
Lehigh University
Lehigh Preserve

Theses and Dissertations

1995

A video-on-demand system over a TCP/IP
computer network using vector transform coding
Keren Hu
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Hu, Keren, "A video-on-demand system over a TCP/IP computer network using vector transform coding" (1995). Theses and
Dissertations. Paper 346.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/346?utm_source=preserve.lehigh.edu%2Fetd%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


AUTHOR:

Hu, Keren

TITLE:

A Video-On-Demand

System Over a TCP/IP

Computer Network Using
"-

Vector Transform Coding

DATE: May 28,1995



by

Keren Hu

A Thesis t\

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

In

Electrical Engineering

Lehigh University

1995

.,.



/
)

© Copyright 1995 by Keren Hu

All Rights Reserved

11





(

Acknowledgments

I am deeply indebted to Dr. Weiping Li for his guidance and patience during the

course of this study. Also, I'd like to thank my husband Shipeng Li for his fiever

ending support in my work and life. My sincere appreciation goes to the nsp group

members: Qinhong Cao, Fan Lin, Scott Se~an, AsafSofu, John Wus, for they have

provided the wonderful academic atmosphere for me to work in.

I would like to thank the staff at Lehigh University, especially Linda and Maggie

in the EECS graduate office, for all of their help. '

I would also like to thank my parents and my· sister for their unfailing love and

support which helps. me to keep improving mys~lf.

IV



Contents

}

Acknowledgments IV

Abstract 1

1 Introduction 2

2 Background 5

2.1 An Image Model 5

2.1.1 Introduction . 5

2.1.2 Major Color Spaces 7

2.1.3 Color Quantization and Dithering. 9

2.2 Image and Video Compression Overview 12

2.3 Transform Coding. . 15

2.4 Scalar Quantization 17

2.5 Vector Quantization 20

2.5.1 . Vrctor Quantization Problem 20

2.5.2 Distortion Measures l' • 22-
2.5.3 Codebook Design .. 23

2.5.4 Encoding ...... 25

2.5.5 Vector Transform Coding 26

2.6 Entropy Coding . . . . . . . . 27

2.7 Video Compression Standards 29
~,

2.7.1 JPEG .. . " ..... 29

v



2.7.2 H.261 .. 30

2.7.3 MPEG-1 . 31

2.7.4 MPEG-2. 32

2.8 About the Network Platform.
r<

34. .,..
2.8.1 What is TCPlIP ... 34

2.8.2 World Wide Web (WWW) . 36

3 System Architecture 39

3.1 Overview. 39

3.2 Server .. 39

3.2.1 Video Encoding . 41

3.2.2 Processing Module 42

3.2.3 Network Interface Module (NJM) 42

3.3 Client ............... 43

3.3.1 Network Interface Module 44

3.3.2 Decoding Module . . 44

3.3.3 ~ynthesizing Module 44

3.3.4 Display Module . \ 45

3.3.5 User Interface . 46

4 Implementation of the VOD System 47

4.1 Encoding of Video .......... 47

4.2 Transmitting and Receiving Frames . .. 49

4.3 Decoder .. 49

4.4 Synthesizer 50

4.5 Display ... 51

4.6 User Interface and Internet Interface 55

5 Results and Discussion 60

5.1 Encoding Results 61

5.2 Decoding Results 62

VI



6 Conclusions and Future Work 67

Bibliography

A Biography

•

Vll

~
._--.-.-.--~.-._.~.-,.~-------_.

70

73



List of Tables

2.1 Comparison of Several Lossless Compression Algorithms

2.2 A JPEG Quantization Table .

5.1 Play Speed Comparison .

5.2 Decomposition of the VOD Playback Time .

Vlll

14

19

63

65



List of Figures

2.1 Halftoning and Dithering .. " ~ -. . . . .. 10

2.2 4x4 ordered dithering matrix generated from a 2x2 ordered dithel1ing

matrix .

2.3 Diagram of Data Compression .

2.4 Diagram ofJ!,EG _. . . . . . . .

2.5 A VTC Scheme . . . . . . . . .

2.6 TCP lIP Architecture and Addressing .

3.1 the VOD System Architecture .....
r

3.2 Structure of The Server. . . . . . . . .

3.3 A Frame In Transform Domain with L = 3

3.4 Structure of The Client ..

12

13

19

28

35

40

40

41

43

4.1 VV Vid~o Clipfile Format 48

4.2 Data Structure for Bitstream Decoding 50

4.3 Subbands Organization in the Bitstream 51

4.4 Synthesis Procedures . . . . . . . . . . . 52

4.5 Color Conversion and Dithering in the Display Module 54

4.6 How to pl~y the video .' . . . . . . . . . . . . . . . . . 55

4.7 Implementation Scheme of One-Button Video-On-Demand Using CGIs 57

5.1 Comparison of the VOD System and A MPEG-1 Encoder: Complex-

ity vs. Bit Rate 61

IX



5.2 Comparison between the VTC and MPEG-l: Average Peak SNR vs.

Bit Rate 63

5.3 Comparison between the VTC and MPEG-l: Playback Time vs. Bit

Rate 65

5.4 Comparison between the VTC and MPEG-l: Playback Speed vs. Bit

Rate 66

x



\

Abstract

A novel video-on-demand (VOD) system over a TCP/IP computer network, using

advanced Vector Transform Coding (VTC) video compression technology was de

veloped through the master thesis st~dy. It demonstrates the applicability of using

a new video compression technology called VTC in applications of information-on

demand, such as video-on-demand, video qmferencing etc. The testing results of the

prototype VOD system shows that the compression performance exceeds that of the

MPEG standard. Furthermore, a new VOD framework independent of compression

technology was developed, which to some extent proves that there is no need for a

dedicated video compression standard for computer based applications..

The performance of this prototype VbD system was tested and. analyzed. The

results indicate that VTC technology is suitable for VOD system because of better

compression performance at low bit rate .and faster play back.
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Chapter 1

Introduction

An information-on-demand industry is emerging which requires the rapid search,

sort, storage, transfer and display of data and images. New technology will provide

customized news, weather, sports and entertainment programming as well as educa

tional, financial, medical and employment information. The delivery of large amount

of timely information over vast distances requires a: storage density a:g,d flexibility

that only digital systems can provide. These requirements are driving improve

ments in automated digital processes and in new compression software appropriate

for image, text, sound and motion.

According to a report in Business Week, Feb. 14, 1994, "The biggest obstacle to

the vaunted multimedia revolution is digital obesity. That's the bloat that occurs

when pictures, sound and video are converted from their natural analog form into

computer language for manipulation or transmission. ... Compression, a rapidly

developing branch of mathematics, is putting digital on a diet. ... Its popularity

is rooted in economics: comp~ession lowers the cost of storage and transmission

by packing data into a smaller space. Many new e)dctronic p~oducts and services

simply couldn't exist without it."

Data compression, especially image and video compression therefore became one

of the ~otte~tareas both in academy and industry today. To enable the interoper

ability among different sections of industries, different compression standards have

been established. For example, the JPEG for still image compression, H.261 for

2



video conferencing, the MPEG for motion picture compression. Many new algo

rithms and techniques, such as subband coding, wavelet, fractal compression ([1]'

[2]) and model-based compression [3], are continually being developed and proposed

to exceed the existing stan~ards. Vector Transform Coding algorithm [4],[5] is one

of these newly developed algorithms.

However, since the standardization process is very slow, and thus newly de

veloped better compression techniques normally could not be applied in practice

promptly due to the vast different stream formats and techniques used, which hin

der the exchange of information. In order to accelerate the application of these

new and better compression techniques in real world, it is an urgent need to find a

generic framework which can accommodate different image and video compression

formats to make them readily interchangeable.

While evaluating the VTC technology for von applications, we developed a

generic framework independent of compression technology in the prototyped von

system. The key of this generic VOD framework requires software only video play

back. As we will see later, the highly asymmetric feature of VTC technology allow;s

very simple operations in the video playback. However, unlike other compression

technologies, the simplificati~ on video playback does not sacrifice video quality

m~ch. This comes from the inherent advantage of VTC technology. VTC preserves

high intra-veetor-correlation and reduces inter-vector-correlation of video data.

The finished prototype one-button-VOn sys~em runs on any netwo~ks that sup

port TCP /n:> protocols with X window. Using the widely used World Wide Web

browser which supports the HyperText Transport Protocol (HTTP) as the user in

terface, a user can virtually click one button at his/h<;:r home-page and be able to

watch a video clip no matter what machine and what compression technology he/she

IS usmg.

From the testing results, we proved the following two points: first, the VTC

technology is applicable to such applications as video-on-demand with higher com

pression quality and faster playback than MPEG standard; second, it is not always

necessary to have computer-based video compression standards.

The rest of the thesis is organized as the following: Chapter 2 will introduce

3



the necessary background for the design and implementation of our VOD system.

Elaboration of the VTC technology which is the core of the system is also in this

chapter. Chapter 3 then will present the architecture of the system. Chapter ~

will discuss the key implementation features of the system. Chapter 5 will give

the performance analysis of the compression technology using the data collected

from the test runs of the developed system. Chapter 6 summarizes the thesis, and

covers some very important features of VOD systems but are not implemented in

,the system.
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Chapter 2

Backgroufi~

2.1 An Image Model

2.1.1 Introduction

The pictures we see on TV or in the theater, which are capt!1!ed by cameras, are

not interpretable by computers. They have to be .digitized into digital forms. Thus

a black-and-white image to us ( human eyes) becomes simply a two-dimensional

array of integers to the computer, with the values of the integers proportional to the

brightness. Array elements are called pixels. All the image and video compression

and processing we talk about in this thesis refer "to this digital image model.

A video or an image sequence consists of a set of frames. Each frame is what we

call a still image which corresponds to the scene captured at one single moment. A

natural question then is how the color is represented in a video.

First, let's see how the color is perceived by the eye. Visible light is an electro

magnetic wave in the 400nm - 700 nm range. Most light we see is not one single

wavelength, it's a combination of many wavelengths instead. The eye is basically

just a camera. Each neuron is either a rod or a cone. The rods and cones serve the

same function as a CCD array in a camera. Rods are sensitive to the light but not

colors. Cones are sensitive to different wavelength. Since cones come in 3 flavors:

red, green and blue, each responds differently to various frequencies of light, the, .

5



2.1. AN IMAGE MODEL

color signal to the brain comes from the response of the 3 cones to the spectra being
\

observed. Perceptually, we need three attributes to describe a)color. Consequently,

to represent a color signal, we need three integers to represent it in computer.

If we imagine that each of the three attributes used to describe aCQ!9r are axes in

a three dimensional space, then this defines a color space. According to Grassman's

laws, for a color space the following properties (A,B,C,etc. are colors) hold:

. 1. If A = Band C = D then A +C = B +D

2. IfA = B + C, then B = A - d

3. IfA = Band B = C, then A = C

The immediate question is that given a basis for the color space ( three indepen

dent lights) how can we select coefficients so t~t a color is reproduced? There is

not always an answer for such a question. Some colors cannot be exactly reproduced

with a combination of the given three primaries. The primaries simply don't span

the whole color space. In 1931, the Commission Internationale de l'Eclairage (CIE)

defined a set of primaries that span the space with only positive coefficients, but the

primaries are no longer pure colors. The c01brs that-we can perceive can be repre

sented by the CIE system. Other color spaces are subsets of this perceptual space.

For instance, RGB color space, as used by television displays, can be visualized as

a cube with r€d, green and blue axes. This cube lies within our perceptual space,

since the RGB space is smaller and represents less colors than we can see.

So, a color space is a mathematical representation of our perceptions. For ex

ample, ROB is a 3-dimensionalspace with red, greenandhlue aXes. IPs useful to

think so because computers are fond of numbers and equations. There are other

color spaces for different purposes. In the next subsection, some of the common

color spaces will be discussed a little further, more references can be found in [6],

[7J.
Now back to the question that how a color video is represented, once an ap

propriate color space is chosen, each pixel in a frame of a color video is simply

represented by the three primaries of that specific color space. Still using RGB

6



2.1. AN IMAGE MODEL

space as an example, a frame is then represented by an array of (R,G,B) triples,

with each (R,G,B) triple corresponding to each pixel in a frame.

