yk is now defined as in equation 7.19. 

(7.19) 

where 4>& is as defined in equation 7.17b, for the pulse-like waveform that was used 

to phase-standardise the reference waveform. 

The power-normalised lower band magnitude spectrum of each code-book entry is 

multiplied by the corresponding lower band gain response of the LP synthesis filter 

followed by that of the perceptual weighting filter to produce the lower band 

magnitude spectrum I S LIe I, for k=O, I, ... ,d 1-1, of a perceptually weighted speech 

segment. The phase response in equation 7.19 is added to that of the LP synthesis 

filter as in equation 7.l4b and also to that of the perceptual weighting filter to 

produce a phase spectrum 4>rk. A full band phase spectrum is then defined as: 

o ~ km < (j)9 

otherwise 
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This phase spectrum is required for computing the speech-domain cross-correlation 

coefficient which measures the similarity between the code-book entry and the 

prototype waveform which is to be quantised. Actually, the phase spectrum ~Sk is the 

same for all code-book entries and therefore needs to be calculated only once. Above 

the 9th LSF, ~Sk is made the same as in the reference waveform so that only 

magnitude differences become significant. This is done because the phase will be 

randomised at the decoder at frequencies above the 9th LSF, as explained in section 

5.6.5. Equation 7.20 is valid across the frequency range 0 to 1t and will be used when 

searching the upper band codebook as well as the lower band code-book. 

Therefore a perceptually weighted lower band frequency-domain representation of a 

speech segment for each code-book entry is compared with the lower band of the 

reference vector using a mse distance measure. The mse distance measure is 

minimised by maximising the normalised cross-correlation coefficient between the 

two segments. The higher the normalised cross-correlation coefficient is, the more 

similar to the reference will be the speech segment produced by the code-book 

candidate. The normalised cross-correlation coefficient between the two speech 

segments is calculated in the frequency-domain as follows: 

(7.21) 

The lower band code-book candidate which yields the maximum cross-correlation 

coefficient is chosen as the quantised version of the lower band components of the 

reference vector. Its index, h say, is recorded. 

The upper frequency-band code-book is searched in the same way as the 

lower one. Each 38-dimensional code-book vector is re-sampled to the required 

dimension: 

d 2 = Integer(~) + 1 - d l 

where p is the pitch-period. 
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The vector is then converted from a logarithmic scale to linear. For each upper 

frequency range code-book vector, the power of the corresponding upper half 

magnitude spectrum is normalised to 0.5. The upper band magnitude spectrum is 

processed by the LP synthesis and perceptual weighting filter to obtain I SUk I, for 

k=d1, dt+ 1, ... , dt+dr 1. By maximising the cross-correlation coefficient: 

(7.23) 

the optimum candidate, with index Iv say, from the upper frequency-band code-book 

is found. The indices of the two optimum code-book entries are encoded to represent 

the shape of the prototype waveform. 

Refer to figure 7.4 for a summary of the TPSWI shape quantisation process. 

7.4.3.5 Training of the shape code-books 

The shape code-books were trained using 10000 training vectors extracted 

from voiced speech portions of a clean speech file "GSP.DAT" [20]. The training 

vectors were assembled by extracting prototype waveforms from the LP residual. 

Each prototype waveform was normalised to have unity power, and pitch-period 

length DFT analysis was performed to yield its magnitude spectrum. The logarithmic 

magnitude spectrum of each prototype waveform was up-sampled to a fixed length 

using linear interpolation. The fixed length is Pmax/2+ 1 where pmax is the maximum 

anticipated pitch-period, which is 150 samples for the TPSWI coder. Therefore the 

fixed length is 76 samples. After time-scaling to the fixed length, the logarithmic 

magnitude spectrum is normalised so that the maximum value is zero. The resulting 

magnitude spectrum is then evenly split into 2 sub-bands each represented by a 38-

dimensional shape-vector. The shape-vectors thus obtained were stored as training 

vectors. 

U sing the 10000 lower frequency and 10000 upper frequency training 

vectors, the LBG-CS algorithm discussed in section 4.3.2 was used to train a lower 

frequency and an upper frequency shape code-book. In each case, a mse distance 
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measure was used and the splitting factor and the distortion threshold set to 0.99 and 

0.0001 respectively. 

7.4.3.6 Reconstruction of the excitation signal 

To reconstruct each prototype waveform, the decoder uses the received code­

book indices to fetch the required shape sub-vectors. The two shape sub-vectors are 

re-sampled to the required lengths d! and d2 determined from the received pitch­

period p and transformed back to a linear scale to yield the quantised half-band 

magnitude spectra. The two half-band magnitude spectra are combined to form the 

quantised full-band magnitude spectrum I Uk I for k=O, 1, ... , p/2. The power of the 

full-band magnitude spectrum I Uk I is normalised to unity. The synthetic phase 

spectrum ~Uk is defined as follows: 

O!5: km < c09 
03 9 !5: km < 7t 

(7.24) 

where ~'t* is as given by equation 7.19, <t>r(k) is a uniformly distributed pseudo­

random phase between -7t to 7t, a different random phase being generated for each 

frequency bin k, and 03 9 is the 9th quantised LSF at the current update-point. This 

phase spectrum will randomise the phases above cO 9 as described in section 5.6.5. 

The magnitude and phase spectra I Uk I and ~U1' are now taken as the DFT 

frequency-domain description of the current quantised prototype waveform. 

The current quantised prototype waveform is phase-aligned, as described in 

section 5.3, with the previous aligned prototype waveform. The real and imaginary 

DFT coefficients of the current aligned prototype waveform are computed and these 

are interpolated with the previous DFT coefficients and combined with the 

interpolated pitch-period to yield an interpolated signal. The interpolated signal is 

scaled to the power contour specified by the quantised gain factors to yield the 

reconstructed residual signal. The gain factors are linearly interpolated on a sample­

by-sample basis. 
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7.4.4 Bit allocation of the 2.3kb/s TPSWI coder 

A 2.3kb/s TPSWI coder was constructed using the quantised scheme 

discussed in the above. The bit allocation scheme of the coder is listed in table 7.2. 

The speech classification and pitch-period are jointly quantised at each update-point 

using 8 bits. A value of zero (0000 0000) means that the current synthetic speech 

frame is unvoiced. Values 15 to 150 indicate that the speech is voiced and represent 

the pitch-period in sampling intervals. This leaves some values undefined and 

available for error protection. 

Parameters number update bits/second 
of bits interval (ms) 

LSF's 24 20 1200 
speech class & pitch-period 8 20 400 

power contour 3 10 300 
lower half-band code-book 6 20 300 
upper half-band code-book 2 20 100 

Total 2300 
Table 7.2 Bit allocation table for the 2.3kb/s TPSWI coder 

Comparing the decoded speech from the fully quantised TPSWI coder with 

the unquantised version of it, using the speech file "OPERA TOR.DAT" [21], the 

decoded male speech from the quantised coder was found to be a little more synthetic 

and transient distortion occurred from time to time. The coder tended to preserve the 

naturalness and general quality of female speech rather better than for male speech. 

Only minor degradation was found in the decoded female speech obtained from the 

quantised coder in comparison to the same speech obtained from the model. 

7.4.5 Bit allocation of the 2.4kb/s TPSWI coder 

It was suggested in chapter 5 that the perceptual quality of speech from the 

TPSWI coder can be enhanced by increasing the update rate of prototype waveforms. 

A 2.4kb/s TPSWI coder was constructed in which a prototype waveform is encoded 

at intervals of 10ms rather than 20ms. The main update-points at which the LSF's and 

the pitch-period are encoded remain at intervals of 20ms. The pitch-period for the 

intermediate prototype waveform between the main update-points is taken to be the 

harmonic mean of the two instantaneous pitch-periods at the update-points. The 
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intermediate prototype waveform is extracted mid-way between the two main 

update-points as discussed in section 6.4.2. The inclusion of a second peak must be 

avoided in the intermediate prototype waveform by locating the peak in the centre of 

the segment as described in section 6.4.2. To achieve the required low bit-rate, the 

upper frequency-band shape code-book is replaced by a flat spectrum which has a 

magnitude of .JP, where p is the current pitch-period. In searching the lower half­

band code-book, each code-book candidate is processed to yield a half-band 

magnitude spectrum. The power of the magnitude spectrum is normalised to 0.5. The 

power normalised spectrum is combined with the upper half-band spectrum (i.e. the 

flat spectrum), to form a full-band magnitude spectrum and the processes outlined 

above then proceeds as for the 2.3kb/s coder. The bit allocation table of the 2.4kb/s 

TPSWI coder [83] is presented in table 7.3. 

Parameters number update bits/second 
of bits interval (ms) 

LSF's 24 20 1200 
speech class & pitch-period 8 20 400 

power contour 3 10 300 
lower half-band code-book 5 10 500 
upper half-band code-book 0 10 0 

Total 2400 
Table 7.3 Bit allocatIOn table for the 2.4kb/s TPSWI coder 

Comparing the fully quantised 2.3kb/s and 2.4kb/s TPSWI coders using the 

speech file 1I0PERATOR.DATII [21], the decoded male and female speech from the 

latter coder seemed to contain less transient distortion than the 2.3kb/s coder. 

However, the quality of the decoded male speech remained a little synthetic, and as 

before, the female speech was generally more natural. 

C-Ianguage programs implementing, fully quantised, the 2.3kb/s and 2.4kb/s 

versions of the TPSWI coder are presented in two internal reports [96] and [83]. 

These programs are simulations in the sense that although they are intended as 

prototypes for real-time DSP implementations, the problems of real-time 

implementation have not been addressed. The programs take as input a computer file 

of 8kHz sampled 4kHz bandwidth speech with 16 bits per sample and produce a 
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corresponding output file. Problems of channel errors have also not yet been 

considered. 

