2,882 research outputs found

    Smart Sensor Networks For Sensor-Neural Interface

    Get PDF
    One in every fifty Americans suffers from paralysis, and approximately 23% of paralysis cases are caused by spinal cord injury. To help the spinal cord injured gain functionality of their paralyzed or lost body parts, a sensor-neural-actuator system is commonly used. The system includes: 1) sensor nodes, 2) a central control unit, 3) the neural-computer interface and 4) actuators. This thesis focuses on a sensor-neural interface and presents the research related to circuits for the sensor-neural interface. In Chapter 2, three sensor designs are discussed, including a compressive sampling image sensor, an optical force sensor and a passive scattering force sensor. Chapter 3 discusses the design of the analog front-end circuit for the wireless sensor network system. A low-noise low-power analog front-end circuit in 0.5ÎŒm CMOS technology, a 12-bit 1MS/s successive approximation register (SAR) analog-to-digital converter (ADC) in 0.18ÎŒm CMOS process and a 6-bit asynchronous level-crossing ADC realized in 0.18ÎŒm CMOS process are presented. Chapter 4 shows the design of a low-power impulse-radio ultra-wide-band (IR-UWB) transceiver (TRx) that operates at a data rate of up to 10Mbps, with a power consumption of 4.9pJ/bit transmitted for the transmitter and 1.12nJ/bit received for the receiver. In Chapter 5, a wireless fully event-driven electrogoniometer is presented. The electrogoniometer is implemented using a pair of ultra-wide band (UWB) wireless smart sensor nodes interfacing with low power 3-axis accelerometers. The two smart sensor nodes are configured into a master node and a slave node, respectively. An experimental scenario data analysis shows higher than 90% reduction of the total data throughput using the proposed fully event-driven electrogoniometer to measure joint angle movements when compared with a synchronous Nyquist-rate sampling system. The main contribution of this thesis includes: 1) the sensor designs that emphasize power efficiency and data throughput efficiency; 2) the fully event-driven wireless sensor network system design that minimizes data throughput and optimizes power consumption

    Low power 9-bit 500 kS/s 2-stage cyclic ADC using OTA variable bias current

    Get PDF
    This paper presents a 9-bit, 2-stage cyclic analog to digital converter (ADC) with a variable bias current control circuitry to reduce its power dissipation. Each stage outputs a three-bit digital word and the circuit requires four subcycles to perform a whole conversion. Since the accuracy required is higher in the first stage and first subcycle and decreases in subsequent cycles, the bias current of each operational transconductance amplifier is regulated depending on the subcycle of the conversion process. The resolution and sampling frequency of the converter make it suitable to be integrated with 8-bit CMOS imagers with column-parallel ADC architectures. The ADC has been designed using a 1.2 V 110 nm CMOS technology and the circuit consumes 27.9 ”W at a sampling rate of 500 kS/s. At this sampling rate and at a 32 kHz input frequency, the circuit achieves 56 dB of SNDR and 9 bit ENOB. The Figure of Merit is 109 fJ/step.This work has been partially funded by Spanish Ministerio de Ciencia e InnovaciĂłn (MCI), Agencia Estatal de InvestigaciĂłn (AEI) and European Region Development Fund (ERDF/FEDER) under grant RTI2018-097088-B-C3

    Integration of an imaging system and A/D converter system

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (p. 25).by Jasen C. Li.M.Eng

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Low-Noise Energy-Efficient Sensor Interface Circuits

    Full text link
    Today, the Internet of Things (IoT) refers to a concept of connecting any devices on network where environmental data around us is collected by sensors and shared across platforms. The IoT devices often have small form factors and limited battery capacity; they call for low-power, low-noise sensor interface circuits to achieve high resolution and long battery life. This dissertation focuses on CMOS sensor interface circuit techniques for a MEMS capacitive pressure sensor, thermopile array, and capacitive microphone. Ambient pressure is measured in the form of capacitance. This work propose two capacitance-to-digital converters (CDC): a dual-slope CDC employs an energy efficient charge subtraction and dual comparator scheme; an incremental zoom-in CDC largely reduces oversampling ratio by using 9b zoom-in SAR, significantly improving conversion energy. An infrared gesture recognition system-on-chip is then proposed. A hand emits infrared radiation, and it forms an image on a thermopile array. The signal is amplified by a low-noise instrumentation chopper amplifier, filtered by a low-power 30Hz LPF to remove out-band noise including the chopper frequency and its harmonics, and digitized by an ADC. Finally, a motion history image based DSP analyzes the waveform to detect specific hand gestures. Lastly, a microphone preamplifier represents one key challenge in enabling voice interfaces, which are expected to play a dominant role in future IoT devices. A newly proposed switched-bias preamplifier uses switched-MOSFET to reduce 1/f noise inherently.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137061/1/chaseoh_1.pd

