
 Eindhoven University of Technology

MASTER

Solving a multi-objective optimization scheduling problem in a high mix low volume jobshop

Weijers, Eric T.

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e17eb050-5019-461b-bd7d-7915b48c04f7

Department of Industrial Engineering and Innovation Sciences
Operations Planning Accounting and Control Research Group

MSc. Thesis

Solving a multi-objective optimization scheduling
problem in a high mix low volume jobshop

By
E.T. (Eric) Weijers, 0893663

Supervisors:
dr. C. Fecarotti, TU/e
dr. A.E. Akçay, TU/e
dr. Q.V. Dang, TU/e

F. van Wylick, Nooteboom trailers BV
C. Uijlenbroek, Nooteboom trailers BV

Eindhoven, February 2, 2023

Graduation Project Nooteboom Trailers BV TU/e

Contents
1 Introduction 2

2 Literature review 4

3 Problem description 9
3.1 Definition and processing of batches . 10
3.2 Processing of jobs . 11

4 Mathematical formulation 12
4.1 Linearize model . 14

5 Solution approach 16
5.1 GDE3 and its control parameters . 16
5.2 Parameter optimization . 17
5.3 Performance measures . 18
5.4 GDE3 implementation . 18
5.5 Decision space normalization . 20

6 Numerical study: application to the Nooteboom jobshop 22
6.1 Data set . 22
6.2 Current policy . 23
6.3 Results parameter optimization . 23
6.4 Results optimization with GDE3 . 25
6.5 Comparison of GDE3 with benchmarks . 27
6.6 Results safety factor batch area . 29

7 Managerial insights 31

8 Conclusions 32

References 39

A Appendix 40
A Discrete event simulation . 40
B Parameter optimization . 41
C Solving problem instances with GDE3 . 43

1

Graduation Project Nooteboom Trailers BV TU/e

1 Introduction
Nowadays, a growing number of Small, Medium and Micro enterprises (SMMEs) is mov-

ing towards the implementation of smart manufacturing and industry 4.0 to improve their
performance. Industry 4.0 entails transforming existing manufacturing systems to Smart Man-
ufacturing Systems (SMS) through the support of automation, data exchanges, cyber-physical
systems (CPS), cloud computing, robotics, big data, artificial intelligence, internet of things
(IoT) and semi-autonomous industrial techniques [1]. In a research amongst 79 companies of
different sizes, the authors in [2] observe significant improvements in the performances of com-
panies implementing industry 4.0 components. In particular, increased production, increased
productivity, decrease in costs, increase in capacity utilization rates, increase in production
speed and increase in both product quality and the quality of workplace safety for employees
were among the most important improvements. The authors in [3], based on their research on
SMMEs, conclude that the the same improvements can be achieved for SMMEs.

While industry is moving towards smart manufacturing and industry 4.0, customer demand
is shifting towards more customized products, thus causing product variety to increase. As
a result, manufacturing companies are shifting their production strategy from make-to-stock
(MTS) to make-to-order (MTO) production [4]. MTO production implies a high-mix, low-
volume production environment. A manufacturing system capable of coping with such an
environment is a jobshop. A jobshop is typically characterized by a highly diverse product
mix. Each product follows its own manufacturing path through the jobshop, with unique setup
times and cycle times per work center. A work center consists of one or more machines with
identical process capabilities. Each machine has a finite capacity per day. Demand variability
per product is high. When demand for a product occurs, a job is initiated. Each job has a
unique due date and lot sizes per job can vary between 1 and over 100 products. Due to the
high product demand variability, the diversity in routings and the finite machine production
capacity, production bottlenecks can shift over time to different work centers [5].

The aforementioned jobshop characteristics results in complex production scheduling and
control. Scheduling plays a crucial role in the competitiveness of a jobshop. A good schedule
will maximize production efficiency and concurrently minimize various costs [6]. The Classical
Job Shop Scheduling Problem (JSSP) is a well known problem in literature, next to which a
number of variations exist, as shown in the review in [7]. The most important types are Dynamic
JSSP, Flexible JSSP, Distributed JSSP, JSSP considering machine availability, JSSP consid-
ering setup times, JSSP with non-deterministic or non-constant processing time, JSSP with
dual-resource constraints, JSSP considering energy and pro-environment and JSSP considering
batches. Within the last variant, we can distinguish between the parallel batch problem and
the serial batch problem or batch decision scheduling problem. Under parallel batching, multi-
ple jobs can be processed simultaneously on the same parallel batch processing machine. The
processing time of a batch is dependent on the individual jobs present in the batch and equals
the maximum of individual processing times [8]. Examples of parallel batching are diffusion in
semiconductor manufacturing or heat treatments in metal fabrication [9]. Under serial batch-
ing, jobs with common machine requirements are processed consecutively on a given machine.
The processing time of a batch is dependent on the individual jobs present in the batch and
equals the sum of individual processing times [9]. Examples of serial batching are the extrusion
of cylindrical aluminum ingots in the aluminium industry [10] or the laser cutting of a sheet
metal plate in a sheet metal jobshop [11]. In the remainder of this paper, we will focus on serial
batching.

Compared to the classical JSSP, a JSSP considering batches adds additional complexity to
the scheduling task due to the batching problem. Not only should the batching problem be
solved, but it also introduces a second objective thus making the problem a multi-objective

2

Graduation Project Nooteboom Trailers BV TU/e

optimisation (MOO) problem. In a JSSP, scheduling is based on one or more criteria, among
which time, job number, cost, revenue, energy and pro-environment [7]. In serial batching
problems, minimization of setup times [12], maximum earliness, total number of tardy jobs [10]
and waste material [13] are common objectives. When the aim is to minimize waste material,
the batching problem is formulated as a two-dimensional bin packing problem (2D-BPP), where
a set of two-dimensional rectangular items need to be packed into the minimum number of two-
dimensional rectangular bins without overlap. The 2D-BPP is a NP-hard problem [14].

In this research, the MOO problem within the sheet metal jobshop at Nooteboom Trailers
BV is considered. Nooteboom Trailers BV is a manufacturer of trailers for abnormal road
transportation producing around 750 trailers per year. Within the jobshop at Nooteboom, jobs
having the same material and thickness are batched on a sheet metal plate to be cut by the
laser cutter of TRUMPF SE + CO. KG. The main objective during batching is to maximize
the number of jobs per batch to minimize waste material, thus a 2D-BPP problem needs to be
solved. After cutting, jobs are manually picked out of a plate and transported to one of the
preceding work centers. Depending on the operations needed, a job visits the required work
centers. Next to the laser cutter work center which contains one laser cutter, and a picking
work center which contains one picking area, the jobshop contains a hole tapping work center
containing one tapping machine of IMM, a milling work center containing one milling machine
of Anayak, a bending work center containing two press brakes of TRUMPF SE + CO. KG and
finally a logistics work center. For all work centers, a production sequence of jobs needs to
be determined, thus a JSSP needs to be solved. The main objective during scheduling is to
maximize delivery performance by minimizing tardiness of jobs.

This paper introduces an optimisation model based on the metaheuristic Generalized Differ-
ential Evolution 3 (GDE3). GDE3 is selected for its proven performance regarding Pareto set
generation. The use of a Pareto set enables a decision making process in which the trade-off
between conflicting objectives can be decided upon. The main contribution of this paper is to
present a modeling approach and solution generation method enabling a decision making process
to select a optimal production schedule within a JSSP considering batches. From a modeling
perspective, the proposed model adds value by incorporating a reformulation of the batching
constraint increasing batch feasibility, setup times, non-homogeneous material thickness and
both machine assignment and batch processing time calculation during the optimization pro-
cess. From a solution generation perspective, an a posteriori method for solution generation
is used. Benefits of this method are the fact that domain knowledge is not required prior or
during the optimization process in combination with good performance regarding Pareto set
generation. The method is guaranteed to find a uniformly distributed Pareto optimal solution
set (providing a higher amount of solutions to the decision maker compared to an a priori
method) and the non-convex regions of the Pareto optimal set can be obtained, resulting in
higher solution quality compared to an a priori method. The final contribution of this paper is
to use GDE3 for solving the MOO problem, which has not been used to solve a JSSP considering
batches.

This paper is structured as follows. After reviewing relevant literature regarding the JSSP
considering batches and metaheuristic algorithms with an emphasis on Pareto set generation in
section 2, a formal problem description is presented in section 3. Then section 4 provides the
mathematical formulation of the model. After discussing the solution approach in section 5,
numerical results of a case study at Nooteboom Trailers BV are presented in section 6. The
paper is concluded with managerial insights in section 7 and conclusions and recommendations
for future research in section 8.

3

Graduation Project Nooteboom Trailers BV TU/e

2 Literature review
In literature, both the batching problem and flexible JSSP have received much attention.

However, the JSSP considering batches, which is a combination of both problems, is only
studied marginally. Amongst the papers discussing this problem, different modeling approaches
are proposed. While authors usually model the JSSP considering batches as a MOO problem,
some authors simplify and transform the MOO problem at hand into a classical single objective
optimization (SOO) flexible Jobshop Scheduling Problem (FJSP). After discussing literature on
JSSP considering batches, this study will focus on different MOO modeling approaches and in
particular on solution generation with an emphasis on Pareto set generation. Metaheuristics are
capable of solving large MOO problems and finding Pareto sets of good quality in a reasonable
time frame. Therefore, literature on metaheuristic algorithms is discussed.

In [15], the authors formulate the JSSP considering batches as a capacitated vehicle routing
problem. Metal sheets with a limited area are represented as trucks with a limited capacity.
Parts with a certain surface are represented as different customers with a specific demand, while
set-up times between production layouts within the bending process are represented as travel
distances between the different customers. The problem is then modelled using Linear Program-
ming (LP). The objective function minimises the single objective of total sequence-dependent
set-up time between the production layouts of the different parts. In order to sequence the
metal sheets for cutting such that setups are minimized at the press brake, a variable neigh-
bourhood search (VNS) is proposed. Further improvements to the model entail the inclusion of
rush orders, different routings (eg. jobs which only need to be processed at the cutting process)
and the capability of handling multi-machine instances.

In a more recent contribution [16] a combined processing constraint (batching constraint) in
combination with a virtual operation (eg. when a batch is being processed, multiple jobs are
processed at once. This is modeled as one virtual operation and not a separate operation for
each job within the batch) to simplify and transform the MOO problem at hand into a SOO
FJSP is proposed. Minimizing make span is considered as objective. A Multi-agent system
(MAS) is used for building a schedule and solving the FJSP. In particular, a contextual bandit
(CB), which is a form of reinforcement learning (RL), is used to model the scheduling process.
CB only contains one state per episode and only affects immediate reward. The rewards depend
on the context information provided at each time slot. Each job agent must learn to select the
best dispatching rules according to the environment state. To do so, the decision process of a job
agent consists of two stages, being machine selection and buffer job sequencing. Next to a job
agent per job, the model contains one manager agent and a machine agent per machine.

In accordance with [16], the authors in [17] use a virtual operation to simplify and transform
the MOO problem at hand into a SOO FJSP. To solve the FJSP, a Genetic Algorithm (GA) is
proposed. GA, combined with a centralized cloud solution, enables separating the optimization
problem and solution generation part. By doing so, different objectives can be pursued using
the same solution generation part but with tailored fitness functions. In their paper, the authors
consider minimizing make span as objective. However, minimizing waste material at the cutting
process could be integrated in the GA as well by altering the fitness function. Depending on the
production process at hand, the authors advice to use either minimizing make span or waste
material as objective.

MOO problems can be addressed via a priori, a posteriori and interactive methods. In a priori
methods, multiple objectives are aggregated into one single objective. Advantages of a priori
methods are decreased problem complexity (SOO algorithms suffice for solving the problem)
and low computational costs. Disadvantages are the need to decide on objective importance
before optimization which requires strong domain knowledge, the need to run the optimization
multiple times to be able to find Pareto optimal solutions, it is not guaranteed to find uniformly

4

Graduation Project Nooteboom Trailers BV TU/e

distributed Pareto optimal solutions and most importantly, non-convex regions of the Pareto
front cannot be obtained using this method [18].

The authors in [12] use an a priori method in which the minimization of the number of setups
at the press brake and the minimization of make span of a metal sheet are aggregated into one
objective function. To reduce problem complexity, only a cutting and bending process where
both work centers comprise of one machine are considered. The simplified problem is then
modeled using LP. The LP results in a grouping of parts to sheets, not a placement of parts on
sheets. In order to sequence the metal sheets for cutting such that setups are minimized at the
press brake, a TSP is used. By applying branch-and-bound techniques, the optimal solution
for a small use case is found. If the problem size is increased, the proposed algorithm is not
capable of finding a solution within a acceptable time frame.

