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Abstract 

Medical image segmentation IS an increasingly important component in virtual 

pathology, diagnostic imaging and computer-assisted surgery. Better hard\vare for 

image acquisition and a variety of advanced visualisation methods have paved the 

way for the development of computer based tools for medical image analysis and 

interpretation. The routine use of medical imaging scans of multiple modalities has 

been growing over the last decades and data sets such as the Visible Human Project 

have introduced a new modality in the form of colour cryo section data. These 

developments have given rise to an increasing need for better automatic and semi­

automatic segmentation methods. The work presented in this thesis concerns the 

development of a new framework for robust semi-automatic segmentation of medical 

imaging data of multiple modalities. Following the specification of a set of conceptual 

and technical requirements, the framework known as ACSR (Adaptable Class­

Specific Representation) is developed in the first case for 2D colour cryo section 

segmentation. This is achieved through the development of a novel algorithm for 

adaptable class-specific sampling of point neighbourhoods, known as the PGA (Path 

Growing Algorithm), combined with Learning Vector Quantization. The framework 

is extended to accommodate 3D volume segmentation of cryo section data and 

subsequently segmentation of single and multi-channel greyscale MRl data. For the 

latter the issues of inhomogeneity and noise are specifically addressed. Evaluation is 

based on comparison with previously published results on standard simulated and real 

data sets, using visual presentation, ground truth comparison and human observer 

experiments. ACSR provides the user with a simple and intuitive visual initialisation 

process followed by a fully automatic segmentation. Results on both cryo section and 

MRI data compare favourably to existing methods, demonstrating robustness both to 

common artefacts and multiple user initialisations. Further developments into specific 

clinical applications are discussed in the future work section. 
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Chapter 1: Introduction 

Chapter 1 

Introduction 

1.1 Introduction and background. 

Virtual Reality (VR), telepresence, interactive computer aided instruction, holographic 
visualization: This is the language of the new generation of medicine. If there is but one 
island of certitude within this technological maelstrom it is the realization that we have 
irrevocably crossed the threshold from the Industrial Age into the Information Age: 
Medicine is dead, long live Medicine. There no longer is Medicine, rather it is Information 
with a medical flavor [1]. 

The above statement about traditional medical practice versus medicine in the modem 

age can be found in a state-of-the-art paper by Richard Satava in the 1996 proceedings 

of Medicine Meets Virtual Reality - an international conference devoted to the fusion 

of traditional medical science and modem computer based technologies. The fact that 

this conference has taken place for the 10th consecutive year in 2002 shows that 

technologies under the broad term medical informatics [2] have become an 

established field of research. The term of course is an umbrella for several specialised 

strands, including advanced database design, expert systems, video conferencing and 

ever increasingly visualisation and image analysis. It is the latter that the research 

described in this thesis is concerned with. Visualisation and image analysis in 

medicine can in tum be broken down into several different areas, including image 

processing and enhancement, virtual reality, augmented reality, computer assisted 

surgery, and systems for education, training and simulation. As each of these areas 

grow and mature, the boundaries between them become blurred, as they merge into 

integrated systems. 

In medical imaging, radiologists and medical doctors have traditionally had to rely on 

their interpretation skills of 2D projections of 3D anatomical structures. Such was the 

imaging produced by the classic modality X-ray [3,4] discovered in 1895 and later on 

by ultrasound [5] (1960's). In the early 1970's Magnetic Resonance Imaging (\lRI) 



Chapter 1: Introduction 

[6] and Computed Tomography (CT) [7] were introduced. These two ne\\ imaging 

techniques were capable of capturing precisely located sequences of slice images 

through the patient's body. This type of data opened up the possibility for creating 3D 

visualisations and the area of volume imaging was born. In 1979 Herman and Liu 

published the Cuberille algorithm (and its application to medical image 

reconstruction) [8], which became one of the first widely used algorithms for volume 

visualisation. Ultrasound could initially not easily provide volumes of localised slice 

images, because the sequence of acquired images depended on a person manually 

moving a transducer over the patient's body. This was later made possible using 

tracking of the probe and registration with the patient. This modality is known as 

3DUS (3D Ultrasound) [9,10]. 

In volume rendering, models consist of voxels, a 3D equivalent of the pixel in 2D 

images. There are a variety of different rendering techniques (see [11] for a review), 

but traditionally volume rendering is achieved through ray tracing, summing up voxel 

values along rays, possibly with a particular weighing for each voxel. In 1987 

Lorensen and Klein published their paper on the Marching Cubes algorithm [12] for 

extracting surface models from 3D volumes. Although surface models do not possess 

the ability of volume models for the viewer to "look inside", they provide the 

opportunity for more interactive viewing of 3D surfaces on less sophisticated 

hardware, due to the substantially smaller requirements for memory and processing 

speed. Marching Cubes works through triangulation, approximating structures with 

polygons where cells are intersected by the isosurface. The more triangles in a model, 

the greater the accuracy of the representation, but at the expense of processing 

overhead. Other types of surface fitting, such as the use of splines [13] and NURBS 

[14] have been successfully used in surface modelling to accurately visualise curves 

with less computational overhead, and a number of decimation algorithms (algorithms 

for polygon reduction), such as [15,16] have been introduced since Marching Cubes. 

They use local information to determine if two or more triangles or other primitives 

can be merged within predefined restrictions to reduce the number of polygons in a 

model, without seriously affecting the accuracy of the appearance. These techniques 

along with advances in processing power and rapidly decreasing prices on Random 

Access Memory and permanent storage devices have helped to bring 3D visualisation 

"") 
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within the reach of not only most doctors and medical institutions. but even home 

users. Volume-based rendering [17] is a compromise between volume rendering and 

surface rendering. In this approach only selected voxels are rendered, providing faster 

rendering than volume rendering and greater detail then surface rendering. Prior 

segmentation and classification is however required to label each voxel. Researchers 

at University of Hamburg produced the first full 3D reconstruction of the brain of a 

living human being, based on MRI scans [18] in 1987. This group has also done 

pioneering work in multi modal reconstruction with their VoxelMan range of 3D 

multimodal anatomical atlases [19] (see fig. 1.1). Different imaging modalities are 

better for visualising different types of tissue, for example MRI for soft tissue, CT for 

bone and DSA (Digital Subtraction Angiography) for blood vessels. VoxelMan 

features composite 3D models from different imaging modalities - imaging scans of 

the same specimen registered and fused to give the viewer the best of all the 

modalities. VoxelMan uses volume-based rendering and surface models and is 

implemented in Java, making it available on a variety of platforms and on machines 

with hardware requirements no higher than the average new PC of the late 1990's. 

- .. -.. .. ~ .... - ... ..... . 
, .. 'U ' .... 'l.1 1 

(a) (b) 

Fig. 1.1. Visualisation of anatomy throughout the ages. (a) Hand drawing by Vesalius, 1543 (from 
"De Humani Corporis Fabrica") [201. (b) The VoxelMan atlas 119] using a combination of 
volume and surface rendering of segmented slice data from multiple modalities, 1995. 

In 1998 Mitsubishi Electric launched the VolumePro 500 graphics board for PC's and 

SGI boxes. It was the World's first dedicated volume rendering board and allowed for 

real-time manipulation of large volume data sets even on low end workstation. Th 

product line has since been acquired by TeraRecon and their latest model i capable of 
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displaying volume models up to 5123 (8-bit, 16-bit or 32-bit voxels) at a frame rate of 

up to 30 frames/second [21]. Hardware and software is thus rapidly catching up with 

the demand for visualisation of 3D volume data. 

To achieve a better sensation of 3D for the viewer, stereoscopic viewing systems have 

become increasingly popular. Most systems use LCD shutter glasses synchronised 

with a monitor to display one image for each eye rapidly one after another (fig. 

1.2(b )). Modelling the natural disparity of images between our two eyes is no new 

idea. The ViewMaster system [22] (fig. 1.2(a)) invented in 1939 was a cheap and easy 

way of creating stereo viewing and it is still in use today. It is a purely analogue 

device, which can be loaded with image reels containing two images per scene (one 

for each eye). From 1948 to 1962 Bassett and Gruber produced the "Stereoscopic 

Atlas of Human Anatomy" [23]. The project resulted in 1554 colour stereo images of 

dissections for use with the ViewMaster system. In modem digital visualisation 

systems, head mounted displays have been introduced for the fully immersive 

experience. Some of these are see-through and can be used to augment a real scene 

(see e.g. [24]). The CAVE [25] is another popular viewing system, where the viewer 

is situated inside a room with displays on the walls and on the floor. 

' •...• • • • • • -. .' ~ .. ~ 

(a) (b) 

Fig. 1.2. The 3D visualisation of anatomical structures has been popular since before computer , 
let alone computer graphics, were available. (a) A typical 1960's model ViewMaster for stereo 
viewing of image pairs on cardboard reels. Also shown is the cover of Bassett and Gruber' 
"St.ereoscopic At.las of Human Anatomy". (b) A user interacting with a modern virtual reality 
endoscopic surgery simulator, getting a st.ereo view through LCD shutter glasse . 
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(b) (c) 

(a) 

Fig. 1.3. 2D and 3D reconstructions from cryo sections. (a) Reconstruction of full coronal slice 
plane from Visible Human Male transverse slices (a full slice is shown in fig. 2.4). (b) Volume 
rendering of colon specimen from the St. Mary's Hospital project with viewplane parallel to the 
original slice plane. (c) A reconstructed slice plane through the colon specimen. 

Apart from advances in hardware and software, what has also made products such as 

VoxelMan possible is the availability of complete, high quality, high resolution 

multimodal medical imaging data sets. The most ambitious example of this is the 

Visible Human Project (VHP) from the United States National Library of Medicine 

[26,27]. The VHP currently has two multimodal data sets of slice data from two 

complete cadavers, a male and a female (referred to as the Visible Human Male and 

Visible Human Female). The cadavers were frozen in gelatine, sliced in Imm slices 

and photographed. Before and after being frozen the cadavers were CT and MRI 

scanned. Licenses for using the data sets are available to researchers worldwide. For 

the first time large scale volume models of real, photographed tissue were made 

possible (see fig. 1.3(a)). Other similar projects since have included the Stanford 

Visible Female [28] and the Whole Frog project from University of California [29,30] 

for use in schools to replace the dissection of real frogs in biology classes. In 1998 I 

(the author) was involved in a collaboration with the Minimal Access Surgery Unit 

(MASU) at St. Mary's Hospital in London on a project of visualising colon cancer 

[31]. A sectioned piece of colon with a large polyp (similar in many respects to a 

cancer tumour) was frozen, sliced, photographed and volume rendered (see fig. 1.3(b-
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c». The stage of colon cancer can be detennined by establishing the layers in the 

colon that have been penetrated by the tumour. A Volume model allows for virtual 

dissection (virtual pathology) and one could imagine models being distributed o\"er 

the Internet to enable specialists anywhere in the world to examine them. This type of 

technology has already been investigated for microscopy images and medical imaging 

scans within the growing area of telepathology [32]. Particularly The United States 

military has been interested in setting up systems to implement such technologies 

[33]. 

During the last five years, an alternative to the VHP has been in preparation. The 

Visible Korean Human [34] (a project of the School of Medicine, Ajou University, 

Korea), will provide a cryo section volume of a complete cadaver, setting new 

standards for spatial resolution. The data set will consist of 9000 cryo sections of 

0.2mm slice thickness. Each pixel will represent an area of 0.2mm*0.2mm. This will 

allow for a much higher level of detail in visualisation than what was possible with 

the VHP. In addition to the cryo sections, the Visible Korean Human will offer 1800 

CT and MRI scans of 1mm slice thickness. Similarly to the VHP the plan is to make 

the full data sets of the Visible Korean Human freely available to researchers. 

A separate issue from the actual visualisation, is the ability to analyse medical 

imaging data. Being able to visualise the data in 3D is desirable, but in most cases it is 

important to be able to view a particular isolated structure within a volume. Examples 

include tumours and/or their blood supply and a particular organ or section of an 

organ for assessing shape and size. The area of segmentation and classification, rooted 

in machine vision, is one which has been actively researched for decades. The story 

goes that Marvin Minsky at MIT in 1966 set the solution to the problem of machine 

vision and scene interpretation as a summer project for an undergraduate student [35]. 

It turned out that the problem would take more than a summer to solve. In the year 

2002 segmentation and classification still represents a major problem in many 

different application areas, not least in the medical area. With the increasing amounts 

of medical imaging data that has to be interpreted by radiologists (as imaging 

equipment becomes more advanced and routine screenings more common), the nccd 

for accurate, reliable automatic or semi-automatic and user friendly segmentation 
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techniques increases too. DSA [36] mentioned earlier is a nc\\ imaging modality, of 

which image processing is an integrated part, and image processing is a big research 

issue for the three main modalities MRI, CT and ultrasound and increasingly for 

volumes of photographed tissue (also known as anatomical slice data or cryo section 

data). Although countless automatic and semi-automatic segmentation techniques 

exist, a lot of segmentation work is still done by hand. This may not be much of a 

problem for 2D images, although batch processing is still desirable, but certainly for 

the segmentation of 3D volumes this represents a major challenge. A volume may 

contain hundreds or even thousands of slice images. Segmenting these by hand is an 

unacceptably time consuming task. 

A number of established techniques are available for medical image segmentation. 

These range from simple intensity thresholding, over semi-automatic shape based 

analysis to fully automatic statistical classification systems and neural network or 

fuzzy logic based systems. A review is given in chapter 2. The simplest methods 

requiring the least amount of user interaction often do not provide the required level 

of accuracy. Other methods provide accuracy, but at the expense of time consuming 

user interaction during the segmentation process. The more complex automated 

methods, potentially providing higher accuracy, often require manual parameter 

settings and/or the selection of training data in some form. Results are very dependent 

on this selection and tweaking the parameters for optimal performance is a task suited 

only for image processing experts, which normally precludes medical professionals. 

Many approaches are very specialised and not easily adapted to other application 

areas. There are dedicated packages for medical image processing and visualisation, 

such as Analyze [37], which bring together a host of these techniques in one package. 

At least this makes them more accessible to medical professionals - having a large 

selection of tools with one familiar interface. However defining the best image 

segmentation pipeline for a specific problem and a specific modality in such an 

application is not trivial. There have been attempts to introduce standard software 

development kits for machine vision applications. The Image Processing Toolbox for 

MatLab [38] implements many popular image processing algorithms within the 

MatLab environment. There are comprehensive C++ libraries available both from the 

academic world (such as VXL from University of Oxford [39]) and the commercial 

7 
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world (such as OpenCV from Intel [40]). So far however none of these have become 

established as a de facto standard. 

This brief introduction has highlighted that there are many excellent visualisation 

techniques available for medical imaging data. The level of detail possible today in 

applications for education, training and simulation is impressive. Computer generated 

data visualisation has become part of everyday life and we humans are used to 

composing and assessing images visually. However most of the current applications 

for the visualisation of anatomy and quantification of tissue types have relied on time 

consuming manual or semi-automatic segmentation to classify the slice data. It could 

be argued that developments in medical image processing have not managed to keep 

up with developments in visualisation techniques and their applications. 

There is a need for accurate semi-automatic segmentation, which, based on the user's 

goal, can optimally use the available image/volume information, and which can be 

applied successfully to a variety of imaging modalities. Medical professionals should 

not be required to have expert knowledge in computer graphics and image processing 

in order to use such a system. There is a need for robustness and an acceptable 

balance between automation and user control. 

This thesis presents research into the development of a robust semi-automatic 

segmentation framework to support discrete 2D medical images and 3D image 

volumes of multiple modalities. 

1.2 Research objectives. 

The research documented in this thesis aims to: 

• Develop a robust framework for accurate semi-automatic segmentation with 

intuitive but minimal human intervention for 2D and 3D medical images of 

multiple modalities. 

• Evaluate the proposed framework both quantitatively and qualitatively 
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Development of the segmentation framework should be achieved through the 

following stages: 

• The identification of key problems with traditional image segmentation algorithms 

in general, as well as specifically for medical applications 

• The theoretical development of a segmentation framework and algorithms to 

implement it, addressing key problems, with the initial implementation for a 

single image modality 

• The extension of the framework to multidimensional data sets of multiple 

modalities 

It was important that evaluation throughout the proj ect should be based mainly on 

standard test volumes and previously published images. Cryo section data sets from 

the Visible Human Project have provided the images and image volumes for the 

initial stages of development. Other non-medical images have been used as 

benchmark tests in comparison to previously published results using other algorithms. 

Further development for the MRI modality has used simulated data from the 

BrainWeb image database [41] (see chapter 6, section 6.3.1) and real clinical data 

from the Internet Brain Segmentation Repository [42] (see chapter 6, section 6.3.2). 

The empirical evaluation of the segmentation framework is based on: 

• The comparison of segmentation results achieved within the proposed framework 

and through the use of other established methods, using visual presentation, 

ground truth comparison and visual ranking by human observers 

• The variability in segmentation accuracy for the same data sets, initialised by 

different users, as a measure of robustness 

1.3 Thesis overview. 

This chapter provided an introduction and motivation for the research project 

described in this thesis. 

l) 
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Chapter 2 is a literature review of image segmentation. The major algorithms and 

concepts in the field are presented, discussed and related to medical Imaae 
b 

segmentation. 

Chapter 3 identifies and discusses the mam problems faced by automatic and 

interactive segmentation systems generally and specifically for medical image 

segmentation. A set of conceptual requirements for a robust semi-automatic 

segmentation framework are proposed and subsequently a set of technical 

requirements for the implementation of this framework. The chapter finishes by 

outlining the research methodology. 

Chapter 4 introduces a feature vector encoding for natural colour images and cryo 

sections and a vector quantization neural network approach to classification. The 

problem of segmentation near edges is addressed through the development of a new 

algorithm, the Path Growing Algorithm (PGA), for class-specific representation of 

segment classes. The required user interaction for initialisation is specified and 

preliminary results using the PGA integrated with neural network classification are 

given. The combination of the initialisation, feature encoding, path growing and 

classification is introduced as the segmentation framework for Adaptable Class­

Specific Representation (ACSR). Different segmentation pipelines are proposed along 

with an automatic focussing of the PGA for higher efficiency. The ACSR framework 

is extended from the 2D domain to 3D volume segmentation and results based on cryo 

section volumes from the Visible Human Project are presented. 

Chapter 5 discusses the issues of quantitative ground truth evaluation versus 

qualitative visual ranking by human observers, for the empirical evaluation of 

segmentation algorithms. Three experiments in ACSR segmentation are presented, 

investigating the effects of initialisation by different users, and segmentation accuracy 

measured using ground truth comparison on a set of standard natural colour test 

images and a series of brain cryo sections. 

Chapter 6 describes the development of the ACSR framework for greyscale MRI 

segmentation. Three modified Path Growing Algorithms are presented and tested in a 

10 
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comparative study based on simulated BrainWeb [41] II-weighed \IRI data. Iwo 

optimisations are introduced, one targeting the problem of noise and the other 

targeting inhomogeneity. The EQ [43] and N3 [44,45] inhomogeneity correction 

algorithms are tested as pre-processing tools and further results using the proposed 

optimisations and the best PGA from the initial study are given. Finally results on 

multispectral segmentation of T1 and T2-weighed volumes are presented and 

discussed. 

Chapter 7 presents the results of a series of human observer experiments, evaluating 

the quality of ACSR segmentation. The effects of different initialisations and overall 

segmentation quality are analysed for natural colour images and cryo sections. MRl 

data is also evaluated qualitatively, investigating the issues of single-channel versus 

multispectral segmentation, the effects of using EQ and N3 on the final observed 

segmentation and the quality of ACSR segmentation, compared to a gold standard 

manual ground truth. 

Chapter 8 summarises and concludes the work presented in the previous chapters and 

future work is discussed. 

Appendix A is a collection of papers published as a result of the work described in 

this thesis. It contains full text versions of four international conference papers and 

two technical reports. 

Appendix B contains the notation for the SOM and L VQ algorithms used, as well as a 

definition of Sammon's Mapping and a section on fuzzy logic. 

Appendix C is a discussion of the complexity and computational overhead of the PGA 

and gives the definition of a nearest-neighbour search algorithm used in the 

implementation of the PGA. 

Appendix D concerns the human observer experiments described in chapter 7 and 

contains written material given to participants, as well as screen shots and a diagram 

of the computer based experiments. 

II 
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Appendix E gives instructions about the use of the companion CD. 

The compamon CD contains sets of images/volumes and their segmentations 

described in chapter 5, 6 and 7. The contents of the CD is not essential for the 

understanding of the work described in this thesis, but allows readers to perform their 

own visual assessment of images and volumes which are not reproduced in the thesis. 

Please consult appendix E and the file readme. txt on the root directory of the CD for 

further information. 

12 
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Chapter 2 

Background and related work 

2.1 A literature review of image segmentation. 

Image segmentation is the process of breaking an image into meaningful components. 

Segmentation goes hand in hand with classification, which is the process of putting 

labels on the segmented components. A segmentation depends on the desired 

classification scheme, since the same image might be segmented differently 

depending on the desired segment classes. Segment classes are identified through 

prior classification. It is also the case that classification depends highly on the 

achieved segmentation, which may not always be identical to the desired result (the 

so-called ground truth segmentation). Thus a classic dilemma is that "segmentation 

begs classification and classification begs segmentation" [46]. Borrowing a metaphor 

from the area of neural networks, segmentation approaches may be broken into two 

different types: supervised and unsupervised. Purely unsupervised approaches are 

normally referred to as automatic, while supervised approaches range from purely 

manual to semi-automatic. Manual segmentation is achieved by segmenting an image 

by hand. Because automatic and semi-automatic approaches do not always deliver the 

required level of accuracy, manual segmentation may be preferred, even if it is 

cumbersome [47]. Manual segmentation is also used to clean up images after crude 

automatic segmentation. The quote from [46] can be extended to: The more manual 

classification, the better the segmentation - the more manual segmentation, the better 

the classification. Establishing context is always a desirable achievement in machine 

vision [48]. Letting the user classify an area before segmentation makes the task much 

easier. Therefore many segmentation approaches are based on substantial interaction 

with the user and are thus time consuming. 

13 
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This literature review is compiled from the perspective that segmentation of medical 

images should be considered a special case of the more general image segmentation 

problem. Most segmentation and image processing algorithms are transferable 

between different application areas. Simply looking at the literature, which is strictly 

inside the area of medical image analysis, is not sufficient. Thus most of the 

algorithms and models described in sections 2.1.1-2.1.7 are general tmage 

segmentation methods, which may all be applied to the special case of medical 

images. Section 2.2 summarises the review in the context of medical imaae b 

segmentation and briefly discusses the advantages and drawbacks of model based 

vision in medical image analysis. 

2.1.1. Edge detection and filtering. 

Edge detection is based on the detection of significant intensity changes in an image, 

corresponding to high frequencies in the signal. Even before computers became 

generally available, edge detection was a known signal processing technique in the 

area of image transmission. As far back as 1959 Julesz published a paper on using 

edge detection as a simple form of compression for television signals [49], by only 

transmitting the higher frequencies (corresponding to points of high gradient 

magnitude). Edge detection as a biological process was suggested first by Hubel and 

Wiesel in 1968 [50] (visual perception in monkeys) and later by Marr [51] (human 

visual perception). 

Edge detection algorithms work either in the spatial or frequency domain of an image. 

Examples of spatial filters for edge detection include the Rober's Cross [52], Sobel 

[53], Prewitt [54] and Canny [55,56] filters. These filters all work on the first 

derivative of the image (the intensity gradients). Gradients are found by convolving an 

image with a kernel and usually applying a threshold afterwards. This threshold value 

and the size of the kernel can be varied according to the application. The Sobel filter 

uses a smoothing operation first, making it less vulnerable to noise. The Laplacian 

filter [57] works in a similar way to the previously mentioned filters, but on the 

second derivative of an image. A positi\T peak in the first derivative caused by a 
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sudden increase in intensity in the image, results in a positive peak followed by a 

negative peak in the second derivative. This is known as a zero-crossing. The Lero­

crossing specifies the location of the edge. In theory this makes the Laplacian filter 

better at locating boundaries, but as a second derivative method it is also very 

sensitive to noise. Marr and Hildreth addressed this problem by using a smoothing 

operation first (similar to the Sobel filter). This filter is the Laplacian of the Gaussian 

(also known as the LoG operator) [58]. 

Frequency domain filters include the ideal high pass filter [59] and the high pass 

Butterworth filter [59]. Frequency filters suppress particular frequencies after 

transforming the image from the spatial to the frequency domain. This is achieved 

using the Fourier transform [57]. The Discrete Fourier Transform (DFT) for an M*N 

image is defined as: 

(2.1) 

I(k, l) is the input image in the spatial domain at position k,l. e is the natural exponent 

and j is the square root of -1. The DFT can also be written as a transformation matrix 

for a given M*N image for easy computation of the DFT of the image . 

Lowpass filters suppress high frequencies resulting in smoothing. Highpass filters 

suppress low frequencies. This may be used for edge detection, but in most cases too 

many false edges are found. Spatial filters are generally preferred for edge detection, 

while highpass frequency filters are used to simply enhance high frequency 

information in images [59]. 

Filtering in the frequency domain is equivalent to convolution in the spatial domain. 

As previously mentioned this requires the definition of a finite kernel, which is shi fted 

over the image matrix and multiplied with the corresponding points. The convolution 

equation for the imagel(x,y) with the convolution kernel h(m,n) is given as: 

g (x, y) = lz (m . 11 ) @ I (x, Y) = L 2.:)1 (Ill. n ) I Cr - Ill, Y - 11 ) (2.2) 
m 11 

15 



Chapter 2: Background and related work 

The output image is g(x,y). This means that the value at each point in the output image 

is found by multiplying the elements representing the M*N neighbourhood around the 

point at!(x,y) with the elements representing the M*N kernel. An example is given in 

fig. 2.1, which shows an image filtered with the mean filter for smoothing. The mean 

filter kernel is an example of a uniform kerneL because all elements are the same. 

Examples of non-uniform kernels are given in chapter 4, section 4.3.1. 
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Fig. 2.1. The 3*3 convolution kernel for the mean filter applied to the top left 3*3 neighbourhood 
of a 5*5 image. Filter window is moved across the image and the kernel is multiplied with the 
neighbourhood surrounding the pixel in the image at which the output value is produced. 

Rank order filters [60] are a special type of filters which require the ranking of point 

intensities inside the filter window. The most common example is the median filter 

[59], which ranks the intensities from lowest to highest value and assigns the median 

value to the centre point. This filter is better at preserving edges than the mean filter. 

Edge detection is useful for segmenting the contour of objects on a homogeneous 

background. However, it has problems when it comes to more complex segmentation 

tasks. First of all edge detection is sensitive to noise. As previously mentioned this 

problem can be reduced by using pre-filtering. Obviously a lowpass filter in the 

frequency domain will suppress not only the noise, but also actual edge points. Some 

spatial filters for smoothing are better at preserving the actual edges while etTiciently 

removing noise, but it is inevitable that some detail is washed out in the process. 

However, the biggest problem with edge detection is that there is no easy \\ay of 

distinguishillg between local high frequency information within a segment class and 
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high frequency infonnation, which is actually a segment boundary. In the follO\ying 

an edge shall refer to any significant continuous change in frequency within an image 

and within and between segments, while a boundary shall refer to the border between 

segments only. Thus a boundary is an edge, but an edge is not always a boundary. 

What constitutes boundaries depends on the desired segmentation and is often entirely 

subjective. It may be desirable to perfonn a segmentation, where segment classes 

contain local high frequency infonnation. In this case no edges should be identified as 

boundaries inside a segment. It is for this type of problem that edge detection fails to 

correctly produce only segment boundaries. Soft boundaries may appear too thick. 

Edge thinning [61] is a common image processing step following edge detection. 

Another is edge linking [61], which attempts to join fragmented edges into one 

continuous chain. A similar, common solution is the following segmentation pipeline 

(also known as a closing operation) [61]: 

Segmentation ~ Dilation ~ Erosion ~ Thresholding 

Dilation and erosion [61] are morphological operations, which enlarge and shrink 

image areas respectively. Following segmentation, dilation will join fragmented edges 

and the edges will then be trimmed to a smaller thickness using erosion. Thresholding 

in image processing is the process of masking out intensities above or below a 

threshold [57] (see section 2.1.2). It is useful for removing unwanted edge detections, 

based on the assumption that actual edges have higher magnitudes in the gradient 

image. One of the specific goals of the Canny filter [55] was to achieve accurate 

location of boundaries, taking the Laplacian of the Gaussian one step further. The 

filter combines the above mentioned processes into one. Smoothing is achieved by 

convolution with a 2D Gaussian function (or two 1D Gaussians, one for each axis). 

The gradient values are found and magnitudes and directions are calculated. Non­

maximum values perpendicular to the direction of edges are suppressed. This is done 

by interpolating the values on each side of the current pixel in perpendicular direction 

to the edge within a 9-pixel neighbourhood. If the interpolated gradient magnitudes 

are greater than that of the current pixel then the pixel is suppressed. This is because 

another specific goal of the filter was that each edge should only give one strong 

response. It is effecti\'e for this purpose, but problems are encountered at sharp 
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curvatures of edges. Finally a thresholding operation is carried out. A lower and an 

upper limit is used. All pixels with values inside these two limits are accepted if they 

are connected to pixels with maximum responses. The Canny filter solves some of the 

problems encountered with other edge detection filters, but as already mentioned it is 

not well suited for detection of objects with sharp comers. 

Multiscale edge detection [62] uses edge detection on multiple scales of an image to 

determine if edges are consistently detected over a number of scales. Scaling is 

achieved through a gradual blurring of the image. This makes it easier to 

accommodate textures, which exhibit local intensity changes inside strong object 

boundaries, as well as textures which exhibit close to no local intensity changes inside 

weak object boundaries, but there is no definitive way of combining the results from 

different scales. 

Because edge detection is both fully automatic and generally fast, it is very commonly 

used as the first step in unsupervised segmentation methods. It is also part of many 

hybrid approaches. It may for example be combined with region growing (see section 

2.1.3). Edge detection is rarely ever a perfect segmentation tool for natural images and 

requires manual post-processing. The best parameter settings for a given image also 

requires some experimentation. 

2.1.2 Thresholding, histogram analysis and intensity occurrence matrices. 

Thresholding [57] is the most simple form of segmentation available. If the intensity 

of an image point is within certain thresholds then the point is considered to be part of 

a segment with a particular classification. A number of different segment classes may 

be defined in terms of their upper and lower intensity thresholds. Adaptive 

thresholding [61] can use different thresholds for different image areas based on local 

histogram profiles. The image histogram [57] gives the frequencies of occurrences of 

all intensity levels (or bins representing a fixed range of intensities) in the image or 

image region. An image consisting of homogeneous segments on a high contrast 

background can be easily segmented based on its histogram, where peaks \\ill 
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correspond to the intensities of regions. However the method is highly sensitive to 

artefacts. 

In X-ray, MRI and CT scans grey levels directly correspond to tissue types (bone, soft 

tissue, air, fluid, etc.). This is why thresholding has been a popular segmentation 

method and most packages for the visualisation of medical images support 

thresholding. There are however serious problems such as different intensity ranges 

for different patients. The imaging equipment and in X-ray the choice of media 

(analogue film or digital) also affects the grey level ranges for the same tissue of the 

same patient for different imaging volumes. There can even be high levels of 

variability within the same volume due to inhomogeneity artefacts, which cause the 

boundaries between grey level ranges for different tissue classes to overlap (see 

chapter 6, section 6.6). Low resolution, sampling artefacts and slice thickness all 

contribute to partial volume artefacts, where one voxel may represent several tissue 

classes and have a grey level which reflects this, making it ambiguous. Noise is ever 

present caused by numerous sources, including the imaging equipment, the patient 

anatomy and the environment. These problems prohibit simple thresholding from 

producing acceptable results on most clinical data. 

Although thresholding may describe a grey level distribution in terms of its intensity 

range, it does not take spatial patterns into consideration. In other words the relations 

between different grey levels within neighbourhoods of the same texture are not used. 

These are the relations that describe texture. The co-occurrence matrix [63] attempts 

to capture these relations. The co-occurrence matrix is a two-dimensional histogram 

describing the joint probability of two pixels with specific intensities occurring in a 

particular relation to each other (thus the term co-occurrence). The relation is defined 

in terms of a direction and a distance. Haralick [63] suggested that the co-occurrence 

matrices for the angles 0, 45, 90 and 135 degrees and distances of 1 and 2 pixels 

should be calculated as a minimum to produce good results. Any direction and 

distance is possible though, it only comes down to processing overhead. The co­

occurrence matrix for a pixel neighbourhood is V2 in size, where V is the number of 

intensity levels. Fig. 2.2 shows an example of a 4*4 neighbourhood containing pixels 

of 4 different intensity levels (0 ... 3) and its co-occurrence matrix. Co-occurrence 
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matrices may be used on their own for pattern recognition or more often III 

combination with other statistical methods. 
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Fig. 2.2. The co-occurrence matrix. (a) A 4*4 pixel neighbourhood showing intensity levels 0 ... 3. 
(b) Co-occurrence matrix for the neighbourhood using the distance 1 and the angles 0, 90, 180 
and 270 degrees. The cells show Puw which is the number of occurrences of two pixels with 
intensity levels u and w at a distance of 1 between them. The rows and columns of the matrix 
represent u and w. 

The run length matrix [64] is related to the co-occurrence matrix, and describes the 

occurrence of certain intensities within a local image area. The run length matrix 

describes the frequency of chains of points with the same intensity level, up to a 

specified run length, occurring in a particular direction. The lengths of the two 

dimensions of the matrix are defined by the maximum intensity level and the 

maximum run length. As for the co-occurrence matrix, the run length matrix can be 

defined for different directions and it may be used as a classifier in its own right or in 

combination with other statistical approaches. 

2.1.3. Region growing, split-and-merge and watershed segmentation. 

Edge detection finds boundaries, which define segments. Region growing on the other 

hand finds segments, which define boundaries. In traditional region growing a seed 

point is manually selected in an image within a segment and the classification is given 

manually. Based on its classification the segment is grown from the seed point 

according to a certain criteria. This criteria defines whether or not a neighbouring 

pixel is added to the region. It could be based on colour information or intensity, As a 

nc\v pixel is added, the neighbours of this pixel are evaluated and the region keeps 
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growmg until no neighbours of any pixel included in the regIOn can be added. 

Adaptive region growing [65] attempts to improve on traditional region growing by 

analysing the region every time it is grown. If the current region does not match the 

previous classification as well as another, the classification is changed before the 

region is grown again. Region growing has some advantages over edge detection. 

Impulse noise does not affect the segment boundaries as much as it does in edge 

detection. On the other hand pixels with extreme values cannot be added to a region. 

Pixels in the boundary area may not fall within the specifications for a particular 

classification, which may result in uneven and incorrect boundaries. If a classification 

is given with the seed point in traditional region growing, it means that a pixel can 

either fit under that classification or not. There is no competition between segment 

classes. This means that too many or too few pixels may be added at boundaries. 

Adaptive region growing attempts to go beyond single pixel level and analyses the 

whole region continuously, so that newly added pixels may change the classification. 

Boundary pixels have little effect on a larger segment though and it is again possible 

that too many or too few pixels may be added at boundaries. Region growing is 

particularly good for semi-automatic segmentation of images with homogeneous 

textures, but requires a considerable amount of user interaction to speci fy the criteria 

for growth and selection of the seed points. 

In order to reduce the problem of segmentation near boundaries, region growing has 

been combined with edge detection in hybrid segmentation algorithms (e.g. [66,67]), 

which all still rely on and assume homogeneity of the regions. A twist on the 

combination of edge detection and regions expanding from points comes in the form 

of watershed segmentation [68]. Watershed segmentation is based on the gradient 

magnitudes of an image and can be thought of as a flooding starting in all the valleys 

of a landscape (where the gradient magnitude determines the height of the terrain). 

Regions expand from local minima and stop when they collide with other expanding 

regions. It results in continuous boundaries located at the edges within the image. This 

is the advantage over edge detection, which as previously mentioned may require 

other processing to close discontinuities of the boundaries. The disadvantage is that a 

vast over-segmentation is produced and further processing is required to merge 

segments. The problem can be reduced by producing the gradient at a higher scale 
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(higher flood level). This will eliminate some of the smaller false segments inside the 

true segment boundaries, but may also eliminate whole true segments or fine details. 

See fig. 2.3. 

Split-and-merge techniques [69] first over-segment an image based on some criterion 

of inhomogeneity and then merge some of the segments again according to the 

opposite criterion of homogeneity. The standard split-and-merge will consider the 

image as a rectangle and then split it into four equally sized rectangles. Each of these 

rectangles are again split up into four and this continues until every rectangle is 

considered to be a homogenous region. When the splitting has been completed, 

neighbouring regions will be compared and merged if they fit the homogeneity 

criterion. Split-and-merge is an excellent technique for quickly determining the 

presence of a simple object in a simple scene, but it is not suitable for precise 

segmentation with accurate boundaries. 

(a) (b) 

(c) (d) 

Fig. 2.3. An example of watershed segmentation. (a) Cryo section from the Visible Human 
Project. (b-d) Watershed segmentation with increasing flood level (reproduced from [70]). 
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2.1.4. Integral transforms, multifractals and texture analysis. 

Beyond point intensities and colour, a segment may be described by texture as 

mentioned in section 2.1.2. Texture analysis can be seen as an extension of edge 

detection. It is a detection of patterns in intensity changes. As previously mentioned, 

the Fourier transform can transform an image from the spatial to the frequency 

domain and the dominant frequencies can be found. This can reveal the orientation of 

a regular texture and its frequency components (see fig. 2.4). The Fourier transform 

however will not distinguish textures, which contain the same frequencies, but where 

the frequencies occur at different times (fig. 2.5). Intensity changes at specific 

positions in a texture in the spatial domain correspond to changes in the signal at 

specific points in time in the frequency domain. In signal processing terms the Fourier 

transform is limited to identifying stationary signals (frequencies occur at all times) 

and cannot differentiate between non-stationary signals (frequencies occur at different 

times) containing the same frequency components. Because the Fourier transform 

uses a sampling window, which stretches from minus infinity to plus infinity, time 

information cannot be recovered. This property however gives the transform perfect 

frequency resolution. The Short Term Fourier Transform (STFT) [71] was an attempt 

tc solve this problem by using windows of finite size. This way a non-station(1;-~r 

signal can be broken into discrete parts, which are approximately locally stationary, 

and analysed using an appropriate window size. This does not however solve the 

problem completely, as larger windows give good frequency resolution but poor time 

resolution, and smaller windows give good time resolution but poor frequency 

resolution (fig. 2.6). Natural images are generally described by non-stationary signals. 

