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1. Introduction 

Clinical diagnostics is a field in which new methods of laboratory analysis for faster, direct, 
more accurate, more selective, has a high output and less expensive than conventional 
methods are in high demand. Because of its small size, transduction ultrasensitive and 
possible integration in Microsystems lab-on-a-chip, biosensing devices are made with nano-
technology is a potential candidate to meet all the requirements above.  
Since last decade, many researchers have been brought their work to carry out on 
biomagnetism and magnetic biosensors based on molecular processes. Their works focus 
not only on application of magnetic nanoparticles in biomedicine (Pankhurst et al., 2009) but 
also on their synthesis (Roca et al., 2009), functionalization (Berry, 2009) and their detection 
by magnetic sensors (Megens et al., 2005). As shown in Fig.1, magnetic micro-machine has 
been applied in medicine. This machine is designed to move through the human body and 
his pathway is controlled by magnetic field. 
 

 

Fig. 1. Magnetic micro-machine (Adapted from Ishiyama et al., 2001) 

Nowadays, accurate, rapid, cheap and selective analysis is required for clinical and 
industrial laboratories. Magnetoresistive biosensors seem to be among the best candidates to 
meet these criteria. Since the late 1990s, magnetoelectronics (Xu et al., 2008) has emerged as 
one of several new platform technologies for biosensor and biochip development. This tech-
nology is based on the detection of biologically functionalized micrometer or nanometer-
sized magnetic labels, using high-sensitivity microfabricated magnetic-field sensors. 
In recent years, giant magnetoresistance (GMR) sensors have shown a great potential as 
sensing elements for biomolecule detection. The resistance of a GMR sensor changes with 
the magnetic field applied to the sensor, so that a magnetically labeled biomolecule can 
induce a signal. Compared with the traditional optical detection that is widely used in 
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biomedicine, GMR sensors are more sensitive, portable, and give a fully electronic readout. 
Due to advantages of GMR materials for magnetic field measurements, such as: high 
sensitivity and quick response under low magnetic field, more attentions have been paid on 
developing GMR material for biosensors. 
The chapter covers the design, fabrication and testing of both types of biosensor 
nanodevices. Further integration of nanosensors, microfluidics, optical and electronic 
functions on a single sensing circuit could lead to a complete ‘‘lab-on-chip’’ technological 
solution which could be used in medical applications. Examples of fabrication, 
characterization and real applications of the devices will be discussed as well as the way of 
their integration.  
This chapter is organized as follows; an overview of the GMR sensors, a brief overview of 
biosensor and its potential application in clinical diagnosis, a complete description of GMR 
biosensors application in medical starting from a general overview and showing examples 
based in integrated GMR biosensor of the latest developments in this field. Finally, the 
future trend of this exciting GMR biosensor for medical application is discussed. 

2. An overview of the GMR sensors 

Magnetoresistance is defined as the change in the resistance of a material in response to an 
externally applied magnetic field. The first announcement of the GMR effect was reported in 
1988 by Baibich (Baibich et al., 1998). They discovered that the resistance of a sandwich type 
multilayer with magnetizations aligned initially (in the magnetic field H = 0) antiparallel 
decreased more than 50% after applying an external magnetic field. Because this decrease of 
resistance was very large they called this effect giant magnetoresistance (GMR). Since the 
discovery of the giant magnetoresistance (GMR) effect in magnetic multilayer systems, 
sensors employing this effect have been utilized in many areas of science and technology. 
The GMR material is a material that has huge magnetoresistance, good magnetic-electrical 
properties, so that potentially to be developed to become next generation magnetic field 
sensing devices like sensors. The GMR sensor has many attractive features, for example: 
reduction size, low-power consumption, low price as compared to other magnetic sensors 
and its electric and magnetic properties can be varied in very wide range. 
The GMR effect is a quantum mechanical effect observed in the thin film structure 
consisting of ferromagnetic layers separated by nonmagnetic layers. Thin film of GMR has 
different structures and each structure has the effect of magnetoresistance (MR) are also 
different. Structure of GMR consists of a sandwich structure, the spin valve and multilayer 
as shown in Fig. 2. 
Physics basis of the GMR effect is related to the fact that the spin of electrons has two 
different values (called the spin up and spin down). When these spin across the material 
that has been magnetized, one type of spin may be experiencing barriers (resistance) which 
is different than that experienced by other types of spin. This property indicates the 
existence of spin dependent scattering. 
GMR phenomena in multilayer ferromagnetic can be explained using Mott model which 
was introduced as early as 1936 to explain the sudden increase in resistivity of 
ferromagnetic metals as they are heated above the Curie temperature (Mott, 1936). In this 
model: (1). electrical conductivity in metals can be described in connection with two free 
conduction channel in which the former relates to an electron with spin up and others 
associated with the electron with spin down, (2). in ferromagnetic metals the rate of 
scattering of spin up and spin down electrons are very different. 
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Fig. 2. Structure of GMR thin film. (a). Sandwich. (b). Spin valve. (c). Multilayer. 

