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ABSTRACT

The advances in complementary metal-oxide-semiconductor (CMOS) technology

have led to the integration of all components of electronic system into a single integrated

circuit. Ultra-low power circuit techniques have reduced the power consumption of cir-

cuits. Moreover, solar cells with improved efficiency can be integrated on chip to harvest

energy from sunlight. As a result of all the above, a new class of miniaturized electronic

systems known as self-powered system on a chip has emerged. There is an increasing re-

search interest in the area of self-powered devices which provide cost-effective solutions

especially when these devices are used in the areas that changing or replacing batteries is

too costly. Therefore, image compression and energy harvesting are studied in this dis-

sertation. The integration of energy harvesting, image compression, and an image sensor

on the same chip provides the energy source to charge a battery, reduces the data rate, and
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improves the performance of wireless image sensors. Integrated circuits of image com-

pression, solar energy harvesting, and image sensors are studied, designed, and analyzed

in this work.

In this dissertation, a hybrid image sensor that can perform the tasks of sensing and

energy harvesting is presented. Photodiodes of hybrid image sensor can be programmed

as image sensors or energy harvesting cells. The hybrid image sensor can harvest energy

in between frames, in sleep mode, and even when it is taking images. When sensing

images and harvesting energy are both needed at the same time, some pixels have to

work as sensing pixels, and the others have to work as solar cells. Since some pixels are

devoted to harvest energy, the resolution of the image will be reduced. To preserve the

resolution or to keep the fair resolution when a lot of energy collection is needed, image

reconstruction algorithms and compressive sensing theory provide solutions to achieve

a good image quality. On the other hand, when the battery has enough charge, image

compression comes into the picture. Multiresolution decomposition image compression

provides a way to compress image data in order to reduce the energy need from data

transmission. The solution provided in this dissertation not only harvests energy but also

saves energy resulting long lasting wireless sensors.

The problem was first studied at the system level to identify the best system-level

configuration which was then implemented on silicon. As a proof of concept, a 32 ×

32 array of hybrid image sensor, a 32 × 32 array of image sensor with multiresolution
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decomposition compression, and a compressive sensing converter have been designed

and fabricated in a standard 0.5 µm CMOS process. Printed circuit broads also have been

designed to test and verify the proposed and fabricated chips. VHDL and Matlab codes

were written to generate the proper signals to control, and read out data from chips. Image

processing and recovery were carried out in Matlab. DC-DC converters were designed to

boost the inherently low voltage output of the photodiodes. The DC-DC converter has

also been improved to increase the efficiency of power transformation.
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CHAPTER 1

INTRODUCTION

Advanced CMOS integrated circuits technology creates the opportunity for a new

class of miniaturized electronic systems known as self-powered systems on a chip. Wire-

less sensors have special needs that are different from consumer electronics. First, con-

sumer electronic devices can be plugged into a power source all the time, or else the bat-

teries can be charged whenever needed. On the other hand, wireless sensing devices are

usually deployed in areas that are hard to reach such as inaccessible areas, deserts,remote

outposts, and so on. Therefore, they are far away from electrical outlets and can not be

attached to a power source all the time, or even when needed. Although bigger batteries

can be used to operate these devices for extended periods of time, even a very large bat-

tery is going to run out of charge sometime. At that point, the battery should be charged

or replaced. Since wireless sensors can be deployed in difficult to reach locations, it is

very costly just to charge or replace batteries by human labor. How can this problem be

solved? There are various energy sources available for harvesting, such as ambient light,

vibration, radio energy, thermal energy, etc. Solar energy harvesting is especially suitable

for sensors operating outdoors as the energy densities can reach 100 mW/cm2 [69]. The

photodiodes available in the standard CMOS fabrication process could be employed to

work as solar cells to harvest solar energy. The integration of solar cells and a radio mod-

ule on a CMOS image sensor has the benefit of reducing the sensor size and fabrication
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costs, and provides an energy source to the system. Second, transmitting signals wire-

lessly consumes a lot of power out of energy-constrained devices. A way to reduce power

consumption is to reduce the data rate that an image sensor has to generate. Multiresolu-

tion decomposition image compression provides a way to compress or reduce the data rate

of images by combining the benefits of multiresolution decomposition with the simplicity

of predictive coding. The circuitry of the multiresolution decomposition only needs to

perform the operations of addition and subtraction which can very easily be integrated

with a wireless image sensor on a chip.

1.1 A Hybrid CMOS Imager with Sensing and Energy Harvesting Capabilities

The integration of solar cells on an integrated circuit along with the sensor front

end and radio module has the benefit of reducing the sensor size and the fabrication costs.

On-chip solar energy harvesting can be accomplished using the photodiodes available in

CMOS fabrication processes. Several groups have reported the usage of photodiodes for

on-chip solar energy harvesting [50] [45] [33] [30] [67]. In [50] solar cells fabricated

in a silicon-on-sapphire process are reported. However, silicon-on-sapphire fabrication

technology is still more costly than standard CMOS.

In [33] photodiodes fabricated in standard CMOS are integrated with vertical in-

terconnect based capacitors to store harvested energy. Measurement results show that up

to 8.2 µW of power could be harvested with this approach. The two major drawbacks of

this approach are that the vertical capacitors block light if it does not shine at the correct

angle and the capacitance density for energy storage is very low.
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A different approach is taken in [30] and [67] where an active pixel sensor (APS)

imager is equipped with additional photodiodes at the pixel level to harvest energy. The

addition of an extra photodiode in each pixel results in bigger pixels and reduced fill

factors. An improvement on this idea is presented in [45] where the in-pixel photodiode is

used either to sense light or to harvest energy. Additional circuitry is needed to configure

the photodiode as a sensor or as a harvester. This approach reuses the in-pixel photodiode

for sensing and harvesting operations. However, it has reduced efficiency because the N-

well gets tied to ground during energy harvesting and the output voltage generated is too

low to power conventional electronic circuits. Moreover, pixels can only be configured in

groups and not individually.

To address the problems, a CMOS imager incorporated with hybrid pixels which

can be individually configured to work as photo-sensors or as tiny solar cells to harvest

solar energy is presented. The imager can harvest energy between frames, sleep mode,

and even when it is acquiring images. However, the voltage produced by the photodiodes

is rather low, around 0.3 V to 0.5 V depending on the illumination conditions. Higher

voltages are needed to charge a battery or to power up the circuitry of the sensor. Voltage

boosters with flying energy storage components to avoid connecting the N-well of the

photodiodes to ground and avoid activating the parasitic photodiodes are also proposed.

The hybrid pixels can be fabricated in the standard CMOS process. Since individual pix-

els of the hybrid imager can be configured as sensors or energy harvesters, the ratio of

photo-sensing to harvesting pixels can be varied according to environmental conditions.
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Recently, a reconfigurable image sensor was presented in [45] where the pixel’s photodi-

odes can be configured to work as sensors or as tiny solar cells to harvest energy. Different

configuration patterns where half of the pixels could be switched to work as sensors and

half as energy harvesters is also explored in [45]. The authors concluded that a checker-

board pattern has the least distortion on average in the reconstructed images. This scheme

offers a trade-off between image resolution and harvested energy.

In some situations the harvested power is not enough to power up the circuit even

when half of the pixels are configured to harvest energy. Hence, the proposed hybrid

pixels are capable of being configured individually so that a fixed ratio of photo-sensing

to harvesting-pixels can be accomplished. Conversely, if there is enough stored energy,

the half resolution configuration decreases the quality of acquired images. In order to have

a flexible ratio of photo-sensing to harvesting pixels, a random pattern is programmed on

the pixel array and the balance of 0s and 1s can be controlled with a chaos-based pseudo-

random bit generator. In this arrangement, a 0 means that a pixel is programmed as solar

cell and a 1 means that a pixel is configured as a photo-sensor. The resulting images

will lack imaging data for pixels which are configured as solar cells. The missing pixels

are estimated using averaging and compressive sensing technologies. The reconstructed

images have good or acceptable quality with the added benefit on having a flexible way

to control the ratio of photo-sensing to harvesting pixels.

A methodology based on compressive sensing for programmable hybrid pixels is

also proposed. The nature of compressive sensing is that if a signal is sparse in some do-

main, then the signal can be acquired at a much lower rate than what the Nyquist/Shannon
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theorem would otherwise suggest. In compressive sensing, a signal is acquired by pro-

jecting it into a random basis. For the simplicity of circuit design, instead of random

numbers in random basis, a binary random basis with only {0,1} is used. When a 0 in the

random basis applies to a corresponding position of a signal, the value of this projection

does not contribute to the final compressive sensing measurement. Applying this idea to

to the concept of hybrid pixels, the pixels that correspond to the 0s in the random basis

can be configured as solar cells while the pixels that correspond to the 1s are programmed

as photo-sensors. The balance of 0s and 1s can be changed: when there are more 0s, more

pixels are dedicated to energy harvesting; when there are less 0s, less pixels are dedicated

to energy harvesting. In this way, the balance can be changed in response to changes in

environmental conditions. Simulation results show that up to 90% of 0s in a random basis

can be deployed, and an image is still reconstructable with acceptable image quality. That

means up to 90% of hybrid pixels of an imager can be programmed to harvest energy.

The images are recovered by compressive sensing reconstruction algorithms.

1.2 Image Compression

The other main factor of a wireless sensor is power consumption. Radio communi-

cation is a power-hungry operation. One way to reduce power consumption dramatically

is to compress data before transmission. Different image compression algorithms have

been integrated with CMOS imagers with relative success. There are a number of chal-

lenges that focal-plane image compression faces, such as the limited silicon area available
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at the focal plane which limits the complexity of the processing circuitry. Moreover, pop-

ular image compression algorithms require extensive matrix multiplications and storage

of the resulting coefficients. The resulting coefficients have to be quantized and encoded

to achieve actual compression, adding to the complexity of the compression circuitry.

To address these challenges, circuit designers have come up with different solu-

tions such as implementing the matrix multiplications with simple analog circuits [38],

[8]. However, due to limitations of analog devices, the reconstructed images exhibit rela-

tively high noise. Other approaches to focal-plane image compression have departed from

the traditional transform coding approach. For instance, in [2] a conditional replenishment

algorithm is implemented using very simple circuits integrated at the pixel level. The dis-

advantage of conditional replenishment is that it does not work well with still images and

has poor compression performance compared to other compression approaches.

Another approach to image compression relies on predictive coding. In predictive

coding the value of a pixel is predicted using models that take into account the pixel’s

neighbors and/or its past values. The prediction error, which is the difference between the

pixel value and its prediction, is encoded using an entropy encoder. If a good predictor

is used, on average the prediction error is zero or close to zero, and high compression

ratios can be achieved. The drawback of prediction-based compression is that small errors

can be accumulated, especially if the prediction operations are carried out in the analog

domain [46].

Modern image compression algorithms are based on wavelet decomposition in

which an image is progressively decomposed into sub-bands of lower resolution. The
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coefficients in the sub-bands are encoded using hierarchical group testing techniques.

The implementation of wavelet-based compression techniques on the focal plane is not

straightforward due to the complex calculations and storage space required. The success

of wavelet decomposition in image compression has motivated circuit designers to inte-

grate simplified versions of wavelet-based compression on the focal plane. For instance, a

1-D Haar wavelet transform is implemented on the focal plane using a Σ∆ ADC that per-

forms weighed spatial averaging [54]. Successive ADC outputs are accumulated off-chip

accounting for a 2-D Haar transform. In [48] a focal-plane circuit based on capacitors

and switches is employed to perform the average, sum and difference operations needed

in the Haar wavelet transform.

A CMOS imager architecture that combines the benefits of multiresolution de-

composition with the simplicity of predictive coding is proposed. In this approach, an

image is progressively decomposed in images of lower resolution; up to three levels of

decomposition are employed. The low resolution images are used as predictors for the

higher resolution images. The resulting prediction residuals are quantized, entropy en-

coded and compressed. This compression approach can provide lossless or lossy com-

pression and the resulting bitstream is a fully embedded code. The required operations

are additions and subtractions which can be implemented with simple analog circuits.

Unlike standard predictive coding, errors due to non-Ideal behavior of circuit components

do not propagate throughout the image.

Another way to compress data is using compressive sensing. Compressive sens-

ing is a recent theoretical development applicable not only for images but also for any
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type of signal that is sparse in any domain. One of the central theorems in digital signal

processing is the Nyquist theorem which states that in order to acquire a band-limited

signal without distortion the signal has to be uniformly sampled with a rate of at least

twice of its highest frequency component. There are some applications, such as radar,

ultra-wideband communication and video, in which the direct application of Nyquist the-

orem results in sampling rates that are pushing the physical limits of analog-to-digital

converters (ADC) [42]. Often times more information about the signal than just its high-

est frequency component is available. This additional information can be exploited to

relax the sampling rates requirements.

In recent years, a new theoretical framework, known as compressive sensing, has

been developed that allows sparse or compressible signals to be sampled at rates below

the Nyquist rate. Compressive sensing states that signals that are sparse in some trans-

form domain can be sampled at a lot lower rate than the Nyquist rate and can still be

recovered without introducing distortion. Hence, compressive sensing has the potential to

revolutionize the way analog signals are acquired.

To fulfill this potential, new circuit architectures need to be developed to pro-

duce ADCs that follow the compressive sensing principles and are able to work at lower

sampling rates. Converters that directly acquire compressive sensing measurements are

sometimes called analog-to-information converters (AICs). Some circuit architectures

addressing the implementation of AICs have been proposed in the literature. In [51], a

compressive sensing ADC dubbed X-ADC was built using off-the-shelf electronic com-

ponents that were operated beyond their stated specifications to convert signals that are
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sparse in the frequency domain and have a 2 GHz Nyquist rate using a sampling rate of

only 280 MHz. In [81], a parallel mixed-signal converter architecture for wideband cog-

nitive radios is presented. A prototype converter was built using low-speed off-the-shelf

components. It was shown that using parallel overlapping windowed integrators reduced

spurious frequencies.

The transistor-level hardware architecture of a compressive analog-to-digital con-

verter (CADC) is presented in [42] [59]. The converter uses a double-balanced Gilbert

cell multiplier and an RC-active differential integrator to compute the compressive sens-

ing measurements in the analog domain which are later quantized by a back-end ADC.

The ADC was tested with AM signals sampled at 1/8 of the Nyquist rate. Another ap-

proach to designing an AIC employs a sigma delta modulator [11]. This approach dynam-

ically changes the feedback coefficients of a sigma delta modulator in accordance with a

random dictionary. The disadvantage is that it requires very high-order modulators that

can easily become unstable. To avoid unstable behavior the feedback coefficients must

meet additional constraints.

A compressive sensing ADC that is based on the incremental sigma-delta archi-

tecture is proposed. The proposed converter requires a first-order sigma-delta modulator

making it unconditionally stable. Moreover, it uses a switched-capacitor hardware imple-

mentation that requires only 0.047 mm2 of silicon area in a 0.5 µm CMOS fabrication

process. Thus, several of the proposed converters can be employed in parallel to achieve

even higher conversion rates.
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1.3 Summary of Contributions

This dissertation addresses the problem of energy constrained wireless image sen-

sors and provides vital solutions, including hybrid pixels for dual function of energy

harvesting and photo sensing, DC-DC converter, image compression, and application of

compressive sensing. The main contributions of this work are:

• the design and testing of a hybrid pixels imager that can perform the tasks of photo

sensing and energy harvesting. The hybrid pixels allow the imager to harvest energy

between frames or while it is in sleep mode.

• the design and testing of a DC-DC converter to boost the inherently low voltage

of the photodiodes when they work as solar cells. The DC-DC converter employs

flying energy storage components to maximize the amount of energy that can be

harvested.

• the development of a random reconfiguration method for hybrid pixel imager and

develop a missing pixel reconstruction algorithm to recover missing values of pix-

els when they are configured as solar cells. Recovered images must have good to

acceptable image quality depending on the balance of 0s and 1s.

• the implementation and verification of compressive sensing with hybrid pixel im-

age.

• the design and testing of an analog-to-digital converter suitable for compressive
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sensing applications. The converter is based on an incremental sigma-delta con-

verter architecture and is able to directly acquire and convert analog compressive

sensing measurements to digital format. A switched-capacitor circuit is proposed

for the converter’s hardware implementation.

• the design and testing an image compression algorithm suitable for focal plane inte-

gration and its hardware implementation. In this approach an image is progressively

decomposed into images of lower resolution. The low resolution images are then

used as the predictors of the higher resolution images. The prediction residuals are

entropy encoded and compressed. This compression approach can provide loss-

less or lossy compression and the resulting bitstream is a fully embedded code. A

switched-capacitor circuit is proposed to implement the required operations.

This dissertation is organized as follows: Chapter 2 provides the background of

the hybrid pixel concept and DC-DC conversion, describes the architecture and the chip

design, and contains the analysis of the proposed circuits. Chapter 3 presents the test

set up and test results for the hybrid imager. Chapter 4 gives a detailed description and

a mathematical analysis of the energy harvesting with on-chip solar cells. The back-

ground, design, and test results for multiresolution decomposition image compression are

presented in Chapter 5. Chapter 6 shows the background, design, and results for an in-

cremental sigma-delta converter for compressive sensing. Chapter 7 presents an in-depth

look at a compressive sensing sigma-delta converter. Finally, Chapter 8 provides the con-

clusions of this dissertation.
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CHAPTER 2

HYBRID IMAGER SYSTEM AND CIRCUIT DESIGN
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Figure 1: Architecture of the hybrid imager with sensing and energy harvesting capabili-
ties.

To demonstrate the hybrid pixel concept, an imager with hybrid pixels was de-

signed and fabricated. Figure 1 shows the architecture of the hybrid imager with sensing

and energy harvesting capabilities. The imager consists of an 32 × 32 array of the hy-

brid pixels which will be discussed in detail in section 2.1. Column and row decoders
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employed for addressing individual pixels are placed at the periphery of the array. The

energy harvesting buses from each column are combined into a global bus that feeds a

DC-DC converter. The sensing buses from each column are multiplexed and applied to

an off-chip analog-to-digital converter (ADC).

2.1 Hybrid Pixel

Photodiodes occupy a significant area of a typical CMOS imager. When an imager

is not acquiring images, e.g. during sleep mode or between frames, the photodiodes are

not used but they still take up area resources inside the chip. A better use of the in-pixel

photodiodes would be to harvest solar energy when images are not being acquired. To

enable this dual functionality a pixel is modified so that it can be configured as a photo-

sensor or as a solar cell. A pixel that can be configured in this manner is referred to as

a hybrid pixel. Moreover, if individual pixels in an array could be configured as sensors

or energy harvesters, then the ratio of photo-sensing to harvesting pixels can be varied

according to environmental conditions. This scheme offers a trade-off between image

resolution and harvestable energy.

2.2 Hybrid Pixel Design

To work as a photo-sensor, the anode of the photodiode is connected to ground and

the reverse-bias photo-generated current Iph is measured typically by integrating it over a

period of time [10]. To work as a solar cell, the photodiode’s anode needs to be connected

to the load (or to a DC-DC converter) so that power is generated by the photodiode. Fig. 2
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shows the photodiode’s configuration for the two modes: (a) photo sensing and (b) power

generation.

A

(a)

Iph

Iph

(b)

Vph

+

Vph

+ load

Figure 2: Reconfigurable pixel concept: (a) photodiode working as a photo sensor (anode
tied to ground); (b) photodiode working as a solar cell (anode tied to the load).

The photodiodes that are available in a standard P-type substrate CMOS fabrica-

tion process are: N-well/P-sub, P-diff/N-well and N-diff/P-sub. Of these diodes only the

P-diff/N-well could be used in a hybrid pixel because the P-substrate has to be tied to

ground to prevent pn junctions accross the chip from getting forward-biased. A cross-

sectional view of a P-diff/N-well diode (D1) is shown in Fig. 3. Notably a second diode

(Dpar) is formed by the N-well and the P-substrate. Diode Dpar is undesired from the

energy harvesting point of view. If diode Dpar is allowed to conduct current, a portion

of the holes generated inside the N-well will flow through Dpar decreasing the current

through D1 and the amount of power that D1 can provide to the load.
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Figure 3: Cross-section diagram of photodiodes available in standard CMOS. Diode D1

can be employed to harvest energy. Diode Dpar is a parasitic diode.

Figure 4 illustrates the effect of parasitic diode Dpar on the output current of D1.

The figure shows the current vs. voltage (I-V) curve for diode D1 when the N-well is tied

to ground and when it is left floating. Clearly, tying the N-well to ground significantly

reduces the current throughD1 as charges are allowed to flow throughDpar. The presence

of Dpar creates a problem as practical loads are referred to ground requiring D1’s cathode

(N-well) to be connected to ground (see Fig. 2 (b)).

This problem is actually easily solved by employing a flying energy storage ele-

ment (capacitor or inductor) to extract energy from D1 and deliver it to the load. A charge

pump based on this concept is presented in section 2.3. Based on the observations stated

above, the hybrid pixel shown in Fig. 5 is proposed.

The hybrid pixel consists of a P-diff/N-well photodiode D1, switches S1 to S4, a
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Figure 4: I-V curve of photodiode D1 when its N-well is left floating and when it is tied
to ground.

1-bit memory, row and column addressing switches and a PMOS transistor P1. The 1-bit

memory can be written via the column-wide ”programming bus”. Writing a ’1’ in the

1-bit memory configures the pixel in the sensing mode. In the sensing mode switches S1

and S3 are closed and the pixel works as a regular active pixel sensor (APS). The APS

works as follows: the RST switch resets the photodiode’s capacitance to VDD. Then the

switch RST is open and the photo-generated current discharges the capacitance producing
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Figure 5: Schematic diagram of a single hybrid pixel.

a voltage proportional to the photo-generated current. This voltage is read through P1

which forms part of a source-follower amplifier.

The pixel is configured in the harvesting mode by writing a ’0’ into the 1-bit in-

pixel memory. In the harvesting mode, switches S1 and S3 are closed while switches

S2 and S4 are open. S1 and S3 connect the photodiode to the energy harvesting (EH)

bus. The EH bus is a column-wide shared bus that adds the photo-currents of all other

pixels configured in the harvesting mode in that particular column. The EH buses from all

columns are merged at the bottom of the array to produce a current that is the sum of the
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photo-currents of all pixels configured in the harvesting mode. The total harvested photo-

current is applied to a DC-DC converter that boosts the inherently low voltage output of

the photodiodes.

The pixel layout occupies an area of 43 µm × 43 µm in a 0.5 µm CMOS fabri-

cation process. The RST switch is implemented with a PMOS transistor while switch S4

is implemented with a transmission gate. NMOS transistors are sufficient to implement

switches S1, S2 and S3. The 1-bit memory is implemented with two inverters. The tran-

sition voltage of the inverters is designed at VDD/2 for easy transformation of the 1-bit

memory, where VDD = 3.3 V, but VDD has to be increased to 3.9 V for the 1-bit memory

to work in practice.