This is why the wavelet transform, which overcomes the windowing problem, is 

mostly used in preference to the Fourier transform in texture analysis. The wavelet 

transform [72], like the STFT, uses windows of finite size, but rather than using a 

finite window size at different points in time, a window size for each frequency 

component is used at all points in time. This is known as multiresolution analysis. A 

high response results when the window size fits with a frequency component in the 

signal and otherwise a low response is given. This way frequency components can be 

localised in time and textures with intensity changes in more complicated spatial 

relations can be identified (fig. 2.7). 
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(a) (b) (c) 

(d) (e) (t) 

Fig. 2.4. The Fourier transform and regular textures. (a) Regular horizontal grating. (b) The 
logarithmic Fourier transform of (a). (c) Thresholding of (b) to reveal only the major frequencies. 
(d) Regular diagonal grating. (e) The logarithmic Fourier transform of (d). (t) Thresholding of (e) 
to reveal only the major frequencies. Images created with Vision XL from Impulse Imaging 173). 

(a) (b) (c) (d) 

Fig. 2.5. FT of stationary and non-stationary signals. (a) A stationary signal containing the 
components 5, 10, 20 and 50 Hz. (b) FT of the signal in (a), clearly showing the four frequency 
components. (c) A non-stationary signal containing the same components, but at different times. 
(d) FT of the signal in (c) showing many frequencies other than the four real components, which 
are however still distinguishable. Time information is not available. Images reproduced from 

[741· 
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(a) (b) (c) 

Fig. 2.6. STFT of non-stationary signals. (a) A non-stationary signal containing the frequency 
components 300, 200, 100 and 50 Hz. (b) STFT of the signal in (a) using a small window size: 
G?od tim.e resolution, poor frequency resolution. (c) STFT of the signal in (a) using a larger 
wmdow size: Good frequency resolution, poor time resolution. Images reproduced from /74J. 
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Fig. 2.7. A non-stationary signal and its Continuous Wavelet Transform (CWT). (a) A non­
stationary signal containing the frequency components 30, 20, 10 and 5 Hz. (b) CWT of the signal 
in (a). Translation represents time and scale represents frequency (high scale is low frequency 
and vice versa). Images reproduced from [74}. 

In image processing, wavelets have particularly been used for Gabor time-frequency 

analysis [75]. In this application wavelets are based on a Gaussian function modulated 

by sinusoids. These are known as Gabor filters (or Gabor wavelets) [76]. They are 

claimed to model receptive fields in the human visual system. Gabor filters give 

maxunum response at a particular scale and orientation. A set of Gabor filters 

(normally referred to as a filter bank) corresponding to different scales and 

orientations may be used to identify different types of textures. The filters are 

normally selected manually for the filter bank, based on prior knowledge about the 

textures to segment. There have however been attempts to automate the selection of 

appropriate Gabor filters [77]. Classification is achieved by convolving an image with 
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the filter banle The texture class is determined based on the magni tude of response 

from each filter. It is obvious that Gabor filters are best suited to the segmentation of 

homogeneous and regular textures. 

(a) 

(c) 
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Fig. 2.8. The Radon transform for line detection. (a) Two lines with moderate random noise. (b) 
The Radon transform clearly showing the two lines in (a) as two bright peaks. (c) The same two 
lines with a high level of random noise. (d) The Radon transform still detects the lines in (c). Rho 
is the angle and theta is the distance from the centre. Images reproduced from 1831. 

Two other transforms often used for feature extraction in images are the Radon and 

the Hough transforms. The Radon transform was first described in 1917 [78] as a 

means of characterising 2D and 3D objects oriented at different angles. In 1968 IBM 

patented the Hough transform [79] for finding straight lines in images. The Hough 

transform is essentially just a special case of the Radon transform and the latter has 

since been applied in exactly the same way for fmding lines in images [80]. The 

transform is particularly interesting for highly noisy images. It works by integrating 

image intensity along all possible lines in an image. A mapping from the image space 

to a parameter space is carried out, the parameters being the angle of a line and the 

26 



Chapter 2: Background and related work 

distance from the centre of the image. This means that a point in image space is a 

sinusoidal curve in parameter space. A curve in parameter space represents all 

possible lines through a point in image space and co-linear points in image space 

cause an intersection of curves in parameter space. If intensity represents the le\el of 

overlap, even highly fragmented lines can be seen as bright peaks in intensity in 

parameter space (due to many curves intersecting at that point). See fig. 2.8. A 

problem is that the inverse Radon transform maps back to lines of infinite length. 

Lines that were originally short thus appear long. This problem was addressed by 

Copeland et al with their Localized Radon Transform [81]. The transform has also 

been used to find other parameterised curves than lines (e.g. circles [82]). The 

problem obviously is that the generalisation of image features into a smaller set of 

parameterised curves is not always practically possible. For simple feature extraction 

though, the transform is very effective. 

Many naturally occurring patterns and textures can be constructed using fractals [84]. 

Because fractals describe both the smallest building blocks and the largest structures, 

they are an obvious choice for analysis at multiple scales. This type of texture analysis 

known as multi fractal classification was described by Voss [85]. Where the mass 

represents the number of primitives used to build a structure and the length represents 

the size of the structure, the mass dimension is the relationship between the mass and 

the length. Local mass dimension can be used to describe the type of structures or in 

other words the geometrical properties of an image. A classification can be based on 

local mass dimension, such as in the study of ultrasound liver images by Evertsz et al 

[86]. While this technique can be useful for detecting the presence of anomalies in 

images, geometrical structure is often not sufficient to differentiate between individual 

segment classes in complex images. 

2.1.5. Shape based analysis. 

Edge detection is a useful tool for finding boundaries, but has a number of drawbacks 

as mentioned in section 2.1.1. Too many edges may be found automatically and edges 

may have gaps that need to be closed. A closing operation may not produce a 

.,.., 
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desirable result. Active contours [87,88] (also known as "snakes") can overcome these 

problems, but require some interaction with the user. A coarse boundary around the 

actual boundary must first be given. This coarse boundary is a parameterised curve 

upon which internal and external forces work. The external forces translate, bend and 

stretch the curve, attracting it to areas of high gradient magnitude. This is achieved as 

an energy minimisation function, i.e. a minimum is reached when the curve describes 

the contour of a real boundary after a number of iterations. At the same time internal 

forces apply smoothing to the curve in order to prevent noise from deforming it. 

Active contours have been used successfully for the interactive segmentation of 

medical imaging scans [89,90] (see fig. 2.9). While this technique is fine for the 

segmentation of larger regions, it is unsuitable or at least very time consuming for the 

segmentation of many smaller structures, such as blood vessels. 

(a) (b) (c) 

Fig. 2.9. The use of an active contour to find a boundary in a heart MRI image (reproduced from 
[90]). (a) The manual initialisation. (b) The contour at an intermediate stage after a number of 
iterations. (c) The final result. 

Live-Wire [91] is an approach similar to active contours. The way the user interacts 

with the segmentation is very different though. Instead of selecting a coarse boundary, 

a single pixel is selected (start node). Subsequently another pixel (goal node) is 

selected and the algorithm finds the best path between the start node and the goal 

node. Finding the best path is, like in active contours, an energy minimisation 

function, where minimum energy is at the edges within an image. Each pixel has an 

energy based on gradient magnitude, a Laplacian zero-crossing (for boundary location 

_ precise location of a pixel on a boundary equals low energy) and gradient direction 

(for smoothing - sharp change in boundary direction equals a high energy). The be t 
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path is thus the one which gives the lowest cumulative energy between the start node 

and the goal node. It may be argued that Live-Wire gives more control to the user than 

active contours. On the other hand active contours force the user to provide an 

initialisation closer to the desired result, reducing the chances of serious errors. 

Deformable surfaces have been used in similar ways to active contours for defining 

3D boundaries. It is again an energy minimisation approach, only in this case a mesh 

of 2D primitives rather than a curve is fitted to the 3D object. A substantial amount of 

work on deformable surfaces, especially for the segmentation of medical volumes, has 

been done at INRIA in France. See [92] for a comprehensive review of developments 

in the field. 

The introduction of active contours and related methods spawned a number of 

research projects aimed at making shape analysis more robust and less dependent on 

user interaction. Most notable is the work of Cootes and Taylor on Active Shape 

Models and Active Appearance Models [93,94]. From a set of training examples, in 

which boundaries are defined by sets of manually selected points (at least including 

points of sharp curvature), Active Shape Models can be trained to recognise and 

synthesise shapes given arbitrary transformations. Using statistical methods points 

retain their relative relations and initialisation of the shape may be started at some 

distance from the modelled structure in a novel image. After a number of iterations 

the shape is fitted to the desired structure automatically. Active Appearance Models 

combine the shape models with models of texture. Good results have been achieved in 

face recognition and medical image segmentation, but problems still remain to be 

solved, including the difficulty in selecting optimal points for the training phase and 

the fitting of shapes when initialisation is started too far from the target structure. 

2.1.6. Colour. 

All the segmentation algorithms described so far have traditionally been applied to 

greyscale images. They can be applied to colour images by working on a greyscalc 

converted image or on each of the greyscale images that the three colour channels 
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represent. The advantage of colour is the richer infonnation per point compared to 

greyscale. Much research has been concerned with how to represent colour in the 

most suitable way for human users and/or statistical analysis. The RGB colour model 

[95], which has a representation of colour triples for each point, was designed for light 

emitting media (monitors and televisions) - one intensity level for each of the three 

colour channels Red, Green and Blue. These are the primary colours of direct light, 

making the RGB colour model an intuitive model for display devices. However it is 

not an intuitive model for human beings, because it is not perceptually linear. Colours 

which are close in RGB space are not necessarily perceived as being similar by 

human beings with nonnal colour vision. This poses a problem for classification 

systems, which rely on RGB descriptors to model human colour perception. The HSV 

colour model [96] (and the similar HLS model [97]) was an attempt to create a more 

intuitive colour model for human users (although still an artificial model). This 

model's colour triple consists of the Hue (the dominant wavelength), the Saturation 

(purity of the hue) and the Value (intensity or brightness of the colour). Adding black 

reduces the brightness and creates different shades, adding white reduces the 

saturation and creates different tints, like a painter using his palette. Although more 

intuitive, the HSV model is still not considered perceptually linear. However its 

separate representation of colour and intensity can be a valuable featllrl.~ for colour 

encoding and classification and gives it an advantage over the RGB model. 

To devise a truly perceptually linear model, the CIELab colour model [95] was based 

on psychometric colour matching experiments. The CIELab model is based on four 

primaries: red, green, blue and yellow. These are also the colours that Ewald Hering 

described as the fundamentals of human colour vision in his opponent process theory 

[98,99]. The three types of cone receptors in the retina of the human eye have got 

three distinct peaks at different wavelengths in their light absorption curves. These 

correspond to the perceived colours red, green and blue (see fig. 2.10). Cells in the 

visual neural pathway receive the responses from the cones and perfonn an operation, 

which codes the input as relative responses. Green responses inhibit red responses 

while blue responses inhibit yellow (combined red and green) responses. The 

brightness is an additive process of all three receptors. These coded responses are 

transmitted to the visual cortex where colour perception takes place. In artificial 
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systems, the model has been implemented for different applications with more or les 

modification of the simple activation/inhibition operations described above. In the 

unmodified version (referred to hereafter as OPC), starting from the RGB model with 

256 intensity levels per channel, opponent processes are modelled by subtracting the 

green channel from the red channel (R-G) and by taking the average of the red 

channel plus the green channel and subtracting the blue channel ([R+G] /2-B). A third 

achromatic channel is produced as ([R+G+B]/3). This model was used by Campbell et 

al [100] for colour encoding in a study of natural colour image segmentation and in a 

slightly modified version by Yamaba and Miyake for colour character recognition 

[101]. 

For the encoding of colour for a classification system there are clear advantages of 

models such as HSV, CIELab and OPC over the RGB model. The conversion 

between RGB and HSV is trivial, while conversion between RGB and CIELab is 

more complicated. Since the model is dependant on illumination, it also requires a 

reference white. If this is unknown and has to be estimated, then inaccuracies are 

inevitable. The much simpler OPC does not have this problem. While OPC does not 

serve as an alternative to CIELab as a base representation for conversion between 

other artificial models, it is highly applicable to the task of distinguishing coloured 

textures. 

Fig. 2.10. Relative absorbance of Iigbt at different wavelengtbs in tbe human retina (reproduced 

from 11021). 
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In OPC, colours which appear as different shades, are represented similarly except for 

the achromatic part. These colours are more distinct in others models. For example the 

two RGB colour triples (200,100,50) and (250,150,100) are the same for R-G and Y_ 

B. They are close in CIELab space but still distinct in all three descriptors and in HSV 

space the hue is the same, but saturation and brightness is different. This property 

makes ope unsuitable for distinguishing between specific sets of unifonn colours. It 

also makes it highly tolerant to changes in intensity and slight variations in colour 

across images, in a way which is intuitive to a human observer. This is an advantage 

for natural colour images or cryo sections. It follows that the OPC model is unsuitable 

for describing artificial images with unifonnly coloured segments, where the HSV 

model is more applicable. In natural images, such unifonnity rarely occurs. There is a 

sufficient spread of intensities in all three of the original RGB colour channels within 

a logical segment, for the OPC model to distinctly describe a local neighbourhood. 

Although there is a substantial literature on colour image segmentation per se, the 

segmentation of cryo section data has received less attention than medical imaging 

scans. Most research in the segmentation of cryo section data has been based on data 

sets from the Visible Human Project. While it can be argued that the Visible Human 

data sets only need to be segmented once, it seems inevitable that there will be a need 

for good segmentation methods for cryo section data within the emerging area of 

virtual pathology. Approaches to the segmentation of colour cryo section data have 

remained fairly simple, using standard techniques. As part of the VoxelMan project at 

University of Hamburg a thresholding operation in RGB space was applied [103], 

essentially transferring the most basic segmentation method for grey scale medical 

imaging scans to the colour domain. Manual segmentation on a slice to slice basis was 

required for structures containing composite segment classes where one component 

was similar to a different class. In [104] Steward et al took a similar approach, 

although thresholding was applied to a "pseudo-radiographic" greyscale image 

produced from the original full colour image. Intensities represented the distance from 

predefined colours of the object to segment. It essentially came down to a point 

operation, which again poses a problem for structures with segment classes of some 

similarity in colour space. Edge detection and snakes (see e.g. [105]) as \\c11 as region 

growing (see e.g. [106], which also presents the notion of "virtual staining") have also 
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been applied to cryo images with the same advantages and disadvantages as described 

in sections 2.l.1 and 2.l.3. 

2.1.7. Statistical methods, neural networks and fuzzy logic. 

The techniques described in sections 2.1.1-2.1A can be used as low level feature 

detectors. Although they are used on their own, they are also often integrated in 

higher level classification systems. This is where the areas of image processing and 

statistical pattern recognition come together. The goals of such systems are to, as 

accurately as possible, determine the true probabilities of specific combinations of 

features leading to specific classifications. 

In Bayesian methods a tree structure (Bayesian network or Belief network [107]) is 

used to connect nodes in a hierarchical manner. Each node is a state and has 

associated with it a number of probabilities of the state occurring, given all possible 

combinations of states of the input nodes (parent nodes). Image features might be 

lower level states leading to a higher level state - a classification. The original 

probabilities are known as the prior probabilities. The goal is to use new samples to 

tune the probabilities. When a new sample with a known classification is introduced, 

adjustments are made throughout the network such that all features of the new sample 

can point to the correct classification. This is done with many samples. What results is 

a system, which can take novel samples similar to those in the training set and 

produce the correct classifications. However more than that, the system describes the 

data itself. The tuned probabilities are known as the posterior probabilities. Bayesian 

systems are often implemented using Hidden Markov Models (HMM) [108J 

combined with an algorithm for parameter estimation. A HMM is a model consisting 

of chains of stable states and the probabilities of transitions between these states 

(Markov chains). In a Markov process only the current state and the probabilities of 

transitions to the next states are necessary to calculate the probability of the final state. 

Thus the presence of a feature indicating a state can give the probability of a 

classification. Obviously the probabilities of state transitions may sometimes be well 

known (tossing coins, throwing dice, drawing cards from a deck, etc.) and they may 
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sometimes be mostly unknown, especially in large feature spaces (for example shapes 

and textures in images). Given enough knowledge about the domain, one can obtain 

highly accurate posterior probabilities. However, mutually exclusive features (states) 

may not be taken into account, if their exclusiveness is not explicitly modelled. The 

same can be true for highly correlated features in complex and large feature spaces. 

A Markov Random Field (MRF) [109] can be regarded as a 2D (or 3D) version of the 

HMM (since Markov chains in a HMM are I-dimensional) and can be used to 

describe texture. It may be applied either as a pattern recognition tool or for image 

restoration (restoring an image from incomplete data) or synthesis. A texture is 

considered as an instantiation of a random field of intensities relating to each other in 

ways, which can be described by Markov models. While these models are defined a 

priori, their parameters must be estimated from the data being modelled. The MRF 

describes the relations of attributes between sets of points in the neighbourhood. 

These sets are known as cliques, which are clusters of points that are all neighbours of 

each other (a neighbour is defined in respect of an 8-connection). A clique can consist 

of 1, 2, 3 or 4 points. Probabilities of patterns in the neighbourhood are calculated 

from all possible clique potentials. A clique potential is calculated with respect to 

some criterion, such as homogeneity. A low sum of all clique potentials gives a higher 

probability. The MRF is tuned from an initial state of prior probabilities. The 

posterior probabilities are often found using Monte Carlo methods [110], and the 

combination is referred to as Markov Chain Monte Carlo (MCMC) [111]. The 

number of relations in the neighbourhood (known as interactions) and the number of 

desired classes can be varied, but more interactions and classes result in longer 

processing time. Reversible Jump Markov Chain Monte Carlo (RJMCMC) is a variant 

of MCMC introduced by Green [112], which allows for parameter spaces of different 

sizes to be considered within the same model. By jumping between different 

parameter subspaces it is possible to estimate the number of classes in a fully 

unsupervised manner. This number would otherwise have to be fixed in traditional 

MCMC approaches and could require a subsequent split-and-merge operation. 

The Expectation Maximization (EM) algorithm [113] is another algorithm often used 

for parameter estimation in MRF models. It attempts to iterati\'ely recover the correct 
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parameters from incomplete data. The data realising an MRF is considered to consist 

of an observed and a missing part [109]. The algorithm iterates between modifying 

the data from the current parameter estimate and modifying the parameter estimate 

from the current data until convergence is reached. This is particularly useful for data 

containing artefacts. RJMCMC or MRF combined with EM are generally extremely 

demanding methods in terms of processing time. but arguably produce the most 

accurate unsupervised segmentation possible today. Examples of RJMCMC 

segmentation of natural colour images are given in chapter 5, while examples of MRF 

combined with EM for noisy, inhomogeneous MRl data are given in chapter 6. 

Because neighbourhoods are analysed in terms of interactions between smaller 

components of the neighbourhood, the local neighbourhood representation has some 

adaptability. which is an advantage near boundaries. However. neighbourhoods must 

be isotropic (symmetrical) and furthermore a neighbourhood system (see fig. 2.11) 

and interaction function must be chosen to control the desired level of homogeneity 

and allow for specific types of discontinuity (such as edges). The best choices for 

maximum performance cannot easily be established without time consuming 

experimentati on. 
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Fig. 2.11. Neighbourhood systems in Markov Random Field models. (a) First order 
neighbourhood (4-neighbourhood) where O's are neighbours of X. (b) Second order 
neighbourhood (8-neighbourhood) where O's are neighbours of X. (c) n-th order neighbourhood 
for n = 1, ... ,5 showing the outermost neighbours of X (from [109]). 

Neural networks are a special type of statistical pattern recognition tools, \\hich 

employ the idea of artificial neurons as layers of nodes on an interconnected net\vork 

[11-1-]. In a feed forward network, activation in the input layer represents the input 
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data, for example pixel intensities. Activation feeds forward through connections with 

associated weights, which determine the contribution of activation in connected 

nodes. Activation above a certain threshold may be required for a node to fire. The 

pattern of activation in the output layer gives the classification of the input data. 

Connections and weights may be hard-wired to solve specific pattern recognition 

problems. However for most applications this is not practical, and a learning rule is 

used to modify the network based on a comparison between the observed and the 

desired output. Backpropagation networks (also known as multi-layer perceptrons) 

have an input layer, one or more hidden layers and an output layer. The weights 

between nodes in the layers are adjusted by comparing an input pattern to the desired 

output pattern. Using a learning rule (traditionally the delta rule [114] in the case of 

backpropagation), the hidden layers are modified and a learning effect occurs. When 

no further changes result from this process, the network is said to have reached 

convergence. Given the correct network topology, any pattern recognition problem 

can in theory be solved by a backpropagation network [115]. However depending on 

the data used, the network topology (number of nodes, number of layers, 

interconnectivity, etc.) and the learning rule, such neural networks may never reach 

convergence. A typical problem is when a neural network gets stuck in local minima 

and appears to have converged, when in fact the global minima has not yet been 

reached. There are several methods for dealing with this type of problem (such as 

simulated annealing [116]) and there is a vast number of different network 

architectures, which will not be covered here. In image segmentation the most widely 

used neural network architectures are backpropagation networks and the vector 

quantization networks developed by Kohonen [117] (described at the end of this 

section). See [118] for a comprehensive review of neural network methods in medical 

image analysis. 

Fuzzy logic [119] is an extension of set theory and models the degree to which 

memberships of sets are true. It is thus not a theory of probability but of possibility. In 

image segmentation it is useful for accommodating the ambiguity between segment 

classes, and for example determining the true class of a point near a boundary or a 

point affected by partial volume artefacts. Fuzzy logic was not used directly in the 

work described in this thesis, but was used to create the Brain Web MRI data [-+ 1] and 
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In the AFCM segmentation algorithm [120], both described in chapter 6. For an 

example of a simple fuzzy logic application, please see appendix B, section B.3. 

In pattern recognition applied to image segmentation and classification problems, the 

feature space is often large and complex. The correlations between low level features 

and higher level classifications may not be well known and even given a priori 

knowledge of relations between features, these relations may prove to be insignificant. 

In statistical pattern recognition the aim is generally to approximate the probability 

density function, i.e. finding the probability of a continuous random variable taking 

on a value in a specific interval (representing a feature) in a particular domain. This is 

demonstrated in vector quantization [117], where large vector sets are quanti sed to a 

smaller data set of "average" vectors representing the essence of the input data and 

approximating the probability density function for the represented classes. 

The Kalman filter [121] also approximates the probability density function based on 

previous observations. It takes a large number of samples and their probability density 

functions (conditioned by the confidence of the particular sample) and combines them 

into one, approximating the true probability density function. Correlations between 

many features may be part of this process even if only a subset of these features are 

used for subsequent processing of new data. The Kalman filter is often used in the 

segmentation of image sequences in combination with other algorithms to predict 

properties of the next image from the previous images, tracking features in temporal 

data (for example combined with the LoG operator and Hough transform in [122]). 

Principal Component Analysis (PCA) [123] (also known as the Karhunen Loeve 

Transform or KL T) is a method, which reduces the dimensionality of vectorial input 

data and finds its principal components. The co-variance matrix of the input data is 

formed by the variances and co-variances of all variables in the input data. From the 

covariance matrix the eigenvalues can be computed using a standard equation. The 

eigenvectors are found by solving the equation which expresses the eigenvalues as 

being the variance of the input data from the image matrix projected unto the 

eigenvectors. Each eigenvector can be computed separately for its corresponding 

eigenvalue. The eigenvector matrix (transformation matrix) call now be fomled bv 
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using the eigenvectors as rows, ranked according to their eigenvalues. Nonnallv on!)' - -
the highest ranked eigenvectors are used, since they contain most of the infonnation 

necessary to reconstruct the original image [60]. The eigenmatrix can be used to 

transform the original image data into so-called eigen images. The eigenYectors 

embody principal features of the input data, which may be used for compression and 

reconstruction or classification. peA has been used extensively for recognition of 3D 

objects, including face recognition [124,125]. Objects are sampled at different 

orientations and peA is applied to find the principal features invariant of orientation, 

such that the object may be recognised in novel orientations. peA is less applicable to 

segmentation problems where the structure of a segment class may change 

significantly across the input data space (for example textures in a sequence of 2D 

slices through a 3D object of anatomy). 

Learning Vector Quantization (LVQ) proposed by Kohonen [117] is a type of neural 

network, which performs vector quantization and produces a mapping from a higher 

to a lower dimensional space. The term "Kohonen network" does not generally refer 

to this particular type, but to the Self-Organizing Map (SOM) [117]. LVQ and SOM 

are very similar models, the main difference being that LVQ is a supervised approach, 

while the SOM is unsupervised. They are both I-layer networks, i.e. the input and 

output layer is the same. L VQ takes a multidimensional feature vector set and 

generates a number of codebook (reference) vectors. These represent the best 

centroids in the input data space. The training data is labelled such that codebook 

vectors become labelled too. Learning is achieved through a nearest- neighbour rule 

using a distance metric, usually Euclidean distance (although other metrics such as the 

city block metric may also be used). Please see appendix B, section B.l for a more 

detailed description of the SOM and LVQ algorithms used in this project. 

2.2 Segmentation in medical imaging. 

The literature review in section 2.1 has described a variety of general algorithms and 

tools for image segmentation, all of which have been applied to medical images. Most 

research has concentrated on X-ray, MRI, CT and ultrasound and there is a growing 
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interest in other modalities of medical imaging scans, such as PET [126] and SPEeT 

[127]. Less work has been done in developing methods for the segmentation of cryo 

section data. Grey scale medical imaging data is subject to the problems of noise. 

inhomogeneity and partial volume artefacts. Colour cryo section data can offer a 

cleaner acquisition process with less artefacts and more information per point, but at 

the same time the mapping between intensity levels and segment classes is less simple 

than for example for CT and MRl. All the algorithms presented in section 2.1 have 

got drawbacks either in terms of accuracy, robustness, boundary location or the 

balance between accuracy and the level of automation. In summary the segmentation 

of medical imaging data is a hard problem, which requires highly robust and at the 

same time flexible solutions, and this problem has been actively researched and 

produced thousands of publications over the last three decades. 

Although the whole area of machine vision has seen a shift in recent years from the 

application of classical image processing operations in new hybrid methods towards 

what is described as model based vision [128], this has been particularly the case for 

medical image processing. Conceptually model based vision is the idea of developing 

precise image models, which can be interpreted within (usually Bayesian) statistical 

frameworks. Classification is based on fitting novel data to prior knowledge about 

whole images, regions or segment classes. In medical imaging this involves models of 

grey level distributions for various modalities, modelling of noise and inhomogeneity 

and usually the assumption that most distributions can be described by Gaussian 

functions. At the same time physical models known as phantoms are used extensively 

in place of real human anatomy for the evaluation of medical image processing 

techniques. Wires or tubes are used to represent blood vessels while carefully 

moulded silicone models represent real skulls. 

Model based vision allows for the systematic development of methods to handle all 

possible aspects of an image processing problem in a complete and mathematically 

tractable way. Since many models can be used to recognise as well as synthesise data. 

it also makes the simulation of clinical data sets possible, providing a source for 

systematic evaluation. Unfortunately the assumptions made by these models do not 

always hold true when methods are applied to real data. There may be other sources 
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of noise and inhomogeneity than what the model includes and this can prevent 

repeatability of results on real data (such as the model for noise reduction in [129]). 

Simulated data and quantitative evaluation is good for development and testing, but 

the ultimate test of a medical image processing system should be based on real data 

and evaluated by real people. In all other application areas than simulation, certainly 

in the area of segmentation, it is important that this ultimate goal is kept in mind from 

the beginning, rather than the goal of simply creating an attractive model. 

~o 
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Chapter 3 

Requirements and methodology 

3.1. Overview. 

This chapter examines the challenges associated with medical image segmentation. 

Problems are identified and discussed, and solutions are proposed as a set of 

conceptual and technical requirements. They provide the foundation for the 

development of a new segmentation framework in the following chapters. A 

methodology for the development of this framework is outlined at the end of the 

chapter. 

3.2. Identification of key problems in medical image segmentation. 

Medical image segmentation shares a number of common hard problems with any 

other type of image segmentation and adds to that specific problems related to 

medical applications and medical data sets. The need for better automatic or semi­

automatic segmentation of medical images has grown stronger in recent years, due to 

higher volumes of data requiring processing and higher quality of imaging across 

modalities, creating more application areas. Most applications in medical Image 

segmentation require high levels of accuracy, making manual segmentation 

particularly time consuming. The common hard problems which affect segmentation 

accuracy were mentioned in chapter 2 and can be summarised as: 

• The difficulty of distinguishing between edges within segments and segment 

boundaries 

• The inability for any segmentation method assummg homogeneous regIOns to 

successfully deal with composite stmctures in data sets \\'here intensities do not 

.+1 
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directly map to tissue types (such as cryo section data) without a post-processing 

step for region merging 

• The problem of incorrect boundary location 

• The often unintuitive nature of optimal parameter estimation in statistical models 

for the target user 

These problems must be solved for medical imaging data corrupted by artefacts of 

noise, inhomogeneity and partial volume artefacts. A problem in this respect is that 

different types of data, i.e. different modalities and sometimes even different 

acquisition modes of the same modality require: 

• Different countermeasures to common artefacts 

• Different feature detectors to accurately capture the intrinsic features of segment 

classes 

• Different image encoding of detected features to achieve optimal classification 

This results in vastly different implementations of the same algorithms for different 

image modalities. Consequently the user is often faced with different types of 

initialisation. Algorithms which incorporate countermeasures for specific artefacts 

(for example inhomogeneity [130,131]) rather than keeping the main segmentation 

algorithm generic and placing the countermeasures in an optional pre-processing 

stage, will lack flexibility in applications to new modalities. They may also impose 

too heavy a generalisation of artefacts, as noted by Likar [132]. Ideally the imaging 

modality should be transparent to the user when a specific segmentation system is 

employed. 

The initialisation of a segmentation system should require a minimum of interaction 

from the user, while still adding enough a priori knowledge to the system to ensure 

accuracy. There is some dispute in the community about whether the way forward is 

fully automatic approaches, which may one day be as sophisticated as human 

observers, or whether it is in semi-automatic segmentation, where the user has some 

direct influence on the segmentation. As previously mentioned, establishing context is 

important in any machine yision task. Howe\'er, quite clearly, establishing the nature 



Chapter 3: Requirements and methodology 

of the actual task and its ultimate goal is equally important. After alL the level of 

success achieved by any segmentation 11lethod applied to data, in which the calct area 

and location of segments cannot be measured at the source, is inherently subjective. It 

can only be measured against the desired goal of the user and in tum this goal should 

be the driving force of the segmentation. Fully automatic approaches are obyiously 

suitable for applications where vast amounts of data must be processed continuously 

and not necessarily with the highest level of accuracy. In such applications the goal 

may be to find distinctly different image areas and to determine the presence of 

objects in a scene and their approximate location. Medical image segmentation is a 

very different type of application, where there is a much more specific goal for a 

specific task. Gerritsen et al [133] identified the following list of problems with fully 

automatic segmentation in medical imaging (quote from [133]): 

Limiting assumptions - The targeted high level of automation often compels a number of 
limiting assumptions, e.g. regarding allowable image sizes, image resolution, noise level, 
contrast extent and the meaning of contrast (imaging protocol). These limitations are not 
necessarily expected by the clinical user, nor are they necessarily acceptable! 

Assumptions often not made explicit - Worse, these and other underlying assumptions 
are often not made explicit, and the consequences of any unexpected violations of the 
assumptions are not understood sufficiently, nor are they being inventorized in any 
details. 

Inefficient - Currently, the efficiency of the software implementations of the operators 
which are crucial to modern segmentation leaves much to be desired indeed. One of the 
possible causes is that a maximal, albeit non-optimal, accuracy is being used (in several 
aspects: e.g. in a scale-space environment the data representation, the shape of the 
scaling operator, and the number of scales). In its turn this might be caused by a lack of 
understanding of the effects of using less-than-optimal accuracy. It should be noted that 
the mere use of faster computer hardware and/or multi-processors may make the 
software faster, but not more efficient. Better speed does improve usability. However, 
competition with other processing approaches will necessitate efficiency improvements. 

Slow, because full-sized images are being processed - The fact that processing is often 
aimed at the full image stack, with segmentation of more objects than needed, will slow 
down considerably. This may be improved considerably by using interactive focusing of 
the algorithms. 

Limited testing - Because of the lack of speed mentioned above, testing is often limited 
to a rather small set of images with a relatively small variation of parameters. Both the 
parameters determining the image's appearance and the ones which are steering the 
processing are most often not varied sufficiently, due to the lack of processing speed. 

2D awaiting 3D - The slowness problem sketched above may also necessitate 
implementations to stay limited to 2D, with an inherently 3D version schedul~~ for better 
times in the future. This postpones gaining of insight into the problems arising from a 
generalisation of the dimensionality. 

Expert in the role of corrector - The role of the expert user is often reduced to th~t of a 
corrector of an automaton. It is desirable to put and keep the expert much more directly 
in charge, for defining the goals, for defining the way to get to the goals, and for steering 
along the way. 
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Automation that really helps as advertised (e.g. power steering in a car) is appreciated 
by the user. On the other hand, users feel frustrated and slowed-down if they have to 
~ontinuously correct "automatons" which do not perform sufficiently accurately in an 
Independent way (e.g. an imperfect "auto-pilot" in a car). 

Vicious circle - Have we, perhaps, made ourselves victims of a vicious circle? Having 
slow software, we try to avoid directly interactive use by doing massive precalculations 
and asking the user to afterwards interactively edit the results of automatic processing, 
thereby preventing the user from intelligently focusing, helping, steering. In its tum, this 
makes the computational problems much larger or more involved. As a result, the 
software becomes slow, so that we ... 

Gerritsen et al emphasise on giving control to the user and also mention the problem 

of speed. It should be noted that if too much control is given to the user, then the 

automatic part of the segmentation process may be faster, but the total time taken to 

complete the task may not improve. The proportion of the total time in which the user 

is occupied will certainly increase. Achieving a good balance is key. Furthermore if 

the user is directly involved in the segmentation, such as the case is with active 

contours and live wire, then the credibility of performance measurements compared to 

more automated techniques becomes questionable. The ability to focus a segmentation 

on a ROI (Region Of Interest) is, as Gerritsen et al point out, very important in order 

to increase the speed of the process. It may be useful for the final visualisation of a 

segmentation to isolate the ROI before segmentation begins. For example the skull 

and its contents might be extracted prior to segmentation by detecting the cortical 

surface in a separate segmentation process (see chapter 6, section 6.4.1). However if 

the segmentation process would fail to produce good results if this type of prior 

feature extraction was not used, then there is an obvious problem involved in 

accurately achieving this feature extraction in a variety of different data sets. The 

main point is that a crude focussing such as selecting a ROI within a scalable box or 

cube should be sufficient, rather than having to exactly outline the region. 

Olabarriaga and Smeulders produced a list similar to the one by Gerritsen et al in 

[134] and subsequently identified the following requirements for an Intelligent 

Interactive Segmentation system (nS) for medical images (quote from [134]): 

Apart from being robust and predictable in terms of reliability, the following requirements 
are posed on (liS) tools: 

1. Data provided by the user should be used to derive model parameters and not directly 
as a literal part of the output. This guarantees that a uniform process generates 
segmentation results, with important implications for measurement continuity. 
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2. Seg~entation results should be locally invariant to user intervention, being 
reproduc.lble u~der predictable limits of variations. This is achieved by searching for a 
local optimum In the segmentation quality, which is a measured value derived from the 
image data, the segmentation result, a priori parameter settings, and parameter values 
derived from the interaction. 

3. Interventions should have high semantics (small action = big impact into the desired 
direction). It requires the user to be able to predict the impact of her or his actions on the 
segmentation results, and it guarantees efficiency to the interaction. 

4. User input should be generalizable to allow inference for neighboring or similar 
elements; that is, it should be possible to "learn" from user input. This requires 
parameters derived from user input to be used as a priori values in the next 
segmentation task, guaranteeing efficient interaction. 

Olabarriaga and Smeulders underline the importance of not using the manual part of 

the segmentation process as a literal part of the output. The idea of using input data 

from the user to achieve learning in a classification system is accepted though. It 

could be argued that the training data should never be part of the data being 

segmented. There is however a difference between using an entire data set for training 

and simply using small user defined representative areas to learn the desired segment 

classes. With the variety in medical imaging data sets it would hardly be realistic to 

assume that training data from a few data sets would provide learning capable of 

producing segmentation of novel data as accurately as if the training data was derived 

from the data set being segmented. Small samples from a large volume might provide 

the necessary information about class relationships and artefacts in the volume, but 

this would most likely not transfer well to a different volume. Olabarriaga and 

Smeulders also make the point that a segmentation should be reproducible. The 

implication for semi-automatic systems is that initialisations by different users should 

produce similar segmentations of the same data. The exact definition of "similar" in 

this context is as subjective as the quality of segmentation and would depend on the 

specific application. 

Addressing Gerritsen et aI's point of "2D awaiting 3D", it should be added that 

processing speed is not necessarily the main problem. A greater implication could be 

for the accuracy of the segmentation. The segmentation of 2D slices reconstructed as 

a 3D segmentation is known as pseudo-3D segmentation, while segmentation using 

information in all three dimensions is known as isovolume segmentation [135]. 

