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Abstract 
This thesis describes development of innovative sensor systems based on anisotropic 
magnetoresistors (AMR) and fluxgate sensors for applications in proximity detection and 
magnetic field mapping devices for visualization of hidden metal objects.  These devices are 
aimed at replacing detectors based on large induction coils which have low spatial resolution 
and which do not offer possibilities for precise location and visualization of metallic objects. 
Conversely, the AMR and fluxgate sensors have smaller sensing elements and high spatial 
resolution and additionally they offer frequency response starting from DC, which makes 
them especially suitable for very low frequency applications. 

The first part of the thesis describes measurement of selected characteristics of commercial 
AMR and fluxgate sensors to consider suitability of such sensors in detectors in terms of noise 
and crossfield sensitivity. 

The second part is dedicated to development of metal detectors and proximity sensors. First, a 
gradiometer with AMR sensors was developed which operates with an AC excitation coil. 
This configuration provides the sensitivity to metallic objects due to eddy currents, if the 
material has a high conductivity, and to an AC magnetic field induced by the AC excitation, if 
the material has a high permeability. A DC gradient appears also, if the object has a remanent 
magnetic field or an induced DC magnetic field as a response to the Earth’s field. This 
gradiometer with multiple outputs and high spatial resolution was used in a mine detector 
with an array of gradiometers to enable visualization and possibly recognition of mines from 
scrap metal. Based on the parameters obtained, the mine detector was later redesigned to a 
device for visualization of concealed metallic structures in buildings.  

Further, a proximity sensor in a simplified configuration was developed. Only one AMR 
sensor, excitation coil and square-wave generator are necessary; signal demodulation is 
provided directly by the AMR sensor. This proximity sensor is suitable for low frequency 
applications, for example detection through a conductive casing. A modified design with an 
array of commercial integrated fluxgate sensors was used for position detection for pneumatic 
actuators. This linear position sensor is fitted outside of the aluminum cylinder and detects the 
position of a common ferromagnetic rod, because the low-frequency excitation field 
penetrates the aluminum cylinder wall. Attached is also work on fluxgate gradiometers to 
compare the most important parameters with those achieved by the AMR gradiometers. 

 

Keywords: Magnetic sensors, Mine detectors, AMR sensors, Fluxgate sensors, Gradiometers, 
Position sensors 
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Abstrakt 
Disertační práce popisuje vývoj nových detekčních zařízení s anizotropními magnetorezistory 
(AMR) a senzory fluxgate, které jsou určeny pro aplikace, jakými jsou detekce přiblížení a 
vizualizace skrytých kovových předmětů. Cílem je nahradit detektory s velkou indukční 
cívkou, které mají malé prostorové rozlišení a které neumožňují přesnou lokalizaci a 
vizualizaci kovových předmětů. Naopak senzory ARM a fluxgate mají malé rorměry 
snímacích elementů a velké prostorové rozlišení a navíc jsou citlivé na střídavá i konstantní 
magnetická pole, takže mohou najít využití v aplikacích s velmi malou pracovní frekvencí. 

První část práce popisuje vybrané vlastnosti komerčních senzorů fluxgate a AMR a srovnává 
možnosti jejich použití v detektorech z hlediska šumu a parazitní citlivosti na kolmé 
magnetické pole. 

Druhá část se věnuje vývoji detektorů kovových předmětů a senzorů přiblížení. Nejprve byl 
vyvinut gradiometr se senzory AMR, který pracuje ve střídavém poli budicí cívky. Tato 
konfigurace umožňuje pomocí senzoru AMR detekovat vodivé předměty, díky odezvě 
vířivých proudů, a materiály s vysokou permeabilitou, pomocí magnetizace materiálu 
střídavým budicím polem.  Jedním z výstupů je také stejnosměrná hodnota gradientu, která je 
citlivá na remanentní pole materiálu a stejnosměrnou magnetizaci vyvolanou zemským 
polem. Gradiometr s tímto množstvým výstupů a velkým prostorovým rozlišením byl použitý 
ke konstrukci detektoru min s polem gradiometrů, který sloužil pro vizualizaci a případné 
rozpoznání min od kovového odpadu. Na základě dosažených parametrů byl tento detektor 
následně modifikován na zařízení pro vizualizaci zakrytých kovových struktrur ve 
stavebnictví. 

Dále byl vyvinut senzor přiblížení se zjednodušenou konstrukcí oproti gradiometru s AMR. 
Skládá se z jednoho senzoru AMR, budicí cívky a generátoru obdélníkového buzení. 
Demodulaci měřeného signálu provádí přímo senzor AMR. Tento senzor přiblížení je vhodný 
pro aplikace s nízkou pracovní frekvencí, například pro detekci předmětů za vodivým krytem. 
Upravená konstrukce s polem fluxgate senzorů integrovaných na čipu sloužila pro detekci 
pozice pístu pneumatického aktuátoru. Lineární senzor polohy se připevnuje vně hliníkového 
válce a detektuje pozici pístu z běžné feromagnetické oceli díky nízké pracovní frekvenci 
budicího pole, které proniká pláštěm hliníkového válce. Pro porovnání parametrů dosažených 
s AMR senzory je uvedeno také několik článků  na téma gradiometrů s fluxgate senzory. 

 
Klí čová slova: Senzory magnetického pole, Detektory min, Senzory AMR, Senzory fluxgate, 
Gradiometry, Senzory polohy 
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1 State of the art 

1.1 Sensor technologies 

This chapter describes the most relevant magnetic field sensors which are commonly used in 

practice and is focused on factors limiting the resolution, range and usability of sensors rather 

than properly explaining their principle. 

1.1.1 Induction coils  

Recent overview of induction sensors was compiled by Tumanski (2007a). These sensors are 

based on Farraday’s law and their advantages are relative simplicity of production and 

predictable behavior allowing precise calculation of parameters. For high frequencies the 

resolution of magnetic field measurement is comparable with cryogenic magnetometers. 

Disadvantages are frequency dependent transfer function and the fact that the voltage output 

depends on the time derivative of the magnetic field. 

Theoretical background and modeling of induction coil sensors is provided by Timofeeva 

(2011). Paperno (2012) worked on analytical optimization of induction coils for minimum 

noise. Higher resolution is attained by increasing coil diameter or by adding the ferromagnetic 

core; increasing the number of turns results in increased resistance, parasitic capacitance and 

noise. The study of sensitivity and spatial resolution of induction sensors for non-destructive 

testing is described by Gilles (2012). A differential sensor with 0.8 cm
3
 had the white noise of 

0.4 pT/�Hz starting from 10 kHz. Prance (1999; 2000) presents a gradiometer with 2-cm long 

coils with 125 fT/�Hz above 10 kHz, which is comparable with SQUID magnetometers. The 

space magnetometer for Themis mission was developed to overlap the frequency range of 

measurement with fluxgates (Roux, 2008); it had a search coil with 7 mm in diameter and 170 

mm length and the resulting noise was about 10 pT/�Hz at 1 Hz and 0.02 pT/�Hz at 1 kHz. 

1.1.2 Fluxgates  

Fluxgates are DC (meaning here steady-state) magnetic field sensors, the principle is based on 

modulation of permeability in a ferromagnetic core. The sensor is composed of the 

ferromagnetic core with excitation winding and the pick-up coil as the sensor output. Details 

about fluxgate sensors can be found in (Ripka, 2001). Fluxgates measure magnetic field in the 

range of approximately 10
-10

 to 10
-4

 T with very good linearity. They are suitable for 

measurements with resolution on the order of 1 nT, where the most limiting factors are 

temperature stability and sensor noise, which is commonly about 10 pT/�Hz at 1 Hz. 

Typical signal processing circuit consists of a phase sensitive detector and feedback 

compensator. The output of fluxgate sensors can be evaluated in time domain using simpler 

electronics than in the case of frequency domain, however the output noise is higher (Ando, 

2008). Ripka (1995) shows the possibility to measure AC fields up to 10 kHz using the pick-

up and feedback coil of a fluxgate. Zhang (2010) describes similar concept with a Vacquier 

type fluxgate. Fluxgates manufactured by the PCB technology offer the possibility of a 

cheaper production; Kubik (2006) reports a PCB racetrack fluxgate with a 30mm x 8mm core 

with the noise level of 24 pT/�Hz at 1 Hz. Ruhmer (2011) studied spatial resolution and noise 

of racetrack fluxgates for measurements of dipole fields. Both parameters can be changed by 

the core geometry, but cannot be optimized independently. 
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1.1.3 AMRs 

Detailed information about anisotropic magnetoresistors (AMRs) is summarized by Tumanski 

(2010). AMRs are based on the magnetoresistive effect in a thin ferromagnetic film. The 

resistance of the material depends on its state of magnetization. The magnetization of the 

material has two stable states which should be properly set by the so called flipping field, 

because the characteristic of the sensor can be deteriorated by a relatively small field. 

Commercial sensors consist of four MR elements connected in a full bridge to reduce 

temperature dependence and coils for flipping and feedback compensation. Compared to 

fluxgates the noise and temperature offset drift is typically hundred times higher. The 

measuring range without feedback compensation is limited to several hundreds of A/m. 

Ripka (2003) describes an AMR magnetometer with switched integrators to avoid the most 

noisy time intervals following the flipping pulses. The magnetometer has a temperature offset 

drift of 10 nT/K, noise at 1 Hz is typically 2 nT�Hz and linearity 0.2 % without feedback and 

0.04 % with the feedback coil in the range of ±200 �T. The flipping amplitude influences the 

output noise and offset (Hauser, 2003). With higher amplitude of the short flipping pulses the 

output noise is decreased about two times by increasing amplitude from 0.5 A to 3 A. 

Influence of the feedback and flipping on linearity and temperature stability is studied by 

Platil (2003).  

While the 1/f noise is fixed, the Johnson noise depends on the sensor sensitivity, thus on the 

supply voltage of the resistor bridge. He (2009) shows an AMR magnetometer for NDT with 

an 800 � sensor supplied by 24 V where the Johnson noise is as low as 12 pT/�Hz at 1 kHz. 

However this arrangement has high power consumption of the bridge supply. 

Magnetoresistors can be used to build a magnetometer for a small satellite where fluxgates are 

too bulky (Brown 2012). Noise level of 50 pT/�Hz at 1 Hz referred in this paper is more than 

three times lower than that declared by the manufacturer of the AMR HMC1001 (Honeywell 

2008). Linearity improvement of this sensor by the feedback compensation of the measured 

field is demonstrated by Hadjigeorgiou (2017). 

1.1.4 GMRs and TMRs 

Giant Magnetoresitors  (GMR) and Spin Dependent Tunneling (SDT or TMR) devices and 

their applications are described in Daughton (2000). Function and basic properties of Giant 

Magnetoresitors is described in (NVE Co., 2005). The effect arises in thin ferromagnetic film 

multilayers by magnetic modulation of the electron spin in the material. Magnetoresistive 

properties are up to 20 times larger than the effect of AMR, the magnetoresistance percentage 

is up to 40 % and sensitivity to magnetic field reaches in same cases also higher values. For 

this reason and due to better spatial resolution GMR replaced AMRs in reading heads in hard 

drives. Vopalensky (2003; 2004) states, that although GMR and SDT sensors offer higher 

sensitivity than AMR, they currently cannot be used for precise linear measurements due to 

high non-linearity and hysteresis, for the GMR 3 % and 2 % respectively, hysteresis of an AC 

biased SDT was 12 % of full scale.  

Output noise of GMRs is comparable to AMRs, measurements of several commercial GMR 

sensors is provided by Stutzke (2005). A cross-correlation method using two amplifiers 

allows measurement which is free of the noise of the processing electronics. Ripka (1999) 

measured noise, offset and hysteresis on GMR sensors and improved these parameters by AC  

excitation. Tondra (1999) developed a low noise SDT sensor with theoretically achievable 

resolution on the order of 1 pT if 1/f noise is reduced and only the thermal noise is the 

remaining source of noise. 
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1.1.5 Resonant magnetometers, Hall sensors and other 

Further principles of magnetic sensors are described in (Ripka, 2001). The important devices 

for low field measurements are resonant magnetometers. Resonant magnetometers are based 

on nuclear magnetic resonance and the known gyromagnetic ratios of proton and electron. 

Resonant magnetometers for low field measurements are proton precession, Overhauser and 

optically pumped magnetometers. Magnetic field resolution is better than resolution of 

fluxgates, however resonant magnetometers are more bulky. The output is a scalar value of 

the magnetic field without temperature dependence or necessary calibration, but the 

measuring range starts from a certain minimum, otherwise the output signal is too low. 

Measuring range can be extended using external biasing field; this method also allows 

construction of vector resonant magnetometers. Although the magnetometers are principally 

insensitive to direction of the magnetic field, there is a dependence of the signal amplitude on 

the angle between the magnetic field and axis of the solenoid coil. So for same angles the 

sensor is not operating properly or is noisy. Although omnidirectional sensors are available, 

the construction is more complicated. 

Magnetic sensors based on Hall effect are commonly used for position sensing applications, 

however this sensor usually needs a strong magnetic field to work properly, because its noise 

is several orders higher than the noise of MRs and fluxgates and the sensitivity is relatively 

low. Popovic (2002) summarizes key features of AMRs and GMRs and compares them with 

Hall sensors enhanced by concentrators. In some parameters like the full scale range Hall 

sensors are better than MRs, noise of Hall sensors is however still much higher. Reiniger 

(2006) describes applications of Hall and MR sensors for position control; usability of sensor 

arrays is discussed. 

Other significant sensors are superconducting quantum interference devices (SQUIDs). They 

are cryogenic sensors reaching white noise of about 10 fT/�Hz, however with a complicated 

construction and operation. SQUIDS measure only field changes. Another principles are 

magnetoimpedance and magnetoinductance, but sensors using these effects have no 

significant advantage over MRs and fluxgates and till now have no such success in practice. 

1.2 Applications 

Magnetic field measurements can be divided into scalar field and vector measurements, 

additionally gradient and tensor can be estimated (Bracken, 2006). Scalar field magnetometers 

measure only the magnitude of the field and are insensitive to its direction. Scalar gradient is 

measured by operating two scalar magnetometers at a fixed distance - the difference of their 

reading decided by their distance (called gradiometric base) is an estimate of the gradient; it 

makes the nearby anomalies more pronounced and removes the variations of the Earth’s field. 

Vector magnetometers measure the magnitude and direction of the field, precise attitude of 

the magnetometer has to be known. Using an array of vector magnetometers at a fixed 

distance a gradient tensor can be measured, however common vector gradiometers measure 

the gradient only in the direction of the gradiometric basis.  

Most of the applications employ an excitation field. Magnetic field of the Earth is sufficient 

for several applications to induce a detectable magnetic field in objects where the remanent 

field is not available. Other magnetometers use an AC or DC excitation field generated by 

induction coils or magnets. The AC magnetic field is useful for detecting conductive objects 

using the magnetic response of eddy currents. 
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1.2.1 DC Magnetic field mapping 

Complex information on the application of the DC magnetometers and gradiometers, 

especially the proton and fluxgate ones, is provided by Breiner (1999). These instruments are 

used in a search for buried objects, geological mapping, mineral exploration, geophysical 

research and archeology. The magnetic anomalies detected by the magnetometers originate in 

magnetic properties of buried objects and minerals in soil and rocks. Even non-magnetic 

buried objects or voids can be revealed by magnetic measurements as a gap in mineralized 

soil. The better the resolution of a magnetometer the more information on the scanned area is 

obtained, however the required resolution depends on the particular goal of the measurement. 

The Earth’s magnetic field varies in time due to solar wind and other phenomena, resulting in 

diurnal variations and micropulsations. These effects have to be eliminated typically if the 

measurement takes more than 5 minutes and anomalies of interest are less than 50 nT.  

Typical sensors for this application are resonant magnetometers. Mapping with a single sensor 

can be time consuming, so multiple sensor systems were developed. An array of eight Cs-

vapor magnetometers in combination with three induction coils with a size of 1 m x 1 m is 

reported by Nelson (2001) for detection and characterization of unexploded ordnance. A 

similar system is reported by Siegel (2008). 

The main disadvantages of fluxgates compared to resonant magnetometers are calibration 

errors and drift, which should be compensated by calibration before the beginning of the 

measurement (Munschy, 2007). Bartington (2004) describes a fluxgate gradiometer with the 1 

m sensor separation intended for archeological applications and compares it with nuclear 

resonance magnetometers. The fluxgate magnetometers suffer from a temperature dependent 

output drift which is compensated by the calibration before beginning of each survey; 

calibration improves the heading error down to 0.5 nT. Merayo (2005) constructed a fluxgate 

gradiometer for space applications with the resolution of 100 pT/m and with 0.5 nT long-term 

stability of the sensor offset. Advantages of the fluxgate gradiometers are lower power 

consumption, overall weight, cost effectivity and suitability for array systems; they can 

provide higher data rates than resonant magnetometers. Fluxgate gradiometers are used for 

detection of deeply buried remnants of war (Hochreiter, 2000).  

A SQUID gradiometer described by Linzen (2007) with the noise of 7 fT/cm in the frequency 

range 0.01 Hz to 10 Hz was used in archeological prospecting. The main disadvantage is the 

necessary supply of liquid helium for cooling with a filling cycle of two days. 

1.2.2 AC methods 

One of the main applications of AC metal detectors is demining. The basic principles and 

demands on the mine detectors are covered in Guelle (2003). Usually continuous wave and 

pulsed eddy current metal detectors are used with the ability to locate minimum-metal mines 

in soil with difficult electromagnetic properties. Overview of patents related to metal detectors 

is summarized by Siegrist (2002), who states, that patents are a valuable source in this case, as 

there is otherwise a lack of information. Bruschini (2000b, 2002) describes a theoretical 

background for eddy current detectors and shows possibilities of object discrimination using 

phase angle information from a commercial two-frequency mine detector Foerster Minex 

2FD. 

Bruschini (2000a) provides an overview of metal detectors for demining and reports on tests 

of commercial imaging metal detector Ferroscan (Hilti, 2006). Comparison of metal detectors 

with alternative methods for mine detection provides Lewis (2004) and McDonald (2003). 

Krueger (2008) shows a method to map the response of eddy currents using the standard 
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handheld metal detector. Ultrasound position sensors record the trace of the detector head so 

together with the detector output a signature graph is created and object recognition is 

possible. Ripka (2010) aims at the same goal using inertial navigation and infrared distance 

sensors. A mobile platform carrying the mine detector on a robotic arm was studied for safer 

automated demining (Fukuschima, 2009). 

For characterization and discrimination of metal objects without the need of scanning a 

multiple coil gradiometer can be used (Gaspernikova, 2010). Wold (1999) constructed a 

handheld metal detector with a SDT array and pulse excitation, the detector was intended for 

demining with object recognition. 

A commercial device MIT-Scan2 (MIT, 2008) is based on imaging using an array of eddy 

current sensors and is used to visualize ferrous joints in highways and pavements. Induction 

sensors are widely used in industrial applications for proximity detectors (Jagiella, 2006). An 

array of induction sensors with a single excitation coil is used for detection of metal pieces in 

glass recycling industry (Mesina, 2003).  The receiver sensors have 7 mm in diameter and are 

connected as 30 gradiometers. The excitation coil has dimensions of 10 cm x 68 cm. The 

excitation frequency is variable from 700 Hz to 5 kHz. 

1.2.3 Non-destructive testing 

A typical eddy current sensor for non-destructive testing (NDT) is an induction sensor. Recent 

progress was however related rather to probes with magnetoresistors due to the high spatial 

resolution and sensitivity to the DC and low-frequency magnetic field. Comprehensive 

overview of magnetoresistors in NDT provides Jander (2005) and Smith (1999; 2000). 

Comparison between induction coil, GMR and AMR sensors for detection of cracks in metals 

was done experimentally by Hesse (2005). Very low excitation frequency of 350 Hz was used 

to achieve high depth of penetration. The results of detectivity and resolution test were similar 

for both MRs and a 8000-turn coil; the main disadvantage of the coil was a difficult 

reproducibility. Comparison between AMR and GMR eddy current probes is provided by 

Cherepov (2004). The fluxgate (specifically fluxset) sensor proved to be suitable for detection 

of metal cracks using eddy currents (Vértesy, 2000) and an array of fluxgates can be used for 

detection of DC magnetic signatures of cracks in ferromagnetic metals (Gruger, 2003). 

An eddy current sensor with AMR was presented by Sikora (2001; 2003) and He (2011), 

mutifrequency excitation enables to reduce lift-off effects. Torres (2005) used an AMR in a 

multifrequency probe to distinguish between different types of metal.  

Eddy current GMR sensor is described in Wincheski (2000), Dogaru (2001) and Pasadas 

(2011). The main advantage of this technology is small sensor size allowing high spatial 

resolution and a broad frequency range from 1 Hz to 1 MHz. A rotational GMR probe can be 

used for detecting deeply buried cracks around a fastened holes (Wincheski, 2002; Dogaru, 

2004). An NDT system using GMRs is described in Iorio (2007). A probe with 16 GMR 

elements and 100 Hz excitation is able to visualize defects in aluminum plates in depth up to 2 

mm (Yashan, 2006).  

Methods and devices for detecting and visualizing reinforcing bars in concrete are summed up 

in Gaydecki (2007). Among these devices belong Q-sensors, pulsed eddy current sensors and 

DC excited magnetometers. A commercially successful device for imaging of reinforcing bars 

in concrete based on DC field excitation is Ferroscan (Kousek, 1997; Hilti, 2006). A large 

magnet produces the magnetic flux which is distorted  by a nearby ferromagnetic object. 

These variations are sensed by DC sensors in differential arrangement. An AC excitation is 

possible too. Depending on the the diameter of the bar the maximum working depth is 18 cm. 
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Benitez (2008, 2009) used magneto-impedance sensors in a magnetic imaging system. A DC 

field is excited by a coil and a 2D array of magneto-impedance sensors creates the magnetic 

image of a nearby object, e.g. reinforcing bars in concrete. 

Several more application examples of DC sensors can be mentioned. Magnetic field of 

ferromagnetic objects like transformer components or magnets can be mapped using Hall and 

GMR probes (Christides, 2003) and AMR (Tumaski, 2002; 2007b). A Hall sensor was used 

for scanning of a polished surface of a rock sample to visualize the textures of the magnetic 

field (Kletetschka, 2013). Zimmermann (2005) used an array of AMR for magnetoelectrical 

resistivity tomography. A 2D array of magnetoresistors on one chip was used for forensic 

study of audio tapes and imaging currents in integrated circuits (Halloran, 2007). 
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2 Objectives of the thesis 

I. To design metal detectors with AMR sensors which have higher spatial resolution than 

induction coils.  

II. To solve the problem of the sensor operation in a strong excitation and biasing field. 

This can be achieved either by: 

II.a.  Field compensation – compensation coil may have large power consumption. 

II.b. By measuring in the direction perpendicular to the excitation field. In this case 

problems with crossfield sensitivity are expected. 