2.3 DC-DC Conversion

As explained in section 2.1 connecting the cathode (N-well) of the in-pixel pho-

todiodes to ground decreases the output current in harvesting mode due to the presence

of the parasitic N-well/P-sub photodiode. This problem is solved by employing energy

storage components (capacitor or inductor depends on what type of DC-DC converter is

used) to extract energy from the in-pixel photodiodes and transfer it to the load. The fly-

ing capacitor or inductor is employed to store and transfer energy from the photodiode

to the load while providing isolation. Thus, connecting the N-well of the parasitic diode

to ground is avoided. Two types of DC-DC converters, charge pump and DC-DC boost

converter, are discussed in this section. Charge pumps use capacitors as energy storage

elements, while DC-DC boost converters use inductors. Although the charge pump stores
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and transfers energy on capacitors which can be easily integrated within a single chip,

a charge pump requires more switches to transfer energy than a DC-DC boost converter

and it has lower transferred output voltage than DC-DC boost converter. Although more

stages of charge pumps could be employed to pump up to a higher voltage, the efficiency

of entire voltage boost system would decrease dramatically, and the additional stages of

charge pumps would require more switches and occupy more area on the silicon. DC-DC

boost converter are not quite ideal either. Inductors are not as easy as capacitors to be fab-

ricated on chip. A solution to this is to use external inductors for DC-DC boost converters.

Both types of converters have pros and cons and they will be discussed in detail.

2.3.1 Charge pump

C1

S1

S2

S3

S4

load

1

1

2

2

D1 DN

Vph

+

Dpar1 DparN

Figure 6: Energy extraction circuit with flying capacitor to maximize the amount of en-
ergy harvested from the in-pixel photodiodes.

Figure 6 depicts this concept. The energy-extraction circuit requires a two-phase
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non-overlapping clock with phases φ1 and φ2. The parallel-connected diodes D1 to DN

represent the photodiodes of the pixels that have been configured to work in harvesting

mode. The flying capacitor C1 is charged by the photodiodes during phase φ1 by closing

switches S1 and S2. During phase φ2 switches S1 and S2 are open and the switches S3

and S4 are closed, transferring the charge to the load. The typical open-circuit voltage of

on-chip photodiodes is between 0.4 V to 0.5 V (depending on illumination conditions).

This voltage is rather low to power up most loads of interest in a sensor node. Hence, a

boosting DC-DC converter must be connected between the diodes and the load.

ILCLC2C1

S1

S2

S3

S4

S5

S6

S7

VDC

+

VDC

D1 DN

Vph

+

Dpar1 DparN
Load

Figure 7: Charge pump with flying capacitor to double the output voltage of the photodi-
odes.

In this work we have employed a charge pump to boost the inherently low volt-

age of the photodiodes. The charge pump is based on the series-parallel charge pump

topology. As a proof of concept, a charge pump with a 2× voltage conversion gain was

designed and implemented. Fig. 7 shows the schematic diagram of the implemented

pump. The concept of using a flying capacitor and a series-parallel pump can be readily
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extended to obtain higher voltage conversion gains by adding more stages. The charge

pump works with a two-phase non-overlapping clock with phases φ1 and φ2. During

phase φ1 switches S1, S2, S3 and S4 are closed and all the other switches are open con-

necting C1 and C2 in parallel with each other and with the photodiodes. Thus, in φ1 C1

and C2 get charged by the photodiodes to a voltage between 0.4 V to 0.5 V (depending on

the illumination conditions). During φ2 switches S7, S5 and S6 are closed connecting C1

and C2 in series and to the load. In the figure the load is modeled by the current sink IL.

Assuming C1 = C2 = CL = C, an analysis of the circuit in Fig. 7 shows

that, at the beginning of φ2, VDC = 2Vph − 2IL/C(2T2/3 + T1), where T1 and T2 are

the on-time of phases φ1 and φ2, respectively. The output voltage decreases with the load

current. The decrease can be compensated by increasing the capacitances or increasing the

switching frequency. The efficiency of the charge pump is affected by parasitic bottom-

plate capacitances and the non-zero on-resistance of the switches.

2.3.2 DC-DC Boost Convertor

The DC-DC boost converter with flying inductor is shown in Figure 8. It uses a

inductor for energy storage and transfer to the load. The diode Ds works as a switch to

avoid energy transfer from the load side to the photodiode side. The energy-extraction

circuit requires a two-phase non-overlapping clock with phases φ1 and φ2. The flying

inductor L1 is charged by the photodiodes during phase φ1 by closing switches S1 and

S2. During phase φ2 switches S1 and S2 are open and switch S3 is closed, transferring the

charge to the load.
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Figure 8: DC-DC boost converter with flying inductor to boost up the output voltage of
the photodiodes.

An advantage of the DC-DC boost converter over the charge pump is that the

inductor based voltage booster has the ability to boost the photodiode’s inherently low

voltage and directly generate the voltage level required by the load. The drawback of

charge pumps is that they require several capacitors and the switches, increasing area

requirements and power losses due to the on-resistance of the switches .

The voltage at node B, the cathode of the photodiodes D1 to DN , in Figure 8

is typically between -0.4V to -0.5V which is also the open-circuit voltage photodiodes

Dpar1 to DparN . This open-circuit voltage develops in response to photons with longer

wavelength that are able to penetrate deeper into the silicon crystal and reach parasitic

diodes. As a consequence, the voltage at node A is very close to 0V. Moreover, a loop
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of the inductor L1 and the load side is open when the diode Ds is in reverse bias. Thus,

switch S3 can be removed as shown in Figure 9. During phase φ1 by closing switches

S1 and S2, node A gets connected to the load ground. Since the voltage at node A is

already very close to ground, the circuit operates as intended. Removing switch S3 has

the advantage of eliminating the losses due to the non-zero on-resistance of switch S3.

All the switches are implemented by N-MOS transistors. Moreover, instead of two-phase

non-overlapping clocks only one phase of φ1 is required. After removing S3, the output

voltage, Vout, increases between 0.2V and 0.3V.

ILCL

D1

L1

S1

S2

VDC

+

DN

Vph

+

DS

CD

Dpar1 DparN

A

B
Vout

Figure 9: Improved inductor-based energy harvesting circuit.
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2.4 Image Reconstruction with Sub-sampling and Compressive Sensing

The hybrid pixel imager has the dual function of energy harvesting and photo

sensing. There would be a condition that both actions of photo sensing and energy har-

vesting are needed. The hybrid pixel imager sub-samples an image, and missing pixels

which are programmed to harvest energy can be recovered from their available neighbor

pixels. As discussed in Chapter 1, some patterns of pixels configuration were proposed

in [45] and are shown in Figure 10. The gray boxes represent pixels configured as photo

sensors and white boxes mean the values of the pixels are missing. Half of the pixels are

programmed as solar cells and the others are configured as photo sensors by deploying

these four patterns. The authors concluded that a chessboard pattern has the best quality

of reconstructed images. However, all four of these patterns lack the flexibility that indi-

vidually programmable hybrid pixels can provide. Two image reconstruction algorithms

which are sub-sampling and compressive sensing were developed for the hybrid imager.

2.4.1 Image Reconstruction with Sub-Sampling

A random pattern mask is proposed to configure the modality of pixels. The ran-

dom pattern extends the flexibility of the hybrid imager. The array size of the mask is

the array size of an imager. Figure 11 shows some masks of size 32 × 32 with different

percentages of 1s: 10%, 50%, and 90%. One of the advantages of implementing random

pattern masks in the hybrid imager is that the masks can be easily generated on hardware

and software without requiring memory to store different masks. The ratio of 0s and 1s is

controlled by setting the threshold of the pseudo random generator. The pseudo random
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Figure 10: Pixel configuration patterns for image reconstruction as proposed in [45].

generator generates a sequence of 0s and 1s randomly, and a mask matrix is formed by the

long sequence. In order to match the masks in the hardware and the image reconstructing

software, the same seed and threshold are used. In this way, no memory is required to

store the information of masks. As the ratio of 0s and 1s can be controlled in the random

pattern masks, the ratio of photo sensing and energy harvesting pixels can be controlled.

In the image reconstruction process, a matching mask is generated at the recon-

struction side using the same seed. The imager only converts the analog values of photo-

sensing pixels to digital values and sends these values to a computer for image recon-

struction. There is no information sent from the imager to identify the type of pixels.

Thus, energy can be saved by not transmitting this information. The missing pixels are

recovered from their available neighbor pixels configured as photo sensing pixels in the
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(a) (b) (c)

Figure 11: 32 × 32 array of masks for different percentages of 1s.: (a) 10% (b) 50%
(b) 90%. Black areas represent energy-harvesting pixels, and white areas represent photo
sensing pixels.

imager. Since the random masks are used, the available neighbor pixels’ location are also

random. Two approaches were developed. The process of the first approach is as follows.

First, a random mask is applied to the hybrid imager, then the available pixels’ values are

converted and transmitted for image reconstruction processing and placed in their cor-

responding locations according to the matching mask. An image with missing pixels is

formed. The position of the missing pixels is known at the reconstruction side from the

0s in the matching mask. At this point it is ready for the missing pixels to be estimated.

Since an image frame with missing pixels was generated, the position of the missing pix-

els are known. A neighborhood of a missing pixel can be formed. The neighborhood of

radius R for a missing pixel is define as follow:

Neighborhoodofamissingpixel = (i± h, j ± h) (2.1)

where (i,j) is the coordinate of the missing pixel, and h ≤ R. Figure 12 shows the neigh-

borhood of missing pixels for R=1 and R=2. In Figure 12(a), the pixels of a neighborhood
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of radius R = 1 for a missing pixel (i,j) are (i-1,j-1), (i-1,j), (i-1,j+1),(i,j-1),(i,j+1),(i+1,j-1),

(i+1,j), and (i+1,j+1).

(i,j)

(i-1,j-1) (i-1,j) (i-1,j+1)

(i,j-1) (i,j+1)

(i+1,j-1) (i+1,j) (i+1,j+1)

(a)

(i,j)

(b)

Figure 12: The neighborhoods of missing pixels:(a) R = 1 (b) R = 2.

To estimate a missing pixel, at least one available neighbor pixel in a given radius

is required.If there are not any available pixels, the radius has to be increased manually un-

til there is at least one available pixel. The radius for the first approach is fixed throughout

entire image reconstruction process. The reconstructed pixels will not become available

pixels for the next missing pixel because the reconstructed pixels already have reconstruc-

tion error. If the reconstructed pixels became available pixels, the errors would propagate

throughout the entire image, and the reconstructed image would have very poor quality.

A disadvantage of the first approach is that the radius is fixed and has to be known before

the reconstruction process. The problem of the radius being fixed is that there are some
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situations in which there are many available pixels. In these cases a smaller radius would

be preferable.

In order to solve this problem, a reconstruction algorithm with an adaptive radius

and weighted pixel is developed to improve the reconstruction process performance. For

the most part, the second approach is the same as the first approach. Two exceptions are

the weight of pixels and checking the radius. The weights are proportional to the inverse

of the distance to the center of the neighborhood. The center corresponds to the missing

pixel that is being estimated. The weight d of a available pixel is

d =
√
r2 + c2 (2.2)

where {r,c} is the relative coordinate of an available pixel with respect to the missing

pixel that is being estimated. The radius is checked for every missing pixel until at least

one available pixel is found.

For example, as shown in Figure 13, pixel ”a” is ready for reconstruction and the

initial radius is 1. Within an eight-pixel neighborhood of pixel ”a”, there are 3 available

pixels which are shown as gray squares in the figure. The value of missing pixel ”a” is

the weighted average of these three available pixels. If there are not any available pixels

within a radius of 1, like pixel ”b” in Figure 13, the radius must increase by 1. After

increasing the radius, there are 4 available pixels, and the value of missing pixel ”b”

is the weighted average of these available pixels. The same process is applied until all

missing pixels are estimated. The simulation results will be shown later to compare with

compressive sensing.
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a

b

Figure 13: Illustrations of reconstruction of two missing pixels a and b. Gray squares
represent available pixels which are photo sensing pixels in the imager, and white squares
represent missing pixels which are energy harvesting pixels in the imager.

2.4.2 Image Reconstruction with Compressive Sensing

Compressive sensing was explored for image reconstruction when not all pixels

are available. In compressive sensing measurements are acquired by projecting an images

into a random basis. The random basis vectors can be arranged in matrix form by stacking

the random vectors as rows of the matrix. The resulting matrix is called the sensing ma-

trix. If an image is the size of N×N, the size of the sensing matrix is then M by N2, where

M is the numbers of measurements. A measurement is acquired by calculating the inner

product between input image vector and a row of the sensing matrix. M measurements

are needed to reconstruct an image. A drawback of this approach is that energy is needed
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to program M different masks and acquire M measurements. To solve this problem, a

fixed random pattern is programmed into the in-pixel sensor memory. The sensing matrix

is generated based on this fixed random pattern. A sensing matrix based on this method

is shown as follows:

Φ =



1 0 0 1 1 0 1 0 1 . . . 0

0 0 0 1 0 0 1 0 0 . . . 0

1 0 0 0 1 0 1 0 1 . . . 0
...

1 0 0 1 1 0 0 0 1 . . . 0


(2.3)

If a value in the first row is 0, all elements of this column are 0s. For example,

columns 2,3,6,8, and the last column of the first row are 0s. Thus, the values of each

cell in these five columns are 0s. When a value of the first row is a 1, the elements of

this column randomly change to 0s or 1s in the other rows. A random sensing matrix is

formed by applying the above process. Instead of acquiring measurements on the focal

plane, the analog values of available pixels are converted to digital and transmitted for the

compressive sensing process. Now, a sensing matrix and an image with missing pixels

are available for compressive sensing and image reconstruction using compressive sensing

reconstruction algorithms.

2.4.3 Hybrid Image Reconstruction Simulation Results

The balance of 0s and 1s in the sensing matrix also can vary. In the simulation, up

to 90% of 0s are programmed in the sensing matrix, and images with acceptable quality

30



are reconstructed. The radius R is fixed for the first image reconstruction approach of

sub-sampling. Table 1 and Table 2 shows average PSNR and SSIM of the reconstructed

images reconstructed from 12 images and 100 random patterns with varying radii R and

percentage of 1s. PSNR is the abbreviation for peak signal-to-noise ratio, and SSIM is

the abbreviation for structural similarity, which is a method for measuring the similarity

between two images. SSIM has better consistent with human eye perception, and PSNR

is a traditional comparison for two images. SSIM and PSNR are both shown for better

comparison. The average PSNR and SSIM are low when the radius is small and the

percentage of 1s is low because there are not enough available pixels for reconstruction.

On the other hand, when the radius R is 7 and percentage of 1s of the random mask is

90%, the average PSNR and SSIM are lower than R=1. That is because there are many

available pixels to blur the images. This is the reason that the adaptive radius and weighted

average reconstruction algorithm is developed.
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Table 1: Average PSNR (dB) of Image Reconstruction Results by Running 100 Random
Patterns and 12 Images with Different Radii for Fixed Radius Approach and Different
Percentages of 1s

Percentage of 1s R=1 R=2 R=3 R=4 R=5 R=6 R=7
10 10.37 15.58 19.81 20.89 20.77 20.53 20.27
20 14.29 21.69 22.53 22.03 21.60 21.25 20.93
30 18.37 24.11 23.42 22.76 22.27 21.89 21.56
40 22.36 25.21 24.20 23.48 22.99 22.59 22.26
50 25.83 26.18 25.07 24.32 23.80 23.41 23.06
60 28.42 27.27 26.10 25.32 24.78 24.39 24.05
70 30.41 28.59 27.39 26.60 26.05 25.65 25.29
80 32.53 30.43 29.15 28.36 27.83 27.44 27.07
90 35.76 33.52 32.22 31.41 30.88 30.48 30.09

Table 3 summarizes and compares the performance of image reconstruction of

sub-sampling and compressive sensing for different percentages of 1s. Fixed radius and

adaptive radius are both shown for comparison. It is clear that the adaptive algorithm

and compressive sensing have better PSNR and SSIM. The process of adaptive radius

and weighted average is better than fixed radius because adaptive radius does not need to

manually adjust the radius, the radius is adapted according to the available pixels in the

reconstruction process. The adaptive radius approach and compressive sensing approach

are implemented in the hardware testing since they have very similar performance from

the simulation results.
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Table 2: Average SSIM of Image Reconstruction Results by Running 100 Random Pat-
terns and 12 Images with Different Radius for Fixed Radii Approach and Different Per-
centages of 1s

Percentage of 1s R=1 R=2 R=3 R=4 R=5 R=6 R=7
10 0.1287 0.3610 0.4944 0.4761 0.4456 0.4256 0.4087
20 0.3015 0.6413 0.6098 0.5617 0.5279 0.5046 0.4864
30 0.5383 0.7337 0.6761 0.6298 0.5965 0.5737 0.5550
40 0.7418 0.7868 0.7325 0.6899 0.6594 0.6367 0.6182
50 0.8558 0.8308 0.7842 0.7465 0.7181 0.6969 0.6790
60 0.9084 0.8704 0.8322 0.8000 0.7743 0.7549 0.7380
70 0.9388 0.9064 0.8768 0.8509 0.8293 0.8124 0.7970
80 0.9620 0.9399 0.9192 0.9011 0.8850 0.8712 0.8586
90 0.9820 0.9709 0.9604 0.9507 0.9415 0.9330 0.9249

Table 3: Average PSNR (dB) and SSIM of Image Reconstruction Results by Running 100
Random Patterns and 12 Images with Different Reconstruction Schemes and Different
Balances

Percentage
of 1s

Sub-sampling
with fixed Radius
R=4

Sub-sampling with
weighted average
and adaptive R

Compressive
sensing

PSNR SSIM PSNR SSIM PSNR SSIM
10 20.89 0.4761 21.58 0.5765 21.52 0.5368
20 22.03 0.5617 23.37 0.6981 23.55 0.6860
30 22.76 0.6298 24.86 0.7804 25.18 0.7751
40 23.48 0.6899 26.29 0.8390 26.64 0.8347
50 24.32 0.7465 27.71 0.8829 28.10 0.8805
60 25.32 0.8000 29.18 0.9159 29.68 0.9143
70 26.6 0.8509 30.77 0.9419 31.24 0.9377
80 28.36 0.9011 32.77 0.9638 33.14 0.9576
90 31.41 0.9507 36.04 0.9831 35.71 0.9736
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CHAPTER 3

HYBRID IMAGER ENERGY HARVESTING AND IMAGE ACQUISITION

RESULTS AND DISCUSSION

ΣΔ Converter

Layout of one single hybrid pixel

Layout of hybrid pixel imager

3 mm
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m

54 μm

4
8

.7
5

 μ
m

32 32 hybrid pixels

Figure 14: Layout of the hybrid pixel imager.

As a proof of concept, a test chip containing a 32 × 32 array of hybrid pixels, a

charge pump, address decoder and a multiplexer was designed and fabricated in a 0.5 µm

CMOS process. A printed circuit board (PCB) was designed and fabricated to host the

test chip and the supporting circuitry. The chip was outfitted with a lens and mounted

on the PCB. The PCB includes an ADC to convert the pixel outputs to digital format, a

CPLD to generate the control and timing signals and to transmit acquired images to a PC,

and a digital-to-analog converter (DAC) to generate bias voltages. Table 4 summarizes

the main characteristics of the fabricated hybrid imager.
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Table 4: Features of the Test Chip
Technology 3-metal, 2-poly 0.5-µm CMOS
Number of pixels 32 × 32
Pixel size 54µm × 48.75µm
Photodiode size 31 µm × 31 µm
Fill factor 36.5%
Power Consumption 140 µW
Power supply 3.3 V

3.1 Energy Harvesting

power 

supply

light 

source

source 

meter

oscilloscope

PCB

CPLD

Imager

Figure 15: Diagram of the test setup. The light source intensity is controlled with a power
supply. The I-V curve of the photodiode is measured with a source meter. The output
voltage is measured with an oscilloscope.

Figure 15 shows a diagram of the test setup for the energy harvesting test. All

of the hybrid pixels of the imager were programmed for energy harvesting during testing

unless otherwise stated. A xenon light bulb was employed as the light source since it

produces light with a color similar to daylight. The light source is connected to a power

supply whose current output can be regulated to control the intensity of the light beam.
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The PCB is mounted in front of the light beam and the output voltage of the energy-

harvesting circuit is monitored with an oscilloscope. To measure Iph, the photodiode is

disconnected from the energy-harvesting circuit and connected to a source meter (Keithley

2400). The photodiodes of the hybrid imager are connected in parallel internally. The I-

V curve of the photodiodes is then measured with the source meter. Iph is taken as the

photodiode current at 0 V bias.
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Figure 16: The I-V curve of the hybrid imager when all of the hybrid pixels were pro-
grammed for energy harvesting.

An I-V curve of the photodiodes of the hybrid pixels is shown in Figure 16 with

an illuminance of 40 kLux. Output voltage of the photodiodes of the hybrid imager is

between 0.4 V to 0.5 V depending on the illumination. A charge pump or a boost converter

can be implemented separately to boost up the low voltage of the photodiodes. A single
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stage of charge pump can pump the output voltage of the photodiodes to 0.8 V, and a

DC-DC boost converter can boost the voltage up to 3.8 V with the hybrid imager. More

measurement results of DC-DC converters are shown in the following sections. Since an

external capacitor and inductor are required, part of the energy harvesting circuit is built

on a breadboard, but the switches which are integrated with the hybrid imager are used.
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Figure 17: I-V curves of the hybrid imager with direct incident light using different per-
centage of 1s of the random patterns at the condition of illuminance Ev = 40kLux.

When sub-sampling or compressive sensing for hybrid pixel imager is imple-

mented, pixels are configured as photo-sensors when they are 1s in the random mask.
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If a 50% of random mask is used, the other half of pixels of an imager are programmed

for energy harvesting. As the images are being acquired, the imager is also harvesting

energy. Figure 17 shows the I-V curves of the hybrid imager when different percentage of

1s of the random masks are implemented to configure the hybrid pixels. The illuminance

is 40 kLux for this test.

3.2 Test results for charge pump
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Figure 18: Measurement results of the charge pump with flying input capacitor: (a) charge
pump start up; (b) ripple voltage of the charge pump

The charge pump with flying capacitors was also tested. All of the hybrid pixels

were programmed for energy harvesting for this test. Figure 18(a) and 18(b) shows the

charge pump test results for a resistive load of 1 MΩ and a load capacitance of 1000 pF.