Traditionally medical professionals have had to perfoml pseudo-3D segmentation in 
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their minds from looking at 2D medical imaging scans. This may be why the 

approach seems natural. However, given the technology to analyse data in three 

dimensions, this added information should clearly be used and not thrown a\vay. All 

available consistent information should be used to support any type of automatic 

classification. This is particularly important for small structures (in a given resolution) 

or structures which are hard to segment in a 2D slice, but become much more distinct 

if their features are "followed into the volume". However it should be noted that in 

order to take advantage of information in neighbouring slices in a 3D volume, a 

number of constraints on the acquisition process, slice registration and alignment and 

slice thickness must be satisfied. These issues are discussed in chapter 4, section 4.8 

and in chapter 6, section 6.4.1. Failing to do so could produce worse results than 

pseudo-3D segmentation. Consequently a careful decision based on the data at hand 

must be made about the extent to which data can be included in local representations 

to ensure consistency. The goal must be to maximise the utilisation of all available 

information, while minimising the level of interference caused to the original data in 

the process. 

3.3. Addressing key problems: Conceptual requirements. 

The proposed conceptual requirements for a segmentation system for medical imaging 

can be summarised as follows (addressing the points raised in section 3.2): 

1. A segmentation task in medical imaging is goal dependent and subjective. Some a 

priori knowledge should be transferred from the expert user to the system, making 

the system semi-automatic. 

2. At the same time, following the transfer of knowledge, the system should require 

a minimum of interaction with the user. Interaction should not be necessary to aid 

the segmentation if the goal can be explicitly stated first. Thus the actual 

segmentation stage should be as close to fully automatic as possible. 
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3. The segmentation algorithm employed should allow for focussing. The accuracy 

of segmentation should be maintained when applied to a ROI compared to the 

segmentation of a full image or volume. 

4. Accuracy is of the highest importance. The system should minimise distortion of 

detail, maximise the accuracy of boundary location and be tolerant to common 

artefacts. 

5. The system should adapt to patient specific data without imposing unwanted 

constraints from any type of generalisation. 

6. All stages of the segmentation process in an n-dimensional domain should use 

information in n dimensions, given that suitable requirements for consistency of 

information are met and that a possible increase in processing time can be justified 

by the increase in segmentation accuracy. 

7. Any processing needed to reduce artefacts in a specific type of data should be 

performed in a separate optional pre-processing step. This allows for the 

segmentation algorithm to be more generic and more easily adapted to a new 

modality. 

A number of technical requirements follow from the conceptual requirements. These 

are given in the following section. While the conceptual requirements are general 

recommendations, the technical requirements should be regarded as guidelines for the 

implementation of the conceptual requirements. 

3.4. Addressing key problems: Technical requirements. 

For the preliminary stages of research a choice had to be made about an initial focus 

on one imaging modality. Colour cryo section images were chosen as the starting 

point in favour of greyscale medical imaging scans. Little work has been done in tl1....: 
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area, compared to the vast amounts of research that has concentrated on greyscale 

medical imaging scans. Initially the investigation also focused on 2D images for less 

complexity and easier testing. However, an important consideration was the ability to 

easily extend any developed techniques to greyscale and to 3D colour/greyscale 

volumes. 

In order to facilitate a transfer of knowledge from the user to the segmentation system, 

the system should be able to learn. This involves the training of classifiers in a 

statistical framework. The learning should be based on training data, which can be 

selected in an intuitive way. Some approaches in the literature require the selection of 

appropriate filters, a long pipeline of image processing operations with manual 

intervention at several stages, or the selection of model parameters (the effects of 

which are often not clear to the target user). It seems a reasonable assumption that the 

most intuitive way of specifying the desired segment classes of an image for a human 

user, is to simply require the user to select representative areas of each segment class 

in one or more example images. This allows the user to visually define the goal of the 

desired ~egmentation. From the user's selection, what should be considered as 

segment boundaries and what should remain as edges within segments, is given. 

Boundaries do not have to be manually traced. This type of image template selection 

has been used in fast query systems (content based retrieval) for image databases, for 

example the work by Ratan and Grimson [136]. Conceptually it is a simple case of 

learning by example without complicated (and complicating) abstractions - simple for 

human beings, but complicated for an artificial system. However clearly the artificial 

system should adapt to the human user and not vice versa and in achieving this lies 

the research described in the remainder of this thesis. The first technical requirement 

can now be stated: 

1. The detection and correlation of features in texture classes should be established 

automatically from user specified representations. 

Due to the complexity of textures in natural (photographed) images, \vhich are often 

irregular and inhomogeneous, it is extremely difficult to specify any rules, which \\ill 

clearly define segment classes, \vithout imposing too great a generalisation. Intensity 
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ranges or values in any colour space are not easily defined for arbitrary real textures. 

Even if they were defined, any definition would apply to a very limited type of 

images. In medical cryo section data the same segment class may contain textures and 

colours which differ widely depending on location. There are low level descriptors 

such as intensity levels, gradients and relations in neighbourhoods of pixels, but it 

cannot be made explicit exactly how these come together to yield a particular 

classification. Homogeneity cannot be assumed and explicit rules cannot be specified. 

The ability to exactly mathematically describe a texture to the point where it can be 

accurately reconstructed, is certainly not impossible for natural inhomogeneous 

textures, but requires a number of assumptions to be made about the nature of the 

inhomogeneity and how it is affected by external factors. As noted by Bowyer and 

Phillips [137]: 

Conceptual elegance and sophistication of the mathematics are not necessarily 
correlated in a positive way with performance of an algorithm in application. If the use of 
more sophisticated mathematics requires more specific assumptions about the 
application, and these assumptions are not satisfied by the application, performance 
could even degrade. 

It is also a problem that statistical models are often evaluated on data, which has been 

synthesised using the same type of image model. Bowyer argues about this problem in 

[138]: 

The use of purely synthetic data is really a test of whether the implementation of the 
image analysis algorithm matches the assumptions of the model used to generate the 
synthetic data. 

Fitting a segmentation system for the type of data described above into a strictly 

Bayesian framework could be limiting. The use of, for example, backpropagation 

neural networks or fuzzy logic requires a careful selection of network topology or 

rules. Successfully adapting these for different data sets could be overly complicated 

for the target user. A vector quantization neural network approach is immediately 

applicable with a minimum of required network parameter settings, but at the same 

time highly dependent on the data representation used. It allows for the creation of a 

feature space consisting of large sets of low level descriptors extracted from selected 

image areas. From this feature space, correlations within texture classes emerge, and 

gi yen that convergence is reached, the system can be used for the segmentation and 
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classification of novel images. Rather than estimating a texture model, a set of 

average feature descriptors for each texture type is created. The approach itself does 

not guarantee that classes will be represented in a significant and mutually exclusive 

manner. It depends on the representational quality of the image encoding being used 

and the type of network architecture. The area of Artificial Life has seen the 

introduction of bottom up approaches for robotic systems as embodied situated 

agents. In Rodney Brooks' subsumption architecture simple interactions between a 

robot and its environment are used to learn more complicated behavioural patterns 

without explicitly specifying these [139]. It would be desirable to achieve the same 

kind of emergent properties [140] as classifications from low level descriptors in a 

machine vision system. 

The second requirement is: 

2. Vector quantization allows for a flexible classification system suitable for natural 

textures. Since such a system is only as strong as the data it is working on, a 

strong feature vector image encoding should be used. 

A feature vector representation must be evaluated within the chosen classification 

system. A supervised learning technique is implied for the working segmentation 

system. However, an unsupervised approach can favourably be used for evaluation 

purposes. If good results are achieved using purely automatic clustering, the 

correlations extracted from the feature representations are strong. The third technical 

requirement is thus: 

3. An unsupervised clustering technique should be used for evaluation of the feature 

vector developed according to technical requirement no. 2. A supervised learning 

technique will however be applied in the working segmentation system. 

The problem of correct boundary location and segmentation near edges must be 

addressed. This is a problem affecting most traditional segmentation algorithms. It 

will affect a segmentation carried out within the segmentation framt:\\ork proposed 
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above, for as long as image neighbourhoods are sampled in a traditional \\av (see 

chapter 4, section 4.3). The fourth requirement is: 

4. The problem of segmentation near edges and correct boundary location must be 

addressed in depth. A solution within the given segmentation framework must be 

found. 

3.5. Methodology. 

Based on a literature reVIew, a number of key problems in medical image 

segmentation have been identified. Conceptual and technical requirements have been 

established, forming the basis for three strands of work towards a robust framework 

for medical image segmentation with application to multiple modalities: 

1. The theoretical development of a framework to satisfy the conceptual 

requirements: 

l.l. Identification of the role of the user and the user's interaction with the 

segmentation system 

1.2. Algorithm development and incorporation of existing algorithms for: 

1.2.1. Low level feature detection, encoding and matching 

1.2.2. Higher level classification 

1.2.3. Pre and post-segmentation processing 

l.3. Identification of suitable empirical evaluation techniques for specific types of 

data 

2. The practical implementation of the developed framework adhering to the 

technical requirements: 

2.1. Implementation in software of the required algorithms 

2.2. Testing of implemented algorithms 

2.3. Generation of results based on suitable data sets 

~ 1 
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3. The empirical evaluation of the developed framework for multiple modalities: 

3.1. Comparative studies with other segmentation systems 

3.2. Quantitative evaluation on standard test sets using a standard performance 

metric 

3.3. Qualitative evaluation using human observer experiments and visual ranking 

In the following chapters 4 to 6 the developments within the three strands are 

presented in parallel in approximately chronological order (based on the order of 

events as they occurred throughout the project). Theory is presented, followed by 

implementation and results and finally evaluation. Particular considerations for the 

type of empirical evaluation suitable for specific types of data are discussed in chapter 

5. Chapter 7 is dedicated to a final qualitative evaluation of the proposed framework 

and thus only concerns the third strand of development as listed above. 
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Chapter 4 

The ACSR framework 

4.1. Towards a robust framework for medical image segmentation. 

This chapter describes how the conceptual and technical requirements set out In 

chapter 3 were met for 2D colour images. The methods developed are later evolved 

for 3D volume segmentation of colour cryo section data from the Visible Human 

Proj ect. Throughout the chapter a framework is built, describing required user 

interaction and a new concept for adaptable representation of segment classes and 

their segmentation. Algorithms are introduced to implement the framework and 

several segmentation pipelines are proposed. Preliminary evaluation is presented 

visually as segmentation results compared to previously published results on the same 

Images. 

4.2. Image encoding and classification. 

The SOM architecture was chosen for unsupervised classification, because it is a 

vector quantization method with an excellent track record in many different areas of 

pattern recognition [117]. The SOM has been demonstrated as being capable of 

performing well on large data sets sampled from real life domains. In Kohonen' s 

"Phonetic Typewriter" [141] a SOM was used to recognise speech from phonemes, 

deriving contextual information from neighbouring phonemes. In the WEBSOM 

project [142] thousands of newsgroup po stings were automatically clustered 

according to topic based on low level descriptors (words). There has also been 

numerous studies of the SOM as an image segmentation/classification tool. Iivarinen 

et al [143] did a study of object recognition in which they shO\ved that a SOM \\·as 

capable of classifying irregular objects into categories depending on overall shape. 
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Five simple shape descriptors were used, but none of the categories could be derived 

from any single descriptor. Thus the classification was based on learning the patterns 

of descriptors relating to each class. Lawrence et al [144] used a SOM for the 

classification of face images, based on two different types of feature vectors. In one 

type each component represented a specific position in the neighbourhood (its point 

intensity). In the other type one component represented the intensity of the centre 

pixel and the other components each represented the intensity difference between a 

specific pixel in the neighbourhood and the centre pixel. Campbell et al [100] used a 

SOM to segment artificial colour images and natural outdoor colour images. Their 

feature vector was based on OPC descriptors for the centre pixel and the response of 

16 manually selected oriented Gabor filters. 

Since the project described in this thesis began, a group at Helsinki University of 

Technology have developed an image based equivalent of WEBSOM for content 

based image retrieval. This project is known as PicSOM [145]. At UMIST (University 

of Manchester Institute of Science and Technology) there is ongoing research in using 

the SOM as a compression tool for streaming video [146]. 

4.2.1 Developing a feature vector for image encoding. 

The goal of this stage of development was to create a feature vector representation of 

the local neighbourhood of each pixel in an image. Example areas of images 

representing target texture classes (texture templates) should be encoded using this 

feature vector representation and used as training sets for SOM classifiers. The same 

encoding should subsequently be used on novel images for classification. Campbell et 

al [100] used oriented filters in their feature sets. This has the advantage of accurately 

describing oriented, regular textures. The disadvantage is that a filter bank must be 

created, based on the application. This is trivial within a restricted domain (such as the 

segmentation of Brodatz textures [147]), but problematic in larger, more complicated 

domains and requires extensive experimentation to achieve optimal results. Another 

problem with this approach is that the type of irregular textures found in cryo section 

images and medical imaging scans are the least suitable for oriented filter::, as feature 
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detectors. The representation of pixel neighbourhoods used by Lawrence et al [1'+'+] 

relied solely on pixel intensities, but it was oriented by associating relative position in 

the neighbourhood with a specific component in the feature vector. A representation 

for medical images should be invariant to rotation. A solution is to have a 

neighbourhood representation, which does not represent absolute spatial positions in 

the neighbourhood, while still maintaining a representation of the neighbourhood 

relative to the centre pixel. 

The idea of Lawrence et al [144] of using intensity differences was employed, but in 

the form of Average Intensity Difference (AID) between the centre pixel and each of 

its neighbours. This is equivalent to the average distance using the city block metric. 

It is a simple measure of spread within a local neighbourhood, which as opposed to 

the standard deviation puts a dependency on the centre pixel, i.e. the point being 

represented. Any pixel in a neighbourhood, which is corrupted by noise, will have an 

effect on the standard deviation, which is less for the AID, as long as it is not the 

centre pixel being corrupted. This reduces the number of pixels heavily affected by 

noise in terms of their representation. If the centre pixel is representative of its cl:iss, 

then errors in the neighbourhood can be averaged down with AID. If the centre pi:--:el 

is corrupted then the AID will give a more extreme deviation from the expected val~u.: 

than the standard deviation. It is then necessary to have additional descriptors to 

recover the correct classification. 

Since a window (neighbourhood representation) may contain pixels from more than 

one texture class (see fig. 4.1), a centre pixel representative of its true class must 

strengthen the classification by being explicitly represented. Thus similar to Campbell 

et al [100] and Lawrence et al [144] descriptors for the centre pixel are included in the 

feature vector. 

An orientation-independent representation of individual neighbourhood pixels is 

achieved by representing the total number of pixels in the neighbourhood falling 

within a number of uniform intervals (bins), covering the full range of a colour 

descriptor (depending on the colour model). All types of components are represented 

on a per descriptor basis. This means that for each colollr descriptor of a chosen 
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colour model, there will be one component to represent the centre pixel and one block 

of components to represent the neighbourhood. Average intensity difference is tied to 

the RGB colour model regardless of the colour model used for the other components. 

This gives three components for average intensity difference, one for each colour 

channel. 

c 

Fig. 4.1. An example of a neighbourhood representation in a 7*7 sampling window with centre 
pixel C. Window contains two classes (grey and white) but should represent only one (white). 

The feature vector representation using OPC is summarised in fig. 4.2. Any colour 

model could be used with this representation though, depending on the application 

(see the discussion on colour models in chapter 2, section 2.l.6). This encoding 

scheme shall hereafter be referred to as the PixelDefine encoding. 

In order to test the representational strength of the PixelDefine feature vector 

encoding, it was used for fully automatic image segmentation with a SOM classifier. 

The standard SOM P AK software suite [148] developed by Kohonen and his team at 

Helsinki University of Technology was used for implementation. First a set of 

suitable parameters were chosen (number of nodes, dimensionality, lattice type of the 

network, neighbourhood function, learning rates and number of training cycles). The 

number of nodes was set to be small - close to the number of desired segments. This 

was to avoid the need for an extensive post-processing merging operation. The 

dimensions of the lattice were determined by using the shape of Sammon's mapping 

[149] as a guideline. Choice of lattice type (rectangular or hexagonal) and 

neighbourhood function (Gaussian or Bubble [117,148]) did not affect results in any 

observable way. Learning was carried out in two phases following the guidelines for 

additional parameter settings suggested by Kohonen as general recommendations in 

[117]. The first phase lasting 1,000 cycles used a radius close to the largest dimension 

56 



Chapter 4: The ACSR framework 

of the map and a learning rate parameter of 0.9. The second refinement phase lasting 

10,000 cycles used a radius of2 and a learning rate parameter of 0.02. Different le\'e1s 

of binning were applied to the neighbourhood descriptors in the feature vector and 

tested on a range of cryo section images to find the maximum level (minimum 

number of components) producing good segmentation results, This was determined to 

be 16 components each representing 32 intensity levels for R-G and Y-B and 16 

intensity levels for luminance (as described in fig. 4.2). At this early stage evaluation 

of segmentation accuracy was achieved purely by visual inspection and through the 

comparison of average quantisation errors for the same data sets. 

Fig. 4.3 shows an image from the colon cryo section volume mentioned in chapter 1 

and its automatic segmentation using a varying number of nodes. Fig. 4.4 shows 

automatic segmentations of a cryo section from the Visible Human Project using a 

constant number of nodes but varying window size. It is evident that the detection of 

high and low frequency information is highly dependant on the window size. The 

results showed that even with the large degree of quantisation, with close 

correspondence between the number of codebook vectors and desired segments, 

meaningful segments were created fully automatically based on the PixelDefine 

encoding. The automatic clustering was facilitated by a representation, which was 

extracting sufficient information from the images. 

Following this stage of initial testing of the PixelDefine encoding, the approach was 

changed to use multiple SOM classifiers. A SOM for each segment class of the colon 

volume was trained with a learning feature vector set created from representative 

areas of the gelatine (in which the tissue was frozen), the healthy tissue, tissue of the 

polyp and blood vessels. Appropriate window sizes for each tissue type were used. 

Fig. 4.5 shows the segmentation of the image in fig. 4.3(a) into the desired segment 

classes. It was achieved by calculating the quantisation errors for the feature vector of 

each pixel in the novel image with the codebook vectors of each individual, trained 

SOM. The SOM that yielded the lowest quantisation error (best fit) was selected as 

the winner. As expected this approach gave results much closer to the desired 

segmentation. 
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Colour descriptors: 

RG: R-G+255 
VB: (R+G)/2-B+255 
L: (R+G+B)/3 
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Structure of a 54-dimensional feature vector representing an (N+ 1 )-neighbourhood: 

Centre pixel: 

I RGe I YBc I Ie 

012 

Neighbourhood pixels: 

Ifn(RGn 1 0 ~ RGn ~ 31) Ifn(RGn 132~RGn ~63) ... Ifn{RGn 1480 s RGn ~ 511) 
n n n 

3 4 18 

Ifn(YBn 10~YBn ~31) If,(YBn 132 ~ YBn ~ 63) Ifn{YBnI480sYB/1 ~511) 
/1 n ... n 

19 20 34 

Ifn(In 10sin ~15) I fn (In 116 ~ In ~ 31) ... If)In 1240 s In s 255) 
n n n 

35 36 50 

Average intensity differences: 

( ~IB,-B"I}N ( ~IC, -C"I} N (~IR, -R"I} N 

51 52 " 5-, 

Fig. 4.2. The PixelDefine encoding. 
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(a) (b) 

(c) (d) 

Fig. 4.3. Unsupervised SOM segmentation of cryo section based on Pixel Define encoding with 
varying number of nodes. (a) A cryo section (colon, polyp, gelatine). (b-d) Automatic SOM 
clustering of correlated image points using b: 31 nodes, c: 25 nodes and d: 16 nodes all with 
constant window size (9*9). 
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(a) (b) (c) (d) 

Fig. 4.4. Unsupervised SOM segmentation of cryo section based on PixelDefine encoding with 
varying window size. (a) Cryo section from the Visible Human Project Visible Male data set 
(bone, muscles, cartilage, gelatine). (b) Window size 3*3: Good representation of high frequency 
information, poor for low frequency, minor artefacts near boundaries. (c) Window size 7*7: 
Some high frequency information lost, better for low frequency, larger artefacts near boundaries. 
(d) Window size 9*9: Poor representation of high frequency information, good for low frequency , 
serious artefacts near boundaries. Number of nodes constant at 16 for all images. 

Fig. 4.5. Supervised SOM segmentation using multiple classifiers of source image in fig. 4.3(a). 
Segments classes are: gelatine (black), healthy tissue (red), polyp (green) and blood vessels (blue). 

co 
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4.2.2. From unsupervised (SOM) to supervised (LVQ) learning. 

According to technical requirement no. 2 a supervised learning approach should be 

used for the working segmentation system after developing the feature vector. It is 

clearly possible to continue using the SOM architecture in a supervised manner 

(demonstrated in fig. 4.5). However, there are a couple of important considerations: 

• Although the network architecture of the basic SOM is considerably simpler than 

for most alternative neural networks, there are still too many network parameters 

which need to be set depending on the learning data sets. Because there is no 

definitive way of estimating these parameters, the SOM remains somewhat of a 

black box. Consistent results were achieved with a heuristic approach to parameter 

selection, but consistency cannot be guaranteed. 

• Codebook vectors are not guaranteed to stay within their class regions if input 

samples overlap at the class boundaries. Consequently multiple individual 

classifiers were used to define class borders and simply used the SOMs to extract 

the best intrinsic features of each texture class. Comparing a novel feature vector 

with each SOM and finding the lowest quantisation error gave a winner. However, 

several different variables (such as quantity and quality of training data for each 

class) affect the relative bias of quantisation errors in each class. Quantisation 

errors for novel image feature vectors were calibrated according to the 

quantisation error of each SOM with its original learning data set. This is still not 

an ideal approach, which may result in misclassifications. 

These two points are not problems with the SOM architecture. They only become 

problems in an attempt to use, what is essentially an unsupervised approach, in a 

supervised manner. Classes are required to be spatially ordered and some knowledge 

about the input data distribution and the nature of the data must be given in order to 

facilitate optimal training. L VQ, the supervised learning equivalent of the SOM. does 

not have these requirements. Because the L VQ is purely a pattern recognition tooL 

where classes are not required to be spatially ordered in the same way as in the SO\ 1, 

fewer parameters are needed. Furthermore L VQ guarantees that codebook \"ectors 
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stay within their class regions, making an approach to multiple competing classifiers 

more feasible. L VQ is a natural choice for the supervised architecture, because of its 

close similarity with the SOM. Codebook vectors are even interchangeable between 

the two. As for the SOM, LVQ is well established in the machine vision literature (see 

e.g. [150,151]). 

4.3. Addressing the problem of segmentation near edges. 

One of the major sources of inaccuracies in image segmentation is incorrect boundary 

location. This extends in more general terms to incorrect classification of pixels near 

edges. Examples were given in chapter 1 of how segment boundaries may not be 

correctly located using a variety of algorithms. Because of the seriousness of this 

problem to medical applications and because of the multitude of traditional 

segmentation methods affected by the problem, this research proj ect has devoted a 

substantial amount of time to addressing the particular problem of segmentation near 

edges. A solution to address this problem is presented here, incorporating the use of 

the type of L VQ classifier detailed in the previous sections and the PixelDefine 

encoding. 

Filtering and regIOn based analysis of sampling points for image segmentation 

traditionally rely on some form of rigid sampling window. This includes the 

convolution with kernels and region based representations. Generally high frequency 

information requires a small sized window, while low frequency information requires 

a larger size, to capture sets of representative spatial frequencies at a given point. 

Although tied to the spatial domain, the problem has many similarities to the 

problems mentioned in section 2.1.4, which sparked the development of the \\a\'elet 

transform for frequency domain analysis. As explained in section 4.2.1, class-specific 

window sizes were used when sampling for SOM processing, based on prior 

knowledge about the textures to segment. A similar solution is to use dvnamic 

adaptation of window size to local image areas (based on frequency information) as 

suggested by Xiong and Shafer [152]. This may produce better representations of 

local spatial frequencies (or clusters of point descriptors), but the ideal shape for a 



Chapter 4: The ACSR framework 

particular texture class at a particular sampling point could still be incompatible with 

the constraints of a fixed shape window. Different shapes of the sampling \\indow 

may be desirable for different texture classes at different sampling points. Increasing 

the size of the sampling window increases the problem of localisation in the spatial 

domain and reducing the size of the window reduces the amount of information 

available locally for classification. 

Spatial filters with non-uniform kernels, such as the cone and pyramid filters [153 J 

used for image sharpening, give maximum weight to the centre pixel, while the 

weight of pixels in the neighbourhood decreases with distance to the centre pixel (see 

fig. 4.6). Using the output of these filters directly to create point descriptors for a 

classification system or for a weighed neighbourhood sampling may give an improved 

neighbourhood representation, but it does not eliminate the problem of the rigid 

window or kernel. Ideally a different kernel should be used at each sampling point 

depending on the local information, but this brings back the classic dilemma 

mentioned III chapter 1: Segmentation begs classification and classification begs 

segmentation. 

1 232 1 
2 4 642 
3 6 963 
2 4 642 
1 232 1 

(a) 

h
. . 1 
(x,Y) = 25' 

00100 
o 2 220 
1 252 1 
o 2 220 
00100 

(b) 

Fig. 4.6. Filters with non-uniform kernels giving maximum weight to the centre pixel. (a) The 
pyramid filter. (b) The cone filter. 

For the training of neural networks and the selection of templates for template based 

methods, boundary pixels are usually avoided [154]. At least this provides 

representative templates. but problems occur when boundaries in novel images are 

encountered. In a study by Feng and Shaowei [154], edge points (found Llsing 

multiscale edge detection and edge linking) \\ere included in the training data to learn 

expected misrepresentations. Such an approach can be successful for \ery specific 
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applications, but lacks the flexibility needed to deal with anomalies, and easy 

adaptation to new application areas is difficult. Learning every possible type of edge 

in large data sets is rarely feasible and still makes the exact location of segment 

boundaries unpredictable due to the rigid window sampling. 

4.4. Introducing the ACSR framework. 

In traditional image sampling, one sample must represent every possible segment 

class as accurately as possible. Alternatively, when sampling at multiple scales, 

constraints can be imposed to increase the probability of a local sample being 

representative of a specific class, but with varying amounts of information available 

for classification at various scales. Rather than trying to accommodate all segment 

classes in a single sample or a scale space of samples, the aim should be to 

accommodate each segment class individually, creating a topologically different 

representation for each class for every sampling point with a constant amount of 

information available for classification. These representations can compete for the 

winning classification or they may be used for further processing by a higher-level 

statistical classification system. 

Adaptable Class-Specific Representation (ACSR), a segmentation framework for 

accurate class-specific representation of point neighbourhoods, is introduced. 

In Adaptable Class-Specific Representation every sampling point has a umque 

representation based on neighbouring pixels in n dimensions for every texture class. 

Every point is considered as a potential candidate for all of the desired segment 

classes. A representation is created for every class, in each case under the assumption 

that this class is the correct classification. No bias is present, since all classes are 

considered individually and independently of each other. Representations are also 

created independently of already classified points in the neighbourhood (i.e. such a 

classification is unknown to the system in the next step once it has been made in the 

previous step). In the same way every point, which forms part of a representation, \\ill 

itself be represented separately. A local representation for each class is built as an 
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adaptive sampling window based on the matching of low level descriptors. The 

representations approximate the optimal representation for each class. This means that 

regardless of the evaluation criteria or classification system employed, all segment 

classes are consistently "competing on equal terms" for the final classification of a 

sampling point. This is in sharp contrast to traditional single representations where a 

rigid sampling window may produce a representation, which is highly stable for 

texture class A and highly unstable for texture class B, even if B is the correct 

classification. Representations are not segments. If they were, then the exercise would 

be pointless, as prior classification would be assumed. Prior classification would 

assume a classification of the neighbourhood and this would assume a rigid sampling 

window. Rather than that, low level point descriptors facilitate the construction of 

representations for each segment class, and based on a comparison of these, a 

classification is made on a point per point basis. Thus the connectivity of classified 

points into segments is not explicitly implemented. Instead, segments and boundaries 

become emergent properties of a dynamic process. 

4.5. Introducing the Path Growing Algorithm. 

The Path Growing Algorithm (PGA) implementing ACSR is considered here in the 

first case for 2D colour images. The low level descriptors used are colour descriptors 

based on a suitable colour model for a given application. For every segment class, a 

representative texture fragment must be given. This is provided by the user by simply 

marking out one or more areas of an image with a selection tool and giving it a label. 

Generalising to artificial (perfect) homogeneous, regular textures, a representative 

fragment is one, which reflects the spatial frequency of a texture class and the colour 

space it inhabits. For example an ideal fragment of a texture produced by a single sine 

wave grating with a single colour offset should cover a minimum of one full cycle. 

The PGA does not use the spatial frequency information, but this is a means of 

representing individual point descriptors across the full variation of a texture. Of 

course in real images most textures are highly irregular and often inhomogeneous. 

The task [or the user then is to maximise the representation of variations across the 

full texture in the selected fragment(s). The texture fragments are used to create 
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templates, which are sets of unique combinations of colour descriptors for pixels in a 

texture. The texture fragmenls can also be encoded for the training of higher leyel 

classifiers, which may process samples created by path growing in novel images. 

Relations between neighbourhood pixels are exploited in the co-occurrence matrix, 

but only selected pairs of intensities in the neighbourhood are considered. This idea 

could be extended to the co-occurrence of neighbours belonging to the same class, 

according to a template. Multiple distances and orientations may be used for the co­

occurrences. However, the co-occurrence matrix does not provide an underlying 

structure for a fully connected neighbourhood and the spatial relations are hard-wired 

for a particular image and do not change dynamically. 

If all possible combinations of a centre pixel and its neighbours within a k 

neighbourhood in 2D were to be considered, the total number of possible 

representations of the neighbourhood (assuming that at least one neighbourhood pixel 

be represented along with the centre pixel) would be 2k-l. A 25-neighbourhood would 

thus give 16.7 million combinations. If this was extended to a 25*5-neighbourhood in 

3D, the equivalent number would be 2* 1 037
. This number would obviously be smaller 

if connectivity between all represented pixels was assumed, but still computationally 

unrealistic. 

In order to reduce the number of combinations that must be considered, the PGA 

builds a larger sampling window from smaller components. These components are 

themselves built from single points. Some constraints on the possible topology of the 

sampling window apply, but the algorithm allows for a large degree of plasticity of 

the window shape. 

The basic components of the PGA can be described in terms of graph theory as paths. 

Swami and Thulasiraman give a clear definition of a path (quote from [155]): 

A walk in a graph G=(V,E) is a finite altering sequence of vertices and edges vo, e1, V1. 
e2, ... Vk-1, ek, Vk beginning and ending with vertices such that VI-1 and Vi are the end 
vertices of the edge ei, 1 ~ i ~ k_ Alternatively a walk can be considered as a finite 
sequence of vertices vo, V1, V2, ... , Vk, such that (VI-1, VI)' 1 ~ i ~ k, is an edge in a the 
graph G. This walk is usually called a Vo - Vk walk with Vo and ~k referred to as the end or 
terminal vertices of this walk. All other vertices are internal vertices of thiS walk. Note that 
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in a walk, edges and vertices can appear more than once . 

A walk is open if its end vertices are distinct; otherwise it is closed . 

... A walk is a trail if all its edges are distinct. A trail is open if its end vertices are distinct; 
otherwise it is closed ... 

... An open trail is a path if all its vertices are distinct. 

In the PGA paths are grown from a seed point up to a pre-defined path length M (not 

including the seed point). A local neighbourhood of pixels (or voxels) may be 

described as points on an n-dimensional structured grid in a Cartesian coordinate 

system, where the distance between all neighbouring points is 1. The seed point may 

be considered as the origin, i.e. the centre of the grid. The path P uses points from the 

grid as vertices and the seed point is always one of the two end-vertices. Paths are 

thus grown from the origin, including one new vertex at a time. Two vertices are 

adjacent if the distance between them is 1. The growth uses a 2n-connected 

expansion. This means that all reachable points form a diamond shape around the seed 

point (fig. 4.7). Paths are ranked in a hierarchical fashion according to their match 

with a template. This is done for all segment classes. The sampling window is built 

from a core best path and a number of other closest-match paths until a pre-defined 

number of points is reached. The path length and number of points per window can be 

changed depending on resolution and scale, but different path lengths for different 

classes may be employed if appropriate. 

Fig. 4.7. Points reachable at a given path length form a diamond shape aro~nd t.he seed point S in 
the PGA. In this 2D example the path length is set to 3. Any cluster bUIlt uSing a 4-connected 
expansion within the diamond containing the seed point can constitute the sampling window for 

a class. 
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The PGA may be considered a local region growing algorithm, since points are added 

to the local neighbourhood representation according to a user-defined criteria. There 

is however an important difference between the PGA and traditional region growing. 

in that matching is done at the region level rather than the point level. An immediate 

neighbour of the seed point, which itself gives a non-optimal match, may be included. 

if it provides access to other points (in a connected chain), which gives the o\erall 

best match to that particular path. If changes in descriptors throughout a path are 

considered as state transitions, the next state depends not only on previous states but 

also on all the potential next states. It must again be stressed that the aim is not to 

model texture, but merely recognise features, which are known properties of a 

particular segment class. As opposed to region growing, every image point 

successively becomes the seed point and a new set of class-specific representations 

are found. Thus the algorithm does not explicitly facilitate connectivity of points at 

the image level into regions or segments. The following four sections explain the 

steps of the PGA from single seed points to multiple ACSR sampling windows in 2D 

colour images. 

4.5.1. Single-pixel template matching. 

All sets of colour descriptors in every template in tum are compared to the sets of 

colour descriptors for reachable pixels, including the seed point P Xs· The match value 

PXMki for pixel PXk with template Ti, using} descriptors: 

PXMk; = J~if .. [ ~ITXDifi -PXDkjl] 
(4.1) 

where TXDifJ is descriptor} for pixel f out of fmax pixels in template Ti . P XDkj is 

descriptor} for pixel PXk. PXk E K, where K is the set of all pixels including and 

reachable from seed point P Xs , using a 4-connected expansion with a length of ,\/ 

pixels. 

The Sum of Absolute Distances (SAD) is used in favour of the Sum of Squared 

Distances (SSD). The goal at this step is to find the best representation of each single 

class, by calculating the distance to a single template, and not to find the \\ inning 
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class by calculating the distance to all templates and comparing them. Taking into 

account that image artefacts may corrupt some descriptors and leave others unaffected 

(see section 4.2.1), it is beneficial to reward representations, which have a very close 

match with some descriptors, even if others are far off. The SAD does this, while the 

SSD penalises such representations, compared to representations where the error is 

evenly distributed across descriptors. 

4.5.2. Path Growing from a seed point. 

Two values are calculated at this stage: the path value for every path representing 

every template and the total path spread for every path. For the path PI starting from 

seed point PXs, the path value PVi/ for template Ti is: 

The path PI is a set of pixels PI = ( PXo , ... ,PX.\J), where PXo = PXs and ~ c K. 

Paths with less than M+ 1 elements are illegal due to overlap with themselves. 

The total path spread is defined as: 

M 

(PXDSi - JilJ2 + L (PXDri - flU)2 

0--" 1- L.... 
i 

M 

PXD si + LPXDrj 
r=1 

flu = 
M+l 

r=1 

M+l 

4.5.3. Ranking the paths. 

A solution hierarchy is created by ranking the paths for each Ti, so that ~ --< ~, : 

if PVi/ < PV,l' or 

(4.3) 
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Thus the best path at the top of the hierarchy has the highest possible spread for a path 

with the lowest possible path value for a fixed T/. A hierarchy exists for e\erv 

template, for every seed point. In textures with similar local areas and different 

surrounding areas, maximising the path spread at equal path values provokes a 

migration from the similar to the different areas. The combined representation of both 

areas becomes distinct. Since it is harder to obtain a low match value at higher spread, 

these representations are favoured. Thus the cost of choosing a representation with 

low spread is higher than that associated with choosing one with higher spread at the 

same distance to different templates. 

4.5.4. Building the sampling window. 

The core of the sampling window for template Ti, representing a seed point, consists 

of every pixel from the path PWINi which is at the top of the solution hierarchy. 

Additional novel pixels (PXk ~ PWINJ are added by traversing the hierarchy from the 

top down until a pre-defined total is reached. The resulting region 1S the sampling 

window for template Ti . A region in this context is not a segment, it is a representation 

of the seed point. All other pixels in the region become seed points and are 

represented by their own unique regions for each Ti . 

For a discussion of the complexity and computational overhead of the PGA, please 

see appendix C. 

4.5.5. Classifying representations created by the PGA. 

For each sampling point a classification may be gIven directly from the 

representations created by the PGA. It is done by selecting the class-specific 

representation with the highest path spread out of those representations with the 

lowest path value (similar to the way individual paths are ranked). It is also possible 

to add a higher level classification system on top of the PGA. In the study described 

in section 4.6 the PGA was used in combination with L VQ classifiers and the 

PixelDefine encoding. The study investigated if representations created by the PG.\ 
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could favourably replace traditional window sampling for a neural netvvork method, 

such as LVQ. 

From the texture fragments used to define the templates for the PGA, feature vectors 

are encoded using the PGA on fragments based on their own templates. This means 

that all encoded paths have the maximum possible path spread and allows sampling of 

arbitrarily shaped fragments. All vector components are localised and standardised by 

shifting the mean to zero and dividing by the standard deviation [156]. The learning 

vectors are used to train individual LVQ classifiers, one for each segment class, using 

the Optimized Learning Vector Quantization algorithm [117] for fast convergence. 

Class-specific feature vectors from novel images are encoding from the 

neighbourhood regions generated by the PGA. These are transformed using the same 

parameters for the means and standard deviations found in the training sets and the 

L VQ classifiers produce the final segmentation based on lowest quantisation error. 

4.6. Preliminary results for 2D colour images using ACSR and L VQ. 

The results in this section were originally presented in the first paper published un 

ACSR and the PGA [157]. An artificial colour image, a natural colour image and two 

cryo sections were segmented and compared to other segmentation methods using 

sampling windows of fixed shape and/or size. 