III. To explore applications, where DC magnetic field sensors can replace induction sensors 

by virtue of better sensitivity at low frequencies.

To fulfill the tasks (I.), (II.b.) and (III.), detailed characteristics of the available commercial 

sensors have to be measured and compared. The tasks (I.), (II.a.) and (III.) require a 

development work on an innovative hardware to be carried out, so the metal detectors and 

other applications are designed. Realization of these tasks is described in the following pages. 
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3 Own results 

Own results are presented in the form of the following nine journal and conference papers. 

They are ordered logically starting with characterization and comparison of sensors in chapter 

3.1 and followed by applications in innovative sensor systems for detection of objects and 

position sensing in chapter 3.2. This ordering sometimes does not correspond to the 

chronological order, therefore knowledge and sensors already introduced by some paper may 

not be reflected in all the consecutive papers. 

3.1 Characterization of magnetic sensors 

The following papers supplement the information about selected commercial sensors which is 

not available in datasheets and literature. Chapters 3.1.1 and 3.1.2 present noise comparison 

of induction coil, integrated fluxgate and AMR sensors. These chapters are related to the 

objective of using DC magnetic sensors for low frequency applications (objective III.) and for 

design of metal detectors (I.). My contribution to the respective two papers was the 

experimental work and processing of measured data. Measurement of crossfield effect in an 

AMR and integrated fluxgate sensor is shown in chapter 3.1.3., which is related to the 

objective (II.b.) For this paper, I participated on designing of the measurement setup and on 

processing of the data.

Further sensor characteristics are usually available in literature to select the sensor which is 

best suited to the final application. Apart from detailed noise and crossfield data, other 

parameters has to be considered, for example power consumption, sensitivity, frequency 

dependence and input range of the sensor, complexity of conditioning circuits, spurious 

sensitivity to electromagnetic fields or manufacturing complexity. Some of these topics are 

discussed later in chapter 3.2. 
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3.1.1 Experimental Comparison of the Low-Frequency Noise of Small-Size 
Magnetic Sensors 

The goal was to experimentally estimate the frequency range in which selected DC magnetic 

sensors are superior to induction sensors in terms of noise. The criterion for selection of the 

sensors was the similar size of the sensor package rather than the size of the sensing element. 

Commercial SMD fluxgate and AMR sensors have been chosen and compared with an 8 mm 

x 1 mm induction coil with ferrite core. 

The primary reason why AMR sensors can often replace induction sensors in NDT 

applications (chapter 1.2.3) is the small sensing element size and its better spatial resolution 

with the advantage of low-frequency operation. Metal detectors with sensor arrays, on the 

other hand, allow bigger induction sensors to be used, considering that the detected objects 

are rather large. 

The resulting frequency range, where the AMR and integrated fluxgate sensors performed 

better than the induction coil, was surprisingly low and widely varying, depending on the 

sensors selected (Fig. 9 in the paper). For example while the AMR HMC1001 in a low noise 

circuit had better noise than the coil from DC to 100 Hz, the integrated fluxgate DRV425 had 

better noise from DC to 7 Hz. Considering solely the noise data, some application designs 

with 1 kHz working frequency in chapter 3.2 would benefit from exchange of AMRs for 

induction coils. 

Noise of the induction sensor also depends on selection of the conditioning circuit. The paper 

describes how to measure even DC field, when the coil is operated in a fluxgate mode. Such a 

sensor has a noise of 1 nT/�Hz @ 1 Hz, which is comparable to the noise of the integrated 

fluxgate sensor and noisy types of AMR sensors. Further details are given in the paper. 
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Experimental Comparison of the Low-Frequency Noise

of Small-Size Magnetic Sensors
Jan Vyhnanek and Pavel Ripka

Department of Measurement, Faculty of Electrical Engineering, Czech Technical

University in Prague, 16627 Prague, Czech Republic

Small-size ac magnetic-field sensors are used for nondestructive testing (NDT), magnetic particle detection, and other applications,
which require high spatial resolution. Up to now, inductive coils dominated this area, as their sensitivity at kHz frequencies, is
superior to other magnetic sensors. However, some applications, such as magnetic imaging through conducting sheath, require lower
working frequencies, in extreme case units of Hz. We successfully replaced inductive coils by an AMR sensor in NDT application
and for distance measurement. In this paper, we compare designs of miniature ac magnetic field sensors, their achievable frequency
characteristics, dynamic range, and noise parameters.

Index Terms— Magnetic sensors, noise measurement.

I. INTRODUCTION

C
OMPARISON of magnetic sensors of different technolo-

gies was recently done by Robbes in [1]. He used energy

resolution-volume criterion and concluded that SQUID and

SERF achieve the best resolution. However, these sensors are

not practical for the industrial applications such as nondestruc-

tive testing (NDT).

In this paper, we compare commonly available small-size

room temperature sensors: an induction coil with 8 mm

long ferrite core (Fig. 1) and commercial fluxgate and AMR

sensors. The selected sensors have comparable dimensions of

the casing rather than the sensing element size. This is a

practical criterion for the design of gradiometers or multiple

sensor detectors. Dimensions of the sensing element, however,

influence the spatial resolution of the sensor, an important

requirement, e.g., in NDT applications, in position sensing,

and in the detection of small ferromagnetic or superparamag-

netic objects. Gruger [2] describes an array of planar fluxgate

sensors for NDT. The sensors are 1 mm long and they have

0.5 mm pitch. Vertesy and Gasparics [3] used a similar sensor

with time-output and unipolar excitation. Butin et al. [4] and

Dolabdjian et al. [5] replaced induction coil in a pulsed eddy

current system by GMR sensors. We have used an AMR sensor

instead of the induction coil in the eddy-current position and

distance sensor [6].

In this paper, we compare sensor noise at low frequencies,

i.e., DC to 1 kHz following the study we made on AMR

sensors [7]. In this frequency range, the sensor noise is

the limiting factor for NDT applications. Similar study of

magnetoresistive sensors was made by Stutzke et al. [8].

II. INDUCTION COIL

Induction coils are traditionally used in geophysics to mea-

sure magnetic field variations [9]. An induction coil can reach
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Fig. 1. Sensor with 2000 turns wound around a ferrite core and a ferrite
core without the winding.

a resolution of fluxgate sensors at 1 Hz, but the dimensions

and weight of such a coil is usually large [10], [11].

In the position detectors with moving magnets, induction

sensors have been replaced by Hall and AMR sensors, which

have speed-independent signal. However, induction coils are

the most popular sensors in eddy current position sensors

and NDT systems. Induction coils can be used either in the

voltage output mode or in the current output mode. Theoretical

model and real data comparison of a coil with the same

instrumentation amplifier INA163, which was used here, are

given in [12].

An induction coil with 2000 turns and 8 mm × 1 mm

ferrite core was developed in our laboratory and successfully

tested in vivo as an inductive distance sensor to monitor gastric

motility [13]. The coil is wound with a 0.035 mm diameter

copper wire and its resistance Rs is 200 �.

After inserting the ferrite core, the coil inductance Ls was

increased by the factor of 13 (from 1.4 to 18.6 mH) and the

sensitivity increased by the factor of 12 at all frequencies.

These are lower values than the theoretical apparent permeabil-

ity of 50 according to [14]. One explanation of this discrepancy

may be the influence of the real coil geometry.

The frequency dependence of the sensitivity of voltage

output coil is shown in Fig. 2(a). The resonance peak of the

0018-9464 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Frequency dependence of the 8 mm long induction coil with and
without ferrite core (a) with voltage output and (b) with current output.

cored coil is caused by coil self-capacitance in parallel with

inductance.

The theoretical disadvantage of the induction coil with

voltage output is its strong frequency dependence of sensi-

tivity. The coil with current output is theoretically frequency

independent for frequencies higher than

fc = Rs/(2π Ls). (1)

However, for small induction coils, this frequency is very high.

The real frequency characteristics of the current output coil

with and without a core are shown in Fig. 2(b). For the cored

coil and the current output, the measured cutoff frequency

corresponds to the theoretical value fc = 1.7 kHz for Ls =
18.6 mH. For the air coil, the calculated fc is 23 kHz.

Fig. 3 compares three conditioning circuits connected to

the cored induction coil to select the optimal method of

signal processing. Transimpedance amplifiers with INA163

and LT1028 were used for the current output. The value of

the conversion resistor is 6 k�. The coil in the voltage output

mode was connected to a voltage amplifier with INA163

with the gain of 1000. From the measured characteristics, we

may conclude that for this type of the induction coil, voltage

amplification is the best to achieve minimum noise.

Fig. 3. Comparison of induction coil noise with voltage amplifier and
transimpedance amplifier (current output) for 1–800 Hz.

Fig. 4. Induction coil with core connected to INA163 voltage amplifier
compared with modeled thermal noise and voltage noise of INA163. (a) In
volts. (b) Recalculated in the units of magnetic field.

Fig. 4(a) shows the measured and modeled noise voltage for

the voltage output coil compared with the calculated values.

For the frequencies below 10 Hz, the dominant source of

the noise is 1/ f voltage noise of the amplifier, while the
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TABLE I

COMPARISON SUMMARY

Fig. 5. Setup for the fluxgate sensor with current output.

contribution from the current noise is negligible. The noise

model is based on datasheet data. The theoretical white noise

of the coil is mainly determined by the thermal noise voltage of

the coil resistance and the white noise region Un of the voltage

noise of the amplifier; for Rs = 200�,Un = 1 nV/
√
Hz, room

temperature T, and Boltzmann constant k, the combined white

noise results in

Uwhite_total =
√

4kT Rs + U2
n = 2.1 nV/

√
Hz. (2)

The measured value is 2.3 nV/
√
Hz. As the measured voltage

noise with and without core is identical, the contribution of the

magnetic noise of the core is negligible. Noise recalculated to

the field units is shown in Fig. 4(b). It is clear that due to the

frequency dependence of the sensitivity, the noise decreases

with frequency monotonically. The achieved noise level with

the cored coil is 0.8 nT/
√
Hz@10 Hz and 22 nT/

√
Hz@1 Hz.

The cored induction coil has a field amplitude range limited

by the saturation of the core to 5 mT. Compared with that, the

upper field range of the air coil is only limited by the output

amplifier. In our case, the maximum measurable field on the

high-resolution range is 1 mT. This field range can be further

extended even over 1 T by decreasing the amplifier gain.

We also tested signal processing by analog integrator :

homemade using LT1028 and commercially available

Lakeshore 480. Due to the high resistance of the induction

coil, the value of feedback capacitor should be about 1 µF

and resulting sensitivity is very low.

III. INDUCTION COIL AS A SINGLE ROD FLUXGATE

The described miniature induction coil can be turned into

the fluxgate sensor. The advantage of this unusual sensor is

that it has only one winding. Setup for the fluxgate mode

measurement is shown in Fig. 5. The sensor is excited in

the voltage mode using 20 Vp-p/2.3 kHz sinusoidal voltage.

The capacitor C serves to decouple any dc component in the

Fig. 6. Sensor current with higher harmonics due to core saturation
(upper trace, 2 mA/div) and generator voltage (lower trace, 5 V/div).

excitation and to increase the excitation current amplitude by

tuning.

The generator voltage and the corresponding sensor current

are shown in Fig. 6. The excitation current was 8 mAp-p. When

the external dc field is present, second-harmonic component

appears in the excitation current. This second harmonics is

measured as a voltage drop across the 10 � sensing resistor

by the SR865 lock-in amplifier. At higher frequencies, most

of the noise in the setup comes from the amplifier in this case

considering the large feedthrough of the excitation signal to

the output current.

Sensitivity dependence on the frequency of the excita-

tion current was measured for constant excitation voltage

of 20 Vp-p (Fig. 7), and for the noise measurement, an

excitation frequency of 2.3 kHz in the high-sensitivity region

was selected.

Comparing the noise of fluxgate mode and induction mode

(Fig. 8), a crossing of the two characteristics at around 10 Hz

indicates the suitability of each mode for a specified

frequency region: for frequencies from DC to 10 Hz, the

recommended sensor mode is fluxgate, for higher frequencies

induction coil.

IV. COMPARISON WITH COMMERCIAL SENSORS

We compared the performance of the developed sensors

with sensors available on the market. The results are shown

in Fig. 9 and a summary of parameters is given in Table I.

HMC2003 is a three-axis magnetic sensor module manufac-

tured by Honeywell, which contains AMR sensor HCM1001

with instrumentation amplifier and a biasing source. The

measured noise at 10 Hz is 250 pT/
√
Hz. No flipping

(set/reset of the magnetic state) was applied. However, for
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Fig. 7. Sensitivity of the fluxgate sensor in the measurement setup at the
variable excitation frequency.

Fig. 8. Coil in fluxgate mode compared with induction mode using voltage
output.

Fig. 9. Comparison of induction coil with AMR and fluxgate sensors
for 2–250 Hz.

practical applications, the sensor should be periodically remag-

netized (“flipped”) to ensure zero stability.

The same AMR sensor HMC1001 was characterized with

enhanced electronics in [7]. The sensor was flipped at 10 kHz

with an amplitude of 3.6 Ap-p and connected to a low-noise

instrumentation amplifier AD8429 with a gain of 100. The

biasing voltage was 5.5 V. After synchronous demodulation,

the noise at 10 Hz is 65 pT/
√
Hz.

A serious limitation of the AMR sensors is their lim-

ited dynamic range. In this case, the maximum measurable

field is 0.2 mT.

The last sensor in this comparison is integrated fluxgate

DRV425 manufactured by Texas Instruments. This device has

both microfabricated fluxgate and complete electronics on a

single CMOS-chip. We have used it in recommended circuit

connection and 5.1 ohm shunt resistor to measure feedback

current [15]. The measured noise is 1.5 nT/
√
Hz@10 Hz. The

maximum field range is 2 mT, which is 10 times the range of

the AMR sensor.

V. CONCLUSION

In this paper, we compared the noise performance of small-

size magnetic sensors suitable for NDT testing. With the

exception of DRV425, the tested sensors work in open-loop.

We describe small-size induction coil with high field range and

noise level of 0.8 nT/
√
Hz@10 Hz. At lower frequencies, the

fluxgate mode of the same sensor is preferable, which at 1 Hz

achieves already about 20 times better noise. Many industrial

applications require high field range. From this point, the

integrated fluxgate DRV425 offers the range of 2 mT, which

is 10 times higher than that of AMR sensors. Our induction

sensor works up to 5 mT with core and >1 T without the

core.
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3.1.2 Low frequency noise of anisotropic magnetoresistors in DC and AC-
excited metal detectors 

This work addresses noise performance of an AMR sensor in relation to flipping and 

excitation field. A thorough evaluation of noise sources is given, including thermal noise, 

magnetic noise and noise of an amplifier and demodulator.  

A low-noise commercial anisotropic magnetoresistor HMC1001 was periodically flipped. A 

low noise instrumentation amplifier AD8429 was used for signal conditioning. With a 

5.5 V bias voltage, the resulting noise was 30 pT/�Hz at 1 kHz and 125 pT/�Hz at 1 Hz.  

When the sensor was not flipped, the noise at 1 Hz resulted in 246 pT/�Hz, showing the 

capability of flipping to decrease the low-frequency noise of an AMR magnetometer. This 

improvement was caused by shifting the 1/f noise of the amplifier to an out-of-band frequency 

region, which is a classic technique, but additionally the sensor noise improved too. Whether 

this was mainly caused by suppressing the magnetic noise, or thermal effects on electrical 

properties of the sensor which is also manifested as 1/f noise, was not determined. Practical 

problems of utilizing HMC1001 are however relatively high power consumption and the need 

for costly and high power low noise amplifier, because the sensor has a low sensitivity. 
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Abstract. Magnetoresistors can replace induction sensors in applications like non-destructive 

testing and metal detection, where high spatial resolution or low frequency response is 

required. Using an AC excitation field the magnetic response of eddy currents is detected. 

Although giant magnetoresistive (GMR) sensors have higher measuring range and sensitivity 

compared to anisotropic magnetoresistors (AMR), they show also higher hysteresis and noise 

especially at low frequencies. Therefore AMR sensors are chosen to be evaluated in low noise 

measurements with combined processing of DC and AC excitation field with respect to the 

arrangement of processing electronics. Circuit with a commercial AMR sensor HMC1001 and 

AD8429 preamplifier using flipping technique exhibited 1-Hz noise as low as 125 pT/ Hz. 

Without flipping, the 1-Hz noise increased to 246 pT/ Hz. 

1. Introduction

Magnetoresistors (MR) fall between Hall sensors and induction sensors in terms of sensitivity and 

noise. Unlike induction sensors, MRs have the frequency response starting from DC and they are 

therefore favorite sensors for non-destructive testing devices which detect deeply buried cracks [1]. 

MRs have small dimensions and high spatial resolution which allows to build array arrangements 

which can be used for metal detection and object recognition [2]. They are also readily available in 

commercial packaging as electronic components.  

 The limiting factors for these applications are the noise of the sensor, gain temperature drift, 

hysteresis and also offset temperature drift when sensors are used at low frequencies or DC. These 

parameters limit the detection depth in metal detection and non-destructive testing. Noise can be 

generally filtered by averaging, however this affects the speed of operation and temperature drifts 

become more pronounced. There are generally three competing magnetoresistive technologies: giant 

magnetoresistive (GMR), tunneling magnetoresistive (TMR) and anisotropic magnetoresistance 

(AMR) sensors. In the case of GMR and TMR, the hysteresis and noise are generally higher [3] than 

for AMRs, which are subject of this study.  

We focus on the sensor noise which disqualifies MRs in favor of induction coils, whereas other 

parameters speak for MRs ! they have small size with high spatial resolution and they are mass 

produced devices available in packages for assembly in printed circuit boards, so that they can be 

easily used in arrays [4]. A widely used technique of improving of the AMR sensors parameters is the 

so called flipping ! periodic remagnetization of the sensor by applying large bipolar magnetic field 

pulses. With the magnetization of opposite polarity the output characteristic is reversed ! "flipped#. 

Flipping was shown to improve the offset and gain temperature stability and to reduce crossfield 
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sensitivity of the sensor [5]. Metal detector noise was investigated in three possible circuit 

arrangements with and without flipping - their effects on AC and also DC detector noise were studied. 

2. Measurement setup 

For experimental measurements, AMR sensor HMC1001 (Honeywell) was used. This sensor has still 

the best available noise specifications from the off-the-shelf magnetoresistors. It is a barber-pole 

sensor with MR elements with 850 ohms resistance arranged in a full bridge, featuring on-chip 

flipping and compensation coils for feedback operation. The sensitivity is 140 V/T for the selected 

supply voltage of 5.5 V. As the sensitivity is low, the contribution of the noise of the processing 

electronics is not negligible. Electronics noise could be removed by the crosscorrelation technique [6], 

it is however not practical (speed of measurement). 

The typical choice for the signal processing of an AMR bridge is a low noise instrumentation amplifier 

(Figure 1a). We chose AD8429 with a 1 nV/ Hz input voltage noise (gain = 100x) and 1.5 pA/ Hz 

current noise. Due to the high common mode of the bridge, the instrumentation amplifier cannot be set 

to the full voltage span therefore another amplifier with the gain 10x was connected as the last stage. 

A similar arrangement was evaluated in [7] where the high bridge supply of 24 V was applied in order 

to achieve higher sensitivity and lower noise; however 24V is impractical due to sensor heating. 

AMR sensor exhibits two significant types of noise: the 1/f type magnetic noise and the white thermal 

noise. The white magnetic noise is still some orders of magnitude below the thermal resistive noise of 

the bridge elements; therefore it is not further taken into account. Whereas the 1/f noise affects low-

frequency measurements and depends on the manufacturing process, the white noise influencing AC 

measurements can be predicted by the bridge resistance and parameters of the instrumentation 

amplifier. 
 

 

Figure 1a - Direct  measurement  Figure 1b - Measurement setup with flipping 

 

The commonly used method for improving the parameters of an AMR sensor is the so-called 

!flipping": the sensitive magnetic layer of the AMR is remagnetized in the opposite direction, thus 

reducing the hysteresis and eliminating the temperature offset drift of the sensor and AC electronics. 

For processing the output signal in the flipped mode where the output becomes modulated, a 

synchronous demodulator is used � Figure 1b. The demodulator in our case includes a switched 

integrator which eliminates noisy spikes in signal when the sensor is being remagnetized [3] � Figure 

2a. 

The noise was measured with the Agilent FFT Analyzer 35670A in all cases, without any further 

amplification, using DC-coupling, 100 averages and a Hanning window. The sensor together with 

amplifier stage was placed in a 6-layer magnetic shielding can with 100.000x attenuation of the 

ambient magnetic field noise. 

3. Experimental results 

3.1. Noise of the electronics 

The noise of the electronics was evaluated by connecting a dummy bridge made of resistors of the 

same value as the MR elements in HMC1001 (850 ). Figure 2b shows the noise spectrum obtained at 

the output of the amplifier (input of the synchronous demodulator in Figure 2a). The 1/f noise with the 

equivalent of BE = 95 pT/ Hz at 1 Hz (recalculated using sensitivity S = 140 V/T) is dominantly due 
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to the instrumentation amplifier noise. The white noise with the equivalent of 30 pT/ Hz results both 

from the bridge thermal noise and the voltage and current noise of the instrumentation amplifier. 

 

The expected white noise of the electronics BEW can be calculated as 

 
2222  NNREW SRISVSVB

 (1) 

 222
 NNREW RIVVSB  (2) 

where VR is the resistor voltage noise, VN is the amplifier voltage noise and IN is the amplifier 

current noise. 
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which matches the measured amplifier noise in Figure 2 (b). 
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Figure 2. Synchronous demodulator schematics (a) and comparison of noise of the electronics at 

amplifier output and demodulator output (b) 

 

The noise of synchronous demodulator was measured at the demodulator output with a 10-kHz 

reference and the same dummy resistor bridge. The spectrum shows an increased white noise level of 

40 pT/ Hz. This was identified as the effect of the switched integrator used in the windowing circuit 

with the time window set to 70%. With the time window of 100%, the white noise level was 32 

pT/ Hz. In the demodulator spectrum there is no 1/f noise of the instrumentation amplifier, due to the 

fact, that the frequency range was shifted by the 10-kHz demodulation frequency.  

Knowing the electronic noise, the noise measurements were done using three different circuit 

arrangements.  

3.2. Direct measurement 

This arrangement with simple electronics is depicted in Figure 1a. The output of the AMR bridge is 

directly amplified. It has the full frequency span limited only by the corner frequency of the amplifier 

stage. The eventual feedback compensation, which eliminates gain drift and improves linearity, can be 

realized with a single-opamp PI controller. In this case, the 1/f sensor noise was dominating, the total 

noise value BN1 = 246 pT/ Hz at 1 Hz (Figure 3b). 

From the measured values, we can estimate the 1-Hz noise of the sensor itself (BS1) as 
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This result is in agreement with values published in [5]. The 1-kHz white noise, which would 

dominate in the AC application, is approx. the same as the electronic noise - 32 pT/ Hz. 

