thesis

Fully-passive switched-capacitor techniques for high performance SAR ADC design

Abstract

In recent years, SAR ADC becomes more and more popular in various low-power applications such as wireless sensors and low energy radios due to its circuit simplicity, high power efficiency, and scaling compatibility. However, its speed is limited by its successive approximation procedures and its power efficiency greatly reduces with the ADC resolution going beyond 10 bit. To address these issues, this thesis proposes to embed two techniques: 1) compressive sensing (CS) and 2) noise shaping (NS) to a conventional SAR ADC. The realization of both techniques are based on fully-passive switched-capacitor techniques. CS is a recently emerging sampling paradigm, stating that the sparsity of a signal can be exploited to reduce the ADC sampling rate below the Nyquist rate. Different from conventional CS frameworks which require dedicated analog CS encoders, this thesis proposes a fully-passive CS-SAR ADC architecture which only requires minor modification to a conventional SAR ADC. Two chips are fabricated in a 0.13 µm process to prove the concept. One chip is a single-channel CS-SAR ADC which can reduce the ADC conversion rate by 4 times, thus reducing the ADC power by 4 times. In many wireless sensing applications, multiple ADCs are commonly required to sense multi-channel signals such as multi-lead ECG sensing and parallel neural recording. Therefore, the other chip is a multi-channel CS-SAR ADC which can simultaneously convert 4-channel signals with a sampling rate of one channel’s Nyquist rate. At 0.8 V and 1 MS/s, both chips achieve an effective Walden FoM of around 5 fJ/conversion-step. This thesis also proposes a novel NS SAR ADC architecture that is simple, robust and low power for high-resolution applications. Compared to conventional ∆Σ ADCs, it replaces the power-hungry active integrator with a passive integrator which only requires one switch and two capacitors. Compared to previous 1st-order NS SAR ADC works, it achieves the best NS performance and can be easily extended to 2nd-order. A 1st-order 10-bit NS SAR ADC is fabricated in a 0.13 µm process. Through NS, SNDR increases by 6 dB with OSR doubled, achieving a 12- bit ENOB at OSR = 8. An improved version of a 2nd-order 9-bit NS SAR ADC is designed and simulated in a 40 nm process. The SNDR increases by 10 dB with OSR doubled, achieving a 14-bit ENOB at OSR = 16. At a bandwidth of 312.5 kHz, the Schreier FoM is 181 dB and the Walden FoM is 12.5 fJ/conversion-step, proving that the proposed NS SAR ADC architecture can achieve high resolution and high power efficiency simultaneously.Electrical and Computer Engineerin

    Similar works