The SOO problem previously defined in [15] is extended to a MOO problem in [19]. The
objective function is altered such that both makespan (with an emphasis on generating a pro-
duction planning using a minimal number of metal sheets) and flowtime at the bending work
center are minimized. To solve this MOO problem, a bicriteria optimisation is proposed to
determine the Pareto set. Because calculating the Pareto set is computationally expensive, it
is suggested to approximate it by using a budget approach. In this approach, one criterion is
minimised while the other is bound to a budget. The proposed heuristic method is capable of
minimizing make span with a secondary criterion, in this case total flow time. Results show
that a reduction in total flow time is possible without deteriorating make span. With a small
deterioration of make span, even larger improvements in flow time can be realised.

In a posteriori methods, a MOO algorithm is employed to find the best trade-off between
the objectives at hand. To determine if one solution dominates another, a new operator called
Pareto optimal dominance is introduced. According to this operator, one solution dominates
another if it shows equal objective values on all objectives and is at least better in one of the
objectives.

An a posteriori method using bottom left algorithm based batching at the cutting work
center and dispatching rule based scheduling for the other work centers is proposed in [20].
Both the batching and scheduling problem are formulated as LP. The objective function of
the batching problem minimizes waste material, the objective function of the scheduling prob-
lem minimizes tardiness. To reduce problem complexity, the authors assume constant material
thickness. Although test results indicate that the proposed method can derive desirable so-
lutions, the applicability to real world application is limited by the assumption of constant
material thickness.

In [21] and [22] the authors propose improvements to their research in [20] in order to increase
solution quality. Regarding the batching problem, a GA is proposed to revise the operational
sequence of the cutting process. Scheduling is executed first to determine a cutting layout in
the batching stage. After the batching stage is finished, the initial schedule is revised based
on the obtained cutting layouts. The revision is executed by means of a GA in combination
with a appropriate dispatching rule. To enhance scheduling ability of the algorithm, a heuristic
approach is proposed. The heuristic comprises a local search (VNS) to update the initial
schedule, which is decided by a Earliest Due Date (EDD) based dispatching rule, and manage
it in terms of the criteria referring to the bottleneck process.

In a more recent contribution [13] an a posteriori method which jointly minimizing tardiness
and material waste for medium-sized, offline sheet metal jobshop instances using a RL approach,
specifically AlphaGo Zero (AZ), is proposed. In this research, setup times, machine/worker
availability and transportation times between workstations are not considered. Furthermore,
the two-dimensional packing problem is flattened into one dimension. The cutting constraint
states that the summed area of all parts batched on a metal sheet must not exceed the total sheet
area. A single player AZ version is pretrained using supervised learning on schedules generated

5

Graduation Project Nooteboom Trailers BV TU/e

by a heuristic, EDD in this case. The schedule is then fine-tuned using RL and evaluated through
comparison with a heuristic baseline and Monte Carlo Tree Search. The authors conclude that
the proposed AZ outperforms the other two approaches. The used testing instance is fairly
large compared to other researches, however not large enough to be representable for real life
situations.

This paper can be framed among those works using an a posteriori method to solve the JSSP
considering batches. Compared to an a priori method, an a posteriori method poses several
benefits in finding the Pareto set. Deciding on objective importance is done after optimization,
requiring less domain knowledge. Furthermore, an a posteriori method is guaranteed to find
a uniformly distributed Pareto set. This is beneficial during the decision making process, as
a higher amount of solutions is presented to the decision maker enabling a better trade-off
between conflicting objectives. Most importantly, non-convex regions of the Pareto set can be
obtained when using an a posteriori method, resulting in higher solution quality [18].

This study further develops the work in [22] by extending the model proposed in this work.
With respect to the proposed model, the constraints of homogeneous material thickness, rect-
angular part area, no setup times, predefined machine assignment and predefined cutting time
per batch are relaxed. However, the batching problem is simplified by omitting placement of
parts within batches. Furthermore, the work in [13] is further developed in this study by adding
setup times to the proposed model and by redefining the one dimensional bin packing problem
(1D-BPP) to enhance batch feasibility. In accordance with both [22] and [13], this study does
not consider machine availability, worker availability and transportation times.

The main contribution with respect to the contributions mentioned above, is the emphasis
on Pareto set generation during solution generation. Compared to a solution generation method
resulting in one optimal solution, used by both [22] and [13], a Pareto set enables a decision
making process in which the trade-off between conflicting objectives can be decided upon after
optimization. A Pareto set provides insights in how different production schedules affect pro-
duction objectives and enables to substantiate a decision for a certain trade-off. Furthermore,
it contributes to the explainability of the optimization algorithm by visually representing the
outcome of the algorithm.

Determining the Pareto set is a NP-hard problem [23]. Solving a NP hard problem using
mathematical programming (MP) techniques is possible for small problem instances but be-
comes more computational expensive when instance size increases. To be able to solve large
MOO problem instances in a reasonable time frame, metaheuristics are used. Metaheuristics
are designed such that the complex problem at hand can be solved faster and more efficient
by sacrificing optimality, accuracy, precision, or completeness for speed [24] [25]. Metaheuris-
tic approaches can be classified according to the number of solutions that are evolved at each
stage of the algorithm, single-solution based metaheuristics and population-based metaheuris-
tics [26].

In [27] the difference between single-solution based metaheuristics and population-based
metaheuristics is described and an overview of the main domains amongst these two classes
is provided. Single-solution based metaheuristics, also called trajectory methods, start with a
single initial solution and move away from it, describing a trajectory in the search space. Single-
solution based MOO metaheuristics are composed of the simulated annealing based algorithm
AMOSA [28], the tabu search based algorithms MOTS and PRMOTS [29], the greedy ran-
domized adaptive search procedure (GRASP) algorithm MOG [30], the variable neighborhood
search algorithms MO-RVNS, MO-VND and MO-GVNS [31], the guided local search based
algorithm MOGLS [32] and finally the iterated local search algorithm PILS [33].

Population-based metaheuristics deal with a set, or a population, of solutions rather than a
single solution. There are mainly two fields of population-based metaheuristics, Swarm Intel-

6

Graduation Project Nooteboom Trailers BV TU/e

ligence (SI) and Evolutionary Computation (EC). SI algorithms are inspired by (social) inter-
action between animals, EC algorithms by Darwinian evolution. For each of the metaheuristic
fields discussed next, MOO algorithms within the field are mentioned. SI contains the domains
of ant colony optimization (BicriterionAnt [34], Pareto ACO [35]), particle swarm optimization
(MOPSO [36], AMOPSO [37], OMOPSO [38]), bacterial foraging optimization (MBFO [39]),
bee colony optimization (MOABC [40], MOABC [41], eMOABC [42]), artificial immune systems
(VIS [43], MOBAIS [44], EMOIA [45]) and bio geography-based optimization (MOBBO [46]).
MOO EC contains the domains of genetic algorithms (SPEA2 [47], NSGA-II [48], NSGA-III
[49]), evolution strategies (M-PAES [50], ESP [51], MO-CMA-ES [52]), evolutionary program-
ming (MOEP [53]), genetic programming (multiple problem specific MOGP algorithms exist
in literature [54]) and differential evolution (MODE [55], AMODE [56], JADE [57], jDE [58],
SHADE [59], L-SHADE [60], PWI-based L-SHADE [61], HyDE [62], WDE [63], IMODE [64],
GDE3 [65]).

When analysing the different metaheuristic fields, the field of differential evolution (DE)
shows a higher density of recent research dedicated on improving multi objective DE algorithms
compared to the other fields. This is a first indication of the potential of this field. Furthermore,
literature shows that multi objective DE has a higher convergence rate and efficient global search
capability compared to other multi objective evolutionary algorithms (EAs).

In [66] and [67] the authors compare and evaluate the performance of DE and PSO. This is
done on test sets of respectively 34 benchmark problems and 8 benchmark functions. Results
show that DE generally performs better than PSO in term of solution accuracy and robustness
in most test cases.

In a more recent contribution [68] a variant of DE called DEEP is proposed. The pro-
posed algorithm is used to optimize wind farm layout. Algorithm performance is compared
with the greedy method called turbine distribution algorithm (TDA) [69] and five evolutionary
algorithms: CMA-ES [70], MSO [71] and CLPSO [72], JADE and SHADE. Experimental re-
sults show that the proposed algorithm generally achieves the highest solution accuracy with
the fastest convergence speed in a robust manner. Results also indicate that the proposed
algorithm has low parameter sensitivity.

The performance of DE, PSO, QPSO [73], DSA [74] and mixed integer nonlinear programs
(MINLP) is compared and evaluated in [75]. Results indicate that DE strategies can find better
solutions compared to the other evaluated evolutionary algorithms and DE strategies can find
near-optimal solutions in a acceptable time frame compared to a MINLP approach. However,
unlike [68], the DE strategies used are very sensitive to the setting of their parameters.

In a consecutive research [62], the authors propose a new DE algorithm called HyDE and
compare and evaluate its performance with standard DE, JADE and jDE [58]. Results show
that the proposed algorithm outperforms the other algorithms both in terms of solution quality
and convergence capability.

Recent contributions proposing new variants of DE are [61], [63] and [64]. The proposed al-
gorithms are called PWI-based L-SHADE, WDE and IMODE. PWI-based L-SHADE is tested
on 60 artificial benchmark problems from IEEE CEC’2014 competition and IEEE CEC’2017
competition and on 22 real-world problems from IEEE CEC’2011 competition. Algorithm per-
formance is compared with 16 different metaheuristics which are all outperformed by the pro-
posed algorithm. Only 2 of 16 metaheuristics may be considered competitive on some problem
sets. WDE is tested on IEEE CEC’2013 competition problems and its performance is compared
with CS [76], ABC [77], JADE and BSA [78]. Results show that WDE significantly outper-
forms the other algorithms. Lastly, IMODE performance is compared with EBOwithC-MAR
[79], HSES [80], LSHADE-cnEpSin [81] and LSHADE-SPACMA [82]. For testing, 10 problems
from IEEE CEC’2020 competition on single objective bound constrained optimization are used.
Results show that IMODE statistically outperforms the other algorithms. The success of multi
objective DE and its variants is underlined by winning several IEEE competitions. For example

7

Graduation Project Nooteboom Trailers BV TU/e

in [83], a GECCO 2015 competition on optimizing wind farm layout, the proposed DE algo-
rithm 3s-MDE outperforms Evolution Strategy (ES) algorithm CMA-ES [84], Sequence-based
Selection Hyper-Heuristic (SSHH) [85], Goldman Method (GM) and a GA.

In the present research, a JSSP considering batches containing two objectives is solved in or-
der to find a production schedule which minimizes both waste material incurred during batching
and total tardiness of jobs. Both the batching and scheduling problem will be modeled using
an a posteriori method. This study further develops the work in [22] and [13] with the in-
clusion of setup times within the model and the emphasis on Pareto set generation by using
the metaheuristic DE for solution generation. Amongst MOO metaheuristics, DE shows better
performance regarding Pareto set quality and generation on several benchmark problems and is
therefore selected. The use of DE for solution generation under an a posteriori method within
a JSSP considering batches is a novelty.

8

Graduation Project Nooteboom Trailers BV TU/e

3 Problem description
This research studies a JSSP considering batches in which a 1D-BPP is combined with a

FJSP. This results in a MOO problem containing two objectives. The objective posed by the
1D-BPP is to minimize the waste material per batch b in set B. Because batches are defined
when solving the 1D-BBP, we rephrase minimizing waste material to minimizing the number of
batches b in set B. The objective posed by the FJSP is to minimize total tardiness for all jobs
j in set J .

Jobshop work orders are controlled by a higher level planning within the company which is
based on customer demand, resulting in dynamic order arrivals. After arrival to the system,
the set of work orders is treated as a set of jobs J = {1, 2, ..., |J |}. A job j consists of one or
more similar sheet metal parts. The part(s) within a job determine the jobs area aj , material
rj , thickness qj and set of operations Oj = {(j, o), o = 1, 2, ..., |Oj |} needed to produce the
job, with O = ∪j∈JOj being the total set of operations available in the jobshop. The notation
(j, o) can be interpreted as the oth operation of job j. The processing time of operation o at
machine m is denoted as pjom. Processing times for all operations except cutting and picking
are known when a job enters the system. The processing times of cutting and picking need to
be calculated after batch definition, so during schedule computation, and will be denoted with
pbom. All operations present in Oj are executed sequentially, where operation o + 1 can only
start when operation o is finished. Each job j has a due date dj at which all operations in Oj

should be finished.
Each operation o ∈ O can be processed by a machine within set Mo = {1, 2, ..., |Mo|}. Each

operation (j, o) ∈ Oj can only be processed by one machine m ∈Mo at a time. The operations
of laser cutting and picking will be denoted with respectively o = 1 and o = 2. The machines
within sets M1 and M2 execute batch processing. Each batch b needs to be assigned to a
machine in M1 and M2 and each machine in M1 and M2 can process one batch b at a time. For
o ∈ O, o > 2, the machines sets Mo operate in a flexible jobshop environment, meaning that
a machine needs to be assigned to every operation (j, o) and that each machine m can only
process one operation of one job (j, o) at a time. The relation between jobs, batches and the
different sets of machines is visually represented in Figure 1. The set of jobs at the left hand
side contains jobs to be processed within the jobshop and thus forms the input to the system.
The set of jobs on the right hand side contains jobs which have finished processing within the
jobshop and thus forms the output of the system. The arrows indicate the flow of jobs through
the jobshop.