If we use this mode, a single remagnetizing pulse should be performed at least while switching on the 

device to assure the magnetic state of the sensor.  

3.3. Modulation � flipping 

The block diagram is shown in Figure 1b, the flipping current and output waveform are shown in 

Figure 3a. By using flipping at 10 kHz with peak-to-peak amplitude of 3.6 Amps, the output signal 

was modulated and shifted to the white-noise frequency range of the instrumentation amplifier. The 

resulting noise of 125 pT/ Hz at 1 Hz (Figure 3b) makes flipping the obvious choice for precise DC 

field measurements, avoiding the offsets and 1/f noise of the instrumentation amplifier. When 

compared to 1/f noise of the amplifier and non-flipped sensor (4), the noise clearly further decreased: 

flipping improved also the low-frequency noise of the magnetoresistor. 
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Figure 3 ! Modulated output signal of flipped AMR (a) and comparison of overall noise with direct 

measurement (b)  

 

However, flipping is power-demanding as the narrow current pulses have to have an amplitude of 

several amperes in order to properly magnetize the sensitive layer and reduce the 1/f noise [5]. The 

maximum allowed power dissipation allows maximum flipping frequencies in the order of tens of 

kHz, limiting the measuring frequency range. It is however possible to use a lower flipping frequency 

and higher excitation frequency.  

3.4. D. Sensor as rectifier 

A flipped sensor can be used as a rectifier [8], basic block diagram is presented in Figure 4a. If the 

flipping frequency is derived from the excitation frequency, the excitation signal is synchronously 

rectified and the output signal looks like in Figure 4b. The excitation frequency is evaluated with a 

simple low pass filter connected to the output of the amplifier stage, thus eliminating complex 

detection circuitry.  

A simple feedback compensation is however possible only for a DC range, therefore the sensor should 

be positioned perpendicularly to the excitation field [1]. However a disadvantage is that the offset drift 

and the 1/f noise of the amplifier are not eliminated even at the excitation frequency fexc. 
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4.  Conclusion 

When the AMR-based metal detector works with an AC excitation field to sense the eddy current 

response of metal objects and only the AC frequency response is evaluated, then the noise level is 

determined by the sensor white noise level and it is approximately the same for either direct 

measurement or for flipping with demodulator� the 1-kHz noise was about 30 pT/ Hz in both circuit 

arrangements.  

For DC measurements, the 1/f noise of the amplifier and offset drifts of the sensor are best suppressed 

by flipping modulation technique. For the HMC1001 AMR sensor with 5.5 VDC bridge supply and 10-

kHz flipping frequency, we have found an improvement from 246 pT/ Hz 1-Hz noise with direct 

measurement down to 125 pT/ Hz when using flipping with appropriate demodulation. This 

improvement was found to be larger than simple effect of shifting the modulated signal out of 1/f 

amplifier noise: flipping was found to further improve the sensor low-frequency noise. 

The commonly used flipping method is however power-demanding with complicated detection 

electronics; also the measuring frequency range is limited, which is a difficulty in NDE. The 

possibility of using fflip=fexc was thus investigated: while it allowed to reduce flipping power and to 

simplify signal processing circuitry, the 1/f noise of the amplifier was however present in this case. 
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3.1.3 Crossfield response of industrial magnetic sensors 

This work compares crossfield sensitivity of the commercial AMR sensor HMC1001 and 

integrated fluxgate sensor DRV425. Crossfield is the component of magnetic field which is 

perpendicular to the sensitive axis. Sensitivity of a sensor to crossfield is therefore a parasitic 

effect. AMR sensors are especially sensitive to crossfield due to their fundamental principle, 

if feedback is not used.  

However, there is a limit, where remanent magnetization of the sensing element loses its 

single-domain state, even with feedback. The state then has to be restored by a flipping pulse. 

The absolute maximum crossfield which the HMC1001 can withstand, is ±380 �T (Fig. 7 in 

the paper), whereas the DRV425 can withstand at least 10 mT with minimum influence on the 

sensor characteristic. 
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second-order effect, which can be kept under control by proper design. We show that even crossfield of 10 mT does not cause
significant degradation of the sensor precision.
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1. Introduction

Non-linear response to the magnetic field perpendicular to the sensing direction is unwanted property

of all magnetic sensors which contain ferromagnetic material [1]. This so called crossfield response can

cause serious error of compass, gradiometer or current sensor.

In this paper we discuss crossfield resistance of AMR sensors and integrated fluxgate in the wider

field range. Electromagnetic inspection methods often use strong AC or DC excitation field and very

small field deviation caused by the defect is observed in perpendicular direction [2,3]. In such case the

crossfield response can cause significant error.

Theoretical response is compared to the measured results. The crossfield response was measured by

two sets of the Helmholtz coils, one generating field in the sensitive axis of the tested sensor, the other

perpendicular. Ferromagnetic objects which could deform the magnetic field or cause nonlinearity were

removed from the vicinity of the test setup. Each characteristics was measured several times to check

repeatability; the data were not averaged, but they are shown in the same plot. The perpendicularity of

the crossfield coil was adjusted to give minimum response. The residual linear response was corrected

in the collected dataset.
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2. AMR sensors

Crossfield sensitivity is inherent for all AMR sensors [4]. For the compass based on the unflipped

Honeywell HMC 1001 the azimuth error caused by crossfield is 1 deg.

The crossfield is in the easy direction of the sensor permalloy stripe magnetization, so AMR sensors

are very sensitive to it.

The basic equation for the response of the barber-pole sensor bridge is [5]

R = R′

0 +∆R
HY

Hx +H0

√

1−

(

Hy

Hx +H0

)2

(1)

In [4] we have used simplification for |Hx|, |Hy| << |H0| and we finally arrived to

V1 =
aHy

Hx +H0

(2)

where: Hx is the crossfield; Hy is the measured field; H0 is the (constant) anisotropy field; a is the

sensitivity constant.

The anisotropy field for Honeywell HMC1001 isH0 = 0.8 mT. IncreasingH0 leads to suppression of

the crossfield effect, but also to the decrease of sensitivity, which is accompanied by the increase of the

magnetic field sensor noise.

Many AMR sensors are stabilized by flipping, i.e. reversing the remanent magnetization of the mag-

netic layer by applying SET/RESET pulses into the flipping coil. Flipping pulses should have large

amplitude to restore single-domain state of the sensor core [6]. The flipping field has the same direction

as the crossfield. In [4] we have shown that flipping reduces sensitivity to crossfield. Later in this paper

we will show that this is limited to small fields.

Mohamadabadi et al. [8] used more precise approximation of the AMR equations

V1 =
aHy

√

(Hx +H0)2 +H2
y

(3)

and they developed and experimentally verified correction method which reduces the crossfield error

without flipping by the factor of 8, and with flipping by the factor of 9. The problem of the mentioned

correction methods is that they work only at small fields and they also require two or three sensors.

For perpendicular field larger than 200 µT the AMR sensors exhibit loss of sensitivity. Figure 1 shows

the characteristics of the HMR2003 AMR module which is based on HMC1000 sensors. The flipping

was switched-off and the characteristics was measured for several values of the crossfield. Applying

crossfield has similar effect as increasing H0: the sensitivity is decreased and the full-scale range is

increased. This behaviour seems to be useful for increasing of the sensor range more effectively than

using offset stripe, which has only 50 mA/G field factor.

However, for practical situations this mode fails when the flipping is on, as shown in Fig. 2. When

the flipping is applied, the sensor output polarity is periodically changing. The sensor output is there-

fore processed by synchronous detector controlled by the flipping signal. Two subsequent readings are

subtracted giving double sensitivity.

For small crossfield the small field sensor characteristics is not affected, as the SET/RESET pulses

erase the crossfield effect. The large field response is no longer reversed by flipping, which results in the

sensor sensitivity falling to zero. Thus the claim that flipping increases the AMR sensors stability [8] is

valid only for small field range.
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Fig. 1. AMR magnetometer characteristics for several values of the crossfield. Measured without flipping.

Fig. 2. Characteristics of the flipped AMR sensor without and with 0 µT crossfield.

The flipped sensor response is dramatically changed for larger crossfield values. This situation is

illustrated by Fig. 3. The crossfield of Hx = 250 µT is here so large, that flipping cannot fully reverse

the core magnetization. For crossfield of Hx = 500 µT the magnetisation is constant, regardless the

polarity of the flipping pulse. The detector output is therefore zero.

If we look on the sensor output as a function of the crossfield, we finally observe the hysteresis,

indicating that the sensor magnetic core is no longer in the single-domain state. Figure 4 shows the
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Fig. 3. Characteristics of the flipped AMR sensor with 250 µT and 250 µT crossfield.

Fig. 4. Sensor output as a function of crossfield for small value of the measured field Hy = 50 µT (no flipping).

sensor output as a function of crossfield for small values of the measured field Hy. For every field value

in the measuring direction Hy < 200 µT, the response is very similar.

For larger Hy the hysteresis starts to decrease as shown in Fig. 5 and for Hy = 0.7 mT the hysteresis

disappears – in the presence of the large field component the magnetization process in the strip longitu-

dinal direction becomes rotational, this means that the hard and easy axes are now flipped. This state is

interesting, but it can hardly have any practical applications.
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3. Characteristics of the flipped AMR sensor with 2503. Characteristics of the flipped AMR sensor with 250
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Fig. 5. AMR sensor output as a function of crossfield for very large value of the measured field Hy = 500 µT (no flipping).

Fig. 6. Output of the flipped AMR sensor as a function of the crossfield for By = 0 and By = 250 µT.

The same dependence for the flipped sensor is shown in Fig. 6 confirming that in this case the critical

field is about 350 µT for zero measured field, but only 100 µT for the maximum measured field of

250 µT.

We may conclude that AMR sensors are very sensitive to crossfield larger than the critical value,

which is about 350 µT for the Honeywell HMC1001. It should be noted that this critical value is one

order of magnitude lower than the anisotropy field H0. This value is decreasing with increased value of

the measured field Hy.

For larger values of the crossfield the sensor characteristics are heavily distorted due to the fact that

the single-domain state is broken. However, some reading is still possible for sensor with no flipping.

Once the flipping is on, the sensor output in useless.
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Fig. 7. Sensor response for slowly increasing value of the crossfield Hx.

Fig. 8. Crossfield sensitivity of the integrated fluxgate DRV 425.

The exact value of the critical crossfield is clear from Fig. 7. The measured fieldHx was kept zero and

the response to the crossfield was measured, while the amplitude of the crossfield was slowly increased.

The figure shows that for Hx = 370 µT the response in nonlinear (as expected),without any hysteresis.

The onset of hysteresis signalling first closure domains appeared atHx = 380 µT, which corresponds to

drop of the sensitivity of the flipped sensor (Fig. 6). With increasing maximumHx the hysteresis rapidly

increases.
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Fig. 9. Linearity error of the integrated fluxgate DRV 425. The curve parameter is the crossfield.

Fig. 10. DRV425 sensor response for the crossfield of Hx = 10 mT.

3. Fluxgate sensors

Crossfield was reported also for fluxgate sensors. First it was observed on the data from the Magsat

magnetometer and verified by measurement and simulations [9].

In general, the effect of the crossfield is suppressed by high demagnetization factor in the direction

perpendicular to the sensing axis [10]. Sensors with stripe or racetrack cores are therefore more resistant

to the crossfield than ring-core sensors.

For the PCB fluxgate the crossfield error was 0.3%. Crossfield in fluxgate is a second-order error. It

is caused by core non-homogeneity and imperfections in the geometry of the core and windings [11].
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Fig. 11. DRV linearity error for the crossfield of Hx = 10 mT.

However, crossfield effect was not examined in the wider field range and it was never measured on
microfabricated sensors.

Microfabricated fluxgates appeared recently. They replace the CMOS-based fluxgates with flat coils,
which had poor coupling between the coil and core. Lu used microfabricated solenoid coils for excitation
and flat coils for pick-up. The core was formed by two stripes [12]. Rectangular closed-core fluxgate of
this type having solenoid coils both for excitation and pick-up was described in [13]. Closed core has an
advantage in better excitation efficiency leading to lower perming and lower power consumption, but it
is more sensitive to crossfield than the rod-type core.

We made our measurements on DRV 425 integrated fluxgate manufactured by Texas Instruments [14].
This sensor has open core formed by dual permalloy stripes of about 1 mm length. The device model
was described in [15]. Internal signal processing is analog, which is still giving better results than digital
fluxgates such as described in [16].

Figure 8 shows that the TI DRV 425 integrated fluxgate has only 0.1% crossfield error for perpendic-
ular fields up to 2 mT. The crossfield of this magnitude has no effect on the sensor linearity error which
is also 0.1% as shown in Fig. 9. For the crossfield of this magnitude AMR sensors completely fail. Even
for the crossfield of Hx = 10 mT the response of this sensor has only 0.1% hysteresis and the linearity
error of 0.4% as seen in Figs 10 and 11.

4. Conclusions

AMR sensors are by principle sensitive to crossfield, but if the total applied field is small (below
100 µT for Honeywell HMC 1001), this sensitivity can be suppressed by feedback, flipping or by cal-
culation. For larger fields the crossfield error becomes dramatic and due to non-linearity it cannot be
compensated. As a result, barber-pole AMR sensors cannot be used in applications in which fields above
250 µT can be present.

Compared to that, fluxgate sensors including microfluxgates are by principle immune against the
crossfield. Unlike in AMR, crossfield sensitivity in fluxgate sensors is second-order effect, which can be
kept under control by proper design.

The high crossfield resistance of the integrated fluxgate is caused by
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1. High homogeneity of the deposited magnetic core compared to amorphous tapes

2. Geometrical accuracy of the sensor core and windings thanks to the microfabrication technology

3. High demagnetisation factor of the stripe cores in the crossfield direction.

We show that even crossfield of 10 mT does not cause significant degradation of the sensor precision.

High crossfield resistance allows to use the microfabricated fluxgate sensor in the vicinity of per-

manent magnets (for position sensing) and strong electric currents (for current sensing in multiphase

systems). The compass error caused by the measured crossfield error would be below 0.1 deg. Crossfield

resistance is also required for applications based on eddy-currents such as non-destructive testing and

distance sensing of conductive objects.
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3.2 Applications 

In the following chapters, commercial AMR and integrated fluxgate sensors were used in 

magnetometers with AC magnetic field excitation to fulfill the objectives (I.) and (III.) of the 

thesis. The decisive criteria for selecting the AMR sensors were their flat frequency response 

starting from DC, simple final assembly and relatively low cost. The papers address 

construction of gradiometers and sensor arrays and signal processing with considerations of 

practical applications for mine detection and visualization of concealed metallic building 

structures (chapters 3.2.1, 3.2.2, 3.2.3). Next, a proximity sensor with AMR is described in 

chapter 3.2.4. This paper fully exploits the advantages of the AMR sensors over induction 

sensors by low frequency operation and inherent demodulation feature of the AMR sensors. 

For these four papers, I designed the necessary hardware and did the processing of measured 

data within the framework of projects managed by Dr. Janošek, Prof. Ripka and Dr. V�elák. 

A linear position sensor with commercial integrated fluxgate sensors is described in chapter 

3.2.5., which is related to the objective (II.b.).  The integrated fluxgate sensors DRV425 

introduced in 2015 bring the benefit of the ±2 mT input range and on-chip conditioning 

circuit. I participated on design of the sensor hardware and testing platform. And finally, an 

application of DC field mapping is presented in chapter 3.2.6, where I performed the 

measurements and data processing, and which is partially related the objective (III.). 

3.2.1 AMR Gradiometer for Mine Detection 

Development of an AMR gradiometer is presented here. The goal of this work was to develop 

a sensor suitable for sensor arrays with focus on low noise operation due to the intended 

application for mine detectors.  

The gradiometer is sensitive to DC and AC fields. Using an external excitation field, the eddy 

current response of metal objects can be measured together with the induced magnetic field of 

ferrous objects which have substantial permeability. The frequency of the excitation field is 1 

kHz and it is already at the upper limit of the gradiometer frequency range; lower excitation 

frequency would result in lower eddy current response. However the response to the induced 

magnetic field due to permeability in ferrous objects shows minimum dependence with 

frequency. Flipping frequency of 30 kHz limits the gradiometer bandwidth, because further 

increase of the flipping frequency is restricted by the maximum power dissipation of the 

employed AMRs. Amplitude resolution of the gradiometer is limited by the noise of KMZ51 

magnetoresistors which is for one piece of this type 3.1 nT/�Hz at 1 Hz and 268 pT/�Hz at 

1 kHz. Based on the estimated limits of the proposed gradiometer, this work gave rise to 

papers on characterization of sensors in chapter 3.1 in subsequent years. 
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Anisotropic  magnetoresistors  (AMRs) are  used  to  build  an  advanced  mine  detector.  The sensing head

involves  a gradiometric  pair  of AMR sensors  and  a continuous­wave  driven  excitation coil,  so the  gra­

diometer  is capable of detection of ferromagnetic materials as  well  as  diamagnetic metals.  The sensors

are  specially  arranged  to  suppress  the  large  AC­excitation  field,  so the  mine  detector  senses  both  DC  and

AC field gradient  responses  of the  object  of interest. Being limited  by  the  sensor and  electronics noise of

268  pT/
√

Hz  at  1 kHz,  we were  able  to  detect  a  50 mm  × 50 mm ×  1.5  mm aluminum  test object in a 20 cm

depth  using a  150 mT,  1­kHz excitation  field.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mine detectors used for clearing landmines and other explosive

remnants are in most cases specialized metal detectors constructed

to reveal even minimum metal mines in  electromagnetically diffi­

cult soils. They are nearly exclusively based on eddy currents and

use induction coils for sensing the metallic parts of mines. They

detect conducting objects very reliably, but they fail to discriminate

dangerous objects from the scrap metal. The work of deminers is

often very slow, as  they have to carefully excavate each concealed

metal object [1].

To distinguish metal parts of mines from other metal objects

the AMR  gradiometer uses sensors with high spatial resolution to

discriminate objects by the recognition of their shape and dimen­

sions. This process requires scanning, which is  however already

performed by deminers naturally by  sweeping a detector head

from side to side while searching for mines. For the effectivity

of the scanning process multiple sensor array should be used, as

was demonstrated by  non­destructive testing systems [2,3].  Sens­

ing both DC and AC magnetic field response should contribute to

better characterization of the object. Even when some parts of a

ferromagnetic object have corroded and lost its conductivity, they

still can be detected by  steady­state magnetic fields.

The proposed gradiometer benefits from the simple design of

commercially available AMR  sensors and printed circuit board

(PCB) technology. It can operate with a 1­kHz continuous­wave

∗ Corresponding author.

E­mail address: vyhnajan@fel.cvut.cz (J. Vyhnánek).

excitation field, so non­magnetic metals can be detected in  the AC

part of the gradiometer output in  addition to ferromagnetic met­

als that affect the DC part. The gradiometric arrangement allows

to measure the weak gradient field of the object of interest, while

suppressing the strong excitation and Earth’s field.

A  similar mine detector with spin dependent tunneling sensors

(SDT) was presented in [4],  however it worked with a  pulsed field

and the DC noise of the SDT sensors disqualifies them from the com­

bined DC and AC response sensing. An  AMR  sensor working with

a  harmonic excitation field was  used for non­destructive testing

[5] and dealt with reduction of the sensor noise as the main factor

limiting the sensitivity, but it did not solve the suppression of  the

Earth’s magnetic field needed for the DC gradient sensing.

2.  Gradiometer principle

AMRs of the KMZ51 type (NXP, ex. Philips) are thin­film permal­

loy sensors with magnetoresistive elements configured in  a full

bridge and with the on­chip flipping and compensation coil. They

detect the magnetic field component along the sensitive axis, the

sensitivity reaches up  to 130 mV/(A/m) for the maximum 8­V

bridge supply. Two  AMRs are arranged in  the distance of 40 mm,

forming a vertical dBx/dx gradiometer (Fig. 1). The two gradiomet­

ric sensors in a  SO­8 package are soldered on the PCB together with

signal preamplifiers (total gain of 1000×).

As a  proper mine detector needs to  sense diamagnetic met­

als too, we  added a  continuous­wave driven excitation coil and

solved the most difficult part of suppressing the large excitation

field, which is  needed for the proper detection depth. The coil is

symmetric to  the gradiometric sensors and it is fed with a  1­kHz

0924­4247/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.sna.2012.03.007
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Fig. 1. Gradiometer combined with the excitation coil form the detector head. The

compensating and measuring sensors of the gradiometer are  symmetrically placed

on  both sides of the excitation coil.

harmonic signal resulting in an AC field of about 150 mT amplitude.

The first (measuring) AMR  sensor is located on the sensitive side

of the detector head and experiences the same excitation magnetic

field as does the second (compensation) sensor. Without any defor­

mation of the excitation or Earth’s field the gradiometer response

is near zero, limited by  the gain of the PI controller in  the feedback

loop (Fig. 2).

Choosing the coil diameter is  not a  simple task: for a  given

excitation current, a small coil provides stronger magnetic fields

to a small distance, while a larger coil delivers weaker fields to

greater distances. Coils with the diameter in  the range of centime­

ters are used in non­destructive testing for the detection of  small

near­surface cracks in metals [6,7],  while a  coil of 1­m diameter is

employed for the detection of large deeply buried bombs [1].  The

selected diameter of 27 cm is  a compromise and should be suitable

for both minimum metal mines and bombs close to  the surface; this

coil diameter is  also common to commercial mine detectors.

3.  Gradiometer circuitry

In  order to  assure the magnetic state of the AMR sensors and

to  improve the stability of its parameters, the AMR  sensors are

periodically remagnetized – “flipped” at 30 kHz. The sensor field

response becomes modulated (Fig. 3), therefore the signal process­

ing is shifted to a  less noisy frequency band of the amplifiers. High

flipping pulses (1.5 A peak) are  used in order to lower the sensor

noise [8] while keeping the maximum power dissipation by  a low

duty­cycle.

Synchronous demodulators with the reference signal of 30 kHz

provide reconstruction of the flipped output of the AMR  sensors.

The 30­kHz demodulation stage is  followed by a sampling circuit

using a  switched integrator, which is  inactive in  the noisy time

intervals, where the sensor output is recovering after a  flipping

Fig. 2. Functional diagram of the gradiometer operating in the excitation coil. Gradiometric function is  obtained by connecting the on­chip compensation coils of the

“measuring” and “compensated” sensors in series.
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Fig. 3. Sensor output (top trace) and the reference (middle) of the switched inte­

grator suppressing the noisy intervals after flipping pulses (bottom trace).

pulse [9].  The sensor connected to  the feedback regulator is main­

tained in a zero magnetic field by the compensation coil current

from DC up to 1 kHz. The compensating current flows through the

serially connected compensating coils of both AMR  sensors, so the

output of the second (measuring) sensor is  proportional to the mag­

netic field gradient. Suppressing the excitation field in  addition to

the suppression of the Earth’s DC field by  the compensator allows

using higher excitation fields, therefore provides a reserve in DC

gradient measurements and possibly an improvement in S/N ratio.