The C-programs are not optimised in any way. Clearly the TPSWI technique 

as quantised in this section is rather complex and would require much simplification if 

it were to become the basis of a real-time coder. Many simplifications are possible 

following suggestions made by Kleijn [76]. As mentioned in the introduction to this 

chapter fundamental difficulties with the TPSWI approach lie in the switched mode 

(voicedlunvoiced) operation and in the sampling of the prototype waveform 

evolution. The IIgeneralised pitch-synchronous waveform interpolationll (GPSWI) 

coder described in chapter 6 addresses these problems and the quantisation of this 

coder will be considered in the next section. 

7.5 Quantisation of the GPSWI coder 

Quantisation of the GPSWI coder requires the quantisation of the short-term 

spectral envelope, the pitch-period, the characteristic waveform gain factors, the 

SES, the RES and the IIseparatingll frequency, fSR, which divides the 0 to 4kHz (0 to 

1t radians/sample) frequency band into the SES and RES sub-bands. The separating 

frequency may be specified as being equal to either 0 radians/sample, the 3rd, 6th or 

9th LSF. The short-term spectral envelope is quantised at 20ms intervals using the 

24-bit IMS-LSF quantiser discussed in chapter 4. Two characteristic waveform gain 

factors are quantised and encoded for each 20ms synthesis frame in the same way as 

for the TPSWI coder in voiced mode. The pitch-period is quantised using 7 bits at 

each 20ms update-point, the range of possible pitch-periods being set from 16 to 143 

samples. The SES is defined from zero to the separating frequency which may be as 

high as the 9th LSF. The SES code-book is composed of full-band (0 to 4kHz) 

shape-vectors stored as 72 log-magnitude spectral samples per vector. An mse 

distance measure is used to compare perceptually-weighted versions of the speech 

segments generated by the original SES magnitude and by each of the SES code­

book candidates. Once again the mse distance measure is minimised by maximising 
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the normalised cross-correlation coefficient between the two speech segments as 

defined in equation 7. 13. Different weightings are assigned to different frequency 

bands of the SES when the normalised cross-correlation coefficient is computed. The 

RES is defined from the separating frequency to 4kHz. The separating frequency can 

be as low as OHz, therefore the RES code-book contains full-band (0 to 4kHz) 

shape-vectors. A fully quantised 2.4kb/s version of the GPSWI coder has been 

designed and tested. This version encodes one SES and two RES per 20ms of 

speech. In the following sections, the quantisation of the SES and RES will be 

discussed. 

7.5.1 Assignment of weighting factors in searching the SES code-book 

To evaluate the importance of different frequency components in a SES, a 

similar experiment to that described in section 7.4.3.1 was performed. A frequency 

threshold fT was defined and random errors were injected into the magnitudes of the 

SES at frequencies from fT to 4kHz. The error corrupted SES was defined as: 

kmf! < f 
21t T (7.25) 

otherwise 

where USk is the magnitude of the original SES for k=O, 1, ... , p-l 

Ue" (k) was generated as a uniformly distributed pseudo-random number between 0 

and some constant Ucrr which lies between 0 and 1. A different random number was 

generated for each value of k. UCIT is expressed as a percentage of unity. The noise 

corrupted SES was combined with the original phase spectrum to synthesise a 

characteristic waveform which was then converted to the speech-domain. The speech 

segment was compared with the one produced by the original SES, the similarity 

between the two segments being quantified by a cross-correlation coefficient as 

defined in equation 7.13. Different values of UCIT and fT were tested. The average 

cross-correlation coefficient measures over 1000 SES magnitude spectra typical of 

natural speech are presented in figure 7.7. 
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Figure 7.7 Average cross-correlation coefficient from modified SES compared to original for 
different values of fT under various magnitude error criteria 

Results in figure 7.7 show that the average cross-correlation coefficient remained 

close to 1 for all values of UCIT when fr was above 2kHz. When fT was set to 1 kHz, 

the average cross-correlation coefficient measure started to drop as the percentage 

error Uerr increased. The average cross-correlation coefficient dropped rapidly as the 

percentage error increased when fT was defined as OHz. This suggests that 

magnitudes around OHz to 1 kHz are the most important. Magnitudes between 1 kHz 

and 2kHz are less important than those below this range. Finally, magnitudes above 

2kHz are the least important and large magnitude error is allowed in this range. 

A second experiment was conducted, in which case the magnitude errors 

were introduced only in a fixed frequency band. Four frequency bands were tested, 

they were O-lkHz, I-2kHz, 2-3kHz and 3-4kHz. Different values ofUclT were tested 

and the average cross-correlation coefficient (equation 7.13) measured are presented 

in figure 7.8. 
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Figure 7.8 Average cross-correlation coefficient between original SES and an SES obtained by 
injecting magnitude errors into different frequency bands. 

The results in figure 7.8 re-confirm that larger magnitude error is allowed at the high 

frequency bands ofa SES than in the low frequency band. In case of the 2-3kHz and 

3-4k.Hz bands, the reduction in the average cross-correlation coefficient is minute 
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even when UCIT was 100%. A reduction in the average cross-correlation coefficient 

was observed in the I-2kHz band, when Uerr was increased. The average cross­

correlation coefficient dropped substantially when UCIT was introduced into the 0-

I kHz band. According to the results of the two experiments, different weights may 

be assigned to different frequency bands in a SES during code-book training as well 

as code-book searching in order to increase the efficiency of the SES quantiser. 

7. 5.2 The SESlRES quantiser 

RES 
code-book 

rR 

'YRi 

Re-sample 
to required 

length 

. 

Qj 
aj 

Perceptual 
weighted filter 

,..-__ ...., U k , 'l'U8k weighted filter 1----+1 1
- 1 d. ~(Z) Perceptual Phase 

SES '--_---.,....-_....J 1 5k 1,1I>8k alignment 

code-book 
fs 

'YSi 

Re-sample 
to required 

length 

t t 

Qj 

Power 
normalisation 

~8k Qj 

aj 

Qj 

Perceptual 
weighted 

filter 

Frequency­
weighted 

cross 
correlation 

measurement 
. . 

P fSR 
' .................................................................................................. .. 

fSR 

Qj aj 

~ Perceptual 
~ weighted filterl------.. 

1 U i k I, Ijl(ljk 
Perceptual Phase 

weighted filter alignment 
1 Sk 1,ljlsk 

fSRi 
aj 1 Sk 1'~Sk 

II>vik 
a; 

ARES Qj 

Generate 
Frequency-
weighted 

Power the full- Perceptual 
cross 

normalisation band weighted 
correlation 

magnitude filter 
measurement 

spectrum 

i .. .. .. .. .. .. .. .. .. .. .. .. " .................................................................................................................... <I 

Pi fSR 

Figure 7.9 Spectral shape quantiser for the GPSWI coder 
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In figure 7.9, the schematic diagram of a SESIRES quantiser for the 2.4 kb/s 

GPSWI coder [84] is shown. The value of the separation frequency, fSR in radians per 

sample, which is equal to 0, the 3rd, 6th or 9th LSF, is determined from the average 

voicing confidence level, VL, as described in section 6.4.3. The current value of VL 

is obtained by averaging the previous and the current voicing confidence levels as 

produced by the two-way pitch detector (TPD) described in chapter 5. 

The SES and RES quantisers operate similarly to the shape quantiser in the 

TPSWI coder. The full-band SES code-book is first searched. Each SES code-book 

candidate is re-sampled to obtain p/2+ 1 samples and these are transformed to a linear 

magnitude scale. The magnitude samples beyond the current value of fSR are set to 

zero. The power of the SES candidate is scaled to ASES, where 

-1 _ f SR 
ASES --

7r 

(7.26) 

The value of ASES is proportional to fSR with a constant of proportionality such that it 

would become unity iffsR were equal to 7t, i.e. half the sampling frequency. 

The synthetic phase spectrum: 

~Vjk = k7t - ~A kmj ) (7.27) 

O~kUJj~7t 

is assigned to each of the power-normalised SES candidates where ~F(k m,) IS as 

defined in equation 5.35. The resulting magnitude and phase spectra are processed by 

the LP synthesis filter and the perceptual weighting filter to yield the magnitude and 

phase spectra of a perceptually weighted speech segment. 

The speech segment thus obtained is compared with the reference segment by 

computing a normalised cross-correlation coefficient defined only from zero to fSR. 

Weighting factors are used to increase the weighting of the low frequency 

components. The resulting weighted cross-correlation coefficient between the 

perceptually weighted speech segment obtained from SES code-book candidate i and 

the reference segment is: 
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(7.28) 

where the magnitude and phase spectra I SS;k I and ~Yk are as obtained from SES 

code-book candidate i. The reference magnitude spectrum I ski at the given update­

point is the mean magnitude spectrum I U k I transformed to the perceptually 

weighted speech-domain. I U k I is the average of the magnitude spectra of eight 

characteristic waveforms centred at approximately 2.5ms intervals within a 20ms 

segment preceding the update-point. The reference phase spectrum, ~ Sk ' is the phase 

spectrum, ~ U8k, of the single characteristic waveform closest to the update-point 

also transformed to the perceptually weighted speech-domain. (Phase averaging was 

tried, deriving ~ Sic from the average of 8 consecutive phase spectra rather than the 

single one used here, but this was unsuccessful). The DFT bin number K corresponds 

to the separating frequency fSR at the current update-point and is calculated as 

follows: 

1 ( 
f SR p) K = nteger ~ 

The weighting factors are set as: 

{ 

1.0 

WIc = 0.5 

0.25 

o ~ km < 1t /4 
1t /4 =s; km < 1t /2 
1t /2 ~ km < 7t 

(7.29) 

(7.30) 

The quanti sed SES at each update point is interpolated at the encoder with the 

quantised SES at the previous update-point to yield an SES magnitude at each of 8 

sub-update points. This is done for the purpose of searching the RES code-book at 

each sub-update point as will now be described. 
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To search the RES code-book, the SES at each sub-update point j is 

combined with each of the candidates in the RES code-book to generate a trial full­

band magnitude spectrum at the sub-update point. Each RES code-book candidate is 

re-sampled from its standard length of 72 samples to a length equal to pj2+ I where 

pj is the instantaneous pitch-period for the current sub-update point obtained by 

interpolation. The re-sampled RES shape-vector is transformed to a linear magnitude 

scale and the magnitudes at frequencies below f.,)R are set to zero. The power of the 

modified RES candidate is scaled to ARES, where ARES = I.O-AsES. The resulting RES 

is then combined with the interpolated SES to form the magnitude spectrum of a trial 

characteristic waveform at the sub-update point. The magnitude spectrum is 

multiplied by the gain response of the LP synthesis filter and perceptual weighting 

filter to generate the magnitude response I S RIIt I of a speech segment. This magnitude 

spectrum is compared with the perceptually weighted magnitude spectrum of the 

reference segment, I Sit I say, at each sub-update point using the cross-correlation 

coefficient defined as: 

(7.31) 

The index of the RES code-book candidate which results In the highest cross­

correlation coefficient, i.e. produces a speech segment whose magnitude spectrum 

looks maximally like the original in a mean square error sense, is encoded. 