ACSR segmentation was applied to an artificial test image from the study by 

Campbell et al [100], mentioned several times previously. In summary, the study used 

a SOM classifier working on a representation of the centre pixel and the response of 

16 oriented Gabor filters at each point. For the ACSR segmentation, the HSV colour 

model was used to produce the low level descriptors for the PGA and the PixelDefine 

encoding. It was chosen in favour of OPC because the image was artificial with 

segments of uniform colour components (see chapter 2, section 2.1.6). Feature vectors 

using the 54-dimensional PixelDefine encoding were used to train the L VQ classifiers 

using the LVQ_PAK [158] implementation. 
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The artificial test image has a grey scale low frequency sme wave grating as 

background. Segments consist of a square of randomly coloured pixels with a unifonn 

distribution, a solid cyan circle and two differently oriented sine wave gratings at 

higher frequency than the background, with a green colour offset. Gaussian white 

noise was added [100]. Since the PGA is orientation independent. a modification to 

the approach had to be made in order to correctly distinguish between the two 

different orientations of the grating texture. Orientation detection shall not be covered 

in great depth, since as previously mentioned, it is rarely a desirable feature for 

medical image segmentation. However, since orientation detection can be important 

in other application areas, the problem was addressed for the sake of completeness. 

Orientation was detected in a second sub-classification stage following the primary 

texture classification. The texture type was classified first and then its orientation. 

Two L VQ networks were trained, one with and one without orientation infonnation. 

Orientation was encoded as the major local gradient directions, detennined by the 

topology of the path yielding the highest intensity spread at each image point. As 

opposed to the path spread used for non-oriented classification (highest spread of all 

descriptors in a colour model of choice), this spread represented the summed spread 

of intensities in the red, green and blue channels of each vertex in a path (purely 

reflecting the spread of intensity). The width and height of each path's bounding box 

was encoded. For the two orientations used in the test image, orientation would 

depend on either the width or the height being greater than the other. This encoding 

was sufficient to automatically encode orientation from selected image fragments 

without any pre-selection of oriented filters. For the segmentation of the full image, a 

primary segmentation was first carried out based on the templates and non-oriented 

classifiers created from the selected texture class fragments. The template of the 

grating texture was then automatically replaced by a template based on the segments 

for that texture class found in the primary segmentation. In the second subsequent 

segmentation step intensity spread was calculated based on the new template (making 

all points in the segments a perfect match would force the selection of the winning 

paths to be based on spread only). Orientation encoding \vas added to the feature 

vectors created in the primary segmentation step and the oriented classifiers were used 

to produce the final segmentation. This segmentation pipeline is illustrated in fig. -+.8. 
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Fig ... "8. The full ACSR pipeline as proposed in 1157). (a) Training of classifiers and template 
creation. (b) Segmentation of a novel image. Flow through non-oriented processes. If oriented 
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the final segmentation. 
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Fig. 4.9(a) shows the original test image and its segmentation from [1 00J (fig. 4.9(b)). 

Although most pixels inside the segment boundaries have been correctly classified. 

strong artefacts near the boundaries are present. Fig. 4.9( c) shows the standard non­

oriented segmentation using ACSR and the PGA with LVQ classifiers. Fig. 4.9(d) 

shows the segmentation with added orientation detection. The latter is 100% identical 

to the ground truth segmentation as specified by Campbell et al [100J. 

(a) (b) (c) (d) 

Fig. 4.9. An artificial image and its segmentation. (a) The source image [1001. (b) Segmentation 
from 11001. (c) ACSR segmentation without orientation detection. (d) ACSR segmentation with 
orientation detection. 

For the three real colour images, orientation detection was not applied. In favour of 

the HSV colour model , the OPC model was chosen (see section 4.2. 1 and chapter 2, 

section 2.1.6). The natural colour image was also a previously published test image, 

used in a study by Williams and Alder [159]. It was a study of a CBIR (Content Based 

Image Retrieval) approach, using a split-and-merge segmentation, which yielded 

results that could be compared to ACSR segmentation. Fig. 4.1 O(a) shows an image of 

an eagle over water, originally taken from a Corel Photo-CD (reproduced under 

license). Fig. 4.10(b) shows the segmentation from [159]. Most edge pixels were 

marked as "unused" (i.e. unclassified) and appeared as black regions. It was noted in 

[159J about the edge artefacts in the segmentation that "this phenomena is 

desirable". This was due to the benefits of distinct regions for CBIR. It was howe er 

clearly still an artefact rather than a deliberate feature of the segmentation algorithm. 

Fig. 4.1 O( c) shows the ACSR segmentation of the original image using path growing 

and L VQ. Fig. 4.10(d) shows the contour of the eagle emerging from thi 

segmentation. The contour appears as an optimal edge detection. The boundary pi; el 
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in the segmentation presented in [159] include pixels from different segment classes. 

Based on the outer edge, "water" appears inside the contour for "eagle" in fig. 

4.1 O( e) (notice areas above the left talon and near the tail and head) . 

(a) (b) (c) 

(d) (e) 

Fig. 4.10. Segmentation of eagle over water. (a) The source image. (b) Segmentation from 11591. 
(c) ACSR segmentation using PGA and LVQ. (d) Contour from (c) overlaid on the source image. 
(e) Contour from (b) overlaid on the source image. 

While the first two test images were not medically related, their segmentation 

provided a benchmark test by comparison to previously published segmentation 

algorithms with fixed window shape. The two remaining test images published in 

[157] were single 2D cryo section images taken from the Visible Human Project. The 

ACSR segmentation was compared to a segmentation using the same training data for 

LVQ classifiers, but sampled with a best fixed size window (the window size 

producing the best overall segmentation). Fig. 4.11 shows a part of a cryo section and 

its segmentation. The segmentations of hard bone, bone marrow and muscle for the 

two approaches are almost identical. There are only two types of boundaries between 

the desired segments (muscle/hard bone and hard bone/marrow), and their colour 

components are dissimilar to any individual class. Fig. 4.12 shows another part of a 

cryo section from the Visible Human Project. The segmentation divide the image 

5 
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into 4 distinct regions: a piece of the colon, fat, muscle including fascia and blue 

gelatine (in which the cadaver was frozen). Compared to fi g. 4.11 , this image has 

more boundaries and bordering segments are of greater similarity. Again the image 

was segmented using the best fixed-size sampling window and L VQ classifiers. as 

well as path growing and L VQ. In this case, the segmentation using the best fixed-size 

sampling window was clearly poorer than the path grown segmentation. There are 

strong edge artefacts, and a large part of the muscle fascia is confused with fatty 

tissue. The path grown segmentation has a few misclassified pixels, but the edges are 

clearly defined. The muscle and fascia have been correctly segmented into one 

segment (this was specified as a goal by templating both tissue types under the same 

label and across their boundary). Although the edge between muscle and fascia is very 

similar to the boundary between fascia and colon and between colon and fatty tissue, 

all boundaries visually appear to be precisely located. 

.. , . 
(a) (b) (c) 

Fig. 4.11. Segmentation of muscle (outer segment), hard bone (middle segment) and bone marrow 
(inner segment). (a) The source image. (b) Segmentation using best fixed-size sampling window 
and LVQ. (c) ACSR segmentation using PGA and LVQ. 

(a) (b) (c) 

Fig. 4.12. Segmentation of colon (upper left segment), fat (upper middle segment), bl~e gelatine 
(upper right segment) and muscle including fascia (lower segment). (a) The source I~age . . (b) 
Segmentation using best fixed-size sampling window and LVQ. (c) ACSR segmentatIOn usmg 

PGA and LVQ. 

7 
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For the images presented in this study no comparison of segmented images \\ith a 

ground truth segmentation was performed, except for the first image. This image \\as 

artificially created and thus boundaries can be exactly located. In natural images 

however, the exact boundary location is slightly fuzzy and a ground truth 

segmentation depends on the individual creating it. Visual inspection of boundaries 

and a visual comparison between different segmentations may therefore be as valid a 

result as a comparison with a ground truth image on a pixel per pixel basis. This vie\\ 

was particularly strongly expressed by Heath et al [160], who used human observer 

experiments to determine the quality of five different edge detection algorithms and 

avoided ground truth images. For a more detailed discussion about the evaluation of 

segmentation methods including ACSR, see chapter 5,6 and 7. 

The results show that the PGA is capable of producing adaptable regions, which can 

be encoded for L VQ classification, producing better results than what could be 

achieved with traditional rigid window sampling. This would be likely to extend to 

other classification systems traditionally relying on rigid window sampling. However 

it was found after the pUblication of the study that when classification was based on 

the PGA directly, the results produced were virtually identical to those produced by 

the LVQ classifiers. This finding was repeated on a lar,~c number of additional 

segmentations of cryo section images. 

In conclusion to the results presented in this section, ACSR segmentation consistently 

produced better results compared to three different segmentation algorithms using a 

form of sampling window with fixed size and shape. The combination of ACSR and 

LVQ classifiers showed that superior results were achieved with plastic sampling 

windows, compared to the traditional use of fixed shape windows for L VQ. It also 

appeared that the PGA alone could produce similar results. This indicated that rather 

than just being a pre-processing tool for L VQ classification, the PGA could in fact 

replace the L VQ classification. However a reversed combination of the two is a better 

option as section 4.7 will explain. 
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4.7. Focusing ACSR. 

One of the conceptual requirements stated in chapter 3 was the ability to focus a 

segmentation algorithm. Normally this means the selection of a ROI by the user. The 

PGA works on individual image points and can segment any isolated subsection of an 

image without significantly degrading the quality of segmentation compared to 

segmentation of the full image. Therefore the requirement is easily met for manually 

imposed focusing. This section describes an automatic focusing, which aims to 

produce the same results as the non-focused algorithm, but faster. 

As mentioned in the previous section, experiments with ACSR using the PGA for 

colour images have shown that the core algorithm is capable of producing accurate 

results identical to those achieved with the added L VQ classification. It is ho\\'c\'er 

still highly processor intensive. L VQ classifiers using the PixelDefine encoding and a 

fixed size sampling window generally produce accurate results inside segment 

boundaries, but misclassifications near boundaries. The combination of these two 

observations is the background for partial ACSR. 

Partial ACSR is an automatic focusing of the PGA on points near edges. It may be 

based on any template based method, where the templates can be used to drive the 

PGA. A point based nearest-neighbour classifier has been used for discrete 2D images 

and LVQ for image volumes (see sections 4.8, 4.9 and section 5.3 in chapter 5). 

When using LVQ classifiers for partial ACSR, rather than applying them after the 

PGA to create the final segmentation, they are used prior to the ACSR segmentation 

for creating a faster, preliminary segmentation. The smallest possible window size 

(3*3 in 2D, 3*3*3 in 3D) is used to capture as much detail as possible. The small 

window size inevitably leads to oversegmentation (too many segments) and artefacts 

near edges. By applying the PGA in the neighbourhood of boundary points found 

using the preliminary L VQ segmentation, artefacts are eliminated and segments are 

merged to produce the final segmentation. Because boundary location in the initial 

segmentation will be inaccurate, it is not sufficient to simply apply the PGA exactly at 

boundary points. A dilation operation is used to grow the boundaries of the initial 
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segmentation by a user defined factor (determining the thickness in pixels on either 

side of the detected boundary). This will depend on how close the initial segmentation 

is to the desired segmentation. Assuming a representative template selection, this 

factor can be small. Values of 2 or 3 are sufficient. This dilated boundary map is 

subsequently used as a mask. The PGA is applied only at boundary points and the 

results replace these points in the initial segmentation. The remaining points are 

unchanged. Fig. 4.13 shows an example of partial ACSR applied to a cryo section 

brain image. The segment classes are "grey matter", "white matter" and "other". In 

the binary mask image the grey areas show where the initial L VQ segmentation 

remains, while the PGA is applied at all points within the black areas. Because of the 

boundaries taking up a large part of this image, the increase in processing speed is 

moderate. However in some types of images the initial segmentation may well 

constitute the largest part of the final segmentation. 

Partial ACSR can provide a substantial reduction of processing overhead compared to 

full ACSR. The actual speed increase varies between images and depends on the 

dilation factor used and the number of original boundary points in the coarse 

segmentation. Good results have been achieved, showing identical segmentations to 

full ACSR (see chapter 5, section 5.3). 

(a) (b) (c) (d) 

Fig. 4.13. Partial ACSR segmentation of cryo section brain slice. (a) Source Image. (b) LVQ 
segmentation. (c) Mask image showing dilated boundaries (dila~io.n. factor 3) from the .LVQ 
segmentation. (d) Final ACSR segmentation composed of masked IDlhal LVQ + PGA applied at 

dilated boundary points. 

4.8 Isovolume and pseudo-3D segmentation. 

It is trivial that the PGA is readily extendable to n dimensions. Similarl the 

Pixel Define encoding may be based on sampling of local neighbourhoods, hich are 
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cubes of any number of dimensions (a square in 2D, a cube in 3D, a hypercube in 4D, 

etc.). When applied to 3D volume data, by using information in all three dimensions , 

true isovolume segmentation can be achieved within the ACSR framework. Volume 

segmentation means a considerable increase in processing time compared to 2D 

segmentation (depending on the dimensions of the volume and the path length used 

by the PGA). To address this problem, partial rather than full ACSR is applied. The 

only two differences from the 2D case are that the PGA uses a 6-connected rather than 

a 4-connected expansion and the L VQ classifiers are based on sampling with a 3*3*3 

sampling cube rather than the 3*3 square sampling window in 2D. 

Partial ACSR and L VQ classifiers have been used for isovolume segmentation of 

colour cryo section volumes from the Visible Human Project. This study was 

published in [161]. 

As mentioned in chapter 2 (section 2.2), isovolume segmentation clearly has the 

advantage over pseudo-3D segmentation of more information to support a 

classification at each point. Some approaches such as [162 J use a volume 

segmentation, which relies on a prior segmentation step in 2D. This can obviously 

reduce the benefits of volume segmentation by excluding data, which would 

otherwise have been available to a volume segmentation applied to the original data. 

With 3D partial ACSR and L VQ, information in all three dimensions is used at all 

stages of the segmentation pipeline. However, to guarantee the benefits of isovolume 

segmentation of cryo section volumes, a number of assumptions about the data must 

be made. First of all it must be assumed that all slices are accurately aligned. Secondly 

it must be assumed that the image acquisition for every slice is done under the same 

conditions. This means that the slice plane (the photographed surface) is in fact 

always a plane, i.e. a smooth surface (with a constant tilt angle), that the camera 

position and direction is unchanged, and that the light sources used to illuminate the 

slice images are unchanged throughout the whole volume. The PGA and the use of 

opponent process colour descriptors allows for some changes in intensity across a 

volume. However, Chandler et al [163J have shown that any directional light source is 

effectively a directional filter. This means that if the position of a light source 

changes, illuminated textures change too. Such a change \\'ould affect the 

so 
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correspondence between templates and local image areas. This could have serious 

effects on segmentation accuracy (although algorithms using oriented filters are more 

sensitive to this problem) unless changes to light sources are accommodated by an 

adaptive template scheme with separate template sets for separate illuminations (or 

possibly using principal component analysis of the same images under a variety of 

lighting conditions to learn the invariant texture features). Different tilt angles relative 

to the camera produce perspective effects, which also affect textures in a way, which 

could render the classification system unreliable, unless countermeasures are taken. 

Finally the slice thickness should be minimal to avoid large scale partial volume 

artefacts. What is acceptable depends on the structures being segmented and the 

resolution of the volume. In the case of the Visible Human Project data sets, accurate 

alignment of slices, smooth slice surfaces, constant illumination and unchanged 

perspectives are assumed. The slices are high resolution and for the segmentation of 

macroscopic anatomy the Imm slice thickness is considered to be adequate, although 

an even smaller thickness would be an advantage. 

4.9. Extending the ACSR framework to 3D isovolume segmentation. 

To illustrate the benefits of using 3D volume information (given that the constraints 

mentioned in section 4.8 are satisfied), consider an artificial volume, which consists 

of equally sized yellow rectangles at different positions in the otherwise blue volume. 

The rectangles are spatially disjoint between slices, except for a chain, which stretches 

out through the volume, forming aT-shape. All the middle rectangles in the slices 

(see figs. 4.14(a), 4.14(b) and 4.14(c)) connect with rectangles going across in the 

middle slices. Consider then three templates, one for blue (background), one for 

yellow (the rectangles) and one which represents a combination of yellow and a very 

slightly darker blue then the background (by one unit in the blue channel). This could 

be a texture containing an edge type almost identical to a boundary between two other 

separate texture classes. ACSR is used to segment the volume using pseudo-3D 

segmentation (segmenting each 2D slice individually) and volume segmentation 

(sampling in all three dimensions). It is evident from figs. 4.1-l(d) and -l.14(e) 

showing isosurface models of the 1\vo segmentations that not all connected rectangles 

~I 
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are identified as the same, using pseudo-3D segmentation. Topologically they form 

the T-shape, but only connected points in the slice plane have been identified a 

belonging to the same segment class. The rest have been classified as the blue/yellow 

combination. However, in the volume segmentation the rectangles connected in a T­

shape have been identified as a class of their own. This is because the PGA can follow 

the chain of voxels into the volume. This model embodies the problem of 

segmentation of small structures, such as blood vessels, where correct classification 

depends on the detection of connectivity in all three dimensions. 

Fig. 4.15 shows the new volume segmentation pipeline for partial ACSR. A global 

ROI can be selected from the larger volume for segmentation. This global ROl is 

broken down into one local ROI after another with the voxel to be classified in the 

centre as the segmentation progresses. All the local ROls intersecting a slice plane 

through the centre voxel produce the classifications needed for the full segmentation 

of that one slice plane. 

(a) (b) (c) 

(d) (e) 

Fig. 4.14. 2D and 3D segmentation of an artificial volume. (a-c) Three.slices from the volume, 
(c) is a middle slice. (d) Pseudo-3D segmentation. (e) lsovolume segmentation. 
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Fig ... US. The partial ACSR volume segmentation pipeline. (a) Template selection with extraction 
of templates for the PGA and training of LVQ classifiers. (b) Selection of global ROI followed b~ 
segmentation of local ROIs for each slice plane. Initial LVQ segmentation followed by partial 

PGA segmentation producing the composite final segmentation. 
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4.10. Isovolume segmentation of Visible Human Project colour cryo section 

volumes. 

Two colour volumes of cryo section data from the Visible Human Project male data 

set have been segmented using partial ACSR and LVQ. 

4.10.1. Segmenting blood supply to the hip bone. 

A volume containing slices of the hip bone was chosen because it contains blood 

vessels, which are both in and nearly orthogonal to the slice plane. Some of the 

vessels are suitably small to test the benefits of using 3D information in this 

120*147*46 volume. One of the slices from the volume is shown in fig. 4.16(a). Fig. 

4.16( e) shows a Sobel filter applied to the slice followed by point thresholding. The 

contours of the blood vessels are almost identical to those of the structures inside the 

bone marrow. Two templates and classifiers were used for the partial ACSR 

segmentation, one for blood vessels and one for bone. Fig. 4.16(b) shows a 2D 

segmentation of this slice and a comparison with fig. 4.16( d) (the volume 

segmentation of the same slice) reveals that three small vessels are only visible in the 

volume segmented slice. Fig. 4.16( c) shows the initial LVQ segmentation. Notice 

how the vessels are segmented, even if the segment boundaries are not accurate. 

Following dilation of the segment boundaries and applying the PGA, the shape of the 

segments are refined. Because no template was used for the surrounding muscle 

tissue, it is identified as vessels, since out of the two it is closest to that class. The goal 

of this segmentation was to clearly distinguish between bone and blood vessels and 

only these two texture classes were templated. The vessel segments were clearly 

isolated within the solid bone segment and the rest easily removed before boundary 

dilation and segmentation (fig. 4.16( d)). The partial ACSR produced the same results 

as full ACSR but 8.5 times faster. Fig. 4.16(f) shows an isosurface model rendered 

from the segmented volume. 
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(a) (b) (c) (d) 

(e) 

(I) 

Fig. 4.16. ACSR segmentation of vessels of the hip bone. (a) An original slice. (b) Pseudo-3D 
segmentation. (c) Initial LVQ segmentation. (d) Isovolume segmentation. (e) Sobel filter and 
thresholding. (f) Isosurface model of isovolume segmentation (rotated view). 

4.10.2. Segmenting the shaft of the radius. 

For another volume example (181*230*52) the shaft of the radius was chosen. with 

the aim of accurately segmenting hard bone and bone marrow. The templates and 

classifiers were bone, marrow and muscle. A slice from this volume is shown in fig. 

4.17(a). In fig. 4.17(b) a Sobel filter is applied to the slice followed by thresholding. 

The boundary between hard bone and marrow is not well defmed. While the vessels in 

the hip bone had relatively distinct boundaries, they were often too small for psedudo-

3D segmentation. The structures are larger in the radius volume, but the boundaries 

between hard bone and marrow are in some places highly diffuse. This volume thus 

provided a more difficult segmentation task for the partial ACSR, but one, which 

would have been successful as pseudo-3D segmentation for some areas of the volume. 

However, where the bow1daries were very diffuse, information from neighbouring 

slices helped preserve consistency in the segmentation. Figs. 4.l7( c) and 4.17( e) show 



Chapter 4: The ACSR framework 

the pseudo-3D and volume segmentations of a slice, and although similar. some fine 

detail is only visible on the volume segmentation. The initial L VQ segmentation (fig. 

4.17(d)) shows the expected edge artefacts. Partial ACSR again produced the same 

results as full ACSR, in this case 5.6 times faster. Fig. 4.17(f) shows an isosurface 

model of the hard bone without the bone marrow. Fig. 4.17(g) shows the marrow 

through the hard bone (semi-transparent). 

(a) (b) 

(c) (d) (e) 

(f) (g) 

Fig. 4.17. ACSR segmentation of the radius. (a) An original slice. ~ b) Sobel filter and 
thresholding. (c) Pseudo-3D segmentation. (d) Initial L~Q segmenta.tlOn .. (e) lsovolume 
segmentation. (f,g) lsosurface models of isovolume segmentatIOn (rotated views) . (f) Hard bone. 

(g) Marrow and hard bone (semi-transparent). 
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4.11. Summary. 

This chapter has established a new framework for semi-automatic segmentation. In 

the ACSR framework the user initialises segmentations visually by selecting class 

templates as representative image fragments. The following segmentation process is 

fully automatic. All classes are represented individually at eyery point, using 

topologically different sampling windows built from paths originating from the point 

to be classified. This is achieved using the PGA. The best representations for each 

class compete for the final classification. Connected regions and their boundaries 

emerge from these single point classifications. The technique was demonstrated for 

discrete 2D images and 3D volumes, showing that it can take advantage of 

information in n dimensions. It was shown that the PGA can be used as a spatially 

adaptable sampling method for encoding of L VQ feature vectors or as the algorithm 

for the final segmentation combined with an initial standard L VQ segmentation. 
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Chapter 5 

Preliminary empirical evaluation 

5.1. Choosing a methodology for empirical evaluation. 

Visual presentation of segmentation results next to a source image or selected slices 

from a volume were used as the means of evaluating the success of the segmentation 

of cryo section data in chapter 4. This leaves each individual viewer to form their own 

opinion about the success of a segmentation compared to the source image and 

possibly alternative segmentations. It is obvious that such evaluation is only 

acceptable if the purpose is to merely demonstrate that a segmentation method works, 

without quantifying how well it works. The artificial test image used by Campbell et 

al (fig. 4.9) was segmented and compared to the ground truth pixel by pixel. Because 

the image was artificially generated and each segment in the foreground is delimited 

by a simple geometric shape (squares and a circle), the exact ground truth is known. 

Segments are placed in the image and their boundaries are perfectly crisp with no 

ambiguities. In real images the composition of segments is unknown and boundaries 

are fuzzy (as pointed out in chapter 4, section 4.6). Therefore a ground truth is not 

given, but has to be manually generated. 

The conceptual requirements for a semi-automatic segmentation system outlined in 

chapter 3, section 3.2 were strongly based on the fact that the success of any 

segmentation of real data is subjective, because one cannot measure and quantify 

segment area and location at the source. It can be simulated, but not measured. 

Bowyer [138] notes that not only do different human observers produce different 

ground truth images. The same observer may produce a significantly different ground 

tnlth from the same source data when asked to complete this task twice on different 

days. He reported as little as 28% overlap between traced regions in an example using 

X-ray mammograms [138]. While this is an extreme example invohing one of the 
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most difficult imaging problems today, the problem exists for all imaging modalities 

and applications. In spite of these problems, the quantitative ground truth evaluation 

remains the most common type of evaluation of image segmentation. Qualitative 

evaluation through visual ranking of images, such as the method suggested by Heath 

et al [160] (see chapter 7, section 7.1), is much harder to use. It requires a group of 

experienced observers and it has to be assumed that these observers share a sense of 

"goodness of segmentation" [160]. Heath et al addressed this problem by showing 

statistically that there was consistency between observers' rankings over a large 

number of images. In order to show this a substantial number of observers must be 

used and great care must be taken not to introduce any kind of bias. Reproducing or 

comparing evaluations between different groups of researchers is not possible based 

only on the segmentation results from one group. Ground truth comparison on the 

other hand makes it straightforward. As long as a standard ground truth exists for a 

standard test image or volume and a standard performance metric is employed, new 

results can be easily compared to previously published results. The big problem with 

quantitative evaluation of segmentation images, whether it is based on area or 

boundary location, is that it does not embody this "goodness of segmentation" which 

appears to be inherent in human observers. A segmentation with a low error rate 

compared to a ground truth may have only a small area of misrepresented 

information, but this information could be more important than any other information 

in the data set. In other words ground truth comparison for real data does not quantify 

how well information, which is crucial for a human user in a specific application, is 

conveyed in the segmentation. Cinque et al expressed this in [164] by observing that: 

Although it would be nice to have a quantitative evaluation of performance given by an 

analytical expression, or more visually by means of a table or graph, we must remember 

that the final evaluator is man and that his subjective criteria depend on his practical 

requirements. 

While there is clearly a problem with the use of ground truth segmentation in real 

data, its use must be considered acceptable in artificial data (created manually or 

automatically from a finite set of primitives) or simulated data (created using 

mathematical equations emulating real processes of image construction) where the 

process of creating the data itself specifies the ground truth exactly. 
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In this chapter, ground tnlth evaluation is used for the evaluation of the segmentation 

of artificially created compositions of real textures in section 5.2. In section 5.3 and its 

subsections, natural colour images and cryo sections are evaluated through ground 

truth comparison in a comparative study of several algorithms used for ACSR 

segmentation, followed by a discussion of the results. The source images and 

segmentations (including manual ground truth), discussed in section 5.3 are included 

on the companion CD. 

5.2. Evaluating the robustness of ACSR - a pilot study. 

Robustness is an important property in any machine vision application. In medical 

image analysis it is vital. Robustness to common image artefacts is a separate problem 

which will be explored in chapter 6. The robustness under investigation in this section 

is defined as the ability to produce consistently accurate segmentation results over a 

number of different images using the same initialisation. The successful application of 

edge detection algorithms depends on the selection of parameters (typically kernel 

size and thresholds). Region growing algorithms are affected by the selection of seed 

points and the criteria for growth. Bayesian classifiers depend on good priors. ACSR 

using the PGA depends on the selection of class templates. To achieve robustness 

several sets of templates selected by different individuals should produce little 

variation in segmentation accuracy when the PGA is applied to the same image or 

volume. Because ACSR can accommodate boundary points without having to include 

them in the template sets, any composition of textures can in theory be segmented 

equally well using a representative template set. 

A pilot study was carried out to test the variability in segmentation accuracy using 

ACSR with multiple template sets. The study used five participants with no 

experience in image processing to select templates and compose images from SlX 

different texture images. Two texture images had the same texture (plastic \\ith a 

grating pattern), but in two different orientations (one was rotated by 90 degrees 

compared to the other). The texture images were original photographs of arbitrary real 

surfaces: stone, wood, meat sausage, orange (flesh) and plastic (see fig. 5.1). The 

90 
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photographs were acquired digitally with an Olympus digital camera without special 

studio lightning. They provided a more realistic, less perfect quality test set than 

textures from established texture collections, such as Brodatz [147] and VisTex 

[165]. Textures ranged from homogeneous and near-regular to highly inhomogeneous 

and irregular. 

(c) 

Fig. 5.1. The texture images used in the image composition and template selection experiment 
[1661· (a) Stone. (b) Meat sausage (c) Wood. (d) Orange (e) Plastic (1) Plastic 90 (same as 5, 
rotated 90 degrees). 

Participants carried out two tasks. In a template selection task they were instructed to 

select one or more representative areas from each texture image. The total selection 

could not exceed one quarter of the size of any image. Templates were only selected 

from one of the two plastic texture images but used to segment both orientations. In 

an image composition task, participants composed a new image using selections 

(different from the first task) from the six texture images. They were allowed to 

choose one texture as background and paste two other textures into the background. 

One of these had to be one of the two plastic textures in either orientation. Selections 

from the texture images could be made using either a circular or a rectangular shape. 

Subsequent to the completion of both tasks for the five participants, all template et 

were used to segment all composed images individually. This yielded 25 automatic 

segmentations. Results were obtained from the PGA directly. A segmentation of all 

five images using one participant's template set is shown in fig. 5.2. The re ult 
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showed that all 25 segmentations produced the exact ground truth segmentations 

except for two, where in each case only 1 pixel was misclassified. All combinations of 

textures in participants' template sets corresponding to combinations in the composed 

images showed a low degree of overlap. Similarly the areas selected as templates for 

the same classes varied greatly between participants. The plastic texture showed the 

smallest degree of overlap between template selections with no overlap at all in 7 out 

of the possible 10 combinations of the 5 template sets. Fig. 5.3 shows the overlap for 

the stone texture fragment. The smallest template set (which produced the exact 

ground truth segmentation for all five images) contained only 18.5% of the total 

number of possible unique pixels (sets of colour descriptors) in all texture images. 

This set was four times smaller than the largest set, but both performed equally well. 

In conclusion the pilot study described in this section indicated that the PGA can offer 

robustness to different initialisations. Templates selected by different individuals, who 

had no training in using the system or other types of image segmentation, accurately 

and consistently facilitated the segmentation of arbitrary image compositions. These 

were comparable to the test image by Campbell et al (chapter 4, fig. 4.9) but using 

natural textures. For a more detailed account of this pilot study and analysis of the 

experimental data, please refer to [166]. 

e_ 

Fig. 5.2. Manual image compositions and their segmentations. Top row: images 1 to 5 from left to 
right. Bottom row: segmentations of images above (using template se~ no. 5). Segments. are 
represented as pseudocolours. The two different orientations of the plastic texture are claSSified 

differently. 
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Fig. ~.~. Visu~lisati~n of image areas from the stone texture fragment selected as templates by the 
parttclpants 1O the Image composition and template selection experiment r166]. The number on 
an area identifies the participant. 

5.3. A comparative study of colour image segmentation. 

This section describes a comparative study based on two sets of images. The first set 

consists of 6 large, high resolution colour images originally published by Kato [167]. 

The images are photographs of natural scenes and objects. The second set is a series 

of 5 colour cryo section slice images of the brain from the Visible Human Project 

Visible Male data set. Six different methods for initial segmentation, full and partial 

ACSR were used to segment the images. 

5.3.1. Segmenting six natural colour images. 

The Visible Human Male and Female data sets are the standard for the testing of 

algorithms for colour cryo section segmentation. However due to the amount and 

diversity of data in the full volumes, only smaller subvolumes are normally used for 

testing image processing algorithms. Because no specific subvolume has become a 

standard for empirical evaluation and no standard ground truth data set for the 

volumes of the Visible Human Project exist, the choice of data to evaluate on is 

somewhat arbitrary, and one set of results is not easily comparable to those achieved 

by other researchers. 

In chapter 4 an image of an eagle over water was used to demonstrate ACSR 

segmentation compared to an alternative segmentation method. An image of a polar 
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bear in an arctic environment was used in [161] for the same purpose. Although these 

images are non-medical, they are images which have been published previously as 

sets of source images and their segmented counterparts. The source images are easily 

available in their original form because they come from an established collection (the 

Corel photo CD series). 

This section presents results based on SIX natural colour images (see fig. 5.-+) 

previously published by Kato [167] in a paper on automatic segmentation using 

Reversible Jump Markov Chain Monte Carlo (RJMCMC). The images are standard 

machine vision test images from Kodak (USA), INRIA (France) and the lEN 

Computer Vision Research Group (Istituto Elettrotecnico Nazionale, Italy) and their 

segmentations were presented visually by Kato [167] with information about the 

speed of the segmentation process. RJMCMC, like the SOM, is capable of fully 

automatic segmentation where the number of classes does not have to be determined a 

priori. Although this section will comment briefly on the results achieved by Kato as 

a representation of a fully automatic method, the comparative study described in this 

section should not be regarded as a comparison between the quality of segmentation 

achieved by Kato and that achieved using ACSR segmentation. The six images used 

by Kato were chosen for a comparison of techniques used for ACSR segmentation 

because they represent a set of standard test images with previously published results, 

the equivalent of which currently does not exist for medical colour cryo section 

images. In spite of complications such as shadows and changing camera focus in these 

images (which do not apply to cryo section images), their segmentation is merely an 

abstraction of a 2D cryo section segmentation task. 

Segmentation of the six natural colour images was performed using the following 

types of classifiers: 

• Point Based Nearest-Neighbour classifier usmg the RGB colour model 

• 

(PBNN-RGB) 

Point Based Nearest-Neighbour classifier usmg Opponent Process Colour 

descriptors (PBNN-OPC) 

• L VQ based on 54-dimensional PixelDefine and OPC 

• Full ACSR using the PGA and RGB (PGA-RGB) 
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• Full ACSR using the PGA and OPC (PGA-OPC) 

• Partial ACSR using the PGA and OPC, based on point based nearest­

neighbour classification 

The Point Based Nearest-Neighbour classifier uses the same type of nearest­

neighbour matching with a set of class templates as the PGA, but only on a single 

point at a time. This is similar to a simple thresholding, but rather than using exact 

intervals of colour descriptors the shortest distance to a template is used to determine 

the class of a point. Although fast, this technique lacks the benefits of region based 

methods and more than one class may give an equally good match, resulting in 

unclassified points. 

Hearts Seagull 

Poppy 

Rose Birdll Birdl2 

Fig. 5.4. Six natural colour images used for segmentation with multiple classifiers. 

All classifiers were template based and used the same template sets. For the PBNN 

classifier and the full ACSR, results using the RGB and the OPC colour model were 

compared. For the LVQ classification 100 ± 1 nodes per class were u ed. Partial 

ACSR was based on the PBNN classification using OPC (similar to the encoding u ed 
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for LVQ). Results are presented for visual companson on the compamon CD, 

including the results of the RJMCMC segmentation. It is apparent that the goal 

oriented nature of ACSR segmentation allowed for a more refined segmentation. 

Clearly the results achieved with RJMCMC are impressive for a fully automatic 

method, but the extra time taken for initialisation of ACSR segmentation is 

compensated for by the much faster processing time. Although the efficiency of the 

implementation of each of the two techniques in software is an obvious issue when 

comparing processing time, it should be noted that the RJMCMC implementation was 

run on a far superior architecture compared to the ACSR implementation. 

Table 5.1 shows the image sizes and the window sizes used by the PGA and LVQ and 

the dilation factor employed before partial PGA. For the PGA a path length of 5 was 

used at all times. Processing time for each type of classifier for every image is shown 

in table 5.2 including the processing time for the same images using the RJMCMC 

algorithm in [167]. 

All processing except for RJMCMC was carried out on a Dell Inspirion PC with a 

single Pentium-III processor running at 500 MHz and 64 MB of physical memory. 

RJMCMC processing was carried out on a Silicon Graphics Origin 2000 server with 

16 R10000 processors each running at 250 MHz and 8 GB of physical memory. 

The segment classes were chosen for the template based methods to resemble the 

classes found in [167]. Fig. 5.5 shows an example of template selection for the Poppy 

Image. 

Table 5.1. Sizes of natural colour test images, sampling windows for the PGA and L VQ and the 
dilation factor used for partial ACSR. All values (except the dilation factor) are in pixels. 

Poppy Hearts Seagull Rose Bird11 Bird12 
Image size 512*512 736*492 458*381 734*486 498*332 498*33) 
PGA window 11 11 8 11 8 8 
LVQ window 5*5 5*5 3*3 5*5 3*3 3*3 
Dilation 2 3 2 3 2 2 

~-----
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Table 5.2. Processing time for each type of classifier on each natural colour test image. 

Poppy Hearts Seagull Rose Birdll Bird 12 
PBNN-RGB 45 sec 107 sec 9 sec 54 sec 7 1 sec -+ sec 
PBNN-OPC 88 sec 107 sec 13 sec 62 sec 74 sec 7 sec 
PGA-RGB 423 sec 639 sec 542 sec 823 sec 248 sec 247 sec 
PGA-OPC 505 sec 707 sec 606 sec 932 sec 299 sec / 78 sec 

LVQ 135 sec 191 sec 67 sec 183 sec 36 sec 3/ sec 

Partial PGA 54 sec 137 sec 16 sec 127 sec 19 sec 14 sec 
Partial ACSR, total 142 sec 244 sec 29 sec 189 sec 43 sec 2 1 sec 

RJMCMC 36 min 253 min 109 min 211 min 150 min 87 min 
(1)* (2) (I ) (2) (2) ( I ) 

(I) LUV colour space (2) LHS colour space * The image used was half the resolution compared to the one used wi th the 
other segmentation method 

Fig. 5.5. Template selection for the Poppy image. Templates are shown in solid white (head of 

flower) and green (surround). 

A number of observations can be made by studying the images and the entries in table 

5.2. The PGA based segmentation clearly produced the best results for all images. For 

these images the PBNN classifier consistently produced equal or better results 

compared to L VQ and at speeds up to 5 times faster (see table 5.3). Partial ACSR 

used PBNN-OPC for the initial segmentation step, producing results 100% identical 

to the full PGA-OPC up to 20 times faster (Seagull image). The dilation factors given 

in table 5.1 were the minimum factors required to achieve a 100% correspondence 

with the full PGA-OPC in each image. Visual inspection of the segmented images 

shows a slight advantage of OPC compared to RGB both for the PBNN classifier and 

the PGA. The difference is small but particularly distinct in the images Bird 11 and 

Bird12. These observations are of course highly subjective and are merel the 
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opmlOns of the author. Consequently they must be backed up by a more solid 

evaluation. 