Figure 1: Jobshop process overview

9

Graduation Project Nooteboom Trailers BV TU/e

3.1 Definition and processing of batches
In order to create a feasible batch b, a 2D-BPP needs to be solved. This problem consists of

packing a set of two-dimensional rectangular items into the minimum number of two-dimensional
rectangular bins without overlap. All bins have identical width and height whereas each item has
a specific width and height. The 2D-BPP is a NP-hard problem [14]. In order to reduce problem
complexity, the 2D-BPP is flattened into a one dimensional problem by omitting placement of
parts. In order to maintain batch feasibility under this assumption, the constant ab is introduced.
Here, ab is a certain fraction of the available sheet area. The summed area of all jobs in a batch∑

j∈b aj must be smaller than the constant ab. To understand why ab is a fraction of the available
sheet area, we first have to understand how the placement of parts effects solving a 2D-BPP
in a jobshop environment. We will explain this using an example of a batch, which is depicted
in Figure 2. In the figure, the parts of two jobs are placed within a batch. The white space is
unused sheet area. The white space between parts on the left hand side and in the middle of
the batch is left empty to account for cutting seams. On the right hand side of the batch we
see larger white spaces. This area remained unused because the set of jobs either contained one
or more jobs which could be placed in this area based on aj but could not be placed without
overlap, or the set of jobs simply did not contain a job with a area aj small enough to fit in the
available space. By omitting placement of parts, and thus not accounting for cutting seams or
placement of parts without overlap, we have to compensate for these during batch definition to
create feasible batches under the simplification. To do so, the constant ab is a fraction of the
sheet area used in real life situations.

Furthermore, as batched jobs are cut out of one metal sheet with uniform material and
thickness, jobs can only be batched if they have the same material rj = {1, 2, ..., |rj |} and
thickness qj = {1, 2, ..., |qj |}. To indicate whether job j is assigned to batch b, the decision
variable xjb is introduced. This variable is 1 if job j is assigned to batch b and 0 otherwise.

The objective when solving the 1D-BPP is to maximize the number of jobs per batch as to
minimize the number of batches b in set B. As the number of batches b in set B is not known
a priori, it is defined as its upper bound, being |J |. Under this assumption, each job j ∈ J is
assigned to a unique batch. To indicate whether batch b ∈ B is used, the decision variable xb
is introduced. This variable is 1 if batch b is used and 0 otherwise.

Figure 2: Two orders nested on a sheet metal base plate with material thickness 4mm

To indicate whether operation o of batch b is assigned to machine m in set Mo, the decision
variable xbom is introduced. This variable is 1 if operation (b, o) is assigned to machine m and 0
otherwise. The processing sequence per machine within sets M1 and M2 is defined by decision
variable tsbom. This variable, using integer values, indicates the starting time of operation
(b, o) ∀ o ∈ Oj | o = (1, 2) at machine m and will be 0 for all machines which are not selected for
the operation. Machines within sets M1 and M2 use serial batch processing, implying that the
batch processing time pbom for the two sets is defined as respectively the sum of the individual
cutting processing times of all jobs within a batch or the sum of the individual picking times of

10

Graduation Project Nooteboom Trailers BV TU/e

all jobs within a batch [86]. Once pbom is determined for both machine sets, a batch is ready to
be processed. Batches awaiting processing need to be assigned to machines within set M1 and
the processing sequence per machine needs to be determined. Machines within this set incur
sequence independent setup times, namely the setup time som, m ∈M1, o = 1 depends neither
on the current batch, nor the preceding batch [87].

Once a batch has been processed by one of the machines in set M1, it is ready to be processed
by one of the machines within set M2. Again, batches awaiting processing need to be assigned
to machines within set M2 and the processing sequence per machine needs to be determined.
Between batches, a sequence independent setup time is incurred. During processing at a machine
within set M2, jobs contained in a batch are separated again for further processing in the
jobshop.

3.2 Processing of jobs
For all sets Mo, o > 2, jobs awaiting processing need to be assigned to a machine and the

processing sequence per machine needs to be determined. The objective amongst these machine
sets is to minimize total tardiness of all jobs. When job j completed processing in the jobshop,
it leaves the system.

To indicate whether operation (j, o) is assigned to machine m in set Mo, the decision variable
xjom is introduced. This variable is 1 if operation (j, o) is assigned to machine m and 0 otherwise.
For machines in machine sets processing jobs, the decision variable tsjom is to determine the
processing sequence of jobs. This variable, using integer values, indicates the starting time of
operation (j, o) ∀ o ∈ Oj | o > 2 at machine m and will be 0 for all machines which are not
selected for the operation. The completion time of an arbitrary operation o at an arbitrary
machine m can be calculated by adding the sum of setup time som and processing time pbom or
pjom to the corresponding starting time of the considered operation. The processing sequence
per machine can be derived from respectively tsbom or tsjom using the logic that for each m ∈Mo,
the sorted non-zero values of tsbom or tsjom indicate the processing sequence.

11

Graduation Project Nooteboom Trailers BV TU/e

4 Mathematical formulation
The JSSP considering batches is mathematically formulated in this section. Firstly, the

objectives are defined. Both objective functions are subjected to several constraints, of which
constraints 3 to 9 constrain the processing of jobs, constraints 10 to 22 constrain the definition
and processing of batches and constraint 23 forms a link between the processing of jobs and
batches. The mathematical program is a integer nonlinear program (INLP). It is integer because
all decision variables can only take integer values and nonlinear because two decision variables
are multiplied in objective function 2. The objective functions are defined below.

min f(x) =
∑
b∈B

xb (1)

min g(t) =
∑
j∈J

max(0, (tsjom + pjom + som) ∗ xjom − dj) ∀ m ∈Mo, o = |Oj | (2)

Objective function f(x) represents the number of used batches b in set B. As the batches
in set B are defined within the mathematical program, the size of set B is not known a priori.
Therefore, the maximum size of set B is defined as |J |. In order to minimize the number of
used batches in set B, objective function f(x) is defined. The second objective function g(t)
represents the total tardiness of all jobs in set J . Similarly to the first objective function, this
function is minimized as well. This function is non-linear, because the decision variables tjom
and xjom are multiplied in this function. Next, constraints regarding the processing of jobs are
formulated and explained.

tsjom ≥ tsj,o−1,m + pj,o−1,m + so−1,m ∀ j ∈ J, o ∈ Oj | o > 3, m ∈Mo | o > 2 (3)

∑
m∈Mo

xjom = 1 ∀ j ∈ J, o ∈ Oj | o > 2 (4)

nm =
∑
j∈J

xjom ∀ m ∈Mo | o > 2, o ∈ O | o > 2 (5)

∑
j∈J

∑
k∈J

xjkm = nm − 1 ∀ m ∈Mo | o > 2 (6)

∑
j∈J

xjkm ≤ 1 ∗ xjom ∀ j ∈ J, k ∈ J, o ∈ O | o > 2, m ∈Mo | o > 2 (7)

∑
k∈J

xjkm ≤ 1 ∗ xjom ∀ j ∈ J, o ∈ O | o > 2, m ∈Mo | o > 2 (8)

tsjom + pjom + som ≤ tskom +M ∗ (1−xjkm) ∀ j ∈ J, k ∈ J, o ∈ Oj | o > 2, m ∈Mo | o > 2 (9)

Constraint 3 ensures that all operations o > 2 in set Oj are processed sequentially. Fur-
thermore, this constraint ensures that operation o cannot start processing until the preceding
operation o− 1 has finished processing. To process operation o of job j, it needs to be assigned
to one single machine in set Mo. This is defined in constraint 4. The variable parameter nm is
defined in constraint 5 and indicates the number of jobs which need to be processes by machine
m. In constraints 6 to 8, the decision variable xjkm is defined. This variable is 1 if job j is
processed before job k at machine m. Using xjkm, constraint 9 defines that each machine m in
set Mo can only process one job j at a time. Because the constraint should only be active when
job j is processed before job k at machine m, M is introduced. M is a large number, enforcing

12

Graduation Project Nooteboom Trailers BV TU/e

the constraint to only be active when xjkm = 1. Next, constraints regarding the definition and
processing of batches are formulated and explained.∑

b∈B
xjb = 1 ∀ j ∈ J (10)

∑
j∈J

aj ∗ xjb ≤ ab ∗ xb ∀ b ∈ B (11)

∑
j∈J rj ∗ xjb

rj
≤

∑
j∈J

xjb +M(1− xjb) ∀ j ∈ J, b ∈ B (12)

∑
j∈J rj ∗ xjb

rj
≥

∑
j∈J

xjb −M(1− xjb) ∀ j ∈ J, b ∈ B (13)

∑
j∈J qj ∗ xjb

qj
≤

∑
j∈J

xjb +M(1− xjb) ∀ j ∈ J, b ∈ B (14)

∑
j∈J qj ∗ xjb

qj
≥

∑
j∈J

xjb −M(1− xjb) ∀ j ∈ J, b ∈ B (15)

pbom =
∑
j∈J

pjom ∗ xjb ∀ b ∈ B, o ∈ Oj | o = (1, 2), m ∈Mo | o = (1, 2) (16)

tsbom ≥ (tsb,o−1,m + pb,o−1,m + so−1,m) ∗ xb ∀ b ∈ B, o ∈ Oj | o = 2, m ∈Mo | o = 2 (17)

∑
m∈Mo

xbom = 1 ∀ b ∈ B, o ∈ Oj | o = (1, 2) (18)

∑
b∈B

∑
h∈B

xbhm =
∑
b∈B

xbom − 1 ∀ o ∈ O | o = (1, 2), m ∈Mo | o = (1, 2) (19)

∑
b∈B

xbhm ≤ 1 ∗ xbom ∀ b ∈ B, h ∈ B, o ∈ O | o = (1, 2), m ∈Mo | o = (1, 2) (20)

∑
h∈B

xbhm ≤ 1 ∗ xbom ∀ b ∈ B, o ∈ O | o = (1, 2), m ∈Mo | o = (1, 2) (21)

tsbom+pbom+som ≤ tshom+M ∗(1−xbhm) ∀ b ∈ B, h ∈ B, o ∈ O | o = (1, 2), m ∈Mo | o = (1, 2)
(22)

Constraint 10 defines that each job needs to be assigned to one batch b. Constraints 11
to 15 constrain the definition of feasible batches. Firstly, the summed area of jobs assigned
to batch b is constrained to be less than or equal to the batch area ab, where ab is defined
as the total batch area multiplied with a safety factor to enhance batch feasibility under the
simplification of a 1D-BPP. Because a batch equals a sheet metal plate which has uniform
material and thickness, all jobs assigned to batch b should have equal material and thickness
properties. Both requirements are defined in constraints 12 to 15. Because all four constraints
should only be active when xjb = 1, indicating that job j is assigned to batch b, M is used. M
enforces the four constraints to only be active when xjb = 1.