2.1.2 Major Color Spaces

According to Bourgin [7], the major color spaces can be summarized as:

RGB (Red Green Blue)

This is an additive color system based on trichromatic theory, commonly used

by CRT displays where proportions of excitation of red, green and blue emitting

phosphors produce colors when visually fused. It is easy to implement, but non

linear, device dependent, un-intuitive, and commonly used in television cameras and

computer graphics etc..

CMY(K) (Cyan Magenta Yellow_{Black)

CMY is a subtractive color space. It is mainly used in printing and photography.

Printers often include the fourth component, black ink, to improve the color gamut

(by increasing the density range), improving blacks, saving money and speeding up

drying (less ink to dry). It is fairly easy to implement, but difficult to transfer

properly from ROB, device dependent, also no~-linear and un-intui{ive.

HSL (Hue Saturation and Lightness)

This represents a wealth of. similar color spaces, alternatives include HSI (in-

--- tensity,huej;HCI '(chrome/colorfulness), HVC, TSD (hue, saturation and darKness}

etc. All these color spaces are linear transforms from ROB, they are thus, device de

pendent, non-linear but very intuitive. In addition the separation of the luminance

component has advantage~mage processing andbtner-a;ppltcations.

YIQ, YUV, YCbCr, yce (Luminance - Chrominance)

These are the television transmission color spaces (YIQ and YUV analogue

NTSC and PAL and YCbCr digital). They separate luminance from chrominance

(lightness from color) and are useful in compression and image processing applica

tions.As mentioned before, human eyes have different sensibility to lightness and

colors. YIQ and YUV are, if used according to their relative specifications, linear.

\ They are all device dependent and un-intuitive. Kodaks PhotoCD system uses a type

7



2.1. AN IMAGE MODEL

of YCC color space, PhotoYCO, which is a device calibrated color space.Empirical

evidence suggests that distances in color spaces such as YUV, or YIQ correspond

to perceptual color differences more closely than do distances in RGB space. These

color '~paces may give better results when color reducing an image.

SML (Short Medium Long)

A perceptual color space based on the response functions of the cones in the

retina of the eye. It is good for psychometric research..
eIE
The HVS based color specification system. There are two ClE based color spaces,

CIELuv and CIELab. They are near linear (as close as any color space is expected

to sensibly get), device independent, but not very intuitive to use. CIELuv has

an associated chromaticity diagram, a two ,dimensional chart which makes additive

color mixing very easy to visualize, hence CIELuv is widely used in additive color

applications, like television. CIELab has no associated two dimensional chromaticity

diagram and no correlate of saturation so only Lhc can be used.

. Since there is such a wide variety of color spaces, we need to know how to convert

between them.

Many of the conversions ate based on linear matrix transforms. The one com

monly used in image and video compression is the conversion between RGBand

YUV given as follows:

r ~] r

0.299

-0.147

0.615

0.587

-0.289

-0.515

0.114

0.436

-0.100

r
~] = r ~:~~~
B 1.000

0.000

-0.396

2.029

These two matrices are the inversion of- each other. More about converSIOns

between other color spaces and more references can be found in [7].

8



2.1. AN IMAGE MODEL

2.1.3 Color Quantization and Dithering

Usually, when digitized, 8 bit or more depending on the application is used for each

attribute per pixel of an image. For instance, 24 bit is used for each pixel in a

full-color image where 8 bits are used for each color per pixel. .Display devices are

different. Typical display hardwares support 8 or fewer bits per pixel, so it can

only display 256 or fewer distinct colors at a time. To display a full-color image,

the computer must choose an appropriate set of representative colors and map the

image into these colors. This process is called color quantization or. color reduc

tion. Color quantization is one of the most frequently used operations in computer

graphics and image processing. Even though 24 bit graphics hardware is becom

.ing more comm.on, color quantization still maintains its practical value. It lessens

space requirements for storage of image data and reduces transmission bandwidth

requirements in multimedia applications.

There are a number of color quantization algorithms available, such as Median

Cut} Variance-based methoa} Oetree} Kohonen Neural Network quantization and Lo

cal K-means ( [8], [9J,[10]'[l1J,[12]). The goal is to minimize the perceived difference

between the original and the quantized images. Among them, Median Cut and Oc

tree are the two most often used. Basically, the Median Cut tries to cut the color

. space (cube) of original image into two smaller cubes according to the histogram

median color, it then recursively cuts these smaller cubes using the same technique

until the total number of small cubes reach the desired number of colors. Then

the cubes are sorted according to ,the sizes (determined by the number of colors in

each small cube), then the available colors are allocated according to the order of

the cube sizes, the largest cube first, the smallest cube last. In contrast to Median

Cut, which divides the space to reach the desired number of colors, the Oetree algo

rithm decreases the number of divisions of the original color space by merging until

the total number of divisions is below the required. Briefly, the basic algorithm

operates in three phases: Classification, Reduction and Assignment. Clas

sification builds a color description tree for the image, ideally, each color in the

original image will correspond to a leave of the tree. But in practice, a fully-formed

9



2.1. AN IMAGE MODEL

Figure 2.1: Halftoning and Dithering

color description tree consumes too much space, so the algorithm instead initializes

----data structures for nodes only as they are needed. Reduction collapses the tree

based on certain criteria until the number it represents, at most, is the number of

colors desired in the output image. Assignment defines the output image's color

map and sets each pixel's color by reclassification in the reduced tree. Oetree is a

very fast algorithm that produces good quality palettes.

Color cffthering is a software imaging process for arranging adjacent pixels of

varying shades in order to achieve a visual effect. The process often enhances a

computer's ability to display an image, particularly useful when the color or reso-

'"lution of the original image must reproduced on computers with different display

capabilities. However, the history of dit.hering technique can be traced way back in

the printing business where more than two gray levels. can_be generated by using

only black ink on white paper [6]. Nowadays,\since~ithering is used together with

color reduction most of the time, people tend to use the term dithering and c~lor

reduction interchangeably. But the difference is clearly there, for we can perform

color reduction without using dithering, except the display result won't be as good

as using dithering technique.

The basic strategy of dithering is to trade intensity resolution for spatial reso

lution by averaging the intensities of several neighboring pixels. This averaging is

usually done automatically by human eyes. A simple example will make this more

clear ( refer to Figure 2.1). By using 2 x 2 black and white pixels, 5 gray le?els can
, . .

be achieved, or more precisely can be perceived by human eyes.

The same idea-extends to color dithering. It is similar to the process used by

magazines to' print full-color photographs with a base of only four colors. To replicate

a color that is not in the palette of 256, alternating pixels in the frame buffer are

set to either one of the two or more nearest available colors. This creates a faint
<r

and very fine checkerboard pattern that, when viewed from a distance, appears to

10



2.1. AN IMAGE MODEL

be the desired color. The success of this technique depends on the fact that the

pixels are imperceptible at normal viewing distances. For color mapped devices,

two most often used dithering algorithms are: error diffusion ( sometimes called

Fl~yd-Steinberg) and ordered dither.

In error diffusion dithering, each image pixel is mapped through color reduction

to the closest pixel in a color map, whose entries are the colors supported by the

display. The differences between the original triple and that in the color map is

called error. This error is distributed to neighboring pixels. For example, half the

error might be added to the pixel below and half to the pixel to the right of the

current pixel. The next pixel (modified) is 'then processed. Processing is often done

in a serpentine scan order: odd nurriber rows are processed left to right and even

number rows are processed right to left. Images which suffer'from severe contouring. .
when reducing colors can be improved with this option.

Ordered dithering is a form of threshold dithering. In black and white threshold

dithering, any pixel below a certain threshold of luminance is mapped to black,

and all other values are mapped to white. Ordered dithering uses the pixel's (x,y)

coordinate in the image to determine the threshold value. An N x N dithering

matrix D determines the threshold: D[XmodN, YmodN] is the threshold at position

(x,y). The matrix is chosen so that over any N x N region of the image with the

same pixel value, the mean of dithered pixels in the region is equal to the original

pixel value. When this scheme is extended to color dithering, dithering matrix is

again ~sed. The values in the" matrix is not threshold values, but more like "error

values". By adding these "error values" to each color attribute of a image before

color quantization, a "smear effect" is applied to the image so as to reduce the visual

artifact caused by color quantization. A typical 4 X 4 dithering matrix is used in

the display module of our VOD system. .It can be generated by a 2 x 2 dithering

matrix, which is shown in Fig. 2.2.

The difference between error diffusion and ordered dithering is that in the error

diffusion algorithm, the error values are calculated differences between the original

image and color quantized image, while in ordered dithering, the values and the

pattern in which the threshold values are applied to the original image are pure

11



2.2. IMAGE AND VIDEO COMPRESSION OVERVIEW

0 2*4+0 2 2*4+2 0 8 2 10

[~ . ~]
3*4+0 1*4+0 3*4+2 1*4+2 12 4 14 6

~

3 2*4+3 2*4+1 3 11 9

3*4+3 1*4+3 3*4+1 1*4+1 15 7 13 5

Figure 2.2: 4x4 ordered dithering matrix generated from a 2x2 ordered dithering
matrix

empirical. Depending on the applications, sometimes error diffusion is better than

-the ordered dithering. Some times it is the other way around.

Even to date, color quantization together with color dithering are still black

art. They are indispensable in computer graphics and image processing. And they

are in fact one kind of lossy image compression. If not us.ed correctly, or the color

quantization is not done right, the error brought in by these procedure are more

serious than the errors by the real lossy image compression algorithms.

2.2 Image and Video Compression Overview

Even though the cost of bandwidth of communication and s.torage of data are de

creasing rapidly, there still exists strong compelling requirement for data compres

sion. This is because the information is exploding at a higher rate and the demand

for the transmission and storing of information by people is increasing at an un

precedent rate. Now with more and more PC going into ordinary people's families,

the insatiable desire to work at home, to navigate the Internet, to get digital bits

into the house have put forward a challenging task for data compression engineers

to come up with new data compression techniques. For example, people can now

get digital newspaper down on their PC everyday, it's very prompt and environ

mentally friendly (100% recycle rate), the only problem is that there are not many

pictures come with it as in real news papers. The reason is simply that to transmit

pictures would require a lot more bandwidth (or time), and it would sap up most of

the PC memories. Since video is the most intuitive and powerful form to represent

12



2.2. IMAGE AND VIDEO COMPRESSION OVERVIEW

70 r-------, 011011110001,-... --....011011110001.,.. -------,

input--~

2
Figure 2.3: Diagram of Data Compression

reconstructed data

information, more and more video clips are used in interactive multimedia informa

tion system to enhance education and entertainment, etc. With such explosion of

video information, we have to find a better way to represent massive computer data

such as image and video. For the transmission part, it could be partially solved by

getting an ISDN or maybe Fiber optical line (cost is another issue), but if a person

wants to store those realistic pictures he or she has to purchase another hard disk.

Furthermore, what if he or she wants to watch a movie on the PC ?, .

With good data compression (see figure 2.3), this may soon become possible.

For instance, even at a compression ratio of 3:1, we can get 3 pictures as opposed

to just one single picture with no extra cost, i.e., you don't need to change your
---- .'

phone line, or buy extra hard disks. Imagine what high performance compression

techniques can give us.

There are two types of data compression: lossless data compression and lossy

data compression. Lossless data compression is the type of data compression where

the reconstructed data is exactly the same as the ·original. Nothing is lost during

the compression and decompression procedure. But the compression ratio can not

be' achieved ve& high, 3:1 is in general considered very goo~. Table2.1 gives a
-----------

comparison among some lossless compression programs. [13].