The procedure described above can be simplified as a result of the RES and 

SES being defined for different frequency bands, i.e. 0 to fSR and fSR to 7t. The 

simplification is achieved by comparing only the RES part of the spectrum. Note that 

smoothing of the reference RES is implied by this process since the code-book entries 

are themselves smoothed and allow only the general shape of the RES to be 

represented in a minimum mean-square-error sense. 
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7.5.3 Bit allocation of the 2.4kb/s GPSWl coder 

The 2.4kb/s GPSWI coder [84] encodes a SES and two RES spectra at 

intervals of20ms. The bit allocation table for the coder is given in table 7.4. 

Parameters number of update bits/second 
bits interval (ms) 

LSF's 24 20 1200 
pitch-period 7 20 350 

power contour 3 10 300 
SES code-book & ("R 7 20 350 

RES code-book 2 10 200 
Total 2400 

Table 7.4 Bit allocation table for the 2.4kb/s GPSWI coder 

In contrast to the TPSWI coder, there is no direct speech classification and model 

switching for the GPSWI coder. Although the separating frequency fSR is dependent 

on a voicing confidence level, the coder performance will be much less critically 

dependent on this than it would be on a model switching voiced/unvoiced decision. 

The pitch-period is encoded in 7 bits representing a range from 16 to 143 samples. 

Two characteristic waveform gain factors are encoded for each 20ms synthesis frame. 

As for the TPSWI coder in voiced mode, the first gain factor refers to the speech for 

an intermediate point mid-way between the current and the previous update-points. 

The second gain factor refers to the speech at the update-point. The separating 

frequency between the SES and RES is embedded in the 7-bit SES code-book index 

as will now be described. 

A SES code-book index of zero means that no SES is required, i.e. the 

separating frequency is OHz. For indices 1 to 15 the SES is non-zero only from OHz 

to the 3rd LSF. For indices 16 to 63, the SES is non-zero up to the 6th LSF and the 

remaining indices, i.e. from 64 to 127, are devoted to the SES which is defined from 

OHz to the 9th LSF. When the SES code-book is searched, only the candidates 

corresponding to the particular selection of separating frequency are tested, i.e. 

entries 1 to 15 are tested when fSR is equal to the 3rd LSF, entries 16 to 63 are tested 

when fSR is equal to the 6th LSF and entries 64 to 127 are tested when fSR equals the 

9th LSF. When fSR is equal to zero, searching SES code-book is unnecessary. The 

coder directly searches the 2-bit RES code-book containing four RES shape-vectors 
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as described in section 7.5.2. The training procedures adopted for the SES and RES 

code-books are presented in the next section. 

7. 5. 4 Training SES and RES code-books 

The SES has a variable bandwidth extending from 0 radians/sample to the 

separating frequency fsR. The magnitude spectrum of the SES from fSR to 7t 

radians/sample is taken to be zero. A set of SES training vectors may be generated 

from a reference file of natural speech by computing the mean magnitude spectra 

obtained from eight consecutive characteristic waveforms centred on update-points at 

2.5ms intervals. Each mean magnitude spectrum must be transformed to logarithmic 

form and up-sampled to the standard length of 72 samples using linear interpolation. 

The magnitudes at frequencies higher than fSR must be set to zero (effectively) by 

setting the log-magnitudes exactly equal to -B where B is a suitably large integer 

(300). The spectrum thus obtained should be normalised such that the maximum 

value is zero. The value of fSR is recorded with each training vector. 

The required SES code-book comprises three sub-codebooks: one for fSR = 

LSF3, one for fSR = LSF6 and one for fSR = LSF9. The training vectors must 

therefore be divided into three sets corresponding to the three possibilities for fSR. 

Training the SES code-book for fSR = LSF9, say, by directly applying the LBG-CS 

algorithm to training vectors obtained as described above may not be appropriate 

since the effect of the zero magnitudes (log-magnitudes equal to -B) above fSR, which 

varies as LSF9 varies, would be included in the distance measure where they would 

have no effect on the speech in practice. The LBG-CS algorithm must therefore be 

modified such that the zero magnitudes are excluded from the computation of 

distance. 

Suppose we have a set of N-dimensional training vectors for the "fsR =LSF9" 

SES codebook. Each training vector may contain "zero-elements" beyond the value 

of LSF9 applicable to the speech segment that produced the training vector. These 

elements, being artificially inserted as exactly -8 in the log-magnitude domain, are 
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assumed to be distinguishable from any naturally occurring elements which are 

extremely unlikely to be exactly -B. With a conventional mse distance measure, the 

centroid of a cell of training vectors is simply obtained by computing a vector whose 

elements are the mean values of the corresponding vector elements across all the 

vectors in the cell. This calculation of the centroid must now be modified slightly. To 

obtain the kth element, Yk, for the centroid "i. of a cell of training vectors {tl, !2, ... , 

lM}, the mean of only the non-zero kth elements is calculated as follows: 

1 M 

YIt = MI L tk . 1 J 
It J = 

(7.32) 

where Mlk is the total number of non-zero kth elements for the training vectors in the 

cell. For assigning a training vector 1 to a cell with representative vector y, the mse 

distance measure is now modified from equation 4.9 to become: 

1 N ( )2 dU, y) = NI L Y It - h 
It =1 (7.33) 

where NI is the number of non-zero elements in the training vector 1 which is of 

dimension N. The number of non-zero elements is easily ascertained by counting the 

number of elements with log-magnitude exactly equal to -8. 

The LBG-SC procedure with mse distance measure modified as described 

above was used to train the three SES code-books using the three sets of training 

vectors extracted from the speech file "DSP.DAT" [20]; i.e. a set for f.'iR = LSF3 with 

15 entries, one for fSR = LSF6 with 48 entries and one for fSR = LSF9 with 64 entries. 

A further modification to the training procedure was necessary to obtain the first two 

of these code-books since they contain numbers of entries which are not powers of 

two. 

The first training set contained 1000 shape-vectors each with non-zero 

elements only from OHz to the 3rd LSF. A 16-level sub-codebook was trained using 

the first training set, the centroid whose cell contained the lowest number of training 

vectors was removed and LBG procedure was repeated to obtain the required sub­

codebook with 15 levels. The second training set contained 5000 training vectors 

each with non-zero elements only up to the 6th LSF. These vectors were used to 
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train a sub-codebook with 64 levels. The 16 centroids whose cells contained the 

lowest number of training vectors were taken away one by one, the LBG algorithm 

being repeatedly applied until a 48-level sub-codebook was obtained. The third 

training set contained 10000 shape-vectors with non-zero elements from OHz to the 

9th LSF. These vectors were used to train a 6-bit, 64 levels, sub-codebook for the 

SES corresponding to fSR = LSF9. 

The RES also has a variable bandwidth extending from fSR radians/sample to 

7t radians/sample. The magnitude spectrum of the RES from zero to fSR will be taken 

to be zero when searching the RES codebook. A set of RES training vectors may be 

generated from the reference file of natural speech by extracting characteristic 

waveforms centred on update-points at 2.5ms intervals, computing the DFT 

magnitude spectra and transforming these to logarithmic form. Cepstral smoothing is 

then applied by taking the inverse DFT to obtain the real cepstrum, windowing to 

zero all cepstral samples beyond the fourth, zero-padding to 144 samples 

(maintaining mirroring as described in section 6.3.1) and transforming back to the 

frequency-domain via a 144-point DFT. This produces a smoothed log-magnitude 

vector of the required standard length of 72 frequency domain samples, with its 

mirror image. The log-magnitudes at frequencies lower than f.<;R are now set to -B and 

the spectrum thus obtained is normalised such that the maximum value is zero. The 

smoothing approach used here is an alternative to the fitting of a polynomial as in 

Kleijn[76]. The value offsRis recorded with each training vector. 

The required RES code-book comprises four sub-codebooks: one for fSR = 
zero, one for fSR = LSF3, one for fSR = LSF6 and one for fSR = LSF9. The training 

vectors must therefore be divided into four sets corresponding to the four possibilities 

for fSR. Training the RES sub-codebook for fSR = zero proceeds using the standard 

LBG-SC algorithm. For the other sub-codebooks, the LBG-CS algorithm must be 

modified such that the zero magnitudes below fSR are excluded from the computation 

of distance, in a similar manner as for the training of the SES sub-codebooks. 
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The RES code-book is therefore populated with 72-dimensional smoothed 

spectral envelope shape-vectors, for the convenience of combining them with the 

SES vectors which are also 72-dimensional. About 5000 training vectors were used 

to train the 2-bit RES sub-codebook for the case where fSR = O. The training vectors 

were extracted from the unvoiced speech portions of the speech file "GSP.DAT" 

[20]. The training vectors for the other three 2-bit RES sub-codebooks were 

extracted as for the corresponding SES sub-codebooks. The SES and RES 

codebooks were trained with the splitting factor and the distortion threshold set to 

0.99 and 0.0001 respectively. 