Capacitors C1 and C2 have a capacitance of 1000 pF. Capacitors are off chip. Figure 18(a)

shows the transient behavior of the charge pump output voltage during starts up. Figure
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Table 5: Power Efficiency of the Charge Pump with Different RL

RL (Ω) VDC(V) η (%)
1 M 0.812 11.57

500 K 0.776 21.13
330 K 0.744 29.42
220 K 0.690 37.97
100 K 0.550 53.07
56 K 0.374 43.82

18(b) is a close-up view of the output waveform to show the ripple voltage. The ripple

voltage increases as the load resistance decreases. The switching frequency of the pump

is 31 kHz. Table 5 lists the charge pump output voltage and efficiency (η) for different

load values. The highest efficiency is achieved at a load RL of 100 kΩ and the power

delivered to the load is 3 µW. Higher voltages can be achieved by adding more stages to

the charge pump, or alternatively by employing a switched inductor based DC-DC boost

converter. Test results of boost converter are shown in the following section.

3.3 Test results for DC-DC boost converter

The test results for the DC-DC boost converter configuration are shown in this

section. The DC-DC boost converter uses a flying inductor instead of a capacitor to

store energy. An inductor-based voltage booster has the ability to boost the photodiode’s

inherently low voltage and directly generate the voltage level required by the load. All of

the hybrid pixels were programmed for energy harvesting for this test. The DC-DC boost

converter can boost the output voltage of photodiode, which is between 0.4 V to 0.5 V up
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Figure 19: A circuit setup to charge a lithium-ion battery by a DC-DC boost converter
with hybrid pixels.

to as high as 3.8 V with the flying inductor L = 1 mH. The switch frequency is 15 kHz

with CD = 100 nF , CL = 1 µF, and no load resistor. This is a big achievement because

with this high of a converted voltage output, a 3.7 V lithium-ion battery can be charged

directly by this DC-DC boost converter. Figure 19 show a circuit for charging a 3.7 V

lithium-ion battery with 8 mAh.
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Figure 20: Battery voltage as the battery is charged using the DC-DC boost converter and

the hybrid pixels.

Figure 20 shows the battery voltage as the battery is charged using the DC-DC

boost converter and the hybrid pixels. For an illuminance of 60 kLux, the battery voltage

increases 200 mV after the battery has been charged for 6 hours. The test was conducted

with indoor illumination. A Xenon light bulb was employed as a light source. The values

for all the components are L = 100 mH, CL = 100 nF, and CD = 100nF. Clock frequency

for S1 and S2 is 12 kHz. Note that the boost converter only requires one phase of the

clock, while the charge pump needs two phases of clock.

Table 6 lists the boost converter output voltage and efficiency (η) for different load

values and different inductance. As it can be seen in the table, higher inductance can con-

vert and boost up higher voltage because higher inductance can store more energy. This

is especially true when the hybrid imager has relatively low photodiode output current,
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Table 6: Power Efficiency of the DC-DC Boost Converter with Different RL and Ex-
ternal Inductor L at the Condition of CD = 100nF , CL = 100nF , Iph = 20uA, and
Illuminance Ev = 40kLux

L = 1mH L = 10mH L = 100mH
RL (Ω) VDC(V) η (%) VDC(V) η (%) VDC(V) η (%)

1 M 0.887 11.21 1.54 33.30 2.23 70.29
500 K 0.835 21.13 1.25 46.98 1.68 84.45
330 K 0.80 27.68 1.115 53.07 1.44 88.89
220 K 0.75 36.80 0.972 60.68 1.19 90.64
100 K 0.62 55.63 0.68 66.53 0.799 90.78
56 K 0.51 66.38 0.50 64.06 0.582 85.42
10 K 0.21 62.72 0.19 49.58 0.191 51.72

requiring the boost converter to use a higher value of inductance. When inductance in-

creases, the switching frequency decreases. The switching frequency is 533 kHz when

an inductor L of 1 mH is used. The switching frequency is 12 kHz when L = 100 mH is

used. The highest efficiency is achieved at a load RL of 100 kΩ and an inductance of 100

mH, with an illuminance of 40 kLux. The power delivered to the load is 6.5 µW.

3.4 Image Acquisition of Hybrid Imager

(a) (b) (c) (d)

Figure 21: Acquired image from hybrid-pixel imager : (a) image of letter U; (b) image of
letter M; (c) image of letter K; (d) image of letter C; .
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There are a few different ways to acquire images. The simplest way is to use all

of the hybrid pixels as photo sensors, then it is like a normal camera. Figure 21 shows

images acquired with the hybrid imager when all the pixels are configured to work in the

sensing mode. Notably, images of acceptable quality can be acquired with the imager

even if it only has a 32 × 32 pixel array.

Another way is sub-sampling in which a random mask is applied to programmed

the modality of hybrid pixels. There are two approaches to recover missing pixels of

sub-sampling. The first approach is fixed radius. The second approach is using weighted

average and adaptive radius. The last method to acquire images is compressive sensing.

It uses a compressive sensing reconstruction algorithm to recover images.

Figures 22 to 24 show the reconstucted images of three different approaches of

reconstruction algorithms. In the figures, each approach used different percentages of 1s

from 10% to 90% in increments of 10%. Visually, the approaches with compressive sens-

ing and weighted average have better reconstructed images no matter what percentages

of 1s of random masks. For 10% and 20% of 1s of random masks, sub-sampling with

weighted average has better reconstruction results than compressive sensing, but for other

percentages compressive sensing has notably better reconstruction results than others. Al-

though, compressive sensing is more complicated in reconstruction algorithm, but it has

the best performance. Moreover, compressive sensing for the hybrid pixel imager does

not require any extra hardware. The hardware architecture of the compressive sensing is

the same as sub-sampling. The complication of reconstruction takes place in data process

center, so it does not affect the work load of the chip. Therefore, compressive sensing is
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the best solution for the hybrid pixel imager image reconstruction.

Figure 22: Hybrid imager image reconstructions with sub-sampling of fixed radius ap-

proach. R = 4. Percentages of 1s of random masks are, from left, 10% to 90% in incre-

ments of 10%.

Figure 23: Hybrid imager image reconstructions with sub-sampling of weighted aver-

age and adaptive R. Percentages of 1s of random masks are, from left, 10% to 90% in

increments of 10%.

Figure 24: Hybrid imager image reconstructions with compressive sensing. Percentages

of 1s of random masks are, from left, 10% to 90% in increments of 10%.
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CHAPTER 4

DETAILED DESCRIPTION AND A MATHEMATICAL ANALYSIS FOR A CIRCUIT

OF ENERGY HARVESTING USING ON-CHIP SOLAR CELLS

This chapter gives a detailed description and a mathematical analysis of the on-

chip solar energy harvesting and the proposed circuit that can be employed to generate

high voltages from integrated photodiodes. The proposed circuit uses a switched-inductor

approach to avoid stacking photodiodes to generate high voltages. The effect of parasitic

photodiodes present in integrated circuits is addressed and a solution to minimize their

impact is presented. The proposed circuit employs two switch transistors and two off-chip

components: an inductor and a capacitor. A theoretical analysis of a switched-inductor

DC-DC converter is carried out and a mathematical model of the energy harvester is

developed. Measurements taken from a fabricated integrated circuit are presented and

shown to be in good agreement with hardware measurements. Measurement results show

that voltages of up to 2.81 V (depending on illumination and loading conditions) can be

generated from a single integrated photodiode. The energy harvester circuit achieves a

maximum conversion efficiency of 59%.

Solar energy harvesting is a promising solution in remote sensing applications.

In this type of application, battery replacement is costly and sometimes prohibitive. In

scenarios such as environment monitoring and infrastructure surveillance, sensors are de-

ployed in large quantities and in remote locations, making it costly to replace their bat-

teries. In such cases, solar energy can be harvested to recharge the sensor’s battery or
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directly power-up the sensor to extend its operational life and, in some cases, provide a

near-perpetual sensor operation.

The integration of solar cells on the same chip with the sensor circuitry reduces

system integration costs, reduce parasitic effects and overall size. Moreover, on-chip solar

cell integration enables entirely new solutions such as self-powered retinal prosthesis [7]

and femto-satellites [9]. The fabrication of solar cells on a standard CMOS process is ap-

pealing because it reduces fabrication costs as no post-processing or additional fabrication

steps are required.

The photodiodes available in standard CMOS could, in principle, be employed

to work as solar cells to harvest solar energy. However, these photodiodes have a rela-

tively low open-circuit voltage, around 0.40 V to 0.55 V depending on the illumination

conditions. Higher voltages are needed to be able to charge a battery or to power up the

sensor’s circuitry. The conventional approach to generating higher voltages is to serially

stack several photodiodes. In standard CMOS, it is difficult to stack photodiodes because

photodiodes share the same substrate. Another challenge found in standard CMOS is the

presence of current losses due to parasitic photodiodes. If the parasitic current losses are

not properly compensated, the amount of harvested power can be significantly decreased.

If a silicon-on-insulator (SOI) fabrication process is employed, photodiodes can be iso-

lated and they can be easily stacked. Moreover, parasitic photodiodes are eliminated in a

SOI process. However, SOI is a much more costly technology than standard CMOS.

Several efforts have been undertaken to address the challenges of on-chip solar

cell integration in standard CMOS processes. In [6] a voltage between 0.6 V to 0.83 V is
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generated by connecting a P-diff/N-well and a P-sub/N-diff photodiodes in series. How-

ever, this approach is limited to only two serially-connected photodiodes. Moreover, the

substrate has to be left floating to a potential that depends on the light intensity. Hence,

the voltage threshold of transistors integrated on the same substrate with the photodi-

odes is not well defined. In [44] current losses due to parasitic diodes are compensated

by employing additional photodiodes. Although this approach enables the stacking of

photodiodes and generates voltages between 0.84 V to 1.3 V, its efficiency is quite low

(0.3% to 0.06%). Moreover, additional silicon area is needed for parasitic current loss

compensation. In [33], photodiodes fabricated in a standard CMOS process are employed

as solar cells to harvest energy. An open circuit output voltage of 1.09 V was obtained

by stacking photodiodes. However, the stacked photodiodes have to reside in different

integrated circuits to allow the microchip substrate to be tied to a non-ground potential.

In [65] photodiodes fabricated in a triple-well fabrication process are employed for en-

ergy harvesting. A triple-well process enables the stacking of photodiodes fabricated on

the same microchip. However, they still suffer from losses due to parasitic photodiodes.

This paper addresses the problem of on-chip solar energy harvesting and presents a

circuit that can be employed to generate high voltages from integrated photodiodes. Pho-

todiode stacking is avoided using DC-DC converters. Switched-capacitor and switched-

inductor DC-DC converters are evaluated. The effect of parasitic photodiodes is ad-

dressed and a solution to minimize their impact is presented. A theoretical analysis of

a switched-inductor DC-DC converter is carried out and a mathematical model of the en-

ergy harvester is developed. Measurements taken from a fabricated integrated circuit are
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presented. Measurement results show that voltages of up to 2.81 V (depending on illu-

mination and loading conditions) can be generated from a single photodiode. The energy

harvester achieves a maximum efficiency of 59%.

The rest of this paper is organized as follows: Section 4.1 presents a brief de-

scription of photodiodes available in standard CMOS and the challenges of employing

these photodiodes as solar cells to harvest energy. Section 4.2 introduces the proposed

energy-harvesting circuit. Section 4.3 presents an analysis of the energy-harvesting cir-

cuit yielding a mathematical model of the solar energy harvester. Section 4.4 uses this

mathematical model to find the circuit parameters that optimize the energy harvester’s

performance. Section 4.5 presents measurement from a fabricated microchip.

4.1 On-Chip Solar Cells

P-sub

N-well

P-diff

incident light

P+N+P+

D1

D2

A B
A

B

D1

D2

equivalent 

circuit

+
+

-

-

Figure 25: Cross-section diagram of photodiodes available in standard CMOS and their
equivalent circuit diagram.

Figure 25 shows a cross-sectional view of some of the photodiodes that are avail-

able in a standard CMOS process. The p-n junction P-diff/N-well constitutes one of
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the photodiodes (D1) while the p-n junction P-sub/N-well constitutes another photodi-

ode (D2). The substrate (P-sub) must be connected to the lowest potential in the circuit

(ground in this case) to avoid forward biasing any p-n junction across the chip. Figure

25 also shows the equivalent circuit diagram of diodes D1 and D2. A third photodiode

is available in standard CMOS: N-diff/P-sub (not shown in the figure). Given that the

substrate has to be tied to ground, the N-diff/P-sub and the P-sub/N-well (D2) cannot be

employed as solar cells since their anodes are connected to ground. The N-diff/P-sub and

the P-sub/N-well photodiodes, however, can be used as light sensors in image sensing ap-

plications [10]. The anode of photodiode D1 (P-diff) does not have to be tied to ground.

Thus, D1 can work as a solar cell to harvest solar energy. For energy harvesting purposes,

D2 is a parasitic diode that introduces current losses.

The incident light generates electron-hole pairs in the P-diff, N-well and P-sub

regions of the chip. The holes generated in the N-well diffuse to the depletion regions

of D1 and D2 where the respective p-n junction built-in potentials collect them into the

P-diff and P-sub regions. Similarly, the electrons generated in the P-diff and P-sub re-

gions diffuse to the depletion regions and get collected into the N-well by the junctions’

built-in potentials. As more charges get separated by the p-n junctions, the built-in poten-

tials increase until equilibrium is achieved. Under open circuit conditions, equilibrium is

reached when the net current through the diodes is zero. The open-circuit voltage between

terminals A and B is around 0.4 V to 0.55 V depending on the illumination and doping

levels.
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Figure 26: Typical connection between an input voltage source, a DC-DC converter and
the load. The source and the load have a common ground (a) ideal voltage source; (b)
photodiode D1 as the voltage source.

The voltage produced by a photodiode is too low to power up the electronic cir-

cuitry in a typical sensor node. Hence, a step-up DC-DC converter that generates a suf-

ficiently large voltage is needed. A common feature of most DC-DC converter architec-

tures is that the input voltage source of the converter and the load need to have a common

ground as illustrated in Fig. 26. As a result, when the voltage source is replaced with

on-chip photodiode D1, the photodiode’s cathode, or equivalently the N-well, has to be

tied to ground.

P-sub

N-well

P-diff P+N+P+

A B D1

D2

A

B

DC-DC

DC-DC

+
+

-

-

ID1

ID2

ID1

ID2

Figure 27: Cross-section diagram of on-chip photodiodes and their connection to a DC-
DC converter.

The connection between D1 and the DC-DC converter is illustrated in more detail
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in Fig. 27. The figure also shows the presence of the parasitic diode D2. As before, the

cathode ofD1 (N-well) is tied to ground to establish a common reference betweenD1, the

DC-DC converter and the load. Connecting the N-well to ground lowers the N-well/P-

sub (D2) junction potential to zero volts allowing holes generated in the N-well to easily

diffuse into the substrate; as a result current ID2 increases. As holes are diverted away

from D1 and into D2, the magnitude of ID1 decreases. A low ID1 translates in less energy

that can be harvested.
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Figure 28: Measured I-V curves of a P-diff/N-well photodiode (D1) under direct sun
illumination conditions when the N-well is left floating and when it is tied to ground.

The effect of tying the N-well to ground on the magnitude of ID1 can be appre-

ciated experimentally by measuring the current vs. voltage (I-V) curve of D1 when the

N-well is tied to ground and when it is left floating. Fig. 28 shows the measured I-V
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curve of a P-diff/N-well photodiode of size 982 µm × 1047 µm under direct sunlight

illumination conditions. The I-V curves were measured with a source meter (Keithley

2400). As observed, the current through D1 is significantly higher when the N-well is left

floating than when it is tied to ground. Hence, more energy can be harvested if the N-well

is left floating rather than being tied to ground. To take advantage of this observation, a

DC-DC converter will have to be modified accordingly to maximize the energy that can

be harvested from the photodiode.

4.2 Energy Harvesting Circuits
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1
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Figure 29: Proposed capacitor-based energy harvesting circuit.

The losses due to the parasitic diode D2 can be avoided by using a circuit that

isolates the load circuit from the photodiode. The load isolation can be accomplished

by employing a flying capacitor or by using a flying inductor. The flying capacitor or
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inductor is employed to store and transfer energy from the photodiode to the load while

providing isolation. In this manner, connecting the N-well of the parasistic diode D2 to

ground is avoided.

The capacitor-based energy harvesting circuit is shown in Fig. 29 while the inductor-

based energy harvesting circuit is shown in Fig. 30. In both cases a two-phase non-

overlapping clock with phases φ1 and φ2 and extra switches (M1 to M4) are needed.

Switch M4 is replaced by diode Ds in the switched-inductor circuit to avoid energy trans-

fer from the load side to the photodiode side. During phase φ1 the energy storage element

(capacitor or inductor) is charged by connecting it in parallel with the photodiode D1.

During phase φ2 the energy stored in the capacitor or in the inductor is transfered to the

load.

D1
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ID1
CL ILL

1
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M2

M3

VoutDs

CD

Figure 30: Proposed inductor-based energy harvesting circuit.

An advantage of the inductor-based over the capacitor-based harvesting circuit

is that the former has the ability to boost the photodiode’s inherently low voltage and
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directly generate the voltage level required by the load. On the other hand, the capacitor-

based circuit has be modified to generate high voltages. A series-parallel charge pump,

for instance, can be employed to boost the photodiode’s voltage. The drawback of charge

pumps is that they require several capacitors and switches increasing area requirements

and power losses due the switches on-resistance. At first glance, the all-capacitor nature of

charge pumps might seem advantageous for fully-integrated energy harvesting solutions.

However, on-chip capacitors suffer from bottom-plate parasitic capacitances which dissi-

pate additional energy as the parasitic capacitors need to be charged and discharged [58].

Moreover, accurate charge pumps require substantially large capacitors on the order of

micro-Farads which are difficult to integrate on chip [62]. As state-of-the-art inductors

can be as small as 1×2×1 mm3, co-packaging an off-chip inductor with the sensor IC

is an viable solution for producing miniaturized energy-harvesting sensor nodes [40]. In

this work we focus on inductor-based solar energy harvesting circuits for integrated pho-

todiodes.

Improved Energy Harvesting Circuit: The voltage at the cathode of photodiode D1 (node

B in Fig. 30) is typically between −0.4 V to −0.5 V, which is the open-circuit voltage

of photodiode D2. This open-circuit voltage develops in response to photons with longer

wavelength that are able to penetrate deeper into the silicon crystal and reach D2. As a

result, the voltage at node A is very close to 0 V due to the positive voltage (∼ 0.5 V)

generated across D1. This particular situation, only present in integrated photodiodes,

allows us to remove switch M3. (see Fig. 31). With M3 removed, during phase φ1 (when
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M1 is closed), node A gets connected to the load ground. However, since the potential at

node A is already very close to ground, the circuit operates as originally intended. The

advantage of removing M3 is that the losses due to the non-zero ON resistance of M3 are

eliminated. Less silicon area is needed to implement the energy-harvesting circuit if M3

is removed. Moreover, there is no need to generate a two-phase clock as only phase φ1 is

required. Circuit measurements show that removing M3 results in an output voltage, Vout,

increase of 0.2 V to 0.3 V. Due to these reasons, in the rest of this paper, we will focus on

the analysis and test of the energy-harvesting circuit shown in Fig. 31.

D1

D2

A

B Load

ID1
CL ILL

1

1

M1

M2 VoutDs

CD

Figure 31: Improved two-transistor inductor-based energy harvesting circuit using on-
chip photodiodes.

4.3 Circuit Analysis

An analysis of the energy harvesting circuit is necessary to optimize it and to pro-

vide an insight into its operation. The inductor-based harvesting circuit belongs to a class
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of DC-DC converters known as boost converters. However, the unique non-linear charac-

teristic of the photodiode introduces effects that are not present in the design of standard

boost converter circuits where an ideal voltage source is often assumed as the energy

source. To simplify the analysis of a boost converter with a photodiode, the photodiode

is sometimes modeled as a constant current source [78], a piece-wise linear circuit [77]

or it is assumed to operate in close proximity of the maximum power point (MPP) [26].

In this work we carry out an analysis that does not make these assumptions, resulting in

a more generic model that allows us to estimate more precisely the performance of the

proposed energy harvesting circuit. Our analysis is then employed to find the conditions

that optimize the operation of the energy harvester.

4.3.1 Photodiode Model

D1

ID1

Iph Rsh VD1

Rs
Id

Vd Cj

Figure 32: Photodiode equivalent circuit employed to model the photodiode’s electrical
behavior.

Our analysis requires an accurate model of the photodiode. A photodiode work-

ing in the photo-voltaic mode is typically modeled using the equivalent circuit shown in

Fig. 32 [79]. We will use the model in Fig. 32 in our analysis and simulations to as-

sess the performance of the proposed energy harvesting circuit. The photodiode’s model
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includes a current source, Iph, that represents the photogenerated current. Iph is a func-

tion of the illumination intensity and when Rs is close to zero, it can be approximated

by the photodiode’s short-circuit current. The equivalent circuit also includes a diode

to model the typical knee in the I-V curve. The current through this diode is given by

Id=Is(eV d/nVT − 1), where Is is the reverse saturation current, n is the diode ideality fac-

tor and VT is the thermal voltage. The thermal voltage is defined as VT=kbTC/q where kb

is Boltzmann’s constant, TC is the photodiode’s temperature and q is the electron charge.

Vd is the voltage across the diode. The capacitor represents the photodiode’s junction ca-

pacitance Cj . The resistance Rsh is a shunt resistance that models the load presented to

the current harvested near the edges of the device and Rs is the diode’s series resistance

due to the device contacts and connections [62].

The model parameters can be extracted from measured I-V curves using curve

fitting [31] or iterative techniques [37]. To extract the photodiode model parameters, the

I-V curve shown in Fig. 28 (with the N-well floating) is used. Given that an I-V curve is a

DC measurement, the capacitor Cj can be assumed to be an open circuit when performing

the I-V curve based parameter estimation. ConsideringCj as an open circuit and using the

iterative technique presented in [37] yields the following parameter values: Iph=52.3 µA,

Rsh=1 MΩ, n=1.15, Is=1 pA andRs=0 Ω. The junction capacitanceCj is a function of the

diode voltage Vd. To simplify our analysis, the value of Cj is approximated with its zero-

bias value Cj0 × A, where Cj0 is the zero-bias capacitance per unit area of the P-diff/N-

well junction and A is the area of the photodiode. Circuit simulations show that the error

introduced by the zero-bias Cj approximation is very small. The fabricated photodiode
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has an area of 982 µm × 1047 µm, which yields an estimated junction capacitance value

of Cj = 735 pF. Fig. 33 shows the measured and modeled I-V curves.
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Figure 33: Modeled and measured photodiode I-V curves.