On the other hand, lossy data compression exploring the characteristics of human

perception in addition to the inherent data redundancy can obtain a much higher

compression ratio at cost of data loss which is usually imperceptible to human. So,

after a lossy data compression, the reconstructed data is no longer the same as the

original data. However the difference is being made so small that in fact people

usually can hardly notice the difference. Considering the large gain in compression

ratio ( in the range of 20:1 to hundreds to 1), the small loss is considered very

worthwhile. Hence lossy compression techniques are usually more preferable in. ..

practice, especially in image and video compression where the tremendous data

13



2.2. IMAGE AND VIDEO COMPRESSION OVERVIEW

compression program compression ratio
Lena football F-18 flowers

lossless JPEG 1.45 1.54 2.29 1.26
optimallossless JPEG 1.49 1.67 2.71 1.33

compress (LZW) 0.86 1.24 2.21 0.87
gzip (Lempel-Ziv) 1.08 1.36 3.10 1.05

gzip -9 (optimal Lempel-Ziv) 1.08 1.36 3.13 1.05
pack (Huffman coding) 1.02 1.12 1.19 1.00

Table 2.1: Comparison of Several Lossless Compression Algorithms ('

volume really needs some help.

,The reason that natural image and video can be highly compressed with little

quality loss is that the pixel values in an image or video frame are highly correlated.

For images, the neighboring pixels are highly correlated. For videos, beside the

intra-frame correlation inside each frame, the pixels in the consecutive frames are

also correlated. The,se correlations are the redundancy which can be removed from

the original'images to achieve compression according to Shannon information theory.

Image and video compression is to reduce these correlation (redundancy)' as much

as possible so that these images and videos can be represented by using as less bits

as possible (quantization).

Quantization in data compression is where loss comes from. In a nut shell, the
, . "'-

goal of quantization is to throw out bits. A more strict definition of quantization

can be given as: the conversion of a continuous-amplitude signal into one of a set

of discrete amplitudes, thus resulting in a discrete-amplitude signal that is different

from the continuous-amplitude signal by the quailtization error or noise. In image

and video compression, the objective is to use lowest possible number of bits to

represent the original images for a given distortion.

When each of a set of parameters (or a sequence of signal values) is quantized

separately, 'the process is known as scalar quantization. When the set of parameters

is quantized jointly as a single vector, the process is known as vector quantization

[14]. We shall often abbreviate vector quantization in this paper as VQ. In'the rest
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2.3. TRANSFORM CODING

'of this chapter, we'll discuss briefly commonly used transform coding and two forms

of quantization. For quantization, we'll discuss vector quantization as a more 'ad

vantageous lossy data compression technique, its performance as opposed to scalar

quantization. To fully exploit the advantage of VQ, a new coding scheme - Vec

tor Transform Coding(VTC), which is used in our experimental VOD system, is

then discussed. In the end, som~ current video compression standards are briefly

described.

2.3 Transform/Coding

The goal of transform coding is that by performing a suitable linear transformation

on the input vector, X, we can obtain a new vector, Y, with the same number

of components, often called transform coefficient's or simply; coefficients, with the

feat~re that these coefficients are ~~h less correlated than the original samples.

In addition, the information may be much more ((compact" in the sense of being

concentrated in only a few of the transform coefficients. Usually, the transform does

not reduce the data nor does it lose any information about the original data, because

an inverse transform can reproduce the original data if only transform is performed

on the original data. In 'other words, all transform does is to prepare the data for

optimized data quantization [15].

The most popular transform in terms of systems actually implemented and in

established and proposed standards is the discrete-cosine transform (DCT). The

DCT is an orthonormal transform having some of the f~atures of a transformation

to the frequency domain. It is equivalent to a discrete Fourier transform (DFT)

of a symmetricized extension of the input set of samples and the fast algorithms

are available for efficiently computing the DCT. The DCT has an advantage over

the DFT in that it is a purely real transform if the input vector is real. A two

dimensional DCT can be given as:

X(k k) (k k) ""N-1 ""N-1 ( ) (7I"(2n1+1)k1 ) (7I"(2nd 1)k2 )
1, 2 = U 1, 2 L.",nl=O L.",n 2=O X n1, n2. cos 2N cos 2N

( ) ""N-1 ""N-1 (k k )(k k) (7I"(2n1+1)k1) (7I"(2n2 +1)k2 )x n1, n2 = L.",k1=O L.",k2 =O U 1, 2 1, 2 cos 2N cos 2N
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2.3. TRANSFORM CODING

· { liN ifk1 = k2 '-.

U(~l' k2 ) ~ IJ- i.Jk1 = 0 and k2 =I- 0 or k2 = 0 and k1 =I- 0

21N ifk1 =I- 0 and k2 =I- 0
I

Karhunen-Loeve transfornr(KLT) is the best pos~ible transform for minimizing

the overall distortion Dte for a' given bit allocation under the assumptions that the

input variables are Gaussian, and 1st order Markov model is used, that the optimal

mean squared error quantization of the transform coefficients is performed, and that
~"C

the optimal allocation result holds. However, it has the following disadvantages:

1) Actual image may not be 1st order Markov Gaussian;

2) Even if so, the correlation coefficient is different from application to applica

tion, thus different transform is required;

3) It is difficult to find fast algorithm.

On the other hand, it has been frequently reported that the DCT achieves per

formance very close to that of the optimal KLT and yet has the advantage that it

is a fixed, signal-independent transform matrix.

Transform coding belongs to a larger family of coding techniques where the

signal is decomposed or analyzed into component that in some ~ense offer a more

fundamental or more primitive representation of the signal. Such coding schemes are

called analysis-synthesis coding systems. The components most commonly represent

some form of spectral dec~mposition of the signal as with the DOT. An important

and widely used type of analysis-synthesis coding system is sub-band coding. In

Subband coding, a bank of filters operates on the input ,signal to generate a set

of narrow band cases each representing a different sub-band of the input spectrum.

The narrow bandwidth of each sub-band signal allows subsampling to be performed,

reducing the bit-rate needed to code each sub-band. Interpolation is then used to

synthesize the reproduction of the original signal.
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2.4. SOALAR QUANTIZATION

2.4 Scalar Quantization \

An N-point scalar (one-dimensional) quantizer Q is a mapping Q : R- > 0, where

R is the real line, and 0 = {Yl,Y2, ... ,YN} is the output set or codebook with size

101=N.
For a quantizer with a finite output set,it is assumed that the indexing of output

values is chosen,so that Yl < Y2 < ... < YN·

Every quantizer can be viewed as the combined effect of two successiv~6perations

(mappings), an encoder E and a decoder D.

The purpose of quantization is to provide a limited-precision description of a

previou~ly unknown input value.

The most often used distortion measures between t"!"o numbers of a quantizer

are:

d(x, :1;') = Ix - x'I 2

or

d(x, x') = Ix - x'i

where x is the input sample, and x'=Q(x) is the reproduced output value of the

quantizer (or decoder).

They both are the special cases of:

d(x, x') = Ix':'" x'im

where m is a positive integer.

The statistical average of the distortion is usually a more informative and mean-

ingful performance measure. r ,

D =E[d(X,Q(X))J = 1:d(X,Q(J(X)dx
/

where fx( x) is the probability distribution function of X. This is also referred to as

average distortion.
, .

Given a signal X and a scalar quantizer Q, the inevitable e~ror e = Q(X)-X that

arises in the quantization of an analog signal is often regarded as "noise" introduced

17



2.4. SOALAR QU1NTIZATION

by the quantizer. Specifically, granular noise is the component of the quantization

error that is due to the granular character of the quantizer for an input that lies

within the bounded cells character- of the quantizer. The overload noise is that

quantization error that is introduced when the input lies in an overload region of

the partition, that IS in any unbounded cell[16].

The performance of a quantizer is often specified in terms of a signal-to-noise ra

tio (SNR) or signal-to-qU:antization-noise ratio (sometimes denoted SQNR or SQR)

defined by the following equation:

The goal of optimal quantizer design is to find the output points Yi and partition

cells ~ that minimize
N

D =~ ki (x - Yi?fx(x)dx

where fx(x) is the pdf of the random variable X, given N is fixed ..

For a given docoder, i.e., Yi is fixed, the optimal encoder rule is nearest neighbor.

For a given encoder, i.e., ~ is fixed, the. optimal decoder rule is the centroid

condition. ...
As an example for scalar quantization, let's take a look at how the scalar quanti-

zation is done in JPEG. Figure 2.4 shows a diagram of the basic modules of a lossy

JPEG.

The quantization module uses a quantization table something like Table 2.2 for

a 8x8 block. For each 8x8 block out of DOT module, an element in the block is

divided by the factor in the corresponding position of the quantization table, for

example, element (0,0) would be divided by factor qo,o = 16, and element (1,5) by

factor ql,5 = 19. The result is then round up and stored in the same position. It

can be easily seen that the dynamic range of the quantized block is much smaller

than that of the block bef9re quantization, thus it requires less number of bits to

represent this quantized block than directly represent the original one. Therefore

a certain amount of compression has been achieved. At the decoding end, this

quantized block is recon.§tructe[lJ-ymultiplying the corresponding factors in the

18
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.---'---------, 0 B ROB to YI
R

(optional)

For each

f-----1f----jf----j---j 8x8 block

Huffman or {
01101... ....~_---

~
Arithmetic

Zig-zag

Figure 2.4: Diagram of JPEG

same quantization table. It is very clear that the compression comes at the cost of

data fidelity. Suppose using the quantization table given in table 2.2, eleinent..(O,O)

in block A is 85, after divided by 16 and then round up, it is stored a~ 5, at the

decoding end, it is reconstructed as 5 X 16 = 80(=/-85). Only those elements that are
-~

multiples of their quantization factors can be exactly reconstructed. By adjusting

the values of the quantization factors, different compression ratio and compression

quality can be achieved.

Compared to using a single quantization factor for the whole 8x8 block; the

16 11 12 14 12 10 16 14
13 14 18 17 16 19 24 40
26 24 22 22 24 49 35 37
29 40 58 51 61 60 57 51
56 55 64 72 92 78 64 68
87 69 55 56 80 109 81 87
95 98 103 104 103 62 77 113

121 112 100 120 92 101 103 99

Table 2.2: A JPEG Quantization Table
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-quantization tabl~ can usually achieve better compression performance. Because it

takes advantage of human visual characteristics. Human eyes have different sensi

bility to different frequencies. Eye is more sensitive to low frequencies (upper left

corner in the 8x8 block), less sensitive to high frequencies (lower right corner in the

8x8 block), so, by using smaller factors at the upper left corner, and larger factors at

the lower right corner, we keep more low frequency transitions than high frequency

ones, eyes can hardly tell anyway. Thus we can achieve higher compression ratio

without losing perceptual quality (Mean Square Error might disagree, it must be

replaced by a better distortion criterion).

Scalar quantization (SQ) has been used in other image compression standards.

For example, SQ with feedback is used in H.261, MPEG-l and MPEG-2. Except that

lPEG uses separate quantization table for each color component while in MPEG

Luminance and chrominance share quantization tables. More about these video

compression standaros are discussed in the following section-2.7.

2.5 Vector Quantization
/

7

2.5.1 Vecto~uantiz.ation.Problem

Vector quantization (VQ) is a generalization of scalar quantization to the quantiza

tion of a vector, an ordered set of real numbers. While scalar quantization is used

primarily for analog-to-digital conversion, VQ is used with sophisticated digital sig

nal processing, where in most cases the input signal already has some form of digital

representation and the desired output is a compressed version of the original signal.

VQ is usually, but not exclusively, used for the purpose of data compression.

A vector can'be used to describe almost any type of pattern. Vector quantization"

can be viewed as a form of pattern recognition where. an input pattern is "approxi

mated" by one of a predetermined set of standard patterns, or in other words, the

input pattern is matched with one of a stored set of templates or codewords. VQ

can also be viewed as a front end to a variety of complicated signal processing tasks,

including classification and linear transforming. In such applications VQ can be
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2.5. VECTOR QUANTIZATION

viewed as the subsequent computations, sometimes permitting complicated digital

signal processing to be replaced by simple table lookups.