As batch definition is done during schedule computation, batch processing times for batch
processing operations need to be constrained. This is done in constraints 16. Because batch

13

Graduation Project Nooteboom Trailers BV TU/e

processing machines make use of serial batch processing, processing times can be defined as the
sum of the processing times pjom, given that o is a batch processing operation, of all jobs j
assigned to batch b. In constraint 17, process sequence of batch processing operations o = 1
(cutting) and o = 2 (picking) is defined. Furthermore, this constraint ensures that operation o
cannot start processing until the preceding operation o− 1 has finished processing. To process
operation o of batch b, it needs to be assigned to one single machine in set Mo. This is defined
in constraint 18. In constraints 19 to 21, the decision variable xbhm is defined. This variable is 1
if batch b is processed before batch h at machine m. The last batching constraint, constraint 22,
ensures that each machine m in sets M1 and M2 can only process one batch b at a time. To do
so, the constraint uses xbhm in combination with M to activate the constraint when xbhm = 1.
To link the processing of jobs and batches together, constraint 23 is defined.

tsbom2
+pbom2+som2 ≤ tsj,o+1,m1

+M∗(1−xjb) ∀ j ∈ J, b ∈ B, o = 2, m1 ∈Mo | o = 2, m2 ∈Mo | o = 3
(23)

In constraint 23, the starting time of the first operation o of a job following batch operations
is constrained to be larger or equal to the time at which the last batching operation o = 2 is
finished. M is used to activate the constraint only when job j was assigned to batch b. Lastly,
a non-negativity constraint for all decision variables is defined in 24.

tsjom ≥ 0, xjom ∈ {0, 1}, xjkm ∈ {0, 1}, xb ∈ {0, 1}, xjb ∈ {0, 1}, tsbom ≥ 0, xbom ∈ {0, 1}, xbhm ∈ {0, 1}
(24)

4.1 Linearize model
As stated in the previous section, objective function g(t) causes the model to be non-linear.

In order for a solver, such as Gurobi, to solve the model, g(t) should be linearized. To do so,
both the max statement and the multiplication of decision variables need to be rewritten. The
new linear objective function is given in Equation 25. Constraints necessary for the linearization
are given in constraint 26 to 30.

min g(v) =
∑
j∈J

vj (25)

Subjected to;

vj ≥ 0 ∀ j ∈ J (26)

vj ≥ (pjom + som) ∗ xjom + zj − dj ∀ j ∈ J, o ∈ Oj | o = |Oj |, m ∈Mo | o = |Oj | (27)

zj ≤ tsjom + pjom + som ∀ j ∈ J, o ∈ Oj | o = |Oj |, m ∈Mo | o = |Oj | (28)

zj ≥ tsjom + pjom + som −M ∗ (1− xjom) ∀ j ∈ J, o ∈ Oj | o = |Oj |, m ∈Mo | o = |Oj | (29)

zj ≤M ∗ xjom ∀ j ∈ J, o ∈ Oj | o = |Oj |, m ∈Mo | o = |Oj | (30)

14

Graduation Project Nooteboom Trailers BV TU/e

All variables used within the mathematical formulation are described below.

Decision variables
tsjom : Starting time of setup of operation (j, o) on machine m

tsbom : Starting time of setup of operation (b, o) on machine m
xb : 1 if batch b is used, 0 otherwise
xjb : 1 if job j is assigned to batch b, 0 otherwise
xjkm : 1 if job j is processed before job k at machine m, 0 otherwise
xjom : 1 if machine m is selected for operation (j, o), 0 otherwise
xbom : 1 if machine m is selected for operation (b, o), 0 otherwise
xbhm : 1 if batch b is processed before batch h at machine m, 0 otherwise

Sets
J : Set of jobs
O : Set of operations
Oj : Set of operations needed to produce job j
B : Set of batches
Mo : Set of machines on which operation o can be processed

Variable parameters
nm : Number of jobs produced at machine m
pbom : Processing time of operation (b, o) at machine m

Constant parameters
pjom : Production time of operation (j, o) at machine m
som : Setup time of operation o at machine m
dj : Due date of job j
aj : Area of job j
qj : Thickness of job j
rj : Material of job j
ab : Batch area
M : Large number

15

Graduation Project Nooteboom Trailers BV TU/e

5 Solution approach
To solve the mathematical problem we propose to use a variant of the metaheuristic DE

to find an approximation of the non-dominated Pareto set. In particular, we propose to use
Generalized Differential Evolution 3 (GDE3) [65]. In [79], the authors state that GDE3 received
a winning entry nomination in the CEC 2007 competition and was ranked among the top
5 best performing algorithms in the CEC 2009 competition. Furthermore, GDE3 is ranked
amongst the best performing algorithms in several studies by [88], [89] and [90]. Next to proven
algorithm performance, GDE3 is available in the Python framework for DE called Pymoode [91].
Pymoode is based on Pymoo [92], a Python framework for MOO. GDE3 is an extension of DE
purposed for global optimization with an arbitrary number of objectives and constraints. The
algorithm combines DE mutation and crossover operators with an improved NSGA-II survival
strategy. The improved survival strategy ensures a better distributed solution set. Furthermore,
compared to earlier versions of GDE, GDE3 is less sensitive to the selection of control parameter
settings [65].

Comparable to a typical EA, GDE3 starts with some random initial population, which is then
improved using selection, mutation and crossover operations. Several control parameters can be
used to control these operations. The GDE3 algorithm, together with its control parameters are
discussed in subsection 5.1. How to tune the different control parameters for optimal algorithm
performance will be discussed in subsection 5.2. Next, algorithm performance measures will be
discussed in subsection 5.3. The mathematical model discussed in section 4 was implemented in
the Python framework Pymoode. The implementation is discussed in subsection 5.4. The JSSP
considering batches has differently scaled objectives. Therefore, decision space normalization is
discussed in subsection 5.5.

5.1 GDE3 and its control parameters
The GDE3 algorithm is introduced in [65]. In each generation of the algorithm, GDE3 goes

through each individual X in the population and creates a corresponding candidate individual.
Within the GDE3 implementation in Python, X is represented by a vector containing the
decision variables tsjom and xjb. The amount of values for tsjom present in X equals the number
of jobs multiplied with the number of operations. This translates to a starting time for each job
at each operation. The amount of values for xjb present in X equals the number of jobs squared.
This translates to a separate batch for each job. Note that not all batches should be used by
the algorithm. Furthermore, it should be noted that not all decision variables mentioned in
section 4 are represented in X. In Python, tsjom and xjb are sufficient to define the objective
functions and constraints. Therefore, it is possible to leave out the other decision variables and
limit the dimensions of X.

Creation of a candidate individual is done using the most common DE version, DE/rand/1/bin.
In DE/rand/1/bin, three individuals a, b and c are randomly selected from the population ex-
cluding initial individual X. Using these three individuals, a mutation vector is constructed
using the function y = a + F ∗ (b − c), where F ∈ (0, 1+] [93] is a scaling factor for mutation.
F controls the speed and robustness of the search and as such, F determines the trade-off be-
tween exploration and exploitation. A low value for F will increase the convergence rate while
increasing the risk of finding a local optimum. Once the mutation vector is constructed, the
candidate individual is created using crossover between the initial individual x and the mutation
vector y. Each chromosome of the candidate individual takes the value of the corresponding
chromosome within the mutation vector with probability CR ∈ [0, 1] [93]. CR controls the
degree of mutation and therefore the convergence speed of the algorithm.

Next to DE/rand/1/bin, any other DE strategy can be used within the GDE3 algorithm [93].
Pymoode also facilitates implementing different strategies. As the main focus of this research
is on applying GDE3 on a JSSP considering batches, we will focus on the most common DE

16

Graduation Project Nooteboom Trailers BV TU/e

version and devote the testing of different versions to future research.
After creation, the candidate individual is evaluated using the objective functions, based

on which selection is performed. This is the operation where GDE3 differs from DE. In DE,
the candidate solution is selected and replaces the initial individual X in the population if the
candidate solution scores better than X. In GDE3, three rules are used to perform selection.
Firstly, when both individuals are infeasible, the candidate individual is selected if it weakly
dominates X in the constraint violation space, otherwise X is selected. The constraint violation
space is the set of all possible constraint violations. Secondly, in case of one feasible and one
infeasible individual, the feasible individual is selected. Lastly, in case of two feasible individuals,
the candidate individual is selected if it weakly dominates X in the objective space, otherwise X
is selected. If neither of the two individuals dominates the other, both individuals are selected
for the next generation. In the last case, the population will increase after a generation. If so,
it will be decreased to the original size based on a selection approach used in NSGA-II.

Next to F and CR, the last control parameter to be set is the number of individuals N within
the population. In order to perform mutation, crossover and selection operations, at least 4
individuals are needed, thus N ∈ [4,∞]. In [93], the authors recommend to set N between 5D
and 30D for a MOO problem with conflicting objectives, where D represents the dimension of
an individual X. In case of the JSSP considering batches, D = n ∗ o + n2 where n equals the
number of jobs and o the number of operations.

5.2 Parameter optimization
In [94], the authors conclude that for different optimization problems different parameter

settings for F and CR are needed to obtain good solution quality. So, parameter optimization is
problem depended. Because GDE3 has never been used to optimize a JSSP considering batches,
a parameter optimization should be performed. Amongst EAs, parameter optimization can be
divided in two sub classes, parameter tuning and parameter control. In parameter tuning, good
values for the parameters are determined before the algorithm is executed and will remain fixed
during a run. In parameter control, a run is started with a initial set of parameter values which
are then changed during a run to enhance algorithm performance [95]. As the main focus of
this research is on applying GDE3 on a JSSP considering batches, we will focus on parameter
tuning and devote parameter control to future research.

Amongst parameter tuning methods, the authors in [96] distinguish between black box op-
timization, multi-fidelity optimization and algorithmic approaches. Black box optimization
contains the model-free methods grid search and random search and the Bayesian optimiza-
tion method. In the model free methods, a finite set of values is specified for each parameter.
Where grid search evaluates the Cartesian product of these sets, random search samples from
the sets at random. From the two methods, random search is computationally less expensive
and is more likely to find optimal parameter settings [97]. In Bayesian optimization method,
a surrogate model is formed based on sampled points from the target function. Based on the
surrogate model promising points are identified. An acquisition function then determines the
utility of different promising points, trading off exploration and exploitation and will update
the surrogate model accordingly. Bayesian optimization is primarily used when the objective
function is expensive to evaluate. In multi-fidelity optimization, low fidelity approximations of
the actual loss function are used to significantly lower optimization run time by only slightly
giving in on optimization performance. Multi-fidelity methods can make use of a subset of the
data, training only for a few iterations or run on a subset of features. Finally, in algorithmic
approaches, an EA is used to optimize the parameters of another EA. The authors in [98] give
an extensive overview of available algorithmic approaches.

In this research, we propose to use a combination of the tuning methods multi-fidelity op-
timization and grid search. In particular, we propose to use a subset of the data to decrease
computational costs in combination with a multi stage grid search. The exact size of the subset

17

Graduation Project Nooteboom Trailers BV TU/e

is calculated in section 6. In the course of the grid search, the grid will be updated based on
results of former stages. The bounds of the variables are set according to the intervals proposed
by [93]. So N ∈ [5D, 30D], CR ∈ [0, 1] and F ∈ (0, 2].

Similar to other EAs, GDE3 has a stochastic nature. Therefore, multiple runs of the pa-
rameter optimization are needed to obtain statistically significant results. Executing multiple
runs enables determining of two types of robustness, being robustness to change in parameter
settings and robustness of change in random seed [98].

5.3 Performance measures
Algorithm performance measures can be divided in two sub classes, measures for the case

in which the true Pareto front has been derived analytically or an approximation can be made
and measures for the case in which the true Pareto front is not known. In case of this study,
the Pareto front is not known and therefore we will focus on measures belonging to this class.
Measures within this class are convergence speed with regards to population feasibility, hyper-
volume indicator, running metric and robustness. All these performance measures will be used
to measure algorithm performance in section 6.

Convergence speed with regards to population feasibility is a method to check the speed at
which an EA is able to find feasible solutions within the solution space. A solution is deemed
feasible if all constraints are satisfied.

The hypervolume indicator was first proposed by [99] as a method to evaluate Pareto fronts
produced by EAs. It describes the size of the objective value space which is covered by the
set of non-dominated solutions within the Pareto front. Hypervolume indicator is integrated in
Pymoo and, according to the available documentation, it can be calculated efficiently for 2 to
3 objectives. In case of more objectives, computations become expensive.

The running metric is recently proposed by [100] and is used to analyse the convergence
of an EA. Different from the other metrics mentioned in this section, the running metric can
be applied at any time during algorithm execution to measure algorithm performance. Like
hypervolume, running metric is integrated in Pymoo.

As discussed in the former section, GDE3 has a stochastic nature. Therefore, multiple runs
with the optimal parameter setting are needed to obtain statistically significant results for the
JSSP considering batches. This enables determining robustness to change in random seed.

5.4 GDE3 implementation
The objective functions and constraints mentioned in section 4 are defined within the Py-

moode framework in Python. In subsection 5.1, we already discussed how vector X represents
the decision variables within the Python implementation. When an individual X needs to be
evaluated by the model, it is converted to two matrices. A matrix T with dimensions |J | × |O|
, containing all tsjom values present in X, and a matrix D with dimensions |J | × |J |, containing
all xjb values present in X.