Table 5.3. PBNN and L VQ ~o~pa.red to full ACSR segmentation of natural colour test images. 
Each percentage shows the simIlanty between the segmentation produced by PBN~ or L VQ and 
the full ACSR for each image. . 

----

Poppy Hearts Seagull Rose Bird11 Bird12 
PBNN-OPC 98.68% 96.68% 99.93% 98.22% 99.13°'0 99.56°~ 

LVQ 98.71% 91.25% 99.86% 97.22% 97.34% 99.55° 0 

A ground truth segmentation of the six images was created by a human observer 

manually tracing the boundaries of the desired segments in each of the source images. 

A segmentation goal in the form of the number of classes and what they should 

represent was determined for each image in advance. While the ground truth for the 

Seagull image is clearly identifiable, an image such as Hearts is highly likely to 

produce different ground truth images when boundaries are traced by di fferent 

individuals, since the exact delineation of some segments is not obvious. Even in the 

Poppy image the fuzziness of the boundaries is prone to produce different ground 

truths by different observers. Table 5.4 shows the results of each of the five classifiers 

compared to the manually traced ground truth. The percentages show the ratio of 

correctly classified points according to the ground truth. It is evident that on a pixel 

per pixel basis the PGA performed well compared to the ground truth with a high of 

99.58% and a low of 94.83% for PGA-OPC. It is not surprising that the Hearts image 

would give the lowest match, since parts of the ground truth for this image is slightly 

arbitrary. The Mann-Whitney U-test performed on PBNN-RGB vs. PBNN-OPC and 

PGA-RGB vs. PGA-OPC (based on number of correctly classified pixels) showed 

that there was no significant difference (at the p = 0.05 level) between results based 

on RGB and those based on OPC. Fig. 5.6 shows an example from the Poppy image 

with ground truth, PGA-OPC and RJMCMC [167]. 
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Table 5.4. Segmentation of natural colour test images compared to a manual ground truth. 

Poppy Hearts Seagull Rose Birdl1 Bird 12 
PBNN-RCB 96.71% 93.23% 99.56% 97.10% 98.46% 98.940

0 
PBNN-OPC 96.57% 93.28% 99.60% 97.15% 98.520

0 99.060 0 
PCA-RGB 96.89% 94.84% 99.55% 97.56% 98.98% 99.070

0 
PCA-OPC 96.82% 94.83% 99.58% 97.56% 98 .94% 99.090

0 
LVQ 96.58% 90.82% 99.56% 96.47% 96.90% 98.960

0 

(a) (b) (c) 

Fig. 5.6. Segmentation of the Poppy image. (a) Manually selected ground truth. (b) PGA-OPC. (c) 
RJMCMC (167J. The goal for the ground truth and the ACSR segmentation was to achieve two 
segments, one representing the top of the flower and another representing everything else. 

To compare the performance of the classifiers on corrupted image areas, 10% random 

impulse noise was added to each of the six source images. The images where then 

segmented again based on the same templates as the clean images and compared to 

the ground truth. The results in table 5.5 show that the added noise had a maximum of 

1 % effect on the PGA-OPC based segmentation with up to 7.02% effect for PBNN­

OPC and up to 5.77% effect for LVQ. Visually the images show a dramatic difference 

between the PGA based segmentations and the two other types of classifiers. 

Table 5.5. The effect of 10% random noise on the segmentation of the natural colour test images. 
Each percentage shows the difference in classified pixels between the segmentation based on the 
noisy image and that of the clean image. 

Poppy Hearts Seagull Rose Bird 11 Birdl2 

PBNN-OPC 3.17% 4.44% 5.01 % 4. 15% 3.470
0 7.0_0 0 

LVQ 3.00% 3.32% 4.92% 4. 18% 4.090
0 5.770

0 

PCA-OPC 0.27% 1.00% 0.06% 0.540
0 0._ 90 0 0.23 0

0 
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5.3.2. Segmenting a brain cryo section series. 

Five consecutive images from the Visible Human Project Visible Male data set from 

the brain region were segmented using PBNN-OPC, PBNN-RGB, LVQ, PGA-OPC, 

PGA-RGB and partial ACSR. Each image was 120*100 in size. The PGA used the 

path length 5 and the window size 11. The L VQ used a window size of 5*5 and 

100±2 nodes per class. Template sets and learning vectors were created mainly from 

the second image in the sequence (Brainl) with a few minor areas selected from 

Brain3, to include features not present in Brain 1. All images were segmented based on 

those templates and the codebooks based on those learning vectors. The dilation factor 

3 was used to achieve 100% identical results for the partial ACSR compared to the 

full ACSR. Table 5.6 shows the processing time for each type of classifier. 

Due to the extensive boundary lengths in the images, the partial ACSR did not 

provide speed-ups at the levels found in section 5.3.1, but it still produced a speed 

increase of approximately 30% compared to full ACSR. The results for one slice are 

shown is fig. 5.7. The results for all five slices can be found on the companion CD. 

Table 5.6. Processing time for each type of classifier on eal'h cryo section brain image. 

BrainO Brain! Brain2 Brain3 Brain4 
PBNN-RCB <1 sec. <1 sec. <1 sec. <1 sec. <1 sec. 
PBNN-OPC <1 sec. <1 sec. <1 sec. <1 sec. <1 sec. 
LVQ 7 sec. 7 sec. 7 sec. 7 sec. 7 sec. 
PCA-OPC 30 sec. 30 sec. 30 sec. 29 sec. 30 sec. 
PGA-RGB 27 sec. 27 sec. 26 sec. 27 sec. 27 sec. 
Partial PGA 20 sec. 22 sec. 20 sec. 21 sec. 22 sec. 
Partial ACSR, total 21 sec. 23 sec. 21 sec. 22 sec. 23 sec. 

The five brain images must be considered a tough segmentation task due to the 

similarity between the segment classes. Three classes were templated: white matter, 

grey matter and "all other tissue". The latter class was extremely inhomogeneous with 

areas highly similar to both the grey matter and white matter classes. The PGA still 

produced good results, while the PBNN and L VQ performed poorly in comparison 

both to the PGA and to the results seen in section 5.3.1. Table 5.7 shows the similarity 
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between the segmentations produced by the PBNN and the LV Q compared to the full 

ACSR. It can be seen that the similarity for PBNN with full ACSR is inversely 

proportional to the distance from Brain1 (which provided most of the areas used for 

template creation). The similarity of L VQ with full ACSR does not show such an 

effect and was consistently higher than for PBNN. This is not surprising, given that 

L VQ has the ability to generalise over the data. Thus for the brain series partial ACSR 

was based on LVQ for the initial segmentation step. In comparison to a manually 

generated ground truth, the L VQ also shows better results than PBNN (see table 5.8). 

Similarly to the natural colour images in section 5.3.1 OPC visually appeared to 

facilitate slightly better segmentation than ROB, but again the U test did not show a 

significant difference. 

Table 5.7. PBNN and LVQ compared to full ACSR segmentation of cryo section brain images. 
Each percentage shows the similarity (overlap) between the segmentation produced by PBNN or 
LVQ and the full ACSR for each image. 

BrainO Brain I Brain2 Brain3 Brain4 
PBNN-OPC 90.50% 91.32% 89.33% 89.03% 88.41 % 
LVQ 93 .53% 91.73% 92 .88% 91.98% 92.00% 

Table 5.8. Segmentation of cryo section brain images compared to a manual ground truth. 

BrainO Brainl Brain2 Brain3 Brain4 
PBNN-RGB 88.66% 90.07% 86.66% 84.94% 85 .88% 
PBNN-OPC 88.93% 89.79% 86.68% 85 .13% 86.14% 
PGA-RGB 93.49% 93.03% 92 .53% 91.90% 92 . 13% 
PGA-OPC 93.75% 92.88% 92.88% 91.95% 91.72% 
LVQ 92.14% 90.59% 90.21% 88 .33% 89 .99% 

(a) (b) (c) (d) 

Fig. 5.7. Segmentation of a cryo section brain slice. (a) Source image. (b) PBNN-OPC (, hite 
points are unclassified). (c) LVQ. (d) PGA-OPe. 
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The effect of noise on the brain images was studied by adding 10% random noise to 

the source images and comparing the segmentation results for PBNN-OPC, LVQ and 

PGA-OPC based on the original templates to the segmentations of the clean source 

images. The results are shown in table 5.9. The maximum effect for PGA-OPC was 

3.25%. 

Table 5.9. The effect of 10% random noise on the segmentation of the cryo section brain images. 
Each percentage shows the difference in classified pixels between the segmentation based on the 
noisy image and that of the clean image. 

BrainO Brain! Brain2 Brain3 Brain4 
PBNN-OPC 9.25% 8.35% 9.51% 9.59% 9.72°~ 

LVQ 5.81% 5.52% 5.42% 5.71% 5.59% 
PGA-OPC 2.84% 2.29% 2.92% 3.02% 3.25% 

5.4. Summary. 

The preliminary conclusions that can be drawn from the results in section 5.3.1 and 

5.3.2 are first of all recommendations to use a fast point based nearest-neighbour 

classifier for discrete 2D image segmentation using the partial ACSR, and L VQ for 

image sequences (volumes). There is obviously a trade-off, which 11~\.tst always be 

considered: A fast initial segmentation step with a high degree of oversegmentation 

requires a slower partial PGA processing. A slower, more accurate initial step allows 

for a faster partial PGA processing. Based on the ground truth evaluation there 

appears to be no advantage of using ope rather than RGB, which is counterintuitive 

to expectations. However as pointed out in the beginning of this chapter, ground truth 

comparison may not quantify how well essential visual information for a human user 

is preserved. In chapter 7 the images from section 5.3.1 and 5.3.2 will be revisited in a 

series of human observer experiments. The qualitative results obtained will be 

compared to the results presented in this chapter. The robustness of ACSR 

segmentation to multiple initialisations, which showed good results on artificially 

composed images in section 5.2, will also be investigated further in chapter 7 using 

real cryo section data. 
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Chapter 6 

Extending the ACSR framework to greyscale MRI segmentation 

6.1. Developing ACSR segmentation for greyscale medical imaging scans. 

The application of ACSR segmentation to a new imaging modality requires 

modifications of the algorithm used for implementation. For any type of intensity 

based segmentation, the information density (the richness of information at the atomic 

level) is crucial. Cryo section images offer three channels of typically 256 intensity 

levels per point, and the combination of the three channels in tried and tested colour 

models give a representation, which helps a classification system to perform well. 

MRI and CT scans typically offer only one channel of 12-bit information (4096 

intensity levels) per point. As opposed to cryo section images though, the grey levels 

in ideal CT and MRI scans directly correspond to tissue types. Grey levels for 

different tissue types represent the different levels of absorption of X-rays for CT or 

the emitted frequencies of radio waves following exposure to a pulse of radio 

frequency magnetic field oscillations for MRI scans respectively. Unfortunately 

partial voluming, noise and inhomogeneity can cause severe artefacts. These problems 

call for higher robustness and specific countermeasures. The sole dependency on 

point descriptors from unfiltered data in the PGA used for cryo section segmentation 

is not sufficient. 

Additional point descriptors may be obtained from filtered versions of the original 

source images. This technique could be applied to use local high and low frequency 

information for additional descriptors. It could for example be achieved using a high­

pass Butterworth filter to enhance high frequency information and a median filter to 

suppress high frequency information, while still preserving edges. Point descriptors 

might thus be derived from the original image, the high-pass and the 100\·-pass 

version. Such an approach does not, however, confom1 to the requirement of 
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minimising the distortion of detail. Any type of filtering will enhance some features 

while attenuating others. The median filter for example effectively reduces nOIse 

without removing connected edges, but fine detail is washed out in the process. 

To take advantage of the combination of low and high frequency information, while 

largely avoiding the distortion of detail, filtering can be applied locally rather than 

globally within a neighbourhood. In the ACSR framework this can be achieved using 

path descriptors in addition to the type of point descriptors used in colour data. T\\'o 

different path descriptors have been implemented and tested with the PGA. The 

median path descriptor represents the median of the intensities at each vertex of a 

path. The AID (Average Intensity Difference) descriptor represents the average 

intensity difference between the point being classified (seed point) and all other points 

in the path. This descriptor is also used in the PixelDefine encoding. Kato et al[ 168] 

used a similar method (intensity mean and variance) to describe classes in an MRF 

model. MRF models are strong contenders in the field of greyscale medical image 

segmentation with their ability to model segment classes and artefacts which affect 

them. 

The remainder of this chapter will focus on the MRI imaging modality. The 

development of the PGA for MRI segmentation under the ACSR framework is 

described, starting with a comparative study of three different PGA algorithms using 

path descriptors. Results are based on simulated data and ground truth evaluation 

throughout. Subsequently an optimisation of the developed method is proposed, 

including countermeasures for noise and inhomogeneity artefacts. Comparisons with 

previously published results on the same data are given. Finally multispectral MRI 

segmentation is described and the quantitative versus qualitative interpretation of the 

results are briefly discussed. 

6.2 Evolving the PGA for MRI segmentation. 

The initialisation of ACSR segmentation for MRI images is performed in the same 

way as for cryo sections. The user selects areas representing the desired segment 
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classes. These areas are the templates, which are encoded for processing by L VQ and 

the PGA. 

The introduction of path descriptors means that paths are evaluated not only as sets of 

points, but as regions. The notation for the standard PGA given in chapter 4 

(equations 4.1-4.4) is extended: 

The path median for descriptor} is defined as: 

if M+J is odd (6.1) 

PMEDlj = ((PXD(M+l)12 +PXD(M+l)l2 + 1)12)j if M+ J is even (6.2) 

The path AID is defined as: 

PAID{ = IIlpXDkj -PXDsjll M 
j k 

(6.3) 

For the purpose of single-channel MRI data} is equal to 1 in (6.3). 

Equations (6.1), (6.2) and (6.3) are used for template creation and for the processing 

of novel images. We can now repeat (4.1) on a path level with three descriptors: point 

intensity of seed point, path median and path AID. This match value is denoted as 

PMi and (4.2) can now be extended to: 

(6.4) 

The combination of (4.2) and PMi can be regarded as a multiple classifier problem. It 

was found experimentally that neither the use of (4.2) nor PMi alone produce optimal 

results. However a combination of the two produced better results and optimal 

performance was found for c= 3. 

The introduction of equation (6.4) forms the basis of the basic version of the PGA 

with path descriptors (PGA-PD). Sampling windows consisting of single paths or 

several full paths are assumed (rather than the gradual addition of points from the path 
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hierarchy) to avoid expenSIve optimisation of the path median and AID, and an 

increase in processing overhead. Using a single path per window this algorithm is 

denoted as PGA-SPD. 

While the PGA attempts to solve a windowing problem, the path descriptors with AID 

are vulnerable to noise corrupting the seed point. This could in itself result in a local 

windowing problem. The correct AID for the true class of the seed point might be 

found using a different point in the path from which to calculate the distance to the 

remaining points. Given that we do not assume a particular type of distribution for the 

noise, it is considered to be random and could affect any point within any path 

originating from any seed point. To increase the probability of seed points being 

correctly classified as part of their neighbourhood in this situation, a second version of 

the PGA-PD is introduced. The seed point with regards to the calculation of AID is 

shifted one point in the direction of growth. The actual seed point however remains 

the same for all other calculations. This reduces the effect of noise corrupting the seed 

point. If the point being shifted to is affected by noise then the representational 

strength of the actual seed point and the median will still be sufficient, given that 

enough points representable of the seed point's true class can be reached. This 

variation denoted as PGA-SPDS changes (6.3) to: 

PAID! = l:l:!PXDkJ -PXD(s+l)J!/(M -1) (6.5) 
j hs 

Finally a third variation is introduced, which builds on PGA-SPDS, but uses two 

paths per window. The criterion for selection of the second path is as follows: The 

second path must have only the seed point in common with the first path and it must 

have the best match with its own class. Although the optimal path excluding the 

points contained in the first path is approximated to for the class in question and the 

template currently being evaluated, this is no guarantee that the path is actually more 

representable of its own class than of another. The segment boundaries may be such 

that a second path is forced to cross a boundary. To avoid this representational 

problem an extra check is performed. The path is evaluated against the competing 

templates and if a better match is found then only the representation based on the first 

path is used for the sampling window representation of the class in question. The 
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larger window size could be an advantage, particularly for very noisy images. This 

variation with double paths is denoted PGA-DPDS. 

6.3. Standard MRI test sets. 

Standard MRI test volumes are important for companng results from different 

segmentation systems. Not only are results based on such volumes immediately 

comparable to previously published results by other researchers. Standard test sets 

also to a large extent make it unnecessary to re-implement algorithms developed by 

other researchers to compare results. This removes a classical source of error in 

comparative studies [137]. Standard ground truth sets allow different researchers to 

compare performance, given that the same performance metric is employed. This 

project has used MRI test sets from two standard collections described below: 

BrainWeb (section 6.3.1) and the Internet Brain Segmentation Repository (section 

6.3.2). 

6.3.1. Brain Web. 

The Brain Imaging Centre at the Montreal Neurological Institute of McGill 

University, Canada, provide an image database known as Brain Web [41] containing 

simulated MRI data. Unlike phantom data sets in the traditional sense, Brain Web is 

based on actual brain scans. Voxels were manually labelled and fuzzy tissue classes 

were created. The simulated data was modelled from these classes with different 

levels of RF inhomogeneity and noise. Because the robustness to these artefacts can 

be systematically tested for and because the exact ground truth is knmvn (as opposed 

to in real data), it makes the Brain Web data highly suitable for comparative 

evaluation. Volumes are available as Tl, T2 and PD (Proton Density) images with 1, 

2 and 3mm. slice thickness. Currently two types of simulated clinical data are offered: 

a healthy volume and a volume with multiple sclerosis. BrainWeb volumes ha\c been 

used in a large number of previous studies of inhomogeneity correction and 

segmentation (see e.g. [130,169,170]). 
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6.3.2. The Internet Brain Segmentation Repository. 

A diverse collection of real clinical MRI volumes is offered by the Internet Brain 

Segmentation Repository (IBSR) [42] provided by the Center for Morphometric 

Analysis at Massachusetts General Hospital, U.S.A. The collection comprises healthy 

as well as diseased brain volumes from individuals of different sexes and acres 
b ' 

acquired with different models ofMRI scanners. Tl, T2 and PD images are available 

and most volumes come with manually selected expert ground truth. As with 

BrainWeb the use of IBSR volumes is established in the literature (see e.g. 

[169,120,171]) 

6.4. Results on simulated MRI data I. 

In order to produce and compare baseline results from the three proposed PGA-PD 

algorithms, three volumes from the Brain Web database with varying levels of noise 

and inhomogeneity were selected. Partial ACSR using each of the three algorithms 

was applied without any pre-processing of the data. The parameters for the Brain W eb 

volumes were selected to comply with the volumes used by Pham and Prince [130] in 

a study of MRF segmentation using a standard Expectation Maximization (EM) 

algorithm [113] and the Adaptive Generalized EM (AGEM) algorithm [130], which 

models inhomogeneities. Two of these three volumes were also used in a previous 

study by Pham and Prince [120] on a fuzzy algorithm known as the Adaptive Fuzzy 

C-Means Algorithm (AFCM), which did not produce as good results as AGEM. 

MRF based approaches traditionally reqUIre the manual selection of model 

parameters, which may be less intuitive to the target user than the visual initialisation 

process used in ACSR. MRF models have however become established as a robust 

tool for MRI segmentation, their main advantage being the dynamic adaptation to 

local image features and parameter optimisation. This generally reduces the effects of 

partial volume artefacts, noise and inhomogeneity. Although these artefacts may be 

modelled individually, their combination in a yolume can se\"erely reduce 

segmentation accuracy. Another drawback is the excessiye processing overhead often 
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associated with MRF model computation. Although there is no gold standard of \IRI 

segmentation, the encouraging results which have been achieved with I,fRF based 

methods such as AGEM must be regarded as a desirable initial goal for ACSR. In the 

studies by Pham and Prince [120,130] results were reported based on a standard 

performance metric (see section 6.4.1) and incorporating all of the three major tissue 

types of the brain (CSF, grey matter, white matter). 

6.4.1. Experimental methodology. 

The BrainWeb volumes used were all T1-weighed and had 1mm slice thickness. The 

parameter settings were: 

• 3% noise with 20% inhomogeneity 

• 3% noise with 40% inhomogeneity 

• 7% noise with 20% inhomogeneity 

Extracranial tissue was removed in an initial segmentation step based on the L VQ 

segmentation used for partial ACSR. Similar results could have been achieved with a 

tool such as BSE (automated Brain Surface Extraction program) from University of 

Southern California [172,173]. Three classes were templated: grey matter, white 

matter and cerebrospinal fluid (CSF). 127 transverse slices at a resolution of 181 *217 

were segmented in each volume, based on templates from 8 slices with a distance of 

18 slices between them. Templates were based on the entire ground truth 

segmentation for each class in the 8 images (ground truth sets supplied by Brain Web). 

simulating the manual template selection that a human user would produce. Template 

selections were used for the encoding of PGA point and path templates. L VQ 

encoding was achieved using a 3*3 sampling window and a very simple feature vector 

representing the same descriptors as for the PGA, i.e. centre point, window median 

and AID. PGA template encoding used a path length of 5. Interpolated templates and 

L VQ codebook vectors were produced for every 18 slices, using an offset of 9 from 

the first templated slice. They were based on quantisation of the two selected template 

sets on each side. Template interpolation was also achieved llsing L VQ. In all cases 
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the Optimized Learning Vector Quantization algorithm [117J was used. Initial 

experiments showed increased performance for slices between templated imaoes 
~ , 

using this technique, compared to only using the original templates and L VQ learning 

sets. Segmentation of novel images always used the actual or interpolated PGA 

templates and L VQ codebook vectors closest to the current slice in the volume. 

Because all seed points are independently represented and classified, artefacts caused 

by high levels of noise in ACSR segmented images are often restricted to single 

points. This means that the actual shapes of boundaries are preserved, but artefacts 

appear in a similar way to salt and pepper noise (impulse noise) in the segmented 

image. Cleaning up images using a median filter may improve results at high noise 

levels. A median filter with a kernel size of 3*3 was applied to the segmented images 

as an optional post-processing step for cleaning up the final segmentation images. 

The L VQ segmentation isolated the brain in most slices and manual correction was 

used to remove any points connected to extracranial tissue. The brain was then 

detected using a flooding operation. Manual correction was based on the ground truth 

images, again simulating the human user. Following the removal of extracranial 

tissue, ACSR segmentation was performed. Dilated boundary maps were created from 

the L VQ segmentation using dilation factors of 1 and 3. The three volumes with 

varying levels of noise and inhomogeneity were segmented using PGA-SPD, PGA­

SPDS and PGA-DPDS with full and partial ACSR. A comparison with the ground 

truth was carried out, producing an error rate defined as the ratio of misclassified 

pixels over the total number of pixels pertaining to the three segment classes (same 

metric was used by Pham and Prince in the AGEM [130] and AFCM [120] studies). 

6.4.2. Results. 

Table 6.1 shows the error rates and processing time for each variation of the PGA-PD 

and different levels of partial ACSR. Error rates for the initial L VQ segmentation are 

also shown. PGA-SPD with full ACSR is used as the baseline for processing time, 

while other variations and levels of partial ACSR are shown relatiye to the baseline. 
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PGA-SPD and PGA-SPDS consistently perfonned better than PGA-DPDS and faster. 

Error rates did not change much from full ACSR to partial ACSR with a dilation 

factor of 1. However the speed increase was significant. Counterintuitively partial 

ACSR with a dilation factor of 3 consistently perfonned better than full ACSR for all 

three variations of the PGA-PD and for all volumes. This is in spite of the L VQ 

segmentation error rates being consistently high. This phenomenon can be attributed 

to the fact that the LVQ segmentation produces good segmentation inside segments, 

sometimes better than ACSR, but introduces artefacts near the boundaries. Because of 

the gyri and sulci, boundaries account for a particularly large area in brain volumes. 

Therefore the speed increase using partial ACSR with a factor of 3 compared to full 

ACSR was small (similar to the cryo brain segmentations in chapter 5), but it still 

improved the accuracy of the segmentation. 

Table 6.1. Error rates for segmentation of BrainWeb volumes with 3% Noise, 20% RF 
Inhomogeneity (3N 20RFI); 3% Noise, 40% RF Inhomogeneity (3N 40RFI); 7% Noise, 20% RF 
Inhomogeneity (7N 20RFI). ACSR segmentation using PGA-SPD, PGA-SPDS and PGA-DPDS 
with full ACSR and partial ACSR, dilation factors 1 (fl) and 3 (f3) and post-processing using 
median filter, compared to LVQ, AFCM (from [120]), EM and AGEM (from [130]). 

Algorithm 3N 20RFI 3N 40RFI 7N 20RFI ReI. proc. time 

SPD full 5.707% 7.733% 9.051% 1.00 

SPD partial f3 5.257% 7.366% 8.739% 0.96 

SPD partial f1 5.822% 7.798% 8.968% 0.67 

SPDS full 5.754% 7.700% 9.168% 1.06 

SPDS partial f3 5.294% 7.327% 8.858% 1.02 

SPDS partial f1 5.871 % 7.775% 9.072% 0.71 

DPDS full 6.130% 8.018% 9.165% 1.13 

DPDS partial f3 5.722% 7.686% 8.872% 1.07 

DPDS partial f1 6.233% 8.081 % 9.079% 0.75 

SPD partial f3 median 6.565% 8.486% 8.522% 0.96 

SPDS partial f3 median 6.532% 8.387% 8.407% 1.02 

LVQ 9.720% 10.926 10.346% N/A i 

AFCM 4.322% 4.938% N/A N/A j 
-~ 

EM 5.487% 8.986% 10.699% N/A 
~ -~---

AGEM 4.144% 4.759% 8.414% NA I 
- - -~-----

~ 
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Post-processing using a median filter was performed for the two most successful 

variants (SPD and SPDS with partial ACSR, factor 3) and had a slight positive effect 

on error rates for the volume with the highest level of noise, while the drawbacks of 

losing image detail outweighed the benefits for volumes with higher Signal to Noise 

Ratio (SNR). 

Table 6.1 also shows a comparison of ACSR with the results reported by Pham and 

Prince on the same volumes, using MRF segmentation with a standard EM algorithm 

and the Adaptive Generalized EM (A GEM) algorithm [1 30] as well as the fuzzy 

based AFCM [120]. It is apparent that ACSR performed consistently better than EM. 

However compared to AGEM and AFCM the error rates were higher for the volumes 

with 3% noise (AGEMI AFCM) but similar to the volume with 7% noise (AGEM). 

Fig. 6.1 shows an example of an original slice with the three different BrainWeb 

parameter settings used, its ground truth segmentation and the ACSR segmented 

equivalents. The results presented in this section were published in [174,175]. 

(a) (b) (c) (d) 

(e) (I) (g) (h) 

Fig. 6. t. A Slice from the BrainWeb volumes. (a) 3N 20RFI. (b) 3N 40RFI. (c) 7N 20RFJ.. (d) 
Ground truth image. Magenta areas outside the cortical surface and around ~he ventricles 
represent tissue not pertaining to any of the three classes CSF, grey m.atter an~ white matter: (e­
g) Partial PGA-SPD with factor 3 dilation, segmentation of source Ima~es dl.rectl ~ bo e Into 
CSF, grey matter and white matter. (h) Same as (g) following post-process ing With media n filter. 
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6.4.3. Conclusion. 

The results of comparison with the ground truth suggested that the two variations of 

the PGA with path descriptors using a small sampling window size (single path) 

consistently performed better and faster than the one using a larger size (double path). 

It is concluded from this that the single path representation is sufficiently rich and that 

the constraints on topology of the double path representation has a negative effect on 

accuracy. These constraints may be overcome using local optimisation, but clearly at 

the price of higher processing overhead. Shifting the seed point for the purpose of 

AID calculation gave marginally better results in some cases, but not all. The results 

show that the combination of the PGA with L VQ (partial ACSR) not only speeded up 

segmentation without significant loss of accuracy, but actually increased accuracy. 

The two best variations of the PGA combined with L VQ consistently perfonned 

better than MRF segmentation using a standard EM algorithm and similarly to AGEM 

at a high level of noise. A post-processing step using a median filter proved useful, 

but only at low SNR. The error rates at lower levels of noise are clearly outperfonned 

by AGEM. This is not surprising given that the data is simulated and AGEM models 

intensity distributions in similar ways. However the increase in error rate from high to 

low SNR is relatively smaller for the PGA, which indicates robustness. Less 

robustness compared to AGEM is shown for increase of the level of RF 

inhomogeneity. Section 6.6 describes how inhomogeneity correction can be applied as 

a pre-processing step to significantly increase the robustness to this artefact. Similarly 

higher robustness to noise is desirable. Higher levels of noise call for a closer match 

of the templates with local image intensities, which can be achieved by including 

variations. This is possible in ACSR by explicitly templating classes across variations. 

It could not be achieved by the simulated user, because the template selection was 

simply based on all points labelled as the desired classes in slices at regular intervals. 

Section 6.5 describes how higher robustness to noise can be achieved through 

automatic template creation at every slice. 
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6.5. Introducing automatic template creation. 

Although ACSR is capable of accommodating high levels of variation \vithin segment 

classes, these variations have to be explicitly templated by the user. In cryo section 

data this is relatively easy, assuming that all images were acquired under the same 

conditions (lighting, camera settings, etc.). Variations within tissue types are clearly' 

visible and can be selected and incorporated into class templates by the user. In MRl 

volumes however, RF inhomogeneities and noise make it extremely difficult to 

visually identify areas of significantly different visual representation within the same 

tissue type (even using colour look-up tables). This reduces the user's ability to select 

templates, which will generalise over subvolumes and increases error rates. 

To counter these problems automatic template creation is introduced. The user still 

selects class templates, which are used to generate the learning data for the 

preliminary LVQ segmentation. In addition to a fully L VQ segmented image for each 

slice, an additional segmentation is now generated. Minimum quantisation errors for 

all image points are calculated and sorted im/i\'iduol(v for each segment class and all 

points in the upper 40% are discarded. The remaining 60% of all points for each class 

are encoded SiS class and slice-specific templates for the PGA and these templates are 

used in place of the original user defined templates in the final segmentation. This 

ensures a higher level of consistency and reduces overall error rates (see section 6.7 

and fig. 6.4). 

6.6. Incorporating inhomogeneity correction. 

In an MRI scanner a strong magnetic field causes the spinning protons in the patient's 

body atoms to align [176]. A pulse of radio frequency magnetic field oscillations is 

injected using RF (Radio Frequency) transmitter coils in the scanner, the injected 

frequency corresponding to the frequency of the target nuclei (usually of Hydrogen 

atoms). The nuclei resonate and absorb energy. This energy is released again as a 

radio frequency signal when the injected pulse ends. The emitted signal is detected by 

RF receiver cods from which an image can be constructed. Due to non-unifonnities in 
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the RF field produced by the transmitter coils and/or the RF field detected by the 

receiver coils and due to non-uniform loading of the coils by the patient's body (this 

can be reduced by using special coils constructed for the imaging of specific parts of 

the body), inhomogeneity artefacts are introduced in scan images. These intensity 

variations in the volume within the same type of tissue visually appear as smooth 

gradients across individual slice images. Inhomogeneity correction or modelling is 

essential to avoid serious errors in intensity based segmentation. 

The results of two different inhomogeneity correction algorithms used with ACSR 

segmentation of MRI volumes have been employed and compared. The N3 algorithm 

[44,45] from the Brain Imaging Centre at McGill University was first published in 

1997 and its implementation has since become part of a suite of software tools for 

MRI image processing available from the centre. The EQ algorithm developed by 

Marc Cohen et al [43] at the Brain Mapping Division, UCLA, is more recent and 

considerably simpler than N3. Cohen et al have however demonstrated significant 

improvements in segmentation accuracy for a number of intensity based algorithms. 

6.6.1. The EQ inhomogeneity correction algorithm. 

The plasticity of local neighbourhood representations in the PGA enables it to work 

well on unfiltered data, thus enabling the system to preserve original image features. 

Pre-filtering could result in the attenuation of intrinsic class features, which could take 

away the benefits of reducing the inhomogeneity artefacts. However an indirect 

filtering operation in the form of intensity equalisation applied to inhomogeneous 

MRI data could be highly beneficial. The EQ intensity equalisation algorithm for MRI 

volume data seemed a promising candidate for achieving this goal. An aggressive 

smoothing using a large Gaussian kernel (3/8 of the volume size) is applied to the 

volume using Fourier methods after the background has been filled with the average 

signal intensity (threshold for the background is automatically estimated based on 

histogram analysis). The smoothed volume is subsequently used to nonnalise the 

original volume, preserving the same average intensity. This operation is feature 

preserving and the background fill reduces boundary artefacts. The source code 
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implementing the algorithm IS freely available for download from 

http://porkpie.loni.ucla.eduIBMD _ HTML/SharedCode/EQlindex.html. 

The implementation used was based on the source code released 16th March 2001 (\ .. 

1.13). A number of bugs had to be fixed in order to work on raw data rather than the 

commercial Analyze fonnat and to get the Fourier transfonn to work properly with 

volumes of dimensions not of the order 2n. The bugs were reported to and 

acknowledged by Marc Cohen. 

6.6.2. The N3 inhomogeneity correction algorithm. 

N3 (the Non-parametric intensity Non-unifonnity Nonnalization algorithm) is based 

on a simple MRl image model: 

vex) = li(X1f{X) + n(x) (6.5) 

At location x the measured signal is v, the true signal is u,jis an unknown bias field 

(causing inhomogeneity) and n is Gaussian white noise, considered to be independent 

of the true signal. High frequencies in the true signal are attenuated by the bias field, 

which is effectively causing a blurring in the measured signal. The kernel producing 

this blurring is considered to be approximately Gaussian. The true signal can then be 

estimated using a de-convolution and this produces a mapping from the measured 

signal to the estimated bias field. This estimate is smoothed by fitting a b-spline to the 

curve in order to iron out sharp jumps where tissue classes overlap. This is not 

achieved in a single iteration, so the measured signal is updated according to the 

estimated bias field and the process is repeated until convergence is reached. 

Alternatively since this process is computationally expensive, it may be stopped after 

a predefined number of iterations. The source code for N3 is freely available from 

http://www.bic.mni.mcgill.ca/sofiwareIN3. 
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The implementation ofN3 was based on v. 1.05 of the source code with a fe\\ minor 

corrections for compatibility with Solaris. The following prerequisite libraries were 

also built/installed: netCDF v. 3.5.0, MINC v. 0.8 and the MNI perllib v. 0.05. 

6.7. Results on simulated MRI data II. 

The same Brain Web volumes which were used for the initial study of the PGA with 

path descriptors were segmented with automatic template creation and inhomogeneity 

correction using either EQ or N3. The new segmentation pipeline is shown in fig. 6.2. 

The results presented in this and the following section (6.8) were published in [177]. 

Table 6.2 shows the error rates for the three volumes using PGA-SPD and PGA-SPDS 

segmentation with automatic template creation and inhomogeneity correction using 

EQ. Table 6.3 shows the equivalent error rates using N3. It is apparent that PGA­

SPDS consistently performed better than PGA-SPD and N3 consistently resulted in 

more accurate results than EQ. In the remainder of this section "PGA" will refer to the 

stand-alone PGA-SPDS, while "PGA auto" will refer to PGA-SPDS using automatic 

template creation. Fig. 6.3 shows an exampk ofPGA auto on a slice from the volume 

with 30/0 noise and 40% inhomogeneity. 

Table 6.2. Error rates for BrainWeb volumes using EQ inhomogeneity correction and automatic 
template creation. 

Algorithm 3N 20RFI 3N 40RFI 7N 20RFI 
PGA-SPD EQ 5.155% 5.655% 7.963% 
PGA-SPDS EQ 5.104% 5.583% 7.901 % 

Table 6.3. Error rates for BrainWeb volumes using N3 inhomogeneity correction and automatic 
template creation. 

Algorithm 3N 20RFI 3N 40RFI 7N 20RFI 
PGA-SPD N3 4.697% 4.413% 7. 721 ~ ° 
PGA-SPDS N3 4.661 % 4.396% 7.6700 0 
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Fig. 6.2. The partial ACSR volume segmentation pipeline for MRJ data. (a) Template selection 
from source volume and training of LVQ classifiers. (b) Selection of global ROJ followed by 
segmentation of local ROJs from inhomogeneity corrected volume for each slice plane. Local 
ROJs are 20 in pseudo-3D segmentation. Initial full LVQ segmentation and extraction of 
automatic templates from 60% best classification for each class. Followed by partial PCA 
segmentation, using automatic templates, producing the composite final segmentation. 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 6.3. Segmentation of a slice from the 3% noise 40% inhomogeneity HrainWeb volume. (a) 
Source image. (b) Source image after N3 inhomogeneity correction. (c) HrainWeb ground truth. 
(d) Initial LVQ segmentation. (e) LVQ segmentation with 60% best classification showing 
fragmented data for automatic templates. (f) PGA auto segmentation using automatic templates 
from (e). 

Table 6.4 repeats some of the results from table 6.1 and includes the results of PGA 

auto. It is evident that incorporating automatic template creation and inhomogeneity 

correction has resulted in little difference between the volume with 20% 

inhomogeneity and the volume with 40% inhomogeneity at the same level of noise. 

The volume with 7% noise shows the lowest error rates using PGA auto with either 

EQ or N3 , while also the volume with 3% noise and 40% inhomogeneity shows the 

lowest error rates using PGA auto with N3, outperforming AGEM. 

Table 6.5 shows the error rates for PGA auto without inhomogeneity correction. Table 

6.6 shows the error rates using the PGA-SPDS with EQ and N3 but without automatic 

template creation. Comparing these results with table 6.4 re eals that the combinati n 
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of inhomogeneity correction and automatic template creation always performed better 

than either one or none of the two optimisations. 

Table 6.4. Summary of results: EM and AGEM [130] compared to PGA-SPDS with manual 
templates and no inhomogeneity correction and PGA auto with EQ and ~3 inhomogeneity 
correction. . 