Three main results about VQ have been proved as:

• VQ is always better than scalar quantization, which is supported by Shannon's

fundamental rate-distortion theory.

• Higher-correlation between vector components results in higher VQ perfor-

mance.

• VQ is the best compression technique if complexity is not considered. Before

we look into theoretical properties of vector quantization, we need to form a

vector quantization problem in general first.

Assume that. x = [X1X2'" xN]T is an N-dimensional vector whose components

{xk,1 ::; k ::; N} are real-valued, continuous-amplitude random variables. If the

vector x is mapped onto another real-valued, discrete-amplitude, N-dimensional

. vector Y, we say that x is quantized as y, and y is the quantized value of x. y is

also called reconstruction vector corresponding to x. Typically, y takes on one of .

a finite set of values Y = {Yi, 1 ::; k ::; L}, where Yi = [Y1Y2" . YN jT. The set Y is

referred to as the coile:book, L is the size of the codebook, and {Yi} are the set of

code vectors.

When x is quantized as Y, a quantization error results, and a distortion measure

d(x, y) can be defined between x and y.

There are two major tasks in the design of a vector quantizer: the selection of

the appropriate distortion measure and the design of the codebook (also known as

the training of a codebook).

Either for purposes of transmissio?- or for those of storage, each vector Yi is

encoded into a codeword of binary digits (bits) q, of length Bi bits, in general,

the different codewords will have different length, the average number of bits per

parameter or per dimension is then given by

B
R = N bits / dimension
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where
1 M

B= - EBi
M i=l

with M 1;>eing the number of codewords transmitted or stored.

. In designing a data compression system, one attempts to design quantizer such

that the distortion in the output is minimized for a given bit rate.

_.The next two sections will discuss the two most important issues in the design

of a vector quantizer separately.

2.5.2 Distortion Measures

To be useful, a distortion measure must be tractable and subjectively representative.

The first requirement is because it can be computed in reasonable time so that people

can analyze it and get to know whether the distortion is too big or not. The second

criterion had been igp.ored until recently. As studies [14J show that in the case

of audiovisual signal quantization, the most often used distortion measure does not

always give a consistent indication of distortion with the perception of human being.

For example, people have found that a few decibels of decrease in the distortion is

quite perceivable by a person in one situation but not in another. As the search

for quantitative perceptual measure distortion continues, the following traditional

distortion measures are still used 'by people to evaluate the performance of a coding

system.

1) Mean-Square Error: This is the counter part of MSE in scalar quantization.

And is by far the most often used distortion measure. This is simply because it is

easy to calculate and tractable, and to a large extent match with the perception

of human beings. It can be easily obtained by expanding the definition for scalar

quantization, as follows:

1 T 1 ~ 2
d2(x,y) = N(x- y ) (x-y)= NL)Xk-Yk)

k=l

This is also the distortion measure we used in our VOD system.

2) Weighted Mean-Square Error: In the MSE d2 we assumed that the distor

tions contributed by quantizing the different parameters {Xk} were weighted equally.
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2.5. VEGTOR QUANTIZATION

In general, unequal weights can be introduced to render certain contributions to the

distortion more important than others. A general weighted MSE is then defined by:
( p

dw(x, y) = (x - y)TW(x - y)

where Wis a positive-definite weighting matrix.

3)Perceptually Motivated Distortion Measures: For very small distor

tions, and therefore high bit rates, most reasonable distortion measures, including

those mentioned above, all exhibit similar behavior, by linearity arguments. Fur

thermore, they would all be expected to correlate well with subjective judgments

of human visual or audio quality. However, as bit rate decreases and distortion

increases, simple distortion measures have not always correlated well with percep

tual judgments. Since VQ is expected to be especially useful at low bit rates, it

becomes more important to develop and use distortion measures that are correlated

better with human audio-visual behavior. A number of perceptually based subjec

tive judgments, have been proposed and used. And efforts have been continued to
.\

devise fully quantitative perceptual distortion measures, which depends a lot on the

fully understanding of the human perception behavior.
\.

The principalgoal in design of vector quantizers is to find a codebook, specifying

the decoder, and a partition or encoding rule, specifying the encoder, that will max

imize an overall measure of performance considering the entire sequence of vectors---

to be encoded over the lifetime of the quantizer.

2.5.3 Codebook Design

To design the L-level codebook, we partition N-dimensional space into L cells, which

are Gi, 1 ~ i ~ L. Associate with each cell Ci a vector Yi. A quantizer is said to be

an optimal(minimum-distortion) quantizer if the distortiQn in either of the above

distortion equations is minimized over all L-level quantizers.

There are two necessary conditions for optimality. The first -condition is that

the optimal quantizer is realized by using a minimum-distortion or nearest neighbor

23



2.5. VECTOR QUANTIZATION

selection rule.

q(x) = Yi, if f d(x, Yi)::; d(x, Yj), j -=I i, 1 ::; j ::; L. (2.2)

That IS, the quantizer chooses the code vector that results in the minimum

distortion with respect to x.

The second necessary condition for optimality is that each code vector Yi is

chosen to minimize the average distortion in cell Ci . That is, Yi is the vector Y

which minimizes

Di = €[d(x, y)lx E Ci]= r d(x, y)p(x)dx
}XEC;

Like in scalar quantization, such a vector is called the centroid of the cell Ci.

. Computing the centroid for a particular region will depend on the definition of

the distortion measure.

In practice, we are given a set of training vectors. x(n),l ::; n ::; M. A subset

Mi of those vectors will be in cell Ci . The average distortion'Di is minimized by

Thus one method for codebook design is an iterative clustering algorithm known

as Lloyd algorithm.It is one of the important quantizer design algorithms'. It basi

cally contains the following steps:

Step 1. Initialization: Set m = O. Choose by an adequate method a set of initial

code vectors Yi(O), 1 ::; i ::; L.

Step 2. Classification: Classify the set of training vectors x(n), 1 ::; n ::; Minto

the clusters Ci by the nearest neighbor rule:

- '

x E Ci(m), iff d[x,Yi(m)]::; d[x,Yj(m)], for all j -=I i.

~- Step 3. Code Vector Updating: m ~ m + 1. Update the code vector of every

cluster by computing the centroid of the training vectors in each cluster

Yi(m) = centroid(Ci(m)), 1.f i ::; L
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Step 4. Terminatio.n Test: If the decrease in the overall distortion D(m) at

iteration m relative to D(m - 1) is below a c~rtain threshold, stop; otherwise go to

step 2.

The above algorithm can be shown to converge to a local optimum. Furthermore,

any such solution is, in general, not unique. Global optimality may be achieved

approximately by initializing the code vectors to different values and repeating the

above algorithm for several sets of initializations and then choosing the codebook

that results in the minimum overall distortion.

I

l2.5.4 Encoding

Having designed a cod~book as described above, one can then use it to quantize each

'input vector x(n). The quantization is performed as in equation 2.2 by computing

the distortion between x(n) and each of the code vectors, then choosing the code

vector with the minimum distortion as the quantized value of x(n). This type of

quantization is known as a full search, since all code vectors are tested for quantizing

each input vector. For an L-Ievel quantizer, the)number of distortion computations

needed to quantize a single input vector is L. While a distortion computation can be

arbitrarily complex, we can assume here that each distortion computation requires

a total of N multiply-adds. Therefore, the computational cost for quantizing each

input vector is

(=NL

If we encode each code vector into B = RN = log2 L bits for transmission, then

So to speak, the costs are exponential in the number of bits per vector. Com

putational and storage costs double for each increase of 1 bit in the rate. Thus

computation cost grows exponentially with the number of dimensions and the num

ber of bits per dimension. As tests shown that the complexity of a codebook with

L = 216 is be}ond the computational capability of most contemporary computers.

To compensate this problem, a number of fast-search algorithms have been proposed,
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which are designed to reduce the computations in the encoding at some reduction

in performance. Such as binary search, whose cost is only linear with the number

of bits.

2.5.5 Vector Transforlll Coding

For a long time, many scalar decorrelation techniques like the above discussed DCT

have been developed and used to optimize scalar quantization. As we discussed

before, it is well known that vector quantization is always better than scalar quan

tization. For this reason, people tried to replace scalar quantization with vector

quantization after the scalar transform has been applied to the original data, hop

ing that better c.:ompression perforII.!ance would be achieved. However, t1}.e results

didn't agree with this theory. Recently, an interesting question has been proposed

that if vector transform is used prior to vector quantization the total performance

of compression should be better. Some very encouraging results have been achieved

through this new VT and VQ joint optimization.[5],[15],[17],[18].

The reason that performing VQ after scalar transformation is not effective can

be explained as following: after scalar transform, like DCT, the transform domain

coefficients are highly decorrelated, so the vectors formed by these coefficients have

very little intra-vector correlation. As we discussed earl~r; VQ is more efficient when

the vectors have more intra-vector correlation; thus, VQ is normally not efficient

after scalar transform.
I

In order to effectively exploit both the'decofr.elation property of transform and

the VQ advantage over highly intra-correlated vectors. We must find a way to

preserve the correlation within vectors while decorrelate the correlation between

different vectors. Vector Transform Coding proposed by Li [4],[5],[15],[17],[18] is

one of su:ch schemes that can achieve this goal.

In veCtor transform coding scheme, transform is no longer a scalar based trans

form, it is a vector-based transform. This transform is designed to keep the cor, .

relation within vectors and reduce the c'ar'relation between vectors. A simplified

vector transform scheme is shown in Figure 2.5. The idea of this simplified vector
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transform is to first subsample aI?- image into several subimages, then, do scalar

transform ( a transform like DOT) in each subimages, then group the corresponding

vector pixels in each of the transformed subimages as a vector, then do VQ for the

vectors. We can see the intra-vector correlation is well preserved since there are no

transform used to decorrelated its components. And the correlation between vectors

is reduced, since we applied the transform between them. In [15], Li has shown that

image compression using VTO technology is much better than JPEG which uses

both ST and SQ. O?e goal of this thesis is to show that the VTO technology works

well in video applications.

2.6 Entropy Coding

Entropy coding is a technique for encoding discrete data into variable length code

words in an invertible fashion.

Entropy codes are often used in conjunction with scalar quantizers (to conserve

the average bit rate) and are often fairly simple to implement when the input alpha

bets are of reasonable size. The overall variable rate code is then a simple cascade

of a scalar quantizer, which performs the analog-to-digital conversion in a fixed rate
.. '

manner, and a variable length noiseless code, which maps the quantizer output into

a variable length binary index in a way that can be perfectly decoded by the receiver.

It can be shown that in the high rate case, coupling simple scalar uniform quantizers

with noiseless variable rate codes of vectors can achieve performance within approx

imately 1/4 bit of the Shannon optimum a.s given by the Shannon rate distortion

function.

The goal of noiseless coding is to reduce the average number of symbols sent

while suffering no loss of fidelity. Huffman coding is one kind of entropy coding

schemes. Even though it was developed by D. A. Huffman in 1952, it's implemen

tation, especially for high throughput, is still- a challenge today. Arithmetic coding

and run length c0ding are other two most often used lossless compression methods.
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2.7 Video Compression Standards

To facilitate world wide interchange of digitally encoded audiovisual data there is

a demand for international standards for the coding methods and transmission for

mats. International standardization committees have been working on the specifica

tion of several compression algorithms, which are discussed briefly in the following

sections [19].

2.7.1 JPEG

The ISO Joint Photographic Experts Group (JPEG) has developed a compression

standard for continuous-tone still image applications such as graphic arts, color

facsimile, and desktop publishing. The JPEG standard specifies both baseline and ,
•

extended systems, which are intraframe coding schemes. In the baseline system, the

input image is divided into disjoint 8x8 blocks. Two dimensional DCT 'is applied to

each block, followed by a quantization to reduce the data dynamic range. The 2-D

quantized DCT coefficients (8x8) are then zigzag scannecl into a 1-D data sequence

where the neighboring contiguous zeros are grouped together into a run length which

can be coded more efficiently~ The IJuffman code is used to code the run length and

nonzero coefficients. In the baseline system,- the Huffman code information can

. be embedded in the bit stream and sent to the decoder for codebook generation.