To test the implementation, a dummy data set containing 2 jobs and with known optima is
introduced. Extensive testing showed that the algorithm is able to satisfy all constraints except
for constraint 23. This is the constraint linking the processing of jobs and batches together. To
overcome this problem, a repair function is introduced. This function ensures that an infeasible
individual X is repaired such that it becomes (close to) feasible. So, the repair function will
guide the algorithm towards the feasible region [92]. It does this in two ways. Firstly, matrix D
containing all xjb values is repaired. The repair function makes sure that each job is assigned to a
batch, or each row in the matrix contains only one positive entry. Note that this repair does not
necessarily make matrix D feasible. Secondly, matrix T containing all tsjom values is repaired.
The repair function will first make sure that all operations not present in a jobs’ routing are
set to zero. Recall that a jobs routing contains all operations needed to produce the job. Then

18

Graduation Project Nooteboom Trailers BV TU/e

it will repair starting times per operation. To do so, the function uses the production sequence
of batches at the first operation within the jobshop, laser cutting, as a guideline. Starting time
of the first batch in the sequence is set to 1. Starting time of the second batch is set to the
sum of starting time, setup time and processing time of the first batch. This is repeated for
all other batches within the sequence. For the remaining operations, batches/jobs are handled
using the sequence determined at the first operation. Here, the starting time of an operation
is the maximum between time at which a job finishes its last operation (job availability) and
the time at which the machine finishes processing the previous job (machine availability). The
repair function is depicted in algorithm 1. With the proposed repair function in place, the
GDE3 algorithm is able to solve the dummy problem to optimality.

Algorithm 1: function repair
Input: infeasible population
Output: feasible population

1 for individual in population do
2 if individual is infeasible then
3 Get D and T from individual
4 Get set of jobs from D
5 J ← set of jobs
6 Get set of batches from D
7 B ← set of batches
8 for job in J do
9 if job in multiple batches then

10 Randomly delete job from batches until job in one batch only
11 else if job not in batch then
12 Assign job to a randomly chosen batch
13 Get starting times of batches tsb,o,m from T
14 laser_sequence← sort(tsb,o=1,m)

15 sorted_batches← sort(B) based on laser_sequence
16 sorted_jobs← sort(J) based on laser_sequence
17 for batch in sorted_batches do
18 Set tsb,o=1,m of first batch to 1
19 Set tsb,o=1,m of remaining batches using production times
20 Set tsb,o=2,m to max(tsb,o=1,m, tsb−1,o=2,m)

21 for o > 2 do
22 for job in sorted_jobs do
23 if o not in routing of job then
24 Set tsj,o,m to 0
25 else if o in routing of job then
26 Use laser_sequence to set tsj,o,m to max(tsj,o−1,m, tsj−1,o,m)

27 return population

Next to the repair function, we also introduce a termination criterion for the algorithm.
For this research, the number of generations the algorithm can iterate is chosen as termination
criterion. Running the algorithm too short may lead to unsatisfactory results, whereas running
it too long will waste computational resources. For each problem instance, the correct number
of generations needs to be determined. Incorporating a termination criterion based on algorithm
performance is devoted to future research.

19

Graduation Project Nooteboom Trailers BV TU/e

5.5 Decision space normalization
The JSSP considering batches has differently scaled objectives. Where the number of used

batches in set B, which will be denoted as waste material, is measured in square meters with
a approximated range of 0 to 100, job tardiness is measured in seconds with a approximated
range of 0 to multiple thousands. In order for a multi-objective optimization evolutionary
algorithm (MOEA) such as GDE3 to evaluate differently scaled objectives equally, objective
space normalization should be applied. The authors in [101] explain that in objective space
normalization, all objective values are scaled between 0 and 1. To do so, information on the
range of the Pareto front is needed. For this, the ideal and nadir points, which are determined
per objective, are used. In case of a minimization objective, the ideal point zlb is a lower bound
of the objective and the nadir point zub an upper bound. Since the ideal and nadir points of the
JSSP considering batches are not known a priori, estimated ideal and nadir points will be used.
To estimate the ideal points zlbi , GDE3 is solved for each objective separately using standard
control parameter settings CR = 0.5, F = 1 and N = 5D.

Estimating a nadir point is done using common sense. In case jobs are not combined in
batches but instead each job is assigned to a individual batch, waste material will reach an
upper bound. For job tardiness to reach an upper bound, we use a simple heuristic. GDE3 is
given an upper bound for tsjom, being the staring time of operation o of job j at machine m. In
the heuristic, we assign this upper bound to the final operation of job j ∈ J having the earliest
due date. So, the job with the earliest due date will finish processing last. Then, the job with
the second earliest due date will be assigned the upper bound minus the processing time of the
last operation of the former job. This process is continued until all jobs are assigned a starting
time for their last operation.

When the estimated ideal and nadir points are obtained, the objective space can be nor-
malized. This is done for each individual within the population using equation 31. Here, f̃i(x)
denotes the ith normalized objective function and n is the number of objective functions within
the model.

f̃i(x) =
fi(x)− zlbi
zubi − zlbi

, i ∈ {1, 2, ..., n} (31)

In order to test correctness of the estimates for ideal and nadir points and whether normal-
ization has effect on algorithm performance, 2 runs for a small problem instance containing
5 jobs are conducted. The first run without objective space normalization, the second with
normalization. Results are depicted in Figure 3 and Figure 4.

(a) Results with normalization (b) Results without normalization

Figure 3: Pareto sets with and without normalization

20

Graduation Project Nooteboom Trailers BV TU/e

Figure 4: Performance indicators, above with normalization, below without normalization

Both the Pareto set plots and performance indicator plots show similar behaviour for both
runs. Thus, normalization does not affect GDE3 when applied on the JSSP considering batches.
Because estimates are used for decision space normalization, and thus a bias can be introduced,
it is decided to continue the research without normalization of the decision space.

21

Graduation Project Nooteboom Trailers BV TU/e

6 Numerical study: application to the Nooteboom jobshop
The proposed optimization approach is applied here to find a Pareto set containing solutions

for the production schedule of the jobshop within Nooteboom Trailers BV. The jobshop within
Nooteboom contains 6 machine sets performing 6 different operations. The different machine
sets together with the corresponding operation index, type of processing and type of setup are
listed in Table 1.

Table 1: Machine sets present in Nooteboom jobshop

Operation Index Operation name Process type Setup type
1 Laser cutting Batch Sequence independent
2 Picking Batch Sequence independent
3 Milling Job None
4 Tapping Job None
5 Bending Job Sequence dependent
6 Logistics Job None

It is assumed that each machine set contains one machine. In reality, this assumption holds
for all machine sets except for set 5, which in reality contains two machines. Furthermore, it is
assumed that all machines are available at the start of the model, machines do not fail and worker
availability is not considered. Machines performing batch processing incur sequence independent
setup times. Operation 5, bending, incurs sequence dependent setup times, meaning that the
setup depends on both the current and the preceding job processed by a machine within machine
set 5. In subsection 6.1, we will discuss the data set containing jobs produced in the jobshop
provided by Nooteboom. In subsection 6.2, the current policy for solving the JSSP considering
batches is discussed. Furthermore, the implementation of this policy within a Discrete Event
Simulation (DES) is discussed in this section. Results of the simulation will serve as benchmark
for the performance of GDE3. After discussing the results of the parameter optimization in
subsection 6.3, results of solving the JSSP considering batches using GDE3 are discussed in
subsection 6.4. The performance of GDE3 is quantified using performance indicators discussed
in subsection 5.3. In subsection 6.5 the performance of GDE3 is compared with two benchmarks,
being the current policy used to solve the JSSP considering batches and the optimal solution
of the integer linear program discussed in subsection 4.1. Lastly, in subsection 6.6, the effects
of the safety factor regarding batch area on both batch feasibility and algorithm performance
are analysed.

6.1 Data set
A data set containing 20305 jobs is available. This is the equivalent of 5 months of production,

where production took place in 2 shifts of 8 hours per day. Per job, the data set contains the
features release date, due date, production plan (operations needed to process the job), process
time per production step (except for logistics), material property, thickness property and area.
It should be noted that process times per production step are estimated times. For the logistics
operations, data on process times is not available. However, data on the hours worked at the
logistics operation during the period the jobs have been processed is available. The average
time a job spends at the logistics operation is calculated by dividing the total hours worked at
logistics during the 5 month period by the number of jobs served during the 5 month period.
The estimated time is then added to the data set to ensure each production step has a process
time assigned.

As mentioned before, the data set contains a release date per job. An analysis of release
dates shows that multiple jobs are released simultaneously. On average, every 1.6 days a release

22

Graduation Project Nooteboom Trailers BV TU/e

event occurs composed of on average 183 jobs. In addition, at each release event, an average
of 79 jobs has not started processing at the laser cutter. This results in a total of 262 jobs to
be scheduled per release event. At the start of each production shift, we want to optimize the
production schedule. If a release event would occur every shift, this would result in an average
of 80 jobs to be scheduled per shift. If we look at single release events, the data set shows that
the smallest event only contains one job. Events with 10 jobs occur multiple times within the
data set. In order to limit computational time, we will focus on problem instances containing
10 jobs in the remainder of this section.

Next to a release date per job, the data set also contains a due date per job. These due
dates are based on a stochastic production environment. Because the situation analysed in this
paper is deterministic, due dates have to be adjusted to reflect the situation. This is done per
job, making use of the sum of all production and setup times of this job. The due date per job
is set to this sum.

6.2 Current policy
In order to analyse the current production process within the Nooteboom jobshop, a deter-

ministic DES was built. A deterministic simulation is used, because data on stochasticity (eg
machine availability) is not available. The simulation is used to simulate the current policy
used by the company to solve the JSSP considering batches. Thus, jobs need to be assigned to
batches, batches need to be assigned to machines, jobs need to be assigned to machines and the
processing sequence per machine needs to be determined.

This is done using the following policy. Assignment of jobs to batches is done based on
EDD. At each release event, the released jobs are combined with the jobs which have not
started processing yet. These are jobs which are already batched but of which production of
the first operation has not yet started. The job with the earliest due date amongst the combined
jobs is assigned to a new batch. Consecutively, the batch is filled with available jobs. Similarly
to the problem described in section 3, material and thickness properties of all jobs assigned to
a batch should be equal. In addition, the total area of jobs assigned to a batch must be smaller
than a certain fraction of the available area. After batch definition, both batch and job assigned
and machine sequencing are conducted using an EDD heuristic. The policy is implemented in
a DES using the event types job release, batching, server arrival, job arrival and job departure.
The implemented policy is depicted in algorithm 2 in Appendix A.

The simulation was validated based on the definition of batches and the processing of jobs,
using the parameters waste material and tardiness of jobs. If the fraction of usable batch area
is set to the average waste percentage from current practise, the simulation results in a waste
percentage deviating just 1 percent from current practise. Thus, regarding batch definition,
the simulation is valid. Tardiness of jobs resulting from the simulation is lower than tardiness
in current practise. This is caused by the stochastic nature of real life production and the
deterministic nature of the simulation. Thus, the simulation behaves as expected regarding
tardiness of jobs.

6.3 Results parameter optimization
In order to optimize the control parameters of the proposed GDE3 algorithm, a combination

of the tuning methods multi-fidelity optimization and grid search is used. In multi-fidelity
optimization, a subset of the data is used. Instead of instances of 10 jobs, which will be used to
test GDE3, we will use instances of 5 jobs durting parameter optimization. The bounds of the
control parameters are set according to the intervals proposed by[93]. So N ∈ [275, 1650], CR ∈
[0, 1] and F ∈ (0, 2]. To obtain the first grid, the parameter bounds are used in combination
with a step size of 5. This results in a three dimensional grid of size 53. Before the grid search is
executed, the termination criterion is determined using the performance measures convergence

23

Graduation Project Nooteboom Trailers BV TU/e

of population feasibility, hypervolume indicator and running metric. The results are depicted
in Figure 5.

(a) Feasibility (b) Hypervolume indicator (c) Running metric

Figure 5: Grid search termination criterion

The plots in Figure 5 are created by running GDE3 for 50 generations. Control parameters
are set to N = 275, CR = 0.5 and F = 1. Furthermore, the safety factor regarding batch
area is set to one, meaning that it has no influence. Subplot (a) shows the convergence of
population feasibility. After 3850 function evaluations, or 14 generations, all individuals within
the population are feasible. Subplot (b) shows the convergence of the hypervolume indicator.
After 1375 function evaluations, or 5 generations, the hypervolume indicator stopped converging
and thus the algorithm reached an optimum. The running metric, depicted in subplot (c) shows
the same result as subplot (b). With computational time of the grid search in mind, it is decided
to set the termination criterion to 30 generations. It is expected that GDE3 has converged to an
optimum before this point. In order to account for the stochastic nature of GDE3, 5 independent
runs with different random seeds are performed. The results are averaged over the runs for each
parameter combination. Results of the first grid search are visually presented in Figure 6.