There are four relevant outputs of the gradiometer: the DC field,

DC field gradient and the AC field gradient decomposed into the

real and imaginary parts. The DC field magnitude (homogeneous

part compensating both sensors) is sensed on a  shunt resistor in

the feedback loop and can be used for correcting for the spurious

sensitivity on the Earth’s field due to  non­orthogonalities of the

gradiometer.

4. System noise

The noise of the measuring channel, which consists of a  KMZ51

sensor, an AD621 preamplifier and a  30 kHz demodulator, is shown

in Fig. 4 –  it  was determined as 3.1 nT/
√

Hz  @ 1 Hz and 268 pT/
√

Hz @

1 kHz, respectively. When the feedback compensation is  switched

on (as in the normal operation), the noise increases by 19% @  1 Hz

and 38% @ 1  kHz. This roughly corresponds to a noise increase due

to adding an uncorrelated noise signal with the same standard devi­

ation, which comes from the second (compensation) AMR  sensor

in our case. We  could confirm the lack of correlation by  the coher­

ence measurement – the compensating current did not show any
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Fig. 4. Noise of the AMR  sensor KMZ51 after the first demodulation (bottom trace),

the  influence of the feedback compensation (top trace). Noise level decrease above

1  kHz is caused by the low pass filter of the demodulator.

Fig. 5. Coherence of the compensating current and the measuring sensor output,

the region of the near zero coherence continues up to 1 kHz.

significant coherence with the signal from the measuring sensor

(Fig. 5).

The 1/f  noise of the sensor dominates in  DC field measurements

and decreases with the frequency. At higher frequencies, the system

noise can be already limited by the instrumentation amplifier noise

and resistive thermal noise of the bridge elements:

BN =
1

S

√

4kTR +  V2
ni
+
(

Vno/G
)2
+ (IniR)2/2 (1)

The noise spectral density thus decreases with the lower resis­

tance of the AMR  bridge (R) and higher sensitivity (S), which can

be augmented by a  higher bridge bias voltage. The most critical

parameters of the instrumentation amplifier are  the input voltage

noise (Vni), output voltage noise (Vno), current noise (Ini)  and the

gain (G). For the KMZ51 and AD621 instrumentation amplifier, this

would yield 137 pT/
√

Hz noise spectral density which corresponds

to the measured electronics noise – the 1­kHz electronic noise was

141 pT/
√

Hz in this case, and was  mainly limited by the 10 nV noise

of the instrumentation amplifier. As we did not notice any further

improvement in  the noise level of the KMZ51 when increasing its

gain by a  higher bridge supply voltage, we can conclude that even at

1 kHz we  were measuring the intrinsic magnetic noise of the sensor

[10].

Further improvement in the noise performance is  possible by

using another type of AMR  sensor [11].  With the AMR  sensor

HMC1001 and the low­noise instrumentation amplifier INA103 we

were able to achieve 33 pT/
√

Hz @  1 kHz, however the power con­

sumption disqualifies these components from the application in

an advanced handheld metal detector using multiple of these gra­

diometers in  an array.

5. Detection performance

The gradiometer output was tested on aluminum and ferrous

objects in  different distances. The best approximation curve for

both AC  and DC gradient responses resulted in  x−3.  Compared to

conventional metal detectors with an induction coil (e.g. Schiebel

ATMID), the AMR  gradiometer with KMZ51 sensors has still about a

half of the detection depth. An aluminum object of 5 × 5 cm could be

recognized from the noise level at the gradiometer AC output up to

the distance of 20 cm.  A ferrous nail 3 cm long and 3 mm thick could

be recognized in  the DC gradient signal up  to the 10 cm distance.

Graphs of the spatial resolution (Fig. 6), measured with the

27­cm­diameter excitation coil, confirm that the gradiometer

responds to the local magnetic field disturbance, rather than the

possible changes of the excitation field caused by the changing

inductance of the coil. Therefore it is possible to use an array of
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Fig. 6. Single gradiometer scans showing the spatial resolution – a  10 mm diameter stainless steel sphere at distances of 4 cm, 6 cm and 8  cm  (AC gradiometer response).

gradiometers inside a single large coil (Fig. 7) – we built a prototype

of such a metal detector which is a subject of further investigations

[12].

However, as the AMR  sensors in  the gradiometer have their sen­

sitive axes not perfectly coaxial, the gradiometer is still sensitive to

homogeneous fields. Due to limited soldering accuracy and with no

factory specifications of the sensitive axis deviation to  the package

frame of the sensor, the parasitic sensitivity will also differ for each

gradiometer. For one gradiometer it was determined by calibra­

tions to be 150 nT/50 mT (output change caused by  rotation in  the

Earth’s field). The mine detector will be operated by sweeping in

the horizontal plane; therefore at higher latitudes (e.g. the most of

Europe) the main part of the Earth’s field is  vertical to the detector

head: this linear dependence can be then used for correcting of the

DC response using the homogeneous field magnitude (one of the

four gradiometer outputs). The AC output of the gradiometer was

Fig. 7. The array of gradiometers with AMR  sensors KMZ51 in a prototype mine

detector.

found not to be affected by homogeneous fields, as the excitation

field direction is  stable.

6.  Conclusion

The presented gradiometric mine detector uses AMR  sensors of

KMZ51 type for metal detection together with 1­kHz continuous­

wave excitation. As the gradient response of ferromagnetic and

diamagnetic objects falls with distance approximately with a  1/r3

rule, the most limiting factor of the maximum detection depth

is  the sensor noise – in  our case we can detect a  50 × 50 mm

aluminum plate up to  20 cm depth only being limited by  the

268 pT/
√

Hz sensor and electronics noise at 1 kHz, which trans­

lates to 6.7  (nT/m)/
√

Hz gradient noise. Further improvement of

the detection depth is possible when using AMR  sensors with a

lower noise at the cost of increased current consumption. Prospec­

tively, the high spatial resolution of AMR  sensors should allow to

recognize objects by using signals from a  sensor array.

Acknowledgement

This research was  supported by the internal grant of  the Czech

Technical University in Prague, SGS10/205/OHK3/2T/13 “Compact

sensors of magnetic field gradient – development and application”.

References

[1] D. Guelle, A. Smith, A. Lewis, T.  Bloodworth, Metal Detector Handbook for
Humanitarian Demining, European Communities, 2003.

[2]  D.S. Benitez, S. Quek, P. Gaydecki, V. Torres, A 1­D solid­state­sensor­based
array system for magnetic field imaging of steel reinforcing bars embedded
within reinforced concrete, IEEE Transactions on  Instrumentation and Mea­
surement 58  (2009) 3335–3340.

[3] S. Tumanski, A. Liszka, The methods and devices for scanning of magnetic fields,
Journal of Magnetism and Magnetic Materials 242 (2002) 1253–1256.

[4]  R.J. Wold, C.A. Nordman, E.M. Lavely, M. Tondra, E. Lange, M. Prouty, Devel­
opment of a handheld mine detection system using a  magnetoresistive sensor
array, Proceedings of SPIE 3710 (1) (1999) 113–123.

[5] D.F. He, M. Tachiki, H.  Itozaki, Highly sensitive anisotropic magnetoresistance
magnetometer for Eddy­current nondestructive evaluation, Review of Scien­
tific  Instruments 80 (2009), 036102­1–036102­2.



104 J. Vyhnánek et al. / Sensors and  Actuators A 186 (2012) 100– 104

[6] T. Dogaru, S.T. Smith, Giant magnetoresistance­based eddy­current sensor, IEEE
Transaction on Magnetics 37  (2001) 3831–3838.

[7] R. Sikora, T. Chady, S. Gratkowski, M. Komorowski, K. Stawicki, Eddy
current testing of thick aluminum plates with hidden cracks, Review
of Progress in Quantitative Nondestructive Evaluation 20 (2003)
427–434.

[8]  H. Hauser, P.L. Fulmek, P.  Haumer, M.  Vopalensky, P. Ripka, Flipping field and
stability in anisotropic magnetoresistive sensors, Sensors and Actuators 106
(2003) 121–125.

[9] P. Ripka, M.  Vopalensky, A.  Platil, M. Doscher, K.M.H. Lenssen, H. Hauser, AMR
magnetometer, Journal of Magnetism and Magnetic Materials 254–255 (2003)
639–641.

[10] N. Stutzke, S.E. Russek, D.P.  Pappas, M. Tondra, Low­frequency noise measure­
ments on commercial magnetoresistive sensors, Journal of Applied Physics 97
(2005), 10Q107­1–10Q107­3.

[11] E. Zimmermann, A. Verweed, W.  Glaas, A.  Tillmann, A. Kemna, An  AMR sensor­
based  measurement system for magnetoelectrical resistivity tomography, IEEE
Sensors Journal 5 (2) (2005) 233–241.

[12] M.  Janosek, J. Vyhnanek, P.  Ripka, CW metal detector based on AMR  Sensor
Array,  IEEE Sensors 2011 – Proceedings, pp.  1515–1517.

Biographies

Jan Vyhnánek was born in Prague in 1987. Received the engineering degree from
the Faculty of Electrical Engineering, Czech Technical University in Prague in 2011,
currently a student of PhD at the Dept. of Measurement. His main fields of interest
are magnetic sensors and their applications in detection of metal objects.
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3.2.2 CW Metal Detector Based on AMR Sensor Array 

This work is an application of the AMR gradiometer with KMZ51 (presented in the previous 

paper in chapter 3.2.1) for a metal detector with multiple sensors. The goal was to create a 

hand-held detector which provides more information about the detected object than an 

induction coil does, for the purposes of object recognition. The advantage of the multiple-

sensor detector is the ability to present to the user the precise location and also the shape of 

the object and indicate presence of multiple objects.  

These features could enable object recognition and discrimination in the application of mine 

detection. Although the standard metal detector technology with an induction coil is able to 

roughly recognize objects based on the material properties and signal profile, this is not useful 

for mine detectors which are therefore constructed to produce alarm on any metal object. For 

this reason demining is a slow process and provides opportunity for improvement.  

The AMR metal detector consists of 16 gradiometers arranged in a 4 x 4 array which is 

mounted inside an excitation coil. The coil is producing a 1 kHz field with 150 �T amplitude. 

The detector measures simultaneously DC gradient additionally to AC response of metal 

objects, which is another advantage over the induction coil detectors. Digitized signals are 

delivered to a PC and displayed in four graphs for DC field, DC gradient and real and 

imaginary components of the 1-kHz excitation field. The detector exhibited good ability to 

precisely locate even multiple objects. However due to the fact, that AMR sensors are more 

noisy than a detector with an induction coil, the detection depth was reduced 2 to 3 times 

compared to a conventional mine detector.
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Abstract— We developed an eddy-current metal detectors with 

Anisotropic Magnetoresistors (AMR’s) arranged in a 4x4 array. 

The magnetoresistive sensors in a gradiometric configuration 

are sensing the vertical component of the magnetic field – either 

originating from magnetized ferromagnetic bodies or induced 

by 1-kHz, alternating continuous-wave excitation. The AMR’s 

are arranged so that the homogeneous Earth’s field and the 

large excitation field can be suppressed. The mine-detector was 

constructed as a standard portable device. The presented results 

show that the performance is limited by the noise of the selected 

magnetoresistive sensor. If the size of the sensor array was 

increased, the system could form an advanced mine-detector for 

quick, large-scale demining purposes. 

I. INTRODUCTION 

Modern metal detectors should not be only very sensitive, 
but also very selective and be able to compensate the influence 
of soils containing ferromagnetic particles as well as 
electrically conducting medium when working in wetlands 
and shallow waters. A pick-up coil is practically the only 
sensor used to detect field variations caused by eddy currents 
in a conducting object. It would be very desirable to replace it 
by a smaller sensor, which would give better spatial resolution 
and allow arranging of the sensors in scanning arrays for 
speeding up the detection process [1]. 

Magnetoresistive sensors are the favorite for this purpose 
as they became readily available and low-cost. A fluxgate 
sensor might be used too [2], but the excellent noise 
performance of a fluxgate is traded off for its complexity, cost 
and size. 

The main advantage of an AMR is its small size, which 
allows to achieve much higher spatial resolution compared to 
the traditional pick-up coil. When compared to other 
magnetoresistive sensors (GMR, SDT), AMRs have an 
advantage of low DC magnetic noise. Drawbacks of AMRs 
compared to the pick-up coils are however numerous: 
increased power consumption, 1/f noise, non-linearity, 
perming, and necessity of periodical flipping.  

In [3], authors described an advanced, eddy-current 
handheld mine-detection system with SDT sensors using 
pulsed excitation. The device was quite complex, however we 
are not aware of any real-world performance data. As the low 

frequency noise of the SDT sensors is too high, it did not 
allow for including the DC magnetic response. 

II. DESCRIPTION OF THE METAL DETECTOR 

Our metal detector is based on an array of 16 AMR 
gradiometers, arranged in a 4x4 matrix, sharing a common 
continuous-wave excitation coil. The metal detector is able to 
sense the AC response to the excitation field and the DC 
magnetic field, decomposed in 4 components. All of them are 
available at one moment: Re and Im component of the AC 
response, DC field gradient and DC homogeneous field 
(mainly for calibration and verification purposes). 

The electronics of the mine-detector is built on a modular 
base with 19 blocks – the flipping generator, CW amplifier, 8 
two-channel signal-processing blocks and finally the data-
transfer module (Fig. 1). On the search-head, the 16 
gradiometers with KMZ51 sensors in 4-cm distance are 
arranged in a 4x4 matrix. The size of the search head is approx 
35 cm in diameter (Fig. 2A), the coil generates a 1-kHz AC 
field of 150 µT amplitude. 

 

Figure 1.  Building blocks of the mine-detector 

 

For a reliable operation the sensors should be periodically 
flipped, otherwise the stable monodomain state could be 
corrupted by field or temperature shocks and performance of 
the sensor would deteriorate. The flipping frequency (30 kHz) 
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was relatively high to avoid overlap with signals resulting 
from the main excitation field of 1 kHz.  

 Every signal-processing channel consists of the respective 
synchronous detectors (30 kHz, 1 kHz Re and Im), a PI 
feedback regulator, amplifiers and filters. Each 2 channels 
share a 24-bit delta-sigma AD converter ADS1278 (Fig. 2B) 
with 96 samples/second, giving 48 Hz alias-free bandwidth. 
The Earth’s field and most of the 1 kHz excitation field are 
compensated using the internal feedback coils of the KMZ51 
by the negative feedback-loop with the “distant” sensor as 
reference. The detailed principle of each gradiometer was 
described by the authors in [4]. 

 

Figure 2.  A – the sensor head with 4x4 matrix, B – electronic with 2 

channels. The upper sensor is the “distant”, the lower “close” sensor is 

hidden in the search-head frame to be as close as possible to scanned object 

The data from all 16 channels (64 values) are 
simultaneously transmitted using daisy-chaining via USB to 
the host computer for postprocessing in LabView 
environment.  

III. LABORATORY RESULTS 

A. Noise performance 

Noise performance was tested with one of the 
gradiometers. After increasing the flipping pulses to 2.9A 
peak-peak [6, 7], we obtained 1-kHz noise of 200 pT/�Hz 
(limits detection of diamagnetic objects) and 2 nT/�Hz at 1 Hz 
(DC field response of ferromagnetic objects). The noise 
figures are shown in detail in [4] and correlate with those 
published in [8] – as we did not find any significant coherence 
between the two AMR sensors noise, the influence of the 
common current-source was negligible. For the perspective 
use of an AMR with lower noise (HMC1001 was shown to 
have 15 pT/�Hz @ 1 kHz [9]), we face two problems: 

• the noise of the electronics is 150 pT/�Hz at 1 kHz, 
and is mainly limited by the noise of the 
instrumentation amplifier sensing the bridge output.  

• the internal feedback-coil constant of HMC1001 is 
low, excessive current would be needed for each 
channel to compensate Earth’s field 

The solution of the electronic noise is only by increasing 
the AMR gain (by applying larger supply voltage – up to 8V 
for KMZ51, up to 10V for HMC1001) or by selecting a better 
instrumentation amplifier.   

As the compensating current of the HMC1001 is tens of 
mA’s for the Earth’s field, the power consumption of the 
device would significantly increase (the feedback coil constant 
of KMZ51 is 10x larger), causing further problems in power 
consumption of a portable instrument  

Further reduction of the noise is possible by averaging: for 
1 second, we should be able to lower the noise 10x as we are 
sampling at 100 samples/s. It was however not used as we 
required dynamic performance of the detector.  

B. Response to test object 

Figures 4 and 5 show the response in 3, 6 and 9-cm depth 
to an empty Kalashnikov shell, which was moved in a 5-cm 
grid below the sensing head (Fig. 3). It can be seen that for the 
steel shell, the DC response is 3-orders of magnitude larger; 
however both the DC response and Im part of the AC response 
are similar, allowing to identify the position of the shell with a 
single scan (Fig. 6). 

 

 

Figure 3.  Measuring the response to the test object 

 

During tests, it turned out that even for measuring field 
“gradient”, the response of distant objects is 1/r

3
 and not 1/r

4
: 

in most cases the response falls quickly enough so that the 
“distant” sensor measures only Earth’s field or the excitation 
field, and does not see the object’s response measured with the 
“close” sensor  (Fig. 2A). 

 

 

Figure 4.  IM part of the AC response –Kalashnikov shell in 3, 6 and 9-cm 

depth 
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Figure 5.  DC response – Kalashnikov shell in 3, 6 and 9-cm depth 

The maximum detection depth of the steel shell was 13 cm 
and of an 5x5cm aluminum plate it turned out to be 20-cm. In 
both cases, the sensor noise was the limiting factor. 

IV. FIELD TEST 

To exclude the laboratory noise, the mine-detector was 
rearranged to a portable, battery-powered device. However 
due to large power consumption (~20W) and moderate weight 
(5kg), the portability was somehow affected (Fig. 6A). For a 
real-world application, it turned out that an average of all 16-
sensors was helpful to create an thresholded alarm, and that 
the position of the sensing head should be determined in some 
means [10] to incorporate averaging during multiple sweeps. 
Fig. 6B shows the response to sweeping over Khalasnikov 
shell with decreasing distance from 20 cm down to 1cm.  

 

V. CONCLUSION 

The presented mine-detector shows that it is possible to 
build a CW-metal detector with AMR sensors – the main 
problem of compensating the excessive excitation field 
amplitude was solved. The 4x4 array of gradiometers proved 
usable for small, shallow objects, for more distant targets an 
average from all 16 sensors was helpful. As the mine-detectors 
is able to produce 4 physically meaningful outputs from each 
channel, the system is overdetermined and it should be 
possible to improve the detection performance by 
mathematical postprocessing, which is out of scope of this 
paper.  

The detection depth is mediocre, a noise reduction of at 
least one magnitude is needed. This is possible with another 
type of AMR sensor, however the power consumption would 
then disqualify this type of mine-detector from being portable. 
In this case re-arranging the sensing head to a larger array, or a 
single-line scanner, would allow to create a highly efficient, 
large-scale detection system, which could be towed or moved 
by other means. 
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Figure 6.  A – the portable version of mine-detector during field tests, B – 16-ch 

response to sweeps 20 to 1 cm above a steel shell (highlighted with 3 y ) 
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3.2.3 Linear scanner with magnetic field mapping 

This work deals with modifications to the above-mentioned metal detector to create a linear 

array scanner. First experiments of visualization of metallic construction structures are 

presented. 

Based on the experience with low sensitivity to small metal components contained in 

minimum-metal mines, further efforts were focused on a different application and the detector 

was redesigned accordingly. The studied application was visualization of concealed metal 

construction structures, which are usually made of massive metal parts and provide enough 

response of the AMR gradiometers up to the distance of 10 cm in AC mode.  

Due to the same orientation of the axes of the gradiometers and the excitation coil, the AC 

mode provides images even of complex structures, like a reinforcing mesh, directly without 

further processing. For example a competitive magnetic-method based device Ferroscan 

(Hilti, 2006) requires merging of two perpendicular scans due to perpendicularly oriented 

axes of its excitation coil and gradiometers. 

Apart from the apparent application of avoiding drilling through a pipe or hitting a reinforcing 

bar, there is a requirement of the building industry to inspect thickness of a covering layer of 

concrete above reinforcing steel. If the concrete layer is too thin, the steel is prone to 

corrosion and consequently the corrosion products react with concrete and damage it. For 

depth estimation, devices based on magnetic method are superior to competitive radar 

technology, because the speed of electromagnetic wave in concrete is variable and greatly 

influenced by humidity of the concrete. The same holds true for verifying the diameter of 

steel bars. But unlike radar technology, magnetic methods cannot detect non-metallic 

structures, so neither method is universal. 

Great attention was devoted to the excitation coil design. The resulting coil design is a 

compromise between homogeneity of the inner area 1) in the direction of the sensor array and 

2) in the perpendicular direction. Narrow rectangular coil demonstrated good homogeneity 

along the long side, i.e. in the direction of the sensor array, whereas in the direction of the 

short side the field changes rapidly with position. This is a concern of mechanical stability of 

a holder of the coil and gradiometers. Length of the short side also determines, whether the 

excitation field is strong, but of short range, which is more suitable for smaller objects, or if it 

is weaker and of longer range. A coil with a size of 80 cm x 10 cm has been chosen. 

In the prototype several possible improvements were identified which are to be addressed in 

the subsequent design. First, the mechanical construction of the detector has to be rigid, 

because even subtle deformations of the coil result in a change in the output signal, so does 

any change in orientation of gradiometers to the coil. Next, for a stand-alone instrument an 

embedded computer is to be added which will present measured data in real-time using a 

position sensor with optical encoder. 
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Abstract. Presented device is a detector of metallic and 

ferromagnetic objects with the ability to create images of 

magnetic fields. The detection head utilizes an array of 16 

gradiometers composed of anisotropic magnetoresistors 

(AMRs) which are sensitive to both steady-state (DC) and 

alternating (AC) magnetic fields. Thus the sensors are 

sensitive to ferromagnetic objects. With the addition of an 

external excitation field also non-ferromagnetic metals are 

detected due to the magnetic response of  eddy currents. 

The array of sensors is arranged in a linear scanner so the 

scanning speed is good, the scanning area is 0.6 m wide 

and the resolution in the direction of scanner motion is 

high. Digitized signals of gradiometers are transferred to a 

portable computer to create maps of DC and AC magnetic 

fields which correspond to the shape, depth and material of 

the detected objects. 

Keywords 

metal detector, gradiometer, anisotropic 

magnetoresistor, magnetic field mapping 

1. Introduction 

Mapping of magnetic fields is useful in applications 

where information about the shape or precise position of 

the detected object is required, in addition to the 

information whether the object is present or not offered by 

simpler devices. Applications of magnetic mapping can be 

found e.g. in non-destructive testing (NDT), metal 

detection and geophysical surveys. 