The GMR effect relies on the experimentally established fact that electron spin is conserved 

over distances of up to several tens of nanometers, which is greater than the thickness of a 

typical multilayer. Therefore, the electric current in the trilayer flows in two channels, one 

corresponding to electrons with spin projection ↑ and the other to electrons with spin 

projection ↓. Since the ↑ and ↓ spin channels are independent (spin is conserved) they can be 

regarded as two wires connected in parallel and the GMR can be explained using a simple 

resistor model, as shown in Fig. 3. 

Consider the ferromagnetic multilayer configuration such as Fig. 3, and it is assumed that 

strong scattering occurs for electrons with spin antiparallel to the direction of magnetization, 

while the weak scattering occurs for electrons with spin parallel to the direction of 

magnetization. This assumption describes the asymmetry in the meetings condition at the 

Fermi level corresponding to Mott's second argument.  

In the ferromagnetic configuration Fig. 3 (a) of the trilayer, electrons with spin ↑ are weakly 

scattered both in the first and second ferromagnetic layer, whereas the ↓ spin electrons are 

strongly scattered in both ferromagnetic layers. This is modelled by two small resistors in 

the spin ↑ spin channel and by two large resistors in the spin ↓ channel in the equivalent 
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resistor network. Since the ↓ and ↑ spin channels are connected in parallel, the total 

resistance of the trilayer is determined by the low resistance ↑ spin channel which shorts the 

high-resistance ↓ spin channel. Therefore the total resistance of the trilayer in the 

ferromagnetic configuration is low. On the other hand, ↓ spin electrons in the 

antiferromagnetic configuration are strongly scattered in the first ferromagnetic layer but 

weakly scattered in the second ferromagnetic layer. The ↑ spin electrons are weakly 

scattered in the first ferromagnetic layer and strongly scattered in the second. This is 

modelled in Fig. 3 (b) by one large and one small resistor in each spin channel. There is no 

shorting and the total resistance in the antiferromagnetic configuration is much higher than 

in the ferromagnetic configuration. 

 

 

Fig. 3. Resistor model of GMR (Adapted from Mathon, 2001). 

In 1988 experiments on layered thin films of ferromagnetic metal (FMs) alternated to a non-
magnetic metal (NM) led to the simultaneous and independent discovery of the giant 
magnetoresistance (GMR) by A. Fert (Baibich et al., 1988) and P. A. Grünberg (Binasch et al., 
1989). Fig. 4 shows the original results obtained by Baibich and coworkers. The 
(001)Fe/(001)Cr bcc superlattices were grown by the MBE method. The magnetoresistance 
was measured at 4.2 K for different thicknesses of the Cr spacer. The authors explained the 
GMR effect as follows. The resistivity drops when the magnetic external field overcomes the 
antiferromagnetic coupling and the alignment of magnetizations becomes a parallel 
arrangement. It was supposed that the spin-dependent scattering of the conduction 
electrons in the magnetic layers or at their interfaces was responsible for the GMR effect. 
The scattering in antiparallel alignment is much larger than in the parallel case. Complete 
review of the GMR can be found at (Tsymbal & Pettifor, 2001). 
In this field, we also have developed GMR material with sandwich structure (Djamal et al., 
2006). Recently, we have successfully developed GMR thin film with sandwich structure 
using dc-opposed target magnetron sputtering, and we obtained about 65 % MR value at 
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room temperature in NiCoFe/Cu/NiCoFe sandwich (Djamal et al., 2009a; Djamal et al., 
2009b;  Ramli et al., 2009; Djamal et al., 2010; Ramli et al., 2010). The GMR ratio curve for 
NiCoFe/Cu/NiCoFe sandwich is shown in Fig. 5, 6, 7 and 8. 
 