The J:PEG standard specifies how the codebook is generated from the encoded

information.

- In addition to the baseline system, JPEG also specifies an extended system

which offers more features ( such as arithmetic coding and more precision in the

pixel values) and additional coding structures ( such as progressive transmission

and lossless coding for various a.pplications). The JPEG activity was started around

1987, and became an international standard in 1991.
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2.7.2 H.261

In order to provide video phone and video conferencing services over ISDN, ITU-T

( formerly CCITT) has completed and approved the H.261 standard in 1994. The

H.261 standard specifies a real-time encoding-decoding system with a delay less

than 150 ms. The algorithm is capable of running over a set of transmission rates

of p X 64KB / 8 ( P = 1,2, ... ,30 ). The format for the input image is based on the

Common Intermediate Format (CIF) which is 360 pixels by 288 lines for luminance

and 180 pixels by 144 lines for chrominance. The frames are non-interlaced, and the

input rate is 29.97 frames/second for NTSC-compatible systems. For video phone

applications where low bit rates are required, another format, 1/4 CIF (QCIF) which

is 180 pixels by 144 lines for the luminance and 90 pixels by 72 lines for chrominance

signals, has also been defined in the standard [20]'[21].

The coding scheme for the H.261 standard can be summarized as following. Each

frame is divided into disjoint mct'croblocks, each of which consists of one 16x16 lumi

nance (Y) block and two 8x8 chrominance (Cr and Cb) blocks. For each luminance

block, we find from the previous frame a best-match block. The purpose here is to

remove the temporal redundancy. This process is called motion estimation. For a

typical video scene, it is highly likely that an object will sustain for some period.

Motion estimation searches for a representation of the current macroblock from a

previously coded picture. When a suitable representation is found, only information

apart form that representation is needed to be coded, and compression is achieved.

How to find the best-match block is not specified in the standard. Nevertheless, the

most commonly used criterion is the minimization of the displaced block difference

(DBD). A best-match motion vector (displacement) is obtained from this process.

The encoder then decides whether intra or predictive (inter-) mode should be

used. In the predictive (inter-) mode,. the motion-compensated predictive error,

defined as toe difference betwee~ the current block and the best-match block ( the

block in the previous frame displaced by the best-match motion vector), is coded.

Otherwise, the current block is coded directly. If the best-match block data are

not quantitatively clost/to the current block, the motion-compensated predictive
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error will be large, and thus coding the current block directly is more advantageous.

Note that in predictive mode, the best-match motion vector needs to be sent to

the decoder for video reconstruction. In either intra- or predictive mode, a DCT

followed by a quantizer is used to code the data. This DCT coding process is almost

the same as that given in JPEG's standard. The quantizer step size is adjusted

periodically to govern the resulting bit rate to the desired value. A possible method

is to determine the quantizer step size directly form the buffer content.

2.7.3 MPEG-l

The ISO activity of the Moving Picture Experts Group (MPEG) was started in 1988

for CD-ROM applications at a bit-rate below 1.5 Mb/s. MPEG-1 was originally de

veloped for storage of full-motion video. The recommended input picture size for the

MPEG-1 standard is 360x240 pixels for luminance"and 180x120 for chrominance.,

and the frame rate is 29.Q7 frames per second for NTSC-compatible systems, al-·

though these parameters can vary in the standard. The MPEG-1 coding scheme is

very similar to that of ITU-T H.261. The major difference between the two is that

MPEG-1 allows bi-directional motion compensation.

A video sequence is divided into groups of pictures (GOP's). There are three

possible types of pictures in a GOP: I-picture, P-picture and B-picture. Coding of

1- and P- pictures is similar to the scheme used for the JPEG and H.261 standards,

i.e., i:iJ.traframe and motion-compensated interframe techniques with DCT. Coding

of B-pictures is slightly different from that of the P-pictures. In P-pictures, motion

prediction is obtained from some previous frames only, i,-eJI forward motion compen

sation. However, in B-pictures, information from both previous and future frames

has to be used for motion prediction, i.e., bi-directional motion compensation. For

each macroblock in B-picture, we find the best-match blocks from the previous and

the next 1- or P-pictures. The best-matched block(s) from both can be used as the

motion-compensated prediction. The choice is not specified in the standard. As in

P-pictures, either the motion-compensated prediction error or the current block is

coded with DCT followed by a scalar quantization. Since processing of B-pictures
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requires the information in the previous and the next I- or P-pictures, the frame

processing order cannot follow the natural sequence of frame numbers. Thus, given

two B-pictures between two adjacent I- and P- pictures, after processing of Frame

o(I-frame, intraframe coding) is completed, Frame 3 (P-frame, interframe coding)

is processed, followed by frames 1 and 2 (B-frames), and so on. This process is

repeated until the intraframe mode is triggered at the first frame of the next GOP,

and another new cycle starts.

The MPEG-l standard only specifies the bit stream syntax and decoding process.

At a given bit rate, different standard-conforming encoding schemes are possible.

It has been demonstrated that at 1.5 Mb/s, the video quality is comparable to the

VCR's [22].

2.7.4 MPEG-2

After completing the MPEG-l standard for compressed video taFgeted at storage

applications around 1.5 Mb/s, the MPEG group continued to enact the MPEG-2

standard for broader and higher bit-rate applications including broadcasting, con-

) sumer electronics, and telecommunications. The MPEG-l standard can provide a

broad range of bit-rates due to its parameterization approach, although the stan

dard was originally aimed at below 1.5 Mb/s for CD-ROM applications. However,

its quality and flexibility are considered not ideal enough for the above-named appli

cations at higher bit rates. To meet the higher quality and higher bit-rate objective,

the MPEG-2 project was put together.

Roughly speaking, coding algorithms conforming to the MPEG-l and MPEG-

2 standards are similar. Nevertheless, the MPEG-2 standard accommodates more

features than the MPEG-l standard. Such features include interlaced video'ma

nipulation, scalability, compatibility, error resilience, and " hooks and options" for,~

very high resolution video coding. One of the major differences between the coding

schemes for the MPEG-l and MPEG-2 standards is that the MPEG-2 standard is

capable of handling interlaced video sequences adaptively with either frame or field

modes, which the MPEG-l standard can only deal with one fixed mode. Given an
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interlaced video, the MPEG-l encoder can only treat each field or each frame(by

merging the adjacent two fields) as an integral unit, whereas the MPEG-2 encoder

can in addition, exploit the correlation betweenthe two fields in a frame and select
r-

the optimum mode. The MPEG-2 standard also provides more options for coding

schemes, including choice of slanted scanning, linear or nonlinear quantization table,

and the DC resolution for intra-macroblocks. Scalability can provide multiple-grade

and multiple-bandwidth services. It can also be used for error resilience under

error-prone environment. The MPEG-2 standard provides five types of scalability

tools: data partitioning, SNR scalabllity, chrome simulcast, spatial scalability, and

temporal scalability.

Since MPEG-2 is intended to be a generic standard to meet requirements of vastly

different types of applications, ISO/MPEG has decided to associate the MPEG-2

standard with Profiles and Levels. A Profile uses a subset of the available syntactic

elements to support a number of technical features and functionalities required by

a cluster of similar application. The MPEG-2 standard has currently defined five

Profiles:Simple, Main, SNR, Spatial and High. Main Profile aims to support

the most common applications that are likely to be introduced first. Simple Profile

allows lower memgry and hardware complexity at the expense of fewer technical

features and thus lower quality. The other three Profiles provide an environment

for scalability and higher chrominance resolutions. Levels are defined by the range

of parameters such as picture size, frame rate, bit rate, pixel rate, buffer size, etc.

Compared to H.261, the resulting quality from MPEG-l and MPEG-2 is better

due to theuse of bidirectional prediction. However, they have a looser requirement

on coding delay as is dictated by two-way applications. MPEG-2 coding strategy is

also used by the Grand Alliance of HDTV standard working for the video compres

sion subsystem.
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2.8 About the Network Platform

2.8.1 What is TCP lIP

The platform for the system developed are UXIX based machines on a network which

supports TCP lIP communication software. TOP lIP was developed by DOD to

connect a number of different networks designed by different vendors into a network

of networks ( the "Internet"). TOPlIP data can be sent across aLAN, or any

machine on any other network through gateways. TOP lIP forms the basis for one

of the most widely used n~tworking technologies in the world [23].

TOP lIP is actually a layered internet protocol suite. TOP and IP are two core

protocols in the suite, so TOP lIP is usually used to refer the whole protocol family.

In general, TOP lIP applications use 4 layers: an application pr<~tocol such as mail, a

protocol such as TOP that provides services needed by many applications, IP, which

provides the basic service of getting datagrams to their destination, the protocols

needed to manage a specific physical medium, such as Ethernet or a point to point

line. File transfer, remote login and computer mail, to name a few, are traditional

TOP lIP applications (services) that run on top of TCP lIP.

TOP (the "transmission control protocol") is responsible for breaking up the

message into datagrams ( A datagram is a unit of data, which is what the protocols

deal with), reassembling them at the other end, resending anything that gets lost,

and putting things back in the right order. IP ( the "internet protocol" ) is respon

sible for routing individual datagrams. TCP simply hands IP a datagram with a

destination. IP doesn't know how this datagram relates to any datagram before it

or after it.

TOP lIP programs generally conform to a client-server form of interaction. With

client-server computing, an application running on one host issues requests for ser

vices, and those services are supplied by an application component running on an

other host on. the internet. Ther.e ar~two types of server, iter~tive servers which

process one chent's request at a t'lme-, and concurrent servers which can process the

requests of multiple clients concurrently.
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Figure 2.6: TOP lIP- Architecture and Addressing

Each host in the internet is assigned at least one unique internet address. An

internet address (IP address) uniquely identifies a particular point of attachment to

the internet. Each application process running in a host is assigned a 16-bit TOP

port number to differentiate it from other application process of the same Trans

port layer protocol in a host. However, for user applications, socket interface was

developed to avoid dealing directly with the above two TOP lIP addressings. By

using the socket interface, two application programs, one running in the local system

and another running in the remote system, can communicate with one another in a

standardized manner. The socket interface is the most widely used TOPlIP appli

cation programming interface today. Figure 2.6 shows the hierarchical addressing

mechani~m of TOP lIP network communication. So for any two processes to com

municate, they have first to make a connection through the socket API system calls,

which basically does the collection of the following information of the two processes:

Protocol-Identifierj

Local Internet Addressj

Local Port Numberj

Remote Internet Addressj

Remote Port Numberj
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There are different types of sockets for applications of different purpose. The

most common types are: stream sockets, datagram sockets and raw sockets. Stream

sockets support a connection-oriented form of data transfer in which a stream of data

can be reliably sent form one socket to another over a TCP connection. Datagram

sockets support an unreliable datagram form of data transfer in which individual

user datagrams can be sent from one socket to another. Raw sockets are sockets

t,b-at provide access to the underlying IP and ICMP processes.

2.8.2 World Wide Web (WWW)

The World Wide Web is the universe of network-accessible information, an embod

iment of human knowledge. 'It is an initiative started at CERN, now with many

participants.

It has a body of software, and a set of protocols and conventions. WWW uses

hypertext and multimedia techniques to make the web easy for anyone to roam,

browse, and contribute to.

The World Wide Web software can pick up information from many information

sources, using existing protocols. Among these are file and news transfer protocols,

such as FTP, NNTP, Gopher and WWW's own protocol HTTP.

The Hypertext Transfer Protocol (HTTP) has been in use by the WOrld Wide

Web global information initiative since 1990. HTTP is an application-level protocol

with the lightness and speed neceilsary for distributed, collaborative, hyper media

information systems. It is a generic, stateless, object-oriented protocol which can

be used for many tasks, such as name servers and distributed object management

systems, through extension of its request methods (commands). A feature of HTTP

is the typing and negotiation of data representation, allowing systems to be built

independently of the data being transferred.