Generally there are two approaches which use 

magnetic fields for detection, the first is suitable for 

ferromagnetic objects and detects steady-state (DC) field 

surrounding the object. The second one, suitable for highly 

conductive materials like metals, is based on magnetic field 

response generated in objects by using external alternating 

(AC) field. 

An example of NDT application is Ferroscan 

produced by Hilti [1] which is designed for mapping of 

steel reinforcement in concrete blocks used in building 

industry. The detection head consists of an array of DC 

magnetic field sensors and a permanent magnet which is 

used to guide the magnetic flux of rather randomly 

magnetized steel bars. Another application using the DC 

magnetic field is the mapping of areas with unexploded 

ordnance [2] and geophysical surveys in archeology [3]. A 

scanner with DC field sensors [4] can be used for imaging 

of magnetic fields surrounding ferromagnetic components. 

Methods based on the AC magnetic field have been 

used in applications like detection of cracks in metals [5], 

imaging of magnetic fields of mines [6] or mapping of 

mine fields [7]. 

2. Construction of the detector 

The detector combines both DC and AC methods by 

evaluating frequencies in the range of DC and 1 kHz. The 

DC range is naturally sensitive to ferromagnetic objects, 

while the AC range detects all conductive materials due to 

eddy currents induced by an excitation coil. 

 

Fig. 1. Detector consists of a linear array of gradiometers and 

excitation coil. Signals of the array are processed and 

generated in a block of electronics with an output for PC 

The main parts of the detector are described in Fig. 1. 

An array of anisotropic magnetoresistors (AMRs) is used 

for magnetic field sensing. The detector operates as a linear 

scanner which creates images of magnetic fields.  

The sensors are used in gradiometric arrangement to 

compensate the magnetic field of the Earth and the 

excitation field. The operating principle was described in 

[8]. The electronics employed in the detector comes from 

the CW metal detector designed originally for mine 

detection [9]. 
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2.1 AMR sensors 

Each of the 16 gradiometers in the array consists of 

two anizotropic magnetoresistors (AMRs) KMZ51 type 

(Philips/NPX). KMZ51 are single axis sensors of magnetic 

field with a small-dimension SOIC package. The AMRs 

use so called flipping, which is periodical remagnetization 

of the internal magnetic layer by strong and narrow 

magnetic pulses, resulting in modulation of the sensor 

output. It is used to enhance the temperature coefficient of 

sensitivity and offset of the sensor and to transfer the signal 

processing to a less noisy frequency range of the 

electronics. The drawback of the flipping function lies in 

the complex circuitry, higher power consumption and 

reduced frequency range of the measured magnetic fields. 

However in this application the flipping function is 

necessary to achieve the good resolution in the 

measurement of low magnetic fields. 

2.2 Gradiometers 

The AMR sensors are exposed to the strong magnetic 

field of the Earth (absolute value of 48 µT in the Czech 

republic) and the excitation coil (about 400 µT p-p). The 

sensors are allowed to be exposed to fields up to 240 µT, so 
the sensors are connected as zero-field detectors using an 

on-chip compensation coil and a current feedback  loop.  

Another complication presents the high dynamic 

range of the measurement, where weak fields in the order 

of nT have to be detected on the strong background field. 

These strong fields however are roughly homogeneous so 

gradiometers are used to suppress them in this detector 

design. 

Noise of the sensors also limits the resolution. The 

measured noise of one gradiometer used in the detector 

design is 92 (nT/m)/√Hz at 1 Hz and 9.3 (nT/m)/√Hz at 

1 kHz [8].  Temperature drift produces significant error 

which is for the AMR KMZ51 typically 2 nT/K. Another 

error source is the spurious sensitivity to homogeneous 

field of the gradiometer in DC range due to misalignment 

of sensitive axes of the two AMR sensors – for one 

gradiometer it is 150 nT/50µT (change of the output by 
rotation in the Earth’s field). The latter error may be 

compensated by calibration.  

The tempco and misalignment errors are dominant. 

The measuring frequency bandwidth could be selected 

quite large with the 45 Hz corner frequency for both AC 

and DC range which allows for high scanning speed (e.g. 1 

m/s when scanning reinforcement mesh). 

2.3 Excitation coil design 

The excitation field is driven by a rectangular coil; 

the design is depicted in Fig. 2 and Fig. 3. The winding 

itself has 50 turns; impedance is 8 ohms and inductance 

3.16 mH. The 16 gradiometers are linearly spread along the 

Y-axis resulting in 0.6 m scanning area. 
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Fig. 2. Design of the excitation coil. 

 

Fig. 3. Actual detection head with the linear array of 
gradiometers and excitation coil. 

A harmonic current of 1A peak-peak and frequency 

1 kHz excites the coil from a harmonic generator and 

generates the magnetic field in the coil vicinity. The coil 

has been designed and optimized using a FEM modeling 

software. The main focus of the FEM modeling is to 

achieve uniform magnetic field distribution inside the coil 

frame especially on the line where the gradiometers are 

installed. 
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Fig. 4. B-field distribution along the Y-axis of the coil for three 
size alternatives. 

Fig. 4 shows simulated magnetic B-fields along the 

whole sensor line (Y-axis), with no conductive object in the 

coil vicinity. Three different X-side lengths of the coil 

(100, 200, 400 mm) are compared and presented. The 

narrowest option gives the highest and the most uniform 
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field in this axis. The curve is relatively flat which means 

that the scanned field is constant regardless of the sensor 

position. Fig. 5 presents simulated field changes in the 

perpendicular direction (X-axis). On the contrary the field 

variation is highest for the narrowest coil. Each 

gradiometer contains two sensing elements, one over 

another that measure vertical field gradient. It is evident 

that the narrow coil sets the highest demands on the 

perpendicular position of gradiometers to the X-axis. The 

uniform influence of the excitation field on each sensor in 

the array should be ensured. 

Taking into account all the aspects that have been 

investigated the narrowest option (100 mm) is considered 

to be the most suitable for this application, because the 

requirements on the position of gradiometers are easily 

achievable. 
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Fig. 5. B-field distribution along the X-axis of the coil for three 

size alternatives. 

3. Measurement trials 

Signals collected by the sensors are presented in a 

graphical Labview based software. Gradients of AC and 

DC field are indicated in two separate false-colour intensity 

graphs. As the detection head does not currently 

incorporate any positioning device like a wheel with an 

encoder, the measurement is free-running and the intensity 

graph is updated immediately with newly arrived data. 

Scans are acquired with a constant scanning speed and the 

dimension in the scanning direction can be calculated using 

the indicated time of the scanned samples. 

To evaluate detection limits the trial measurements 

were performed with the stationary detection head so to 

avoid errors in the DC gradient when moving the detection 

head. The error is caused by the non-compensated 

misalignment of the sensors (however it does not affect the 

AC gradient, see chapter 2.2 Gradiometers). A scanned 

object is then positioned under the detector by a hand. 

Fig. 6 shows the scan of a ferrous screw in the depth 

of 6 cm under the detection head. The DC gradient shows 

the typical field of a magnetic dipole, while the AC 

gradient, originating from induced eddy currents, better 

represents the shape of the screw. The overall detection 

depth is however better for the DC gradient, the magnetic 

field of the screw could be recognized up to the 10-cm 

depth. 

 

Fig. 6. DC gradient (upper) and AC gradient (lower) scan of a 

ferrous screw 1 cm x 10 cm which is 6 cm under the 

detector. The whole scan took 1 second. 

Another tested object was a steel reinforcement mesh in the 

depth of 6cm (Fig. 7). The DC gradient shows random 

magnetization of the steel mesh which does not correspond 

to its shape. AC gradient however provides usable picture 

showing steel bars in the blue and the holes in the red. 

 

Fig. 7. Scan of a ferrous reinforcement mesh 6 cm under the 
detector in DC field (upper) and AC field (lower). While 

the magnetization of the steel is not correlated with the 

shape of the reinforcement mesh in the DC field, using 
the AC field the structure is clearly visible. 

Non-ferrous metals like copper and aluminum were also 

tested with the expected zero response in the DC gradient 

and rather weak response in the AC gradient, plate-like 

shaped objects were detected in the greatest depths of about 

10 cm. 
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4. Conclusions 

The detector benefits from the simultaneous  

measurement of DC and AC gradient of magnetic fields. 

This feature allows to simply distinguish between 

ferromagnetic an non-ferromagnetic metals. The linear 

array proved to be useful for mapping the magnetic fields 

with sufficient resolution especially in the direction of 

scanning so the shape of the object can be estimated. Scans 

of ferrous objects show better detection depth in the DC 

gradient, while the image in the AC gradient represents the 

shape of the object more correctly. 

The DC and AC ranges are set for a wide bandwidth 

of 45 Hz allowing for the high scanning speed up to 1 m/s 

at the cost of the increased output noise. The noise, 

temperature coefficient errors and misalignment of sensors 

in gradiometers limit the detection depth which is not 

sufficient yet for e.g. diagnostics of steel reinforcement 

located deeply in concrete. Although the misalignment 

error may be suppressed by calibrations, further detection 

depth enhancement could be achieved by replacing the 

sensors with AMRs of better specifications or fluxgates.  
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3.2.4 AMR Proximity Sensor With Inherent Demodulation 

In this chapter, development and characterization of a low-frequency proximity sensor with an 

excitation coil and AMR which provides inherent demodulation. Foundations for this sensor 

principle were already formed in the paper in chapter 3.1.2, where noise performance of 

several circuits for AMR detectors was studied. Later, during preparation of this paper for 

publication, it was found out that the principle of inherent demodulation of an AMR sensor 

was proposed before by Tumanski (2010) to which we added the application for a proximity 

sensor capable of operating at very low frequencies and even through a conductive shielding.  

The sensor consists of an AMR sensor, excitation coil with a square-wave generator and a 

low-pass filter. The advantage of the sensor is the inherent demodulation feature, which 

simplifies sensor design, as no other demodulator is necessary. The inherent demodulation 

occurs when the frequency of the excitation field is the same as the frequency of flipping. 

Flipping is ensured by supplying short current pulses of several amperes, supplied by 

switched capacitor, to the flipping coil, which invert magnetization of the AMR and 

effectively also its output characteristic. Thus the operation is the same as a synchronous 

demodulator using the excitation frequency as a reference frequency. 

The proximity sensor output can be evaluated by comparison with threshold levels for high-

permeability and conductive materials. High-permeability materials (ferromagnetic materials, 

ferrites) increase the amplitude of the excitation field, therefore the output level increases. 

Conductive materials, due to internally induced eddy currents, decrease the amplitude of the 

excitation field, therefore the output level decreases. An ambient DC field appears at the 

output as an AC signal due to the demodulator, which is removed by the low-pass filter. 

The sensor was operated at a very low frequency of 100 Hz to enable penetration of the 

excitation field through a conductive wall (whatever the reason for its presence is). This 

brings an advantage compared to industry-standard induction sensors which are operated at 

much higher frequencies. Once the position of the AMR proximity sensor and the conductive 

shielding is fixed and sensor threshold levels reestablished, metallic object can be detected 

behind the conductive shielding. 

Sensitivity of the sensor to the conductive material can be increased by sampling near the 

edges of the square-wave excitation field, because eddy currents are most pronounced when 

the excitation field changes fast. Conversely, sensitivity to high-permeability materials can be 

increased by sampling at the end of a steady-state interval of the square wave, because this 

part of the signal is the least influenced by eddy currents from a conductive shielding. These 

circuits however increase sensor complexity. 

A concern in the design with an AMR is the non-linearity of the output in uncompensated 

mode and the crossfield error. Remanent field of an object in the vicinity of the sensor can 

shift the operating point of the sensor and create a false detection event. To address this issue, 

a DC compensation of the proximity signal was created. This however required a synchronous 

demodulator to extract the DC field component from the sensor output. Bandwidth of the 

sensor was decreased to filter out the feedback action of the DC field compensation.  

However, the sensor in its simplest form without any DC field compensation proved useful 

for detection of objects with minimum remanent magnetic field and these can be positioned 

behind a conductive shielding. 
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AMR Proximity Sensor With

Inherent Demodulation
Pavel Ripka, Jan Vyhnanek, Michal Janosek, and Jan Vcelak

Abstract— Our novel position sensor is based on the combina-
tion of the eddy-current and permeability effects. The primary
field is excited by a coil, but instead of induction coil, the
sensing part uses anisotropic magnetoresistor (AMR), which also
measures dc magnetic field. As the AMR is being flipped at
the excitation frequency, the sensor is self-demodulated and the
output is dc. The AMR sensitivity does not depend on frequency;
therefore, this sensor can be used at ultralow frequencies, where
coils fail as sensors. We show the response of our sensor to
ferromagnetic and nonferromagnetic metals and possibilities to
distinguish between them. We also show that our sensor can
measure position through the conducting sheath.

Index Terms— AMR sensor, magnetoresistor, position sensor.

I. INTRODUCTION

TWO families of proximity detectors and distance sensors

are based on magnetic principle:

1. DC magnetic sensors mostly use permanent magnet as

a source of the field. The magnet may be attached to

the target or the sensor. In the second case the target

is ferromagnetic and changes the field shape and its

amplitude in the sensor location.

2. Eddy-current proximity detectors and distance sensors

are most often based on the change of the quality factor

of the coil caused by eddy currents in the target from

conducting material [1], [2]. These sensors are often

referred as Inductive Sensors.

Our sensor belongs primarily to the second group, but it is

also able to measure DC response. The difference is that the

source of the DC field is a coil instead of permanent magnet.

A. Inductive Sensors

Inductive sensors usually work in the frequency range

of 1 kHz to 100 kHz. New trends of these sensors are
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described in [3]. These sensors have been also miniaturized

by using printed coils [4] or CMOS technology [5]. At high

frequencies the penetration depth is very small and the sensor

is also strongly influenced by parasitic capacitances. At low

frequencies the sensitivity of such sensor is small, which

is a consequence of the induction law: the induced voltage is

proportional to frequency. However, for some applications it is

desirable to use very low working frequency. At low frequency

and low permeability the penetration depth is high and the

sensor can be used to measure a position of ferromagnetic

target through a conducting sheath. The requirement is that the

sheath has low permeability – if it is from ferrous material,

its permeability can be lowered by DC saturation.

B. AMR Position Sensor

Our novel solution separates the transmission coil from

the magnetic field sensor, which is in our case Anisotropic

magnetoresistor (AMR) with a frequency response starting

from DC [6]. AMR sensors are based on a thin film Permalloy

strip, which forms a single domain. The external magnetic field

rotates the permanent magnetization of the domain and causes

a change of its electrical conductivity. Large external field can

cause that the single-domain state is damaged, which results in

hysteresis and drop of sensitivity. The cure is called flipping:

short periodical pulses of magnetic field which remagnetize the

sensor core and restore its single-domain state. If the flipping

pulses are bipolar, the sensor output also periodically reverts its

polarity, i.e. it is modulated by the flipping frequency. Flipping

brings also other advantages:

1. suppression of the sensor offset;

2. suppression of the crossfield effect [7];

3. doubling the sensitivity.

Anisotropic magnetoresistors were already used in eddy-

current NDT with high spatial resolution [8]. Compared to

induction coil, AMR sensors have smaller size and their

response is to some limit frequency independent. Therefore

AMR sensors can be used at much lower frequencies than

induction coils, which have sensitivity proportional to fre-

quency. Fig. 1 shows the conventional system using AMR:

f f lip is typically 1 Hz to 1 kHz, the AMR output is AC at

fexc ± f f lip frequency. Synchronous demodulator at its output

is controlled by f f lip and the dominant signal at its output is

at fexc.

C. Self-Demodulation

Our new concept of self-demodulated sensor is shown in

Fig. 2. The excitation field is a squarewave of the same

1530-437X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Flipped AMR with external demodulator. The sensor output is AC
at fexc .

Fig. 2. AMR with inherent demodulation. The primary sensor output is DC.

Fig. 3. Experimental proximity sensor with the AMR inside the excitation
coil.

frequency as the flipping pulses, so that the sensor output is

at DC (and also at 2 fexc).

The possibility to use flipping for signal demodulation

was predicted by Tumanski [9], but to our knowledge we

were the first who experimentally proved this concept and

used it for sensing. The output signal is DC voltage without

any external demodulator. We can use the same sensor to

separately measure DC magnetic response and eddy-current

response.

Our method has three advantages over DC magnetic position

sensors:

1. it does not require any permanent magnet,

2. it suppresses the influence of the external DC magnetic

fields and magnetic remanence of iron parts, and

3. it works also for non-magnetic conducting targets.

The only limitation is the measuring range of the AMR sensor

as the DC magnetic field results in the AC output signal.

However, using an appropriate processing and feedback com-

pensation the DC magnetic field can be suppressed. By this

sensor we can separately measure DC magnetic response and

eddy-current response in order to compensate for the target

temperature-dependent permeability.

Fig. 4. Sensor response to Al target, fexc = 1 kHz

Fig. 5. Excitation current (upper trace) and the sensor response (lower trace)
to Al sheath alone with the thickness below the penetration depth. The eddy
currents decay fast and the magnetic field propagates through the 2.5 mm
sheath, fexc = 100 Hz. Signal belonging to the ferrous target inside the
sheath is visible.

II. THE MEASUREMENTS

The prototype sensor is shown in Fig. 3.

It uses single Honeywell HMC 1001 AMR sensor and

AD8429 instrumentation amplifier with the gain of 100. The

sensor is inside the 46 mm diameter, 22 mm long excitation

solenoid powered by 70 mA p-p squarewave current, which

generates 115 A/m field at the end of the coil and 12 A/m field

in 4 cm distance. The sensor is located in the coil axis at the

coil end. Flipping is made using the integrated flipping coil

by 1.2 A p-p current created by discharging a 6.8 nF capacitor

directly coupled to the 30 V p-p square-wave excitation

waveform from 50 � generator. Fig. 4 shows the typical

response of the self-demodulated sensor to conducting target

for 1 kHz excitation frequency. Basic DC shift is caused by

the fact that the sensor is subjected to the full excitation field

which is self-demodulated into the DC voltage. If necessary

this basic DC shift can be compensated either by feedback

current in the sensor or by voltage shift in the pre-amplifier.

The exponential pulses are caused by eddy currents in the

target. Notice that after self-demodulation all pulses have the

same polarity and therefore they contribute to DC output.

If the target is ferromagnetic, further DC shift is caused by its

permeability. The eventual squarewave component is caused
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Fig. 6. Excitation current and sensor output for a) 1 kHz and b) 10 Hz.
The sheath and target are the same as in Fig. 5.

by external magnetic field or (in the case of ferromagnetic

target) by the target remanence.

When measuring the target position through the sheath the

excitation frequency should be adjusted so that the penetration

depth is larger than the sheath thickness. In such case the eddy

currents decay fast and the magnetic field propagates through

the sheath towards the target. This situation is shown in Fig. 5.

Fig. 6 shows sensor response also to 10 Hz and 1 kHz

excitation current. While at 1 kHz the sensitivity is smaller,

10 Hz give nice response for Fe target, however the transitional

part is too short for time-domain analysis. 100 Hz excitation

was therefore selected as optimum for this configuration.

Fig. 7 shows the calibration of the selected setup. We mea-

sured a DC response from both ferromagnetic and aluminum

targets through the same 2.5 mm aluminum sheath. The target

distance is measured from the end of the excitation coil. The

frequency dependence in this case is caused not only by the

eddy currents in the sheath, but also in the target. Conventional

induction coil at this frequency shows very small sensitivity

and cannot be used.

Fig. 7. DC output of self-demodulating AMR proximity detector sensing
iron and Al target through 2.5 mm Al sheath. fexc = 100 Hz.

Fig. 8. Spectrum of sensor output for various targets, 100 Hz excitation,
100 Hz flipping.

III. PROCESSING OF THE AC SIGNAL

The used principle is very flexible and it allows esti-

mating the target properties using techniques developed

for eddy-current non-destructive testing and mine detection.

The analysis can be performed both in the frequency and time

domain.

A. Processing in the Frequency Domain

Sinewave excitation field at multiple frequencies is ideal

for analysis in the frequency domain. For position sensor the

overall circuit simplicity is an important aspect, which is a

strong argument for using squarewave excitation. However, the

signal spectrum for squarewave excitation is rather complex as

illustrated in Fig. 8. The 100 Hz ± 100 Hz signal created by

mixing 100 Hz excitation with 100 Hz flipping frequencies has

two products: DC which is the main sensor output and signal

at 200 Hz. However, part of the 200 Hz signal comes from

the third harmonic component of the excitation squarewave

mixed with flipping (200 = 300-100). The 100 Hz spectrum

component is caused by DC signal (including the sensor offset)

modulated by 100 Hz. A small part of this signal can be

also caused by capacitive or inductive feedthrough from the

excitation. In general the higher even harmonics are caused by

squarewave spectrum components modulated by 100 Hz signal
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Fig. 9. Spectrum of sensor output with feedback compensation on/off in
magnetic shielding.

Fig. 10. Spectrum of sensor output with feedback compensation on/off in
the Earth’s field.

and the higher odd harmonics are caused by AMR sensor non-

linearities.

B. DC Field Compensation

We have shown that the external DC field together with

AMR non-linearity creates harmonics. More serious is the

danger of the saturation at larger fields. Therefore we decided

to employ DC field compensation. In our case the frequency

band of the feedback loop is limited to 5 Hz, which lefts

the 100 Hz field unaffected. The effect of the feedback

compensation on output spectrum is shown in Fig. 9. In this

case the sensor is placed inside the magnetic shielding, so

that the DC component is caused only by the sensor offset.

An unwanted consequence of the feedback compensation is the

increased noise in sidebands of 100 Hz and all odd harmonics.

When the sensor is exposed to the Earth’s magnetic field of

50 µT (Fig. 10) the amplitude of 100 Hz and odd harmonic

components is significantly higher, confirming the origin of

this signal. After compensation the spectrum is practically the

same as in Fig. 9.

DC field is not the only source of the frequency of 100 Hz as

shows the spectrum for the aluminum target in Fig. 8. Similar

behavior was observed when an improper phase between

the excitation field and the flipping current deteriorates the

rectification and results in an output waveform with negative

Fig. 11. Spectrum of sensor output for different phase between excitation
field and flipping current with active feedback compensation.

Fig. 12. Sensor output for different phase in time-domain.

peaks with the repetitive frequency of 200 Hz (Fig. 11 and 12).

Deteriorated function of the feedback results in the rise of

100 Hz in the frequency domain. Due to its origin tthe

remaining 200-Hz signal cannot be eliminated by the feedback

designed for the DC field compensation. At the low excitation

frequency the phase accuracy is however not critical as the

largest delay in our setup was the recovery time of the AMR

sensor after flipping, which was only 30 µs.

C. Signal Processing in the Amplitude Domain

Analysis of amplitude and phase shifts of shown spectra is

not an easy task. Therefore we decided for time-domain signal

processing, which in low-frequency case appears to be more

straightforward.

For the laboratory evaluation we developed a software

application based on dividing the digitized waveform into

two intervals, the first one measures eddy currents and the

second one the steady field of the excitation coil (Fig. 13).