Algorithm 3N 20RFI 3N 40RFI 7N 20RFI 
PGA-SPDS 5.294% 7.327% 8.858% 
PGA auto EQ 5.104% 5.583% 7.901 % 
PGA auto N3 4.661% 4.396% 7.670% 
EM 5.487% 8.986% 10.699% 
AGEM 4.144% 4.759% 8.414% 

Table 6.5. Error rates of PGA auto without inhomogeneity correction. 

Algorithm 3N 20RFI 3N 40RFI 7N 20RFI 
PGA auto 5.161% 6.725% 7.972% 

Table 6.6. Error rates of PGA-SPDS based on manual templates with EQ and N3 inhomogeneity 
correction. 

Algorithm 3N 20RFI 3N 40RFI 7N 20RFI 

PGA-SPDS EQ 5.156% 5.684% 8.874% 

PGA-SPDS N3 4.742% 4.483% 8.750% 

Fig. 6.4 shows the accuracy (inverse of the error rate) per individual slice plotted for 

segmentation of the volume with 7% noise and 20% inhomogeneity, using PGA­

SPDS (manual templates), PGA auto with no inhomogeneity correction and PGA auto 

with EQ and N3. While the segmentation using manual templates directly has distinct 

peaks at the templated slices, the level of accuracy is considerably more consistent for 

the segmentations using automatic template creation. The mean accuracy is also 

plotted in each graph for comparison. 
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Fig. 6.4. Graphs of segmentation accuracy for the 7N 20RFI volume, expressed in % overlap (y­
axis) with the ground truth for CSF, grey matter and white matter. The blue line shows 
segmentation accuracy per slice (x-axis) using manual templates directly (PGA-SPDS), automatic 
template creation with no inhomogeneity correction (PGA auto) and with EQ and N3 
inhomogeneity correction (pGA auto EQ and PGA auto N3). The red line shows the mean 
accuracy for each segmentation. The segmentation using manual templates directly shows best 
segmentation for the slices immediately surrounding the eight templated slices. In the 
segmentations using automatic template creation with or without inhomogeneity correction, the 
level of accuracy is more constant throughout. 

Due to longer acquisition times, it is often not practical in a clinical application to 

obtain volumes with Imm slice thickness. 3mm or 5mm is more commonly used. This 

could prohibit volume segmentation from being an advantage over pseudo-3D 

segmentation. All previous results in this chapter are based on per slice pseudo-3D 

segmentation, but for the sake of completeness, volume segmentation of the three 

BrainWeb volumes was performed. The slice thickness was only Imm in these 

volumes, similarly to the cryo sections described in chapter 4. In order to keep 

processing time at a reasonable level the volume segmentation was restricted to 

growth into only the two neighbouring slice planes, allowing paths to include voxels 
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in the plane as well as at a distance of I voxel away along the Z axis. Table 6.7 sho\vs 

the error rates for PGA auto, which are only very marginally lower than the error rates 

using pseudo-3D segmentation. Processing time however was quadrupled. 

Table 6.7. Error rates of restricted isovolume PGA auto with EQ and :\'3 inhomogeneity 
correction. 

Algorithm 3N 20RFI 3N 40RFI 7N 20RFI 
PGA auto EQ 5.045% 5.526% 7.866% 
PGA auto N3 4.573% 4.296% 7.630% 

A surprising result was that while both N3 and EQ reduce the error rates for the 

volume with 40% inhomogeneity to the same level as that of the volume with 20% 

inhomogeneity, the use of N3 resulted in very slightly better results for the volume 

with 40% inhomogeneity (using pseudo-3D as well as isovolume segmentation). The 

opposite, which was indeed the case when using EQ, would have been expected. 

Table 6.8 compares the results of PGA auto with no inhomogeneity correction, using 

EQ and using N3 on a BrainWeb volume with 3% noise and 0% RF inhomogeneity. It 

is evident that the volume pre-processed with N3 actually performed very marginally 

better than the volume with no pre-processing, but worse than the N3 pre-processed 

volume with 40% inhomogeneity. The volume pre-processed with EQ showed the 

opposite, as expected. A possible explanation for the effect of N3 could be that the 

bias field estimate is more accurate at higher levels of inhomogeneity, at least in 

simulated data, resulting in an overall improvement in segmentation accuracy. In real 

data it would be unlikely to see such an effect. 

Table 6.8. Error rates of PGA auto on a BrainWeb volume with 3% noise and 0% RF 
inhomogeneity using EQ, N3 or no inhomogeneity correction. 

Algorithm No correction EQ N3 

PGA auto 4.356% 4.838% 4.352% 
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6.8. Multispectral MRI segmentation. 

Following successful applications of ACSR to colour images and single channel MRI 

images, the obvious next step would be an investigation into multispectral MRI 

segmentation. TI, T2 and Proton Density images all have their advantages and 

drawbacks for different tissue types. The combination of two or more acquisition 

modes could potentially improve segmentation results [130,178] by providing richer 

point descriptors. Path representations for the PGA can use any number of descriptors. 

However while descriptors produced by a suitable colour model in natural colour 

images relate to each other in ways which are well understood, the relations between 

multiple channels in multispectral MRI data sets are less well defined. The 

combination of descriptors from multiple acquisition modes and the possible 

development of a multispectral appearance model for MRI data is an interesting 

problem, but outside the scope of this project. To provide some preliminary results a 

more simple type of multispectral MRI segmentation will be considered here. 

Table 6.9. Class error rates for PGA auto using EQ inhomogeneity correction. Multispectral 
segmentation based on Tl and T2 images. 

Class 3N 20RFI 3N 40RFI 7N 20RFI 
CSF 1.390% 1.422% 3.659% 
Grey matter 8.514% 9.267% 10.636% 
Whi te matter 4.657% 5.321 % 7.374% 
All 5.889% 6.485% 8.251 % 

Table 6.10. Class error rates for PGA auto using N3 inhomogeneity correction. Multispectral 
segmentation based on Tl and T2 images. 

Class 3N 20RFI 3N 40RFI 7N 20RFI 
CSF 1.984% 1.838% 3.782% 
Grey matter 8.111 % 8.339% 10.676% 
White matter 2.811 % 2.296% 6.326% 
All 5.134% 5.028% 7.912% 
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Table 6.11: Class error ra~es for PGA auto using EQ inhomogeneity correction. Sin Ie-channel 
segmentatIOn based on T1 Images. g 

Class 3N 20RFI 3N 40RFI 7N 20RFI 
CSF 8.154% 8.668% 11.426% 
Grey matter 3.744% 4.048% 6.637% 
White matter 5.401 % 6.086% 7.850% 
All 5.104% 5.583% 7.901% 

Table 6.12. Class error rates for PGA auto using N3 inhomogeneity correction. Single-channel 
segmentation based on T1 images. 

Class 3N 20RFI 3N 40RFI 7N 20RFI 
CSF 9.361% 9.450% 11.922% 
Grey matter 3.748% 3.640% 6.749% 
White matter 3.599% 2.965% 6.832% 
All 4.661% 4.396% 7.670% 

T1-weighed images show good contrast between grey and white matter, while fluids 

(including CSF) are very well defined on T2-weighed images. The three Brain Web 

volumes were segmented using L VQ learning vectors and PGA templates generated 

from T2 images for CSF and Tl images for grey and white matter. Using a specific 

mode for a specific class, different modes can simply be regarded as extra dimensions 

in the sampling space. Both modes were thus used during segmentation, but were 

transparent to the algorithm. Tables 6.9 (using EQ) and 6.10 (using N3) show the 

error rates for individual classes based on Tl and T2, while tables 6.11 (using EQ) 

and 6.12 (using N3) show the error rates based only on Tl images. From this purely 

quantitative type of evaluation, it appears that error rates for CSF are remarkably low 

using multispectral segmentation, while there is a substantial increase in error rate for 

grey matter. The explanation is that CSF is well represented when T2 images are 

used, but invades grey matter regions according to the ground truth segmentation in 

these data sets, significantly affecting error rates. Because CSF accounts for the 

smallest volume of the three tissue classes, the overall error rate is roughly the same 

as for single-channel segmentation. However when visually comparing individual 

slices (such as in fig. 6.3) as a qualitative measure, the more accurate segmentation of 

CSF clearly appears as an improvement and grey matter still appears to be well 

represented. In chapter 5 it \Vas established that while it is reasonable to use ground 
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truth evaluation in simulated data, it does not necessarily reflect the effectivene of 

the segmentation as perceived by a human user. Other performance metrics than 

overlap in area and volume could be employed, for example the Hausdorff distance 

[179] might be used to quantify the accuracy of boundary location in a segmented 

volume compared to the ground truth. However although similarity can be objectively 

quantified, the loss of crucial visual information versus the loss of redundant visual 

information in a specific task for a specific target user cannot be. 

(a) (b) 

(c) (d) 

Fig. 6.5. Single-channel and multispectral segmentation of a slice from the 3% noise 40% RF 
inhomogeneity volume. (a) Source image. (b) BrainWeb ground truth. (c) PCA a~to 

segmentation with N3 inhomogeneity correction, single-channel Tl. (d) PCA auto segmentatIOn 
with N3 inhomogeneity correction, multi-channel Tl and T2. 

6.9. Summary. 

This chapter has introduced a PGA suitable for ACSR segmentation of MRl olum 

and two optimisations significantly increasing the robustness of the method to 

common artefacts. It was shown that an automatic template creation generated fr m 
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the initial LVQ segmentation resulted in higher robustness to noise. Inhomogeneity 

correction as a pre-processing stage, using the EQ and N3 algorithms, increased the 

accuracy of segmentation for volumes with high levels of inhomogeneity. Results 

compared favourably to previously published results on MRF segmentation of the 

same volumes. Better results were achieved for N3 corrected data than for EQ. 

However it cannot be concluded that these results on simulated data would transfer to 

real data. This as well as the issue of single-channel and multispectral segmentation is 

investigated further using human observer experiments described in the following 

chapter. 



Chapter 7: Evaluating the quality and robustness of ACSR segmentation 

Chapter 7 

Evaluating the quality and robustness of ACSR segmentation 

7.1. Empirical evaluation of ACSR segmentation through human observer 
experiments. 

The two previous chapters have presented results on natural colour image 

segmentation and MRI segmentation based on ground truth evaluation. For the natural 

scenes and cryo sections in chapter 5, the ground truth was manually generated by 

tracing the boundaries of segments in the source images. Segmentations were based 

on one set of templates for each image or image series. In chapter 6 the source data 

itself was generated from the ground truth with varying parameters. Segmentations 

were based on automatically generated templates from an original single set of 

templates for each volume, after one of two different types of pre-processing for 

inhomogeneity correction had been applied to the source data. 

For ground truth evaluation of real data segmentation, a ground truth must be 

manually generated by expert observers. In model-based simulated data, the image 

construction itself specifies the ground truth exactly and allows for the ability to vary 

parameters (such as noise and inhomogeneity in the Brain Web data). Ground truth 

comparison as a standard performance metric used on such data gives perfect 

reproducibility, but the evaluation of model-based algorithms on model-based data 

may not reflect the performance on real data. Testing on real data on the other hand is 

complicated by the subjectivity of a manually generated ground truth. The computer 

based ground truth comparison is an ideal observer, when the goal is to quantify the 

level of artefacts present in a segmentation, and an artefact is defined as a single point 

in the automatic segmentation labelled differently from the corresponding point in the 

ground truth segmentation. However this is not always an ideal measure of 

segmentation quality in applications where the overall visual representation com"eyed 

by a segmentation is key. A human expert obsef':er (such as a radiologist) is not 
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capable of the exact quantification of artefacts due to the limitations of the human 

visual system, but is capable of a higher level interpretation, grounded in expert 

knowledge about the expected anatomy, the specific application domain and an 

acquired robustness to common image artefacts. 

Heath et al [160] conducted a study in which edge detections of images of natural 

scenes were ranked by a group of experienced observers (the observers all had a 

computer vision background). The edge detections were performed using five 

different algorithms. The ideal parameter settings for each algorithm were determined 

by a smaller number of observers in an initial ranking task. The Intra-Class 

Correlation coefficient (ICC) was used to demonstrate that observers ranked highly 

consistently between them. Ranking used an ordinal scale from 1 to 7 and was based 

on participants arranging printed edge detection images on a table in front of them in 

order of preference and giving each image a grade. The study demonstrated 

significant differences between the observed performance of the algorithms when 

applied to different categories of images, without the use of a manually generated 

gold standard ground truth. 

In this chapter a series of human observer experiments for the qualitative evaluation 

of ACSR segmentation are described. They involved visual ranking of segmentations 

by naIve as well as specialised expert observers. Comparison between the qualitative 

results obtained and previous results on ground truth evaluation are given. It is 

demonstrated how changing some parameters caused the observed quality of 

segmentation to follow the level of artefacts detected using ground truth comparison. 

Changing other parameters resulted in a significant difference in observed 

segmentation quality, while ground truth evaluation showed no such difference or 

even favoured an alternative parameter setting. The significance of these results for 

different applications is discussed. The issues of RGB vs. OPC in colour 

segmentation, single-channel vs. multispectral segmentation of MRI volumes and EQ 

vs. N3 for inhomogeneity correction are investigated along with the effect of different 

initialisations of the same segmentation task. Written material gi\'en to participants 

and an overview of the computer based experiments with screen shots can be found in 
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appendix D. The images and segmentations described in this chapter are included on 

the companion CD. 

The segmentation tasks investigated in the experiments, like the tasks in the prn"ious 

chapters, were segmentations into general segment classes. Without knowing exactly 

what the application is, it can be an ambiguous task for observers to appreciate what a 

perfect representation of a given segment class is in a given image. Therefore 

segmentation quality was defined to participants as a minimisation of obviolls 

representational errors. Robustness in the context of these experiments was defined 

as the ability for ACSR segmentation to produce consistent results given multiple 

initialisations with the same segmentation parameters. 

In every experiment a relative ranking was produced by observers arrangmg 

segmentations in order of preference according to the observed quality. The relative 

positions were converted to grades on an ordinal scale from 1 (lowest) to 1'1 (highest), 

where n was equivalent to the total number of segmentations. Subsequently an 

absolute ranking was given to each segmentation by observers using an ordinal scale 

from 1 to 7 (similar to the study by Heath et al [160]). A grade of 1 meant "image 

shows no coherent representation of YOllr perceived ideal segmentation" while ;: 

grade of 7 meant "image matches YOlir perceived ideal segmentation" (see appendix 

D). Several segmentations could be given the same grade even if they were 

distinguished in the relative ranking task. The idea was not for participants to 

necessarily use the full absolute scale, but to pinpoint objectively how well each 

individual image represented the desired segments. 

ICC and chi-square tests were performed usmg SPSS v. 0.9.1 from SPSS 

Incorporated. U tests and H tests were performed using Minitab v. 13.1 from Minitab 

Incorporated. 

In the following, "DSOT St. Mary's" will refer to the Department of Surgical 

Oncology and Technology, St. Mary's Hospital, London, U.K" "RSU Hammersmith" 

will refer to the Radiological Sen"ices Unit, Hammersmith HospitaL London, U.K. 
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7.2. Qualitative evaluation of natural colour image segmentation. 

The six natural colour images shown in fig. 5.4 and their segmentations using PBNN­

RGB, PBNN-OPC, PGA-RGB, PGA-OPC and LVQ were used in an experiment to 

evaluate segmentation quality through visual ranking by observers with no experience 

in image segmentation. The aim was to show if a group of inexperienced observers 

would be able to consistently rank segmentations of ordinary scenes in standard 

colour test images, and whether or not the results would be consistent with those 

obtained using ground truth comparison (chapter 5, section 5.3.1). It was of particular 

interest to establish if the subtle differences in segmentations based on OPC and RGB 

would have a significant influence on the observed quality by human observers. 

7.2.1. Methods. 

A group of 11 computing science students from the School of Computing Science, 

Middlesex University, London, U.K. (3 final year BSc and 8 MSc students) was used. 

All participants had to pass a short version (using six patterns) of Ishihara's standard 

test for colour blindness [180] before proceeding to the main task. Participants were 

first shown two examples of ACSR segmentation using the eagle image from [157] 

and the polar bear image from [161] on an LCD display. The position of the screen 

was adjusted for optimal viewing. Each of the six images to be evaluated were then 

presented in tum in random order on the screen. For each image the participant was 

told what the segmentation task was and what the desired segments were. Printed and 

laminated versions of the five segmentations were then laid out in front of the 

participant in random order. Individual images could be identified and their order 

recorded after the experiment through a mark on the back, which was not visible on 

the front. The participant was required to arrange the segmentation images in order of 

perceived segmentation quality, minimising the error of representation of the desired 

segments. Unclassified points in the PBNN images were to be regarded as errors no 

better or worse than misclassified points in any of the segmentations. Images \vere to 

be placed with the lowest quality to the far left and progressively better to the right 

with the best segmentation to the far right. The participant \vas allowed to place two 

images in the same position if the quality of segmentation could not be distinguished. 
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Subsequently an absolute ranking was given to each segmentation. After the relative 

and absolute ranking tasks the next source image would be displayed on the screen 

and its five segmentations presented. The same display device and the same printed 

segmentation images were used for all participants. 

7.2.2. Results. 

The results of the relative and the absolute rankings were analysed separately. In the 

relative ranking each image was given a value according to its relative position. The 

value 1 corresponded to the least good segmentation and the value 5 to the best 

segmentation. Sets of segmentations, which were indicated by a participant as not 

being distinguishable, were each given a value equal to the average of the current and 

the next position. Table 7.1 shows the summed values of the relative rankings by all 

participants for the six images. Overall LVQ was rated as the least good segmentation, 

followed by PBNN-RGB, PBNN-OPC, PGA-RGB and finally PGA-OPC as the best 

segmentation. On the image level the OPC based segmentation was rated better than 

the RGB based segmentation in 5 out of 6 images for PBNN and in 4 out of 6 images 

for PGA (one tie). The largest difference could be found for the Bird11 and Bird12 

images as predicted in chapter 5, section 5.3.l. 

Table 7.1. Summed relative rankings of segmented natural colour test images for all subjects. 

Image PBNN-RGB PBNN-OPC PGA-RGB PGA-OPC LVQ 
Poppy 21.5 27.5 46.5 46.5 23 
Hearts 21 26 50.5 48.5 19 
Seagull 32 25.5 44 48 15.5 
Rose 25 30 49 50 11 
Birdll 26 29 46.5 52.5 11 
Bird12 11 27 44 55 28 
All images 136.5 165 280.5 300.5 107.5 

Table 7.2 shows the summed values of the relative ranking for all images for each 

participant. From these values the ICC was calculated to detem1ine if participants 

were consistent in their rankings. The ICC(3,k) version of the statistic \\'as used 

because a single group of subjects rated all images. The number of subjects k was II, 
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The ICC(3, 11) for the relative rankings was found to be 0.996, which means that the 

participants were highly consistent in their rankings and shared a "goodness of 

segmentation" similar to what Heath et al [160] found. 

Table 7.2. Summed relative rankings of segmented images for all natural colour test images (rows 
correspond to subjects). 

Sample PBNN-RGB PBNN-OPC PGA-RGB PGA-OPC LYQ 
1 11.5 13 26 27.5 12 
2 12 14 22 29 13 
3 16 17 22.5 25.5 9 
4 12 15 27 27 9 
5 11 14 27 27 11 

6 11 16 26 28 9 
7 13 13 26.5 27.5 10 
8 12 15.5 25 27 10.5 
9 13 16 27 26.5 7.5 

10 12 16 27 27 8 
11 13 15.5 24.5 28.5 8.5 

The absolute rankings were treated in the same way as the relative rankings. Table 7.3 

shows the mean summed values of the absolute rankings from all participants for the 

six images. The total mean of 5.9 for PGA-OPC indicates a clear correspondence 

between the observed segmentations and the perceived ideal segmentations. 

Table 7.3. Mean summed absolute rankings of segmented natural colour test images for all 

subjects. 

Image PBNN-RGB PBNN-OPC PGA-RGB PGA-OPC LVQ 

Poppy 3.3 3.6 5.8 6.0 3.6 

Hearts 2.7 2.8 5.8 5.6 2 . ..f 

Seagull 4.9 4.5 6.1 6.3 3.8 

Rose 3.5 4.0 6.1 6.0 1.8 

Birdll 3.1 3.5 5.1 5.4 1.9 

Bird12 2.5 3.3 5.5 6.2 3.6 

All images 3.3 3.6 5.7 5.9 2.9 

Table 7.4 shows the summed values of the absolute ranking for all images for each 

participant. The ICC(3Jl) was calculated as 0.991, again showing a very high 

consistency in rankings by the participants. The ICe(3, 11) was also calculated for 

each individual image over all five classifiers for both the relative and the absolute 

ranking. Segmentations of the Seagull image were yery close to each other \\hile in 

1 ' 1 
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comparison they were vastly different for the Hearts image. It was therefore possible 

that a low correlation of rankings would show for some of the images. It is eyident 

from table 7.5 that this was not the case. All images showed a high correlation, 

although as expected the Seagull image was below average. 

Table 7.4. Summed absolute rankings of segmented images for all natural colour test images 
(rows correspond to subjects). 

Sample PBNN-RGB PBNN-OPC PGA-RGB PGA-OPC LVQ 
1 21 23 34 37 20 
2 17 20 33 38 18 
3 22 23 30 33 17 
4 12 17 34 34 12 
5 21 23 37 37 20 
6 14 17 31 34 10 
7 34 34 42 42 34 
8 20 22 31 30 19 
9 20 22 37 37 13 
10 19 18 35 35 13 
11 19 21 31 33 13 

~~-

-

Table 7.5. ICC(3,11) for each natural colour test image over all classifiers based on relative and 
absolute ranking. 

Image ICC(3,11) relative ranking ICC(3,11) absolute ranking 
Poppy 0.917 0.912 
Hearts 0.974 0.978 
Seagull 0.933 0.899 
Rose 0.992 0.986 
Bird11 0.991 0.978 
Bird12 0.995 0.984 

Because the rankings could not be guaranteed to be normally distributed, the non­

parametric Mann-Whitney U test was used to test individual segmentations against 

each other. A number of two-tailed tests were carried out. The null-hypothesis was no 

difference between the RGB and the OPC based segmentations. Table 7.6 shows the 

results of these tests. Based on the relative rankings the null-hypothesis could be 

rejected and the results were highly significant at the p = 0.05 level, showing that 

PBNN-OPC and PGA-OPC produced superior results to PBNN-RGB and PGA-RGB. 

Based on the absolute rankings the results were not significant. L VQ (which used 

OPC) was compared to PBNN-OPC, and PBNN-OPC was found to be significantly 

better based on both the relatiye and the absolme rankings. 
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Table 7.6. Results of two-t~iled Mann-Whitney l' tests for relative and absolute rankings of RGB 
and OPC based segmentatIOns of natural colour test images. Significance at p = 0.05. 

Classes Relative rankings Absolute rankings 
PBNN-RGB vs. p 0.0013 p-O.1756 
PBNN-OPC significant not significant 
PGA-RGB vs. p 0.0064 P - 0.3031 
PGA-OPC significant not significant 
PBNN-OPC vs. p 0.0001 p-0.0175 
LVQ significant significant 

7.2.3. Discussion. 

The effect of varying the segmentation algorithm was the same for the visual ranking 

as it was for the ground truth evaluation. The PBNN classifier outperformed L VQ 

because it uses more undistorted local information, but was in tum outperformed by 

the adaptable region based PGA. Effectively changing the algorithm in this 

experiment produced a scaling of the amount of artefacts distributed across 

segmentations, similar to adding increasing levels of impulse noise. Thus in 

agreement with the ground truth evaluation, the level of artefacts was inversely 

proportional to the observed quality. Based on ground truth comparison there was no 

significant effect of changing the colour model. However the visual ranking showed 

significantly better results using OPC. This is in spite of the ground truth comparison 

actually showing higher error rates for some of the OPC based segmentations. It is 

clear that in this case, changing the parameter changed not the level of artefacts, but 

the nature of the artefacts and how they affected the visual information conveyed in 

the segmentations. This was missed by the ground truth evaluation. If several such 

parameters are present, the effect on a segmentation can be significant, particularly in 

applications for accurate 3D reconstruction. 

The relative ranking was needed to show that the difference between RGB and ope 
was significant. It could be argued that the absolute ranking would have achieved the 

same goal, had a higher resolution of the scale been used. However more grades to 

choose from would complicate the rating task for participants. On the other hand the 

absolute ranking was useful to quantify not the order of preferred segmentations but a 

rating of their independent quality. This would not be possible if the full scale \\3S 

used. The results obtained from the absolute ranking showed a \'ery large difference 
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between LVQ and PGA-OPC (PGA-OPC on average rated twice as high as L VQ) 

while the difference based on ground truth evaluation was small. 

7.3. Qualitative evaluation of a brain cryo section series segmentation. 

Having established in the experiment described in the previous section that 

inexperienced human observers were able to highly consistently rank segmentations 

of natural colour images, the next step was to investigate if the same could be shown 

for specialised observers ranking medical images. In the first instance the five brain 

cryo slices from chapter 5, section 5.3.2 were used. Again the aim was to test for 

consistency of the rankings and to compare results to those obtained using ground 

truth comparison, as well as to obtain an overall measure of observed segmentation 

quality. 

7.3.1. Methods. 

The observers were 11 surgeons from St. Mary's Hospital. These participants were 

selected because of their theoretical and practical experience in assessing macroscopic 

human anatomy and as expert users of medical images. Since these surgeons regularly 

carry out keyhole surgery, they had a possible additional advantage of more 

experience in assessing 2D close-up colour images of anatomical structures. Although 

the type of images viewed in keyhole surgery procedures may not be directly 

comparable to cross-sections, they still present the surgeon with the task of 

determining the delineation of tissue types based on natural colour and texture. 

The images were presented in sequence on a CRT display. The source images 

appeared in the top row and each of the five segmentations of the image sequence 

based on PBNN-RGB, PBNN-OPC, L VQ, PGA-RGB and PGA-OPC appeared in 

rows underneath. The starting order of the rows for each segmentation \\<1S randomly 

selected for each participant. Each column corresponded to a specific image in the 

sequence. Using an interactive selection tool each participant \\'as able to arrange the 
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rows in order of perceived segmentation quality, placing the least good sequence as 

the bottom row with sequences getting progressively better towards the top of the 

screen. Participants were thus performing a ranking based on the overall quality of a 

sequence of five images and not on individual images. Following this relative ranking, 

participants graded each row using the same scale from 1 to 7 as employed for the 

images in section 7.2. 

7.3.2. Results. 

The ICC(3,11) was calculated as 0.920 for the relative ranking and 0.926 for the 

absolute ranking, showing a high correlation between subjects. 

The summed relative rankings are shown in table 7.7 and the mean absolute rankings 

in table 7.8. Table 7.9 shows the results of Mann-Whitney U tests between PBNN­

RGB and PBNN-OPC, PGA-RGB and PGA-OPC and finally PBNN-OPC and L VQ. 

Table 7.7. Summed relative rankings of the segmented cryo brain volume for all subjects. 

Volume 
Cryo brain 

PBNN-RGB PBNN-OPC PGA-RGB PGA-OPC L VQ 
---::-:;::-1 

25 18 45 48 29 

Table 7.8. Mean absolute rankings of the segmented cryo brain volume for all SUbjects. 

Volume PBNN-RGB PBNN-OPC PGA-RGB PGA-OPC LVQ 
Cryo brain 3.1 2.9 5.0 4.8 

Table 7.9. Results of two-tailed Mann-Whitney U tests for relative and absolute rankings of RGB 
and OPC based segmentations. Significance at p = 0.05. 

Classes Relative rankings Absolute rankings 
PBNN-RGB vs. p - 0.0725 P 0.7678 
PBNN-OPC not significant not significant 

PGA-RGB vs. P - 0.1666 P 0.6550 
PGA-OPC not significant not significant 

PBNN-OPC vs. P - 0.0403 P 0.4710 
LVQ significant not significant 



Chapter 7: Evaluating the quality and robustness of ACSR segmentation 

7.3.3. Discussion. 

Similar to the experiment on natural colour images, the order of preferred 

segmentation algorithms in the visual ranking was predicted by the ground truth 

evaluation. In this case the LVQ classifier produced better results than PBN\!, 

because it generalises over the data, while matching purely local data does not 

perform well on multiple slices using PBNN. LVQ still showed artefacts due to the 

rigid sampling window, while the adaptive representations of the PGA produced 

superior results. Contrary to the results on the natural colour images, this experiment 

showed no significant benefit of using OPC over RGB. The average absolute grade 

given to PGA-OPC for this volume was 4.8, which is considerably lower than the 5.9 

given for the natural colour images. However this was to be expected, considering the 

inhomogeneity of the "other" class (classes were grey matter, white mater and 

"other") and the fact that the evaluation was based on only one small volume. 

7.4. Qualitative evaluation of a cryo volume segmentation with multiple 

initialisations. 

In order to investigate the robustness of ACSR segmentation to variations in template 

selection, an experiment was carried out, in which a group of expert observers ranked 

segmentations of the same cryo section volume, based on template sets selected by 

four different individuals. The aim was to determine whether or not participants 

would rank the four segmentations in a consistent and significantly different way. If 

they did, it would be an indication that different individuals were not capable of 

facilitating equally good segmentation through their template selection. 

7.4.1. Methods. 

A subvolume of 19 slices from the hip bone cryo section volume described in chapter 

4 section 4.10.1 was selected for this experiment. The four participants chosen for , 

template selection consisted of the author as \\"ell as t\\"O surgeons (DSOT St. i\lar) 's) 

137 



Chapter 7: Evaluating the quality and robustness of ACSR segmentation 

and one radiologist (RSU Hammersmith) with no previous experience in using ACSR 

segmentation. As mentioned in section 7.3.1, the surgeons are used to assessing 

anatomy based on natural colour and texture, although typically not on cross sections. 

Radiologists are highly skilled in interpreting cross-sections, but are not used to 

basing their assessment on natural colour textures. The author (who holds an exam in 

macroscopic and neuro anatomy) was included because of his experience with ACSR 

segmentation. 

A group of 11 surgeons (DSOT St. Mary's) carried out relative and absolute ranking 

of the four segmentations. This group was the same one used to rank the cryo section 

brain images described in section 7.3. In fact the two experiments were carried out in 

one session for each participant, but the order of the two tasks was randomly chosen 

in each session to even out any bias or effects of learning. 

After receiving instructions about the desired segment classes, participants In the 

template selection task were free to select any of the slices (a minimum of two) from 

the hip bone volume. Although participants could select as many slices as they wanted 

to (in order to achieve templates representative of the whole volume) none of the four 

selected more than two slices. From each of their selected slices, participants selected 

templates for two classes: blood vessels and bone marrow. Templates were marked in 

a pseudo-colour using a commercial paint package (Paint Shop Pro v. 5.1 from 

JASe), where participants also had the option of using a zooming tool. All the slices 

of the volume could be viewed as thumbnails simultaneously with their slice number. 

At any time participants could switch to another custom made program, which 

displayed the volume as an image stack with the current slice number displayed. In 

this program it was possible to do an automatic fly-through of the volume or browse 

interactively forwards or backwards through the volume slice by slice. 

Participants in the ranking task were presented with the source volume and its four 

segmentations as image stacks on a CRT display. The individual viewports of each 

image stack were arranged with the source in the centre and the segmentations above, 

below, to the right and to the left. The starting position of each segmentation was 

randomly chosen for each participant. The current slice number \\as synchronised for 
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all volumes, but the starting slice number was randomly selected in each seSSIOn. 

Participants could select a fly-through or browse through the individual slices. The 

task was to arrange the volumes in order of perceived segmentation quality, based on 

an overall assessment of each image sequence. Subsequently a grade from 1 to 7 was 

given to each segmentation. 

7.4.2. Results. 

The rankings for each participant are shown in table 7.10 (relative) and table 7.11 

(absolute). 

Table 7.10. Relative rankings of all segmentations of the hip bone volume. Rows correspond to 
observers, columns to the segmentation being ranked, each based on a different template set. 

Sample Volume 1 Volume 2 Volume 3 Volume 4 
1 3 1 4 2 
2 3 1 4 2 
3 1 4 2 3 
4 3 1 4 2 
5 2 1 4 3 

1 4 2 
.., 

6 .) 

7 1 4 3 2 
8 4 3 1 2 

9 1 4 2 3 
10 4 1 3 2 

11 3 1 2 4 

All samples 26 25 31 28 

Table 7.11. Absolute rankings of all segmentations of the hip bone volume. Rows correspond to 
observers, columns to the segmentation being ranked, each based on a different template set. The 
last row shows the mean grade for each segmentation. 

Sample Volume 1 Volume 2 Volume 3 Volume 4 

1 5 3 5 4 

2 4 2 6 4 

3 3 6 4 4 

4 4 2 5 ) 

5 4 2 6 5 

6 2 5 3 3 

7 4 5 5 --+ 
., 

6 4 1 , 
8 
9 2 5 3 --+ 

., 
10 4 2 3 -' 

11 6 5 6 6 
-< 

Mean ... 3.7 4.3 3.8 : 
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The ICC(3,11) was calculated as -1.781 for the relative ranking and -1.,,),67 for the 

absolute ranking. 

Looking at table 7.10, it is obvious that the rankings were highly inconsistent, with 

volumes having a high relative ranking by one observer and a low ranking by another. 

The segmentations referred to as volume 1, 2 and 3 in table 7.10 all have several 

rankings of both 1 and 4 by different observers, while volume 4 is slightly more 

consistent across observers. In the absolute ranking this trend is even more 

exaggerated for all four segmentations. Table 7.12 shows the result of the Kruskal­

Wallis H test performed on the four segmentations. The difference between 

segmentations was non-significant for both the relative and absolute ranking. 

Table 7.12. Results of Kruskal-Wallis H tests for relative and absolute rankings of the four 
segmentations of the hip bone volume. Significance at p = 0.05. 

Volume Relative rankings Absolute rankings 
Cryo hip bone p - 0.684 P = 0.776 

not significant not significant 

7.4.3. Discussion. 

There are two possible interpretations of the results. It is possible that observers did 

not a share a "goodness of segmentation". Therefore although they could distinguish 

between the four segmentations, they did so based on different undefined subjective 

criteria. This would be supported by the absolute rankings following the relative 

rankings in terms of spread for each observer. However it is highly unlikely that the 

same group who ranked the cryo section brain segmentations with an ICC above 0.9 

would be unable to rank in a mutually consistent way if the four segmentations of the 

hip bone volume had been clearly distinguishable. The negative ICC and the highly 

non-significant H test can be accounted for by the four segmentations being too 

similar to distinguish, leading to a random relative ranking for each participant. The 

difficulty in distinguishing the segmentations was reported during the experiment by 

most of the observers. The absolute rankings are not consistent with this 

interpretation, since each obsen'er would have been expected to rank all 
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segmentations similarly. However it is likely that observers felt that they had to 

demonstrate the difference between segmentations, having specified a relative order. 

While the absolute rankings for the cryo brain volume were consistent \\ith the 

comments given by participants in terms of observed difference, several participants 

commented that there was only a minute difference between the best and the least 

good segmentation for the hip bone volume. One participant reporting this still gave a 

1 to the least good segmentation and a 6 to the best one. It is therefore highly probable 

that the observers were not able to distinguish clearly between the four segmentations. 

The conclusion is that the four template sets facilitated segmentations of virtually 

equal quality. The highest absolute ranking on average was given to the segmentation 

facilitated by one of the surgeons (volume 3), while the author with the highest level 

of experience in ACSR segmentation showed no advantage and came second (volume 

1). The segmentation facilitated by the radiologist had the lowest absolute ranking on 

average (volume 2). 

Given that the rankings were inconsistent between observers, the average absolute 

grades given in table 7.11 do not serve as a useful measure of the overall quality of 

the four segmentations (it is assumed here that the four segmentations were of equal 

quality). To achieve a more realistic measure, a weighted average of the best absolute 

rankings by each participant was calculated with the weights based on the best relative 

rankings (more than one segmentation can have the highest grade in the absolute but 

not in the relative ranking). Four observers favoured volume 2, another four favoured 

volume 3 two favoured volume 1 and one favoured volume 4. If the weight for the , 

eight observers favouring the volumes 2 and 4 are referred to as .t, the two observers 

favouring volume 1 as y and the one observer favouring volume 4 as z then the 

following equations express the weights: 

8x + 21' + Z = 1 

x 
r=-. 4 

X 
~ = 

8 

\' 
- ---

2 

(7.2) 

(7.3) 

(704) 
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Solving this set of equations gives the following weights: 

8 2 1 
X=-

69 
V=-
- 69 

Z=-
69 (7.5) 

The weighted average can now be calculated as the sum of the best absolute grades 

for each observer (determined by the segmentation rated best in the relative ranking) 

multiplied by their corresponding weights: 

8 ( 2 1 
J.1hip abs = - 5 + 6 + 6 + 5 + 6 + 5 + 5 + 5)+-(4+ 6)+-(6)= 5.3623:::: 5.4 (7.6) 

- 69 69 69 

Comparing this value to the mean summed absolute rankings from the prevIOUS 

experiments, places the quality of the hip bone segmentation between the cryo brain 

volume segmentation in section 7.3 (with a value of 4.8) and the natural colour image 

segmentation in section 7.2 (with a value of 5.9). 

7.5. Qualitative evaluation ofMRI volume segmentation with mUltiple variables. 

The final human observer experiment was based on real and simulated MRI data 

ranked by specialist observers. For the simulated data the aim was to investigate the 

observers' preference for either multispectral or single-channel segmentations based 

on the observed quality of representation of the segmented tissue classes. For the real 

data the aim was to investigate if there was any significant difference in observed 

segmentation quality for segmentations based on EQ and N3 inhomogeneity corrected 

data, and how ACSR segmentation compared to a manually created gold standard 

ground truth. 