 

Fig. 4. The first announcement of GMR effects (Adapted from Baibich et al., 1988). 

Fig. 7 shows variation of magnitude of GMR ratio versus Cu layers thickness. Their general 
appearance is a classical behavior of MR evolution with magnetic field that has been 
observed in many multilayers (Dieny et al., 1991; Tang et al., 2007; Tripathy & Adeyeye, 
2007) based on ferromagnetic transition metal and a non magnetic layers. The dependence 
of GMR value on the non-magnetic layer thickness in magnetic multilayer and spin valves 
qualitatively ascribed to two factors (Parkin, 1998), ie.: (i) with increasing spacer thickness 
the probability of scattering increases as the conduction electrons traverse the spacer layer, 
which reduces the flow of electrons between the ferromagnetic layers and consequently 
reduces GMR; (ii) the increasing thickness of the nonmagnetic layer enhances the shunting 
current within the spacer, which also reduces GMR. These two contributions to GMR can be 
phenomenological described as the relative resistance change ΔR by the following 
expression: 

 
 

 
exp d / lΔR ΔR NM NM

R R 1 d / d0 NM 0

   
 

 (1) 

The parameter lNM is related to the mean free path of the conduction electrons in the spacer 
layer, dNM  is spacer layer thickness. The parameter d0 is an effective thickness, and (ΔR/R)0 
is a normalization coefficient. The decay in GMR value with increasing Cu thickness can be 
described approximately: 

  ΔR 1
exp t / λCu CuR tCu

   (2) 

where tCu is the Cu thickness and λCu describes the scattering within the Cu layer interior. 
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Fig. 5. The dependence of GMR ratio on the spacer layer thickness (tCu) with fixed NiCoFe 
layer thickness (tNiCoFe = 62.5 nm). 

In sandwich structure, the decrease in magnitudo of GMR ratio at low thickness of NiCoFe 

in Fig. 8 is due to the scattering on the outer surface like substrate or buffer layer (Dieny., 

1994). This scattering significantly affects GMR, when the thickness of the ferromagnetic 

layer becomes smaller than the longer of the two mean-free paths associated with the spin 

up and spins down of electrons. 

Fig. 6 shows that at the thickness of NiCoFe over 62.5 nm the magnitude GMR ratio 
decreases. This phenomenon could be explained by the appearance of inactive region in 
NiCoFe layer that shunts the current. On the other hand, the sharpness of GMR curve 
increases with increasing NiCoFe layer thickness, as observed in Fig. 6. 
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Generally, there are many sensors can be used for measuring magnetic field namely fluxgate 
sensor, Hall sensor, induction coil, GMR sensor, SQUID sensor and some others. Due to 
advantages of GMR materials for magnetic field measurements, such as: high sensitivity and 
quick response under low magnetic field, more attentions have been paid on developing 
GMR material for magnetic field sensors. Table 1 illustrates the differences between GMR 
and other magnetic field sensors (Han et al., 2005). Besides that, GMR material based 
sensors have more benefit compared to other magnetic sensors such as smaller size, lower 
power and lower cost (see Fig. 9). 
 