    Image compression and energy harvesting for energy constrained sensors

    Get PDF
    Title from PDF of title page, viewed on June 21, 2013Dissertation advisor: Walter D. Leon-SalasVitaIncludes bibliographic references (pages 176-[187])Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2013The advances in complementary metal-oxide-semiconductor (CMOS) technology have led to the integration of all components of electronic system into a single integrated circuit. Ultra-low power circuit techniques have reduced the power consumption of circuits. Moreover, solar cells with improved efficiency can be integrated on chip to harvest energy from sunlight. As a result of all the above, a new class of miniaturized electronic systems known as self-powered system on a chip has emerged. There is an increasing research interest in the area of self-powered devices which provide cost-effective solutions especially when these devices are used in the areas that changing or replacing batteries is too costly. Therefore, image compression and energy harvesting are studied in this dissertation. The integration of energy harvesting, image compression, and an image sensor on the same chip provides the energy source to charge a battery, reduces the data rate, and improves the performance of wireless image sensors. Integrated circuits of image compression, solar energy harvesting, and image sensors are studied, designed, and analyzed in this work. In this dissertation, a hybrid image sensor that can perform the tasks of sensing and energy harvesting is presented. Photodiodes of hybrid image sensor can be programmed as image sensors or energy harvesting cells. The hybrid image sensor can harvest energy in between frames, in sleep mode, and even when it is taking images. When sensing images and harvesting energy are both needed at the same time, some pixels have to work as sensing pixels, and the others have to work as solar cells. Since some pixels are devoted to harvest energy, the resolution of the image will be reduced. To preserve the resolution or to keep the fair resolution when a lot of energy collection is needed, image reconstruction algorithms and compressive sensing theory provide solutions to achieve a good image quality. On the other hand, when the battery has enough charge, image compression comes into the picture. Multiresolution decomposition image compression provides a way to compress image data in order to reduce the energy need from data transmission. The solution provided in this dissertation not only harvests energy but also saves energy resulting long lasting wireless sensors. The problem was first studied at the system level to identify the best system-level configuration which was then implemented on silicon. As a proof of concept, a 32 x 32 array of hybrid image sensor, a 32 x 32 array of image sensor with multiresolution decomposition compression, and a compressive sensing converter have been designed and fabricated in a standard 0.5 [micrometer] CMOS process. Printed circuit broads also have been designed to test and verify the proposed and fabricated chips. VHDL and Matlab codes were written to generate the proper signals to control, and read out data from chips. Image processing and recovery were carried out in Matlab. DC-DC converters were designed to boost the inherently low voltage output of the photodiodes. The DC-DC converter has also been improved to increase the efficiency of power transformation.Introduction -- Hybrid imager system and circuit design -- Hybrid imager energy harvesting and image acquisition results and discussion -- Detailed description and mathematical analysis for a circuit of energy harvesting using on-chip solar cells -- Multiresolution decomposition for lossless and near-lossless compression -- An incremental [sigma-delta] converter for compressive sensing -- Detailed description of a sigma-delta random demodulator converter architecture for compressive sensing applications -- Conclusion -- Appendix A. Chip pin-out -- Appendix B. Schematics -- Appendix C. Pictures of custom PC

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Ultra-low noise, high-frame rate readout design for a 3D-stacked CMOS image sensor