The digitizer was 16 bit PCI-6221 from National Instruments,

where a 10 kHz sampling rate proved to be sufficient for the

100 Hz excitation.

The mean value of the signal in the first interval is a

function of target conductivity, permeability and distance,
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Fig. 13. Sensor DC output of self-demodulating AMR proximity detector
sensing iron and Al target through 2.5 mm Al sheath. fexc = 100 Hz.
The “squarewave component” is compensated due to DC field feedback.

while the mean value in the second interval depends only on

permeability and distance.

The effects of conductivity and permeability can be there-

fore evaluated separately using a single squarewave excitation

frequency of 100 Hz. Therefore apart from proximity detection

the material type is also indicated. It should be noted, that

the signal amplitude also depends on the target distance and

geometry. Some apriori information about the target is there-

fore necessary. More information can be brought by multitone

excitation, technique routinely used for mine detection.

The DC field (e.g. the Earth’s field) is obtained as the

squarewave component amplitude of the self-demodulated

output and compensated by an external coil to suppress the

non-linearity of AMR output characteristic. Thus the linear

output behavior is ensured for ±700 A/m DC field range.

However the sensor frequency response, which is already low

due to the low excitation frequency, is further restricted by the

feedback compensation.

IV. CONCLUSION

We have shown that the proposed AMR eddy current sensor

can be used at very low excitation frequency (1 to 100 Hz) to

detect the position of ferromagnetic or massive conducting

object covered by a metal sheath. For the first time we

demonstrated the self-demodulation ability when the excitation

and flipping signals have the same frequency. We have proven

40 mm detection distance for ferrous target measured through

the 2.5 mm thick aluminum sheath. Using the time-domain

signal analysis, it is also possible to identify the target material.

The sensor also measures and simultaneously compensates

the DC field component. This makes the sensor immune

against external fields without shielding, which was used for

this purpose in [10] and [11]. The present sensor is not

differential, DC field compensation is made electronically and

no suppression of the excitation field is necessary. Using

gradiometric configuration for larger detection distances is also

possible; the detection distance limit can be increased also by

increasing of the excitation coil diameter. Final version of the

intelligent position sensor should have electronics integrated

into the sensor body, which will be the next step of the

development.
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3.2.5 Linear Position Sensing through Conductive Wall without Permanent 
Magnet 

This work is a follow-up to the previous sensor which is able to detect objects behind a 

conductive shield (3.2.4). Instead of the AMR sensor, an integrated fluxgate sensor was used, 

which has greater input range and all the analog electronics provided on-chip including fast 

feedback compensation. To keep the design simple, signal demodulation is provided by 

software after digitization. 

16 sensors are mounted on a PCB to create an array for linear position measurement. Low 

frequency excitation allows metallic objects to be detected behind an aluminum wall. To 

pursue a practical application, a model of an aluminum pneumatic cylinder was built and 

position of the iron piston rod was detected. 

The principle for position detection of the piston rod lies in deformation of the excitation field 

which appears at the end of the rod. When the sensors are positioned perpendicular to the 

excitation field and parallel to the iron rod axis, the end of the iron rod creates a distinct peak 

in the sensor array data. 

The output of the position sensor is continuous and two interpolation methods were tested for 

this purpose. Because the output of the sensor array approximates the response peak in 

discrete locations, the knowledge of the shape of the response peak allows a fitting method to 

be applied to the output signals. The fitting method had lower position error than the simple 

method of weighted average.  

The position error of the sensor which is reaching ±2 mm, can be further lowered by 

decreasing the spacing of individual fluxgate sensors to meet the industry demands. However 

further measurements which were out of the scope of this conference paper, showed a strong 

influence of motion dynamics on the output of the position sensor. Given the available 

industry-standard Hall sensors with a higher bandwidth, practical application of this position 

sensor for pneumatic cylinders can be considered only in very special cases, such as a 

restricted use of a permanent magnet, while ferromagnetic rod is available and with low 

motion dynamics demands. So this paper should be treated as a demonstration of a new 

principle of position measurement rather than a practical sensor development for pneumatic 

cylinders. 
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3.2.6 Localization of the Chelyabinsk Meteorite From Magnetic Field Survey 
and GPS Data 

This chapter demonstrates the application of DC magnetic field sensors for mapping of 

remanent magnetic fields and fields induced by the effects of magnetic susceptibility in the 

Earth’s field. A typical application is a buried bomb search. All the detectors in the previous 

paper are able to detect DC fields as well, but at small distances the AC mode of the detectors 

proved more suitable for visualization and proximity detection. 

On the other hand, for long distances an AC excitation is not practical, because the usable 

excitation field is limited to the vicinity of the excitation coil. Increasing the coil diameter 

partially mitigates this problem. But for DC sensors the detection distance is almost unlimited 

given the object is a source which is strong or large enough in physical size to provide a 

detectable field at a given distance. 

The effect of strong distant sources complicates data interpretation in the DC method 

compared to the AC method. A gradiometer setup can suppress the homogeneous Earth’s 

field and partly also geology features, but for size and depth estimation a magnetic field map 

or multiple scans capturing a magnetic anomaly are necessary. Compact objects appear 

usually as a dipole, the orientation of which depends on the remanent field and direction of 

the Earth‘s field. In the paper, a model fitting was used to obtain the size and depth of 

discovered objects. Fluxgate sensors were used due to higher sensitivity than AMRs have and 

differential GPS was used for centimeter-level position sensing.  
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Localization of the Chelyabinsk Meteorite From

Magnetic Field Survey and GPS Data
Gunther Kletetschka, Jan Vyhnanek, Darja Kawasumiova, Ladislav Nabelek, and Vojtech Petrucha

Abstract— The Chelyabinsk meteorite fragment that landed in
the Chebarkul lake in Russia on February 15, 2013 weighed
over half a ton. We provide magnetic field maps that were
obtained during underwater measurements above the fragment.
The data acquisition process was multiple global position system
referenced magnetic surveys 0.5–1 m above the top of the lake
sediment layer at 10 m water depth. Gradiometric configuration
of the survey using two triaxial fluxgate magnetometers helped to
suppress local geological anomalies. The location of the ice crater
and the underwater magnetic anomaly provided final meteorite
landing coordinates, which were made available during meteorite
recovery.

Index Terms— Gradient methods, fluxgate sensor, global
positioning system, meteorite search.

I. INTRODUCTION

C
HELYABINSK bolide parameters indicated that the

largest solid fragment surviving the decomposition by

heat in the atmosphere landed in Lake Chebarkul, near the

city of Chebarkul, on 15 February 2013. The Chelyabinsk

meteorite is a rare end product of super bolide, whose initial

mass started to defragment and evaporate over the Chelyabinsk

region [1]. The initial body reduced down to the largest

surviving fragment, with a mass of approximately 600 kg,

which plunged through the 80 cm thick ice covering the

water of Lake Cherbarkul. Its observed trajectory was 254 km

long with an azimuth of 279.5°, and a slope of 16.5° to

the horizontal. The speed was 4.3 km/s at the end of reg-

istration time at position of 54.922° N latitude, 60.606° E

longitude, 14.94 km altitude [1], [2]. The largest fragment

landed in Lake Chebarkul, where an 8 m diameter circular

opening in ice was found shortly after this meteorite event.

Fragments from the bolide event were collected soon after the

fall and were of an ordinary chondrite composition [3] with
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Fig. 1. Improvised non-magnetic vessel equipped with instrumentation for
GPS referenced magnetic survey.

iron/nickel component, providing a potential for magnetic

detection [4]–[7]. On 5 March, our team arrived at the site

and obtained Global Position System (GPS) coordinates of the

crater (using a commercial Garmin 76 unit) whose boundary

was outlined by wooden sticks inserted in the ice. A surface

magnetic survey was done at this time using a single vector

fluxgate magnetometer. An underwater magnetic survey of

the impact site was performed on 19-22 June 2013 using

a gradiometric configuration of two vector fluxgate mag-

netometers. Here we present a description of the hardware

used for the survey, the results of the instrument calibration,

the methodology of the magnetic and GPS data evaluation,

and synchronization. Final survey results are confronted with

simulations and information obtained during the meteorite

recovery on October 2013.

II. INSTRUMENTS AND METHODS

In our magnetic survey and mapping we used a

non-magnetic inflatable boat to cross the water surface in the

area where the opening in the ice was created by meteorite

impact in the winter. There were three substantial instru-

ments: a geodetic-grade GPS system for precise positioning,

one submersible fluxgate magnetometer (developed by

CTU in Prague), and one on-board commercial fluxgate

magnetometer (MEDA Inc.) that were used for magnetic

measurements. There was also a laptop computer present in the

boat, which served as a user display and logger for magnetic

data (see Fig. 1). The GPS data were stored directly in the

instrument and processed offline.

1530-437X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Meteorite localization by magnetic gradiometry was a

very similar task to Unexploded Ordnance (UXO) detection,

although the anomaly intensity is supposed to be significantly

lower for the chondrite type meteorite. The authors deal with

UXO detection in ground [8], [9] or underwater [10]–[13]

conditions using various instruments and techniques.

We considered the application of multi-sensor instruments

measuring simple magnitude gradient or even full gradient

tensor. The benefits of this multi-sensor approach include

higher spatial resolution, wider coverage, and thus faster

scanning. We finally decided to use the presented concept of

two vector magnetometers because of a high potential risk of

loss of the underwater probe (e.g. due to unknown underwater

obstacles) and the limited carrying capacity of the expedition.

Another suitable instrument developed at our laboratory was

still in a test phase [14].

A. GPS for Accurate Positioning of Gradient Measurements

Ashtech’s ProMark 2 GPS system was operated in

differential mode utilizing a fixed base station and mobile

rover receiver, thus reaching centimeter-level accuracy for

relative positioning. The rover antenna was positioned above

the submersible probe of the magnetometer to follow its

position. The speed of the survey was 0.3 m/s at maximum

and 0.1 m/s on average to avoid horizontal separation

between the probe and antenna. With regards to relative

positioning, simultaneous logs of the base and rover

station included pseudo-range and carried-phase data, which

enabled improved accuracy. Post-processing of the raw data in

Ashtech Solutions software indicated the accuracy of each

recorded point, which was 3 cm RMS in the worst case of

all of the measurements.

The base station unit logged data in a static position. There

were two substantial conditions to ensure the desired accuracy:

an unobstructed sky view to receive the maximum number

of satellites and a solid stand for the antenna. Most of the

surrounding terrestrial area was covered with forest and the

only suitable place was a sandy area near the anchorage.

The antenna was placed on a 2 m tall wooden pole. Each

day the base antenna was placed onto the pole, so the only

additional error between measurements on different days was

the antenna spatial shift after reassembling the base station.

The wooden pole was kept on the site and no apparent shift

of the pole was noticed between the days of the survey. The

positioning error of the antenna attached to the pole was

estimated to be 2 cm at maximum.

For absolute positioning in the world coordinate system,

the absolute position of the base station was estimated. The

most credible method was to place the rover unit on a known

geodetic point, so the position of the base was estimated with

the accuracy of the relative positioning. Unfortunately, there

were no such points available in the survey area. We used data

averaging of the long-lasting base station log. Apart from the

simple averaging, we used an on-line service Precise Point

Positioning (PPP) [15].

The PPP service applies corrected information of satellite

orbits and atmosphere conditions for post-processed calcula-

tions. We used this to estimate the absolute position in Prague

prior the actual survey. The base antenna was positioned in

Prague at a point with known coordinates. The log took

about 20 minutes in the area with restricted sky view due to

buildings. The averaged point was 10.5 m away from the real

coordinates. The PPP point showed a ten times lower error,

about 1 meter, the indicated standard deviation was 3.3 m.

Three long-lasting base station logs were recorded at

Chebarkul Lake: each lasted for about 4 hours. These

were selected for averaging and PPP post-processing.

Both averaging and PPP gave similar results for these 4-hour

logs. We selected the PPP positions for the final coordinate

calculation, given the Prague results. The PPP service indicates

standard deviations of the estimated positions, which for our

data were 1.7 m, 1.5 m, and 1.5 m (day 1, 2, 3, respectively).

Assuming independent observations, the final base station

coordinates are the result of averaging the three PPP points,

each of which was obtained during one day of the magnetic

survey. The final coordinates are in the WGS84 system:

54.95828749° N, 60.31818468° E with 0.9 m of combined

standard uncertainty.

Synchronization of GPS with magnetometers and mapping

positional accuracy needs to account for the fact that GPS and

magnetometer data were logged separately and that for data

synchronization we used timestamps from magnetometer logs.

Time for both magnetometers was derived from the computer

clock. The computer clock was manually synchronized each

day at the beginning of the survey using a GPS receiver. The

accuracy of the time synchronization te_sync was estimated

to be ±0.5 s. Position error se_sync in magnetic maps due

to the limited synchronization accuracy can be obtained for

each point according equation (1). The maximum velocity v

during the survey (on 19.6. 2013) was 0.3 m/s, which is

similar to other days. So the maximum positioning error

is ±0.15 m.

Se_sync = V · te_sync (1)

B. Surface Fluxgate Vector Magnetometer (MEDA FVM400)

This compact commercially available tri-axial vector

fluxgate magnetometer was used during the first visit to

Chebarkul Lake on March 2013 for surface magnetic field

mapping. It was used as a surface magnetometer to create

a gradiometric configuration for magnetic field mapping

during the final measurements on June 2013. The magne-

tometer has a digital data output (RS232 interface) with 1nT

resolution and 1 Sa/s sample rate. The three vector components

(X, Y and Z) provided the vector magnitude. The

magnetometer offers National Institute of Standards and

Technology traceable calibration, but a scalar calibration [16]

has been performed to verify and improve its precision.

We used a non-magnetic positioning device [17] to precisely

collect 55 different vectors of the Earth’s magnetic field. The

calibration procedure was performed twice and the results

are summarized in Table 1. The accuracy of the magnetic

field vector magnitude measurement has been improved by

a factor of 9 (reduction of magnitude peak-peak variation

from 142 nT to 16 nT for differently oriented vectors).

As indicated by the results, the sensitivities are well factory
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TABLE I

MEDA FMV400 SCALAR CALIBRATION RESULTS

Fig. 2. Vector compensated tri-axial fluxgate sensor before embedding into
a watertight package (sensor dimension 48 mm × 40 mm × 40 mm). The
sensor was developed at CTU in Prague.

calibrated but the improvement comes from the calibration of

the orthogonality angles.

Although the instrument noise was stable within units

of nT during its testing, the recorded data showed up to

40 nT peaks, which were neither related to the real magnetic

signal nor other electronic disturbance (verified). Given that

these peaks are present only when the sensor is moving

(e.g. waves on the lake), they suggest that an FMV400 is

not suitable for dynamic measurements. Smoothing the raw

waveform with a 20-second moving average resulted in

acceptable data for further processing, although this

allows only low-frequency homogeneous disturbances to be

compensated in the differential data.

C. Submersible Vector Fluxgate Magnetometer

The magnetometer used for underwater survey (DIGMAG)

was developed at the Department of Measurement of the

Faculty of Electrical Engineering of the Czech Technical

University in Prague. The research instrument is a vector com-

pensated tri-axial vector fluxgate magnetometer [18], which

has been modified for underwater operation. An improvised

watertight plastic package filled with two-component silicone

adhesive provided the desired water resistance (see Fig. 2).

The sensor head was connected by an 11 m long cable to

the signal conditioning and data acquisition electronics carried

in the boat. The fluxgate magnetometer sensor head was

based on three single-axis ring-core fluxgate sensors, which

were embedded into a cuboidal compensation structure. The

vector compensation improved the linearity of the sensor by

virtually eliminating the cross-field errors and improved the

overall stability of the sensor’s calibration parameters.

The magnetometer had a measurement range of ±100 µT,

the analog signal noise was below 20 pT/
√

Hz at 1 Hz, the

effective digital resolution was below 100 pT at sample rate

of 10 measurements per second, and the offset temperature

dependence was 0.1 - 0.5 nT/°C.

The magnetometer was calibrated before the actual survey

to assure the best possible performance. The total vector

TABLE II

CTU FLUXGATE MAGNETOMETER SCALAR CALIBRATION RESULTS

Fig. 3. Comparison of the calculated vector magnitude (vertical axis) before
and after scalar calibration (top). Residuals are within 1 nT range (bottom).
The calibration is essential for reaching good measurement results.

magnitude was used for the gradient measurements to allow

scalar calibration. Scalar calibration did not calibrate the

sensor’s sensitive axes orientation with respect to external

reference frame because it is not needed when only the vector

magnitude is calculated. The results of the scalar calibration

(average of three calibrations) are presented in Table 2. The

peak-peak value of magnitude variance was reduced from

3613 nT to 0.974 nT. The main effect came from the calibra-

tion of the sensitivities and orthogonality angles. Fig. 3 shows

the difference between calibrated and non-calibrated magni-

tude for different (uniformly distributed) vectors. The regular

pattern of the “raw magnitude” came from the positioning

sequence. The ambient field was monitored by an Overhauser

scalar magnetometer GEMSYS GSM-19 during the calibration

(and was used in the data processing).

D. Magnetic Gradient Data

We obtained the magnetic field gradient by subtracting

the calculated total field from the submersible and surface

probes. Homogeneous fields affecting both probes were

eliminated this way and the gradient anomalies were more

pronounced. In this case, the improvement was limited to

low frequencies. FMV400 logged with a 1-second interval

but the data had to be smoothed with a 20-seconds moving

average filter (see section B). The geomagnetic field was

quiet during the measurement (see data from Novosibirsk

Observatory - www.intermagnet.org, [19]) and relevant

magnetic anomalies were apparent even without computing the

gradient.

The submersible probe detected a low frequency (0.1 Hz)

signal, mostly along the x axis (20 nT peak to peak), which
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Fig. 4. Effect of waves on measured vector magnitude while crossing the
magnetic anomaly area with high gradient.

was attributed to periodic rotation of the probe along the

vertical axis. The submersible probe was equipped with ballast

(five glass bottles filled with sand) but there was no fin to

stabilize the sensor. This effect was probably due to a minor

change in the calibration parameters that was induced by

the internal pressure in the submersible magnetometer probe;

otherwise this effect would not be visible in a gradient free

area. The boat was too small (∼3.5 m) to compensate the

influence of water waves. Therefore, the rope with sensor was

moving up and down in rhythm with the waves. When looking

closely at the data, the magnetometer sensor in a gradient field

showed a frequency signal that closely matched the frequency

of the waves (see Fig. 4). These error sources were filtered

out to reveal the actual anomalies, which have a lower time

frequency because the scanning speed was slow (0.1-0.3 m/s).

III. RESULTS

A. Magnetic Field Survey

The first measurement (March 5) with a single surface

operated magnetometer showed a magnetic anomaly of about

80 m N-W of the ice crater. When we used two probes, the

differential data indicate a geologic source (e.g. boundary of

two geological units) because both magnetometers (i.e. the

MEDA measuring on the surface and DIGMAG at 9.5 m

depth) show comparable offsets.

Near the crater multiple scans revealed a major magnetic

anomaly that was easily detectable by the submersible probe

but not by the surface probe. The profiles over the anomaly

were selected for the speed of the boat not exceeding 0.1 m/s

and were used for further processing. The spatial shift of scans

was caused both by the position shift of the GPS antenna and

the submersible sensor on a 9.5 m long rope. Therefore, scans

at a low speed with smooth narrow movement are preferred.

Fig. 5 shows the result of the magnetic survey done during

one day.

To align the scans, we developed the following rules.

Minimum speed implies minimum spatial shift, and vice

versa. Scans in opposite directions have opposite spatial shifts,

the scans can be centered if the speed is similar. Once the

scans are merged, a dipole-like map of the anomaly can

be created. Three dimensional representation of the detected

anomaly showed anomaly dominance against the geomagnetic

field, which points to the remanent nature of the magnetic

source. Fig. 6 presents the final magnetic gradient map that is

composed of multiple surveys done during the three days

of measurements at Chebarkul Lake. A significant magnetic

Fig. 5. Magnetic survey results (one day crossing), the red circle shows the
probable ice crater position, coordinate axes indicate distances from the base
station located at 54.95828749° N, 60.31818468° E.

Fig. 6. Multiple survey data combined into one picture.

anomaly is visible at the S-E rim of the supposed ice crater

position. The anomaly has a maximum amplitude of 3000 nT

(peak - peak) at 9.5 m below water level. However, the 1/r^3

dipole field decay makes its surface detection difficult

(i.e. there are few nT gradient levels). There is another anom-

aly with lower amplitude (450 nT) visible approximately 12 m

in a S-E direction from the supposed crater rim, which may be

a smaller fragment that has detached from the main meteorite

body. The effect of the approaching bedrock is visible in the

West side of the map.

Although the GPS antenna - sensor spatial shift error is

systematic and is compensated by the corrections, the number

of high quality scans is low and the spatial shift error cannot

be perfectly eliminated. Considering the values of position

corrections applied (e.g. for Y position: 0.6 m, 0.8 m, −0.8 m,

1 m, and 0 m), the error caused by the sensor spatial shift

plus the error of estimating the anomaly center should be

at maximum ±1 m. With this error estimation, we determined

the resulting coordinates of the anomaly center (Fig. 7) as:
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Fig. 7. This chart shows the uncertainty circles of position of both the
meteorite impact location (ice crater) and predicted location of the largest
meteorite fragment. The axes have their origin at base station coordinates at
54.958287° N, 60.318185° E.

54.959631° N 60.320772° E. For the absolute accuracy

evaluation we combine position uncertainties of synchroniza-

tion usync, relative positioning urel, and uncertainty of dipole

position upole, base ubase, and rope lag urope_lag (2). Coverage

factor k=2 determines confidence interval of 95% to 2.2m.

B. Ice Crater and Meteorite Position

The horizontal shift of the ice crater and magnetic anomaly

center is 5.5 m. The meteorite anomaly center was estimated

with the absolute positioning accuracy of 2.2m, thus the

confidence circle has a diameter of 4.4 m. The crater center

was estimated with a Garmin GPS receiver using the internal

averaging feature. Its operating manual states that it has an

accuracy <10 m, 95%, and does not specify the accuracy of

averaging. So the error of 10 m for the confidence level 95%

is further considered. The confidence circle has a diameter

of 20 m and, therefore, the confidence circles of both locations

are overlapping (see Fig. 7)

utotal

=
√

u2
sync + u2

rel + u2
pole + u2

base + u2
rope_lag

=

√

(
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3

)2
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3
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3
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(
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√

3

)2
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(
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√

3

)2

+ 0.92 +
(

1
√

3

)2
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IV. SIMULATIONS AND DISCUSSION

Simulations taking into account the published magnetic

properties [20] suggest that the meteorite was sitting in the

very upper layer of the sediment, approximately 10-12 m

below the water surface (the sediment started in the depth

of 9-11 m). We used several methods for the simu-

lations (i.e. Finite Elements Methods simulations using

ANSYS and Flux3D, experimental modeling - dike model

and other), considering permanent magnetization as well as

susceptibility effects. The simulations confirm the measure-

ment if high values (60 Am2) of magnetic moment are used

in calculations. The meteorite fragment could have been mag-

netically influenced by the people who tried to pick up small

meteorite fragments using strong permanent magnets shortly

after the incident. This also brings the possibility that the

anomaly was modified by permanent magnet(s) left at the site,

which could create a magnetic footprint of similar amplitude.