On the internet, the communication takes place over a TCP lIP connection. The

protocol is basica~ly stateless, a transaction consisting of:

• Connection: The establishment of a connection by the client to the server 

when using TCPlIP, p<;>rt 80 is the well-known port, but other non-reserved
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ports may be specified in the URL (Universal Resource Locator, for specifica

tions, refer to RFC822)j

• Request: The sending,by the client, of a request message to the server;

• Response: The sending, by the server, of a response to the clientj

• Close: The closing of the connection by either of both parties.

Currently, the most powerful HTTP client programs are the Mosaic and Netscape

WWW browsers. The MOSAIC browser was developed by the Software Devel

opment Group (SDG) of the National Center for Super-computing Applications

(NCSA). It offers a very nice and easy interface for people to browse the WWW on

the Internet. It became so successful that a Netscape Communications Corporation

was formed to develop and commercialize it under the name of Netscape. Because of

its popularity, it became the de facto standard of browser. Based on this, we decided

to use Netscape (Mosaic) as the interface to the internet of our VOD system.

One major reason that HTTP is very powerful is because of the support of the

, co~mon gateway interface (CGI). The CGI is an interface for running external

programs, or gateways, under an information server. What we refer to as gateway~

are really programs which handle information requests and return the appropriate

document or generate a document on the fly. For instance, with CGI, an HTTP

server can serve information which is not in a form readable by the client (such as

SQL database), and act as a gateway between the two to produce something which

clients can use. Gateway programs, or scripts, are executable programs which can be

runby themselves. They have been made external programs in order to allow them

to run under various (possibly very different) information servers interchangeably.

Therefore, gateways can be used for a variety of purposes.

The video-on-demand applications is one of them that fits nicely in this WWW.

The scheme we developed in the VOD system can be easily added on'to the Internet.

A user can visit this VOD site, and demand a video. The server sends over the

player if the user site does not have a player that can play this compressed video. If

however, the user site has a pl1j.yer already, the server simply starts sending the video

sequence to the local player. A very important concept embedded in this scenario is
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-
that the user does not need to have any knowledge about the compression technology.
implemented in the player, better yet, he does not need to worry about getting a

player for the video he wants if he does not have one on his machine. This idea also

extends to the video conferencing applications. In which case, the participants of a

video conferencing are not limited to follow a video compression standard, instead

they can use what ever compression technology they have one each one's machine,

as long as they sent over the corresponding player during the initialization stage. In

chapter 4, we'll discuss in detail how we \lsed gateways to implement the compression

technology independent video delivery feature of our von system.
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Chapter 3

System Architecture

3.1 Overview

As we have shown in chapter 3, that the combination of vector transform and vector

quantization should out perform VT and scalar DCT as used in the current compres

sion standards. A simplified video-on-demand system is thus developed to test the

overall compression performance of VT plus VQ. This VOD system employs vector

subband coding and vector wavelet transform. It can provide basic VCR fun(~tions,

such as forward, backward play and random positioning in the video sequence.
I

The system WasAirst developed on a network of UNIX workstations in the X

window environment, and later ported to networked PCs running MS Windows as

well. Being an asymmetric system, the encoding of the vi~eo is done off line. The

server only stores the compressed bit stream, and sends the bit stream over the

network whenever demanded. The decoder decodes the bit stream and plays it back

on the fly on the user's local machine. Figure 3.1 shows the system architecture.

3.2 Server

The server consists of three submodules, namely the fetching module, the processing

module and the network interface. The fetching module locates the requested video
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Figure 3.1: the VOD System Architecture
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Figure 3.2: Structure of The Server

clip from the video archive, and loads it into the memory. The processing module

processes the video clip just loaded in, and takes out the video bit stream to be sent

out. This procedure can be dynamically adjusted based on updated user request.

For example, sometimes, a user might want to skip a portion of the video. Once

the server received this information, the processing procedure will do the skipping,

and only sends out the necessary bit stream. The network interface will send out

the packed bit stream, and communicates with the network interface on the client

side. A diagram of the server is given ~n 3.2.
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Figure 3.3: A Frame In Transform Domain with L = 3

3.2.1 Video Encoding
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As for now, only intraframe coding is performed. Each frame is divided into blocks of

size N X N. The vector subband coding is performed separately for each of the three

color components, thus vector subband filtering is performed three times for each

block. As we have explained in chapter 2, human eyes are more sensitive to the low

frequencies. Therefore, for an L-Ievel subband coding, when going from ith level to

the (i+1)st level, only the lowest subband is performed subband filtering. Therefore,

each frame will look like Figure 3.3 in the transform domain after subband coding.

Next, vectors that include all three color information are formed in the transform

domain. Thus the final vector size becomes tripled, 3 X N X N. For example, the

ith vector from Subband j would look like:

where x, y, z are the three color components.
/\

) Once all the vectors are formed, they are encoded by looking up the codebooks.

Because the characteristics of each subband are different ( some time vary different

depending on the scenes of a video clip), each subband uses a different codebook.

The codebook consists of codewords of different bit lengths. If the distortion measure

does not satisfy the preselected criterion, the search in the codebook goes into a

higher level, where more bits are allocated for each vector. Thus besides the index

of a codeword, the classification number, i.~" the bit length is needed to enable
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the decoding. Therefore, each vector is coded a~' a (class index) pair. The encoded

frame thus is represented by a bit stream of these pairs. Notice that the information

regarding the subband number is implicitly stored because the encoding is done in

the increasing order of the subband numbers. The bit stream of a video clip is

obtained by concatenating sequentially the bitstreams of all the frames in the clip.

3.2.2 Processing Module

The purpose of the processing module in the server is twofold. First, it takes the

bitstream that needs to be sent out of the stored clip. Because some overhead like

the location in the whole bitstream of each single frame is packed in the clip, which

does not need to be sent over to the client. Second, it can process the user requests

and take corresponding actions even after the sending of the clip has been started.

One such example is that after watching a few frames, the user decides that this is

the wrong clip and wants to stop it. The server should be able to stop loading the

rest of the clip.

The processing module does its job by analyzing certain fields in the overhead

as well as by analyzing the control messages received from the client by the network

interface.

The processing module also performs queuing should there are more than one

client requesting video clips. It does this by forking off a child process for each

request.

3.2.3 Network Interface Module (NIM)

The major function of the network interface is of course the sending and receiving

data to and from the network.

The data received by the NIM can be a-name of a clip, the handshaking signal,

or some special control requests. The data sent out is the bit stream of a frame and

the size of it. This small overhead is to ensure the client receive the complete data.

To coordinate the various processing speed of the client machine and the dynamic

traffic condition, sending buffer is used to buffer the bitstream. Handshaking is done
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Figure 3.4: Structure of The Client

to ensure the synchronization of communication. Instead of flooding the bitstream

out to the network, it waits for the ready signal, then sends the bitstream in the

buffer out.

NIM interfaces with the network through a ,socket. Or we can say that the server

provided its service at a specific socket. The connection between the server and a

client is established at the. initialization stage by the NIM module.

3.3 Client

Because this von system is asymmetric, client performs more tasks than the server

does for individual video clips. These tasks can be casted as: network interfac

ing, decoding, synthesizing, displaying and user interfacing. See Figure 3.4 for the

modules that perform these different tasks.

The user interface accepts a request from a user, it passes this information to

the network interface. The NIM then sends this request to the server, and wait for

the bitstream. Once the bitstream arrives, the NIM puts it into the frame buffer.

It follows that the decoding module first decodes this bitstream into indices, then

it looks up the codebook to get the vectors. These vectors are then used by the

synthesize module to reconstruct a frame. The reconstructed frames are sent to the

display module, which interfaces with the X server to playback th~ video. Because

most workstations support only 8-bit color display, the display module also performs

the 24 bit to 8 bit color truncation and dithering.
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3.3.1 Network Interface Module

A counterpart of the server network interface, client NIM works very similarly. It

first establishes the connection with the serve~ by sending connect request to the

socket where the server is listening.- And then it sends out the request received by

the user interface. Once a bitstream has arrived, it stores it in a frame buffer, and

acknowledges the server with a short ready signal, then waits for another frame, if

there is no overflow message from the decoding module.

3.3.2 Decoding Module

The decoding module does two kinds of decoding. First, it needs to decode the

bitsteam of a frame in the buffer. Since variable length VQ is used, indices of

vectors are of different bit-length. The received bitstream is a bitstream of (class,

index) pair. The field of the class is of fixed length. The actual field length depends

on the total number of classes. For example, if a lO-bit code-book is used, then 4

bits need to be reserved for the class field ( 4 bits can handle a codebook with size up

to 16-bit ). So decoder uses the bit-length info in the class field to read the following

index, whose length could vary from 0 up to 10 bit in the previous example. The

output of this first round of decoding is a sequence of (class index) pairs.

Secondly, for each pair of (class, index), its location in the sequence determines

which subband it is in according to the protocol. And the corresponding subband

codebook is used to find out the vector the index represented. The outcome of this

second round of decoding is vectors stored in a buffer ready for the synthesizing

module to use. /-
/

/

3.3.3 Synthesizing Module

As we can see, decoding and synthesizjng is done reversely as compared to the

encoding procedure.

First, each vector is decomposed into three vectors, one for each color component.

The vectors of the same color component are put together to rebuild the transform
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domain frame as depicted in Figure 3.3. Thereby three frames in the transform

domain are formed for each frame in the video clip.

Second, subband decoding is performed for each transform domain frame. Using

the same example given in Figure 3.3, first reverse subband coding is performed

for subbands 6 through 9, the result is a subband in 2nd level, let's name it as

subband 6. Next, this subband 6together with subband 3 to 5 are synthesized to

form subband 3, which in turn is combined with subband 2 to 0 to rebuild a single

color component frame.

, Once all the three color frames are rebuilt, they are ready to be converted to an

appropriate representation for display.

3.3.4 Display Module

The q,isplay handles the display of video in the X window environment. The major

task of the display is the dithering, which in essence is to convert 24 bit color

frames into 8-bit, 16-bit color or grey-level representations that are supported by

the machine. Once the conversion is done, the new re,presentation of a frame is

delivered to the X server, which takes over the display thereafter.

Basically, the Display Module is an X client, it requests and establishes the

connection with the X server in the initialization stage. During this period, it

allocates the available colors for the later display, it also allocates frame buffer from

which the X server will load the frame [24]. It prepares the dithering tables during

this time of period as well.

When it comes to dithering, it first quantizes the color representations into 8-bit

representation for all the three color components. Usually, the 8 bits are divided as

3:3:2 or 4:2:2 among the three color components. Then different dithering algorithms

can be used. In this system, ordered dithering is used for its superiority over error

diffusion[25], [26] .

Since there are quite some color representations of the original display, and

the monitor usually supports only RGB format, the Display Module needs to do

a conversion from an original format (suppose it's XYZ) XYZ to RGB after the
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dithering. This final 8-bit RGB representation is put into the frame buffer for the

X server to use.

3.3.5 User Interface

A simplified user interface was developed with two considerations in mind. One is

that it should provide full VCR functions yet it should not consume much processing

time. Another is the portability issue, the user interface should not be developed

based on a complicated GUI software which may not be installed in many platforms.

The user interface thus developed was solely based on Xlib which comes with every

UNIX operating system. It provides a user simple and easy control. Such basic

VCR functions have been provided: TITLE, START, STOP, BACKWARD,

FORWARD, GOTO, etc. TITLE let user select from a list of clips, START,

STOP, BACKWARD, FORWARD allow a user to control the play of the video

to his or her like. GOTO enable a user to randomly position a specific frame in a

clip.
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Chapter 4

The challenge in the implementation of the von system is the speed of the playback

of the client. The goal is to be able to play back a video clip across a network of

average workstations as close to real time (30 frames/second) as possible. In this

chapter, we discuss some of the special implementation features designed with this

speed issue kept in mind.