A C-program implementing the fully quantised 2.4kb/s version of GPSWI is 

presented in the internal report [84]. The 2.4kb/s GPSWI coder requires about 20% 

more processing time than the 2.4kb/s TPSWI coder. The GPSWI coding algorithm 

and the C-program would therefore need to be considerably simplified, for example 

using methods recently proposed by Kleijn [76], to achieve real-time application. In 

the following section, the speech quality obtained from the 2.4kb/s TPSWI and 

GPSWI coders will be evaluated and compared with that obtained from five 

international standardised coders. 

7.6 Performance evaluation of the 2.4kb/s TPSWI coder and 

GPSWI coder 

The 2.4kb/s GPSWI coder [84] was compared with the 2.4kb/s TPSWI coder 

[83] using the speech file "OPERATOR.DAT" [21] and other reference speech files. 

These files were different from those used to train the quantisers. As previously 

mentioned, the TPSWI coder produced decoded speech which was generally of good 

quality though there was clearly some loss of naturalness and transient distortion 

occurred from time to time. The speech was of "communications" rather than "toll" 

quality these terms being defined in Boyd [97]. The speech synthesised by the 

GPSWI coder was more natural and less distorted as compared to that from the 

TPSWI coder, although a degree of unnaturalness could still be found in the male 
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voice when the pitch-period was particularly large. Overall, the speech quality from 

the GPSWI coder was clearly better than that from the TPSWI coder. The 

disadvantage of the GPSWI coder is its high computational complexity as compared 

to the TPSWI coder. This is due to the application of spectral decomposition to both 

voiced and unvoiced speech, the fact that eight DFT's are required per 20ms of 

speech and the need to search two full-band shape code-books to quanti se the 

characteristic waveforms at each update-point. 

The 2.4kb/s GPSWI coder was compared with the 32kb/s ADPCM (G726) 

coder using a file of 32kb/s ADP CM decoded speech provided by BT laboratory. 

Informal listening tests showed that the decoded speech from the GPSWI coder is 

not as good as that produced by the ADPCM coder, there being some loss of 

naturalness and also occasional transient distortion. 

The 2.4kb/s GPSWI coder was also compared with 4 coders:-

a) 2.4kb/s LPC-IOe coder[14], 

b) 4.lkb/s!MBE coder [13], 

c) 2.4kb/s ME-LPC coder [67], 

d) 2.4kb/s AT &T WI coder [76} 

The LPC-IOe coder is currently, and has been for many years the American DoD 

standard 2.4k1s speech coder. The !MBE coder has been adopted by INMARSAT for 

the "Sky-phone" system. The ME-LPC coder was the winner of the competition 

based on the specification for the new American DoD 2.4kb/s speech coder. The 

AT &T WI coder was one of the candidates for the 1996 DoD standardisation . 
competition. 

Informal listening tests showed that the speech quality obtained from the 

2.4kb/s GPSWI coder was substantially better than that produced by LPC-IOe. 

Furthermore it was also better than that obtained from the 4.1 kb/s IMBE coder. The 

decoded speech obtained from the 2.4kb/s GPSWI coder was found to be very close 

to that of the ME-LPC and WI coders, though the speech quality obtained was 

perhaps not quite as natural. 
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7.7 Conclusions 

Quantisation schemes proposed in the literature for PWI and WI coders have 

been considered in this chapter and quantisation strategies for 2.4kb/s versions of the 

TPSWI and GPSWI coders have been devised. 

In the TPSWI coder, the pitch-period and speech classification are jointly 

quantised using 8 bits. The 2.4 kb/s TPSWI coder encodes a prototype waveform 

every 10ms for voiced speech. A prototype waveform is quantised using a gain-shape 

approach in which the gain factors are quantised in 3 bits using differential VQ. 

Experiments showed that the magnitudes of the lower frequency components of a 

prototype waveform are likely to be more important than those in the higher 

frequency region. The magnitudes in the lower half of the OFT frequency spectrum 

are therefore quantised in 5 bits and the magnitudes in the upper half DFT frequency 

spectrum are assumed to be flat. In the case of unvoiced speech, four gain factors are 

vector-quanti sed using an 8-bit code-book. 

It was concluded that, fully quantised, the 2.4kb/s TPSWI coder is capable of 

producing communication quality speech and that the use of 10 ms rather than 20 ms 

update intervals for the prototype waveforms was beneficial even though the upper 

2kHz frequency band was not encoded but was instead replaced by a flat spectrum. 

The speech contained a degree of buzziness and transient distortion which, it was 

concluded, may be reduced by the use of a generalised WI model and better 

modelling of the evolution of spectral features. 

In the GPSWI coder, the model-switching according to a voicedlunvoiced 

decision is eliminated and the evolution of spectral features is decomposed into 

slowly and rapidly evolving components which are quanti sed separately and in 

different ways. The pitch-period is encoded in 7 bits. Two gain factors are encoded 

for a 20ms synthesis frame, these being quanti sed as for the TPSWI coder. A slowly 

evolving magnitude spectrum (SES) is encoded at intervals of 20ms using 7 bits, and 

a rapidly evolving magnitude spectrum (RES) is quanti sed using 2 bits at 10ms 

·246· 



Chapter 7 Quantisation of the TPswr and GPSWI coders 

update intervals. The SES and RES code-books are populated with full-band shape­

vectors each standardised to a length of 72 samples. 

Informal listening tests suggested that the decoded speech obtained from the 

fully quantised 2.4kb/s GPSWI coder is better than that from the fully quantised 

2.4kb/s TPSWI coder. However the computational complexity of the GPSWI coder 

is about 20% higher. The decoded speech produced by the 2.4 kb/s GPSWI coder 

was found to be not as natural as that from 32 kb/s ADPCM. It was substantially 

better than that from the LPC-IOe coder and better than that from the 4.lkb/s IMBE 

coder. The decoded speech produced by the 2.4kb/s GPSWI coder was very close to 

that from the 2.4kb/s ME-LPC and AT &T WI coders, though the latter two had a 

more natural speech quality. 

·247· 



Chapter 8 

Conclusions, achievements and future 

work 

8.1 Conclusions 

This thesis is concerned with the use of waveform interpolation techniques for 

speech coding at very low bit-rates i.e. 2.4kb/s. The original idea of prototype 

waveform interpolation (PWI) has been explored and its evolution towards current 

generalised waveform interpolation (WI) techniques has been investigated and 

followed up. The major innovations in current WI techniques lie in the generalisation 

of the voiced model to unvoiced speech and the decomposition of the evolution of 

spectra and periodicity into slowly and rapidly evolving components. In principle, and 

in practice with many implementations of WI, the decomposition is achieved by one­

dimensional low-pass and high-pass filtering to achieve full 0 to 4kHz band slowly 

and rapidly evolving waveforms or spectra. 

In this thesis, to achieve the required 2.4kb/s bit-rate, a sub-band approach is 

proposed for the decomposition where a slowly evolving spectrum is obtained only 

for a lower frequency band and a rapidly evolving spectrum is obtained for a higher 

frequency band. A magnitude spectrum only is modelled, the phase being regenerated 

according to an "all-pass" phase model developed at Liverpool University. 

Justification for the sub-band approach is given in the thesis. The sub-band approach 

is similar in some ways to the most recent approach proposed by Kleijn [75][76] 

though it was discovered by the author before Kleijn's paper [75] appeared. 

The operation ofWI coders depends critically on accurate pitch detection and 

linear prediction (LP) analysis. Work on this thesis began with the development of a 

reliable pitch determination algorithm and a pitch synchronous LP analysis technique 
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for voiced speech, based on Burg's algorithm, to refine the analysis obtained from the 

more conventional autocorrelation method. 

A two-way pitch detector (TPD) has been designed in which segments of 

speech are classified as either voiced or unvoiced and an estimate of the true pitch­

period is given for voiced speech. The nature of the speech is classified on the basis 

of a voicing confidence level and the power ratio between the speech and a band-pass 

filtered version of it. The voicing confidence level is computed from the voicing 

probabilities of four features determined from the speech. The pitch-period for the 

voiced speech is determined using a backward-mode cross-correlation function which 

is applied on a band-pass filtered speech residual. Experimental results showed that 

the cross-correlation function computed from the band-pass filtered residual signal 

had more predominant peaks around the location of the true pitch-period as well as 

integer multiples of it. Furthermore, the amplitudes of the sidelobes in the cross­

correlation function were effectively attenuated. A pitch post-processing unit has 

been included in the TPD, the function of which is to eliminate possible multiple 

pitch-period errors and to provide a smooth pitch-contour. 

The TPD was tested for clean nature speech and speech corrupted by 

different SNR levels of white, car, babble and multi-speaker noise. The results 

suggested that a 97.6% speech classification accuracy and a 90.5% pitch estimation 

accuracy were obtained for clean natural speech. The performance of the TPD was 

fairly consistent for noisy speech with SNR levels higher than 20dB. The 

performance of the TPD deteriorated seriously when the SNR dropped below 20dB. 

Two line spectral frequency (LSF) analysis filter structures have been 

proposed and incorporated into an LSF synthesis filter. It was discovered that if the 

LSF analysis filter was not a "true inverse" of the LSF synthesis filter, transient 

effects occurred at the output of the synthesis filter when the LSF coefficients were 

made adaptive. The term "true inverse" was applied to arrangements which eliminate 

these transient effects. A true inverse LSF analysis and synthesis filter pair has been 

obtained. Objective and subjective tests have been conducted to investigate the 

performance of the LSF filter pair. The results indicated that the LSF analysis and 
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synthesis filters worked as well as conventional ladder filter structures. By using LSF 

filters in a speech coder, the computational complexity required in some coders (e.g. 

CSA-CELP [10]) of converting LSF's to LP ladder filter coefficients is avoided. 

Furthermore, maximum smoothness of spectral envelope evolution is achieved by 

linearly interpolating the LSF coefficients across adjacent update-points on a sample­

by-sample basis. 