7.5.1. Methods. 

Six radiologists participated, four from St. Mary's Hospital and two from RSU 

Hammersmith. The MRI experiment was divided into two types of tasks. One type 

concerned the evaluation of single-channel \'s. multispectral segmentation of the three 

Brain Web segmentations reported in chapter 6, section 6.8. There \\crc three tasks of 
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this type, one for each volume. The other type concerned the evaluation of 

segmentation of two real MRI volumes from the IBSR. Again there was one task for 

each volume. The experiment was carried out in one session of three blocks. Block A 

contained the first IBSR task. Block B contained all three Brain Web tasks. Block C 

contained the second IBSR task. Block B was always second in every session, but the 

order of the individual tasks in the block was randomly selected. Blocks A and C were 

swapped randomly between the first and the third position for each session. 

7.5.2 The IBSR tasks. 

In the IBSR tasks participants first carried out a relative and then an absolute ranking 

similar to that described in section 7.4. Segmentations were based on two different 

template sets, two different types of inhomogeneity correction (EQ and N3) and one 

manual expert ground truth. 

The two IBSR volumes used in the experiment were data sets 788_6_m (55 year old 

normal male) and 1320_2_ max (5 year old schizophrenic male). They were acquired 

with a 1.5 Tesla General Electric Signa. The slice thickness was 3mm. These two 

volumes were selected as representative MRI brain scans, because they were acquired 

with a popular type of scanner with typical slice thickness. Furthermore these two 

volumes were more complete than several of the other IBSR volumes and contained 

no pathological anomalies, such as tumours. Finally a manually selected expert 

ground truth was available for both volumes. The age difference between the two 

subjects meant that the proportions of the three tissue types grey matter, white matter 

and CSF differed, providing an extra source of variation for the experiment. 

A subvolume of 19 slices was selected from each of the full volumes. It was necessary 

to base evaluation on a smaller set of slices in order to keep the required time per 

session at a reasonable level. In both volumes the 19 slices were selected from the 

middle of the brain, both containing the ventricles and the thalamus, which are 

paliicularly challenging structures for intensity based segmentation. 
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One set of templates was selected manually by the author from the first and last lice 

of each of the two volumes, templating grey matter, white matter and CSF. Fig. 7.1 

shows the manual templates from the first slice of the adult IBSR volume. Another et 

of templates from the first and last slice was created for each volume from the expert 

ground truth, similarly to the templates of the "simulated user" in the Brain Web study 

described in chapter 6. However while the entire ground truth for the three classes was 

used in the selected slices in the Brain W eb vol urnes, all boundary points were 

discarded for the IBSR volumes. This was due to the possibility of incorrect boundary 

location in the manual ground truth. The two template sets were used to facilitate the 

segmentation of both volumes pre-processed with EQ and N3 (and using automatic 

template creation), thus yielding four segmentations per volume. The manual ground 

truth was included unmodified as a fifth segmentation. The ground truth segmentation 

was generated by trained investigators at Massachusetts General Hospital, assisted by 

a semi-automatic segmentation from an algorithm developed by Kennedy, Filipek and 

Caviness [181] and intensity histograms. 

(a) (b) (c) 

Fig. 7.1. Example of manually selected templates (shown in white) for the adult IBSR volume. (a) 
CSF. (b) Grey matter. (c) White matter. 

The ranking task was performed in the same way as for the hip bone cryo section 

ranking described in section 7.4.2, the only difference being the arrangement of the 

image stacks on screen (see appendix D). 
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7.5.2.1. Results. 

The summed relative rankings are shown in table 7.13 and the mean summed absolute 

rankings in table 7.14. The ICC for the summed rankings as well as individually for 

each of the two volumes are shown in table 7.15. Every ICC is high. but only one is in 

the very high range (>0.9) found in the previous experiments. This can be attributed to 

the small number of observers. In the tables "sim" refers to the simulated user 

(templates based on the ground truth) and "man" refers to the human user (manually 

selected templates). 

Table 7.13. Summed relative rankings of the segmented MRI brain volumes for all subjects. 

Volume simEQ sim N3 ground truth manEQ man N3 
IBSR adult 16 22 8 21 
IBSR child 26 10 18 26 
All 42 32 26 47 

Table 7.14. Mean summed absolute rankings of the segmented !\IRI brain volumes for all 
subjects. 

Volume simEQ simN3 ground truth manEQ manN3 
IBSR adult 3.7 4.3 2.2 4.2 
~SRchild 4.8 2.7 3.8 5.2 
~ 4.3 3.5 3.0 4.7 

23 
10 

----=-=--
33 

- ----~ 

4.7 
' 7 ._. I 

3.7 

Table 7.15. ICC(3,1l) for each MRI brain volume over all segmentations based on relative and 
absolute ranking. 

Volume ICC(3,6) relative ranking ICC(3,6) absolute ranking 

IBSR adult 0.733 0.823 

IBSR child 0.919 0.897 

All 0.775 0.835 

Table 7.16 shows a number ofU tests performed on EQ vs. N3 and ground truth \"s. 

the best ACSR segmentation. All tests for EQ vs. N3 in the child volume \\'ere 

significant at the p = 0.05 le\'el for both relative and absolute ranking. Similarly the 

difference between the ground truth and the best ACSR segmentation \\'<1S significant 

in every test. 
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Table 7.16. Re~uIts o~ t,;o-tailed :VIann-Whitney U tests for relative and absolute rankin s of 
MRI segmentatIOns. Slgmficance at p = 0.05. g 

Classes Relative rankings Absolute rankings 
Sim EQ vs. sim N3 p 0.3209 P - 0.4082 
adult not significant not significant 
Man EQ vs. man N3 p 0.6734 P - 0.4608 
adult not significant not significant 
Ground truth vs. man p 0.0094 P - 0.0108 
EQ adult significant significant 
Sim EQ vs. sim N3 p 0.0039 p - 0.0085 
child significant significant 
Man EQ vs. man N3 p 0.0103 P - 0.0089 
child significant significant 
Ground truth vs. man p 0.0228 P - 0.0096 
EQ child significant significant 
Sim EQ vs. sim N3 all p 0.1445 P - 0.3263 

not significant not significant 
Man EQ vs. man N3 all p - 0.0571 P = 0.0099 

not significant significan t 
Ground truth vs. man p - 0.0106 P = 0.0046 
EQ all significant significant 

7.5.2.2. Discussion. 

It is evident that the EQ corrected source data resulted in better segmentation than the 

N3 corrected data for the child volume, where large amounts of white matter in the 

cerebellum were misclassified as grey matter based on the N3 corrected data (see 

appendix D, fig. D.S). These artefacts were regarded as serious by the observers. 

Segmentations based on the manual template selection were higher ranked than those 

based on the templates derived from the ground truth. The manual ground truth was 

rated as the least good segmentation overall with an average absolute ranking of 3.0 

compared to 4.7 for the ACSR segmentation with EQ pre-processing and initially 

manually selected templates. Even the segmentations where templates were based on 

the ground truth were rated better than the ground truth itself. This is essentially 

similar to partial ACSR where misrepresentations in an initial segmentation are 

corrected by the PGA in a subsequent segmentation, and demonstrates ACSR as an 

automatic optimisation tool. 
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7.5.3. The BrainWeb tasks. 

In the Brain Web tasks, participants carried out a categorisation, selecting one of 1\\'0 

segmentations as their preference or stating that the two could not be distinguished. 

The sole purpose of these tasks was to investigate if observers would fayour either the 

single-channel or multispectral segmentations, based on minimising the level of 

observed misrepresentations of the segmented tissue classes. Each task involved the 

categorisation of segmentations of one of the three Brain Web volumes evaluated 

through ground truth comparison in chapter 6, section 6.8. 

In each task the source data was displayed on screen as an image stack in the middle 

with the two segmentations below on either side. The position of each type of 

segmentation in each session and for each task was swapped randomly. Observers 

could select a fly-through or browse interactively as in the previously described 

experiments. For each volume they were asked to mark their segmentation of choice, 

or alternatively mark none of the two, if they felt that they could not be distinguished 

qualitatively. 

7.5.3.1. Results. 

Table 7.17 shows the frequencies of each categorisation for each volume. In 13 out of 

18 cases the multispectral segmentation was preferred. All participants preferred the 

multispectral segmentation for the volume with 7% noise and 20% inhomogeneity. 

There was only one instance of an observer not being able to distinguish between the 

two segmentations for a single volume. Because of the small number of observers, the 

data was pooled for all observers and all volumes. The one observation with no 

difference between the two segmentations was discarded, giving 17 observations with 

of frequency of 13 for multispectral and 4 for single-channel. A chi-square test was 

performed on this data, assuming no difference between the two groups, i.e. an 

expected frequency of 8.5 for each group. This gave x 2 
= 4.76. Since the critical value 

for the hypothesis of no difference at the 0.05 Ic\Oel for 1 degree of freedom is 3.84. 

the hypothesis could be rejected and consequently the multispectral segmentation was 
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significantly better rated compared to single-channel at the p = 0.05 le\'el. Howe\"er if 

Yates' correction for continuity [182] is applied, the value of ,/ drops to 3.76, 

meaning that the hypothesis of no difference could only be rejected at the p = 0.052 

level. 

Table 7.17. Frequencies of categories selected for each of the three Brain Web volumes and the 
total for each category. 

Category 3N 20RFI 3N 40RFI 7N 20RFI All volumes 
Single-channel 2 2 0 4 
Multispectral 3 4 6 13 
No difference 1 0 0 1 

7.5.3.2. Discussion. 

From the comments made by observers, it could be ascertained that their preference 

was mainly due to the multispectral segmentation producing connected CSF regions, 

while in the single-channel segmentation these regions appeared as broken islands. 

However because the data was simulated, it must be accepted that the better 

representation of CSF was in fact at the expense of losing some grey matter 

representation (appearing as a thinning of the boundaries), revealed by the ground 

truth evaluation. Are the observers then wrong? Clearly this is a matter of the 

application at hand. For a reconstruction of the ventricular system they would 

probably be right. For exact tissue quantification they would probably be wrong. The 

choice of the type of single-channel or multispectral ACSR segmentation discussed 

here might be used selectively depending on the required application. 

7.6. Summary. 

The results presented in this chapter have provided a qualitatiye evaluation of the data 

analysed in chapter 5 and 6 using ground truth comparison. In addition, results on ne\\ 

data have been presented. 

I-IS 
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Robustness to multiple initialisations was shown in the cryo hip bone experiment, 

where observers previously shown to rank highly consistently on a similar data set 

produced a negative correlation between rankings and no significant difference in 

observed segmentation quality over all volumes. The four segmentations were based 

on four different template sets and thus it could be concluded that different individuals 

were capable of facilitating ACSR segmentations of equal quality. 

For the individual natural colour images, PBNN segmentation was preferred to L VQ 

and vice versa for the cryo brain sequence. This was consistent with the ground truth 

evaluation, showing that for this particular variation of the segmentation parameters, 

the observed quality of segment class representations followed the level of 

misrepresented points, when compared to a manual ground truth. However when 

varying the colour model there was no significant difference between the levels for 

ope and RGB based segmentations, while human observers significantly preferred 

the ope based segmentation for the natural colour images. It was also shown that 

multispectral MRI segmentations were preferred over single-channel segmentations 

because of the overall representation of the segmented tissue classes and their visual 

definition. Ground truth evaluation showed that single-channel segmentations were 

more accurate on a point by point basis. 

A ground truth evaluation of the IBSR segmentations would have been highly 

ambiguous, given that the expert ground truth is possibly not as detailed as the semi­

automatic ACSR segmentations. This was indicated by observers ranking the manual 

ground truth significantly lower than the best ACSR segmentation. The mean absolute 

rankings for the natural colour images and brain cryo series, as well as the weighted 

average for the cryo hip bone volume segmentation (where in all cases no qualitative 

comparison with a ground truth was performed) were 5.9, 4.8 and 5.4 respectively on 

a scale from I to 7. This must be considered an encouraging result, gin:n the 

complexity of the images involved. 

These findings indicate that human observers share a holistic view of image quality 

grounded in knowledge about expected image compositions (specialist kno\\'ledge 

about the expected anatomy in the case of the cryo section and MRI images). An 
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automatic evaluation achieving this would essentially require a system capable of 

passing an image interpretation equivalent of the Tming test. This does not ho\ve\er 

contradict the necessity for ground truth evaluation, but rather the two types of 

evaluation complement each other for different applications. 

In conclusion, chapter 6 and 7 have provided both a quantitative and a qualitative 

evaluation of ACSR segmentation, showing promising results for potential 

applications in both tissue quantification (supported particularly by ground truth 

evaluation) and visualisation, including 3D reconstruction (supported particularly by 

visual ranking). 

1:'0 
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Chapter 8 

Conclusions and future work 

8.1. Conclusions from the presented work. 

The goal of the work described in this thesis was to develop a new framework for 

robust semi-automatic segmentation of medical imaging data of multiple modalities. 

The aims were to devise a system in which the user would be able to specify the 

desired segment classes through an intuitive visual initialisation, followed by a fully 

automatic segmentation process, requiring no further interaction. For the purpose of 

initialisation, the imaging modality should be transparent to the user, requiring the 

same pattern of interaction regardless of the data to segment. 

8.1.1. Background. 

Chapter 1 gave an historical introduction to the areas of medical imaging, computer 

graphics visualisation and medical image processing. Some of the drawbacks of 

currently available methods, both in terms of performance and ease of use, were 

briefly discussed. This was followed by an outline of the research objectives. 

The literature review in chapter 2 gave a technical introduction and background to 

image segmentation. The chapter concluded with a summary in the context of medical 

image analysis. 

8.1.2. Contribution to knowledge. 

The novel part of the work described in this thesis, constituting the contribution to 

knowledge, was described in chapters 3 to 7. 
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Specific problems related to medical image segmentation were identified in chapter 3 

and a set of conceptual and technical requirements for a semi-automatic segmentation 

framework were specified. The work of Gerritsen [133] and Olabarriaga and 

Smeulders [134] on automatic and interactive segmentation systems was discussed. 

The seven conceptual requirements for the proposed framework addressed the 

problems of: 

• Establishing a balance between automation and specification of the goal of a 

segmentation from the point of the user 

• Enabling a focussing of proposed segmentation algorithms for the sake of 

efficiency 

• Achieving accuracy and robustness by utilising information in all dimensions of a 

data set, while not imposing unwanted constraints and avoiding distortion of detail 

The four technical requirements were specified as guidelines for implementing the 

conceptual requirements. Based on the literature review in chapter 2, it was concluded 

that the preliminary work should be based on a vector quantization neural network 

approach, and that the specific problem of segmentation near edges and correct 

boundary location was to be addressed in depth. 

In chapter 4 a feature vector encoding for SOM and LVQ classifiers was developed. 

This encoding using the ope colour model produced a 54-dimensional feature vector 

referred to as the PixelDefine encoding. It was demonstrated that this encoding was 

capable of producing segmentations of colour cryo sections based on both a 

supervised and an unsupervised approach. However the problems of the fixed size and 

shape of the sampling window prevented the method from producing good results on 

high and low frequency information simultaneously. It was shown with examples 

from the literature that this is a common problem, producing segmentation artefacts 

particularly at segment boundaries. 

An algorithm for the encoding of plastic sampling windows for L VQ classification 

was developed. The Path Growing Algorithm (referred to as the PGA) is a graph 

based method, which considers all possible paths up to a specified length, originating 

1:'2 



Chapter 8: Conclusions and future work 

from the seed point (the equivalent of the centre pixel in the rigid windo\\ 

representation), as components in topologically different sampling windows for 

individual segment classes at every point in the source data. These paths exist in a 

hierarchy based on their match with a user specified class template and the total 

spread of point descriptors within the path. The sampling window for each class is 

built from these paths and may be used to find the classification of the seed point 

directly or through the use of a higher level classification system. Taking the latter 

approach with L VQ, it was demonstrated that the technique compared favourably to 

three other segmentation algorithms on previously published 2D natural colour 

images and cryo sections from the Visible Human Project. The initialisation by the 

user in the form of template selection and the combination of addressing the problem 

of segmentation near edges with a novel feature encoding and classification scheme 

was collectively named Adaptable Class-Specific Representation (referred to as 

ACSR). This was the first instantiation of the segmentation framework, which was the 

goal of the project. The introduction of the ACSR framework and the PGA with the 

results mentioned above, were published in the proceedings of the 15th IEEE 

International Conference on Pattern Recognition (ICPR 2000) [157]. 

ACSR was extended to 3D volume segmentation and used to segment two cryo 

section volumes from the Visible Human Project. An automatic focussing of the PGA 

was introduced to reduce the processing overhead. It was shown that the segmentation 

pipeline proposed in [157] could favourably be reversed by creating a fast initial LYQ 

segmentation using a standard fixed size sampling window, dilating the boundaries 

and finally applying the PGA only at boundary points, basing the final classification 

of these points directly on the winning class representation produced by the PGA. The 

final segmentation would consist of the masked initial LVQ segmentation with the 

added PGA segmentation. The first results on volume segmentation and the automatic 

focussing referred to as partial ACSR, were published in the proceedings of the Fifth 

IEEE Workshop on Applications of Computer Vision (WACY 2000) [161]. By the 

end of chapter 4 the ACSR framework had been defined for 2D and 3D colour image 

segmentation with preliminary evaluation. 
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More preliminary empirical evaluation was given III chapter 5. Issues relating to 

quantitative ground truth evaluation and qualitative visual ranking by human 

observers were discussed. It was concluded that the former is mostly applicable to 

comparative studies based on simulated or artificially composed data, while the latter 

could be a more realistic option for the evaluation of segmentation quality on real 

data. A pilot study, in which five individuals composed images and selected templates 

from photographs of real textures, showed that multiple template selections facilitated 

equally good segmentations. This study was published as part of a technical report 

[166]. Another study looked at the segmentation of six natural colour Images. 

Segmentation accuracy was compared between L VQ, a Point Based Nearest 

Neighbour (PBNN) classifier, full and partial ACSR using the PGA with the RGB and 

OPC colour models. A similar comparison was performed for the segmentation of a 

series of five brain cryo sections. For the natural colour images, the PGA with the 

OPC colour model showed an accuracy between 94.83% and 99.58% based on 

comparison with a manually generated ground truth. In the brain slices the accuracy 

ranged between 91.72% and 93.75%. No significant difference between the results 

based on OPC and those based on RGB could be found, although results for OPC 

were slightly better overall. The fast PBNN classifier performed better than L VQ for 

the discrete 2D images while LVQ performed better for the image sequence, as 

expected. Partial ACSR achieving the same level of accuracy as full ACSR performed 

up to 20 times faster. 

In chapter 6 the ACSR framework was extended to greyscale MRI segmentation. 

Three different path growing algorithms using the path median and average intensity 

difference as additional descriptors were tested in a comparative study based on 

segmentations of simulated Brain Web volumes (with varying levels of noise and 

inhomogeneity) into the three classes CSF, grey matter and white matter. The 

algorithm using a single path as the class representation per point, and employing a 

seed point shifting in the direction of growth for the calculation of average intensity 

difference, generated the lowest error rates. This study was published as a short paper 

in Medical Image Computing and Computer-Assisted Inter,ention 2001. Lecture 

Notes in Computer Science, vol. 2208 [17-1-]. and in more detail in a technical report 

[175]. 
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The problems of noise and inhomogeneity artefacts were targeted. An automatic 

template creation based on the initial L VQ segmentation was introduced. It \\"as 

shown that this way of including more local information in templates increases the 

robustness to noise and ensures a consistent error rate throughout the \'olume. Two 

different algorithms were tested for inhomogeneity correction of the source data as a 

pre-processing step. The well established model based N3 algorithm [44"+5] and the 

more recent volume intensity equalisation algorithm EQ [43] were employed. It was 

shown on the simulated Brain Web volumes that a combination of the two 

optimisations always performed better then either one or none. The results of ACSR 

segmentation with inhomogeneity correction and automatic template creation, 

compared favourably to previously published results on the same volumes by Pham 

and Prince [120,130] using MRF segmentation with a standard EM algorithm and the 

AGEM algorithm [130] modelling inhomogeneity. N3 consistently facilitated better 

segmentation than EQ. 

A multispectral segmentation using T2 weighed images for the CSF class and Tl 

images for the grey matter and white matter classes was performed and showed 

slightly higher error rates than for the single-channel segmentations. This was in spite 

of the CSF class appearing to be better visually represented in the multispectral 

segmentation. 

The results using automatic template creation and inhomogeneity correction were 

published in the proceedings of SPIE Medical Imaging 2002: Image Processing [177]. 

The quantitative results in chapter 6 on simulated data suggested a high level of 

accuracy and robustness to noise and inhomogeneity artefacts. However no testing 

was performed on real MRI data due to the problems associated with ground truth 

evaluation and the subjective nature of a "gold standard" ground truth for real data. 

Chapter 7 presented the final empirical evaluation of the ACSR frame\\"ork for colour 

cryo section and MRI data. The evaluation was based on human observer 

experiments, using both nai"ve and expert observers to perform \"isual ranking. 
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The natural colour images and the brain cryo section sequence from chapter 5 were 

rated by computing science students and surgeons respectively. Results on the natural 

colour images showed a statistically significant difference between the OPC and RGB 

based results, favouring OPC, with an average rating of 5.9 on a scale from 1 to 7 for 

the PGA-OPC segmentation. The average rating for the PGA-OPC segmentation of 

the cryo section sequence was 4.8. ICC for both studies was above 0.9. 

Four observers (two surgeons, one radiologist and the author) selected templates for 

the hip bone cryo section volume first presented in chapter 4. No significant 

difference between ratings of the four segmentations was found. This demonstrated 

robustness to multiple initialisations, by showing that the four template sets had 

facilitated segmentations of close to equal quality. The author was the only observer 

with previous experience in using ACSR segmentation, but his templates did not 

facilitate a significantly better segmentation. The average absolute rating based on a 

weighted average of the best grade by each observer was 5.4. 

Finally six radiologists evaluated segmentations of simulated and real MRI data. In 

one part of the experiment, observers were presented with the single-channel and 

multispectral Brain Web segmentations described in chapter 6. The results showed that 

the observed quality of the multispectral segmentations was significantly better than 

single-channel segmentations, although due to the small number of observers this 

could only be conclusively stated for the volume with the highest level of noise. This 

was contrary to the results on ground truth evaluation. It was argued that the 

multispectral segmentation might be an advantage for applications in visualisation, 

while the single-channel segmentation would be an advantage in applications for 

tissue quantification. 

In the second part of the experiment the observers ranked segmentations of two real 

MRI volumes (one child and one adult) from the Internet Brain Segmentation 

Repository [42]. One set of templates had been manually selected by the author and 

another had been automatically generated from the manual ground truth in the t\\·o 

end slices. Each of these template sets were used to segment source data pre­

processed \vith EQ and N3 and using automatic template creation, resulting in four 
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segmentations. A fifth segmentation was the unmodified expert ground truth. EQ 

based segmentations were significantly better rated than N3 for the child \"olume , 
where the N3 pre-processed data caused substantial amounts of white matter to be 

misclassified as grey matter. Segmentations from the manually selected templates 

were higher rated than those based on templates generated from the ground truth, and 

significantly better rated than the unmodified manual ground truth in all tests. This 

was an extremely positive result. The average absolute ranking for the segmentations 

using the manually selected templates with EQ inhomogeneity correction was 4.7. 

It was concluded at the end of chapter 7 that while ground truth evaluation was an 

invaluable tool for comparative studies based on simulated data, the human observer 

experiments had revealed subtle observed differences in the overall visual 

representation (Ope vs. RGB and single-channel vs. multispectral), which had been 

missed by the ground truth evaluation, and enabled an objective testing on real data. 

The results of the human observer experiments and how they related to ground truth 

evaluation were published in the proceedings of the International Conference on 

Diagnostic Imaging and Analysis 2002 [183]. 

8.2. Future work. 

The automatic template creation, which has clearly improved segmentation accuracy 

for MRI data (compared to using manual templates directly), is likely to improve 

results for colour cryo section segmentation too. However to test this would require 

the availability of standard cryo section data sets with expert ground truth. Because 

there are no such data sets available currently, the second option would be to have a 

group of experienced observers create such a ground truth. This is a highly time 

consuming task, but would certainly be possible as part of future work. 

It was mentioned in the introduction that the data from the Korean \'isible Human 

[34] is to become available to researchers shortly. This data will require detailed and 

highly accurate segmentation similar to \\'hat the Visible Human Project data has been 
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subjected to, in order to create applications such as the Voxel.'v1an atlases [19]. It is 

likely that the creation of such data sets will become more widespread for patient 

specific data in the future. This opens up new challenges for colour cryo section 

segmentation in the area of virtual pathology. 

ACSR segmentation has been tested on simulated and real MRI data for the 

quantification of grey matter, white matter and CSF, showing very promising results. 

However the framework has yet to be tested on any specific clinical applications. An 

immediate possibility requiring little further development would be an application as 

a diagnostic tool for Multiple Sclerosis, Alzheimer's disease or Schizophrenia. They 

are all conditions, in which the proportions of the grey matter, white matter and CSF 

change in an abnormal way [184-188]. To establish how well ACSR would cope with 

this type of application, would require testing on a large number of data sets from 

both healthy and diseased subjects over a range of different ages. Preliminary testing 

on simulated BrainWeb data would be possible using the simulated Multiple Sclerosis 

volumes. 

Detection of lesions in MRI volumes, such as tumours, are a possibility. However if 

the tumour tissue would need to be explicitly templated, then it would to some extent 

defy the purpose of an automatic detection process. It would be possible to automate 

the template selection for such lesions, based on experiments with specific contrast 

agents over a large number of data sets, and/or possibly combining the intensity based 

PGA segmentation with a simple form of shape matching. 

With regards to the application of ACSR segmentation to other modalities than those 

described in this thesis, any modality, in which a mapping can be found between 

combinations of spatially connected grey levels and segment classes, is a possibility. 

This means, for example, that ACSR should be immediately applicable to CT 

segmentation (in fact some preliminary results suggest that it works well), but \\ould 

require the development of new algorithms for ultrasound segmentation. 

The results on natural colour image segmentation, which \\ere presented due to the 

lack of standard cryo section test images, suggest that ACSR has applications outside 
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the medical area. ACSR might be integrated with paint packages, in order to extract 

objects from scenes, and assist artists in manipulating and compositing photo realistic 

images. Using a reduced set of paths for low processing overhead, ACSR might also 

be used in real time applications, such as tracking of objects or background extraction 

for augmented reality systems. 

The current software implementation of ACSR segmentation is split over a number of 

different C programs for different tasks and different types of data. In order to make 

ACSR segmentation available for other people to use or do further research on, it 

would be beneficial to integrate the current implementation of ACSR in a set of 

C/C++ libraries, and possibly add a windows based front end for ease of use. The 

modular nature of ACSR, in which it is possible to "plug in" different colour models 

and different types of pre and post-processing, makes it suitable for an object oriented 

implementation. 

Medical image segmentation will continue to face new challenges over the next 

decades. Successful solutions will depend on the tailoring of available techniques to 

specific applications. The development and testing of the ACSR segmentation 

framework has only just reached the level, where one might begil' to use it on clinical 

problems. I encourage readers of this thesis to pursue the ideas presented herein for 

their own applications. 
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Glossary 

Glossary 

3DUS: 3D Ultrasound. 

ACSR: Adaptable Class-Specific Representation. A framework for semi-automatic 

segmentation of medical imaging data of multiple modalities. 

AFCM: Adaptive Fuzzy C-Means Algorithm. Fuzzy based automatic segmentation 

algorithm for brain MRl data developed by Pham and Prince [120]. 

AGEM: Adaptive Generalized Expectation Maximization algorithm. Automatic 

segmentation algorithm for brain MRl data developed by Pham and Prince [130]. 

Uses MRF models and a generalized EM algorithm to segment MRl data while 

correcting for inhomogeneity artefacts. 

AID: Average Intensity Difference. 

auto: In ACSR refers to the use of automatic template creation. 

BrainWeb: An on-line database of simulated brain MRl scans with ground truth. 

Data simulated with varying levels of noise and inhomogeneity and available as Tl, 

T2 and PD. Accessible through the Internet from the Brain Imaging Centre, Montreal 

Neurological Institute at McGill University. Homepage: 

http://www.bic.mni.mcgill.ca/brainweb. 

BSE: Brain Surface Extractor. An algorithm for extraction of the cortical surface in 

MRI brain scans developed by Sandor and Leahy [172,173]. Uses anisotropic 

diffusion filtering followed by LoG boundary finding and morphological operations to 

create a brain mask. 

CBIR: Content Based Image Retrieval. 
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Glossary 

CIELab: Colour appearance model specified by the CIE (Commission Intemationale 

de l'Eclairage, the International Commission on Illumination). Based on psychometric 

colour matching experiments and considered perceptually uniform, i.e. colours \\hich 

are close in parameter space are also perceptually close for human obser;ers (as 

opposed to e.g. the RGB model). 

CRT: Cathode Ray Tube. The CRT display (such as most current and older 

televisions) is still the most typical image display device (see also LCD). 

CSF: Cerebrospinal Fluid. 

CT: Computed Tomography. Also known as Computed Axial Tomography (CAT). 

DFT: Discrete Fourier Transform. Discrete version of the Fourier transform suitable 

for computation (see FT). 

DSA: Digital Subtraction Angiography. Angiography in which imaging of blood 

vessels is achieved by digitally subtracting the image before from the image after 

infusion of a contrast agent. 

EM: Expectation Maximization. An iterative method first described by Dempster, 

Laird and Rubin [113]. Often used with MRF models for estimating model parameters 

from incomplete data. 

EQ: Intensity equalisation algorithm for inhomogeneity correction of MRI data, 

developed at the Brain Mapping Division, UCLA. Source code available from: 

http://porkpie.loni . ucla.edu/BMD _ HTML/SharedCode/EQlindex. html. 

f: In partial ACSR, the dilation factor expressed as the number of points added on 

each side of a given point in the original image (such as f1 for dilation of 1 point on 

each side). 
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FT: Fourier Transfonn. In digital imaging, transfonns an image from spatial to 

frequency domain. The standard Fourier transfonn is continuous, but a discrete 

version (DFT) is used for digital images. 

full: In ACSR refers to full ACSR, meaning that ACSR segmentation is applied at 

every point in an image or volume. 

HLS: Hue, Lightness, Saturation. Colour model similar to HSV. 

HMM: Hidden Markov Model. Statistical model describing the relation between 

input and output signals through chains of stable "hidden" states (Markov chains) and 

the probabilities of transitions between these states, which can be estimated from 

representative data (see also MRF). 

HSV: Hue, Saturation, Value. Colour model which separates colour and intensity. 

IBSR: Internet Brain Segmentation Repository. An on-line database of brain MRI 

scans from healthy and diseased individuals, acquired with a variety of scanners and 

acquisition modes (Tl, T2 and PD). Most datasets available with ground truth. 

Accessible through the Internet for licensed users from the Center for Morphometric 

Analysis, Massachusetts General Hospital. Homepage: 

http://neuro-www.mgh.harvard.edu/cma/ibsr. 

ICC: Intra-Class Correlation coefficient. 

lIS: Intelligent Interactive Segmentation system. 

KL T: Karhunen Loeve Transfonn. Also known as Principal Component Analysis 

(see PCA). 

LCD: Liquid Crystal Display. Alternative to the older CRT display. 
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LHS: Short for CIELHS. Perceptually unifonn colour appearance model specified by 

the CIE. Similar to CIELab (see CIELab). 

LoG: Laplacian of the Gaussian. Edge detection operator developed by Marr and 

Hildreth [58]. Edges detected as zero crossings in the second derivative of an imaae 
b 

following smoothing. 

LUT: Look-Up Table. 

LUV: Short for CIELUV. Perceptually unifonn colour appearance model specified by 

the CIE. Similar to CIELab (see CIELab). 

L VQ: Learning Vector Quantization. A supervised neural network similar to the 

SOM. 

L VQl: Learning Vector Quantization algorithm. Algorithm for training of L VQ 

neural network. Specifies the change made to the closest codebook vector depending 

on the input vector. The subtlety of change is detemlined by a global learning rate 

parameter a(t) which decreases as a function of time t (.~.::e appendix B). 

M: In the PGA denotes the path length (number of vertices in a path excluding the 

end vertex which is the seed point). 

MCMC: Markov Chain Monte Carlo. MRF based approach which uses Monte Carlo 

methods for parameter estimation. 

median: In ACSR refers to the use of a median filter for post-processing of 

segmentation images. 

MRI: Magnetic Resonance Imaging. Also known as Nuclear Magnetic Resonance 

Imaging (NMRI). 
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MRF: Markov Random Field. A 2D or 3D version of the Markov chain (see HM~1). 

Used in image processing to model texture as an instantiation of a random field of 

intensities. 

n: In the PGA denotes the number of dimensions in which paths are grown. 

N: Noise. In simulated MRI volumes denotes the percentage level of added noise 

(such as 3N meaning 3% noise). 

N3: The Non-parametric intensity Non-uniformity Normalization algorithm. A model 

based algorithm for inhomogeneity correction of MRI data, developed at the Brain 

Imaging Centre, Montreal Neurological Institute at McGill University. Source code 

available from: http://www.bic.mni.mcgill.ca/softwareIN3. 

NURBS: Non-Uniform Rational B-Splines. A primitive suitable for visualising 

curved surfaces. 

OL VQl: Optimized Learning Vector Quantization algorithm. Algorithm for training 

of LVQ neural network. Similar to the original L VQl algorithm, but uses a local 

learning rate parameter ai(t) (which decreases as a function of time t) for each node i 

rather than a global a(t) for faster convergence (see appendix B). 

ope: Opponent Process Colours. A colour model based on an approximation to 

Hering's opponent process theory of human colour vision. 

partial: In ACSR refers to partial ACSR, meaning that ACSR segmentation is applied 

only at boundary points found in an initial segmentation step using a non-ACSR 

method. 

PBNN: Point Based Nearest Neighbour classifier. A template based nearest neighbour 

classifier which matches single points with class templates based on colour 

descriptors. 
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PCA: Principal Component Analysis. Method for reducing the dimensionality of 

vectorial input data into its eigenvectors. 

PD: Proton Density. MRI acquisition protocol reducing the effect of Tl T2. PD­

weighed images show intensities proportional to the density of mobile protons 

equivalent to water content (e.g. urine, CSF). 

PET: Positron Emission Tomography. 

PGA: Path Growing Algorithm. Segmentation algorithm which implements ACSR. 

Uses topologically different spatial representations of segment classes at every point, 

which compete for the final classification. Representations are built from paths, which 

are acyclic chains of points originating from the point to classify (the seed point). 

PGA-PD: Path Growing Algorithm with Path Descriptors (path median and AID for 

the MRI modality). 

PGA-SPD: Path Growing Algorithm with Path Descriptors and Single path 

representation. 

PGA-SPDS: Path Growing Algorithm with Path Descriptors and Single path 

representation with seed point Shifting for AID calculation. 

PGA-DPDS: Path Growing Algorithm with Path Descriptors and Double path 

representation with seed point Shifting for AID calculation. 

RF: Radio Frequency. 

RFI: Radio Frequency Inhomogeneity. In simulated MRI volumes denotes the 

percentage level of added intensity inhomogeneity (such as 20RFI meaning 20~;) 

inhomogeneity). 

RGB: Red, Green, Blue. Colour model de\"eloped for display devices. 
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RJMCMC: Reversible Jump Markov Chain Monte Carlo. Extension of \lC\lC first 

described by Green [112]. Jumps between parameter subspaces of different sizes. 

allowing for an automatic estimation of the number of classes. 

ROJ: Region of Interest. 

SAD: Sum of Absolute Distances. 

SGJ: Silicon Graphics Incorporated. 

SNR: Signal to Noise Ratio. 

SOM: Self-Organizing Map. Unsupervised self-organising neural network. Also 

known as the Self- Organizing Feature Map (SOFM). 

SPECT: Single-Photon Emission Computed Tomography. 

SSD: Sum of Squared Distances. 

STFT: Short Term Fourier Transform. Modification of the Fourier transform using 

windows of finite size. 

Tl: MRI acquisition protocol, referring to a specific relaxation time for the protons 

after the RF signal has been removed. Tl-weighed images show good contrast 

between grey and white matter. Watery substances (such as CSF) appear dark. 

T2: MRI acquisition protocol, referring to a specific relaxation time for the protons 

after the RF signal has been removed (shorter than Tl). T2-weighed images do not 

have as good contrast between grey/white matter as T 1, but watery substances (e.g. 

CSF, diseased tissues such as cysts) appear very bright with good contrast. 

TE: Time to Echo. In MRI the time in milliseconds between the application of an RF 

pulst: and the peak of the echo signal. 
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T R: Time to Repetition. In MRI the time in milliseconds between each RF pulse 

sequence applied to the same slice. 

VHP: Visible Human Project. A collection of multimodal datasets of cryo section. 

MRI and CT data, available from the United States National Library of Medicine for 

licensed users. 

VTK: The Visualization Toolkit. A C++ library developed by Kitware Incorporated 

for graphics visualisation. 
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Appendix A: Publications 

Appendix A 

Publications 

A.1. Overview of publications. 

This appendix contains the seven papers published to date on ACSR segmentation: 

A.2. C. F. Nielsen, P. J. Passmore, "A Solution to the Problem of Segmentation Near Edges Using 

Adaptable Class-Specific Representation", presented at the 15th IEEE International Conference on 

Pattern Recognition (ICPR), Barcelona, 2000 [157]. 

A.3. C. F. Nielsen, P. J. Passmore, "Pilot Study: Evaluating Re-Usability of Templates for Image 

Segmentation Using Adaptable Class-Specific Representation", Middlesex University School of 

Computing Science technical report, 2000 [166]. 

A.4. C. F. Nielsen, P. J. Passmore, "Achieving Accurate Colour Image Segmentation in 2D and 3D 

with L VQ Classifiers and Partial Adaptable Class-Specific Representation", presented at the Fifth 

IEEE Workshop on Applications of Computer Vision (W ACV), Palm Springs, 2000 [161]. 

A.5. C. F. Nielsen, P. J. Passmore, "Towards a Robust Path Growing Algorithm for Semi-Automatic 

MRI Segmentation", presented at Medical Image Computing and Computer-Assisted Intervention 

(MICCAI) 2001, Utrecht, 2001 [174]. 