(a) View 1 (b) View 2 (c) View 3

Figure 6: Grid search results N ∈ [275, 1650], CR ∈ [0, 1] and F ∈ (0, 2]

The subplots show different view angles of the results of the grid search. The control param-
eters are visible on the axes of the plots. The color of a dot refers to its hypervolume indicator
score, the size refers to the speed at which it converged to feasibility. We want both performance
measures to be as high as possible. In terms of the plot, this translates to large blue dots. We
will analyze the three parameters consecutively, starting with crossover rate CR.

When analysing the different planes displaying CR, best seen in subplot (b), we notice a clear
difference in dot sizes. Points in the plane CR = 0 and CR = 1, the extremes of this parameter,
are largest. Planes in between the extremes show decreasing dot sizes, independent of the other
parameter values. When analysing the planes CR = 0 and CR = 1, best seen in respectively
subplots (a) and (c), with respect to dot color, we notice that the first plane contains mostly
light colored dots, whereas the second plane contains mostly blue dots. The planes in between

24

Graduation Project Nooteboom Trailers BV TU/e

CR = 0 and CR = 1 show mainly blue dots, so for these values of CR, algorithm performance
with respect to hypervolume indicator is best. We can conclude that algorithm performance is
best when CR lays between CR = 0.8 and CR = 1.

Mutation factor F is analysed next, starting with dot size. The different planes displaying
F , best seen in subplot (b), show that all planes are similar with respect to dot size. This
means that F does not affect convergence speed of the algorithm. When analysing dot color,
differences in results are seen in the planes CR = 0 and CR = 1, best seen in respectively
subplots (a) and (c). As CR = 1 yielded best algorithm performance with respect to CR, we
will focus on this plane when analysing F . The plane is best seen in subplot (c). Results in this
plane clearly show that a value near zero yields lower hypervolume indicator values. For values
0.5, 1.5 and 2, results are similar. For F = 1, algorithm performance is slightly higher for a low
population size. Thus, for F , algorithm performance is best for the value 1.

The last parameter to analyse is population size N . Again, dot size is analysed first. Similarly
to F , the different planes displaying N , best seen in subplot (b), show that all planes are
similar with respect to dot size. Thus, population size does not affect convergence speed of
the algorithm. Also similar to F , differences in dot color are seen in the planes CR = 0 and
CR = 1, best seen in respectively subplots (a) and (c). Again, we will focus on the plane
CR = 1, best seen in subplot (c). Here, we see that all values of N yield equal results except
for N = 250 = 5D, which yield a lower result regarding hypervolume indicator values. This
indicates that algorithm performance is best for N > 5D.

As algorithm performance only deteriorates slightly when population size decreases, we want
to investigate to which extend this parameter can be decreased. Therefore, a second grid search
is executed to investigate algorithm performance for population size values between 1D and
5D. This translates to N ∈ [55, 275]. The other two parameters are set to CR ∈ [0.8, 1]
and F ∈ (0.5, 1.5]. Again, before the grid search is executed, the termination criterion is
determined. Results of the second grid search are displayed and discussed in Appendix B. We
can conclude that although good hypervolume indicator scores can be obtained when population
size is decreased to 3D, convergence speed will decrease. Therefore, it is decided to continue
this research with a population size of 5D, in combination with CR = 1 and F = 1.

6.4 Results optimization with GDE3
In this section, we will discuss results of solving the JSSP considering batches using the pro-

posed algorithm GDE3. We will analyse algorithm performance based on performance measures
discussed in subsection 5.3.

GDE3 in combination with the optimized parameters is used to solve three different problem
instances of 10 jobs each. Three different instances are used to both give a good representation
of instances occurring within the data set and to analyse algorithm robustness under different
input conditions. In the first instance, variety amongst material and thickness properties of
jobs is high. This is combined with a high number of operations in the production plans of
the jobs. The second instance contains jobs with no variety in material and low variety in
thickness properties. Furthermore, jobs have a low number of operations in their production
plan. The third instance can be considered as a combination of the first and second instance.
Jobs have low variety amongst material and thickness properties combined with a high number
of operations in the production plans. Together, the three instances give a good representation
of problem instances occurring within the data set and thus in current practise.

Prior to optimizing the different problem instances, the termination criterion per instance
is determined. The plots resulting from running GDE3 for 100 generations with parameter
settings CR = 1, F = 1 and N = 800 are shown in Appendix C. Results indicate that termi-
nation criterions of respectively 50, 60 and 60 generations are expected to yield results of good
quality.

With the specified parameters, the three different problem instances of 10 jobs are solved.

25

Graduation Project Nooteboom Trailers BV TU/e

Because of the stochastic nature of GDE3, five runs are executed per problem instance. Five
runs is sufficient as the variability of tardiness over the runs proved to be sufficiently low. The
Pareto sets per problem instance are depicted in Figure 7. The Pareto sets display the mean
and standard deviation for job tardiness per waste material level found by the algorithm. The
Pareto set of the first problem instance shows increasing standard deviation of tardiness with an
increasing level of waste material. This can be attributed to the number of jobs per batch. For
low levels of waste material, the number of jobs per batch will be high. All jobs assigned to a
batch will have equal finishing times for the first 2 operations. This leaves less room for variation
in starting times for the remaining operations. For high levels of waste material, the number of
jobs per batch will be low. This means that variety in starting times of all operations will be
higher. Furthermore, this Pareto set shows a much larger scale for job tardiness compared to
the other sets. This is attributed to the production times of jobs for the first operation being
significantly larger compared to the other two problem instances.

The Pareto set of the second problem instance shows lower standard deviations compared
to the other instances. Where standard deviations of the other two instances have a maximum
value of around 200, standard deviation for this instance has a maximum of around 50. This is
explained by the fact that this problem instance contains jobs with a low number of operations
per job, resulting in less room for variation in starting times as operations are limited. Further-
more, this instance has the highest number of optimal solutions. Due to jobs with no variety in
material and low variety in thickness properties within this instance, a lot of job combinations
within batches are possible.

The Pareto set of the third problem instance shows a maximum value of around 200 for
standard deviation, which is explained by the high number of operations per job within this
instance. The Pareto set also shows that, in case low variety amongst material and thickness
properties of jobs is combined with a high number of operations per job, the number of solutions
within the Pareto set will be lower.

(a) Problem instance 1 (b) Problem instance 2

(c) Problem instance 3

Figure 7: Pareto set per problem instance

26

Graduation Project Nooteboom Trailers BV TU/e

In order to determine the quality of the different Pareto sets, we will use the performance
measures convergence speed with regards to population feasibility and hypervolume indicator.
Running metric is excluded, because we run each problem instance 5 times in parallel. This
makes it impossible to save the required data to obtain the running metric. For each run, plots
of the 2 performance measures and the found Pareto set, including feasible solutions found, are
displayed in Appendix C. The mean and standard deviation of the two performance measures
per problem instance are given in Table 2. As problem complexity increases from instance one
to instance three, hypervolume indicator values decrease. Although it becomes harder for the
algorithm to find good quality solutions if problem complexity increases, a higher number of
generations could solve this problem. Instance two used the most time to converge to feasibility.
Recall that the repair function does not necessarily repair the assignment of jobs to batches
to feasibility. As instance two contains jobs with no variety in material and low variety in
thickness properties, a lot of job combinations within batches are possible. Therefore, it will
cost the repair function more time to guide this instance to the feasible region compared to the
other two instances.

Table 2: Performance indicator scores per problem instance

Mean St. dev.
Instance 1 Convergence speed 11 0.63

HV indicator 0.74 0.03
Instance 2 Convergence speed 19.8 1.33

HV indicator 0.53 0.23
Instance 3 Convergence speed 14 0.63

HV indicator 0.30 0.19

6.5 Comparison of GDE3 with benchmarks
In this section, we will compare results of GDE3 with two benchmarks. The first benchmark is

the current policy to solve the JSSP considering batches, discussed in subsection 6.2. The second
benchmark is the optimal solution of the integer linear program discussed in subsection 4.1. The
optimal solution is obtained using the solver Gurobi [102]. Note that for the comparison with
Gurobi, problem instances are decreased to 5 jobs due to run time of the solver.

Per problem instance, the result from the current policy (red) is plotted together with the
Pareto set found by GDE3 (blue). Results are displayed in Figure 8. It can be seen that GDE3
outperforms the current policy in terms of tardiness for all problem instances. This means that
GDE3 is capable of scheduling the jobs such that the makespan of all jobs is minimized. In
terms of waste material, the solution found by EDD heuristic aligns with the best solution found
by GDE3. However, GDE3 is able to combine a low level of waste material with a significantly
lower level of tardiness compared to current policy. Next to better performance in terms of
tardiness, GDE3 provides a set of Pareto optimal solutions. This enables a decision making
process in which the trade-off between objectives can be decided upon. Thus, the decision maker
can align the schedule to fit the current wishes of the company regarding objectives.

The different plots clearly show that the current policy solely focuses on minimizing waste
material. When a batch is released to the jobshop, it is not known a priori what the effect of
this batch on the second objective, job tardiness, will be. GDE3 does provide this insight to
the company. Furthermore, GDE3 can support in determining required capacity needed within
the jobshop.

27

Graduation Project Nooteboom Trailers BV TU/e

(a) Problem instance 1 (b) Problem instance 2

(c) Problem instance 3

Figure 8: Pareto set and EDD heuristic solution per problem instance

To solve the integer linear program discussed in subsection 4.1, the solver Gurobi is used.
When Gurobi needs to solve a MOO problem, it will solve the objectives consecutively. Gurobi
is ran twice per problem instance in order to put equal emphasis on both objectives. As stated
before, the problem instances are decreased before we solve them using Gurobi. The reason is
run time of Gurobi. Figure 9 shows that run time increases exponentially when problem size
increases. Solving a problem instance of 10 jobs is computationally too expensive, therefore
we will focus on problem instances of 5 jobs. Results of GDE3 and Gurobi are displayed in
Figure 10.

Figure 9: Gurobi run time

28

Graduation Project Nooteboom Trailers BV TU/e

(a) Problem instance 1 (b) Problem instance 2

(c) Problem instance 3

Figure 10: Pareto set and Gurobi solver solution per problem instance

Results show that Gurobi finds a slightly better solution than GDE3. This can be attributed
to the repair function. When starting times of batches and jobs are repaired, the sequence at
the first operation, which the algorithm determined, is used to repair the rest of the times.
This sequence may not be the optimal sequence, as can be seen in subplot (a). In case there
exists only one feasible sequence, GDE3 finds the same solution as Gurobi. This is the case in
subplots (b) and (c).

We can conclude that GDE3 outperforms the current policy and performs only slightly worse
than Gurobi solver in terms of algorithm performance. Although computational time of GDE3
is better compared to Gurobi solver, it is not fast enough to solve larger problem instances. For
the problem instances of 10 jobs, run time is between 35 and 45 minutes, which is acceptable.
However, for larger instances, run time of GDE3 needs to be improved. The main reason why
GDE3 becomes slow for larger problem instances is the definition of an individual within the
population. The dimensions of an individual equal D = n ∗ o+ n2, where n equals the number
of jobs and o the number of operations. The term n2 causes dimensions of an individual to
increase quadratic. If this is altered for larger problem instances, it is expected that GDE3 is
capable of finding good solutions in an acceptable time frame.

6.6 Results safety factor batch area
Up until now, the safety factor regarding batch area has not been used. Recall that the

safety factor is introduced to compensate for omitting placement of parts and cutting seems.
Thus, the safety factor should prevent jobs which could form a feasible batch based on area but
would form an infeasible batch based on geometry from being batched. To test the effects of
the safety factor, a new problem instance is introduced. This instance has the feature that the
included jobs could be batched based on job area, but not on job geometry. This situation is

29

Graduation Project Nooteboom Trailers BV TU/e

visually represented in Figure 11.

Figure 11: Geometric infeasible batch

When we run GDE3 with a safety factor of one, as such it has no influence, the algorithm will
assign the two jobs to the same batch. When the safety factor is set to 0.74, which translates to
limiting the algorithm to using a maximum of 74 percent of the usable batch area, the jobs are
assigned to different batches. So, in case of this test instance the safety factor gives the desired
result. To see the impact of the safety factor on algorithm performance on a different problem
instance, problem instance 1 is optimized again. Results are displayed in Figure 12.