LP analysis using the autocorrelation method and Burg's method have been 

investigated and compared. Experimental results showed that the two methods were 

sensitive to the position of the analysis window location within the speech. In all the 

experiments performed, Burg's LP analysis method always yielded a more accurate 

spectral estimation than the autocorrelation method. Burg's method has further 

merits that an even more accurate spectral estimation is possible for pitch­

synchronous LP analysis and that the accuracy is maintained when the length of the 

analysis window becomes smaller than a complete pitch-cycle. A variable length 

rectangular window is proposed for use with Burg's pitch-synchronous LP analysis 

method. The size of the analysis window is decided according to the pitch-period of 

the voiced speech at the update-point. 

A 24-bit IMS-LSF quantiser, which is able to achieve an almost spectral 

transparent quality, has been designed. The quantiser implements an interframe 

quantisation scheme in which the difference between the current and previous 

quantised LSF vectors is quantised using a multistage-split VQ. A ID-bit code-book 

is used to search the full dimension difference vector at the first stage. At the second 

stage, two 5-dimension 7-bit code-books are used. Power weighting is included in the 

code-book searching to enhance the quantiser performance. A re-ordering scheme is 

proposed to maintain the ordering property of LSF's in an LSF vector and hence to 

ensure the stability of the all-pole filter. Different code-book arrangements have also 

been examined for the 24-bit quantiser and the results suggested that comparable 

performance can also be achieved by arranging the code-books in either 9~ and 8: 

formats. The advantages of the latter arrangements is a reduction in the computation 

complexity. 
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A two-mode pitch-synchronous waveform interpolation (TPSWI) coder has 

been developed. The TPSWI coder is composed of two modules: a PSWI model for 

voiced speech and a pseudo-random sequence generator for unvoiced speech. An 

overlap-add technique is employed to preserve a smooth switching between the two 

models. Informal listening tests suggested that the overall perceptual speech quality 

of the TPSWI decoded speech was better than that obtained from the PWIlCELP 

coder. The perceived quality of the TPSWI modelled speech is very close to the 

original when updating a prototype waveform every 2.5ms, i.e. 8 prototype 

waveforms within each interval of 20ms. 

A prototype waveform can be characterised by a gain-shape approach. The 

gain factor is the rms value of the prototype waveform. The shape is characterised by 

its OFT magnitude and phase spectra. Subjective tests suggested that no noticeable 

degradation in speech quality occurs when only 2 gain factors per 20ms of speech are 

encoded instead of all eight, when eight prototype waveforms are extracted. This is 

beneficial in keeping the bit-rate to a minimum. 

Coding efficiency can be increased by sending only the magnitude spectrum of 

the prototype waveforms and deriving the phase spectrum at the decoder. To devise 

a way of artificially generating ~ phase spectrum at the decoder the commonly used 

fundamental voiced speech production model has been studied. It has been shown to 

be more reasonable to take the glottal excitation to be the time-reversed impulse 

response of a 2nd-order all-pole filter rather than the true impulse response of such a 

filter. Under this assumption, the phase spectrum of a prototype waveform can be 

assumed to resemble the negated phase spectrum of the 2nd-order all-pass filter. One 

of the two coefficients for the 2nd-order all-pass filter is fixed as 0.95. The other 

coefficient is adjusted according to the pitch-period of the prototype waveform. 

Informal listening tests suggested that only minor degradation in the female speech 

was caused by using the all-pass derived phases instead of the original. However a 

degree of unnaturalness was introduced in male speech with particularly low pitch 

frequency. It was found that the perceptual speech quality of the decoded male 

speech can be enhanced by randomisi~ the phases in the higher frequency region. 
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This high frequency region was defined to be from the 9th LSF at the current update­

point to 4kHz. 

A generalised pitch-synchronous waveform interpolation (GPSWI) devised in 

this project utilises a sub-band approach to decompose characteristic waveforms to 

slowly and rapidly evolving components. The sub-band approach means that the 

magnitude spectrum of each characteristic waveform is separated into two frequency 

bands. The lower frequency band is used to characteristic the general shape of the 

characteristic waveform which is considered to be slowly evolving and may be 

sampled at a relatively low rate. The general shape of the characteristic waveform is 

recovered by interpolation at the decoder. The higher frequency band is used to 

characterise the more random-like structure of a characteristic waveform which is 

considered to be changing more rapidly. Only the general features of the higher 

frequency band are encoded, the random-like signal being re-generated at the decoder 

by injecting random phases into the decoded general magnitude spectral shape, 

Informal listening tests suggested that the speech obtained from the GPSWI 

model was better than that obtained from the TPSWI model. The GPSWI modelled 

speech was virtually indistinguishable from the original when eight rapidly evolving 

(RES) spectra were encoded every 20ms. Good speech quality was still maintained 

when only one RES was encoded every 20ms. The GPSWI model worked well for 

noisy speech even when the SNR was as low as OdB. 

A fully quantised 2.4kb/s TPSWI coder was obtained by updating a prototype 

waveform every lOms. In this coder the gain factor for each prototype waveform is 

differentially quantised to 3 bits. The magnitudes In the lower DFT magnitude 

spectrum is quanti sed to 5 bits. The magnitudes at the upper DFT magnitude 

spectrum is assumed to be flat. A 2.4kb/s GPSWI coder is obtained by transmitting a 

SES, 2 RES and 2 gain factors every 20ms. Quantisation of the gain factors is the 

same as for the TPSWI coder. The SES and RES are quantised to 7 and 2 bits 

respectively. 
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Informal listening tests suggested that the perceptual quality of the 2.4kb/s 

GPSWI decoded speech is better than that obtained using the 2.4kb/s TPSWI coder, 

2.4kb/s LPC-IOe coder and 4.lkb/s !MBE coder. It is close to the 2.4kb/s ME-LPC 

coder and 2.4kb/s AT&T WI coder, thOUgi~O latter coders have a slightly more 

natural speech quality. Comparing the 2.4kb/s GPSWI coder with the 32kb/s 

ADPCM coder, the decoded speech from the former was noticeably more synthetic. 

8.2 Summary of achievements 

I. A two-way pitch detector with the following features:-

a) A voicing confidence level is given as a form of speech classification. 

b) An exponential probability density function is used to compute the probability 

of voicing. 

c) The pitch detection is done on the basis of a cross-correlation function 

defined for an LP residual obtained from a speech signal bandlimited from 

100 Hz to 1kHz. 

d) The use of a conditional based 3-point median smoother applied to the 

current estimate of the pitch-period and the pitch-periods obtained from the 

two previous frames. 

2. Implementation of a "true inverse" LSF analysis and synthesis filter pair in a 

speech coder. 

3. LP analysis using Burg's pitch-synchronous method with an adaptive analysis 

window. The window size is dependent on the current pitch-period within the 

speech frame. 

4. A fully quantised 2.4kb/s two-mode pitch-synchronous waveform interpolation 

(TPSWI) coder:-

a) Implementation of the PSWI model for voiced speech. 

b) Implementation of a pseudo-random sequence generator for unvoiced speech. 
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c) Implementation of an overlap-add technique to ensure a smooth switching 

between the two coding models. 

5. A me~of deriving the phase spectrum of a prototype waveform based on the 

phase response of a 2nd-order all-pass filter. The phase derivation scheme was 

developed from a study of the voiced speech production model, in which the 

glottal excitation signal is assumed to be the time reversed impulse response of a 

2nd-order all-pole filter. 

6. A fully quantised 2.4kb/s generalised pitch-synchronous waveform interpolation 

(GPSWI) coder with the following features:-

a) A sub-band approach to the definition of slowly and rapidly evolving 

components of characteristic waveforms. 

b) Adaptation of the separating frequency of the slowly and rapidly evolving 

spectrum according to the voicing confidence level given by the pitch 

detector. 

8.3 Future work 

The TPSWI coder works promisingly well for clean natural speech. However, 

the perceptual quality of TPSWI decoded speech deteriorates seriously when the 

speech is corrupted by noise. One of the sources of the degradation that occurs with 

noisy speech is the model used for unvoiced speech which tends to be used also for 

background noise which is very dissimilar to speech. Difficulties arise since the 

background noise may not necessarily be random-like as, for example, with car noise 

and multi-speaker noise. To improve the robustness of the TPSWI coder, the pitch 

detector in the TPWSI coder may be modified such that it classifies the input speech 

as quasi-periodic or random-like rather than as voiced or unvoiced speech. The 

advantage of this is that background noise with strongly periodic components may be 

better modelled as periodic signals rather than random signals. 
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Although the perceptual quality of the GPSWI coder is better than the 

TPSWI coder, it is computationally more complex. Some effort must now be devoted 

to reducing the complexity of the GPSWI coder. Obvious improvements that may be 

made are the standardisation of shape-vectors to a length which is a power of two 

(rather than 72) thus allowing the FFT to be used for interpolation, smoothing and 

some other operations. There is much scope for improving the efficiency of the 

analysis-by-synthesis comparisons for the code-book searches. Also the need for 

sample-by sample interpolation of LSF coefficients must be questioned, it being likely 

that some form of block-wise interpolation will prove satisfactory. More efficient 

phase alignment procedures are possible than are currently used in the GPSWI coder, 

and many other procedures could be streamlined. Once these obvious improvements 

have been made, probably at little or no cost to speech quality, there are 

approximations that may be made as in Kleijn [76] to achieve further savings. 

Experimental results have suggested that when the pitch-period of the speech 

is especially large, rather synthetic speech quality is obtained when the "two-pole all­

pass" derived phase spectrum is used instead of the original phase spectrum. Further 

research must be carried out to improve the phase derivation scheme. This r~search 

may find better ways of locating the polelzero positions, and of deciding how and 

when to randomise phase at higher frequencies. 

More effort is needed to improve the shape quantisers in the TPSWI and 

GPSWI coders. The efficiency of the existing vector quantisers is questionable since 

the dimension of the shape-vector is large, i.e. 38-dimensions for the TPSWI coder 

and 72 for the GPSWI coder. One possible solution is to transform the shape-vectors 

into other domains and to perform quantisation on the parameters in the new domain. 