A.6. C. F. Nielsen, P. J. Passmore, "Towards a Robust Path Growing Algorithm for Semi-Automatic 

MRI Segmentation" (extended version of the MICCAI paper), Middlesex University School of 

Computing Science technical report, 2001 [175]. 

A.7. C. F. Nielsen, P. J. Passmore, "Robust Semi-Automatic Segmentation of Single and Multi­

Channel MRI Volumes through Adaptable Class-Specific Representation", presented at SPIE Medical 

Imaging 2002, San Diego, 2002 [177]. 

A.8. C. F. Nielsen, P. J. Passmore, P. Ziprin and A. Darzi, "Evaluation of \\elltcal Image 

Segmentation: A Greater Role for Human Observer Experiments?", presented at the International 

Conference on Diagnostic Imaging and Analysis (ICDIA) 2002, Shanghai, 2002 [183]. 
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Appendix B 

Vector quantization neural networks and fuzzy logic 

B.l. SOM and LVQ. 

If mi denotes a codebook vector and me denotes the nearest codebook vector to the 

input vector x at the time t, then the learning function for the basic L VQ1 algorithm 

can be defined as (from [117]): 

If x and me belong to the same class: 

me (t + 1) = me (t ) + a (t )[ x{t ) - me (t )] (B.1) 

If x and me belong to different classes: 

me (t + 1) = me (t)- a{t )[x{t)- me (t)] (B.2) 

For i =1= c: 

(B.3) 

a{t) is the learning rate parameter, which determines the subtlety at which 

adjustments are made to the codebook vectors. 0 < a{t) < 1 and usually decreases 

monotonically with time. In the Optimized Learning Vector Quantization algorithm 

(OL VQ 1) an individual a i (t) is assigned to each Ill!, resulting in faster convergence: 

If x and me belong to the same class: 

(BA) 

Ifx and me belong to different classes: 

me (t + 1) = Ille (t)- ae (t )[x{t )-Illc (t)] (8.5) 

For i =1= C : 

(8.6) 



Appendix B: Vector quantization neural networks and fuzzy logic 

a i (t) changes as a function of the previous value: 

s(t) = 1 if x and me belong to the same class. 

s(t) = -1 if x and me belong to different classes. 

(B.7) 

Thus in order to avoid the situation where a i (t) > 1, the initial value of all a
i 
(0) should 

be less than O.S. 

When the network has been trained through a number of training cycles, novel feature 

vectors may be compared to the codebook vectors. The closest match (minimum 

quantisation error) is the winning codebook and its label is the classification of the 

input vector. The ultimate purpose of L VQ is to precisely define the class borders in 

an arbitrary input set, given that some principal features will emerge from each of the 

classes in the training data during the learning phase. 

The SOM is unsupervised, which means that no a priori knowledge is given to the 

network in the form of labelled input samples. A SOM can however be calibrated 

with labelled data sets after learning is completed. The basic SOM learning mle is 

similar to the L VQ 1 algorithm except that the class of the winning node is unknown 

and a modification is made not only to the winning node but to its neighbourhood. 

The effect decreases with distance to the winning node and the topology of the 

neighbourhood depends on the chosen lattice type (usually rectangular or hexagonal). 

This way clusters are formed from randomly initialised nodes. The basic learning mle 

IS: 

mi(t + 1) = mi(t)+ hei (t )[x(t)- mi (t)] (B.8) 

hci(t) is the neighbourhood function or kernel. The subscript c denotes the node with 

the closest match to an input xU) (similarly to L VQ above). 
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A number of different neighbourhood kernels can be used, typically a Gaussian: 

h. = aCt) * exp[-Ilre - ri 112 J 
(/ 20- 2 (t) (8.9) 

aU) is the learning rate parameter. r gives the location of a node on the lattice. 

CJ defines the width of the kernel. 

A lattice type, number of nodes, the dimensions of the lattice and the type of 

neighbourhood kernel must be given before learning. These parameters, particularly 

the dimensions, may significantly affect the outcome of the learning. Therefore 

another way of approximating to the probability density function should be used first 

to give an idea about the ideal values. Kohonen [117,148J recommends Sammon's 

mapping [149] for this purpose. The SOM offers fully automatic clustering of 

arbitrary input data, which is attractive in many applications. The best way to select 

the optimal parameters for a particular application (using a particular set of samples) 

for a SOM is however not well defined. This is not desirable if consistcncy is 

important and the nature of the clustering task is constantly changing. Rather than 

using the SOM directly, it might favourably be used to test the efficiency of a 

particular feature vector encoding before applying it to a LVQ network. Because 

codebook vectors are interchangeable between SOM and LVQ, the initialisation of 

codebook vectors prior to learning may even be carried out using a SOM before 

learning is started using L VQ. Both SOM and L VQ has been used extensiyely in 

many types of pattern recognition, including speech recognition, character recognition 

and feature detection in images (see [117] for an overview). 

B.2. Sammon's mapping. 

Sammon's mapping [149] is an automatic clustering algorithm \\hich produces results 

comparable to the SOM [117]. It is a non-linear projection from a high to a 100\er 

dimensional space which preserves local relations in the data. Sammon's mapping 

tries to map coordinates in the high dimensional space to the 10\\ dimensional space in 
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such a way that the error function E is minimised Let do. d t h d' 
. lj eno e t e Istance between 

two points i and j in the high dimensional input space d" d I' . ij enotes t le dIstance 

between the proj ected points in the low dimensional space E . th . b [ . IS en glyen y 1.+9]: 

1 ~ ~ (d .. - d:. \2 
E= ~~ lj lj) 

~~ d .. . " d .. 
~i~i>i lj 1 pI lj 

(8.10) 

As the error function expresses, local relations between every single point and all 

other points in the input space are preserved as well as possible in the output space. 

Since the optimisation depends on finding the best topology in the low dimensional 

space, the topology changes for every iteration. The major dimensions of the final 

topology can be used to determine the appropriate dimensions of the lattice for a SOM 

classifier. 

B.3. Fuzzy logic. 

In a fuzzy set the possibility of an element belonging to a set decreases linearly on 

both sides of the lower and upper limits in a crisp set (i.e. a set in classical set theory). 

For example if a particular intensity level in a sample lies between 100 and 200 in a 

crisp set corresponding to texture class A, then an intensity of 95 or 105 means that 

the sample definitely does not belong to class A. An intensity of 95 or 205 may mean 

that the sample definitely belongs to class B or C. If these limits are well established, 

then crisp sets is the preferred choice. However if there is a possibility that the class 

borders may be slightly plastic, and that the actual classification also depends on the 

membership of other sets for other descriptors in the same sample, then fuzzy theory 

may provide a better answer. In the fuzzy set an intensity between 100 and 200 \\-ould 

yield the possibility value 1. An intensity of 95 or 105 would lIot yield a possibility of 

0, but e.g. of 0.5 (depending on the plasticity). A set of rules (fuz/y rules) speci fying 

the relationships between variables in the domain (expressed in Boolean temlS) must 

be found. Given actual values of some variables it is then possible tl) dctelll1inc the 

possibility of an unknown variable lying within a certain range. For example. consider 

~-H) 
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a photograph of a homogeneous ye llow object on a Qre n ba hQ:round . In th 
c.- ~ 

boundary region the red channel will vary bet\\'een zero and a ma,\:lJTI um \'alu 

Assume that sets may be labelled as ::.ero, low or high. A rule may specit~ that i f the 

red channel is high AND the gradient magnitude is ::.ero at a p ific point THE. . the 

point belongs to the yellow object class. Another rule could sp cify that if the reJ 

channel is la-w AND the gradient magnitude is 1mI' THEI the point belongs to the 

boundary class. In fi g. B.l an actual value is given to the amount of red (high but not 

maximum) and gradient magnitude (low but not zero) of a point. Inter cting the 

actual gradient magnitude with the graph for the gradient magnitude et :ero. \\'e gel 

value n. Intersecting the actual level of the red channel fo r the red set high \\ e ~et 

value m . Since the rule specified an AND operation, the pos ibi lity for the class ' t 

yellm l' obj ect is min(n.m). This can be repeated for the gradient magnitude set 101\ ' and 

the red set 10''.1' according to the rules. Given a number of mle . a number of different 

possibi lities for the unknown variable re ult for the same \\'el l kno\yn yariab les, 

These can be combined to fi nd the overall possib ility of th unkno\\ n \'ariabk 

belonging to a particular set. This proce s is kI10\\'n as defuzzification and mm be 

based on heuri stic or properties of the graph. uch as the centre of grm'ity, 
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Fia B 1 Example of fu zzy classes for im age class ifica t ion. (a) Th e sets for gradient mL'lg nitu de 
wi~h a ~ 'act'ual va lue inte r~ectin g se ts ;.er o a nd l oll'. (b ) Th e sets for th e red ch a nf~ e ~ :' .ltl1 L'l fn L'lIClUa l 

. It ' h sho" in a th e po Ibtlltl 0 L'l e value intersectin g se ts l ow a nd 1uglr. (c) T he res u tn g grap '" 
based on the g ra ph s in (a) a nd (b) . 
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Appendix C 

Computational overhead and implementation of the PGA 

C.l. Complexity and computational overhead of the PGA. 

The computational overhead of using the PGA can be described by the number of 

representations that are created per point. This number depends on the path length 1\1 

and the dimensionality n of the coordinate system, in which the paths exist. Ideally the 

number of paths should be expressed as a function of these two parameters. This has 

however proven to be a hard problem. It is trivial that as long as M<4 it is impossible 

that any chain of pixels will be cyclic when a 211-connected expansion is used. In that 

case the only condition, which has to be satisfied, is that the growth does not create 

the same edge twice (the word edge is used here in a graph theory context). The 

previous vertex cannot become the next vertex. In other words backtracking must be 

avoided. This simple constraint is easily incorporated into a formula for the total 

number of paths by giving 2n-1 different directions of growth from each point, 

subsequent to the seed point, rather than 211. The total number of paths for /1.1<<1 and 

any n can be expressed as 211 *(2n_1/f-l. However, when M> =<1 it is possible that a 

chain of pixels may become cyclic using the 2n-connected expansion. If Al=-I then it 

is only the cases when both end-vertices are the seed point that need to be eliminated. 

For longer path lengths though, it could be any repeated vertex where the chain 

intersects an edge, which has already been grown. What makes the problem hard is 

that the value of M alone at any given n does not correspond to only one topology. It 

corresponds to many, some of which are cyclic and some of which are not. when 

M> =4. There are particular regular topologies such as straight lines and zigzags, 

which are known to always be acyclic. Unfortunately these only account for some of 

the chains, which cannot be considered as paths. So far no complete solution has been 

found. The number of paths (counting only those connected subgraphs which are 

acyclic) can however be found by a computer program through multiple recursion. 

Each direction from a point is a separate function, \\"hich can call itself as \\dl as all 

other directions except the opposite one (e.g. "up" cannot call "down"). This prevents 

2-t2 
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backtracking. The current number of vertices included in the path is passed with each 

new function cal1 and a map is updated to keep track of vertices already included. 

This map is checked to verify the validity of a direction before its function is called. 

When M+ 1 vertices is reached, no new function call is made. Control is passed back 

to the previous function, which must now call another direction. This \vay the full 

search space is exhausted and all possible paths can be found. While a generic 

solution to the problem is still desirable, the number of paths per point can be found 

when M and n are known. As we are only ever likely to consider the 2D and 3D case, 

we can settle for these two values only for n. The value of Mhas varied bet\\'een 3 and 

5 in experiments, although all results presented in this thesis were achieved with 

M=5. Excluding cyclic cases is important to maintain consistency in the 

neighbourhood representation and also helps reduce the number of calculations 

needed per point. To further reduce computational overhead a subset of paths can be 

removed. Those are the paths which, although not cyclic, are still identical in terms of 

their vertices, but where the order in which they are grown differs (fig. C.l). Because 

we are simply considering the individual vertices of paths, the direction of growth is 

not important. We can thus eliminate paths with identical sets of vertices. Table C.l 

shows the number of possible paths for values of M up to 8 in 2D and 3D and the 

number of paths with unique vertex sets. 

An additional factor, which affects processing time, is the template matching, which 

occurs for each point for each texture class. This matching only needs to be carried 

out once and stored (it should be noted that this is only true for colour images - see 

section C.2). It can then be used as a look-up table for the calculation of path values. 

In the first implementation of the PGA an exhaustive linear search was employed. 

This has since been replaced by a faster algorithm, which does not ha\'e to traverse the 

entire search space to find the best match. The closer a novel feature set is to a 

template, the faster the algorithm finds the closest match. It follows that the 

processing time required per point for matching varies from point to point and also 

depends on the template sets. Examples of segmentations and their required 

processing time are shown in chapter 5, section 5.3. 

2-0 
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Fig. c.l. Different directions of growth from the seed point producing the same vertex sets in the 
PGA: (a) and (b), (c) and (d). Path length is set to 5. 

Table c.l. Number of paths and their unique vertex sets for n dimensions with path length M in 

the PGA. 

n M Paths Unique vertex sets 

2 3 36 32 
2 4 100 92 
2 5 284 248 
2 6 780 696 
2 7 2172 1872 
2 8 5916 5169 
3 3 150 138 
3 4 726 678 
3 5 3534 3162 
3 6 ]6926 15266 
3 7 81390 71498 

3 8 387966 341421 

Although the PGA has a high computational overhead, an important feature i that it 

is also highly parallelisable, in fact down to single pixel level. The PG \\ould b 

well suited for implementation on multi-processor architecture. The jump fr m 

sequential to parallel code might be easily achieved u ing a tern uch a the n 
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described in [189]. The PGA would possibly also be suitable -C' • I '. lor Imp ementatlOn III 

dedicated hardware. At a more basic level, a segmentation task can be split O\'er 

several single-processor machines. This is particularly useful for volume 

segmentation (see chapter 4, section 4.7), where each machine can segment a separate 

sub-volume. 

C.2. Calculation versus look-up of nearest neighbour match values. 

The fastest way of obtaining nearest neighbour match values is through the use of pre­

calculated Look-Up Tables (LUTs). Based on a template set the closest matches for 

all possible combinations of descriptors within the given ranges of the model used 

(colour model or greyscale range) can be placed in a look-up table. It is possible to do 

this e.g. for greyscale images using only 1 point descriptor. However if path 

descriptors are used (requiring the matching of combinations of 3 values) or in the 

case of colour images, where 3 point descriptors are generally used, the memory 

requirements and pre-processing time needed makes a purely LUT based solution 

practically impossible (assuming non-quantised information). 

For colour images, where only point descriptors are used, the nearest match for c(/ch 

image point can be pre-calculated and the results placed in a LUT, where each entry 

point corresponds to a point in the image or volume. This LUT can then be used to 

calculate the path values for any combination of points. As mentioned above though, 

the actual matching itself cannot be LUT based. 

When path descriptors are required for greyscale images, the combinations of points 

from which the descriptors are derived again make a LUT approach (c\en on an 

image point basis) practically impossible. Although the nearest neighbour match of 

the point descriptors can be LUT based, contrary to \vhen colour images arc used, the 

path descriptors must be calculated not just for e\'ery point, but for e\'ery path at c\ ery 

point. This means that the use of path descriptors is substantially more processor 

intensive than the use of point descriptors only, It is howe\'l?r at this time considered 

1 I -
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to be a necessity for certain image modalities, providing a powerful means of adaptive 

filtering. 

C.3. A fast algorithm for nearest neighbour match. 

A naive nearest neighbour algorithm for template matching can be implemented as a 

linear search through the entire data set of templates. This is time consuming and 

often unnecessary. A faster algorithm for nearest neighbour match using n descriptors 

is employed. This algorithm seeks to reduce the search space. The algorithm is 

explained below in the context of its software implementation. 

Pre-processing stage: 

l. For template t each set of n descriptors are stored in an array A. 

2. n arrays of pointers are created. Array ad E[ao, ... ,an-l] contains pointers to 

all entries in A in sorted order according to the value of descriptor d using an 

optimal bubble sort. 

3. LUTd E [LUTo , ... , LUTn- 1 ]is created. Each table provides three entries for 

each look-up value, where the look-up value may be any value within the 

range of descriptor d to be matched. The entries are: 

• 
• 
• 

Distance distd to closest match with descriptor d 

Position POSd of closest match in array ad 

Number of times fd the closest match appears In .. j (stored 

consecutively in array ad) more than once 

If distd is the same for two different values in A then POSd is set to thc 10\\ cst of 

the two matching values and fd will include appearances of both values (i .e. 

one consecutive range of positions in array ad covering both \alues). 
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Matching of novel sets of descriptors: 

1. A novel set of descriptors nov = (novdo novd ) l'S '. , ... , n-J gl\ en. 

2. novdd is used as look-up value for LUTd to obtain distd, POSd and fd for all d. 

3. All entries of descriptors entdd in A pointed to by entries in ad from POSd to 

POSd + Id are traversed for all d. At every entry of every traversal a match yalue 

is calculated as: 

matche = L \novd x - entd x \ (C.I) 
x""d 

The minimum match value is found as minmatchd = min(match) for all d. 

Notice that this value expresses the closest match with all other descriptors 

when descriptor d is equal to its closest match value(s) in A. 

4. A search space for each a is defined by a lower and an upper search limit. The 

total best match for all descriptors other than d is calculated for all d as: 

bestothd = L dist x 
x-::J:.d 

(C.2) 

The difference between this value bestothd and the best match for all 

descriptors other than d, minmatchd ' when descriptor d is equal to its closest 

match, represents the theoretical maximum decrease of the total closest 

distance when a search is carried out in either direction from POSd, This value 

is expressed as maxdistd = milll1latchd - bestothd. In other words it expresses 

the maximum increase and decrease of the value pointed to by POSd , which 

may define the lower and upper limits for the search space in which the total 

closest distance can be found. At the distance rnaxdistd from POSd the decrease 

in distance to other descriptors from finding bestothd is cancelled out by the 

increase in distance to descriptor d. Therefore the closest distance cannot cxist 

outside these limits. 

5. Let matchva!ued be the actual value of descriptor d in the entry in (Id pointed to 

by POSd. The value temp!oH'd is expressed as temp!owd = matchnduCd -

nzaxdistd . Let minva! be the minimum possible value of descriptor d. I r 
tenzp!OH'd < mim'o! then temp!olVd = milll'a!, temp!O\\'d is uscd as a look-up 

value for L UTd to find pos 'ct . The 10\\ cr limit lim!oH'd for search in ad is 
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defined as limlawd = pas 'd. The value remphighd is expressed as temphi'2:h,; = 

matchvalued + maxdistd . Let maxval be the maximum possibk \alue of 

descriptor d. If temphighd > max\'{t! then temphighd = maxnLl. The \'alue 

temphighd is used as a look-up value for LUTd to find pas "d and r ·d. The 

upper limit limhighd for search in ad is defined as limhighd = pas' 'd and lim! d = 

f " d· 

6. The smallest search space is found as: 

sspace = min [limhighd + limfd -limlawd ] 
d=O ... n-l 

(C.3) 

Let the value W be equal to the value of d yielding sspace. 

7. The nearest neighbour match is carried out using the smallest search space: 

(CA) 

The notation A[a1t [x]][y] IS interpreted as descriptor y in the entry of.l at 

position a1t [x]. 
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Appendix D 

Human observer experiments 

D.l. Written material for human observer experiments. 

The following pages show the written material which was used for the human 

observer experiments described in chapter 7. 

In the experiment using natural colour images, participants were required to read and 

sign the document shown on pages 236-237. The relative order of segmentations for 

each image (specified by a participant placing the printed segmentations on a table 

from left to right in order of preference), was recorded manually by the investigator 

using the form on page 238. This was achieved by noting down the numbers at the 

back of each printed segmentation, identifying the algorithm (hidden from the 

participant). The form on pages 239-240 was used by participants for the absolute 

ranking. The desired grade for each relative position was marked With an X. By 

comparing the positions of the absolute grades on this foml with the positions of each 

segmentation recorded by the investigator, grades and algorithms could be ~atched. 

The document on page 241 was given to and signed by all participants in the human 

observer experiments using cryo section and MRI data. An additional sheet shown on 

page 242, with information about the two IBSR volumes, was given to radiologists 

ranking the MRI segmentations. Results in these experiments were recorded 

automatically (see section D.2). 

The companion CD contains all source images/volumes and segmentations from the 

human observer experiments, and includes a similar software interface for \'ie\\ing the 

medical images to what was used in the computer based tasks. 
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Consent form given to participants in the human observer exp· b d erzment ase on natural colour imuges 

Middlesex University Department of Computer Science 

Research Consent Form 

!h~s consent form, a copy of w~ich has been given to you, is only part of the process of 
mformed conse~t.. It .should gIve you the basic idea of what the research is about and 
what .your partlclpa~lOn will. involve. If you would like more detail about something 
mentlO~ed here, or mformatlOn not included here, please ask. Please take the time to 
read thIS form carefully and to understand any accompanying information. 

Research Project Title 
A Robust F~amework for Multi-Modal Medical Image Segmentation through Adaptable Class-S ecific 
RepresentatIOn. p 

Researcher 
Casper F. Nielsen 

Experiment Purpose 

The purpose of this experiment is to use human observers to evaluate the segmentation quality of 6 
stand~rd machine vision colour images of natural scenes. Several segmentations of each image based 
on dIfferent segmentation algorithms are presented to the observers (hereafter referred to as 
"participants"). The results obtained from this experiment will help clarify issues related to the 
segmentation of medical colour cryo section data using non-medical standard test images where 
medical equivalents do not currently exist. Note that no medical images will be used in this experiment. 

Participant Recruitment and Selection 

Participants are undergraduate and/or postgraduate students at the School of Computing Science, 
Middlesex University, London, U.K. No particular experience is required, but participants must have 
normal colour vision. 

Procedure 

The experiment is expected to take between 30 and 40 minutes. Each participant will undergo a short 
paper and screen-based version ofIshihara's test for colour blindness. This test must be passed in order 
for participants to proceed to the main tasks. Each of the 6 images constitute a separate task in \\·hich 
participants will be presented with a colour image displayed on a computer monitor. Subsequentl y the 
participant will be given 6 printed segmentation images on paper, which must be arranged in order of 
preference (based on the perceived quality of segmentation). Following this relative ranking the 
participant is required to perform an absolute ranking by grading each segmentation image on an 
ordinal scale using a form supplied by the investigator on a sheet of paper. The 6 tasks \\111 be 
completed in random order for each participant. Note that the test for colour blindness should not be 
considered as a precise diagnosis. Only a trained ophthalmologist can diagnose colour blindness. 

Data Collection 

No specifics of the colour test will be recorded. Participants who proceed to the main tasks will have 
successfully completed the colour test and no data will be recorded for participants \\ho haw not 
passed the test. The relative ranking of each image \\ill be recorded by the investigator and the absolute 
rankings recorded by the participants will be collected and lIsed No part of the conversatIon between 

participants and the investigator will be recorded. 
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Confidentiality 

The written recor~s .of collected d~t~ will not contain any information to identify the participants from 
whom the data orIgmates. No partIcIpant will be identified in any publication containing results from 
this experiment. 

Likelihood of Discomfort 

Participants are not expected to feel any discomfort as a result of this experiment. A lthough a computer 
monitor will be used, participants will not be required to watch the monitor continuously throughout 
the experiment, so no discomfort should be caused by the monitor. Note however that computer 
monitors have been known to provoke seizures in individuals suffering from epilepsy and any history 
of epilepsy should be reported to the investigator prior to the experiment. Glasses or contact lenses may 
be worn during the experiment provided that they give full correction of any deficiencies in ~ 
participant's vision. 

Researcher 

Casper F. Nielsen is a PhD student and part-time lecturer at the School of Computing Science, 
Middlesex University, London, U.K. His research is in the development of usable systems for multi­
modal medical image segmentation. 

Finding out about Results 

Results may be obtained from the investigator by request in writing to the following e-mail address: 
c.nielsen@mdx.ac.uk. 

Agreement 

Your signature on this form indicates that you have understood to your satisfaction the information 
regarding participation in the research project and agree to participate as a participant. In no way does 
this waive you legal rights nor release the investigators, sponsors, or involved institutions from their 
legal and professional responsibilities. You are free to not answer specific items or questions in 
interviews or on questionnaires. You are free to withdraw from the study at any time \vithout penalty. 
Your continued participation should be as informed as your initial consent, so you should feel fre.e to 
ask for clarification or new information throughout your participation. If you have further questIOns 
concerning matters related to this research, please contact the researcher. 

Participant Date 

Investigator/Witness Date 

A copy of this consent fOlm has been given to you to keep for your records and reference. 
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Form f or recording {he retC/ live order of preference for segl1leJ7lalions oj nUlI/ral ululII" /llltl'..!.!1 L Ie J 
by the investigator. 

ACSR Visual Ranking - Ord ered Sequ ence 

10: ______ _ 

Poppy 

Hearts 

Seagu II 

.~. 

Rose 

Birdll 

Birdl2 
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Form for recording the absolute grades for all segmentatIOns of each 117dmdllall)(llUroi ollJur 1/l1L1~C! 
Used by participants. 

ACSR Visual Ranking - Absolute Grading 

10: ----

Guide to grades: 

1 = Image shows no coherent representation of yo ur perceived id ea l segmentation 

7 = Image matches your perceived ideal segmentation 

2 
.., 
.J 

.~. 

5 (ri ght) 

5 (ri ght) 

5 (right) , 1 
2 3 -+ 5 6 7 

"1 - , , 
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ACSR Visual Ranking - Absolute Grading 

10: ___ _ 

Guide to grades: 

] = Image shows no coherent representation of your perceived ideal segmentation 

7 = Image matches your perceived ideal segmentation 

2 3 .5 (right) 

5 (right) 

.5 (right)~ ~-1 
~ ~ . ~ 5 6 
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Consent form given to participants in the human observer experiments using cryo seCTIon and .HR! 
data. 

Research Consent Form 

Research Project Title 

A Robust Framework for Multi-Modal Medical Image Segmentation through Adaptable Class-Specific 
RepresentatIOn. 

Researcher 

Casper F. Nielsen, Vision and Image Processing Group, Middlesex University. 
E-mail: c.nielsen@mdx.ac.uk. tel.: 0208411 6714 

Experiment Purpose 

The purpose of this experiment is to evaluate the ACSR segmentation framework through \"isual 
ranking. Participants are surgeons or radiologists. A small number of participants will be required to 
carry out the initialisation of ACSR segmentation for a cryo section or MRI volume combined with one 
ranking task. The remaining participants will take part in two ranking tasks involving cryo section data 
(surgeons) or three ranking tasks involving MRI data (radiologists). All tasks are computer based. 
Initialisation involves the use of a mouse while the ranking tasks are controlled using a standard 
keyboard. All results are recorded electronically throughout the experiment. 

Likelihood of Discomfort 

Participants are not expected to feel any discomfort as a result of this experiment. Note however that 
computer monitors have been known to provoke seizures in individuals suffering from epilepsy and 
any history of epilepsy should be reported to the investigator prior to the experiment. Glasses or contact 
lenses may be worn during the experiment provided that they gi':e full correction of any deficiencies in 
a participant's vision. 

Agreement 

Your signature on this form indicates that you have understood to your satisfaction the information 
regarding participation in the research project and agree to participate as a participant. In no way does 
this waive you legal rights nor release the investigators, sponsors, or involved institutions from their 
legal and professional responsibilities. If you have further questions concerning matters related to thIS 
research, please contact the researcher. 

Participant Date 

Investigator/Witness Date 
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Information sheet about IBSR volumes given to participants in the human observer experiments using 
MRI data. 

MRI Info Sheet 

Acquisition details for MRI volumes: 

The MRI scans were acquired with a 1.5 Tesla General Electric Signa. Contiguous 
3.0 mm three-dimensional coronal T1-weighted spoiled gradient echo (SPGR) images 
of the brain were attained with the following parameters: TR = 40 msec. TE = 5 
msec, flip angle = 40 degrees, field of view = 24cm, matrix = 256x256, and averages 
=1 

• Subject: 55 year old male. 

• Subject: 5 year old male. 
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D.2. Computer based experiments. 

The experiments described in chapter 7 using cryo section and i\lRI data \\ere entirely 

computer based. Images were displayed on a CRT monitor using custom made 

software and the results of participants' interactions \\ere recorded by the soft\\are 

and summarised in a file. The software was also responsible for the randomisation of 

individual blocks of tasks as well as viewports on screen assigned to individual 

volumes and the starting slice numbers. The software was written by the author in 

C++ using VTK libraries [11] for Microsoft Windows (compiled under \\'indows 

NT). 

The physical setup used for all the computer based experiments is shown in fig. D.l. 

The software was run on a laptop connected to an external monitor and a mouse for 

the template selection task (cryo hip bone volume) or a keyboard for the ranking 

tasks. The investigator could control the software using the internal keyboard and 

pointing device on the laptop, which also duplicated the display of the external 

monitor on the internal LCD display. 

External monitor 

1024 * 768 pixels 

24-bit colour 

Ranking tasks 

External keyboard Laptop PC 

I I 
Mouse J Template ":' 

I A f\ I selection task 

, . 

C(p)=:>mmi 
) d f computer based human observer 

Fig. D.1. Schematic setup (viewed from above use or se and \"iewed tasks 
experiments. Participants (P) interacted with the external keyboard a.nd mou . th 
on the external monitor. The investigator (I) interacted directly With the laptop rllnnmg e 

experiment software. 



Append ix 0 : Human observer experiments 

The template selection for the cryo hip bone segmentation was carri d out in Paint 

Shop Pro v. 5.01 from lASe. Fig. D.2. shows examples of template election from 

two participants. Fig. D.3 shows a screenshot from the ranking ta k u ing th 

segmented hip bone volumes. Each viewport showed a specific segmentation or the 

source data (centre) and participants could browse through each individual lice. Fig. 

DA shows a screenshot from the cryo brain series segmentation task. where each 

column corresponded to the same slice and each row corresponded to th arne 

segmentation. 

(a) (b) (c) (d) 

I?ig. D.2.Examples of template selection in the cryo hip bone ex periment from .two participants. 
(a-b) The two templated slices from one participant. (c-d) The two templated slices from another 
participant. Blood vessels and bone marrow selected in pseudocolours. 

. k·n task Source vo lum e in th e 
I?ig. 0.3. Screenshot from the cryo hip bone segmentatIOn ran I gd . ·Leftmo t egmentati n 
centre, segmentation based on four different template sets surroun mg. 
volume currently selected (yellow selection box). 

,-
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Fig. D.4. Screenshot from the cryo brain series segmentation task. Source images in the top row. 
Each row underneath corresponds to a separate segmentation. Two rows are selected for 
swapping (in the process of indicating the desired relative order). 

Fig. 0.5. Screenshot from the mSR MRI child volume ranking task. Source volume bottom 
centre, surrounded by the five segmentation volumes. Notice tbe missing white matter region in 
the cerebellum in the two segmentations to the left, both based on N3 inhomogeneity correction . 
Absolute grades are shown in the top right corner of each viewport. 
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Fig. D.S is a screens hot from one of the two IBSR MRI ranking task. howing a Ii 

from the child volume and its five segmentations based on two template et. Q and 

N3 inhomogeneity correction and the gold standard manual ground truth. One of th 

three Brain Web tasks is shown in fig. D.6. The multispectral segmentation i elected 

in this screens hot. 

F" D 6 A screenshot from the Bra inWeb ra nking task, showing the volume with 3% ~oi se and 
Ig. ·0· ° d °t °ngle (T l) a nd multi-channel (Tl+T2) segmentatIOn. The 40% mhomogenelty a n I s Sl 

multispectral segmentat ion is selected. 
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Appendix E 

The companion CD 

E.1. Instructions for using the companion CD. 

The CD included with this thesis contains source images and segmentations described 

in chapter 5, 6 and 7. It also contains two software interfaces for yiewing the images. 

A Web browser based interface is used for viewing the natural colour images and cryo 

brain sections referred to in chapter 5 and 7. A Microsoft Windows based interface is 

used for viewing the cryo section and MRI volume data referred to in chapter 6 and 7. 

The CD is in Joliet format, which is an extension of IS09660 allowing for file names 

longer than 8 + 3 characters. It can be read on most IBM PC compatibles (running 

DOS, Windows or OS/2), Apple MacintoshliMac and UNIX/Linux systems. Howc\cr 

the long file names will only be accepted by Windows 95 or later, MacOS :\ (or older 

MacOS with the required file system extension) and later versions of Linux. On other 

platforms the file names will be truncated and the software interfaces will not work 

properly as a result. The Web browser based interface requires Netscape v. -\. t or 

Microsoft Internet Explorer v. 4+ with JavaScript enabled. Alternative browsers Illay 

work if they fully support frames, JavaScript and the document.images array. The 

interface for viewing volume data requires Microsoft Windows 95 or later. Both 

interfaces were designed for the following screen settings: 102-\.*768 spatial 

resolution, 24-bit colour resolution. It is highly recommended that these settings are 

used, particularly for the volume data interface. 

Two ASCII text files are included on the root directory of the CD. The readme.txt file 

gives detailed information about additional compatibility issues and instructions about 

how to use the two software interfaces. The quickstart.txt file is an abbreviated 

verSIOn intended for the reader wishing to start using the software interfaces 

immediately. A hardcopy of readme. txt is included on the next pages. 
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Hardcopy o/thefile readme. txt on the companion CD. 

ACSR Segmentation Viewers 

Companion CD for the thesis "A Robust Framework for Medical Image Segmentation 

through Adaptable Class-Specific Representation". 

This file gives detailed instructions about how to use the hvo software interfaces for 

viewing segmentations. Please read the file quickstart.txt to get started straight a\\ay. 

Directori es: 

Ihtml : contains a Web browser based interface for viewing natural colour image 

segmentation (chapter 5,7), natural colour image segmentation with 10°0 

noise (chapter 5) and the brain cryo series segmentation (chapter 5,7) 

Ivtk : contains a VTK based application for viewing the cryo hip bone 

segmentations (chapter 7), Brain Web single-channel and multispectral 

segmentations (chapter 6,7) and the IBSR segmentations (chapter 7) 

The Web interface 

Compatibility: Netscape v. 4+, Internet Explorer v. 4+ 

Note: Must have JavaScript enabled 

Recommended screen setting: 1024*768, 24-bit colour 

To launch the Web interface please open the file Ihtmllmenu.html in your bro\\ scr. 

You will be presented with a menu from which you can select the set of 

segmentations you wish to view. 

For the natural colour image segmentation and natural colour image segmentation 

with 10% noise, please select an image (top lO\\ of buttons) and a representation (Ie!'t 
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column of buttons). The currently selected buttons will be displayed in green while: 

other buttons remain red. The main area of the browser will display your selected 

combination and the average absolute ranking given to this particular combination in 

the human observer experiment described in chapter 7, section -:- ,2. will be displ<.l:-- cd 

in the top left comer of the browser. 

For the cryo brain series segmentation simply view the segmentations and scroll down 

if necessary. The image labels and the average absolute ranking gi\en to the 

segmentations in the human observer experiment described in chapter 7. section 7.3 is 

displayed to the left and to the right of each row of images. 

In all cases, to return to the menu screen, please click on the "Back to menu" button 

on the bottom left of your browser's display area. 

The VTK interface 

Compatibility: Windows 95/98INT/2000 (not tested on ME/XP) 

Minimum hardware spec.: 450 MHz CPU speed, 64MB memory (more 

recommended) 

Required screen setting: 1024*768, 24-bit colour 

Optional harddrive installation: 152MB free space required 

The VTK interface is based on the Visualization Toolkit C++ libraries and requires 

the vtkdll.dll to run (included on the CD). Although the interface can be run from the 

CD, it is recommended that the full Ivtk directory is copied to the harddrive and the 

interface run from there to ensure consistent performance. 

Please open a DOS box and cd to the directory Ivtk. Launch the interrace by t:-- ping 

acsrview followed by the data sets you \\ish to \'iew (see beloW). 
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THE DOS BOX SHOULD BE POSITIONED TO THE FAR RIGHT .\:\0 

BOTTOM OF THE SCREEN _CLEAR_ OF THE TWO vTK \\T\OO\\'S .\:\0 

_MUST_ BE THE CURRENTLY SELECTED WINDOW AT ALL TI\IES TO 

ENABLE CONTROL OF THE APPLICATION. 

The VTK windows will blank out if obscured by other windows. Should this happen. 

please move the other windows and press 'z' to refresh the VTK windO\vs (this will 

only work after the volume data has initialised). 

To launch the cryo hip bone data set viewer, type: acsrview cryo 

To launch the Brain Web date set viewer, type: acsrview brainweb 

To launch the IBSR data set viewer, type: acsrview ibsr 

The main VTK window displays the data sets. The small VTK window (top right) 

displays the label of the currently displayed data sets and a summary of available 

controls. When the small VTK window displays "Initialisi r :5 .. ," please wait for 

volume data to load. 

Controls are: 

+/-

q 

: Browse forwards and backwards in the volumes 

: Automatically browse forwards and backwards in the volumes. Regardless 

of the currently displayed slice, auto-browse will start and end at the 

first slice in the volume and then reset the slice number to the one 

displayed before auto-browse 

SPACE: In the IBSR and Brain Web \'iewcr use SPACE to skip to the next volullles 

z : Refresh display of the two VTK \vindows (use if windows blank out) 

ESC : Quit the viewer 
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The IBSR segmentation volumes are labelled with their segmentation algorithm. "GT" 

stands for Ground Truth. The IBSR and cryo hip bone segmentation volumes are 

labelled with the average absolute ranking given to them in the human observer 

experiments described in chapter 7, sections 7.5.2 and 7.4. The Brain\\'eb 

segmentation volumes are labelled with either "S" for single-channel or "\1" for 

multispectral. 

Please note that no such labelling was used in the experiments. The Brain \\" eb 

volumes will be displayed in random order similar to the way they \vere displayed 

during the ranking tasks. The IBSR volumes and cryo hip bone segmentations \\111 be 

displayed in the same order every time the viewer is run unlike in the experiments. 
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The file vtkdll.dll is copyright Kitware Incorporated and may not be included in any 

commercial applications without prior permission from Kitware. 

Where other copyrights do not apply, the software interfaces on this CD are copyright 

Casper Nielsen 2002. 