4.3.2 Maximum Power Point (MPP) Calculation

The efficiency of the energy harvester circuit will be evaluated using the following

expression [68]:

η =
Pout
Pin,max

× 100% =
Vout × IL
Vmpp × Impp

× 100% (4.1)

where, Vmpp and Impp are the photodiode’s voltage and current at the MPP, Pin,max =

Vmpp × Impp is the maximum power that the photodiode can provide, and Pout=Vout × IL

is the power delivered to the load.

An analytical expression that calculates an approximate value for the MPP has
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been derived in [63]. The approximate MPP value is within a neighborhood ε of the true

MPP, where ε=nVT . In this section, a simple analytical expression that predicts the MPP

with a slightly better accuracy than the expression provided in [63] is derived. The derived

MPP expression allows for more accurate estimations of Pin,max.

From Fig. 32 and taking into account that Rs=0, the following expression for the

photodiode power can be written:

Pin = VD1 × ID1 = VD1

[
Iph − Is(eVD1/nVT − 1)− VD1

Rsh

]
(4.2)

Making ∂Pin/∂VD1 = 0 and considering Rsh≈∞ results in:

Ise
VD1/nVT

(
1 +

VD1

nVT

)
= Iph + Is (4.3)

Equation (4.3) can be solved using the Lambert-W function [22] to yield:

Vmpp = nVT ×W (a)− nVT (4.4)

and

Impp = Iph + Is −
Is× a
W (a)

(4.5)

where, W (·) is the Lambert-W function and a = e1 × (
Iph+Is
Is

). Fig. 34 shows the

photodiode output power as given in (4.2) for different photocurrent, Iph, levels. The

MPP estimated by equation (4.4) are marked in the figure with dots. A comparison with

the MPP value estimated by the analytical expression provided in [63] is also shown.

Notably, the MPP expression derived above provides a slightly better estimation of the

MPP.
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Figure 34: Photodiode output power as a function of the photodiode voltage VD1 for
different values of the photo-generated current. The estimated location of the MPP is
marked with dots.

Assuming Rsh =∞ for simplicity, the open-circuit voltage of the photodiode can

be found to be:

Voc = nVT log

(
Iph + Is
Is

)
(4.6)

4.3.3 Energy Harvester Equivalent Circuit

Figures 35 and 36 show the equivalent circuit of the energy harvester when φ1 =

1 and when φ1 = 0, respectively. The equivalent circuits are employed to model the
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operation of the inductor-based energy harvester and to guide its design.

Ii

CL ILL

Vout

Vi

Ron

Ron

Iph

IRICdId

D1

Rsh

Cd

Vd

Figure 35: Equivalent energy harvesting circuit when φ1 = 1.
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ViIph

IRICdId
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Rsh

Cd

Vd

Ds

Vdon

Figure 36: Equivalent energy harvesting circuit when φ1 = 0.

In the equivalent circuits, the photodiode has been replaced by the model presented

in Fig. 32. The transistors are modeled by the transistors’ ON resistance Ron which is

assumed to be equal for both transistors since the transistors’ source voltages are either

ground or close to ground. The diode Ds is assumed to have zero ON resistance and a

drop voltage of Vdon volts when conducting. Capacitance Cd is the parallel equivalent

capacitance of CD and Cj .

Two distinct modes of operation can be distinguished for the energy harvesting

circuit, namely continuous conduction mode (CCM) and discontinuous conduction mode

(DCM). The circuit operates in CCM if the current through the inductor does not fall to
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zero throughout a switching period. On the other hand, if the inductor current falls to zero

before the end of a switching phase, the harvesting circuit is said to operate in DCM. DCM

typically occurs when the harvesting circuit operates at light load conditions generating

large inductor current variations [29]. The difference between these two modes is shown

graphically in Fig. 37 and 38 where the current through the inductor, Ii(t), is depicted.

4.3.4 CCM Analysis

Fig. 37 shows a typical steady state inductor current waveform in CCM. T1 de-

notes the time for which φ1 = 1 while T2 denotes the time for which φ1 = 0.

T1

Ii

T2 T1

t

Ii(T1)

Ii0

Figure 37: Inductor current waveform in CCM.

From the circuit in Fig. 36 we can write the following expression for Ii when

φ1 = 0:

Ii(t) = Ii(T1)−
1

L

∫ t

T1

Vi dt (4.7)

Replacing Vi = Vout + Vdon in (4.7) and assuming a capacitor CL large enough to

keep Vout constant (small-ripple approximation), equation (4.7) can be solved to yield:

Ii(t) = Ii(T1)−
(t− T1)

L

(
Vout + Vdon

)
(4.8)
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The condition for CCM operation is Ii0 > 0. Given that Ii(T1 + T2) = Ii0, the

following expression for Ii0 can be found:

Ii0 = Ii(T1)−
T2
L

(
Vout + Vdon

)
(4.9)

Equation (4.8) can also be used in DCM analysis provided that Ii0 = 0 before

the end of a switching period. In steady state, the load current IL is equal to the average

current through the diode Ds. Therefore, we can write:

IL =
1

T

∫ T1+T2

T1

Ii(t) dt (4.10)

where T = T1 + T2. Replacing (4.8) in (4.10) and solving for Vout results in:

Vout =
2L

(1− d)T
Ii(T1)−

2LIL
(1− d)2T

− Vdon (4.11)

where, d = T1/T is the clock’s duty cycle. According to (4.11), the output voltage can be

increased by increasing the value of the inductance L. However, due to the small-package

constraints of the target application, L is kept below 47 µH. In principle, Vout could also

be increased by increasing the duty cycle or the switching frequency. However, changing

d and T also affects the value of Ii(T1). In the next subsection, an expression for Ii(T1)

will be derived that will allow us to consider the overall effects of d and T on Ii(T1).

4.3.5 DCM Analysis

From Fig. 38 we note that Ii(T1 + δT ) = 0. Replacing this result in (4.8) and

solving for δ yields:

δ =
LIi(T1)(

Vout + Vdon

)
T

(4.12)
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Figure 38: Inductor current waveform in DCM.

The condition for DCM operation is δ < (1 − d). As before, in steady state the

load current IL is equal to the average current through the diode Ds. Therefore, we can

write:

IL =
1

T

∫ T1+δT

T1

Ii(t) dt (4.13)

Replacing (4.8) and (4.12) in (4.13) and solving for Vout yields:

Vout =
LI2i (T1)

2TIL
− Vdon (4.14)

Notably, in DCM the output voltage has a quadratic dependence on Ii(T1) and is

inversely proportional to the load current IL. An expression for Ii(T1) will be derived

next to facilitate the calculation of Vout. Once Vout is known, both the output power

Pout = Vout × IL and the efficiency can be calculated.

4.3.6 Inductor Current

From Fig. 35 we can write the following relationships:

Ii = Iph − Id − Cd
dVd
dt
− Vd
Rsh

(4.15)

64



and
dIi
dt

=
Vd
L
− 2Ron

L
Ii (4.16)

The non-linear dependence of Id on Vd precludes an explicit solution of the equa-

tion system above. To circumvent this problem we employ Taylor series to linearize the

current Id around the steady state average value of the photodiode voltage Vd. Fig. 39

shows the approximate behavior of Vd in steady state. In the figure, Vdm = (Vd0 + Vd1)/2

is the average value of Vd.

T1

Vdm

Vd0

Vd1

T2 T1

Figure 39: Inductor current waveform.

Applying Taylor series, the current Id can be approximated around Vdm as follows:

Id = c1 + c2(Vd − Vdm) (4.17)

where, c1 = Is(e
Vdm/nVT − 1) and c2 = (Is/nVT )eVdm/nVT . From (4.17) we ca write:

dId
dt

=
dId
dVd

dVd
dt

= c2
dVd
dt

(4.18)

Taking the derivative of (4.15) with respect to time yields:

dIi
dt

= −dId
dt
− Cd

d2Vd
dt2
− 1

Rsh

(4.19)

Replacing (4.18) in (4.19) and equating the result with (4.16) results in a second-

order differential equation which can be employed to solve for Vd when φ1 = 1:

Vd(t) = −K3

K2

+ c4e
−t/τ1 + c5e

−t/τ2 (4.20)
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where,

K1 = − c2
Cd
− 1

CdRsh

− 2Ron

L

K2 = − 1

LCd

(
1 + c22Ron +

2Ron

Rsh

)
τ1 =

−1
K1

2
− 1

2

√
K2

1 + 4K2

τ2 =
−1

K1

2
+ 1

2

√
K2

1 + 4K2

K3 = −−2Ron

LCd

(
c1 − Iph − c2Vdm

)
c4 =

( τ1
τ1 − τ2

)(
Vd0 +

K3

K2

)
c5 =

( τ2
τ2 − τ1

)(
Vd0 +

K3

K2

)
(4.21)

Given that Vd1 = Vd(T1) and using (4.20) we can write:

Vd1 = −K3

K2

+ c4e
−T1/τ1 + c5e

−T1/τ2 (4.22)

To solve for Vd when φ1 = 0, we notice that from Fig. 36 we can write:

Cd
dVd
dt

= Iph − Id −
Vd
Rsh

(4.23)

Replacing (4.17) in (4.23) results in a first-order differential equation that can be

solved to yield:

Vd(t) = −K5

K4

(
1− e−t/τ3

)
+ Vd1e

−t/τ3 (4.24)

where,

K4 = − c2
Cd
− 1

CdRsh

K5 =
Iph − c1 + c2Vdm

Cd

τ3 = − 1

K4

(4.25)
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Given that Vd0 = Vd(T2) and using (4.24) we can write:

Vd0 = −K5

K4

(
1− e−T2/τ3

)
+ Vd1e

−T2/τ3 (4.26)

The steady-state values of Vd0 and Vd1 can be found using the iterative procedure

outlined in Listing 4.1 below. In the iterative procedure the variable k represents the

iteration number.

1) k = 0

2) Set Vd0[k] = Vd1[k] = Voc

3) Use (22) to find Vd1[k + 1]

4) Use (26) and Vd1[k + 1] to find Vd0[k + 1]

5) Update Vdm = (Vd0[k + 1] + Vd1[k + 1])/2

6) k = k + 1

7) If k > 200 end

8) Go to 3)

Listing 4.1: Iterative procedure to find steady-state

values of Vdm, Vd0 and Vd1

Once the steady-state value of Vdm, Vd0 and Vd1, along with the coefficient values

in (4.21), are found, an expression for Ii when φ1 = 1 can be obtained by replacing

(4.17), (4.19) and (4.20) in the (4.15)-(4.16) equation system and solving the resulting

differential equation. The obtained expression for the inductor current is:

Ii(t) = Ii0e
−t/τ4 +

c6
2Ron

(
1− e−t/τ4

)
+

c4τ1
L− 2Ronτ1

(
e−t/τ4 − e−t/τ1

)
+

c5τ2
L− 2Ronτ2

(
e−t/τ4 − e−t/τ2

)
(4.27)
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where,

c6 = −K3

K2

τ4 =
L

2Ron

(4.28)

To demonstrate the validity of the model derived above, the inductor current wave-

form, Ii(t), was calculated using (4.27) and using the Spectre circuit simulator. Fig. 40

shows the inductor current waveforms generated by the model and the circuit simulator

for the following parameter values: Iph = 52 µA, L = 47 µH, Ii0 = 0 A, T = 8 µs and

d = 0.5. The figure shows three cases: Ron = 250 Ω, Ron = 100 Ω and Ron = 50 Ω.

Notably, the derived expression for Ii(t) agrees very well with the output of the Spectre

circuit simulator. More importantly, the expression for Ii(t) allows us to explore the de-

sign space of the DC-DC converter without having to rely on a high-end circuit simulator.

According to equations (4.11) and (4.14), Vout is maximized when Ii(T1) is maximum.

In the next section we will the mathematical model derived to find the circuit parameter

values that maximize the output voltage and consequently the efficiency of the energy

harvesting circuit.

4.4 Model-Based Design Optimization

From Fig. 40 it is clear that lowRon values result in higher peak inductor currents,

and correspondingly higher output voltages, as the power losses due to the on-resistance

of the switch transistors are reduced. Hence, low Ron values are preferred to achieve high

conversion efficiencies. The value of Ron for a NMOS transistor is given by:
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Figure 40: Inductor current Ii(t) waveforms calculated using the derived expression in
(4.27) and using the Spectre circuit simulator for three different values of Ron.

Ron =
L

µnCoxW (VGS − VTH)
(4.29)

where, µn is the electron mobility, Cox is the capacitance per unit area of the gate oxide,

W is the width of the transistor’s gate, L is the length of the transistor’s gate, VGS is the

steady-state transistor’s gate-to-source voltage and VTH is the threshold voltage of the

transistor. From (4.29), Ron decreases as W increases. However, as W is increased, the

gate capacitance, Cg = WLCox, also increases resulting in higher dynamic power losses

due to the need to charge and discharge Cg as the transistor is turned on and off. Thus,

the transistor width W cannot be made arbitrarily large.
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The analysis presented in [72] shows that the optimal W , at which the combined

effect of conduction losses due to Ron and dynamic losses due to Cg is minimized, results

in extremely wide transistors. Hence, they conclude that in the interest of saving silicon

die area, smaller than optimal transistor widths can be employed. In this work we employ

transistors with a gate width of 90 µm which result in an on-resistance of approximately

50 Ω.

From equations (4.11) and (4.14), it is clear that a large inductance value maxi-

mizes the output voltage of the energy harvesting circuit. However, a large inductor will

have a large physical size and might not be suitable for integration with a small sensor

unit. Hence, the inductance value is limited to 47 µH as this is an inductor that is com-

mercially available in packages as small as 1×2×1 mm3.

4.4.1 CCM and DCM Operation

Replacing the CCM condition Ii0 > 0 in equation (4.9) results in the following

output voltage upper bound:

L

T2
Ii(T1)− Vdon > Vout (4.30)

Similarly, replacing the DCM condition δ > (1 − d) in equation (4.12) results in

the following output voltage lower bound:

Vout >
L

T2
Ii(T1)− Vdon (4.31)

Comparing (4.30) and (4.31), it is clear that the energy harvesting circuit provides

a higher output voltage if it operates in DCM. Hence, we focus on the DCM for the rest

of this paper.
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For convenience, actual measurements of the harvester performance are taken us-

ing a resistive load instead of a constant current load. Thus, we can write: IL = Vout/RL,

where RL is the load resistance and IL is the load current. Replacing IL = Vout/RL in

(4.14) results in the following quadratic equation:

V 2
out + VdonVout −

LRLI
2
i (T1)

2T
= 0 (4.32)

which can be solved to obtain:

Vout =

√
V 2
don

4
+
LRLI2i (T1)

2T
− Vdon

2
(4.33)

The expression in (4.33) will be used in the performance evaluation of the pro-

posed energy-harvesting circuit. The power delivered to the load then becomes:

Pout =
V 2
out

RL

(4.34)

Fig. 41 shows the conversion efficiency of the energy-harvesting circuit as the

switching clock period (T ) and the clock’s duty cycle (d) are varied. The efficiency was

calculated using (4.1) and (4.34). The following parameters were used to generate the

plot: Iph = 50 µA (outdoor light conditions), RL = 500 kΩ, Vdon = 0.3 V, L = 47 µH,

Ron = 50 Ω and Cd = 33 nF. From the figure, efficiencies greater than 60% can be

achieved for switching frequencies in the range of 200 kHz to 4 MHz (0.25 µs ≤ T ≤

5.0 µs) and duty cycles above 4%.

Figures 42 and 43 show the conversion efficiency and output voltages of the

energy-harvesting circuit as the duty cycle of the clock signal is varied, and for different

values of the photogenerated current Iph. The resistance load is kept fixed atRL = 500 kΩ

71



T (μs)

d 
(%

)

 

 

2 4 6 8 10

2

4

6

8

10

12

14

10

20

30

40

50

60

70

80

Figure 41: Conversion efficiency of the proposed energy-harvesting circuit operating in
DCM as a function of duty cycle (d) and clock period (T ).

and the switching frequency is set to 200 kHz. Notably, as the illumination level changes,

the duty cycle needs to be adjusted correspondingly to achieve maximum conversion effi-

ciency. Moreover, from Fig. 43, as the illumination level decreases, the maximum output

voltage that can be obtained also decreases.
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Figure 42: Conversion efficiency of the energy-harvesting circuit operating in DCM as a
function of duty cycle (d) for different photogenerated current levels Iph.

Fig. 44 shows a plot of Vdm, the average photodiode voltage (Vd) in steady state, as

the duty cycle is varied and for the same conditions as Figs. 42 and 43. Fig. 44 also shows
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Figure 43: Output voltage of the energy-harvesting circuit operating in DCM as a function
of duty cycle (d) for different photogenerated current levels Iph.

(with color dots) the location of the maximum power point voltage (Vmpp). Comparing

Fig. 44 with Figs. 42 and 43, it can be seen (as expected), that the maximum conversion

efficiency is achieved for the same duty cycle that results in the average voltage across the

photodiode being equal to Vmpp.
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Figure 44: Average photodiode voltage (Vdm) as a function of duty cycle (d) for different
photogenerated current levels Iph.

Fig. 45 shows the output voltage of the energy-harvesting circuit for different
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Figure 45: Output voltage of the energy-harvesting circuit operating in DCM as a function
of duty cycle (d) for different load resistances RL.

values of the load resistance RL as the duty cycle is varied and for a fixed value of Iph.

As the load resistance decreases, the output voltage decreases. However, the maximum

output voltage is achieved for the same duty cycle value regardless of the load resistance

value. Hence, to achieve maximum conversion efficiency, the duty cycle needs to be

adjusted only in response to changes in the illumination levels.

4.5 Hardware Measurements

To test the concept of energy harvesting using on-chip solar cells, an integrated cir-

cuit (IC) was designed and fabricated using a 0.5 µm standard CMOS fabrication process.

The IC includes a rectangular P-diff/N-well photodiode, a capacitor bank and NMOS tran-

sistor switches. A photograph of the integrated circuit is shown in Fig. 46. The area of the

photodiode is 982 µm× 1047 µm. The fabricated IC is an experimental microchip and in-

cludes photodiodes of different geometries for experimental purposes. The switches was
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covered with a metal layer to prevent light from affecting their behavior. The integrated

capacitors are combined in parallel to create a 580 pF capacitor that was employed as the

load capacitor CL. The bottom plate parasitic capacitance, that is normally a source of

losses in integrated capacitors, is not of concern here because the bottom plate of the load

capacitor must be tied to ground, thus, shorting the bottom-plate parasitic capacitance.

photodiode capacitors

switches (under metal)

Figure 46: Photograph of fabricated CMOS integrated circuit. The integrated circuit
contains a P-diff/N-well photodiode, a capacitor bank and NMOS transistor switches.
The switches are covered by a metal layer to protect them from light.

4.5.1 Test Setup

A printed circuit board (PCB) was designed and fabricated to house the fabricated

microchip. The PCB includes a CPLD that is employed to generate a clock signal with

variable duty cycle. A test setup was built to collect measurements. Fig. 47 shows

a diagram of the test setup. A white LED was employed as the light source. The light

source is connected to a power supply whose current output can be regulated to control the
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intensity of the light beam. The PCB is mounted in front of the light beam and the output

voltage of the energy-harvesting circuit is monitored with an oscilloscope. To measure

Iph, the photodiode is disconnected from the energy-harvesting circuit and connected to a

source meter (Keithley 2400). The I-V curve of the photodiode is then measured with the

source meter. Iph is taken as the photodiode current at 0 V bias.

power 

supply

light 

source

source 

meter

oscilloscope

PCB

CPLD

IC

Figure 47: Diagram of the test setup. The light source intensity is controlled with a power
supply. The I-V curve of the photodiode is measured with a source meter. The output
voltage is measured with an oscilloscope.

4.5.2 Measurements

The power supply current of the light source was adjusted until Iph reached a value

of 50 µA to simulate outdoor illumination levels (approx. 60 klux). The average output

voltage of the energy-harvesting circuit was then measured with the oscilloscope.
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Figure 48: Output voltage of the energy-harvesting circuit as predicted by theoretical
model (dotted lines) and from hardware measurements (circles).

Fig. 48 shows the output voltage as predicted by (4.33) (shown with dotted lines)

and actual voltage measurements (shown with circles) as the duty cycle is varied. An

inductor value of L = 47 µH and a capacitance CD of 33 nF were employed. Three

different values of resistor were used for the load: 198 kΩ, 330 kΩ and 990 kΩ. Given

that the oscilloscope probe has a finite impedance (approximately 700 kΩ) the effective

load seen by the energy-harvesting circuit is lower than the resistors employed. Taking

into account the probe impedance, the effective load resistance values (RL) are 154 kΩ,

224 kΩ and 410 kΩ. The switching frequency was set to 200 kHz (T = 5 µs). Notably,

the output voltage predicted by the theoretical model agrees very well with the measure-

ments. The maximum output voltage obtained for RL = 410 kΩ is 2.24 V for a duty
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cycle of 4.5% which corresponds to a power delivered to the load of 12.24 µW and a

conversion efficiency of 59%. The maximum output voltage obtained with only the oscil-

loscope probe loading the circuit is 2.81 V. Fig. 49 shows an oscilloscope capture of the

corresponding output voltage. The output voltage ripple is due to the switching activity

and can be improved by employing a larger load capacitance CL.
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Figure 49: Voltage output of energy-harvesting circuit captured by an oscilloscope (RL =
410 kΩ).

Higher efficiencies can be achieved if the switching frequency is increased as pre-

dicted by Fig. 41. However, in our experiments, for switching frequencies beyond 250

kHz, the conversion efficiency started to decrease. The lower efficiencies at higher switch-

ing frequencies are due to the combined effects of parasitic capacitive and inductive ele-

ments of the PCB and the IC package and the limited self-resonance frequency (SRF) of
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the inductor employed. The efficiency, however, can be improved by co-packaging the IC

and the inductor to minimize parasitic effects.

The proposed energy-harvesting circuit requires two off-chip components (CD

and L). Due to their relatively large values (by integrated circuits standards), these com-

ponents cannot be integrated on chip. However, they can be co-packaged with the final

IC as state-of-the-art off-chip capacitors and inductors of the requires values are on the

order of 1 × 2 × 1 mm3. An external Schottky diode was employed in our experiments

because the IC fabrication process that was used did not have a Schottky diode option.

However, many CMOS fabrication process support the Schottky diodes. Alternatively, at

the expense of more silicon area, a self-synchronized MOS switch [40] can be employed

instead of the Schottky diode.
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CHAPTER 5

MULTIRESOLUTION DECOMPOSITION FOR LOSSLESS AND NEAR -

LOSSLESS COMPRESSION

Radio communications are power-hungry operation. Data compression can be

implemented to reduce the power consumption. Two approaches are presented in this dis-

sertation, and they are multiresolution decomposition image compression and compres-

sive sensing conversion. The multiresolution decomposition lossless image compression

approach is suitable for focal plane integration, while a near-lossless compression can

achieve higher compression rates. Compressive sensing is discussed in Chater 6.