For example the shape-vectors may be parameterised using polynomial curve fitting 

and quantising polynomial coefficients. Alternatively, windowed cepstral coefficients 

as produced during the RES spectral smoothing and interpolation process (section 

7.5.4) may be used to characterise the shape-vectors. 

This thesis has been concerned with the design of very low bit-rate (2.4kb/s) 

speech coders. Although the ultimate goal of research in this area is to achieve toll 
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quality at 2.4kb/s, it is still a very difficult goal to achieve. The types of coder being 

proposed to approach the goal, including the ones in this thesis, are extremely 

complex and are based on concepts that are in general not yet fully understood. For 

example, the models of perception on which the REW and SEW separation are based 

need further study. Therefore the work in this thesis is just a further stage in a long 

term research effort which is currently the subject of world-wide research interest. . 
Further research will undoubtedly lead to the ultimate goal. 

There is commercial interest in speech coders operating at 2.4kb/s and below 

which do not provide toll quality. Such applications may he found within the internet 

system for example and in some military communication systems. There is also much 

interest in speech coders which are specifically designed for operation at variable 

frame rates over various types of packet switched networks. Waveform interpolation 

techniques are clearly applicable to such .commercial applications and the ideas 

presented in this thesis hopefully contribute to the knowledge that will be successfully 

be exploited in this way. Further research will find ways of adapting WI coding 

techniques of realisable complexity to specific possibly less demanding applications. 

There are also important applications for the use of waveform interpolation 

coders at bit-rates higher than 2.4kb/s. One such application is half rate GSM 

requiring a speech coder at around 4.8kb/s, allowing for bit-error protection. The 

requirement here is definitely toll quality and there would be a considerable challenge 

in deciding how best to adapt the coders presented in this thesis to the increased bit­

rate capacity. 

Waveform interpolation appears to be the most promising approach to the 

future development of low bit-rate speech coding. It is still a new technique and 

requires much further development and study at a fundamental level. Applications for 

low bit-rate coding at even increasing bit-rates will continue to exist for the 

foreseeable future. 
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Appendix A Coded-Excited Linear Prediction (CELP) 

Coding 

A.I The CELP algorithm 

Coded-Excited Linear Prediction (CELP) coding is a form of Adaptive 

Predictive Coding (APC) [85], where a reconstructed speech sample is generated by 

a scaled sum of past reconstructed speech samples and a quantised innovation 

sequence. In figure A. 1 the system block diagram of a CELP coder is shown. 

Gaussian 
code-book 

. 

s(n) 

: I I Mean square error Perceptual 
. ... . . Minimise mse +----4 (I'--~ . . measurement mse) weighting filter 

Figure A.I The stmcture of a CELP coder 

A number of innovation signals, which model speech excitation, are stored in a 

Gaussian code-book. During encoding, each innovation signal in the Gaussian code­

book is processed by a long-term predictor (LTP) and a short term predictor (STP). 

The function of the long-term predictor is to introduce voiced periodicity into an 

innovation signal. At the short-term predictor, a short-term spectral envelope is 

imposed onto the innovation signal. The resulting signal from the short-term 

predictor would be an estimation of the original speech segment. This estimated 

signal is compared with the original speech segment to yield an error signal. The 

error signal is perceptually weighted and its mean square value is computed. The 

index of the innovation signal which yields a minimum error measure is transmitted. 

At the decoder, a copy of the identical Gaussian code-book, long-term predictor and 

short-term predictor is available. The decoder uses the code-book index to fetch the 

optimal innovation signal. The innovation signal is then processed by the two 

predictors to reconstruct the speech segment. 
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Appendix A Coded-Excited Linear Prediction (CELP) Coding 

A.I.I Long-term prediction 

When .. voiced speech is generated, the excitation signal is driven by the vocal 

cords. This results in a quasi-periodic signal in which the adjacent pitch-cycles are 

highly correlated. The function of the long-term predictor is to model this long-term 

correlation in an excitation signal. The long-term predictor has a transfer function as, 

1 1 -- = -----"Q----

P(z) 1- L hi Z-(M+i) (A.I) 

i= 1 

where 

h" is the predictor coefficient 
• 

Q is the number of taps used in the long-term predictor 

M is the value of delays which is related to the pitch-period of voiced speech 

Two configurations of LTP have been reported [89], single-tap L TP' s and three-tap 

LTP's, depending on the number of delay taps Q used. Single-tap LTP's have been 

widely used in CELP coders owing to the computational simplicity and lower bit-rate 

requirement. A single-tap L TP is described by two parameters: predictor coefficient 

h and predictor delay M. 

A.I.2 Short-term predictor 

The short-term predictor aims to impose the short-term spectral envelope 

onto an excitation signal and thus the output from the short-term predictor is an 

estimation of the original speech segment. The short-term predictor is implemented 

by an all-pole vocal tract filter H(z) as, 

1 
H(z)=--p~-

1 - :E aiz-I 

/-1 

where a/s are the LP ladder filter coefficients and P is the filter order. 

A.1.J Perceptual weighting filter 

(A.2) 

After an innovation signal is processed by the long-term and the short-term 

predictor. The resulting signal is compared with the original speech segment to yield 

an error signal. The error signal is processed through a perceptual weighting filter. 

·265 -



Appendix A Coded-Excited Linear Prediction (CELP) Coding 

The purpose of the perceptual weighting filter is to attenuate the frequency 

components in the error signal which are perceptually less important and to amplify 

those frequency components which are perceptually more important. The transfer 

function of a perceptual weight filter is defined as, 

p 

1- L a;afz-; 
; =1 

w(z) = --p---
1- L a;a4z-; 

(A.3) 

; = 1 

The parameters of the perceptual weighting filter al and a2 may be fixed to constant 

as ul=O.9 and u2=O.6 [87]. Alternatively, it may be adjusted according to the 

20011' 

sampling frequency fa as Ul=l.O and a2 = e-t; [86]. 

A.2 A CELP coder implemented in the project 

A.2.1 The CELPencoder 

In figure A.2, the schematic diagram of a CELP encoder implemented in this 

project [88] is shown. The encoder consists of an adaptive code-book, a Gaussian 

code-book and a copy of the decoder (the local decoder). The adaptive code-book 

aims to model the long-term correlation of a speech excitation and is consistently 

updated by the reconstructed excitation signal from the local decoder. The Gaussian 

code-book is used to model the difference between the contribution from the 

optimum adaptive code-book candidate and the original speech segment. The 

Gaussian code-book is populated with white-Gaussian noise sequences. The two 

code-books are searched separately using an analysis-by-synthesis approach. A mean 

square error measure is used to compare the reconstructed speech segment from each 

code-book candidate with the original. The code-book candidate yields the minimum 

error measure is chosen and its optimal gain is computed. The indices of the two 

code-books and their associated gains are quantised. The details of the CELP 

encoder will be described in the follows. 
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Figure A.2 The schematic diagram of a CELP encoder. 

(a) the encoder (b) the local decoder 

la & 0" 

A.2.2 The zero impulse resp0n!;efilter 

During encoding, the input speech is segmented into speech frames with 160 

samples. LP analysis is applied to an input speech frame to yield a set of LP ladder 

filter coefficients. The frame of speech segment is then sub-divided into four speech 

sub-frames, each contains l ," 40 speech samples. To search the optimal candidates 

from the two code-books for a speech sub-frame, the speech sub-frame is first 

processed by a perceptual weighting filter with the filter parameters set as al = 0.9 

and <X2 = 0.6 [87]. The resulting signal sw(n) is used as the reference to search the two 

code-books. 
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In searching a code-book, each code-book candidate is called up and 

processed by an LP synthesis filter and a perceptual weighting filter. The memory 

content in the two filters must be reset to the memory content left over from the last 

speech sub-frame (the overhang memories Amem and Wmcm) , for each code-book 

innovation signal. This increases the computational costs of the coder. 

The effect of the overhang memory can be modelled by a zero impulse 

response (ZIR) filter. The ZIR filter consists an identical copy of the LP synthesis and 

perceptual weighting filter. Prior to the code-book searching for a new speech sub­

frame, the memory contents in the ZIR filter are set to the overhang memories. The 

ZIR is then excited by a zero input. To eliminate the effect of the overhang memories, 

the output of the ZIR filter is subtracted from the perceptually weighted input speech 

sub-frames sin), to yield a modified speech sub-frame s'(n). 

The overhang memories are provided by the local decoder. At the encoder 

after the required quantised parameters are available, the local decoder utilises the 

current quanti sed parameters to reconstruct a version of the quantised excitation 

signal. The reconstructed excitation signal is then passed through an identical copy of 

the LP synthesis filter and perceptual weighting filter. The memory contents remain in 

the two filters are the overhang memories required for the next speech sub-frame. 

A.2.3 Adaptive code-book searching 

In the CELP coder, the long-term predictor is implemented by an adaptive 

code-book. The adaptive code-book consists of a delayline which is constantly 

updated by the reconstructed excitation signal at the local decoder every 5ms (i.e. 

every 40 samples). The updating scheme is shown in figure A.3. 

4' fu ff fu ~I ~ 
: ""1 --l;~( n-) -1..-

159 The delayline 0 
(populated by the past reconstructed excitations) 

The current 
reconstructed 

excitation signal 
from the local 

decoder 
Figure A.3 An example in populating an innovation signal into the adaptive code-book 
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In searching the adaptive code-book, the value of the delay tap is used as an 

indicator to extract an innovation signal from the delayline. This is demonstrated in 

figure A.4. Suppose the current delay value is 60 samples, the adaptive code-book 

used this as the starting point and extracted 40 consecutive samples towards the 

beginning of the delayline. 

159 60 

The dclayline 

I 
codebook 

innovation 

:.. ~: 
40 samples 

o . 

Figure A.4 An example in extracting an innovation signal from the adaptive code-book 

A single tap L TP is used in the CELP coder and thus two predictor 

parameters, the delay value M and the predictor coefficient b , are required. The 

range of delay values M chosen depends on the pitch-period of voiced speech under 

consideration. A range M which takes values from 20 to 147 speech samples (8kHz 

sampling frequency) has been chosen. 