 

Fig. 6. The dependence of GMR ratio on the ferromagnetic layer thickness (tNiCoFe) with fixed 
Cu layer thickness (tCu = 14.4 nm). 
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Fig. 7. Variation of magnitude of GMR ratio versus Cu layer thickness. The dotted line 
shows the decay of GMR ratio with increasing of Cu layer thickness as expressed in eq. (2). 

 

 

Fig. 8. Variation of magnitude of GMR ratio versus NiCoFe layer thickness. 

Since the late 1990s, magnetoelectronics (Prinz, 1998) has emerged as one of several new 
platform technologies for biosensor and biochip development. This technology is based on 
the detection of biologically functionalized micrometer or nanometer-sized magnetic labels, 
using high-sensitivity microfabricated magnetic-field sensors. GMR biosensors seem to be 
among the best candidates to meet these criteria. The GMR biosensors capable of highly 
sensitive detection are poised to become a dominant player in the vast world of biosensors 
(Hall et al., 2010). 
 

 H range (T) 
Sensitivity 

(V/T) 
Rensponse 

time 
Power 

consumption 
Sensor 

head size 

GMR 10-12-10-2 120 1 MHz 10 mw 10-100μm 

Hall 10-6-102 0.65 1 MHz 10 mw 10-100μm 

SQUID 10-14-10-6 10-14 1 MHz 10 mw 10-100μm 

Flux gate 10-12-10-2 3.2 5 kHz 1 w 10-20 mm 

Table 1. Comparison of magnetic field sensors commonly used. 
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Fig. 9. Comparison of power, price and size of some magnetic sensors 

3. Biosensor and its potential application in clinical diagnostic 

A biosensor is generally defined as an analytical device, which makes use of a biological 

molecular recognition component connected to a transducer to generate a quantifiable 

electronic output signal, in response to a biological or chemical analyte (Li et al., 2006). 

Biosensors are under intense development for a wide range of applications from medical 

diagnostics to countering bio-terrorism. 

Research in this area can be divided into three directions. The first direction focuses on the 

development of the synthesis of magnetic beads with desired magnetic properties that can 

be engaged with a high degree of specificity as microarrays. The development of high-

precision on-chip electrostatic or magnetic field gradient architectures became the main 

mention of the second direction. This chip has capability to manipulate functionalized single 

magnetic beads as well as the microfluidic circuits. Fig. 10 shows one example of 

functionalized single magnetic beads. The third area is development of biocompatible solid-

state sensors for quantitative magnetic beads. Two type of this sensor can be seen in Fig. 11.  

 

 

Fig. 10. Functionalized single magnetic beads fabricated by continuous-flow lithography. 

Scale bar represents 100 m [Adapted from Pregibon et al, 2007]. 
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The first sensor based on GMR effect and the other based on the Tunneling 
Magnetoresistance (TMR). Both of these sensors have the same structure, only the non-
magnetic metal spacer in GMR sensor is replaced with a very thin insulating barrier. This 
insulating barrier commonly made from Al2O3 or MgO. 
 

 
 

(a) 
 

 
 

(b) 

Fig. 11. (a). GMR sensor. (b). TMR (Tunnelling magnetoresistance) [Adapted from Ishiyama 
et al., 2001]. 

4. The GMR biosensor and its application in clinical diagnostic 

The development of robust, versatile and high throughput biosensing platforms is expected 
to have far-reaching implications in medicine, point-of-care clinical diagnostics, 
pharmaceutical drug development, and genomic and proteomic research. Enabled by 
rapidly emerging nanotechnologies (nanoparticles, nanotubes, and nanowires) and 
microfabrication techniques (MEMS, microfluidics, and CMOS), several new sensing 
platforms have been proposed and tested for biomedical applications, one of them is GMR 
biosensors. 
As we have known that the detecting elements of biosensors work in different 
physicochemical ways: optical, piezoelectric, electrochemical, thermometric, and magnetic. 
Biosensors using magnetics utilize the magnetic field created by magnetic particles that bind 
to target molecules in a biological assay (Fig. 12). 
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Fig. 12. Schematic of magnetically labeled biomolecule detection in a biosensor. Target 
biomolecules bound with a magnetic particle interact with magnetoresistive sensor-bound 
counter biomolecules to be detected. 