A feature that precludes modern lossless image compression algorithms from their

direct focal plane implementation is that they require significant memory storage. For in-

stance, CALIC [76] requires storing two previous rows of the image as the encoding

proceeds. Moreover, adaptive context modeling is used to improve the prediction value

but this operation requires a significant hardware overhead. In order to keep the imple-

mentation simple yet still be able to provide compression, we implement two basic image

compression components: decorrelation via prediction and entropy encoding of predic-

tion residuals. Furthermore, we employ multiresolution decomposition to complement

the prediction process. By employing multiresolution decomposition we avoid the need

to store previous rows of the image.
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Multiresolution decomposition is an image processing technique in which the res-

olution of an image is progressively increased or decreased. In [64] multiresolution repre-

sentation using the S+P transform is employed to form a hierarchical pyramid for lossless

compression. However, building the hierarchical pyramid requires significant memory

storage. We employ multiresolution decomposition to generate an image of lower reso-

lution that serves as as the prediction of pixel values in the higher resolution image. The

basic concept of this approach is depicted in Fig. 50. The algorithm can work with one

or more levels of decomposition. One level and three levels of decomposition is shown

later.

H
0

Lower resolution image

R
1

H
1

Residual

image

H
0

Entropy

encoder

Differential

encoder

Out

Figure 50: Image compression approach based on multiresolution decomposition.
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5.1 One Level of Decomposition

Fig. 50 is one level of decomposition. It takes the original imageH0 of sizeN×N

pixels (with N even) and generates image H1 of size N
2
× N

2
. The pixel value at location

(r, c) in H1 is computed as follows:

H1
r,c =

1

4

(
H0

2r,2c +H0
2r+1,2c +H0

2r,2c+1 +H0
2r+1,2c+1

)
(5.1)

where r = 0, 1, 2 . . . N/2− 1, c = 0, 1, 2 . . . N/2− 1. In other words, each pixel in H1 is

the average of the four pixels in the spatially equivalent 2× 2 block in H0. The image H1

has a resolution four times smaller than H0. If H0 is read out using a Morton-Z scan, the

2×2 block average can be computed as the image is read out and there is no need to store

the previous image row. The low resolution image H1 is employed as a predictor of the

higher-resolution image H0. A prediction residual image R1 of size N ×N is computed

in the following manner:

R1
r,c = H0

r,c −H1
u,v (5.2)

where u = br/2c, v = bc/2c and b·c is the greatest integer function. For smooth areas in

an image, a pixel value will be very close to the average of itself and its closest neighbors.

Thus, the prediction residual on those regions will be zero or very close to zero. For

regions in the image with edges or texture, the absolute value of the prediction residual

will increase. For most natural images, the distribution of the prediction residuals peaks at

zero and falls exponentially as the residual absolute value increases. Prediction residuals

of natural images often follow a Laplacian distribution. We take advantage of this type

of distribution by using an entropy encoder to encode the residual images and achieve
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compression. An entropy encoder assigns short codewords to frequent residual values

and longer codewords to less-frequent residual values.

The image H1 is compressed using a simple differential encoding scheme where

the difference between a pixel and its neighbor to the left is encoded. Following this

simple differential scheme, there is no need to store an entire image row to encode H1.

The compressed representation of the original image H0 is given by the differentially

encoded H1, followed by the entropy-encoded residual image R1. Note that we only need

to transmit 3 out of every 4 pixels in the residual images R1 because the 4-pixel averages

are already available to the decoder from the previous level of decomposition.

5.2 Mixed-Signal Implementation Analysis

The compression approach described above is implemented in hardware employ-

ing a mixed-signal circuit to save silicon area resources. The multiresolution decomposi-

tion step is performed in the analog domain to take advantage of simple analog solutions

and the residuals are then converted to digital by an ADC for further encoding. The

encoding step is performed in the digital domain due to the inherently digital nature of

entropy encoders.

Analog circuits will introduce noise, which might limit the compression perfor-

mance. In this section we will analyze the noise performance of the mixed-signal ap-

proach and compare it with a fully-digital approach. In the fully-digital approach, the

analog pixel values in H0 are converted to digital by an ADC, and all the subsequent

operations are then performed in the digital domain. The fully-digital approach is the
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approach taken by lossless compression standards.

Figure 51 shows a model of the decomposition and prediction operations. The

model assumes a one-dimensional input, which is the result of reading the image using

a Morton-Z scan. The transfer function P (z) = 1/4
∑3

k=0 z
−k computes the average of

four consecutive pixels (2 × 2 block). The z−4 block delays the original pixel sequence

by four clock periods so that the correct prediction residuals can be computed. Hence, we

can write

H1[l] = 1/4
3∑

k=0

H0[4l + k] (5.3)

for the lower-resolution image and

R1[n] = H1[l]−H0[n] (5.4)

for the ideal or noiseless prediction residuals, where l = bn/4c and n = 0, 1 . . . N2 − 1.

P(z)H
0

H
1

R
1

z
-4

4

Figure 51: Simplified model of a single multiresolution decomposition stage.

Figure 52 expands the previous model by explicitly adding the main noise sources

for both the mixed-signal and the fully-digital implementations. Our analog implemen-

tation employs switched-capacitor circuits. Hence, the dominant source of analog noise

is due to charge injection and clock feedthrough. The analog noise due to the prediction
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Figure 52: Model incorporating noise sources for (a) the mixed-signal implementation;
(b) fully-digital implementation.

block P is modeled with the random variable np, while the random variable nd models

the analog noise introduced by the delay circuit. The quantization noise due to the ADCs

Q1, Q2 and Q3 is modeled with the random variables nqh, nqr and nq. In the fully-digital

implementation, the prediction values are rounded to the closest integer to keep the bit

resolution of H1 equal to the bit resolution of H0. This rounding operation is modeled

with a quantizer with quantization noise represented by random variable nqp.

The original image is recovered in the following manner:

H̃0 = H̃1 + R̃1 (for mixed-signal) (5.5)

H
0

= H
1

+R
1

(for fully-digital) (5.6)
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Using Fig. 52 we can write the following expressions for the mixed-signal imple-

mentation:

H̃1 = P (H0) + np + nqh (5.7)

R̃1 = z−4H0 − P (H0) + nd − np + nqr − nqh (5.8)

where, P (H0) = H1[l] = 1/4
∑3

k=0H
0[4l + k] is the ideal or noiseless prediction value.

For the fully-digital implementation we have:

H
1

= P (H0) + P (nq) + nqp (5.9)

R
1

= z−4H0 − P (H0) + z−4nq − P (nq)− nqp (5.10)

Replacing (5.7) and (5.8) in (5.5) yields:

H̃0 = z−4H0 + nd + nqr (5.11)

Thus, the error introduced by the mixed-signal approach is

ẽ = nd + nqr (5.12)

Similarly, replacing (5.9) and (5.10) in (5.6) yields:

H
0

= z−4H0 + z−4nq (5.13)

Assuming stationarity for the quantization noise, the error introduced by the fully-digital

approach is e = nq. For lossless compression we must have |ẽ| ≤ |e| or equivalently

|n+nqr| ≤ |nq|. Therefore, the noise of the delay circuit and the quantization noise of

Q2 have to be minimized. Fortunately, for most images, the variance of the prediction
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residuals is much smaller than the variance of the original image. Thus, the input range

of Q2 can be matched to the smaller range of the residuals decreasing the quantization

noise nqr. The noise nd can be reduced with proper circuit design techniques. If |ẽ| > |e|

and |ẽ − e| < δ then the system would be equivalent to near-lossless compression with

maximum reconstruction error±δ. If the application allows larger values of δ, then higher

compression ratios can be obtained by reducing the bit resolution of quantizer Q2. Note

that Q1 and Q2 can be a single ADC with multiplexed inputs.

H0 H1 H2 H3

R1

R2

R3

First

level
Second

level
Third

level

Figure 53: Image compression approach based on multiresolution decomposition.

5.3 Three Levels of Decomposition

Fig. 53 is three levels of decomposition. The first level starts with the original

image H0 of size N × N and generates image H1 of size N
2
× N

2
. The second level of

decomposition takes H1 as its input and generates image H2 of size N
4
× N

4
. Finally, level

three takes image H2 and produces image H3 of size N
8
× N

8
. The image Hi at the ith level
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of decomposition is generated in the following manner:

Hi(ri, ci) =
1

4

(
Hi−1(2ri, 2ci) +Hi−1(2ri + 1, 2ci)

+Hi−1(2ri, 2ci + 1) +Hi−1(2ri + 1, 2ci + 1)

)
(5.14)

where i = 1, 2, 3,0 ≤ ri ≤ N/2i and 0 ≤ ci ≤ N/2i. In other words, each pixel in

Hi is the average of the pixels in the spatially equivalent 2 × 2 block in Hi−1. The low

resolution images will be used as predictions of higher resolution images. At each level,

a prediction residual image Ri of size N/2i−1 ×N/2i−1 is computed as following:

Ri(r
′
i, c
′
i) = Hi−1(r

′
i, c
′
i)−Hi

(⌊r′i
2

⌋
,
⌊c′i

2

⌋)
(5.15)

where 0 ≤ r′i ≤ N/2i−1, 0 ≤ c′i ≤ N/2i−1 and b·c is the greatest integer function. For

smooth areas in an image, a pixel value will be very close to the average of itself and its

three immediate neighbors. Thus, the prediction residual on those regions will be zero or

close to zero. For most natural images the distribution of the prediction residuals peaks at

zero and falls exponentially as the residual absolute value increases. We take advantage of

such distributions by using an entropy encoder to encode the residuals images to achieve

compression.

The image at the third level of decomposition H3 is not compressed. Instead, it

is encoded using a straight binary code with 8 bits per pixel. Since the size of H3 is

1/64 the size of H0, each pixel in H3 is encoded with an effective rate of 1/8 bpp. The

compressed representation of the original image H0 is given by H3 followed by entropy-

encoded residual imagesR3,R2 andR1 (in that order). Note that we only need to transmit
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3 out of every 4 pixels in the residual images because the 2×2 block averages are already

available to the decoder from the previous level of decomposition.

5.4 Multiresolution Decomposition Imager Architecture
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Figure 54: Architecture diagram of the imager.

Figure 54 shows the architecture of an imager with the proposed focal-plane com-

pression approach. The imager consists of an array of active pixels (APS), addressing

circuitry, a multiplexer, a correlated double sampling (CDS) unit to minimize fixed patter

noise (FPN) and a multiresolution decomposition circuit. The pixels are read out follow-

ing a Morton-Z scan that allows pixels in the same 2 × 2 block to be read one after the
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other simplifying the design of the averaging circuit. An imager with one level of decom-

position has been designed and fabricated in a 0.5 µm CMOS process. The array size of

the imager is 32× 32 pixels.

5.4.1 CDS Unit

Vref

C2

C1+

VDCSVin

A1
+

+

1

2

1

1 2

Figure 55: Schematic diagram of the CDS unit.

Figure 55 shows the schematic diagram of the CDS unit. It is based on a switched-

capacitor architecture. The inverting amplifier A1 is a high-gain cascode common-source

amplifier. The CDS unit works with a non-overlapping clock with phases φ1 and φ2.

During phase φ1 the voltage of the corresponding pixel bus is sampled on capacitor C1

and capacitor C2 is reset. At the end of phase φ1 capacitor C1 is charged to Vph−Voff and

the voltage across C2 becomes Vref − Voff , where Vph is the output voltage of the pixel

after the integration period and Voff if the offset voltage of amplifier A1. During phase

φ2 the pixel is reset and its reset voltage, Vrst, appears at the corresponding column bus.
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Thus, at the end of φ2 the voltage across capacitor C1 becomes C1(Vrst − Voff ). After

charge recombination, the output of the CDS unit becomes:

VCDS = Voff +QC2/C2

= Vref − Vpix (5.16)

where Vref is a reference voltage, and Vpix = Vrst − Vph is the pixel value without FPN.

Note that the amplifier’s offset voltage is also canceled out during this process.

5.4.2 Multiresolution Decomposition Circuit
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Figure 56: Schematic diagram of the switched-capacitor circuit for multiresolution de-
composition.

A single level of multiresolution decomposition is performed by the switched ca-

pacitor circuit shown in Fig. 56. The decomposition circuit is composed of an integrator
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and a memory circuits. The integrator is formed by amplifier A1, capacitors CS and

CC and the corresponding switches and the memory circuit is formed by amplifier A2,

capacitors C1 to C4 and their corresponding switches. The sizes of the capacitors are

CS = CC/4 = C = 0.5 pF and C1 = C2 = C3 = C4 = Cf = C = 0.5 pF.

The integrator computes the average of four consecutive pixels. In the mean time,

the memory circuit stores the same four pixel values until their average has been com-

puted. The residual values are obtained by reading the voltage difference Voi − Vom. The

decomposition circuit works in three phases: reset phase, integration phase and read-out

phase. Figure 57 shows the timing diagram during these three phases.
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Read out
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Figure 57: Timing diagram of the multiresolution decomposition circuit.

In the reset phase, the integrator and memory circuits are reset by setting high the
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clock signals φR, φ′R, φ1 and φ′1. During reset, the voltage across capacitor CS becomes

VCS
= Vref + Voff1 − VCDS[k] (5.17)

where Voff1 is the offset of amplifier A1 and VCDS[k] = Vref − Vpix[k] is the

output voltage of the CDS unit corresponding to the kth pixel in a given 2×2 block

(k = 1, 2, 3, 4). In the reset phase the voltage across capacitor Cf of the memory cir-

cuit becomes

VCf
= Voff2 (5.18)

where Voff2 is the offset voltage of amplifier A2.

In the integration phase and during clock phase φ2, the voltage across capacitor

CS is forced to Voff1 charging capacitor CC to

QCC
= 4C · Voff1 + C(Vref − VCDS[k])

= 4C · Voff1 + C · Vpix[k] (5.19)

This process is repeated for three more clock cycles and pixels. At the end of the integra-

tion phase the accumulated charge in capacitor CC is

QCC
= 4C · Voff1 + C ·

4∑
k=1

Vpix[k] (5.20)

which yields a voltage at the integrator’s output given by

Voi = Vref −
1

4

4∑
k=1

Vpix[k] (5.21)

Thus, the integrator circuit computes the average while eliminating the offset voltage of

A1. Simultaneously, the memory circuits store the pixel voltage values in capacitors C1
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to C4. The storage is accomplished using the two non-overlapping clock phases φ′1 and

φ′2 and switches S1 to S4. During clock phase φ′1, capacitor Cf is reset to voltage −Voff2

and capacitors C1 to C4 are successively charged to voltage VCDS[k]− Voff2.

In the read-out phase, the integrator keeps its output voltage steady while the mem-

ory circuit output cycles through the pixel values stored in capacitors C1 to C4. To ac-

complish this switches S ′1 to S ′4 and the two non-overlapping clock phases φ′1 and φ′2 are

employed. During successive φ′1 phases, capacitor Cf is reset to voltage −Voff2 and ca-

pacitors C1 to C4 are forced to discharge one at a time injecting a charge of C · VCDS[k]

into Cf . The charge in Cf at the end of each φ′2 phase becomes

QCf
= −C · Voff2 + C · VCDS[k] (5.22)

Thus, during phase φ′2 the output voltage of the memory circuit, Vom, is given by

Vom = Voff2 +
QCf

Cf
= VCDS[k] = Vref − Vpix[k] (5.23)

Note that the offset voltage Voff2 is canceled out in the process. The voltage difference

Voi − Vom is equal to the residual voltage value

VR[k] = Vpix[k]− 1

4

4∑
i=1

Vpix[i] (5.24)

Hence, the proposed circuit can be used to compute the residual image for a given level

of decomposition.

5.5 Multiresolution Decomposition Numerical Simulation Results

This section presents numerical simulation results of the proposed compression

algorithm. Figure 58 shows the intermediate images of a three-level decomposition of

94



H0
H1

H2
H3

R1

R2

R3

Figure 58: Lena image and its three levels of decomposition.

image lena. From the figure, it can be seen that the residual images, Ri, capture the

edges or high-frequency components of the image while the Hi images capture the low-

pass components. Figure 59 shows the histograms of the original lena image and the

three prediction residual images. The histograms show a very narrow distribution for the

residual images which can be exploited by an entropy encoder to achieve compression.

The histograms become a bit broader as the level of decomposition increases suggesting

that higher levels of compression can be achieved in the first levels.

Table 7 shows the compression performance of the proposed approach in a loss-

less scenario for different test images. In the lossless scenario, the original image H0 is

recovered exactly from H3, R3, R2 and R1. We have used the first-order entropy as a
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Figure 59: Histograms of the: (a) original image; (b) first level residual; (c) second level
residual; (d) third level residual

measure of the average number of bits that an entropy encoder will need to encode each

pixel in the residual images. The compression ratios (CR) are within the expected range

for lossless compression standards [46]. Higher compression ratios can be achieved in a

lossy scenario. For lossy compression the residuals are quantized and entropy encoded.

Table 7: Compression Performance of a Three-Level Decomposition
Test Entropy of Residual (bpp) Total CR
image 1st level 2nd level 3rd level # of bits
mri 4.7696 5.1478 5.4049 322487 1.625
man 5.3471 5.6523 5.9541 358759 1.461
camera 4.9044 4.9542 5.0433 325623 1.610
einstein 4.8275 5.0408 5.2650 323586 1.620
lena 4.5958 5.0339 5.6209 313209 1.674
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Table 8 shows the compression performance in a lossy scenario. The lossy com-

pression of the proposed approach is realized by quantizing the residuals R3, R2 and R1

in the following manner:

Qi = (2δi + 1)
⌊Ri + δi

2δi + 1

⌋
(5.25)

where i = 1, 2, 3, and 2δi + 1 is the quantization step. Competitive results are achieved

by using a higher values for δ1 and a lower values for δ3. Although, the results on JPEG

are slightly better than proposed approach, the circuit architecture of proposed approach

is much simpler.

Table 8: Comparison with JPEG in Lossy Scenario

δ1=2 δ1=8 δ1=4 δ1=16 δ1=8
Test δ2=4 δ2=4 δ2=8 δ2=8 δ2=8 JPEG
image δ3=8 δ3=2 δ3=16 δ3=4 δ3=8

bpp PSNR bpp PSNR bpp PSNR bpp PSNR bpp PSNR bpp PSNR
mri 2.70 34.55 1.84 35.00 1.98 29.51 1.46 31.02 1.62 31.60 1.27 36.87
man 3.30 33.52 2.13 33.97 2.43 28.43 1.58 29.44 1.87 30.38 1.83 32.91
cameraman 2.90 35.18 2.08 35.30 2.28 30.83 1.58 31.04 1.87 32.17 1.47 33.69
einstein 2.72 33.85 1.76 34.41 1.96 29.44 1.39 30.77 1.55 30.97 1.30 35.65
lena 2.58 34.06 1.77 35.14 1.89 29.20 1.42 31.15 1.55 31.55 1.26 36.38
mandril 3.27 33.14 2.16 33.47 2.47 28.45 1.58 28.52 1.92 29.99 1.92 32.25
house 2.66 34.12 1.75 34.60 1.97 29.78 1.38 30.56 1.55 31.19 1.38 35.75

Table 9 shows the compression performance in bits per pixel (bpp) for lossless

and near-lossless cases for several grayscale 8-bit test images. The near-lossless case is

achieved by coarsely quantizing the residual values such that the maximum reconstruction

error that is introduced is |δ|. As expected near-lossless compression allows us to achieve

higher compression rates. The coarse quantization can be performed by throwing away

one (for |δ| = 1) or two (for |δ| = 2) least significant bits from the output of quantizer Q2
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before they go into the entropy encoder; a task that can be easily implemented in practice.

Table 9: Compression Performance
Test image Lossless (bpp) Near Lossless (bpp)
(grayscale) δ = 0 |δ| = 1 |δ| = 2 |δ| = 3
mri 5.129 3.614 2.939 2.522
man 5.925 4.372 3.625 3.120
cameraman 5.183 3.709 3.076 2.707
einstein 5.264 3.731 3.004 2.505
lena 5.178 3.615 2.907 2.468
mandril 5.841 4.275 3.545 3.057
house 5.105 3.579 2.894 2.459

5.6 Chip Measurement Results

Layout of a multi-resolution decomposition compression 
imager on a 0.5 m CMOS process One single pixel

pixels 

Memory circuit

Average circuit

CDS

Figure 60: Layout of the multiresolution decomposition imager.

This section presents measurement results from a fabricated chip implementing

one level of decomposition. A test chip was designed and fabricated on a 0.5 µm CMOS
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process as shown in figure 60. The test chip included a 32 × 32 active pixel array with

Morton-Z read-out, a CDS circuit and a switched-capacitor implementation of the mul-

tiresolution and prediction unit. The average power consumption of the multiresolution

decomposition and prediction unit is 327 µW. The integrator circuit occupies an area of

260 µm × 65 µm and the delay circuit occupies an area of 350 µm × 100 µm. Capac-

itance C was set to 0.5 pF to reduce the noise due to charge injection (nd) which was

measured to be less than 12 mV.

Multiresolution 
Decomposition 

Imager

UART 
connector

CPLD

Lens

Oscillatorshutter 
button

Reset 
button

ADC

LDOs

Figure 61: A custom PCB for testing of multiresolution decomposition imager.

As shown in figure 61, The test chip was outfitted with a lens to acquire actual

images. A printed circuit board (PCB) was designed to house the fabricated chip and

supporting circuitry such as voltage regulators and biasing sources. Power sources for

analog and digital parts were separated to minimize noise. A CPLD was employed to

generate the clock signals, the implement an adaptive Golomb-Rice entropy encoder, and

to transmit the compressed data via a serial port to a computer for later image processing.
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Table 10 summarizes the main features of the test chip.

Table 10: Features of the Test Chip
Technology 3-metal, 2-poly 0.5-µm CMOS
Pixel size 35µm × 38µm
Fill factor 44.5%
Power (computational unit) 327 µW
Power supply 5 V
Converter resolution 8 bits
Compression type Lossless/Near-lossless
Entropy coder Golomb-Rice

Figure 62 shows the acquired images. It can be seen that the reduced-resolution

image H1 retains the low-pass features of the original image and thus is a good predictor

especially for smooth areas of the image. At the edges, the prediction error increases as

can be seen in Fig. 62(c).
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Figure 62: Acquired images: (a) full-resolution eye image (H0); (b) reduced-resolution
eye image (H1); (c) residual eye image (R1). Histograms: (d) full-resolution eye image
(H0); (e) residual eye image (R1).