To search the best matched code-book candidate, each innovation signal is 

processed by the LP synthesis filter and perceptual weighting filter. The resulting 

signal is compared with the modified speech sub-frame sl(n) using a mean square 

error measure which is defined as, 

where 

E is the total error 

G is the gain factor 

1 39 ( )2 E = - ~ sl(n) - Gs(n) 
40 n=O 

s(n) is the synthesised speech sub-frame 

(A.4) 

To compute the optimal gain, the mean square error E is differentiated with respect 

to the gain factor Gas, 

(A.S) 
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oE 
By setting oG = 0, the optimal gain factor is, 

39 
L s(n)s'(n) 

G 
__ " _= 0.,,-:--__ _ 
- 39 

L s2(n) 
(A6) 

,,=0 

By substituting equation A6 into A4, the mean square error is computed as, 

[ 

( 39 )2] 1 ,,:0 s(n)s'(n) 39 2 
E = - 1 - 39 39 L s' (n) 

40 n~}2(n) ,,~/2(n) ,,=0 
(A7) 

Equation A 7 suggested that the mean square error is minimum when the normalised 

cross-correlation function between the two signals is maximum. The normalised 

cross-correlation function between the two signals s'(n) and s(n) is defined as, 

(A.S) 

As a result, the optimum adaptive code-book candidate is searched by choosing the 

delay value, across the range of possible delay values, which yields the maximum 

cross-correlation values. The optimal gain is computed from the optimum adaptive 

code-book candidate using equation A6. 

A problem arises when the delay value M is smaller than 39 samples, where 

the number of samples at the beginning of the delayline is no enough to fill up the 

entire innovation sequence, i.e. less than 40 samples. In this case the beginning of the 

delayline is extended by repeating the current updated excitation signal in a way 

shown in figure AS. 

The dclayline 
159 o ·40 

Figure AS The delayline is extended by repeating the updated excitation sub-frame 
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A.2.4 Gaussian code-book searching 

After the optimum adaptive candidate has been found, the contribution from 

the adaptive code-book is subtracted from the modified speech sub-frame s'(n), to 

yield the reference signal s"(n) to search the Gaussian code-book. The Gaussian 

code-book is populated with white-Gaussian noise sequences, each has a fixed length 

of 40 samples. An 8-bits Gaussian code-book is used. The Gaussian code-book is 

searched in the same way as it is done for the adaptive code-book. The index of the 

optimum code-book candidate is sent to the decoder together with its optimal gain 

factor. 

A.2.5 The CELP decoder 

After code-book searching, the code-book indices I. and 18 are sent to the 

decoder. The two code-book gains are vector quantised using an 8-bit code-book 

[18]. The LP ladder filter coefficients are converted to the LSF coefficients. The LSF 

coefficients are quantised using a 24-bit split vector quantiser [57]. 

Figure A.6 A CELP decoder 

The schematic diagram of the CELP decoder is shown in figure A6. The 

reconstructed excitation signal is obtained by summing the optimum innovation 

signals from the adaptive code-book and the Gaussian code-book, each scaled by the 

quantised gain Oa and Og respectively. Finally the decoded speech is obtained by 

processing the reconstructed excitation signal through an LP synthesis filter. 
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coefficients and LSF's 

B.t Line Spectral Frequencies 

Suppose we have an all-zero filter polynomial A(z) which is obtained by 

applying linear prediction analysis to a segment of speech samples. The all-zero filter 

polynomial A(z) has a transfer function defined as, 

p 

A(z) = L aj Z-i 
i = 0 

(B.l ) 

where P is the filter order and aj is the ladder filter coefficients 

The Pth order all-zero filter polynomial A(z) can be decomposed into two LSF 

polynomials P(z) and Q(z), using the relationship defined in equations B2a and b, 

p(z) = A(z) + z-(p + t} A( z-t) 

Q(z) = A(z) - z-(p+t} A(z-t) 

(0.2,,) 

(B.2b) 

P(z) is a (P+ 1 )th order symmetric polynomial and Q(z) is a (P+ 1 )th order anti­

symmetric polynomial. The 'zeros of P(z) and Q(z) are the required LSF's and they 

have the properties that the all-pole filter polynomial B(z), which is equal to I/A(z), 

is stable if and only if, 

a) All the roots ofP(z) and Q(z) lie on the unit circle, 

b) The roots ofP(z) and Q(z) are interlaced, i.e. if <Pi and 9j are the roots for P(z) and 

Q(z) respectively for i = 1,2, ... , PI2, then, 

0:::; ({Jt < et < ... < ({JP! < OP! :::; rr 
12 12 

Furthermore, the original all-zero filter polynomial A(z) is recovered from the two 

LSF polynomials P(z) and Q(z) using equation B3, 

A(z) = P(z) + Q(z) 
2 
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B.2 From LP ladder filter coefficients to LSF's 

To simplify the analysis, only even filter order is considered, i.e. P is always 

even. P(z) has a real root at Z-1 = - 1 and Q(z) has a real root at Z-I = 1. The rest of 

the roots for P(z) and Q(z) are in complex conjugate pairs. 

To compute the roots for P(z), equation B.2a is expanded as, 

p(z) = 1 + (al + ap )Z-I + (a2 + ap_l)z-2 + ... + (ap-l + a2)z-(P-I) + (ap + al)z-p + z-i P+I) 

= 1 + PIZ-I + P2Z-2 + ... + PP_IZ-(P-l) + Ppz-P + Z-(P+I) 

where 

Pi is the coefficient of the polynomial P(z) 

PI = al + ap = Pp 

P2 = a2 + ap-l = PP-l 

Since P(z) has a real root at Z-I = -1, equation B.4 becomes, 

P(z) = ( 1 + Z-I) p' (z) 

with 

where 

p'l = PI - 1 = P'P-l 

p~ = P2 - PI + 1 = P2 - p~ = P'P-2 

Equation B.6 can be simplified as, 

P'(z) = 1 + P'.z-· + P'2Z-2 + ... + P~_IZ-<P-I) + P~z-P 

= 1 + P'.Z-I + p~Z-2 + ... + P'2Z-<P-2) + P'IZ-<P-l) + z-P 

(B.4) 

(B.S) 

(B,6) 

= z-~ (( z~ + z-~) + P'1(Z(~-·) + z-( ~-I)) + p~( Z(~-2) + z-( ~-2)) + ... + p~) (B.7) 
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By substituting z = ej8 into equation B.7, we have, 

p'( eI.9) = 2 e-jP~ ( cos( ~).9 + p~cos( ~ -1).9 + p~cos( ~ - 2).9 + ... + O.5P~) (8.8) 

Hence the locations on the unit circle of the roots of P(z) is solved by setting the 

right hand side of equation B.8 to zero, i,e, 

cos( ~).9 + p;cos( ~ - 1).9 + p~cos( ~ - 2).9 + ... + O.5P'~ = 0 (8.9) 

Similarly to solve the roots for Q(z), equation B,2b is expanded as, 

gz) = 1 +( Cl) - ap )Z-I +( 0;. -ap-l )Z-2 + .. -+ (ap_I -0;. )Z-{P-I) + (ap -Cl! )z-p - z-{ P+l) 

= 1 +%Z-I +%Z-2 + .. ·+qP_IZ-{P-I) +qpZ-P - Z-{P+I) 

where 

qi is the coefficient of the polynomial Q(z) 

q 1 = - q P' q 2 = - q p - I and so on, 

Q(z) has a real root at Z-1 = 1, and equation B, 10 becomes, 

with 

where 

q: = q 1 + 1 = q'p - 1 
, , 

q'2 = q 2 + q 1 + 1 = q 2 + q 1 = q P - 2 

Equation B, 12 can be simplified as, 

(!(z) = 1 + qlZI + q2Z-2 + .. '+QzZ-{P-2) + (i1z-{P-I) + z-P 

(13,10) 

(13,11) 

(D,12) 

= z-% (( z% +z-% ) + cjl( z( %-1) +z1 %-1)) + (/2 ( z( ~-2) +zi ~i-2) ) ... + (/'l~) (0,13) 
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By substituting z = ei9 into equation R13, we have, 

(B.14) 

Hence the locations on the unit circle of the roots of Q(z) is solved by setting the 

right hand side of equation R14 to zero. Thus, 

cos( ~) () + q'lCOS( ~ - 1) 9 + q~cos( ~ - 2) 9 + ... + O.5q'~ = 0 (B.15) 

The roots of equations B.9 and B.15 can be computed through an iterative method 

[59]. If a sign change is detected between f(ro) and f(ro+~ro), an odd number of 

root(s) will exist between ro and ~co. By using a sufficiently small grid (~ro), a single 

root can be gauranteed in the region and the root can be computed, 

(~m)J(m) 
x = m + -----=-....:.....~-

J(w + ~m) - J(w) 
(B.16) 

The disadvantage of using a smaller grid is the increase in computational complexity. 

Hence a trade-off must be made between the accuracy of LSF's and computational 

complexity. 

B.3 From LSF's to LP ladder filter coefficients 

To retrieve the aj coefficients from the LSF's. The LSF polynomial P(z) is 

arranged in form of, 

P(z) = ( 1 + Z-I) n (Z-I - e '''', ) 
j = 1 

(B.17) 

Since the roots of P(z) are in complex conjugate pairs, we arrange each conjugate 

pair together as, 

(Z-I - ei'P, )( Z-I - e i "',-, ) = (Z-I - e i "" )( Z-I - e-i "', ) 

(B.18) 

By substituting equation B .18 into B .17. equation B. 17 becomes, 

(B.19) 
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By expanding equation B.19, the coefficients Pi for the LSF polynomial P(z) are 

obtained. 