(a) Without safety factor (b) With safety factor

Figure 12: Pareto set with and without safety factor

Note that the values of waste material can not be compared between the plots because of
the safety factor. We see that with the safety factor in place, GDE3 finds one solution less. If
we analyse the solution which is excluded due to the safety factor, we see that this would have
been a feasible batch. So the safety factor is preventing an infeasible batch to be formed by
the algorithm but at the same time it prevents a feasible batch to be formed as well. Although
the safety factor is a simple way to prevent infeasible batches, it also limits the algorithm.
Therefore, it is recommended to use the algorithm without the safety factor.

30

Graduation Project Nooteboom Trailers BV TU/e

7 Managerial insights
The proposed Generalized Differential Evolution 3 (GDE3) algorithm allows solving the

jobshop scheduling problem considering batches and provides a set of Pareto optimal solutions
to the decision maker. Using the set of solutions, the decision maker can decide on the trade-
off between objectives. Thus, the decision maker can align the production schedule to fit the
current wishes of the company regarding objectives.

Under the assumptions made within this research, GDE3 outperforms the current policy in
terms of tardiness for all problem instances. This means that GDE3 is capable of scheduling
the jobs such that the makespan of all jobs is lower compared to current practice. Thus, with
the same amount of resources, GDE3 could either finish the same set of jobs faster or schedule a
higher amount of jobs within the same time frame, taking capacity restrictions into account. In
terms of waste material, the solution found by EDD heuristic aligns with the best solution found
by GDE3. However, GDE3 is able to combine a low level of waste material with a significantly
lower level of tardiness compared to current policy. Although performance of GDE3 is slightly
lower compared to the optimal solution provided by the Gurobi solver, computational time of
GDE3 is much lower. So, GDE3 is capable of finding near optimal solutions in an acceptable
time frame.

The Pareto front, next to enabling a decision making process, also facilitates insights in the
production process before the start of the process. This enables better estimation of required
capacity within the jobshop. Where the current policy is to react to capacity shortage, GDE3
enables taking preventive measures. The algorithm also provides insights in material usage.
These insights can be used to prevent material shortages and maintain a lower safety stock.
Lastly, the algorithm provides insights in scheduled machine utilization. In current practise, we
see high variation in utilization rates. With a proper schedule, rates can be balanced over time
resulting in a more stable production process.

31

Graduation Project Nooteboom Trailers BV TU/e

8 Conclusions
In this study, we applied the metaheuristic Generalized Differential Evolution 3 (GDE3) to

solve the jobshop scheduling problem considering batches. GDE3 is applied to several repre-
sentative real-world problem instances. We can draw three main conclusions. Firstly, GDE3
outperforms current practise in terms of job tardiness. In terms of waste material, GDE3 finds
the same solution as in current practise, but in combination with much lower job tardiness.
Although performance of GDE3 is slightly lower compared to the Gurobi solver, computational
time of GDE3 is much lower. So, GDE3 is capable of finding near optimal solutions in an
acceptable time frame. Secondly, GDE3 provides a set of Pareto optimal solutions. This set
provides insights in how different production schedules affect production objectives and enables
to substantiate a decision for a certain trade-off between objectives. Furthermore, the set pro-
vides insights in the production process before the start of production. Thirdly, compared to
relevant literature, this research accounts for setup times, which in a jobshop environment with
a high product mix is a very important factor in schedule computation.

Although the problem instances used in this research are representative for real world in-
stances, they are amongst smaller instances. In future research, it would be of interest to alter
the algorithm such that it will need less run time and thus can solve larger problem instances.
Parameter control and proper termination criterion could also add to limiting computational
time of the algorithm, so these are also interesting fields of future research.

It would also be of interest to investigate how the assumption of a one dimensional bin
packing problem can be incorporated in the model such that batch feasibility is taken into
account. In this research, we propose to use a safety factor on batch area for this purpose.
Although enhancing batch feasibility, the factor also limits the algorithm in forming batches
and thus is not an ideal solution.

Furthermore, it would be interesting to see the effects of adding additional objectives to the
model. For instance, we could add the objective of minimizing earliness of jobs to see the effect
on work in progress. In current times of climate change and high energy prices, it could be
interesting to add the objective of minimizing power consumption.

32

Graduation Project Nooteboom Trailers BV TU/e

References
[1] S. S. Kamble, A. Gunasekaran, and S. A. Gawankar, “Sustainable industry 4.0 frame-

work: A systematic literature review identifying the current trends and future perspec-
tives,” Process safety and environmental protection, vol. 117, pp. 408–425, 2018.

[2] M. C. Duman and B. Akdemir, “A study to determine the effects of industry 4.0 technol-
ogy components on organizational performance,” Technological Forecasting and Social
Change, vol. 167, p. 120 615, 2021.

[3] S. S. Kamble, A. Gunasekaran, A. Ghadge, and R. Raut, “A performance measurement
system for industry 4.0 enabled smart manufacturing system in smmes-a review and em-
pirical investigation,” International journal of production economics, vol. 229, p. 107 853,
2020.

[4] Q. Zhang and M. Tseng, “Modelling and integration of customer flexibility in the order
commitment process for high mix low volume production,” International Journal of
Production Research, vol. 47, no. 22, pp. 6397–6416, 2009.

[5] S. A. Irani, Job Shop Lean: An Industrial Engineering Approach to Implementing Lean
in High-mix Low-volume Production Systems. CRC Press, 2020.

[6] R. A. Liaqait, S. Hamid, S. S. Warsi, and A. Khalid, “A critical analysis of job shop
scheduling in context of industry 4.0,” Sustainability, vol. 13, no. 14, p. 7684, 2021.

[7] H. Xiong, S. Shi, D. Ren, and J. Hu, “A survey of job shop scheduling problem: The
types and models,” Computers & Operations Research, p. 105 731, 2022.

[8] A. M. Ham and E. Cakici, “Flexible job shop scheduling problem with parallel batch
processing machines: Mip and cp approaches,” Computers & Industrial Engineering,
vol. 102, pp. 160–165, 2016.

[9] J. W. Fowler and L. Mönch, “A survey of scheduling with parallel batch (p-batch) pro-
cessing,” European Journal of Operational Research, 2021.

[10] J. Pei, B. Cheng, X. Liu, P. M. Pardalos, and M. Kong, “Single-machine and parallel-
machine serial-batching scheduling problems with position-based learning effect and lin-
ear setup time,” Annals of Operations Research, vol. 272, no. 1, pp. 217–241, 2019.

[11] C. Gahm, A. Uzunoglu, S. Wahl, C. Ganschinietz, and A. Tuma, “Applying machine
learning for the anticipation of complex nesting solutions in hierarchical production plan-
ning,” European Journal of Operational Research, vol. 296, no. 3, pp. 819–836, 2022.

[12] B. Verlinden, D. Cattrysse, and D. Van Oudheusden, “Integrated sheet-metal production
planning for laser cutting and bending,” International journal of production research,
vol. 45, no. 2, pp. 369–383, 2007.

[13] A. Rinciog, C. Mieth, P. M. Scheikl, and A. Meyer, “Sheet-metal production schedul-
ing using alphago zero,” in Proceedings of the Conference on Production Systems and
Logistics: CPSL 2020, Hannover: Institutionelles Repositorium der Leibniz Universität
Hannover, 2020.

[14] N. M. Cid-Garcia and Y. A. Rios-Solis, “Positions and covering: A two-stage methodology
to obtain optimal solutions for the 2d-bin packing problem,” Plos one, vol. 15, no. 4,
e0229358, 2020.

[15] B. Verlinden, D. Cattrysse, H. Crauwels, and D. Van Oudheusden, “The development and
application of an integrated production planning methodology for sheet metal working
smes,” Production Planning and Control, vol. 20, no. 7, pp. 649–663, 2009.

[16] H. Zhu, M. Chen, Z. Zhang, and D. Tang, “An adaptive real-time scheduling method for
flexible job shop scheduling problem with combined processing constraint,” IEEE Access,
vol. 7, pp. 125 113–125 121, 2019.

33

Graduation Project Nooteboom Trailers BV TU/e

[17] P. Helo, D. Phuong, and Y. Hao, “Cloud manufacturing–scheduling as a service for sheet
metal manufacturing,” Computers & Operations Research, vol. 110, pp. 208–219, 2019.

[18] S. Mirjalili and J. S. Dong, Multi-objective optimization using artificial intelligence tech-
niques. Springer, 2020.

[19] H. Crauwels, B. Verlinden, D. Cattrysse, and D. Van Oudheusden, “Sheet-metal shop
scheduling considering makespan and flow time criteria,” The Open Operational Research
Journal, vol. 4, no. 1, 2010.

[20] T. Sakaguchi, T. Murakami, S. Fujita, and Y. Shimizu, “A scheduling method with
considering nesting for sheet metal processing,” in International Symposium on Flexible
Automation, American Society of Mechanical Engineers, vol. 45110, 2012, pp. 317–320.

[21] T. Sakaguchi, H. Ohtani, and Y. Shimizu, “A heuristic approach for integrated nesting
and scheduling in sheet metal processing,” in IFIP International Conference on Advances
in Production Management Systems, Springer, 2015, pp. 226–234.

[22] T. Sakaguchi, T. Tanaka, Y. Shimizu, and N. Uchiyama, “A scheduling method using
genetic algorithm and dispatching rule for sheet metal processing,” in 2016 International
Symposium on Flexible Automation (ISFA), IEEE, 2016, pp. 198–201.

[23] M. Caramia and P. Dell’Olmo, “Multi-objective optimization,” in Multi-objective man-
agement in freight logistics, Springer, 2020, pp. 21–51.

[24] A. Schrijver, “On the history of combinatorial optimization (till 1960),” Handbooks in
operations research and management science, vol. 12, pp. 1–68, 2005.

[25] V. Kenny, M. Nathal, and S. Saldana, “Heuristic algorithms,” Visited on Oct, vol. 20,
p. 2018, 2014.

[26] V. Maniezzo, T. Stützle, and S. Voß, Matheuristics. Springer, 2021.
[27] I. Boussaı̈d, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,”

Information sciences, vol. 237, pp. 82–117, 2013.
[28] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated annealing-based mul-

tiobjective optimization algorithm: Amosa,” IEEE transactions on evolutionary compu-
tation, vol. 12, no. 3, pp. 269–283, 2008.

[29] D. M. Jaeggi, G. T. Parks, T. Kipouros, and P. J. Clarkson, “The development of a
multi-objective tabu search algorithm for continuous optimisation problems,” European
Journal of Operational Research, vol. 185, no. 3, pp. 1192–1212, 2008.

[30] A. P. Reynolds and B. De la Iglesia, “A multi-objective grasp for partial classification,”
Soft Computing, vol. 13, no. 3, pp. 227–243, 2009.

[31] A. Duarte, J. J. Pantrigo, E. G. Pardo, and N. Mladenovic, “Multi-objective variable
neighborhood search: An application to combinatorial optimization problems,” Journal
of Global Optimization, vol. 63, no. 3, pp. 515–536, 2015.

[32] A. Jaszkiewicz, “Genetic local search for multi-objective combinatorial optimization,”
European journal of operational research, vol. 137, no. 1, pp. 50–71, 2002.

[33] M. J. Geiger, “Foundations of the pareto iterated local search metaheuristic,” arXiv
preprint arXiv:0809.0406, 2008.

[34] S. Iredi, D. Merkle, and M. Middendorf, “Bi-criterion optimization with multi colony ant
algorithms,” in International conference on evolutionary multi-criterion optimization,
Springer, 2001, pp. 359–372.

[35] K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer, “Pareto ant colony
optimization: A metaheuristic approach to multiobjective portfolio selection,” Annals of
operations research, vol. 131, no. 1, pp. 79–99, 2004.

34

Graduation Project Nooteboom Trailers BV TU/e

[36] C. C. Coello and M. S. Lechuga, “Mopso: A proposal for multiple objective particle
swarm optimization,” in Proceedings of the 2002 Congress on Evolutionary Computation.
CEC’02 (Cat. No. 02TH8600), IEEE, vol. 2, 2002, pp. 1051–1056.

[37] H. Han, W. Lu, and J. Qiao, “An adaptive multiobjective particle swarm optimization
based on multiple adaptive methods,” IEEE transactions on cybernetics, vol. 47, no. 9,
pp. 2754–2767, 2017.

[38] M. R. Sierra and C. A. Coello Coello, “Improving pso-based multi-objective optimization
using crowding, mutation and�-dominance,” in International conference on evolutionary
multi-criterion optimization, Springer, 2005, pp. 505–519.

[39] B. Niu, H. Wang, J. Wang, and L. Tan, “Multi-objective bacterial foraging optimization,”
Neurocomputing, vol. 116, pp. 336–345, 2013.