Figure 62(d) and 62(e) shows the histograms of the acquired H0 and the R1 im-

ages, respectively. Notably, the prediction operation results in a peaky residual distribu-

tion with lower variance making it suitable for entropy encoding. A total of 6773 bits were
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Figure 63: Images acquired from the fabricated imager chip: (a) circle after CDS; (b)
circle after integrator; (c) first-level residual for A; (d) histogram of first-level residual of
circle; (e) A after CDS; (f) A after integrator; (g) first-level residual for A; (h) histogram
of first-level residual of A.

needed to fully encode the acquired image resulting in 6.61 bpp. This result is higher than

the one expected from Table 9 and is likely due to the low resolution of our array and the

artifacts created during readout in the first and last rows of the image.

Figure 63 shows more images acquired from the imager. Fig. 63 also shows the

histograms of the corresponding residual images. The edges of these two pictures can be

clearly seen, since they are simple shapes. The entropy of the residual images is 4.33 bits

and 4.67 bits for the circle and the A images resulting in a CR of 1.52 and 1.45 respectively

in the lossless case. In the lossy case, CR is 3.19 with PSNR = 31.43 dB and 2.75 with

PSNR = 29.72 dB for the circle and the A images respectively.
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CHAPTER 6

AN INCREMENTAL Σ∆ CONVERTER FOR COMPRESSIVE SENSING

Compressive sensing is a relatively new development that enables a sparse or

compressible signal to be acquired with far fewer measurements than dictated by the

Nyquist/Shannon sampling theory, and images are sparse in DCT and wavelet domains.

Using compressive sensing, it is not necessary to acquire all the samples in the original

signal, but only a few measurements. These measurements are obtained by projecting the

input signal onto a basis of non-adaptive measurement vectors. This is accomplished by

employing non-adaptive linear projections that preserve the structure of the signal. The

signal is reconstructed from the projections using an optimization process [27]. When

compressive sensing is applied to the imager, the data rate can be reduced, so power con-

sumption can be reduced, too.

Mathematically, let X = [x1, x2, ..., xn] be a discrete-time signal, where xi are

individual samples taken from an underlying analog sensor and N is the number of sam-

ples (two-dimensional signals such as images are vectorized into a long one-dimensional

vector to fit this notation). The compressive sensing measurements yk are of the form of

inner products between X and a measurement vector ϕk that is incoherent or uncorrelated

with an sparsifying transform matrix Ψ. Formally,

yk = 〈X,ϕk〉 k = 1, 2, ...,M (6.1)

where M is the number of measurements. For K-sparse signals, M = O(Klog(N/K)).
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The original signal can be recovered by solving the following convex optimization pro-

gram:

min
X̃∈RN

‖X̃‖`1 subject to y = φX (6.2)

where ‖X̃‖`1 =
∑

i|Xi| and the rows of the matrix φ (also called sensing matrix) are the

vectors ϕk. The size of matrix φ is M × N . For compressive sensing to work, signals

must be sparse. Fortunately, most natural signals are sparse or nearly sparse under the

discrete cosine transform (DCT) or wavelet bases. The minimization in equation 6.2 can

be conveniently reduced to a linear program known as basis pursuit for which there are

efficient solutions [27].

A sufficient condition for a stable solution is that the sensing matrix meets the re-

stricted isometry property (RIP) sometimes also called the uniform uncertainty principle

(UUP). A related condition is the incoherence condition which requires the sensing and

sparsifying matrices to be uncoherent or uncorrelated with each other. It turns out that

random matrices satisfy both the RIP and the incoherent conditions with high probabil-

ity. Ways to construct these matrices include sampling i.i.d entries from a normal or a

Bernoulli distribution or by randomly selecting and permuting the rows of a 0/1 Walsh

or a noiselet matrix. Pseudo-random binary matrices generated by a linear feedback shift

registers (LFSR) have also been employed [42].

6.1 Incremental Σ∆ Modulation Architecture for Compressive sensing

The architecture of the proposed compressive sensing converter is shown in Fig-

ure 64. This ADC is based on the incremental Σ∆ converter architecture [7] and it is
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adapted here to simultaneously perform the tasks of computation of compressive sens-

ing measurements and quantization. The combination of these two operations in a single

circuit will ultimately save area and power resources.
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Figure 64: Schematic diagram of the proposed voltage-mode ADC.

The voltage input Vin is multiplied by a pseudo-random binary sequence ϕj(t)

generated by an LFSR. The integrator, which is normally present in a Σ∆ converter, is

used to perform the addition operation required in the inner product calculation of the

compressive sensing measurements. The 1/2 factor is needed to keep the output of the

integrator below the power supply voltage level and avoid clipping of the integrator’s

output.

The counter counts up whenever the output of the comparator is high. If we let

w(t) be the output voltage of the integrator, where t is a discrete-time index, then we can

write:

w(t) = w(t− 1) +
Vin(t)ϕj(t)− b(t)Vref

2
(6.3)

where b(t) ∈ 0, 1 is the output of the comparator and b(t)Vref is the output of the 1-bit

DAC. Expanding this recursive equation and using the initial conditions w(t) = 0 and
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b(t) = 0, at time t = N one obtains the following expression:

N∑
i=1

b(i) =

∑N
i=1 Vin(i)ϕj(i)

Vref
+
w(N)

Vref/2
(6.4)

The left hand side of equation 6.4 is an integer number and it is equal to the

counter’s output. The first term of the right hand side of 6.4 is the inner product between

Vin(t) and the random sequence ϕj(t) scaled by Vref while the second term of the right

hand side of 6.4 is the quantization error. This equation shows that this ADC architecture

can compute the compressive sensing measurements in the analog domain while convert-

ing the result to a digital representation. The bit resolution of this converter is log2N

where N is equal to the length of the pseudo-random sequence. Thus, to increase the

resolution, the length of the random sequence has to be increased accordingly. In the tra-

ditional incremental Σ∆ converter, the input Vin, gets amplified N times since it circulates

around the integrator loop N times. This amplification improves the SNR of the converter.

In the proposed converter we do not have this SNR improvement. However, it is possible

to improve the SNR in the proposed compressive sensing ADC by iterating the Σ∆ loop

Ns times for each bit in ϕj . If we do that equation 6.4 becomes:

N×Ns∑
i=1

b(i) =
Ns

∑N
i=1 Vin(i)ϕj(i)

Vref
+
w(N ×Ns)

Vref/2
(6.5)

The number of bits of resolution would then be log2(N ×Ns). Figure 65 presents

Matlab simulations results of the converter in Figure 64. Figure 65 shows the ideal com-

pressive sensing (CS) measurements computed using equation 6.1 and the output of the

ADC when the input is a sinusoidal waveform and the binary random sequence of length
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N = 32 is drawn from a uniformly distributed distribution (Ns has been set equal to 1).

Both the ideal measurements and the ADC’s outputs have been normalized by dividing

them by N.

Ideal CS measurements

Output of ADC

Figure 65: Normalized ideal CS measurements and the output of the compressive sensing
incremental Σ∆ converter.

As can be seen from Figure 65, the quantization error is significant. The quanti-

zation error can be reduced by increasing N. However, in situations where N cannot be

further increased, the quantization error can still be lowered by increasing Ns. Figure 3

shows a quantization error reduction for larger values of Ns. The price that we pay for

this reduction in quantization noise is an extended conversion time.
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Figure 66: Quantization error of the compressive sensing incremental Σ∆ converter for
Ns=1, 2 and 8.

6.2 Quantization Noise and Waveform Reconstruction

We carried out a number of tests to assess the impact of the quantization noise

introduced by the converter on the acquired waveforms after compressive sensing re-

construction. We employed a two-tone sinusoidal waveform as the input signal of the

converter. The input signal had a length of N=128 samples and a total of M = 60 com-

pressive measurements were collected. The test signal was reconstructed from the CS

measurements using the optimization technique in equation 6.2. The mean square error

(MSE) between the original and the reconstructed signals was measured. Two scenarios
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Table 11: MSE OF Reconstructed Signal from Measurements Computed by the ADC

Ns MSE Dynamic log2DR Mlog2DR
range (DR)

1 0.0276 12 3.585 215.10
2 0.0183 24 4.585 275.10
3 0.0133 36 5.169 310.14
4 0.0111 48 5.585 335.10
5 0.00512 60 5.907 354.42
6 0.00966 72 6.169 370.14
7 0.00553 86 6.426 385.6
8 0.00419 98 6.615 396.9

were explored: a) when the CS measurements are computed using the ideal equation 6.1

(no quantization noise) and b) when the CS measurements are computed by the proposed

ADC. In the first scenario, a MSE of 0.00526 was obtained. Table 11 presents the MSE

of the reconstructed signal when the CS measurements were computed by the proposed

ADC for different values of Ns.

Table 11 also reports the dynamic range (DR) of the measurements which serves

as a metric of the number of bits that would needed to encode each measurement. In

particular we employed the quantity log2DR as an estimation of the bit per measurement.

The last column shows the total number of bits that would be needed to encode the M

measurements. As a reference, we quantized the original two-tone input signal. For a

four-bit quantization we obtained a MSE of 0.00452. Using four bits/sample, a total of

4 × 128 = 512 bits would be needed to encode the input signal. Hence, the proposed

converter achieves a comparable distortion (at Ns = 8) as a simple 4-bit quantizer would
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Table 12: MSE OF Reconstructed Signal for an Unbalanced Sensing Matrix

Ns MSE Dynamic log2DR Mlog2DR
range (DR)

1 0.203 4 2 120
2 0.0466 10 3.32 199.2
3 0.0291 14 3.81 228.6
4 0.0154 20 4.32 259.2
5 0.0124 24 4.59 275.4
6 0.0101 30 4.91 294.6
7 0.0067 34 5.09 305.4
8 0.00494 40 5.32 319.2

but a lower bit rate. To match the bit rate achieved by ADC we would have to use a 3-bit

quantizer but that would result in a larger MSE.

The reconstruction performance can be improved if we modify the balance or

density of the random sensing matrices. Balanced binary random sensing matrices have

been employed that have a percentage of 1s approximately equal to the percentage of 0s. If

we allow the percentage of 0s to be larger we can obtain better MSE values. For instance,

for a sensing matrix with a 95% percentage of 0s and when the CS measurements are

computed ideally using equation 6.1, we obtain a MSE of 0.00190. Table 12 presents the

MSE results when the CS measurements are computed by the ADC using an unbalanced

sensing matrix with 95% of zeros.

AtNs=8, we obtain a MSE comparable to a 4-bit quantizer but again at a lower bit

rate. An advantage of using unbalanced sensing matrices is that the dynamic range of the

measurements decreases resulting in fewer bits needed to encode the measurements. An
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initial explanation of this could be that a sensing matrix with a large number of zeros will

have low mutual coherence with the sparsity basis. A smaller coherence means that fewer

measurements are needed (see Theorem 1.1 in [15]). Since the number of measurements

in our experiment stays the same, the MSE decreases.

6.3 The Incremental Σ∆ Converter Circuit Implementation

The proposed ADC was implemented using the switched-capacitor circuit shown

in Figure 67. The integrator is implemented with amplifier A1 and capacitor C2. The

1-bit DAC is implemented with the flip-flop FF1, the two AND gates and capacitor C3.

The multiplication of Vin with the pseudo-random sequence is performed by the two-

input multiplexor MUX1 which is controlled by the output of the LFSR generator. When

the LFSR output is 1, Vin is fed into the integrator otherwise 0 V is fed in. The LFSR

generator employs the feedback polynomial 1 + x2 + x3 + x4 + x8 to produce a maximal

length sequence. The counter is an 8-bit ripple counter. The capacitor sizes are: 2C1 =

C3 = C2 = 1pF .

The operation of the circuit is as follows: the integrator is initially reset at the

beginning of the conversion by pulling high the signals Φ1 and Φ2 causingC2 to discharge.

The counter, the LFSR and the flip-flop are also reset at this stage. The conversion then

proceeds using a non-overlapping two-phase clock with phases Φ1 and Φ2. During the

Φ1 phase, C1 is charged to: Vin(t)ϕ(t) − Voff where Voff is the offset of the amplifier

A1. During phase Φ1 capacitor C3 is pre-charged to −Voff if the output of the previous

comparison, b(t−1), is 1. If b(t−1) is 0, C3 maintains its previous charge. During phase

110



counter

LFSR DQ

Q

Φ1

Φ1

C2

C3

Vref

Vref

reset clk

reset

MSB

LSB

reset

clk

Vin(t)

Φ2

1

0

w(t)
b(t)

enable

Φ2

A1

FF1

C1

Φ2

Φ1
)(t

MUX1

Figure 67: Switched-capacitor circuit implementation of the compressive sensing ADC

Φ2 capacitor C1 is charged to −V off and the charge difference, CVin(t)ϕ(t), is forced to

move into C2.

During Φ2, C3 is charged to 1/2Vref − Voff if the previous output of the com-

parator was 1. Thus, the charge difference −CV ref is forced into C2. If the output of

the previous comparison was 0, the charge in C3 does not change and C3 is not forced to

inject any charge into C2. Hence, at the end of phase Φ2, the charge in C2 is given by:

C[Vin(t)ϕ(t) − Vrefb(t − 1)]. Since the capacitance of C2 is 2C, the voltage across C2

is 1/2[Vin(t)ϕ(t) − Vrefb(t − 1)]. Thus, the proposed circuit implements equation 6.3.

Moreover, the offset voltage of amplifier A1, Voff , is canceled during the integration pro-

cess. The Φ1 and Φ2 phases are repeated until the conversion finishes. At the end of the

conversion cycle, the output of the counter is the digital representation of a compressive

sensing measurement. A drawback of this design is that the output voltage, w(t), of the
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integrator is switching between 0 V during Φ1 and 1/2[Vin(t)ϕ(t)− Vrefb(t− 1)] during

Φ2. This could significantly reduce the speed of the converter. An improved design and

analysis of the improved design are presented in Chapter 7.

6.4 Results and Measurements

The compressive sensing incremental Σ∆ converter has been evaluated through

transistor level simulations using the Cadence Spectre circuit simulator. The target fab-

rication process for the converter is a 0.5 µm CMOS technology. For the circuit simu-

lations, a two-stage n-type input opamp was employed to implement the amplifier and

the comparator. The prototype of the compressive sensing incremental Σ∆ converter was

first built and validated on a printed circuit board (PCB) with low-speed off-the-shelf

components. Then an integrated circuit was designed and fabricated on a 0.5 µm CMOS

fabrication process to validate the proposed AIC on hardware.

6.4.1 Σ∆ Converter on PCB

Figure 68 shows the test setup to validate the incremental Σ∆ Converter system

to work in the compressive sensing mode or in standard Nyquist conversion mode. The

system was built by off-the-shelf components on a PCB, and it was able to run at a sam-

pling frequency of 125 kHz. Supporting circuitry, such as voltage regulators and biasing

sources, was also included on the PCB. Separate power supplies for analog and digital

parts and decoupling capacitors were used to minimize noise. A CPLD was employed to

generate the clock signals and to transmit the measurements via a serial port to a computer

for later reconstruction. The input signals were provided by a function generator which
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Figure 68: Diagram of the test setup for compressive sensing on PCB.

can generate Sine waves, AM, and FM signals.

Figures 69 and 70 show the results of reconstructed signals and signals that were

acquired in normal ADC mode of the Σ∆ Converter. Both the compressive sensing mode

and the standard Nyquist conversion mode were running at the same clock frequency and

using the same input signals. The Σ∆ Converter running in compressive sensing mode

has better output signals when reconstructed from compressive sensing measurements for

both AM and FM signal than running as normal ADC. At this point, the compressive

sensing Σ∆ AIC converter has been proved and validated that it can be implemented on

hardware. The integrated circuit was designed and the results of the compressive sensing

AIC system on a chip are presented in the following section.
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Figure 69: Test results of AM signal: (a) Reconstructed from Compressive Sensing Mea-
surements; (b) Sampled using Normal ADC Mode.

6.4.2 Σ∆ Converter on Chip

An integrated circuit was designed and fabricated on a 0.5 µm CMOS fabrication

process to validate the proposed AIC on hardware. For the hardware implementation we

chose a bit resolution of 10 bits for the converter which allowsN to take up to 1024 values,

providing finer spectrum resolution. The fabricated integrated circuit was tested using a

custom test setup. The test setup is shown in Fig. 71. It consists of a printed circuit board

(PCB) designed to house the fabricated chip and supporting circuitry such as voltage

regulators and biasing sources. Separate power supplies for analog and digital parts were
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Figure 70: Test results of FM signal: (a) Reconstructed from Compressive Sensing Mea-
surements; (b) Sampled using Normal ADC Mode.

used as well as decoupling capacitors to minimize noise. A CPLD was employed to

generate the clock signals and to transmit the measurements via a serial port to a computer

for later reconstruction. A function generator was employed to generate input signals with

sparse spectrum. The converter’s clock frequency was set to 1 MHz which in turn sets the

input bandwidth of the converter toBW = 500 kHz. This bandwidth is sufficient to cover

the long-wave AM spectrum. The offset was estimated employing the method outlined in

the previous section to be 17.4 mV.
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Figure 71: Diagram of the custom test setup.

As an initial test, the function generator was set to generate a single sinusoidal

signal at 20 kHz which was acquired by the AIC. The acquired measurements were cor-

rected for offset before signal recovery. Figure 72 shows the normalized power spectrum

of the recovered signal for N = 1024 and M = 512. The measured signal-to-noise-plus-

distortion ratio (SNDR) is 52.6 dB, which is equivalent to an effective number of bits

(ENOB) of 8.4 bits.

A second test was conducted with a frequency-sparse signal consisting of two

amplitude modulated (AM) signals with carriers at 100 kHz and 250 kHz and a sinusoidal

at 400 kHz. Fig. 73 shows the normalized power spectrum of the recovered signal. The

two AM signals and the single sinusoidal are clearly visible in the spectrum. Due to noise
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Figure 72: Normalized spectrum of recovered signal. The input signal is a single sinu-
soidal of frequency 20 kHz.

from the test setup, circuit non-idealities and the inherent quantization noise from the

converter, the spectrum of the recovered signal contains spurious components. However,

the spurious components are well below the signal power level. An AIC achieves its

maximum reconstruction quality when the input signal is the sparsest. I.e. for a single tone

and decreases if the sparsity increase but the number of measurements is kept constant,

which explains the lower noise floor observed in Fig. 72.

The average power consumption of the AIC is summarized in Table 13 for a supply

voltage of 3.0 V and a clock frequency of 1 MHz. The accumulator and the comparator

are implemented using two-stages opamps. The counter is a 10-bit ripple counter and

the pseudo-noise (PN) sequence generator is a 32-bit linear feedback register (LFSR).

The total power consumption is 160.4 µW. The power consumption can be improved by

employing a regenerative comparator as the one presented in [57]. Circuit simulations
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Figure 73: Normalized spectrum of recovered signal. The input signal consists of two
AM signals with carrier at frequencies at 100 kHz and 250 kHz and a single sinusoidal at
400 kHz.

show that a regenerative comparator can consume less than 15 µW while working at 1

MHz. The AIC occupies an area of 0.127 mm2. Table 14 summarizes the performance of

the proposed Σ∆ AIC.

Table 13: Average Power Consumption of Σ∆ AIC
Accumulator 81.8 µW
Comparator 40.4 µW
Counter 5.3 µW
1-bit DAC 0.2 µW
PN seq. generator 32.7 µW
Total 160.4 µW
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Table 14: Performance Summary of Σ∆ AIC
Supply voltage 3.0 V
Sampling frequency 1 MHz
Resolution 10 bits
ENOB 8.4 bits
Power 160.4 µW
Technology 0.5 µm
Area 0.127 mm2

Architecture Σ∆ with
compressive sensing

6.5 Comparison with Nyquist-Rate Converters

If the converter is operated as a standard incremental Σ∆ converter, the input

bandwidth is limited to fclk/2N . However, using the AIC concept and with virtually

the same circuit, input signals with bandwidth of up to fclk/2 can be acquired provided

that they have a sparse spectrum. Table 15 presents a comparison with other Nyquist-

rate converter architectures fabricated on similar CMOS processes and on more advanced

submicron processes.

Table 15: Performance Comparison of AIC with Nyquist-Rate Converters

Design [71] [24] [56] [1] [66] [47] [34] [61] [25] This work
Conversion rate (MHz) 200 1 50 20.48 0.1 150 1000 200 3500 1
ENOB (bits) 5.0 10.5 10.3 9.0 7.0 7.3 8.9 10.4 4.9 8.4
Power (mW) 110 6 850 19.5 0.0031 71 250 348 98 0.16
Process 0.5 µm 0.6 µm 0.6 µm 0.35 µm 0.25 µm 0.18 µm 0.13 µm 90 nm 90 nm 0.5 µm
Architecture Flash SAR Pipeline Pipeline SAR Interleaved Interleaved Pipeline Flash Σ∆
Area (mm2) 1.6 0.3 16 1.3 0.053 1.8 3.5 1.36 0.1485 0.127
FOM (pJ/conv. step) 16.04 4.14 12.81 1.85 0.242 3.0 0.52 1.41 0.94 0.474
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A figure of merit (FOM) is calculated for each converter as follows:

FOM =
Power

2ENOBfs
(6.6)

The AIC performs fairly well when compared with Nyquist converters fabricated

in a similar CMOS process. It also performs favorably (in terms of FOM and area) to

some converters fabricated in more advanced CMOS process. Fabrication of the AIC in a

deep-submicron process is expected to improve its performance. The power consumption

of the digital part is expected to reduce significantly in deep submicron technologies [23].

The analog part of the converter, which computes the projections, is expected to improve

its performance in the 0.25 µm and 0.35 µm processes [4, 13]. At ultra-deep-submicron

processes critical analog circuits will have to operate at higher voltages through a com-

bination of thin- and thick-oxide transistors to benefit from technology scaling [5]. The

circuit analysis presented in [21] shows that in a target 90 nm process analog signal pro-

jections can be efficiently computed using Gm-C circuits while running at 1 GHz.

An AIC acquires a signal in a fundamentally different manner than a Nyquist-

rate converter does. An AIC acquires projections of the input signal rather than direct

samples. The projections are acquired as shown in Fig. 74. The input signal s(t) and the

random-like signal ϕ(t) are divided into blocks of N samples. Each block is then used

to compute one projection or measurement. The number of projections, M , that need to

be acquired depends on the sparsity level of the signal and the target reconstruction SNR.