Similarly the coefficients qi for the LSF polynomial Q(z) is calculated by expanding 

equation B.20, 

(B.20) 

By grouping the complex conjugate pairs together, equation B.20 becomes, 

~ 
Q(z) = (1- z-I)n (1- 2z-1cosB; + Z-2) 

1=1 
(B.21) 

To compute the ai coefficients, the coefficients of the LSF polynomials P(z) and Q(z) 

are summing together as, 

ai = ~ (Pi + qj) (D.22) 

i = 0, 1, 2, ... , P 
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frequency-domain 

C.I Spectral representations for a pitch-cycle 

The discrete Fourier transform coefficients of a pitch-cycle u(n) are given by, 

p - 1 j2/Ckn 

Uk = L u(n)e--p-
n=O 

with inverse transform, 

1 p-l j2trkn 

u(n) = - L Ulce-p­
p hO 

where p is the pitch-period. 

If we separate the Uk into real and imaginary parts, thus, 

then equation C.I b becomes the expression in sine and cosine terms as follows, 

1 p-l ( (27rkn) (27rkll)) 
u(n) = - ~ R"cos -- + I"sin --

P k"O P P 

where 

p-l (27rkn) 
R" = L U(l1) cos --

",,0 jJ 

p-l (27rkn) 
It = L u(n) sin --

",,0 p 

We may also write Uk in term of magnitude and phase, then, 
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C.2 Phase alignment of pitch-cycles in the frequency-domain 

Phase alignment of pitch-cycles is carried out using a cross-correlation 

function. Suppose we have two pitch-cycles x(n) and yen), each with the same pitch­

period p, i.e. {x(n)}n=o,p-I and {y(n)}n=o,p-}. In the time-domain, assume the two pitch­

cycles are periodically extended for -03<n<lX;), the unnormalised cross-correlation 

'function between the two pitch-cycles x(n) and yen) for a range of sample shifts m, 
f-\. d fi d where m = 0 to . , IS e me as, 

p-t 

C(m) = ~ x(n)y(n + m) 
,,=0 (C.6) 

The number of sample shift m' which yields the maximum cross-correlation value is 

found. The phase aligned pitch-cycle, say y(n) , is obtained by circularly shifting yen) 

by m' samples. 

In the frequency-domain, equation C.6 IS re-called. Using the IDFT 

expression in equation C.I b for the pitch-cycles x( n) and y( n+m), equation C. 6 

becomes, 

p-t 1 p-t .(21r/") I p-t (2dC"."'») 
C(m) = L - LUx/e) -p- - ~ Uyt e) -_.p'--

,,=0 P'=O PhO 

I p-I ,-I ,-I .(21r(/C+/)/I 2"'111) = -2 L L L UXIUyke) , +-,-
p /1=01 .. 0 tEO 

(C.7) 

Summing first over n, only terms for k = -/ remain. Hence equation C.7 becomes, 

(C.R) 

Using the magnitude and phase expressions in equation C.5, equation C.8 becomes, 

(C.?) 

. h h·ft . h): 21l"m where ~ IS P ase SI, Wit ., = -- . 
p 
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Equation C.9 shows that phase alignment in the frequency-domain is realised by 

injecting a linear phase components k~ into the phase spectrum of pitch-cycle y(n). 

This corresponds to circularly shifting the pitch-cycle y(n) in the time-domain. The 

range of phase shift ~ is from 0 to 21t, in a finite number of steps. The greater the 

number of steps used, the better the two pitch-cycle may be aligned. However, this 

also increases the computational cost of the system. 

Assume the amount of phase shift that achieving the maximum cross-correlation 

value is ~', where, 

~. = mtx :~: 1 Uxk 11 Uyk Icos( r/>xk - r/>Yk - k ~) (C.I0) 

Note that: the imaginary part is an odd function and thus only the real part is valid. 

To obtain the aligned pitch-cycle y{n), only the phase spectrum of y{n) need to be 

modified and the new phase spectrum is defined as, 

where Z is the phase spectrum of the aligned pitch-cycle 
'I' yk 

(C.ll ) 

We may choose to work with real and imaginary parts of the Uk. By substituting 

equation C.2 into C.S, the cross-correlation function is expressed as, 

C(m) = :t: { (R •• - j / •• )( R,. + j / ,.)( cos( 2,.:m ) - j Sin( 2,.;m ) )} (C.12) 

Thus the cross-correlation function for the phase shift ~ is defined as, 

(C. 13) 

o s; ~ < 21l' 

Assume the phase shift which yields the maximum cross-correlation value is ~ " the 

real and imaginary parts of the phase aligned pitch-cycle become, 

(C.l"a) 

(C.Ub) 
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C.3 LP filtering of pitch-cycles in the frequency-domain 

Suppose we have a Pth order all-zero filter A(z) which is obtained by 

applying LP analysis to a section of speech samples. The impulse response for the all­

zero filter A(z) is defined from i = 0 to P as ai. In the time-domain, the LP residual 

can be computed by a convolution process between the input speech signal and the 

filter impulse response ai as, 

p 

r(n) = L aj s(n - i) (C.IS) 
1=0 

Assume the input speech signal is a periodic signal which is stationary over time. 

Equation C.lS can be treated as a circular convolution operation between the filter 

impulse response and a speech-domain segment s(n), for n = 0 to ()-I. IIence the 

residual-domain pitch-cycle u( n), for n = 0 to p-l. is defined, 

p 

u(n) = L al s(n - i) 
1= 0 (C.16) 

n = 0, 1, .... p-l 

Using the IDFT expression in equation C.l b for s(n) and substituting this expression 

into equation C.16, the residual-domain pitch-cycle u(n) becomes, 

(C.17) 

where 

I U k I and ifJu k are the magnitude and phase of the pitch-cycle in residual-domain 

I Sk I and ~S/( are the magnitude and phase of the pitch-cycle in speech-domain 
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From equation C.17, the magnitude and phase of a residual-domain pitch-cycle can 

be computed from the magnitude and phase of the corresponding pitch-cycle in the 

speech-domain using the relationship that, 

Hence we have, 

(C. IS .. ) 

(C.lSb) 

l.e. 

(C.19a) 

~Uk = ~Sk - tan-1 

.f, . ( 21t ki) 
£- a;sm --

;=0 p 

p (21tki) 
~a,cos --

;=0 p 
(C.I9b) 

To recover the speech-domain pitch-cycle from the residual-domain pitch-cycle, 

equation C.17 is re-called. Using the relationship that, 

1 p - I p . ( 211 k ( n - , ) ) 1 p - I ( 2 IIkn ) 

- ~ ~ a, S k e J p = - L lh e J --,,-
P k=O/=O P t.O 

we have, 

(C.20) 

then, 

(C.2l) 
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From equation C.21, the magnitude of the speech-domain pitch-cycle is now, 

I I l(ftl 
St = I P _ .(2ki11) I 

~ ai e } p 
i= 0 

= ______ ~I_(fk~I ______ ~ 

{ ( () )2 ( ())2 }X p 2kirc p 2kirc 
i~O ai cos p + i~O ai sin p 

(C.22a) 

Furthermore, the phase of the speech-domain pitch-cycle can be derived from 

equation C.21 , 

tt> - Arg(Uk ) 

Sk - ( P (2kill)) 
Arg .L a,e- j p-

, .. 0 

~ . (2kiTt) 
~ a, SIn --
;=0 p 

p (2ki1C) :Ea;cos --
;=0 p 

In case of real and imaginary parts, equation C.16 is now become, 

where 

p 1 P -1 ( ) . ( 2.ork(" - I) ) 
u(n) = :Ea; -:E Rn - jlsk e l p 

;=0 P k=O 

1 p-1 P ( ) .( lll"ki) (211""") = - :E :E a, RSk - j I Sk e-I p e J p-­
P k=0;=0 

1 p-1 ( ) (2Jf/m) 
= -:E Rut - j IUk e' p P k=O 

(C.22b) 

(C.23) 

Ru k and I U k are the real and imaginary parts of the residual-domain pitch-cycle 

Rn and I Sk are the real and imaginary parts of the speech-domain pitch-cycle 
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Hence the real and imaginary parts of a residual cycle can be computed from the real 

and imaginary parts of the corresponding speech-domain pitch-cycle as, 

p ( 2kiTC) p. (2kiTC) 
RUk = RSk La/COS -- - 1nL a/sm --

1=0 P ,=0 P (C.24a) 

p (2kiTC) p (2kiTC) 
IUIe = RSIe La/sin -- + ISle L a,cos --

,=0 p ,=0 p (C.2~b) 

Conversely to compute the real and imaginary parts of a speech-domain pitch-cycle 

from the corresponding residual-domain pitch-cycle, we use the relationship 

p (2/dlr) p (2/dlr) RUle L a;cos -- + IUIeL a;sin -- such that, 
;=0 p ,=0 p 

() () ( ( ))2 ( ( ))2 P 2kilr P 2kilr P 2kilr P 2Jdlr 
I?utLa,W:i - +IuleLa,sin - =l{~IeLa,ca; - +1{"1e La,sin -

/=0 P ,.0 P ,-0 P /-0 P (C.2S) 

Hence the real part of the speech-domain pitch-cycle RSk is, 

P (2/dlr) P (2ldlr) RUle L a,cos -- + JUIe L a,sin --
i.O P /-0 P 

RSIe = ( 2 2 
P. 2ldlr P 2ldlr .~,a.cos( p)) {~,a.sin( p) 1 

(C.26) 

Similarly imaginary part of the speech-domain pitch-cycle ISk can be determined using 

I · h' P (2ldlr) P (2kitr) the re atlOns Ip Iu/c ra,cos - - Ru" ra,sin - , ,·0 p ,.0 p 

IUIe~a,ca;(2kilr) - Rule ia,Sin( 2kitr) = JSIc( fa,ca;(2kitr))2 + JSIe( ra,Sin( 2kitr))2 
,-0 P ,·0 P /-0 P /-0 P (C.27) 

and the imaginary part ISk is, 

p ( 2kitr) p ( 2ki tr) RUle L a,sin -- -Iule L a,cos --

I slc = - (1=0 P)2 ( ;=0 P )2 
P 2ki tr p 2kitr 
.La,cos(-) + La'Sin(-) 
,=0 P 1=0 P 

(C.2S) 