4.1 Encoding of Video

The resolution of the testing video clips is 352 by 224. The format of testing video

clips used is YUV format. The spatial ratio of YUV is 4:4:4. As discussed later,

any other video clips using different color space can' be easily adopted into this

system. The vector size used is 4 x 4. A 3-level subband coding is used. To avoid

decoding complexity, a very simple Haar wavelet filter is used. By using this Haar

wavelet filter, both encoding and decoding involves only addition and subtraction,

'- no multiplications at all. There is barely noticeable quality deterioration, which

justifies the use of Haar wavelet filtering. Codebooks (in this case: 10) are trained

with maximum index bit length being 12. Again, to speed up the playback, the

encoding is simplified to use only two classes of indices. Either the centroid (class

47



4.1. ENCODING OF VIDEO
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Figure 4.1: VV Video Clipfile Format

0) is used, or the 12-bit indices are used. This way, the compression performance is

traded off for the decoding simplicity.

All the basic VCR functions we talk about in chapter 4 depend on the capability

of the server to rapidly locate very single frame. For this purpose, the frame number

and the offset of the frame in the video clip bit stream are stored at the beginning

of the bitstream.

Figure4.1 shows the format of the bit stream of a video clip-.

Note that'the location information of a frame in the bitstream is used only by

the server, thus the bitstream header is not sent to the client across the network.

However, the clipfile header might be sent over d~\ending on the user's certain

request. It could contain the following information: the image width and height,

frames per second, total number of frames in the file and so on.

Recall in chapter 2, we discussed the YUV color space. Y is basically the lu

minance of the picture, U and V are the color information. As we know that the

human eyes are more sensitive to the changes of Y component than changes of the

U V components, we can afford to lose more precision in U V component than in Y

component. So, one improvement we ac]1ieved in speeding up was through subsam

pIing the U V frames in both directions by a factor of two. A low pass filter was

applied to the sub-sampled U V frames, to smooth them out. Thus we ended up

with Y:U:V spatial resolution at 4:1:1. For the vector formalization, 4 x 4 pixels are

still used for Y component, but only 2x2 pixels for both U and V component. The
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vector size now becomes 24 instead of 48. What this down-sizing of vector leads to

is the half size codebooks therefore speedup in both encoding and decoding.

4.2 Transmitting and Receiving Frames

The stream type socket is used for the transmission. This type of socket provides

virtual circuit connection, thus guarantees that the bitstream be transmitted to the

client in the sequenced order without error. The handshaking between the network

interface modules on both sides is implemented by using a handshaking token-a

4-byte integer to synchronize the communication. Whenever the token is received,

the NIM on the server side sends out one frame with an integer indicating the total

number of integers attached to the beginning. Because the bitstream is sent out

in multiples of 4 bytes, and the size of the bitstream of a frame mayor may not

be multiple of 4 bytes, stuffing is performed when the bitstream of a frame is not

aligned.

At the receiving end, the NIM stores the first integer received, and checks if the

total number of integers received matches with the first integer or not. If not, an

error has occurred, and is reported to the User Interface Module.

The reason for this 4 bytes alignment is to accelerate the decoding of the bit

stream by bit masking as discussed in the next section.

4.3 .Decoder

The bitstream decoding is done by getindex submodule. A data structure called

layer_data is used as in Figure 4:2.

Classes and indices are extracted by shifting and masking. An integer buffer (32

bit) bfr is used instead of a short buffer (16 bit) even the maximum length of an

index is 12. This is to minimize the memory access time so as to reduce decoding

time.

During the client initialization period, all the codebooks are sequentially loaded

into one continuous codebook buffer in the order of highest subband codebook first

49



4.4. SYNTHESIZER

struct layecdata {

int infile;
unsigned char rdbfr[COM_BUFFER_SIZE];

unsigned int bfr;

int incnt;

int bitcnt;

} Idata;

Figure 4.2: Data Structure for Bitstream Decoding

lowest subband codebook last. Because the decoding for the vectors is done in

the exactly same order, the pointer to the beginning of each subband codebook

gets incremented accordingly. So, for each index, the location of the corresponding

vector in the codebook buffer can be very easily calculated.

We can see that in the above decoding, memory has been traded for the speed

wherever possible.

4.4 Synthesizer

A diagram of the bit stream in terms of the organization of subbands is given

in Figure 4.3. The procedures initially used to reconstruct a frame from such a

bitstream is given in Figure 4.4:

In stage 1, function PUTV .is used to reconstruct Y,U,V ve~tors in each subband

from the combined vectors.

In stage 2, for each color component, inverse Haar wavelet transform FOUR~ONE

is performed to rebuild the 2nd level Low-Low subbands from the 3rd level subbands.

In stage 3, for each color component, inverse Haar wavelet transform FOUR~ONE

is performed to rebuild 1st level Low-Low subbands from the 2nd level subbands.

In stage 4, for each color componynts, inverse Haar wavelet transform FOUR~ONE

is performed to reconstruct the three Y U V frames from the 1st level subbands.

Later, we realize~t~at there is no need to separate Y U V during synthesizing, as
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Subband 2

Subband 0

Subband 1

Subband 4

Subband 3

HH

HL

LH

LLHH

"- LLHL

LLLH

LLLLHH
LLLLHL
LLLLLH
LLLLLL

Subband 5

Subband 6

Subband 7

Subband 8

Subband 9

Figure 4.3: Subbands Organization in the Bitstream

long as the operations (i.e., addition and subtraction) are performed correspondingly,

namely, Y +/- with Y, U +/- with U, and V -ff with V. In other words, the

, synthesizing can be performed at combined vector level. By doing so, stage 2 can

be eliminated, which gave us speed gain at no performance loss.

Another place where we simplified the calculation is the manipulation of the

factor V2 in the Haar wavelet filter. To avoid floating point computation, we didn't

use this factor. To make up on the decoding side, we need to divide the result of the

filter by 2 = V2 X {2, which can be simply implemented as shifting one bit right.

4.5 Display

Display Module first creates three tables during the initialization period of the sys

tem. Two quantization tables and a color table.

In both of the quantization tables, there are total 216 entries, with each entry

corresponding to a one-byte value. One quantization table is used to map 16-bit
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4.5. DISPLAY

SYNTHESIS(bitstream, vector_sequence)

{
PUTV ( bitstream, YHH, UHH, VHH );

PUTV (bitstream, YHL, UHL, VHL );

PUBV( bitstream, YLH ,ULH, VLH );

PUBV (bitstream, YLLLLLLH, ULLLLLH, VLLLLLH);

PUBV (bitstream, YLLLLLLL, ULLLLLL, VLLLLLL);

FOUR20NE (YLLLLLL, YLLLLLLH, YLLLLHL, YLLLLHH, YLLLL );

FOUR20NE (ULLLLLL, ULLLLLLH, ULLLLHL, ULLLLHH, ULLLL);

FOUR20NE (VLLLLLL, VLLLLLLH, VLLLLHL, VLLLLHH, VLLLL);

FOUR20NE ( YLLLL, YLLLLH, YLLHL, YLLHH, YLL);

FOUR20NE ( ULLLL, ULLLLH, ULLHL, ULLHH, ULL);

FOUR20NE ( VLLLL, VLLLLH, VLLHL, VLLHH, VLL);

FOlJR20NE (YLL, YLH, YHL, YHH, Y);

FOUR20NE (ULL, ULH, UHL, UHH, U);

FOUR20NE (VLL, VLH, VHL, VHH, V);

}

Figure 4.4: Synthesis Procedures
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4.5. DISPLAY

UV (8:8) into 8-bit UV (4:4). The other quantization table is used to map 16

bit YUV (8:4:4) into 8-bit YUV (4:2:2). However the entry values for the second

quantization table only range from 32 to 239. One straight forward solution could

be ?sing simply just one quantization table with 224 entries. But that would require

27 times memory space than using two tables.
,-

. In the color table, there are total 208 entries corresponding to 208 (R,G,B) color

pixels in the chosen color map of the X server. The indices of these entries range

from 32 to 240. First color conversion is performed to convert these YUVs (4:2:2)

into (R,G,B)s. The requests for these (R,G,B)s are then sent to the X server. If

granted, the returned pixels by the X server are stored in the table. The reason

why only 208 colors instead of 256 colors are allocated for the display is simply

to avoid the flickering of screen. Because if all 256 colors were allocated to the

video display, the other applications that are using some colors on the same screen

will flicker (blackout). By reserving 48 colors (0-31 and 240-255) for other possible

applications, this flickering problem can be avoided.

When the display module actually displays the decoded frames, the-following

actions are taken: First, every 4 X 4 block in the decoded frame is added by a 4 x 4

ordered dithering threshold mask as shown in figure 4.5. Then, each 24-bit (Y,U,V)

triple is quantized into 8 bits by looking up the YUV quantization tables. Next, the

color table is used to find all the color pixels. Finally, the pixel stream is sent to the

X server for display. After a couple of testing runs of the above implementation, we

noticed that the display module took up the largest chunk of time in the whole play

back. To address this problem, the following modification was made.

As the ordered dithering performs very well in general, we don't see any par

ticular reason to provide the flexibility of switching back and forth among different

dithering algorithms. Once this is fixed, there is no need to perform the dithering

during the run time when all the thresholds and distribution pattern are already

known. An innovative approach is taken to modify the codebook by applying the

ordered dithering threshold matrix to the vectors in the codebooks instead. So, the

additions involved during the dithering are all removed, the dithering time is saved.

All the display module does are mappings through table lookups.
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4.6. USER INTERFAOE AND INTERNET INTERFAOE
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Figure 4.6: How to play the video

3: Ending point oC apattern

4.6 User Interface and Internet Interface

The user-interface is a very simplified one. However, it supports all the VCR func

tions shown in figure 4.6. At the lowest programming level of X Window, Xlib offers

both portability of the code and the speed up for-the display. Unlike Xt which are

libraries built upon Xlib, and Motif which is built on top of Xt, Xlib allows for

flexibility but lack the nice feel-and-look of common GUls. Limited by the time, we

developed, using directly Xlib system calls, an intuitive graphic user interface for a

user to play the video and to give different kinds of commands..
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4.6. USER INTERFAOE AND INTERNET INTERFAOE

1\ :
'-J

This user interface works like this: a user issues different kinds of commands by

drawing different kinds of patterns (as shown in figure 4.6) in the display window.

Because all the points along the trace of this drawing are preserved by the X server,

we can differentiate different patterns using a simple pattern recognition technique.

Basically, this pattern recognition algorithm first tries to decide if there are two

"lines", if so then the angle between two lines is calculated. Certain amount of

tolerance is allowed so a user does not have to draw a straight line. In the worst

case, if a pattern can not be recognized, it is simply ignored.

As we discussed in the previous chapter, an interface to the i~ternet of the VOD

system was developed utilizing the common gateway interface. The one-button

feature scheme is depicted in figure 4.7:

The steps taken from a user click a button to order a video to the user start

enjoying it are given as below:

• Step 1: A user clicks a button (Actually two, first he selects \he "cool demo",

which leads him to the site of video server on the iiiternet:Then the second one

"start", which allows him to start the order-wait-watch process. Some times

a third button "OK" might show up to let the user confirm his desire to view

video regardless the security issue.)

• Step 2: Transparent to programmers. The browser sends the user's request

and information to the httpd server.

• Step 3 and Step 4: The httpd server starts a cgi1 program, which sends the

viewer program (binary executable) and codebooks (all uuencoded ) to the user

over the connection between the httpd and the browser.

• Step 5: The browser sets up the viewer program and starts it running (this is

when the third button might show up if the browser takes the security issue

seriously). The cgi1 exits once the data transmission is over (stateless charac

teristic of HTTP ). Hence the connection between the browser (user) and the

httpd server ends.