To acquire an M × N long signal, the AIC needs to acquire M projections instead of

the M × N samples required by a Nyquist-rate converter. The value of N is set by the

underlying signal model expressed in equations (7.1) and (7.10). Although the projections
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Figure 74: Graphical depiction of signal acquisition under compressive sensing.

have a larger dynamic range (10 bits in our case), the AIC stills provides effective data

compression. Assuming that a Nyquist-rate ADC encodes each sample using 8 bits, the

compression ratio that is achieved by the AIC can be estimated to be (8 bits/sample×M×

N)/(10 bits/projection×M) = 0.8N . Data compression is inherent to an AIC. However,

data compression comes at the price of a longer acquisition time. It takes M × N × Ts

seconds for the AIC presented here to acquire a signal. An Nyquist-rate convereter needs

the same amount of time to acquire an M × N long signal. The acquisition time can be

decreased by employing multiple random demodulators working in parallel but at the cost

of increased power consumption. Parallel architectures have been explored in [21], [60]

and [39].
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6.6 Related Work on AICs

There have been other efforts to demonstrate in practice the potential of AICs.

In [60] and [43] a prototype hardware implementation of a compressive sensing converter

was presented. The prototype employs an analog multiplier, a Gm-C integrator and a

low-rate standard backend ADC to implement the AIC. A commercially-available DSP

board was employed to process the output of the converter and to recover the original

input signal. The converter was tested with sinusoidal and amplitude-modulated (AM)

signals. Successful signal recovery was demonstrated at a conversion rate equivalent to

1/8th of the Nyquist rate.

In [80] the architecture of a parallel-path AIC for spectrum sensing was presented.

A hardware prototype of the analog front-end of the converter was implemented using off-

the-shelf components. Each path consists of an OTA that converts the input voltage into

current and a network of switches and capacitors that implements a switched-capacitor

integrator. An oscilloscope was employed to convert the output of the integrator to digital.

The circuit was tested with a frequency-hopping signal spanning 200 kHz. Successful

signal reconstruction was demonstrated at a conversion rate equivalent to 32% of the

Nyquist rate.

In [12] the authors outline a Σ∆ approach for computing compressive sensing

measurements. It employs a classical Σ∆ loop with feedback coefficients that change

dynamically according to a random dictionary. This approach requires a feedback net-

work with a very large order increasing the potential for unstable behavior. The feedback

network coefficients can be either computed at run-time or they can be generated off-line
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and stored for their later use. The authors provide algorithms to generate coefficients that

result in stable behavior. No hardware implementation was presented.

The authors of [39] present initial simulation results of an AIC based on a time

encoding machine (TEM). A standard TEM was modified to introduce a level of random-

ness in the switching time points of the output pulses. The length of the output pulses

are converted to voltage levels which are then measured by a backend ADC. The authors

show that the resulting measurement process is similar to a randomly sampled Fourier

ensemble. The drawback of this approach is that high frequencies are attenuated. No

hardware implementation was presented.

In [21] the design of a receiver exploiting compressive sensing is presented. The

receiver has a parallel architecture dubbed parallel segmented compressive sensing. Based

on a theoretical analysis and circuit simulations it is predicted that a hardware implemen-

tation on a 90-nm CMOS process will be able to acquire signals with bandwidths of 1.5

GHz while consuming 120.8 mW. The analysis include the effects of device noise and

clock jitter in the quality of signal reconstruction. An integrated circuit was designed but

no hardware measurements were reported.

In [52] the authors present a hardware implementation of the modulated wideband

converter (MWC). The MWC is based on a circuit similar to the random demodulator

but, unlike the AIC, it does not require the projection basis to be random. The only

requirement is for the projection basis to be periodic. An implementation of the modulated

wideband converter with off-the-shelf components was employed to demonstrate signal

acquisition at 2 GHz. The MWC consumes 20 W of power.

123



CHAPTER 7

DETAILED DESCRIPTION OF A SIGMA-DELTA RANDOM DEMODULATOR

CONVERTER ARCHITECTURE FOR COMPRESSIVE SENSING APPLICATIONS

This chapter presents an indepth look at a compressive sensing sigma-delta con-

verter. A Sigma-Delta architecture for a random demodulator converter is presented. The

random demodulator converter exploits the results of compressive sensing theory to ac-

quire sparse signals by projecting the signal of interest onto a random basis. The signal

can be recovered from a relatively small number of random projections. Hence, the ran-

dom demodulator converter is able to provide a compressed representation of the input

signal at its output. The proposed architecture is based on a first-order incremental Sigma-

Delta converter that can be easily configured to work in the compressive sensing mode or

in standard Nyquist conversion mode. The integrator and the counter that are normally

present in an incremental Sigma-Delta converter are re-used to simultaneously compute

compressive sensing measurements and convert them to digital. A circuit analysis that

includes circuit non-idealities is presented. The analysis reveals that offset has a signif-

icant impact. Thus, a method for offset compensation is provided. A prototype of the

random demodulator converter was fabricated and tested with frequency sparse signals,

demonstrating the validity of the design.

Compressive sensing is an emerging signal acquisition paradigm in which sparse
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or near-sparse signals can be efficiently acquired from a relatively small set of measure-

ments. Compressive sensing theory applies to signals that are sparse in the time or fre-

quency domains. Hence, compressive sensing can be applied to wireless communica-

tions in scenarios where the radio spectrum is not fully occupied leading to signals with

sparse frequency content. Compressive sensing also states that signals that are sparse un-

der a suitable sparsifying transform, such as the wavelet transform or the discrete cosine

transform, can be efficiently acquired. Thus, compressive sensing can be employed to

efficiently acquire images and biomedical signals [28, 49].
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Figure 75: Conventional and compressive sensing signal acquisition approaches. A ran-
dom demodulator circuit is employed to project the input signal s(t) onto the random
vectors ϕk(t)

Rather than directly sampling a signal, compressive sensing acquires measure-

ments or projections of the signal onto a random basis. A practical approach to compute

the random projections is to employ the random demodulator circuit shown in Figure
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75 [70]. This figure also shows the conventional analog-to-digital (A/D) signal acquisi-

tion approach. The random demodulator employs a multiplier and an integrator to project

the input signal s(t) onto a random-like signal ϕ(t). The output of the integrator is sam-

pled and converted to digital by the backend analog-to-digital converter (ADC) everyNTs

seconds, where N is a large positive integer.

If the projection basis is incoherent with the basis under which the signal is sparse,

then only a small number of projections contain most of the information needed to recover

the original signal. Therefore, compressive sensing provides a compressed representation

of the input signal. Signal recovery is typically formulated as an optimization problem

that finds the sparsest signal that matches the acquired projections [16].

In this work, we present an architecture for the random demodulator that is based

on a first-order incremental Σ∆ converter. The integrator that is already present in the

Σ∆ converter is merged with the integrator required in the random demodulator circuit.

Additionally, the digital counter that is part of the incremental converter is used in the

compressive sensing converter to generate a digital output. Thus, the proposed architec-

ture merges the random demodulator with the backend ADC. The resulting circuit, which

we call a random demodulator converter, provides a digital representation of the analog

input signal. Hardware merging enables the proposed converter to simultaneously com-

pute the compressive sensing projections and to convert them to digital format, resulting

in savings in circuit complexity. A switched-capacitor hardware implementation of the

compressive sensing converter is presented and an analysis of circuit non-idealities is car-

ried out. As a proof of concept, a prototype was implemented and tested. Measurement
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results are presented that demonstrate the validity of the approach.

7.1 Theory

Let us consider a continuous-time model for the input signal as follows:

s(t) =
N∑
n=1

anψn(t) (7.1)

where, an ∈ R and {ψn} is a basis of continuous-time orthonormal waveforms with

bandwidth less than BW Hz [70]. We are interested in signals that are sparse, that is,

only K of the N coefficients an are non-zero at any time with K � N .

The proposed random demodulator architecture uses discrete-time switched ca-

pacitor circuits (see Section 7.3). Hence, in our discussion we will use the following

discrete-time notation: s[i] = s(iTs), where i is the sample index and Ts is the sampling

period. Similarly, ϕ[i] = ϕ(iTs) = εi, where εi ∈ {0, 1}. The signal s(t) can be recovered

from a small number of measurements or projections, y[k], k = 1, 2 . . .M . Each measure-

ment is the inner product between s and the random-like signal ϕ [17]. Mathematically,

the measurements are computed as follows:

y[k] =
N∑
j=1

sk[j] · ϕk[j] k = 1, 2, · · ·M (7.2)

where, sk[j] = s[(k − 1)N + j] and ϕk[j] = ϕ[(k − 1)N + j].

The random demodulator generates M measurements every M×N×Ts seconds.

Thus, it has a conversion rate of 1/(NTs) = fs/N . The value of N is set by the un-

derlying signal model expressed in equation (7.1). From (7.1) we find that the spectrum

resolution of the random demodulator converter is BW/N Hz.
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The operation of the compressive sensing converter can be summarized in matrix

notation as follows:

y = Φs (7.3)

where, y =
[
y[1], · · · , y[M ]

]
, s =

[
s[1], · · · , s[NM ]

]
and Φ is an M ×NM matrix with

the following structure [70]:

Φ =


~ϕ1

~ϕ2

. . .

~ϕM

 (7.4)

where, ~ϕk =
[
ϕk[1], · · · , ϕk[M ]

]
. The matrix Φ is called the measurement matrix.

Letting ψi,n = ψn(iTs), i = 1 . . . NM we can write s = Ψa, where the compo-

nents of the NM × N matrix Ψ are the values ψi,n and the components of vector a are

the coefficients an. Thus, y = ΦΨa = Θa, where Θ = ΦΨ.

A sufficient condition for a stable recovery is that Φ meets the restricted isometry

property (RIP) sometimes also called the uniform uncertainty principle (UUP) [18,35]. It

turns out that random matrices satisfy the RIP condition with high probability.

In the random demodulator converter the measurements are quantized introducing

quantization distortion or noise. Hence, the input signal has to be recovered from quan-

tized or noisy measurements ŷ[k]. When the measurements are corrupted by quantization

noise, the optimization problem can be formulated as follows:

min
ã
‖ã‖`1 subject to ‖Θã− ŷ‖2 ≤ ε (7.5)
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where, ε is an upper bound on the noise magnitude. This optimization problem is called

Basis Pursuit DeNoise (BPDN) and can be solved by second order programming tech-

niques [17, 20]. Once the optimization in (7.5) is solved, the input signal is recovered

from s̃ = Ψã. Figure 76 summarizes the encoding and decoding process employed in the

compressive sensing framework.
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Figure 76: Encoding and decoding process under the compressive sensing framework.
The input s(t) is encoded using the measurement matrix Φ and a quantizer. The quantized
measurements ŷ are employed to recover the input signal. The discrete-time recovered
signal is denoted by s̃.

7.2 Random Demodulator Converter Architecture

The circuit architecture of the proposed random demodulator is based on a dis-

crete time first-order incremental Σ∆ converter and is shown in Figure 77. The integra-

tion operation required by the random demodulator is performed by the integrator that

is already present in the Σ∆ converter. In a discrete-time implementation, the integrator

is replaced by the accumulator shown in Figure 77. After N clock cycles, the counter’s

output contains the digital representation of one compressive sensing measurement. The

proposed converter architecture is able to simultaneously compute compressive sensing
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measurements, quantize them and convert them to digital format, saving silicon area re-

sources. The proposed architecture was first introduced by the authors in a conference

paper [73]. Here, an expanded analysis that includes the effect of quantization and cir-

cuit non-idealities is presented. A prototype hardware implementation and measurement

results are also reported. Incremental Σ∆ converters have been used in the past to per-

form weighted average quantization for focal-plane image compression and FIR filter-

ing [55]. More recently, incremental Σ∆ converters have been applied to compressive

sensing imaging [53].

The proposed random demodulator converter is composed of a multiplier, a first-

order Σ∆ modulator and a digital counter. In a standard incremental Σ∆ ADC, the input

s(t) is held constant by a sample-and-hold (S/H) circuit during conversion. However, in

the random demodulator converter the S/H circuit is removed allowing the input signal

to change during conversion. Binary random matrices are employed in this work. Thus,

the multiplier is implemented with a simple switch that is closed if ϕk[n] = 1 and open

if ϕk[n] = 0. It should be noted that in the discrete-time implementation, aliasing is

introduced due to sampling. Thus, an anti-alias filter is needed in front of the converter to

minimize aliasing effects.

A conversion cycle starts by resetting the accumulator and the digital counter .

After reset the Σ∆ loop is iterated N times. The digital counter counts the number of

clock cycles for which the comparator’s output remains high. From Figure 77, the output

of the accumulator can be written as follows:

Vx[n] = Vx[n− 1] + α
(
sk[n] · ϕk[n]− b[n− 1]Vref

)
(7.6)
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Figure 77: Block diagram of the proposed Σ∆ random demodulator converter.

where, k = 1, 2, . . .M and n = 1, 2, . . . N . Assuming zero initial conditions for Vx and

b, the output of the accumulator after N iterations is given by:

Vx[N ] = α
N∑
n=1

sk[n] · ϕk[n]− α · Vref
N−1∑
n=1

b[n] (7.7)

Equation (7.7) can be rearranged to yield:

Vref

N−1∑
n=1

b[n] =
N∑
n=1

sk[n] · ϕk[n]− 1

α
· Vx[N ] (7.8)

Note that
∑N−1

n=1 b[n] is an integer number and it is equal to the output of the digital

counter. The right hand side of equation (7.8) has two parts: the compressive sensing

measurement value y[k] =
∑N

n=1 sk[n] · ϕk[n] and the term −Vx[N ]
α

which corresponds to

the quantization noise. Thus, the output of the counter is the digital representation of the

corresponding compressive sensing measurement.

To provide an insight into the effects of quantization and circuit non-idealities on

the performance of the random demodulator converter, several system-level simulations

were conducted. In the simulations, we varied the sparsity of the signal (K), the number

of measurements (M ), and N . For each parameter combination, 500 randomly-generated

131



Φ matrices were employed to encode the input signal and the average SNR of the recon-

structed signal was calculated. A total of M measurements were employed in each signal

recovery attempt. The value of α was set to 1. The SNR in each reconstruction trial is

computed using:

SNR = 10 log10

‖s‖22
‖s− s̃‖22

(7.9)

where, s̃ denotes the recovered signal.

The signal model in (7.1) was used to generate sparse input signals. The location

of the K non-zero an coefficients in the sparse vector a were randomly selected using a

uniform distribution in the range [0, N). The orthonormal basis {ψn} was based on the

discrete cosine transform (DCT) as follows:

ψn(t) =


√

1
MN

if n = 1√
2

MN
cos
(
2π(n− 1)t

)
if n = 2 . . . N

(7.10)

Once the sparse vector a and the matrix Ψ were built, the sparse input signal was

generated using s = Ψa. The random-like measurement vectors ~ϕk were derived from a

Bernoulli distribution in which the probabilities of a 1 and a 0 are equal. The compressive

sensing measurements were computed as y = Φs.

The BPDN program in (7.5) was employed to recover the input signal. The BPDN

program was solved using the `1-MAGIC suite of convex programming tools [14]. The

noise upper bound ε in (7.5) was derived in [36]. For the reader’s convenience, the noise

upper bound is reproduced in (7.11):

ε =
∆

2(p+ 1)1/p

(
M + κ(p+ 1)

√
M

)1/p

(7.11)
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where, p = 2 because the `2 norm is employed in the constraint in (7.5) and κ = 2.

The average value for the quantization step width, ∆ = Vref/2, was employed in the

simulations.

Figure 78 shows the average and the standard deviation of the SNR of recov-

ered signals from the quantized measurements generated by the Σ∆ compressive sensing

converter as the number of measurements is increased for N = 256, N = 512 and for

N = 1024. The average SNR was computed over 500 reconstruction trials. In each trial

a new random matrix Φ was generated. The standard deviation is shown using error bars.
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Figure 78: Average and standard deviation of the signal-to-noise ratio of recovered input
signals from quantized measurements: (a) N = 256 (b) N = 512 (c) N = 1024.

The distortion introduced during signal reconstruction is a function of the quanti-

zation noise and other parameters such signal sparsity, number of measurements and the

length N of the sparse vector a. The following reconstruction distortion upper bound was

derived and reported in [19, 32]:

1

K
‖s− s̃‖22 ≤ c1

K

M
(logN)σ2 (7.12)
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where, c1 is a constant and σ2 is the variance of the measurement noise including quanti-

zation noise. Letting r = M/N , the distortion upper bound can be written as:

‖s− s̃‖22 ≤ c1K
2(logN)

σ2

rN
(7.13)

The upper bound shows the dependence of the recovery performance on the dif-

ferent parameters of the converter. From (7.13) we see that recovery performance can be

improved by increasing N or by increasing the number of measurements (increasing r).

The simulation results presented in Figure 78 agree qualitatively with the theoretical dis-

tortion bound in (7.13). Figure 78 also shows that the SNR saturates as M is increased.

The saturation is due to the usage of the `2 norm in the BPDN program in (7.5) [36].

For an in-depth treatment on the impact of quantization noise on compressive sensing

recovery performance, the reader is referred to previous work on the subject [36, 41, 70].

Notice that if we make ϕk[n] = 1 for all n and add a sample-and-hold circuit at the

input of the compressive sensing converter, the resulting circuit is a regular incremental

Σ∆ ADC. Thus, the proposed converter can be easily configured to work in Nyquist mode

(incremental Σ∆) or in compressive sensing mode. The compressive sensing mode can be

used when compression is needed, and the Nyquist mode can be used when low distortion

and not compression is preferable.

7.3 Circuit Design

A prototype was designed, fabricated and tested as a proof of concept. The

switched-capacitor circuit shown in Figure 79 was employed to implement the first-order
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Σ∆ modulator. The random demodulator was fabricated in a 0.5 µm CMOS fabrica-

tion process. The switched-capacitor circuit uses a two-phase non-overlapping clock with

phases φ1 and φ2. The discrete-time integrator is implemented with capacitors C1 and C2,

amplifier A1 and switches S1 to S5. The 1-bit DAC is implemented using capacitor C3

and switches S6 and S7. The switches are implemented with CMOS transmission gates.
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C3

clk
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en
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R

R

Figure 79: Schematic diagram of the switched-capacitor implementation.

Assuming an ideal amplifier and ideal switches are used, capacitor C1 is charged

to C1(s[n]ϕk[n]) during phase φ1 and fully discharged during φ2. Thus, a charge of

C1(s[n]ϕk[n]) is transfered into capacitor C2 every clock cycle. During phase φ1, ca-

pacitor C3 is pre-charged to C3Vref if the previous comparator output, b[n − 1], is high.

Otherwise, if b[n − 1] is low, C3 is not pre-charged and its charge remains zero. During

phase φ2 the charge in C3 is subtracted from C2. Considering that capacitor C2 is dis-

charged at the beginning of the conversion cycle (by closing switch S5), the integrator’s
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output voltage, at the end of the φ2 phase of the N th clock cycle, is given by:

Vx[N ] =
1

C2

[
C1

N∑
n=1

sk[n]ϕk[n]− C3Vref

N−1∑
n=1

b[n]

]
(7.14)

where,

b[n] =

{
1 if Vx[n] ≥ Vref

0 if Vx[n] < Vref
(7.15)

Reordering equation (7.14) yields:

Vref

N−1∑
n=1

b[n] =
C1

C3

N∑
n=1

sk[n]ϕk[n]− C2

C3

Vx[N ] (7.16)

If the capacitors’ sizes are chosen such that C1 = C3 = αC2, then the switched-

capacitor circuit in Figure 79 implements equation (7.8). In practice, circuit non-idealities

such as offset voltage, charge injection and capacitor mismatch introduce noise into the

compressive sensing measurements affecting the performance of the converter.

7.3.1 Circuit Non-Idealities

In this section we study the impact of circuit non-idealities on the performance of

the compressive sensing converter. The circuit non-idealities that are considered are the

amplifier and comparator’s offsets, charge injection, capacitor mismatch and comparator

metastability. Analytical expressions of the errors introduced by the circuit non-idealities

are derived and their impact on the signal recovery performance is assessed through nu-

merical simulations.

7.3.1.1 Offset Voltage

We consider an input-referred offset voltage of Voff1 Volts for amplifier A1 and of

Voff2 for the comparator A2. Due to A1’s offset voltage, the charge transfered from C1 to

136



C2 during φ2 becomes C1(sk[n]φk[n]) + C1Voff1 yielding at the end of conversion:

Vref

N−1∑
n=1

b[n] =
C1

C3

N∑
n=1

sk[n]ϕk[n]− C2

C3

Vx[N ] +

C2

C3

Voff1 +N
C1

C3

Voff1 + Voff1

N−1∑
n=1

b[n]︸ ︷︷ ︸
Eoff1

.

(7.17)

Thus, the error in the converter’s output due to Voff1 is Eoff1. If Voff1 is known

and constant, the term Voff1
∑N−1

n=1 b[n] can be readily compensated for since the counter’s

output
∑N−1

n=1 b[n] is known. The other terms in Eoff1 are affected by capacitor mismatch

whose impact is considered below.

The comparator’s output, b[n], including the comparator’s offset voltage Voff2 is

given by:

b[n] =

{
1 if Vx[n] ≥ Vref + Voff2

0 if Vx[n] < Vref + Voff2
(7.18)

The effect of the comparator’s offset voltage is a change in the maximum level

of Vx[N ] from Vref to Vref + Voff2. This change increases the quantization noise by an

amount of C2

C3
Voff2. Typically, Voff2 � Vref . Hence, the impact of the comparator’s

offset in the converter’s output is minimal.

7.3.1.2 Charge Injection

Charge injection from switches modifies the charge accumulated in C2. We con-

sider the channel charge released when switches are turned off as the main source of

charge injection-induced error.
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The charge injected by S1 is signal dependent making it difficult to compensate.

However, if S3 is turned off slightly before S1, the injection of signal-dependent charge

can be avoided. At the end of phase φ1, S3 injects charge into C1 while S7 injects charge

into C3. At the end of φ2, S4 and S6 inject charge into C2. The output of the converter,

including the error introduced by charge injection and amplifier’s offset, is given by:

Vref

N−1∑
n=1

b[n] =
C1

C3

N∑
n=1

sk[n]ϕk[n]− C2

C3

Vx[N ]+

+
C2

C3

Voff1 +N
C1

C3

Voff1 + Voff1

N−1∑
n=1

b[n]︸ ︷︷ ︸
Eoff1

+

+
N

2C3

(
QCH3 +QCH4

)
+
QCH6 +QCH7

2C3

N−1∑
n=1

b[n]︸ ︷︷ ︸
Einj

(7.19)

where, QCH3, QCH4, QCH6 and QCH7 are the channel charge from switches S3, S4, S6

and S7 respectively. Einj is the error introduced due to charge injection. Since the charge

injection error is signal independent, it can be corrected after the conversion has finished.

Circuit design techniques such as switch bootstrapping can also be employed to make

charge injection signal independent.