The main fragment of the Chelyabinsk meteorite (mass

of 540kg) was recovered from the bottom of Cherbarkul

Lake on 16 October 2013 [21]. Unfortunately, there is no

detailed information available concerning the recovery process

(e.g. precise GPS coordinates and how deep was the meteorite

initially buried in the lake sediments were not provided). The

magnetic moment of the recovered main fragment is also

unknown. Reference [21] mentions ultrasonic sonar was used

to detect the meteorite, but also mentions that the search

area was ∼35 × 30 m and the divers used multiple pumps

to remove large quantities of the sediment. Consequently, it

is impossible to confirm our results or those of the other

groups [22] who used different methods (GPR). The results of

surface measurements of magnetic gradient at the crater loca-

tion are presented in the supplementary information of [23].

The gradient map shows a magnetic anomaly located at a

similar position with respect to the ice crater, but the presented

GPS coordinates points to a location shifted by 28 m to the

south.

V. CONCLUSION

Our GPS referenced magnetic survey attempted the absolute

localization of both the impact in the ice crater and the final

position of the major meteorite fragment from the Chelyabinsk

event. Data analysis revealed that the impact location in the

ice was centered at 54.95967° N and 60.32072° E, with a 95%

confidence circle that has a diameter of 20 m. The magnetic

anomaly indicates the possible location of the largest fragment

of the meteorite that broke through the ice. This location was

centered at 54.959631° N and 60.320772° E, with a 95%

confidence circle that has a diameter of 2.2 m. Magnetic

numerical and experimental modeling suggests that the source

of this magnetic anomaly was shallow, probably not deeper

than 1m in the sediment.
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4 Conclusions 
Current magnetic field measurement methods for object detection show several possibilities 
for further development, some have been addressed by the recent research.   

The objectives from the chapter 2 were fulfilled: 

I. The detector with AMR sensors was designed and its performance verified in 
applications for detection of mines (3.2.2) and for visualization of metal structures in 
buildings (3.2.3).  

II.  The solution, how to compensate for strong excitation and biasing field, is: 

II.a  field compensation by a feedback compensation coil, which was successfully         
used in the innovative AMR gradiometer design (3.2.1). 

II.b.  Perpendicular orientation of a sensor to the excitation field was used in the low-
frequency linear position sensor (3.2.5). Effects of the crossfield error and 
comparison of an AMR and integrated fluxgate sensor were examined and result 
published in the respective paper (chapter 3.1.3). The integrated fluxgate sensor 
provided a distinct advantage over the AMR in terms of the crossfield. 

III. Applications, where DC magnetic field sensors provide an advantage over induction 
sensors at low-frequencies, are those which have to minimize eddy currents (3.2.4).  
Detection of metal objects behind a conductive wall requires the low frequency to 
penetrate the wall. The frequency limit, where a DC sensor has better noise than a 
similarly sized induction sensor, was studied (3.1.1). This limit is between 10 Hz and 
100 Hz, depending on the sensor type. 

AC metal detectors with excitation field are usually using induction coils, however there are 
applications where the low excitation frequencies are necessary and where the induction coil 
is limited by low sensitivity at low frequencies. NDT and position sensors with 
magnetoresistors and integrated fluxgates proved useful in applications where the excitation 
field should have low frequency in order to penetrate a thick conductive material to detect a 
deep defect or sense a position of metallic object covered by a conducting shield.  

 

4.1 Future work 
The author would suggest to continue research in this area by developing more thorough 
theoretical description of the noise and sensitivity limits of various competing technologies 
used for metal detection and buried object visualization. (Especially in the area of classical 
large induction coil for mine detectors and their respective advantages and disadvantages 
compared to AMR and/or fluxgate sensor arrays.) Such a theoretical background should 
provide guidelines for evaluation of design limits and possible advantages in comparison to 
existing commercial devices for visualization of metal structures in buildings. 
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6 Attachment: Other publications related to the thesis 
topic 

I participated in multiple projects at the Department of measurement. Following are four 
papers, related to the topic of magnetic sensors and gradiometers, which I am coauthor of. My 
contibution to this work was participation on hardware design and experiments. 

6.1.1 Compact magnetic gradiometer and its astatization 

This gradiometer is made of fluxgate sensors which consist of ring cores with the diameter of 
12 mm. Two sensors create the gradiometer with a base length of 30 mm. The AMR 
gradiometer with a similar 40-mm base was presented in chapter 3.2.1, so direct comparison 
of both the AMR and fluxgate technologies can be made in two gradiometers with similar 
complexity of the external circuitry. 

The noise power spectrum density at 1 Hz is for the fluxgate gradiometer 1nT/(m�Hz) and for 
the AMR gradiometer 100 nT/(m�Hz), when recalculated to the identical base length of 30 
mm. AMR sensors with lower noise level are available, than the KMZ51 sensor has in the 
AMR gradiometer. But generally fluxgate technology is preferable when low noise is a 
priority. 

The next important parameter of a gradiometer is its spurious sensitivity to homogeneous 
field. Misalignment of sensitive axes and different sensitivity constants will cause different 
output reading of both sensors in the gradiometer, even when they experience the same 
magnetic field. Therefore, if the gradiometer is rotated in the homogeneous field, the 
gradiometer output is changing as if a gradient field is detected. When rotated in the Earth’s 
field, the fluxgate gradiometer has a spurious sensitivity of ±50 nT/m and the AMR 
gradiometer ±5000 nT/m (same base length considered). The AMR gradiometer was however 
operated without any calibration. 
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Abstract 

We present a compact (10-cm head size, 3-cm base) axial magnetic gradiometer with a method of its astatization (i.e. suppression 
of false response to homogeneous field). For astatization, we use two integrated orthogonal sensors and a second-order 
polynomial correction; after astatization the gradiometer error is suppressed more than 1000×. The gradiometer has been 
successfully used in a real-world metal-detection task which was allowed by the low gradiometer astatization error of ± 50 nT/m 
and its noise of 1 nT/(m Hz) @ 1 Hz. 
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1. Introduction 

Compact gradiometer has several important advantages, mainly the ability to suppress even relatively close 
magnetic disturbances. For close sources, the advantage of small gradiometric base is the possibility to determine the 
magnetic field gradient more precisely [1]. Our gradiometer consists of two ring-core fluxgate sensors, with 30-mm 
gradiometric base, and sharing common gradient feedback and homogeneous feedback coils [2] – see Fig. 1a. 

The small base however emphasizes geometric imperfections, astatization (suppression of false response to 
homogeneous field) is thus necessary for real-world scenarios. For example in metal-detection, the gradiometer head 
may be positioned arbitrarily in the Earth’s magnetic field (48 �T in our case) and the gradiometer error due to the 
large homogeneous common-mode can mask the desired response. Even for a state-of-the-art highly-balanced 
SQUID gradiometer with a gradiometric base of 35 mm [3], a compensation technique was necessary to achieve less 
than 2 nT/m error due to movements in the Earth’s field and finite common-mode rejection of the gradiometer.  

* Corresponding author. Tel.: +420-22435-3964; fax: +420-2333-39929. 
E-mail address: janosem@fel.cvut.cz 
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As opposed to other approaches using multiple scalar calibrations [4] or establishing the angular deviations [2, 5], 
we propose an alternative gradiometer astatization method. In comparison with [3], our approach utilizes higher-
order correction terms allowing for better astatization results.  

Nomenclature 

Gzz Gradient tensor component estimation �Bz/dz [T/m] 
Mz  Measured values of homogeneous field Bz (in engineering units) [-] 
Gcorrzz Corrected (astatized) Gzz with response to homogeneous fields suppressed [T/m] 

2. Gradiometer astatization 

For a two-sensor gradiometer with base d, with the two sensor readings MZ1 a MZ2 and sensitivities (scale constants) 
SZ1 and SZ2 [T-1], we can define the uncorrected gradient estimation GZZ  � �Bz/dz (if no astatization was used):

(1) 

We propose a method of gradiometer astatization by the use of information about the orthogonal components of 
homogeneous field sensed by the X-Y orthogonal sensor pair (MX, MY) and by the homogeneous compensation coil 
coaxial to the gradient coil (MZ). We propose that the corrected gradient GcorrZZ can be estimated as: 

(2) 

It is sufficient to know the Mx, My, Mz values in engineering units only, since the inverse sensitivities are already 
part of the coefficients k1-k6. Having a large set of calibration points similar to the calibration presented in [2] in a 
gradient-free location, thus assuming GcorrZZ=0, we get a linear system – an overestimated set of equations, 
allowing to find k1 to k6 by SVD matrix decomposition: 

(3) 

Figure 1: a) The compact gradiometer and its electronics.  b) The gradiometer head detail - Z is the main sensing direction, X and Y are the 
orthogonal directions 
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After astatization using the established k1 to k6 coefficients and the Equation 2, the gradiometer error was reduced 
from ± 50 000 nT/m to ± 50 nT/m – see Fig. 2. The residual error after astatization did not depend on orientation to 
the Earth’s field demonstrating the suitability of the algorithm. For practical use, the error is even lower for a limited 
movement of the probe.  
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Figure 2 - The gradiometer response to homogeneous field in various orientations to the Earth's field vector - before and after astatization 

Gradiometer performance 

The gradiometer with small gradiometric base cannot compete with large 1-m base systems; however it allows to 
obtain accurate gradient information about weak and near sources [1]. For example we could estimate a source of  
1.8×10-2 Am2 strength (35 cm3 magnetized iron ore piece) with 10% error in a 20-cm distance, whereas 2-points 
magnetometric method yielded a 40% error. The low gradiometer noise (1nT/m/�Hz) allowed 30-cm field detection 
distance of a 5×10-4 Am2 source, which can be e.g. a 1 cm3 chondrite [6]. Field trials of the gradiometer have been 
performed in a public park showing the feasibility of astatization: without it, the test objects (permanent magnets 
and various steel objects) could not be detected because of the parasitic response of the gradiometer – see Fig. 3. 
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Figure 3 – a): the gradiometer probe (mounted at bottom) with (D)GPS on the top. b) gradiometer response with/without astatization 
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After processing the data and DGPS position, we could map the strongest sources according to Fig. 4 – we used 
5-Hz output of the GPS and no artificial grid when scanning the scene with the device of Fig. 3a. 
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Figure 4 - Gradient field map of the search area from DGPS positions 
and probe signal showing two dipole field sources.  

Figure 5 - Stationary log of gradient signal

The gradient noise measured at a location of this kind provides valuable information. This time, the probe was kept 
fixed, and the output was logged for 2 minutes. The noise in Fig. 5 shows that astatization improves the noise floor 
of the gradiometer even when it is fixed in the Earth’s field – the raw gradiometer output still contains the large 
homogeneous noise from distant sources (DC powered subway, DC electric train traction) due to angular 
misalignments of the two gradiometer sensors. After astatization, the gradiometer noise decreased about 30×. 

Conclusion 

The presented method for compensating the gradiometer spurious sensitivity to homogeneous field was applied 
to a compact gradiometer with the help of additional outputs giving information about the three homogeneous field 
components. With a 3-cm gradiometric base, the error due to the motion in the Earth’s field decreased 1000-times 
down to ± 50 nT/m. A field trial was conducted showing feasibility of such gradiometer and we have also shown 
that even for a static position, gradiometer astatization is necessary to suppress strong field noise of distant sources – 
this could be a problem for other gradiometers relying only on gain adjustment, assuming perfect alignment of 
gradiometric probes [7]. 
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6.1.2 Simple estimation of dipole source z-distance with compact magnetic 
gradiometer 

The gradiometer described in the previous paper is used as a distance sensor. A simple 
formula is derived to obtain an estimation of the distance between a dipole and the 
gradiometer. Experiments specify limits of the method with respect to orientation and lateral 
displacement of the dipole. 
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Abstract. A compact magnetometer/gradiometer with combined homogeneous and gradient 

outputs facilitates precise measurement of both H and G values with good spatial and temporal 

coherence. By evaluating combination of both signals, it is possible to estimate distance to a 

dipole source with relatively small error and largely independent from precise knowledge of 

source strength, orientation and lateral displacement. The performance is limited primarily by 

ambient noise. With an AC-driven source, tool navigation or distance sensing is also possible. 

1. Introduction 
 

We have previously presented a compact (10-cm head size, 3-cm base) axial magnetic gradiometer 

with two ring-core fluxgate sensors and combined homogeneous feedback and gradient feedback coils 

[1]. This arrangement provides simultaneously information about the homogeneous field strength Bz 

as well as the gradient dBz/dz in one axis with minimal geometric error. Thanks to that we can utilize 

simple method of dipole source distance estimation [2, 3]. Such an information is needed e.g. for 

unexploded-ordnance-detection or mine-hunting [4]. In our method, we do not obtain the radial 

distance, but the z-, or the vertical distance to the detected object, which is one of the most important 

informations to distinguish between deep and strong sources and shallow and weak ones. Assuming 

constant background conditions (both homogeneous field H and gradient G), the vertical distance (z-

component) to a source positioned along the gradiometer axis can be estimated with relatively low 

error simply from the ratio of Hz and Gzz signals, largely independent from radial distance to the 

dipole, and its strength. If we calculate 3×Hz/Gzz, we get a figure characterizing the distance to source 

directly from one reading - not depending on its actual amplitude � this approach can be used also with 

AC-current driven coils for distance measurements or tool navigation tasks.  

 

2. Experiment 
 

The sensor was fixed in space after H and G readings in "infinity" (i.e. far from dipole source) were 

recorded as offsets for later subtraction from data. The dipole source in our case is small 

(13×4×5mm3) NdFeB permanent magnet. In the first experiment, the sensor and dipole were aligned 

on the same axis (z), with the dipole axis oriented either coaxially or perpendicularly - see figure 1 

(left). The vertical distance (z) was modified and the corresponding distance estimate from H and G 
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data was calculated. In the following experiment, the vertical (z) distance was fixed at 15 cm and 

lateral displacement (y) was modified - again, see figure 1 (left) for the geometry of the setup. 
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Figure 1. Left: the geometrical situation of dipole and sensor.  Right: the estimated distance vs. real 

(reference) distance to a dipole in coaxial or perpendicular orientation to sensor. For coaxial 

orientation, an offset must be subtracted from the estimate. Here, the lateral displacement y is 0 cm. 

 

3. Theory 

 

As was shown in [2] and several related papers, measurement of full tensor gradient and field vector 

provides information for dipole source position estimate, irrespective of dipole orientation relative to 

sensor. In [2] the source is loop antenna transmitting AC signal. In our approach, we simplified the 

setup to just combined single-axis magnetometer and gradiometer. Also the dipole in our case was 

permanent magnet within Earth's field. In spite of these limitations, we achieved reasonably good 

position estimates, albeit in limited range of distances. 

 

If we assume z- orientation of the magnetic dipole (magnetic moment mz), we can write for the z-

component of the magnetic field Bz: 
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The Gzz gradient can be then written as: 
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By dividing Bz and Gzz, we get finally: 
zz

z

G

B
z ´-= 3                                        (3) 

This result is consistent with the tensor representation presented in [2]. 

 

4. Results and discussion 

 

As shown in figure 1 (right), the estimated distance from 3×H/G matches with reference distance quite 

well in 15-30 cm range. The estimate for coaxial case contained an unwelcome position offset (about 

7cm), but after subtraction thereof, the error is 1cm or less. The data from perpendicular case are more 

influenced by noise due to lower dipole signal strength in 2nd Gauss position.  
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In the second measurement, the influence of lateral displacement (along y-axis) on distance (z) 

estimate was examined. The dependence of homogeneous field Hz and Gzz gradient on y-axis position 

of dipole is shown in figure 2, again for coaxial and perpendicular orientation of dipole. The position 

y = 0 corresponds to alignment of dipole with sensor from first experiment. From the same data, 

position estimates are again calculated. The quality of estimated z-distance quickly deteriorates by 

more than 100 % - see figure 3 and figure 4, but for small lateral displacements (< 5 cm) the error is 

quite acceptably low. Dashed line represents true z-distance 15 cm. Note that in figure 3, the estimated 

distance z is not corrected for offset. 
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Figure 2. The measured homogeneous magnetic field and gradient in coaxial (left) and perpendicular 

(right) orientation of dipole to sensor vs. lateral displacement along y-axis. 
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Figure 3. Coaxial orientation. The estimate of distance z vs. lateral displacement along y-axis. In 

limited range of lateral displacements (< 5cm), the estimate error is small (< 5cm after offset removal). 

The inset shows overall response for large lateral displacements (detail in main graph). 
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Figure 4. Perpendicular orientation. The estimate of distance z vs. lateral displacement along y-axis. 

In limited range of lateral displacements (1 - 7cm), the estimate error is small (< 3cm). 

 

5. Conclusions 
 

We conducted several experiments with dipole distance estimation in 15 cm to 30 cm distance. After 

offset subtraction, the distance estimation error in our experiment with small NdFeB source was 

< 5 cm for coaxial case and < 3 cm for perpendicular case in 15 cm to 30 cm dipole-to-gradiometer 

distance. Moreover, the z-axis distance estimation was largely independent (within some limits) to 

axial misalignment (lateral shift) between the source and gradiometer axes. The performance was 

mainly limited by ambient noise, which was about 100× larger that our gradiometer noise 

(1 nT/m/�Hz). AC-driven coils experiment was also conducted showing feasibility of the proposed 

algorithm e.g. for tool navigation purposes or for distance sensors. 
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6.1.3 The Effect of Sensor Size on Axial Gradiometer Performance 

This paper deals with the error of the gradient estimation, when a gradiometer is close to the 
source of a dipole magnetic field. Different values are therefore obtained by measuring with 
sensors of different size and construction. Experimental comparison of AMR and fluxgate 
sensors is described. Theoretical models for ringcore, racetrack and rectangular sensors are 
provided and verified. 
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The Effect of Sensor Size on Axial Gradiometer Performance
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In this paper, we examine the influence of sensor size, sensor spacing (gradiometric base), and distance from dipole source on the
performance of a single-axis gradiometer positioned along the dipole axis. The case of a finite base gradiometer with ideal sensors is
considered, then the influence of finite-size sensing elements is modeled, and finally, a comparison with experimental results obtained
with two ring-core and race-track fluxgates and two anisotropic magnetoresistors (AMRs) is evaluated. Some of the effects found
may be counterintuitive, and especially in close proximity of the dipole source, the gradient cannot be further modeled by simplified
uniaxial approximation because of the active element size. Full Biot–Savart field model was considered in those cases.

Index Terms— Gradient, magnetic field measurement, magnetic sensors, noise, resolution.

I. INTRODUCTION

T
HE gradiometric arrangement of measurement setup is
especially suitable for measuring magnetic field from

relatively close sources in presence of relatively large homoge-
nous background field. Axial magnetic gradiometers are usu-
ally built with uniaxial magnetic sensors aligned in one
direction [1]. The sensor type depends on application and
precision required—sensitive room-temperature gradiometers
use fluxgate or AMR sensors [2]. They can be used for
detection of buried ferromagnetic objects, magnetic markers,
biomagnetism [3]–[7], and so on.

In our case, the gradient (ideally a point-defined quantity)
is approximated from the readings of two homogenous field
sensors separated by a known distance (other arrangements
with truly gradiometric sensors are not considered here). When
the gradient base and sensor size are comparable with the
source distance, and moreover when the source is dipolar
and weak—e.g., when detecting the response of magnetic
nanoparticles—the situation is more complicated.

In this paper, we examine the influence of sensor size, sensor
spacing (gradiometric base), and distance from a dipole source
on the performance of a single-axis gradiometer positioned
along the dipole axis. A similar study was done by finite-
element modeling in [5] for the determination of point spread
function for the horizontal displacement from a dipolar source.

With finite-size sensing elements (ring and race-track core
for fluxgate, stripe structure for AMR), some averaging of
the measured field along the structure can be expected, how-
ever this effect has not been widely discussed in literature.
We modeled the influence of finite-size sensing elements for
the case of different sensor geometries, and finally evaluated
the experimental results obtained with the real sensors.

II. INITIAL EXPERIMENT

Let us consider the following measurement setup.
The dipole source is located in a distance—here called
liftoff L—from the first gradiometer probe consisting of

Manuscript received June 13, 2014; revised August 25, 2014; accepted
September 15, 2014. Date of current version January 26, 2015. Corresponding
author: M. Janošek (e-mail: janosem@fel.cvut.cz).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2014.2359960

Fig. 1. Fluxgate gradiometer (AMR sensor shown for comparison).

sensor 1 and 2 (Fig. 1). We have used two fluxgate sensors
(depicted) or AMR sensors with 5 mm × 5 mm chip size
in an unshielded laboratory environment. The dipole moment
of the 5 mm diameter, three-turns coil was 5.2× 10−6 Am2.
The liftoff of the gradiometer was 10, 20, and 60 mm,
respectively, and the second sensor was moved to increase
the gradient base d .

The SNR was calculated from the two sensor readings and
respective gradiometer noise without the signal (70 Hz was
used for measurements in a narrow 1 Hz bandwidth; SNR is
thus higher than for broadband measurements)

SNR = 20 log
(U1G1 −U2G2)
√

(

N2
1 + N2

2

)

(1)

where U1 and U2 are the sensor output voltages, G1 and
G2 are the respective sensor gains, and N1 and N2 are the
(uncorrelated) magnetic noise output by the sensors.

In Fig. 2 we can see that to obtain the same SNR of∼45 dB,
either an AMR gradiometer with a 25 mm base and 20 mm
liftoff or a fluxgate gradiometer with the same base, however,
with 10 mm liftoff only can be used. For the largest 60 mm
liftoff, the higher AMR sensor noise causes a decrease in SNR.
A detailed view on the data from Fig. 2 is shown in Fig. 3—the
relative change in SNR from its saturation value is shown, as
the gradiometric base is decreased. The 10 and 20 mm liftoffs
are shown; the 60 mm liftoff was not plotted as the data were
already affected by AMR sensor noise.

The decrease in SNR when decreasing the gradiometric base
is almost 5 dB if the AMR gradiometer is very close toward
the dipole source (due to relatively close sensor readings).

0018-9464 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Gradiometer SNR for L = 10, 20, and 60 mm.

Fig. 3. SNR difference from the saturation SNR (Fig. 2) versus gradient
base d.

Fig. 4. Dipolar field and sensor size—illustration of the size effect—three
different sensors (AMR, ring-core, and race-track fluxgate) have their sensing
elements exposed to a spatially variable magnetic field on a different scale.

However, for the same gradiometric bases and liftoffs, the flux-
gate gradiometer shows faster decrease in SNR than AMRs.
This would indicate that there is an averaging-like effect that
depends on sensor size.

