333 research outputs found

    An effective iterated greedy algorithm for the mixed no-idle flowshop scheduling problem

    Full text link
    In the no-idle flowshop, machines cannot be idle after finishing one job and before starting the next one. Therefore, start times of jobs must be delayed to guarantee this constraint. In practice machines show this behavior as it might be technically unfeasible or uneconomical to stop a machine in between jobs. This has important ramifications in the modern industry including fiber glass processing, foundries, production of integrated circuits and the steel making industry, among others. However, to assume that all machines in the shop have this no-idle constraint is not realistic. To the best of our knowledge, this is the first paper to study the mixed no-idle extension where only some machines have the no-idle constraint. We present a mixed integer programming model for this new problem and the equations to calculate the makespan. We also propose a set of formulas to accelerate the calculation of insertions that is used both in heuristics as well as in the local search procedures. An effective iterated greedy (IG) algorithm is proposed. We use an NEH-based heuristic to construct a high quality initial solution. A local search using the proposed accelerations is employed to emphasize intensification and exploration in the IG. A new destruction and construction procedure is also shown. To evaluate the proposed algorithm, we present several adaptations of other well-known and recent metaheuristics for the problem and conduct a comprehensive set of computational and statistical experiments with a total of 1750 instances. The results show that the proposed IG algorithm outperforms existing methods in the no-idle and in the mixed no-idle scenarios by a significant margin.Quan-Ke Pan is partially supported by the National Science Foundation of China 61174187, Program for New Century Excellent Talents in University (NCET-13-0106), Science Foundation of Liaoning Province in China (2013020016), Basic scientific research foundation of Northeast University under Grant N110208001, Starting foundation of Northeast University under Grant 29321006, and Shandong Province Key Laboratory of Intelligent Information Processing and Network Security (Liaocheng University). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "RESULT - Realistic Extended Scheduling Using Light Techniques" with reference DPI2012-36243-C02-01 co-financed by the European Union and FEDER funds and by the Universitat Politecnica de Valencia, for the project MRPIV with reference PAID/2012/202.Pan, Q.; Ruiz García, R. (2014). An effective iterated greedy algorithm for the mixed no-idle flowshop scheduling problem. Omega. 44:41-50. https://doi.org/10.1016/j.omega.2013.10.002S41504

    An efficient hybrid iterated local search algorithm for the total tardiness blocking flow shop problem

    Get PDF
    This paper deals with the blocking flow shop problem and proposes an Iterated Local Search (ILS) procedure combined with a variable neighbourhood search (VNS) for the total tardiness minimization. The proposed ILS makes use of a NEH-based procedure to generate the initial solution, uses a local search to intensify the exploration which combines the insertion and swap neighbourhood and uses a perturbation mechanism that applies, d times, three neighbourhood operators to the current solution to diversify the search. The computational evaluation has shown that the insertion neighbourhood is more effective than the swap one, but it also has shown that the combination of both is a good strategy to improve the obtained solutions. Finally, the comparison of the ILS with an Iterated greedy algorithm and with a greedy randomized adaptive search procedure has revealed its good performance.Preprin

    An efficient discrete artificial bee colony algorithm for the blocking flow shop problem with total flowtime minimization

    Get PDF
    This paper presents a high performing Discrete Artificial Bee Colony algorithm for the blocking flow shop problem with flow time criterion. To develop the proposed algorithm, we considered four strategies for the food source phase and two strategies for each of the three remaining phases (employed bees, onlookers and scouts). One of the strategies tested in the food source phase and one implemented in the employed bees phase are new. Both have been proved to be very effective for the problem at hand. The initialization scheme named HPF2(¿, µ) in particular, which is used to construct the initial food sources, is shown in the computational evaluation to be one of the main procedures that allow the DABC_RCT to obtain good solutions for this problem. To find the best configuration of the algorithm, we used design of experiments (DOE). This technique has been used extensively in the literature to calibrate the parameters of the algorithms but not to select its configuration. Comparing it with other algorithms proposed for this problem in the literature demonstrates the effectiveness and superiority of the DABC_RCTPeer ReviewedPostprint (author’s final draft

    A single-machine scheduling problem with multiple unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach

    Get PDF
    AbstractThis research focuses on a scheduling problem with multiple unavailability periods and distinct due dates. The objective is to minimize the sum of maximum earliness and tardiness of jobs. In order to optimize the problem exactly a mathematical model is proposed. However due to computational difficulties for large instances of the considered problem a modified variable neighborhood search (VNS) is developed. In basic VNS, the searching process to achieve to global optimum or near global optimum solution is totally random, and it is known as one of the weaknesses of this algorithm. To tackle this weakness, a VNS algorithm is combined with a knowledge module. In the proposed VNS, knowledge module extracts the knowledge of good solution and save them in memory and feed it back to the algorithm during the search process. Computational results show that the proposed algorithm is efficient and effective

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment Using Hybrid GA-PSO Algorithm

    Get PDF
    corecore