7.3.1.3 Capacitor Mismatch

The capacitor mismatch is modeled in the following manner:

C1

C3

= 1 + e1

C2

C3

=
1

α
+ e2 (7.20)
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where, e1 and e2 represent the capacitor mismatch errors. Replacing (7.20) in (7.19),

reordering terms and considering α = 1 yields:

Vref

N−1∑
n=1

b[n] = (1 + e1)
N∑
n=1

sk[n]ϕk[n]− (1 + e2)Vx[N ]

+ (e2 +Ne1)Voff1 + (N + 1)Voff1 + Voff1

N−1∑
n=1

b[n]

+
N

2C3

(
QCH3 +QCH4

)
+
QCH6 +QCH7

2C3

N−1∑
n=1

b[n].

(7.21)

Notably, capacitor mismatch results in a scaling of the compressive sensing mea-

surements by a factor of (1 + e1). The term (N + 1)Voff1 + Voff1
∑N−1

n=1 b[n] is constant

and can be readily compensated if Voff1 is known. The term (e2 + Ne1)Voff1, although

constant, is not easy to correct due to the uncertainties in e1 and e2. For large-area inte-

grated capacitors designed with proper layout techniques, the matching accuracy can be

as low as 0.1%.

The model in (7.21) was employed in numerical simulations to assess the impact

of circuit non-idealities on the performance of signal recovery. In the simulations, e1 and

e2 are considered to be random variables with a mean value of 0.5% and 0.25% standard

deviation. The offset voltage is modeled with a normal random variable with mean value

of 20 mV and standard deviation of 10 mV. Charge injection is modeled as:

QCH = WLCox
(
VGS − VTH

)
(7.22)

where, W = 1.5 µm and L = 0.6 µm are the width and length of the switch transistors,

Cox = 2.510−3 F/m2, VGS is the gate-to-source voltage, VTH = 0.7 V is the transistor
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threshold and C2 = C1 = C3 = 2 pF.

Figure 80 shows the average SNR of the recovered signal from quantized measure-

ments that are also affected by circuit non-idealities. Notably, circuit non-idealities have a

significant impact in the quality of the recovered signal. Among the circuit non-idealities

considered, offset voltage has the most impact on SNR. Figure 81 shows the average SNR

of the recovered signal from measurements that have been corrected for Voff1 but that still

suffer from charge injection and capacitor mismatch. As observed in Figures 80 and 81,

offset correction can significantly improve the performance of the random demodulator

converter.
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Figure 80: Average and standard deviation of signal-to-noise ratio of recovered signals
from noisy and quantized measurements for N = 1024.

In a regular Σ∆ converter, offset error does not cause non-linear distortion and can
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Figure 81: Average and standard deviation of signal-to-noise ratio of signals recovered
from offset-corrected measurements for N = 1024.

be readily compensated. However, in the random demodulator converter, offset error has a

very different effect. Consider, for instance, the case in which a fixed but unknown offset,

yoff , is added to each compressive sensing measurement. The resulting measurement

vector can be expressed as z = y+yoff~1, where ~1 is a column vector with all its elements

equal to 1. Recalling that y = Φs, we can write z = Φs + yoff~1. Letting n be equal

to the diagonal components of yoffΦ−1, where Φ−1 is the pseudo-inverse of Φ, results

in z = Φ(s + n). Given that the matrix Φ−1 has a random-like structure, the effect of

adding an offset to compressive sensing measurements is equivalent to adding the noise

component, n, to the input signal resulting in additional distortion in the recovery process.

Measuring the offset voltage Voff1 directly might not be feasible for most applica-

tions. Fortunately, Voff1 can be estimated using the random demodulator converter itself
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by connecting the input of the converter to 0 V. Ignoring charge injection and capacitor

mismatch, making sk[n] = 0 and solving for Voff1 in (7.21) yields:

Voff1 =
Vref

∑N−1
n=1 b[n]

1 +N +
∑N−1

n=1 b[n]
(7.23)

where,
∑N−1

n=1 b[n] is the output of the counter after N clock cycles and we have assumed

that Vx[N ] = 0. Offset correction is achieved by subtracting the value (1 + N)Voff1 +

Voff1
∑N−1

n=1 b[n] from each measurement.

7.3.1.4 Comparator Metastability

Metastability occurs when the comparator’s differential input is not large enough

for the comparator to produce a valid logic output. In the proposed converter, metastabil-

ity occurs when |Vx − Vref | < ∆V , where ∆V is the minimum differential input needed

to generate a valid logic output within one clock cycle. Fig. 82 depicts the integrator

output waveform, Vx, and the metastability region.

Vref

Vx

t

ΔV

Figure 82: Typical waveform of the integrator output Vx and metastability region.
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Assuming a simple single-pole model for the comparator, it can be shown that the

transient behavior of comparator’s output voltage is given by [3]:

Vout(t) = A0Vin(1− e−2πfct) (7.24)

where,A0 is the DC gain, Vin is the differential input voltage and fc is the -3 dB frequency.

From (7.24) ∆V can be calculated to be:

∆V =
Vlogic

A0(1− e−2πfcTclk/2)
(7.25)

where, Vlogic is the valid logic level voltage and Tclk is the clock period. Assuming a

uniform distribution for Vx the probability of Vx being in the metastability region can be

approximated by:

PE =
2∆V

Vref
(7.26)

Combining (7.25) and (7.26) yields the following expression for metastability

probability error:

PE =
2Vlogic

VrefA0(1− e−2πfcTclk/2)
(7.27)

Replacing circuit parameters: Vref = 2.5 V, A0 = 70 dB, fc = 415.8 kHz,

Vlogic = VDD/2 = 1.5 V and Tclk = 1 µs in (7.27) we find that the probability of a

metastability-induced comparator error is 2.6 × 10−4. When N = 1024, the probability

of having a single comparator error in one conversion cycle is N × PE = 0.266. Due to

the integrating nature of the converter, a single comparator error produces an error of 1

LSB in the digital output. Thus, the error due to metastability is less than 1 LSB and this

error does not generally translate into significant distortion in the recovered signal.
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7.4 Measurements Results

A custom test setup was built to test the fabricated random demodulator converter

prototype. The test setup is shown in Figure 83. It consists of a printed circuit board (PCB)

designed to house the fabricated chip and supporting circuitry such as voltage regulators

and biasing sources. Separate power supplies for analog and digital parts were used as

well as decoupling capacitors to minimize noise. A CPLD was employed to implement

the digital portion of the random demodulator converter, generate timing signals, program

the bias sources and to transmit the compressive sensing measurements via a serial port

to a computer for later reconstruction. The converter’s clock frequency was set to 1 MHz

which in turn sets the input bandwidth of the converter to BW = 500 kHz.

DAC

CPLD

integrated circuit

function generator

computer

(signal reconstruction)

b[n]

S1-S7

1,2O

power 

supply
PCB

anti-

alias

Figure 83: Diagram of the custom test setup.
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An initial test of the fabricated random demodulator converter was performed us-

ing sparse signals of different levels of sparsity. The sparse signals were generated using

the same procedure employed in the simulations and described in Section 7.3. A func-

tion generator was programmed to play back the generated sparse signals so they can

be applied to the fabricated converter. The measurements were collected by a computer

using a serial port and custom data acquisition software. The amplifier’s offset was esti-

mated employing the method outlined in the previous section to be 17.4 mV. The collected

measurements were corrected for offset before signal recovery. The measured power con-

sumption of the Σ∆ modulator is 124 µW. The total power consumption of the CPLD is

7.5 mW.
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Figure 84: Measured SNDR of recovered signals as the ratio M/N is varied.

A 10-bit digital counter was employed allowing N to take values of up to 1024.
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The random sequences were generated using a 32-bit linear feedback shift register, LFSR.

Figure 84 shows the measured signal-to-noise-plus-distortion (SNDR) of the recovered

signals for N = 1024 as the ratio M/N is varied. A maximum SNDR value of 50 dB

is achieved for a single tone (K = 1) at M/N = 0.7. Although the measurements were

corrected for offset, the converter’s performance is lower than the performance predicted

by the plot in Figure 81 suggesting that the converter is affected by other circuit non-

idealities such as charge injection, capacitor mismatch and noise from the test setup.

The bandwidth of the random demodulator converter is enough to directly acquire

radio signals in the Low Frequency (LF) and Medium Frequency (MF) bands. Hence, a

second test was conducted to acquire signals in the LF and MF bands. Figure 85 shows

the setup that was employed. The setup consists of an long-wave active loop antenna

with built-in pre-amp (Kaito KA35), a low-noise variable gain amplifier (VGA) with pro-

grammable filtering stage (Analog Devices ADRF6510), a low-pass anti-alias filter and

the fabricated random demodulator converter. The ADRF6510 was set to provide a total

gain of 57 dB. The radio signal was also acquired with a data acquisition unit to provide

a reference.

ADRF6510

pre-amp

anti-alias 

filter

gain

random 

demodulator 

converter

to computer

long-wave 

antenna

Kaito

KA35

data 

acquisition 

unit

to computer

Figure 85: Diagram of setup employed to acquire a radio signal.
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Figure 86 shows the spectrum of the signals acquired with the data acquisition unit

and with the random demodulator converter. The measurements generated by the random

demodulator converter were corrected for offset and processed by the optimization pro-

gram in (7.5) to recover the input signal. A total of M = 1000 measurements were used

in the recovery process. Notably, the random demodulator converter is able to identify the

main frequency components of the signal. The SNR of the recovered signal is 12.5 dB.

The SNR is affected by the additional noise introduced by the radio front end and by the

input signal not being exactly sparse. The corresponding compression ratio is 4.
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Figure 86: Spectrum of acquired signals: (a) using a data acquisition unit, (b) recovered
from compressive sensing measurements.
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CHAPTER 8

CONCLUSION

This dissertation addressed the integration of energy harvesting, image compres-

sion, and an image sensor on the same chip which provides the energy source to charge

a battery, reduces the data rate, and improves the performance of wireless image sensors.

Integrated circuits of image compression, solar energy harvesting, and image sensors are

studied, designed, and analyzed in this dissertation. Each individual topic is summarized

below:

• The design and test of a CMOS hybrid imager capable of sensing and energy har-

vesting has been presented. The hybrid imager contains pixels whose photodiodes

can be configured to work as photodiodes or tiny solar cells. As a proof of concept

a 32 × 32 array of hybrid pixels has been designed and fabricated in a standard 0.5

µm CMOS process.

• DC-DC converters with either a flying capacitor or an inductor employed to max-

imize the amount of harvestable energy were also presented. Test measurements

show that the imager can perform the functions of image acquisition and energy

harvesting. Measurement results show that up to 6.5 µW of power can be harvested

from the array under indoor illumination conditions.

• Sub-sampling and compressive sensing are implemented with the hybrid pixel im-

ager. Different balances of random patterns have been implemented to maximize
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the flexibility of hybrid pixel imager. The algorithms to recover missing pixels

have been presented. Up to 90% of 0s can be implemented in random patterns and

reconstructed images still have acceptable image quality.

• A multiresolution decomposition image compression algorithm suitable for focal

plane integration and its hardware implementation has been presented. This com-

pression approach can provide lossless or near-lossless compression and reduce the

data rate. A prototype has been implemented on a 0.5 µm CMOS process [75].

• An analog-to-digital converter suitable for compressive sensing applications has

been presented. The converter is based on an incremental sigma-delta converter ar-

chitecture and is able to directly acquire and convert compressive sensing measure-

ments to digital format compressive sensing measurements. The converter occupies

a small area of 0.047 mm2 on a target 0.5 µm CMOS process. Thus, several of them

can be implemented in parallel to achieve high conversion rates [74].

Future development of this CMOS hybrid imager has a number of possibilities.

First, radio transmission is one of the most fundamental functions of wireless sensors. An

energy-efficient radio transmitter would be a good addition to the hybrid imager. Second,

the 1-bit memory of the hybrid pixel can be improved. The problem of the 1-bit memory

of the hybrid pixel was discussed in Chapter 2. In practice, 3.9 V VDD is used in order

for the 1-bit memory to work. The 1-bit memory is implemented with two inverters in

this dissertation. A 6-transistor CMOS SRAM cell should be a good option to replace

the 1-bit memory in the hybrid pixel to avoid using higher VDD. Finally, a SOC wireless
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image sensor with a low power radio transmitter, hybrid imager, and power management

circuit can be designed to complete the solution for energy-constrained sensors.
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APPENDIX A

CHIP PIN-OUT

A.1 The Hybrid Imager Chip
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Figure 87: Block diagram of the hybrid imager chip.

Schematics for the Σ∆ AIC v.2 and the hybrid pixel design I are shown in Appendix B.
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Figure 88: Pin names of the hybrid imager chip.
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Figure 89: Bonding diagram of the hybrid imager chip. Chip number: V19k-AJ
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Figure 90: Top view of the hybrid imager chip package.
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Table 16: Pin Configuration of the Hybrid Imager Chip
Pin name Analog/Digital Input/Output Description Pin number
Swp2 S Analog Inout PMOS 2 L11
Swp2 D Analog Inout PMOS 2 L12
Swp2 G Digital In PMOS 2 K11
Swp3 S Analog Inout PMOS 3 K12
Swp3 D Analog Inout PMOS 3 J10
Swp3 G Digital In PMOS 3 J11
Swn1 S Analog Inout NMOS 1 J12
Swn1 D Analog Inout NMOS 1 H10
Swn1 G Digital In NMOS 1 H11
Swn2 S Analog Inout NMOS 2 H12
Swn2 D Analog Inout NMOS 2 G10
Swn2 G Digital In NMOS 2 G11
Swn3 S Analog Inout NMOS 3 G12
Swn3 D Analog Inout NMOS 3 F10
Swn3 G Digital In NMOS 3 F11
Rst0 Digital In Reset bit 0 F12
Rst1 Digital In Reset bit 1 E10
Rst2 Digital In Reset bit 2 E11
Rst3 Digital In Reset bit 3 E12
Rst4 Digital In Reset bit 4 D10
Col4 Digital In Col bit 4 D11
Col3 Digital In Col bit 3 D12
Col2 Digital In Col bit 2 C10
Col1 Digital In Col bit 1 C11
Col0 Digital In Col bit 0 C12
Vdd Analog In 3.3V B11
Vbsf Analog In 2.5V A11
Mode0 Digital In Mode bit 0 B10
Mode1 Digital In Mode bit 1 A10
Mode2 Digital In Mode bit 2 C9
Mode3 Digital In Mode bit 3 B9
Mode4 Digital In Mode bit 4 A9
Row4 Digital In Row bit 4 C8
Row3 Digital In Row bit 3 B8
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Row2 Digital In Row bit 2 A8
Row1 Digital In Row bit 1 C7
Row0 Digital In Row bit 0 B7
EH bus I1 - Analog Out EH bus for Design I A7
EH bus I1 + Analog Out EH bus for Design I C6
EH bus I2 + Analog Out EH bus for Design I B6
EH bus I2 - Analog Out EH bus for Design I A6
EH bus I3 - Analog Out EH bus for Design I C5
EH bus I3 + Analog Out EH bus for Design I B5
pixel out I Analog Out Sensing bus for Design I A5
Vbias Analog In 0.9 V C4
pixel out II Analog Out Sensing bus for Design II B4
I so Digital In Mux sel bit 0 for Design I A4
I s1 Digital In Mux sel bit 1 for Design I C3
I s2 Digital In Mux sel bit 2 for Design I B3
I s3 Digital In Mux sel bit 3 for Design I A3
II so Digital In Mux sel bit 0 for Design II B2
II s1 Digital In Mux sel bit 1 for Design II B1
II s2 Digital In Mux sel bit 2 for Design II C2
II s3 Digital In Mux sel bit 3 for Design II C1
Sadc in Analog In Σ∆ AIC V.2 D3
sw1 Digital In Σ∆ AIC V.2 D2
sw2 Digital In Σ∆ AIC V.2 D1
sw6 Digital In Σ∆ AIC V.2 E3
sw5 Digital In Σ∆ AIC V.2 E2
sw4 Digital In Σ∆ AIC V.2 E1
sw3 Digital In Σ∆ AIC V.2 F3
sw7 Digital In Σ∆ AIC V.2 F2
Vb Analog In 1V F1
sw8 Digital In Σ∆ AIC V.2 G3
sw9 Digital In Σ∆ AIC V.2 G2
sw10 Digital In Σ∆ AIC V.2 G1
sw11 Digital In Σ∆ AIC V.2 H3
Vs2 Analog In 1V H2
sw12 Digital In Σ∆ AIC V.2 H1
Vs1 Analog In 2V J3
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sw13 Digital In Σ∆ AIC V.2 J2
Sdadc Vbias Analog In 0.9V J1
Sdadc i Analog Out Sigma Delta Modulator K3
Vth1 Digital In 2V K2
Vdd Analog In Σ∆ AIC V.2 K1
GND Analog In Σ∆ AIC V.2 L2
Sdadc b+ Digital Out Σ∆ AIC V.2 M2
Vth2 Analog In 0.5V L3
Sdadc b- Digital Out Σ∆ AIC V.2 M3
EH bus II3 + Analog Out EH bus for Design II K4
EH bus II3 - Analog Out EH bus for Design II L4
EH bus II2 - Analog Out EH bus for Design II M4
EH bus II2 + Analog Out EH bus for Design II K5
EH bus II1 + Analog Out EH bus for Design II L5
EH bus II1 - Analog Out EH bus for Design II M5
SwTG1 S Analog Inout TG1 K6
SwTG1 D Analog Inout TG1 L6
SwTG1 G Digital In TG1 M6
SwTG2 S Analog Inout TG2 K7
SwTG2 D Analog Inout TG2 L7
SwTG2 G Digital In TG2 M7
SwTG3 S Analog Inout TG3 K8
SwTG3 D Analog Inout TG3 L8
SwTG3 G Digital In TG3 M8
SwTG4 S Analog Inout TG4 K9
SwTG4 D Analog Inout TG4 L9
SwTG4 G Digital In TG4 M9
Swp1 S Analog Inout PMOS 1 K10
Swp1 D Analog Inout PMOS 1 L10
Swp1 G Digital In PMOS 1 M10
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A.2 The Multiresolution Decomposition Imager Chip
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Figure 91: Block diagram of the multiresolution decomposition imager chip.

Schematic for the operational amplifier is shown in Appendix B.
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Figure 92: Pin names of the multiresolution decomposition imager chip.
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Figure 93: Bonding diagram of the multiresolution decomposition imager chip. Chip
number: V0BL-AE
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Figure 94: Top view of the multiresolution decomposition imager chip package.
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Table 17: Pin Configuration of the Multiresolution Decomposition Imager Chip
Pin name Analog/Digital Input/Output Description Pin number
Col0 Digital In Col bit 0 C2
Col1 Digital In Col bit 1 B1
Col2 Digital In Col bit 2 C1
Col3 Digital In Col bit 3 D2
Col4 Digital In Col bit 4 D1
Recol4 Digital In Reset Col bit4 F2
Recol3 Digital In Reset Col bit3 G1
Recol2 Digital In Reset Col bit2 G2
Recol1 Digital In Reset Col bit1 H1
Recol0 Digital In Reset Col bit0 H2
Row0 Digital In Row bit 0 J1
Row1 Digital In Row bit 1 J2
Row2 Digital In Row bit 2 K1
Row3 Digital In Row bit 3 J3
Row4 Digital In Row bit 4 K2
Rerow4 Digital In Reset row bit4 K3
Rerow3 Digital In Reset row bit3 J4
Rerow2 Digital In Reset row bit2 K4
Rerow1 Digital In Reset row bit1 K5
Vdd Analog In 5V J5
Rerow0 Digital In Reset row bit0 K6
Vbsf Analog In 0.9V J6
CDS cdsout Analog Out CDS K7
CDS Vref Analog In 4V J7
CDS Vbn Analog In 1.32V K8
CDS Vbp1 Analog In 3.49V J8
CDS Vbp2 Analog In 3.95V K9
CDS f3 Digital In CDS Phase1 + Phase2 J9
CDS f1 Digital In CDS Phase1 K10
CDS f2 Digital In CDS Phase2 H9
pixbus Analog Out CDS input from pixbus J10
f2 Digital In CDS Phase2 G10
f1 Digital In CDS Phase1 F10
f3 Digital In CDS Phase1 + Phase2 F9
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Vbp2 Analog In 3.95V E10
Vbp1 Analog In 3.49V E9
Vbn Analog IN 1.32V D10
Vref Analog In 4V D9
CDSout Analog Out CDS C10
Vopb Analog In 0.9V C9
Vrefi Analog In 4V B10
In Analog In Integrator B9
fi1 Digital In Integrator Phase 1 A10
fi2 Digital In Integrator Phase 2 B8
fr Digital In Integrator Reset A9
Vout Analog Out Integrator A8
Vref1 Analog In 2.5V B7
CDS in Analog In Memory A7
memp Digital In Memory program Enable A6
s0 Digital In Memory bit sel B6
GND Analog In GND A5
s1 Digital In Memory bit sel B5
fm2 Digital In Memory phase2 A4
fm1 Digital In Memory phase1 B4
Voutm Analog Out Memory A3
Opamp Vbias Analog In 0.9V B3
Opamp in- Analog In Opamp A2
Opamp in+ Analog In Opamp B2
Opamp out Analog Out Opamp A1
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A.3 The Σ∆ AIC Chip
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Figure 95: Block diagram of the Σ∆ AIC chip.

Schematic for the the Σ∆ AIC v.1 is shown in Appendix B.
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Figure 97: Bonding diagram of the Σ∆ AIC chip. Chip number: V19K-AK
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Figure 98: Top view of the Σ∆ AIC chip package.
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Table 18: Pin Configuration of the Σ∆ AIC Chip
Pin name Analog/Digital Input/Output Description Pin number
Vdd Analog In 3.3 V A10
GND Analog In 0V M3
II i Analog Out Module 2 H2
II phi Digital In Module 2 H3
II in Analog In Module 2 G1
II fs2 Digital In Module 2 G2
II fs1 Digital In Module 2 G3
II b Digital Out Module 2 F1
I b Digital Out Module 1 F2
Vbias Analog In 0.9V F3
frst Digital In Reset E1
Vc Analog In 2V E2
I fs1 Digital In Module 1 E3
I fs2 Digital In Module 1 D1
Vb Analog In 1V D2
f2 Digital In Phase 1 D3
f1 Digital In Phase 2 C1
I in Analog In Module 1 C2
I phi Digital In Module 1 B1
I i Digital Out Module 1 B2
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APPENDIX B

SCHEMATICS
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Figure 99: Schematic of the hybrid pixel with the sizes of the transistors.
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Figure 101: Schematic of the Σ∆ AIC, version 1.
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Figure 102: Schematic of the Σ∆ AIC, version 2.
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APPENDIX C

PICTURES OF CUSTOM PCB
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Figure 103: Picture of custom PCB for the multiresolution decomposition imager with
description.
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Figure 104: Picture of custom PCB for the hybrid imager with description.
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Figure 105: Picture of custom PCB for the Σ∆ AIC with description.
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