A first model for the detection of magnetic markers by GMR-type magnetoresistive sensors 
was published by Tondra, et al., 1999 in NVE Inc. (Tondra et al., 1999). He concluded that 
single magnetic markers of any size can be detected as long as the sensor has about the same 
size as the marker and the insulating protection layer is thin enough. 
Baselt et al. (1998) were the first to demonstrate using GMR sensors as biosensors and 
several groups have continued the research and development of magnetic biosensing 
technology (Ferreira et al., 2003; Rife et al., 2003; Reiss et al., 2005; Xu et al., 2008; Osterfeld et 
al., 2008; Koets et al., 2009; Hall et al., 2010). 
The incorporation of GMR structures in bacteria sensing is illustrated in Fig. 13 by Millen, 
(Millen et al., 2005). Generally, the surface of the GMR sensing region is modified to allow 
the binding of capture antibody. When the GMR structure is exposed to a sample solution 
that contains target antigens, complex binding between the target antigen and antibody 
occurs. This is followed by the addition of antibody-coated magnetic particles that 
subsequently labeled the target antigens and form a series of sandwich-like structures. 
 

 

Fig. 13. Bacteria sensing using a GMR biosensor (Adapted from Millen et al., 2005). 

In order to detect the magnetic particles bound on a GMR structure surface, an external 
magnetic field is applied in the z-direction, as illustrated in Fig. 14 (Rife et al., 2003). The 
GMR biosensors detect the stray field from the magnetic tag to infer the number of captured 
analytes. Bound magnetic particles that are exposed to a magnetic field will generate 
magnetic induction in the x-direction. Since the GMR structure detects only the x-
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component of the magnetic field, the external magnetic field in the z-direction does not have 
any effect on the detection. 
 

 

Fig. 14. Detection of magnetic particle on GMR biosensor (Adapted from Rife et al., 2003). 

5. Future trend in GMR biosensor for clinical diagnostic 

A number of magnetic sensors have been designed and developed as detector for magnetic 
markers. Although their principles have different operation, there are two kinds of type that 
have been developed namely mass-coverage sensors with active areas of hundred square 
arrays and single-bead detector. With excellent signal to noise ratio, GMR biosensor is one 
of mass-coverage sensors. Freitas et al. reported that they can made mass-coverage GMR 
sensor to detect DNA from genes associated with cystic fibrosis (Freitas et al., 2004). The 
other group also reported real-time measurement of the progress of binding of 
functionalised bead to sensor in liquid (Golub et al., 1999; Graham et al., 2003). One of mass-
coverage sensors based on GMR can be seen in Fig. 15. 
 

 

Fig. 15. Image of magnetonanosensor chip with 64 sensors in an 8 x 8 array. The arrow 
indicates a single chip. [Adapted from Gaster et al., 2009] 
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GMR biosensors rely on a magnetic tag. Biosensors utilizing magnetic tags offer several key 
advantages over other sensing modalities (Hall et al., 2010). First, the biological samples 
(blood, urine, serum, etc.) naturally lack any detectable magnetic content, providing a 
sensing platform with a very low background level and thus lower detection limit of 
analytes. Second, the sensors can be arrayed and multiplexed to perform analysis on a panel 
of proteins or nucleic acids in a single assay. Lastly, the sensors can be manufactured 
cheaply, in mass quantities, to be deployed in a one-time use disposable format. For these 
reasons, magnetic biosensors are an attractive and competitive alternative to optical 
techniques. 

6. Conclusion 

The GMR biosensor are best candidates for future device based on lab-on a-chip, compact 
and inexpensive detection units in clinical diagnostic. Compared to complex and expensive 
optical detection systems, the GMR biosensor measures electrical signal directly from the 
sensor, and makes a low-cost, highly portable device feasible. On other hand, GMR 
biosensors are more sensitive, portable and give a fully electronic readout. 
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