    Get PDF
    Due to the switch from CCD to CMOS technology, CMOS based image sensors have become smaller, cheaper, faster, and have recently outclassed CCDs in terms of image quality. Apart from the extensive set of applications requiring image sensors, the next technological breakthrough in imaging would be to consolidate and completely shift the conventional CMOS image sensor technology to the 3D-stacked technology. Stacking is recent and an innovative technology in the imaging field, allowing multiple silicon tiers with different functions to be stacked on top of each other. The technology allows for an extreme parallelism of the pixel readout circuitry. Furthermore, the readout is placed underneath the pixel array on a 3D-stacked image sensor, and the parallelism of the readout can remain constant at any spatial resolution of the sensors, allowing extreme low noise and a high-frame rate (design) at virtually any sensor array resolution. The objective of this work is the design of ultra-low noise readout circuits meant for 3D-stacked image sensors, structured with parallel readout circuitries. The readout circuit’s key requirements are low noise, speed, low-area (for higher parallelism), and low power. A CMOS imaging review is presented through a short historical background, followed by the description of the motivation, the research goals, and the work contributions. The fundamentals of CMOS image sensors are addressed, as a part of highlighting the typical image sensor features, the essential building blocks, types of operation, as well as their physical characteristics and their evaluation metrics. Following up on this, the document pays attention to the readout circuit’s noise theory and the column converters theory, to identify possible pitfalls to obtain sub-electron noise imagers. Lastly, the fabricated test CIS device performances are reported along with conjectures and conclusions, ending this thesis with the 3D-stacked subject issues and the future work. A part of the developed research work is located in the Appendices.Devido Ă  mudança da tecnologia CCD para CMOS, os sensores de imagem em CMOS tornam se mais pequenos, mais baratos, mais rĂĄpidos, e mais recentemente, ultrapassaram os sensores CCD no que respeita Ă  qualidade de imagem. Para alĂ©m do vasto conjunto de aplicaçÔes que requerem sensores de imagem, o prĂłximo salto tecnolĂłgico no ramo dos sensores de imagem Ă© o de mudar completamente da tecnologia de sensores de imagem CMOS convencional para a tecnologia “3D-stacked”. O empilhamento de chips Ă© relativamente recente e Ă© uma tecnologia inovadora no campo dos sensores de imagem, permitindo vĂĄrios planos de silĂ­cio com diferentes funçÔes poderem ser empilhados uns sobre os outros. Esta tecnologia permite portanto, um paralelismo extremo na leitura dos sinais vindos da matriz de pĂ­xeis. AlĂ©m disso, num sensor de imagem de planos de silĂ­cio empilhados, os circuitos de leitura estĂŁo posicionados debaixo da matriz de pĂ­xeis, sendo que dessa forma, o paralelismo pode manter-se constante para qualquer resolução espacial, permitindo assim atingir um extremo baixo ruĂ­do e um alto debito de imagens, virtualmente para qualquer resolução desejada. O objetivo deste trabalho Ă© o de desenhar circuitos de leitura de coluna de muito baixo ruĂ­do, planeados para serem empregues em sensores de imagem “3D-stacked” com estruturas altamente paralelizadas. Os requisitos chave para os circuitos de leitura sĂŁo de baixo ruĂ­do, rapidez e pouca ĂĄrea utilizada, de forma a obter-se o melhor rĂĄcio. Uma breve revisĂŁo histĂłrica dos sensores de imagem CMOS Ă© apresentada, seguida da motivação, dos objetivos e das contribuiçÔes feitas. Os fundamentos dos sensores de imagem CMOS sĂŁo tambĂ©m abordados para expor as suas caracterĂ­sticas, os blocos essenciais, os tipos de operação, assim como as suas caracterĂ­sticas fĂ­sicas e suas mĂ©tricas de avaliação. No seguimento disto, especial atenção Ă© dada Ă  teoria subjacente ao ruĂ­do inerente dos circuitos de leitura e dos conversores de coluna, servindo para identificar os possĂ­veis aspetos que dificultem atingir a tĂŁo desejada performance de muito baixo ruĂ­do. Por fim, os resultados experimentais do sensor desenvolvido sĂŁo apresentados junto com possĂ­veis conjeturas e respetivas conclusĂ”es, terminando o documento com o assunto de empilhamento vertical de camadas de silĂ­cio, junto com o possĂ­vel trabalho futuro
    • 

    corecore