For the purpose of synchronization between the viewer and the video provider,

a record file storing the user info (very short) is generated by cgi1.
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Figure 4.7: Implementation Scheme of One-Button Video-On-Demand Using eals
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4.6. USER INTERFACE AND INTERNET INTERFACE

• Step 6: The viewer now running on the user machine wants to start the video
....r

provider, which run on the server machine. It does so by asking the httpd server

to start up the cgi2. Meanwhile, it waits for a reply from cgi2 about the video

server's address.

The reason for not starting the provider (or video-server) in cgil is to avoid

the scenario where the client got the viewer program but for some reason not

starting it, and on server side the server is occupying the service address, and

there is no way for the httpd to find out this so it can stop this meaningless

waiting.

Since the httpd has the power to allow multiple cgi2s running at the same

time, by using a cgi2 to dynamically allocate a port number, we can running

multiple cgi2s to start multiple video providers running at different ports to

satisfy multiple requests.

• Step 7: The httpd starts the cgi2 upon the request of the viewer. The cgi2

finds an unused port number for the video provider, also it sends this video

provider's address to the viewer through the httpd.

• Step 8: The cgi2 then starts the video provider. To make sure the viewer get the

address of the video provider and successfully connect with it, cgi2 waits until

the video provider and· viewer establishes the connection, then retires. Due to

the fact that the traffic on the network can change dramatically and the user

machine may have multiple users, it can not be predicted which of these two

operations is faster, the transmission over network of the port number from the

cgi2 to the viewer or the system call to start the video provider locally.). If cgi2

quits too soon, viewer might request connection to the video provider before

the video provider gets started. This is avoided by using the request record file

as a token, when the video provider loads in the information in the record file,

it deletes it. cgi2 then detects that the record file no longer exists, so it can

retire safely. If it quits too early, then the record file won't get deleted. So, the

user gets a "resume or ignore" message, from which point, it can resend the

request.
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4.6. USER INTERFACE AND INTERNET INTERFACE

• Step 9: The viewer directly communicate with the video provider happily there

after.

It might look redundant to use multiple gateway programs in the above imple

mentation scheme. Unfortunately, this is limited by the stateless characteristic of

HTTP protocol. Nevertheless, we have proved that it is possible to realize compres

sion independent technology video delivery by specifying a higher level protocol (In

this case, it is the HTTP) rather than using a specific standard which uses a specific

compression technology.
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Chapter 5

Results and Discussion

The test sequence we used to obtain the following results is a YUV 4:4:4 football

sequence which contains 145 frames at the resolution of 352 by 224. This sequence

is obtained by first subsampling the original YUV 4:2:2 football sequence, which

is 720 by 240 at 60 fields per second into 360 by 240, using only the odd fields.

A horizontal low pass filtering is applied to the luminance component before the

subsampling by a factor of 2. The low pass filter is given in equation 5.1. Then

the spatial resolution is cut into 352 by 224 because the VTC requires that both

dimensions be multiples of 32.

Yi =( -Yj-3 +Yj-l X 9 +Yj x 16 +Yj+l x 9 - Yj+3)/32 (5.1)

The MPEG-1 software encoder and decoder we used for comparison in this thesis

are ftped from Berkeley, which implement the standard described in the ISO/IEe

. International Standard 11172 [27]'[28J. Since the inter-frame compression is not

implemented in the VOD system, to be fair, we compared our VOD system and

MPEG-1 with the interframe compression of MPEG-1 turned off.

Since this VOD system is an asymmetric system as we discussed before, it is

obviously that we need to evaluate it at encoding end and decoding end differently,

where at the encoding end, the compression performance is the major concern, while

at the decoding end, the playback speed is the most important issue.
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Comparison of Encoding Time vs. Bit Rate between VTC and MPEG
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Figure 5.1: Comparison of the VOD System and A MPEG-1 Encoder: Complexity
vs.' Bit Rate

5.1 Encoding Results

• Complexity vs. Bit Rate

The off-line encoding time is_.a very good indication of the complexity of a

compression algorithm. So we used the encoding time instead of the number

of computations as the measurement of complexity in the comparison between

MPEG-1 and the encoder of our VOD system in Figure 5.l.

In the VTC, the different bit rates are obtained through changing the vector

quantization scale, which in turn changes the threshold of the VQ. In MPEG-1,

the bit rates are changed through changing the scalar quantization factor.

From' figure 5.1 we can see that the encoding complexity of VTC is much

higher than that of MPEG-l. This is understandable because VTC uses Vec- .

tor Quantization which requires a lot of time in searchi for the best match
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whereas MPEG uses scalar quantization which.is a very simple division oper

ation, which also explains why the complexity of MPEG encoding is a almost

constant. However, for the VTC, the complexity decreases dramatically with

the decrease of bit rate, this is because more and more centroids are used when

decrease the bit rate. The more centroids are used, the less time (computation)

is needed for the search.

The idea is that by putting more computation on the encoding side, we can

hopefully gain simplicity on the decoding side. This asymmetry of complexity

of VTC is the very characteristic that makes it very useful in applications like

von systems.

• SNR vs. Bit Rate

As we discussed in Chapter 2, SNR is not an ideal distortion measurement for

VQ, because it does not represent the human visual perception very well. But

since there is no available perceptionaL distortion measurement, SNR is still

a fair distortion indicator. To compare the compression performance between

the VTC used in our von system and that of MPEG-l, we calculated the

average peak SNR of the football sequence at different bit rate, and the results

are plot in figure 5.2. From figure 5.2 we can see that at higher bit rate (smaller

compression ratio), MPEG performs better th,an VTC in terms of peak SNR.

However, at very low bit rate, VTC performs better than MPEG-l, and the

turning point seems to be at bit rate 0.35 with Peak SNR around 30 db.

5.2 Decoding Results

The encoding results showed that VTC encoding is much more time consuming than

MPEG encoding so we can, hopefully, simplify the decoding end.

First, we played our von system and MPEG player on two platforms, and got

the average results shown in Table 5.1.
-',

Note frame rate is used as an indication of the decoding time here: This is

not quite accurate. Becp-use we know that the playback time of the von system
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Comparison of SNR vs. Bit Rate between VTC and MPEG
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Figure 5.2: Comparison between the VTC and MPEG-1: Average Peak SNR vs.
Bit Rate

play back speed (fps)
IBM RS6K SunSparc 20

compression program
i--=::=-=-=-=--=-=:==-,...;~~c...=...-~-=--+1

4.5 18.1
VTC 11.0 19.9

Table 5.1: Play Speed Comparison
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can be divided into three time components: the decoding, the synthesizing and the

actual displaying. But because the displaying modules in both the VOD system

and the MPEG-l decoder use very similar techniques, this total playback time is an

accept,:-ble indicator of the decoding of these two algorithms. For the VTC, because

the bitstreams actually go through the network while the MPEG does not, extra

'overhead are added there. However, this network overhead difference is minimized

by running server and player of the VOD system on the same machine.

However, the seemingly different behavior on the two different platforms comes

from the memory sharing feature implemented in the MPEG-l player. In our VOD

system, this feature has not been implemented yet. The memory sharing is disal-

, lowed on the IBM RS6K workstations that we tested these bitstreams on, the results

are fair and representative. So, the playback of VTC is indeed faster than that of

MPEG-l as we expected. The playback results of these two algorithms at different

bit rates on IBM RS6K are given in figure 5.3 and figure 5.4. Because, the decoding

of VTC is basically a table look up, so the decoding time (or the playback time) is

almost constant. But for DCT, the decoding time decreases with the decrease of bit

rate. This can be explained: because the lower bit rate corresponds to larger quan

tization factor, which means more zero coefficients in the DCT transform domain,

which means run length coding employed by MPEG works very well to compress

the coefficients. In return, less coefficients are needed to reconstruct the images,

therefore the decoding time goes down as the bit rate drops.

On the other hand, on the SunSparc 20 work station, shared memory is allowed,

and MPEG-l player takes full advantage it. So, the frame rate of these two players

are very close. In table 5.2, the playback time decomposition of the VOD system

also indicates this possible speed up. Because the display takes about half of the

total playback time, by using shared memory to allow pipeline between display and

the other two modules together, the playback can be approximately doubled. From

this, we can draw the conclusion that once the shared memory is employed in our

VOD system, the playback speed should at least be doubled. Decomposition of time

spent for the playback of a compressed bitstream at a fixed bit rate ( vq=3) is given

in Table 5.2:
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5.2. DEOODING RESULTS

Comparison of video playback time vs. bit rate between VTC and MPEG

. Figure 5.3: Comparison between the VTC and MPEG-1: Playback Time vs. Bit
Rate

environment decoding(%) synthesis(%) display(%) fps
SunSparc20 29.5 25.5 45.0 19.90
IBM RS6K 30.5 19.0 50.5 11.02

Table 5.2: Decomposition of the VOD Playback Time
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Comparison of video playback speed vs. bit rate between VTC and MPEG
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Figure 5.4: Comparison between the VTC and MPEG-l: Playback Speed vs. Bit
Rate

Latency:

User response time is a very important aspect of a VOD system. It is the

time period between the user making a demand and the mo!nt the video player

_ responds ( such as start playing video or stop playing video, etcV' As we found out

that because of the randomness of network traffic, the user response time changes

in a vary large range.
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Chapter 6

Conclusions and Future Work /")

Based on the above results of the developed VOD system, we can draw the following

conclusions:

First, VTC compression algorithm is well suited in asymmetric information-on

demand technology, such as Video-On-Demand system over a computer network,

because the playback is always faster than that of MPEG at comparable compression

quality.

Second, as our one-button VOD feature demonstrated, it is possible to develop

application level communication protocol for compression technology independent

information delivery. The restriction of using a specific compression technology

hence using a specific player for desktop applications can be eliminated. This allows

people with different compression package to exchange information like image and

video on a computer network more flexibly. More importantly, it avoids the problem

of stagnant compression standards standing in the way.

The playback of our VOD system has not achieved real time yet. However,

according to the above results, we believe that by implementing the shared memory

technique we can easily achieve real-time on the SunSparc workstation. Even though

it is a self-contained VOD system which supports full VCR functions, there are still

many features to be implemented for the VOD system to become a full fledged one.

Many of these features belong to broader areas of study, such as the ones listed in

the following:
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• Compression Algorithms

Only intra-frame compression is implemented. Neither inter-frame compression

(motion estimation 'and motion compensation) '~or entropy coding has been

applied, but these two methods can add considerable compression to the system

at some extra computational overhead. The immediate next step is to add

in the inter-frame compression to find out the computational cost for higher

compression performance. As we said, this VTC technology is still not mature

yet, more studies are needed to optimize the compression scheme meanwhile.

• Operating System

As we saw in the results, the display module takes about half of the play

back time; some programming technique like shared-memory can improve the

speed, but more fundamentally, the Xlib functions were not designed for video

display, so a better generic display method should be developed. Same goes

to the current operating systems, now this is beyond the range of the topic

of this thesis, but we believe that with video data becoming more and more

important new operating systems should be designed and developed to be able

to accommodate video data.

• Video Server

Right now, the VOD server can fork off multiple children to handle multiple

requests from different machines across the network. But, all these children

processes are running on the same server machine, which brings down the user

response time dramatically. The immediate next st'ep is to distribute these re

quests to different machines on the network through distributed programming.

In our study, we only used a very small testing sequence. In real situation, the

video server needs to manage a huge video database. How to efficiently manage

a big video archive and give prompt response to different kinds 6f requests still

remains a big challenge.

• Security "\'

Security has always been a touchy issue. In the developed VOD system, this

is totally relied on the HTTP. In our hypothesis, we assume that it is the
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executable of player will be delivere~ to a user to get rid off the compression

technology dependency, what HTTP does is simply warning the user that the

forthcoming executable player is going to run on his/her machine. A user
~--~

can refuse the playing at this moment, but once he/she accepts the player,

the control is totally in the player program's hand. Since a user has no way to

decide if the player is safe or malicious, this is obvious a security hole. However,

our argument is that this problem exists in any distribution of commercial

software.
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