1,830 research outputs found

    Entirely flexible on-site conditioned magnetic sensorics

    Get PDF
    The first entirely flexible integrated magnetic field sensor system is realized consisting of a flexible giant magnetoresistive bridge on-site conditioned using high-performance IGZO-based readout electronics. The system outperforms commercial fully integrated rigid magnetic sensors by at least one order of magnitude, whereas all components stay fully functional when bend to a radius of 5 mm

    Silicon-based Integrated Microarray Biochips for Biosensing and Biodetection Applications

    Get PDF
    The silicon-based integrated microarray biochip (IMB) is an inter-disciplinary research direction of microelectronics and biological science. It has caught the attention of both industry and academia, in applications such as deoxyribonucleic acid (DNA) and immunological detection, medical inspection and point-of-care (PoC) diagnosis, as well as food safety and environmental surveillance. Future biodetection strategies demand biochips with high sensitivity, miniaturization, integration, parallel, multi-target and even intelligence capabilities. In this chapter, a comprehensive investigation of current research on state-of-the-art silicon-based integrated microarray biochips is presented. These include the electrochemical biochip, magnetic tunnelling junction (MTJ) based biochip, giant magnetoresistance (GMR) biochip and integrated oscillator-based biochip. The principles, methodologies and challenges of the aforementioned biochips will also be discussed and compared from all aspects, e.g., sensitivity, fabrication complexity and cost, compatibility with silicon-based complementary metal-oxide-semiconductor (CMOS) technology, multi-target detection capabilities, signal processing and system integrations, etc. In this way, we discuss future silicon-based fully integrated biochips, which could be used for portable medical detection and low cost PoC diagnosis applications

    Magnetic sensors and gradiometers for detection of objects

    Get PDF
    Disertační práce popisuje vývoj nových detekčních zařízení s anizotropními magnetorezistoryThis thesis describes development of innovative sensor systems based on anisotropi

    GMR Biosensors for Clinical Diagnostics

    Get PDF

    Integration of GMR sensors with different technologies

    Get PDF
    Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications.Peer ReviewedPostprint (published version

    Microfluidics for Biosensing and Diagnostics

    Get PDF
    Efforts to miniaturize sensing and diagnostic devices and to integrate multiple functions into one device have caused massive growth in the field of microfluidics and this integration is now recognized as an important feature of most new diagnostic approaches. These approaches have and continue to change the field of biosensing and diagnostics. In this Special Issue, we present a small collection of works describing microfluidics with applications in biosensing and diagnostics

    Recent advances in non-optical microfluidic platforms for bioparticle detection

    Get PDF
    The effective analysis of the basic structure and functional information of bioparticles are of great significance for the early diagnosis of diseases. The synergism between microfluidics and particle manipulation/detection technologies offers enhanced system integration capability and test accuracy for the detection of various bioparticles. Most microfluidic detection platforms are based on optical strategies such as fluorescence, absorbance, and image recognition. Although optical microfluidic platforms have proven their capabilities in the practical clinical detection of bioparticles, shortcomings such as expensive components and whole bulky devices have limited their practicality in the development of point-of-care testing (POCT) systems to be used in remote and underdeveloped areas. Therefore, there is an urgent need to develop cost-effective non-optical microfluidic platforms for bioparticle detection that can act as alternatives to optical counterparts. In this review, we first briefly summarise passive and active methods for bioparticle manipulation in microfluidics. Then, we survey the latest progress in non-optical microfluidic strategies based on electrical, magnetic, and acoustic techniques for bioparticle detection. Finally, a perspective is offered, clarifying challenges faced by current non-optical platforms in developing practical POCT devices and clinical applications.</p

    Recent Developments of Magnetoresistive Sensors for Industrial Applications

    Get PDF
    The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR) and the giant magnetoresistive (GMR) effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si), over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling).DFG/CRC/653German Federal Ministry of Education and Researc
    corecore