III. SENSOR GEOMETRY EFFECT

The effect of gradiometer base length on gradiometer read-
ing was already discussed in [1]. However, for small distances
from the source, the real sensing element geometries of the
respective sensors should be considered. The sensor active

Fig. 5. Active element dimensions. (a) KMZ51. (b) Ringcore fluxgate.
(c) Race-track fluxgate (not to scale).

Fig. 6. Ringcore active element with notation considered in the calculations.

length impacts its output reading when related to an ideally
small (short) sensor located at the same central point—a
demonstration is shown in Fig. 4 for a dipolar field. It is clear
that the AMR sensor will have its reading closer to reality
than the fluxgate sensor with a wide magnetic core and this
might affect the gradiometer reading and performance.

We estimated from the disassembled package that the AMR
KMZ 51 sensor has its internal sensing structure 1.3 mm long
and 0.6 mm wide [Fig. 5(a)]. Our ring-core fluxgate has its
core with a mean diameter of 20 mm fully covered by the
22 mm wide combined pickup-compensation coil [Fig. 5(b)].
The race-track fluxgate [Fig. 5(c)] has its longitudinal branches
20 mm long and the mean racetrack width is 8 mm.

If we consider a magnetic field sensor with a uniform
pickup coil or a uniform sensing structure across its magnetic
element (the case of fluxgate and AMR), its field response
is affected by the mean value of the response across the
magnetic sensing elements. The high-permeability magnetic
material does not flatten the magnetic field profile as it was
shown with the so-called single-core fluxgate gradiometers
[7], where the field profile across the magnetic core is used
for gradiometer operation. We also assume that the sensor is
feedback compensated, which is a standard technique, thus its
demagnetization factor [8] further affecting its gain has not to
be considered since it works as zero detector in the loop.

The situation of the fluxgate ring core in a dipolar field is
shown in Fig. 6. The core geometry has been simplified to a
circle with mean radius R, with its lower z-coordinate A and
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upper A+2R. Its effective sensitivity is then a function of the
distance z = A + ξ from the magnetic dipole.

The magnetic field component in z-direction is from
the Biot–Savart law, a function of both the z-coordinate and
radial distance r

BZ = M
µ0

4π

[

3z2

r5
−

1

r3

]

. (2)

Let us define the sensitivity function b assuming the inte-
gration path between A and A + 2R (Fig. 6) with an
increment of ξ

b =
√

R2 − [A+ R − (A + ξ)]2 =
√

R2 − (A + R − z)2.

(3)

We can also write for the radial distance r

r =
√

b2 + z2. (4)

We can then express (2) describing the z field component at
each point across the ring half-circumference (the second half
is not considered due to fluxgate sensor symmetry)

BZ = M
µ0

4π

{

3z2

[b2 + z2]
5
2

−
1

[b2 + z2]
3
2

}

. (5)

Finally, the spatial integral of the measured field across the
sensing element length can be expressed by integrating the
product of the two functions (3) and (5)

∫

Bring =

A+2R
∫

A

b(z) · Bz(z) · dz. (6)

If we assume that the sensor works in a feedback loop and
that the feedback coil also fully covers the respective sensing
element (Fig. 5), we can express the spatial average flux
density, which is compensated by the feedback field (created
by feedback coil) in a closed-loop operation, assuming that the
feedback field is homogeneous. We obtain it by dividing (6)
with π R2/2, which is the result of the integral (6) if the sensor
would be exposed to a unit, homogeneous field (Bz = 1)

Bring =
2

π · R2

A+2R
∫

A

b(z) · Bz(z) · dz [T ]. (7)

For other sensor geometries, the situation would be analog-
ical and the formalism of Fig. 6 can be used. For a race-track
sensor, if we assume only its longitudinal branches with a unit
sensitivity function, the resulting feedback field is

Brace =
1

2R

A+2R
∫

A

1 · Bz(z) · dz. (8)

The values of Bring and Brace were solved numerically with
Riemann sums for 5000 elements evenly spaced across the
2R distance.

For thin and long cores (i.e., Vacquier fluxgate) with the
length S = 2R and origin A as in Fig. 6, the calculation can

Fig. 7. Modeled response of the three sensors for different distances from
dipole-field source.

Fig. 8. Measured response of the three different sensors as a function of the
distance from dipole-field source.

be simplified omitting the correction on b. Assuming again
unit sensitivity per length element, we can directly solve

Blong =
1

S

µ0

4π
M

A+S
∫

A

1

z3 · 1 · dz =
µ0

4π S
M A+S

A

[

−
1

2z2

]

(9)

Blong =
1

S

µ0

4π
M

2AS + S2

2A2(A + S)2
. (10)

The KMZ51 response was modeled using this equation not
considering the negligible sensor width.

IV. MODEL VERIFICATION

To support the theory presented above, an experiment was
arranged with the three above sensors using a 20 mm long
solenoid creating a 7 Hz ac field. A sliding holder for the
fluxgate and AMR sensors was mounted in the solenoid axis.
The solenoid response was modeled to verify its character—at
the lowest distance of 40 mm, the field was dipolar. The output
of the two respective sensors has been evaluated with a fast
Fourier transform spectrum analyzer. The gradiometric base
d was 28, 31, and 48 mm, respectively. For fluxgate sensors,
this resulted in sensor separation of 0, 3, and 20 mm, which
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Fig. 9. The modeled 48 mm gradiometer error—data from simulation
compared with an ideal 48 mm base gradiometer output.

Fig. 10. The same comparison as in Fig. 9—measured data.

is a distance short enough to cause mutual influencing of the
sensor feedback fields [1]. The fluxgate sensor gains were thus
calibrated for each separation independently—their gain values
differed by 4.3% and 3% for 0 and 3 mm separations compared
with the 20 mm one. The AMR sensors due to their small size
and thus larger separation for the same gradiometric base did
not exhibit this error.

To confirm the proposed model, we have done following
comparison. First, the theoretical and measured field values
by the respective sensors were compared when measuring
a dipole-field source with increasing distance to the sensor
center (L+S/2) (Figs. 7 and 8). The response was normalized
in both cases to the output of a theoretical, infinitely small
sensor or the AMR in real case. From the two figures, it can
be seen that proposed model agrees well with the measured
data.

We have done the same also for a gradiometer. Fig. 9 shows
the theoretical gradiometer response, as was calculated for
the gradient base of 48 mm, in dependence on the distance
from the dipole source (from the gradiometric base center).

The figure displays the error compared with an ideal value
(if the gradiometer would have infinitely small sensors).

The measured data shown in Fig. 10 correspond well to
the theoretical values in the case of the racetrack gradiometer.
We see that the AMR gradiometer with a 48 mm base is well
within ±5% measurement error, the ringcore gradiometer
measures lower values when decreasing the distance, however,
the racetrack gradiometer with the same base measures up to
20% more for the same close distances. The AMR gradiometer
and ringcore fluxgate gradiometer errors, however, appear
to be comparable with the measurement precision so their
difference is not as clear as for the racetrack gradiometer. In
addition, a systematic error due to mutual axial misalignment
cannot be excluded.

V. CONCLUSION

We have shown that if a feedback-operated magnetic field
sensor used in a gradiometer has comparable size with the
gradiometric base and also the distance from the dipolar
field source, several non-intuitive effects appear. The SNR of
the gradiometer is shown to decrease when the gradiometric
base is decreased or the gradiometer center is moved toward
the dipole. Although the racetrack fluxgate might have the
same length as the ring-core sensor, the response of the two
gradiometers having same gradient base and being placed in
identical positions was different—the racetrack gradiometer
measured a larger value by 20%, when the distance from
dipole source was approximately equal to the gradiometric
base (48 mm). The AMR gradiometer was measuring close
to theory. We have proposed a theoretical approach to explain
this phenomenon by using the Biot–Savart law and integration
across the respective sensing element—the response of each
sensor was affected by its sensitivity function across the
sensing element and by the non-uniform magnetic dipole field.
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6.1.4 Effects of Core Dimensions and Manufacturing Procedure on Fluxgate 
Noise 

This paper deals with the design of low noise fluxgate sensors with a tape-wound ring core. 
The parameters affecting the sensor noise are the sensor diameter and thickness of the tape 
layer. The bending stress increases the noise of sensors with a low diameter due to 
magnetostriction effects. The dependence of sensor noise on the tape layer thickness relates to 
the demagnetization factor. 
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♥❡❛❧✐♥❣ ❬✸❪✱ ♦5 ❛/ ❧❡❛3/ ❜② ♣❛5/✐❛❧❧② 5❡❧❡❛3✐♥❣ /❤❡ 3/5❡33❡3

∗
❝♦""❡$♣♦♥❞✐♥❣ ❛✉,❤♦"❀ ❡✲♠❛✐❧✿ ❥❛♥♦$❡♠❅❢❡❧✳❝✈✉.✳❝③

❞✉5✐♥❣ ✜❡❧❞ ❛♥♥❡❛❧✐♥❣ ♦❢ /❤❡ /❛♣❡✲✇♦✉♥❞ ❝♦5❡ ✐♥ ✐/3 ✜♥❛❧

❢♦5♠ ❬✹❪✳

❆ ❞✐✛❡5❡♥/ 3✐/✉❛/✐♦♥ ❡①✐3/3 ❢♦5 ✢❛/ ❝♦5❡3 ✇❡/✲❡/❝❤❡❞

❢5♦♠ ❛ ✇✐❞❡ ❛♠♦5♣❤♦✉3 /❛♣❡✳ ■♥ /❤✐3 ❝❛3❡ /❤❡ ❜❡♥❞✲

✐♥❣ 3/5❡33 ❞♦❡3 ♥♦/ ❛✛❡❝/3 /❤❡ ♣5♦❜❡ ♥♦✐3❡✱ ❤♦✇❡✈❡5 /❤❡

3♠♦♦/❤♥❡33 ♦❢ ❡/❝❤✐♥❣ ♣5♦❝❡33 ❛♥❞ ♠❛✐♥❧② /❤❡ ❛5/ ♦❢ ✜①✲

✐♥❣ /❤❡ ❝♦5❡ /♦ /❤❡ ❜♦❜❜✐♥ ✐♥✢✉❡♥❝❡ /❤❡ ♥♦✐3❡✳ ❋❧✉①✲

❣❛/❡ ♣5♦❜❡3 ✇✐/❤ ❡/❝❤❡❞ 5❛❝❡✲/5❛❝❦ ❝♦5❡3 ✇❡5❡ ♣5❡✈✐♦✉3❧②

3/✉❞✐❡❞ ✐♥ ♣5✐♥/❡❞✲❝✐5❝✉✐/✲❜♦❛5❞ ✭D❈❇✮ 3❡♥3♦53❀ ❤♦✇❡✈❡5

/❤❡ ✐♥/❡5♥❛❧ 3/5❡33❡3 ❞✉❡ /♦ ❡♠❜❡❞❞✐♥❣ /❤❡ ❝♦5❡ ✐♥ /❤❡

D❈❇ ❧❛♠✐♥❛/❡ ❛✛❡❝/❡❞ ♣5♦❜❡ ♣❡5❢♦5♠❛♥❝❡ ❬✺❪✳ ■♥ ❬✹❪ /❤❡

❛✉/❤♦53 ❤❛✈❡ 3❤♦✇♥ ♥♦✐3❡ ✜❣✉5❡ ❛❧3♦ ❢♦5 /❤❡ 5❛❝❡✲/5❛❝❦

❝♦5❡ ✇❤✐❝❤ ✇❛3 ♥♦/ ❡♠❜❡❞❞❡❞ ✐♥ /❤❡ ❧❛♠✐♥❛/❡✱ ❤♦✇❡✈❡5

✐/3 ♣❡5❢♦5♠❛♥❝❡ ✇❛3 ❧✐♠✐/❡❞ ❜② ❡①❝✐/❛/✐♦♥ ❡❧❡❝/5♦♥✐❝3✳ ■♥

/❤✐3 3/✉❞②✱ /❤❡ ✇♦5❦✐♥❣ ❝♦♥❞✐/✐♦♥3 ✇❡5❡ ❛❧❧ /❤❡ 3❛♠❡ ❢♦5

❛❧❧ 3/✉❞✐❡❞ 3❡♥3♦53 ✐♥ ♦5❞❡5 /♦ ❢❛❝✐❧✐/❛/❡ /❤❡ ❝♦♠♣❛5✐3♦♥

♦❢ 5❡3✉❧/3✳

✷✳ ▼❛&❡'✐❛❧ ❛♥❞ ❣❡♦♠❡&'② 4❡❧❡❝&✐♦♥

■♥ /❤✐3 ✇♦5❦✱ ❱✐/5♦❦♦✈ ✽✶✶✻ ✕ ❛ ❈♦✲❈5✲❋❡✲❇✲❙✐ ♠❡/❛❧✲

❧✐❝ ❣❧❛33 /❛♣❡ ✇❛3 ✉3❡❞✱ ✇✐/❤ ❛♥ ❛✈❡5❛❣❡ /❤✐❝❦♥❡33 ♦❢

✷✵ µ♠ ❛♥❞ ✇✐/❤ /❛♣❡ ✇✐❞/❤3 ♦❢ ✷✳✻ ♠♠ ✭✇♦✉♥❞ ❝♦5❡3✮

❛♥❞ ✷✵ ♠♠ ✭❡/❝❤❡❞ 5❛❝❡✲/5❛❝❦3✮✳

❋✐❣✳ ✷✳ B✲H ❧♦♦♣) ♦❢ +❤❡ ✸ ❝♦!❡ ❣❡♦♠❡+!✐❡)✳

✭❚❊▼D✲✲✽✽✽✷✮



❊✛❡❝$% ♦❢ ❈♦)❡ ❉✐♠❡♥%✐♦♥% ❛♥❞ ▼❛♥✉❢❛❝$✉)✐♥❣ 3)♦❝❡❞✉)❡✳ ✳ ✳ ❚❊▼#✲✲✽✽✽✶

❋♦) *❤❡ *❛♣❡✲✇♦✉♥❞ ❝♦)❡4✱ *❤❡ ♠❛❣♥❡*♦❡❧❛4*✐❝ ❡✛❡❝*4

❝❛♥ ❜❡ 4❡❡♥ ❜② ✉4✐♥❣ *❤❡ 4❛♠❡ ♠❛*❡)✐❛❧ ❢♦) ✶✷ ♠♠ ❛♥❞

✺✵ ♠♠ ❞✐❛♠❡*❡) ✭❋✐❣✳ ✷✮✳ ❋)♦♠ *❤❡ B✲H ❧♦♦♣4 ✐* ✐4 ❡✈✐✲

❞❡♥*✱ *❤❛* ❡✈❡♥ ❢♦) *❤❡4❡ *❛♣❡4 ✇✐*❤ ♠❛❣♥❡*♦4*)✐❝*✐♦♥ ♦❢

∼ 1× 10
−7
*❤✐4 ❡✛❡❝* ✐4 ♣)❡4❡♥*✳

❆4 ❢♦) *❤❡ ✷✳✻ ♠♠ *❛♣❡ ✇✐❞*❤✱ *❤❡ ♠❛*❡)✐❛❧ ❞✐❞

♥♦* 4❤♦✇ ❛♥② ❛♣♣)❡❝✐❛❜❧❡ ♠❛❝)♦4❝♦♣✐❝ ❤❡*❡)♦❣❡♥❡✐*②✱

✇❤✐❝❤ ♦*❤❡)✇✐4❡ ❝❛✉4❡4 ♣♦♦)❧② )❡♣)♦❞✉❝✐❜❧❡ ✐♥❤♦♠♦❣❡✲

♥❡♦✉4 ♠❛❣♥❡*✐❝ ❛♥✐4♦*)♦♣②✱ ❜)♦✉❣❤* ❛❜♦✉* ❜② ♠❛❝)♦✲

4❝♦♣✐❝ 4*)❡44 ❜❡*✇❡❡♥ 4✉)❢❛❝❡4 ❛♥❞ ✐♥*❡)✐♦) ♦❢ ♠❛♥② ❋❡✲

❜❛4❡❞ )✐❜❜♦♥4 ✭❡✳❣✳ ❋✐♥❡♠❡*4✮✳ ❚❤❡ ❛❜4❡♥❝❡ ♦❢ *❤✐4 ❤❡*✲

❡)♦❣❡♥❡✐*② ✐♥ ❈♦✲❈)✲❋❡✲❇✲❙✐ ❤❛4 ❜❡❡♥ ✈❡)✐✜❡❞ ❜② ❝♦♠✲

♣❛)✐♥❣ ❤②4*❡)❡4✐4 ❧♦♦♣4 ♣)✐♦) *♦ ❛♥❞ ❛❢*❡) 4✉)❢❛❝❡4 )❡✲

♠♦✈❛❧ ✇❤❡♥ *❤❡ )✐❜❜♦♥ *❤✐❝❦♥❡44 ✇❛4 )❡❞✉❝❡❞ ❜② 10÷15✪

✭2÷ 3 µ♠✮✳
■♥ *❤❡ ✷✵ ♠♠ *❛♣❡ ❤♦✇❡✈❡)✱ *❤❡ ❤❡*❡)♦❣❡♥❡✐*② ✇❛4

♣)❡4❡♥* ❜✉* 4*✐❧❧ ❛❝❝❡♣*❛❜❧❡✳ ❚❤❡ ❞✐✛❡)❡♥* B✲H ❧♦♦♣

4❤❛♣❡ ♦❢ *❤❡ )❛❝❡✲*)❛❝❦ ✐♥ *❤❡ ❝♦♠♣❛)✐4♦♥ ✐4 ❡✈✐❞❡♥* ❜✉*

♥♦* ❝❛✉4❡❞ ❜② *❤❡ *❛♣❡ ♠❛❝)♦4❝♦♣✐❝ ❤❡*❡)♦❣❡♥❡✐*②✿ *❤❡

❡①♣❧❛♥❛*✐♦♥ ❧✐❡4 ✐♥ *❤❡ ❛4✲❝❛4* ❛♥✐4♦*)♦♣② ♦❢ *❤❡ ❛♠♦)✲

♣❤♦✉4 *❛♣❡ ❞✉❡ *♦ *❤❡ ♠❛♥✉❢❛❝*✉)✐♥❣ ♣)♦❝❡44✱ ✇❤✐❝❤ ✐4

✐♥ *❤❡ ❝❛4❡ ♦❢ ❧♦♥❣✐*✉❞✐♥❛❧❧② ❡*❝❤❡❞ )❛❝❡✲*)❛❝❦4 ❝♦♠❜✐♥❡❞

✐♥ ❜♦*❤ ♦❢ *❤❡ ♣❡)♣❡♥❞✐❝✉❧❛) ❜)❛♥❝❤❡4 ♦❢ *❤❡ )❛❝❡✲*)❛❝❦✳

❆♥ ❡✈✐❞❡♥❝❡ ❢♦) *❤✐4 ❜❡❤❛✈✐♦) ✇❛4 4❤♦✇♥ ✐♥ *❤❡ ▼❖❑❊

♣✐❝*✉)❡4 ✐♥ ❬✹❪✳

✹✳ ◆♦✐%❡ ♠❡❛%✉*❡♠❡♥,% ✕ %❡,✉♣ ❛♥❞ *❡%✉❧,%

❚❤❡ 4❡*✉♣ ♦❢ ❡❧❡❝*)♦♥✐❝4 ❛♥❞ ♦♣❡)❛*✐♥❣ ❝♦♥❞✐*✐♦♥4 ♦❢ *❤❡

✢✉①❣❛*❡ ♣)♦❜❡ ✇❡)❡ ❛❧♠♦4* ✐❞❡♥*✐❝❛❧ *♦ *❤❛* ✉4❡❞ ✐♥ ❬✹❪✳

❚❤❡ )❡4✉❧*✐♥❣ ♥♦✐4❡ 4♣❡❝*)❛ ❢♦) ✈❛)✐♦✉4 *❛♣❡ *❤✐❝❦♥❡44❡4

✐♥ *❤❡ ❝❛4❡ ♦❢ ✺✵ ♠♠ )✐♥❣❝♦)❡4 ♦❜*❛✐♥❡❞ ✐♥ ❛ ✻✲❧❛②❡) ♠❛❣✲

♥❡*✐❝ 4❤✐❡❧❞✐♥❣ ❝❛♥✱ ❛)❡ 4❤♦✇♥ ✐♥ ❋✐❣✳ ✸✳ ❚♦ ❞❡❝)❡❛4❡ *❤❡

4*❛*✐4*✐❝❛❧ ❡))♦)✱ ❛♥ ✐♥*❡❣)❛❧ ✈❛❧✉❡ ♦❢ *❤❡ ♥♦✐4❡ ✐♥ *❤❡ ❢)❡✲

W✉❡♥❝② ❜❛♥❞ ♦❢ ✵✳✶ *♦ ✶✵ ❍③ ✇❛4 ❝❛❧❝✉❧❛*❡❞✳

❋✐❣✳ ✸✳ ◆♦✐'❡ '♣❡❝+,❛ ♦❢ +❤❡ ✺✵ ♠♠ ,✐♥❣❝♦,❡ '❡♥'♦,'✳

❚❤❡ 4♣❡❝*)✉♠ ❝❧❡❛)❧② ♠❛✐♥*❛✐♥4 1/f ❜❡❤❛✈✐♦✉) ✇✐*❤

❧♦✇♣❛44 ✜❧*❡)✐♥❣ ✈✐4✐❜❧❡ ❢♦) ❢)❡W✉❡♥❝✐❡4 ❛❜♦✈❡ ✶✷ ❍③✳ ❚❤❡

♠❡❛4✉)✐♥❣ ♣)♦❝❡❞✉)❡ ✇❛4 ❞♦♥❡ ❢♦) *❤❡ ✺✵ ♠♠ ❝♦)❡4 ✐♥

*✇♦ *)❛❝❦4✿ ✹ ❝♦)❡4 ✇✐*❤ ❞✐✛❡)❡♥* ♥✉♠❜❡) ♦❢ *✉)♥4 ✇❡)❡

♣)♦❞✉❝❡❞ ❛♥❞ ❛❧4♦ ♦♥❡ ❝♦)❡ ✇❛4 4❡W✉❡♥*✐❛❧❧② )❡✲✇♦✉♥❞
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*♦)4 ❛)❡ 4❤♦✇♥ ✭✺ ❛♥❞ ✶✵ *✉)♥4✮✳ ❆❧*❤♦✉❣❤ ♥♦ ❞❡♣❡♥❞❡♥❝❡
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♦❢ *❤❡ ❜❡♥❞✐♥❣ 4*)❡44 ❛♥❞ )❡❧❛*✐✈❡❧② ❧♦✇ ❞❡♠❛❣♥❡*✐③✐♥❣

❢❛❝*♦) )❡4✉❧*❡❞ ✐♥ ❛ ♥♦✐4❡ ❝♦♠♣❛)❛❜❧❡ *♦ *❤❛* ♦❢ ✺✵ ♠♠

✇♦✉♥❞ ❝♦)❡4✳
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