[40] R. Hedayatzadeh, B. Hasanizadeh, R. Akbari, and K. Ziarati, “A multi-objective artificial
bee colony for optimizing multi-objective problems,” in 2010 3rd international conference
on advanced computer theory and engineering (ICACTE), IEEE, vol. 5, 2010, pp. V5–
277.

[41] R. Akbari, R. Hedayatzadeh, K. Ziarati, and B. Hassanizadeh, “A multi-objective arti-
ficial bee colony algorithm,” Swarm and Evolutionary Computation, vol. 2, pp. 39–52,
2012.

[42] Y. Xiang, Y. Zhou, and H. Liu, “An elitism based multi-objective artificial bee colony
algorithm,” European Journal of Operational Research, vol. 245, no. 1, pp. 168–193, 2015.

[43] F. Freschi and M. Repetto, “Vis: An artificial immune network for multi-objective opti-
mization,” Engineering optimization, vol. 38, no. 8, pp. 975–996, 2006.

[44] P. A. Castro and F. J. V. Zuben, “Mobais: A bayesian artificial immune system for
multi-objective optimization,” in International Conference on Artificial Immune Systems,
Springer, 2008, pp. 48–59.

[45] K. C. Tan, C. K. Goh, A. Mamun, and E. Ei, “An evolutionary artificial immune system
for multi-objective optimization,” European Journal of Operational Research, vol. 187,
no. 2, pp. 371–392, 2008.

[46] W. Guo, L. Wang, and Q. Wu, “Numerical comparisons of migration models for multi-
objective biogeography-based optimization,” Information Sciences, vol. 328, pp. 302–320,
2016.

[47] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto evolu-
tionary algorithm,” TIK-report, vol. 103, 2001.

[48] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2,
pp. 182–197, 2002.

[49] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: Solving problems with box
constraints,” IEEE transactions on evolutionary computation, vol. 18, no. 4, pp. 577–601,
2013.

[50] J. D. Knowles and D. W. Corne, “M-paes: A memetic algorithm for multiobjective op-
timization,” in Proceedings of the 2000 Congress on Evolutionary Computation. CEC00
(Cat. No. 00TH8512), IEEE, vol. 1, 2000, pp. 325–332.

[51] S. Huband, P. Hingston, L. While, and L. Barone, “An evolution strategy with proba-
bilistic mutation for multi-objective optimisation,” in The 2003 Congress on Evolutionary
Computation, 2003. CEC’03., IEEE, vol. 4, 2003, pp. 2284–2291.

35

Graduation Project Nooteboom Trailers BV TU/e

[52] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for multi-objective
optimization,” Evolutionary computation, vol. 15, no. 1, pp. 1–28, 2007.

[53] P. Venkatesh and K. Y. Lee, “Multi-objective evolutionary programming for economic
emission dispatch problem,” in 2008 IEEE Power and Energy Society General Meeting-
Conversion and Delivery of Electrical Energy in the 21st Century, IEEE, 2008, pp. 1–
8.

[54] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, “Multiobjective
evolutionary algorithms: A survey of the state of the art,” Swarm and evolutionary
computation, vol. 1, no. 1, pp. 32–49, 2011.

[55] F. Xue, A. C. Sanderson, and R. J. Graves, “Pareto-based multi-objective differential
evolution,” in The 2003 Congress on Evolutionary Computation, 2003. CEC’03., IEEE,
vol. 2, 2003, pp. 862–869.

[56] J.-F. Qiao, Y. Hou, and H.-G. Han, “Optimal control for wastewater treatment process
based on an adaptive multi-objective differential evolution algorithm,” Neural Computing
and Applications, vol. 31, no. 7, pp. 2537–2550, 2019.

[57] J. Zhang and A. C. Sanderson, “Jade: Adaptive differential evolution with optional ex-
ternal archive,” IEEE Transactions on evolutionary computation, vol. 13, no. 5, pp. 945–
958, 2009.

[58] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control pa-
rameters in differential evolution: A comparative study on numerical benchmark prob-
lems,” IEEE transactions on evolutionary computation, vol. 10, no. 6, pp. 646–657, 2006.

[59] R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for differential
evolution,” in 2013 IEEE congress on evolutionary computation, IEEE, 2013, pp. 71–78.

[60] R. Tanabe and A. S. Fukunaga, “Improving the search performance of shade using linear
population size reduction,” in 2014 IEEE congress on evolutionary computation (CEC),
IEEE, 2014, pp. 1658–1665.

[61] A. P. Piotrowski, “L-shade optimization algorithms with population-wide inertia,” In-
formation Sciences, vol. 468, pp. 117–141, 2018.

[62] F. Lezama, J. Soares, R. Faia, T. Pinto, and Z. Vale, “A new hybrid-adaptive differential
evolution for a smart grid application under uncertainty,” in 2018 IEEE Congress on
Evolutionary Computation (CEC), IEEE, 2018, pp. 1–8.

[63] P. Civicioglu, E. Besdok, M. A. Gunen, and U. H. Atasever, “Weighted differential evo-
lution algorithm for numerical function optimization: A comparative study with cuckoo
search, artificial bee colony, adaptive differential evolution, and backtracking search opti-
mization algorithms,” Neural Computing and Applications, vol. 32, no. 8, pp. 3923–3937,
2020.

[64] K. M. Sallam, S. M. Elsayed, R. K. Chakrabortty, and M. J. Ryan, “Improved multi-
operator differential evolution algorithm for solving unconstrained problems,” in 2020
IEEE Congress on Evolutionary Computation (CEC), IEEE, 2020, pp. 1–8.

[65] S. Kukkonen and J. Lampinen, “Gde3: The third evolution step of generalized differential
evolution,” in 2005 IEEE congress on evolutionary computation, IEEE, vol. 1, 2005,
pp. 443–450.

[66] J. Vesterstrom and R. Thomsen, “A comparative study of differential evolution, par-
ticle swarm optimization, and evolutionary algorithms on numerical benchmark prob-
lems,” in Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No.
04TH8753), IEEE, vol. 2, 2004, pp. 1980–1987.

36

Graduation Project Nooteboom Trailers BV TU/e

[67] D. Zhang and B. Wei, “Comparison between differential evolution and particle swarm
optimization algorithms,” in 2014 IEEE International Conference on Mechatronics and
Automation, IEEE, 2014, pp. 239–244.

[68] Y. Wang, H. Liu, H. Long, Z. Zhang, and S. Yang, “Differential evolution with a new
encoding mechanism for optimizing wind farm layout,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 3, pp. 1040–1054, 2017.

[69] M. Wagner, J. Day, and F. Neumann, “A fast and effective local search algorithm for
optimizing the placement of wind turbines,” Renewable energy, vol. 51, pp. 64–70, 2013.

[70] M. Wagner, K. Veeramachaneni, F. Neumann, and U.-M. O’Reilly, “Optimizing the lay-
out of 1000 wind turbines,” European wind energy association annual event, vol. 205209,
2011.

[71] H. Long, Z. Zhang, Z. Song, and A. Kusiak, “Formulation and analysis of grid and
coordinate models for planning wind farm layouts,” IEEE access, vol. 5, pp. 1810–1819,
2017.

[72] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions,” IEEE transactions on
evolutionary computation, vol. 10, no. 3, pp. 281–295, 2006.

[73] J. Sun, B. Feng, and W. Xu, “Particle swarm optimization with particles having quantum
behavior,” in Proceedings of the 2004 congress on evolutionary computation (IEEE Cat.
No. 04TH8753), IEEE, vol. 1, 2004, pp. 325–331.

[74] T.-q. Wu, M. Yao, and J.-h. Yang, “Dolphin swarm algorithm,” Frontiers of Information
Technology & Electronic Engineering, vol. 17, no. 8, pp. 717–729, 2016.

[75] F. Lezama, L. E. Sucar, E. M. de Cote, J. Soares, and Z. Vale, “Differential evolution
strategies for large-scale energy resource management in smart grids,” in Proceedings of
the Genetic and Evolutionary Computation Conference Companion, 2017, pp. 1279–1286.

[76] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in 2009 World congress on
nature & biologically inspired computing (NaBIC), Ieee, 2009, pp. 210–214.

[77] D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,”
Applied mathematics and computation, vol. 214, no. 1, pp. 108–132, 2009.

[78] P. Civicioglu, “Backtracking search optimization algorithm for numerical optimization
problems,” Applied Mathematics and computation, vol. 219, no. 15, pp. 8121–8144, 2013.

[79] A. Kumar, R. K. Misra, and D. Singh, “Improving the local search capability of effec-
tive butterfly optimizer using covariance matrix adapted retreat phase,” in 2017 IEEE
congress on evolutionary computation (CEC), IEEE, 2017, pp. 1835–1842.

[80] G. Zhang and Y. Shi, “Hybrid sampling evolution strategy for solving single objective
bound constrained problems,” in 2018 IEEE Congress on Evolutionary Computation
(CEC), IEEE, 2018, pp. 1–7.

[81] N. H. Awad, M. Z. Ali, and P. N. Suganthan, “Ensemble sinusoidal differential covari-
ance matrix adaptation with euclidean neighborhood for solving cec2017 benchmark
problems,” in 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2017,
pp. 372–379.

[82] A. W. Mohamed, A. A. Hadi, A. M. Fattouh, and K. M. Jambi, “Lshade with semi-
parameter adaptation hybrid with cma-es for solving cec 2017 benchmark problems,” in
2017 IEEE Congress on evolutionary computation (CEC), IEEE, 2017, pp. 145–152.

[83] D. Wilson, S. Rodrigues, C. Segura, et al., “Evolutionary computation for wind farm
layout optimization,” Renewable energy, vol. 126, pp. 681–691, 2018.

37

Graduation Project Nooteboom Trailers BV TU/e

[84] I. Loshchilov and F. Hutter, “Cma-es for hyperparameter optimization of deep neural
networks,” arXiv preprint arXiv:1604.07269, 2016.

[85] A. Kheiri and E. Keedwell, “A sequence-based selection hyper-heuristic utilising a hidden
markov model,” in Proceedings of the 2015 annual conference on genetic and evolutionary
computation, 2015, pp. 417–424.

[86] C. Gahm, S. Wahl, and A. Tuma, “Scheduling parallel serial-batch processing machines
with incompatible job families, sequence-dependent setup times and arbitrary sizes,”
International Journal of Production Research, pp. 1–24, 2021.

[87] S. Kim and P. Bobrowski, “Impact of sequence-dependent setup time on job shop schedul-
ing performance,” The International Journal of Production Research, vol. 32, no. 7,
pp. 1503–1520, 1994.

[88] K. Deb, A. Sinha, and S. Kukkonen, “Multi-objective test problems, linkages, and evo-
lutionary methodologies,” in Proceedings of the 8th annual conference on Genetic and
evolutionary computation, 2006, pp. 1141–1148.

[89] Q. Zhang, A. Zhou, and Y. Jin, “Rm-meda: A regularity model-based multiobjective
estimation of distribution algorithm,” IEEE Transactions on Evolutionary Computation,
vol. 12, no. 1, pp. 41–63, 2008.

[90] A. Adebiyi and C. Ayo, “Portfolio selection problem using generalized differential evolu-
tion 3,” Applied Mathematical Sciences, vol. 9, no. 42, 2015.

[91] B. Leite, A. O. S. da Costa, and E. F. da Costa Junior, “Multi-objective optimization
of adiabatic styrene reactors using generalized differential evolution 3 (gde3),” Chemical
Engineering Science, p. 118 196, 2022.

[92] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,” IEEE Access,
vol. 8, pp. 89 497–89 509, 2020.

[93] S. Kukkonen and J. Lampinen, “An empirical study of control parameters for the third
version of generalized differential evolution (gde3),” in 2006 IEEE International Confer-
ence on Evolutionary Computation, IEEE, 2006, pp. 2002–2009.

[94] M. Cervenka and H. Boudna, “Visual guide of f and cr parameters influence on differential
evolution solution quality,” pp. 141–144, 2018.

[95] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith, “Parameter control in evo-
lutionary algorithms,” in Parameter setting in evolutionary algorithms, Springer, 2007,
pp. 19–46.

[96] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning: methods, sys-
tems, challenges. Springer Nature, 2019.

[97] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.,” Journal
of machine learning research, vol. 13, no. 2, 2012.

[98] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and analyzing evolu-
tionary algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 19–31,
2011.

[99] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algorithms—a
comparative case study,” in International conference on parallel problem solving from
nature, Springer, 1998, pp. 292–301.

[100] J. Blank and K. Deb, “A running performance metric and termination criterion for eval-
uating evolutionary multi-and many-objective optimization algorithms,” in 2020 IEEE
Congress on Evolutionary Computation (CEC), IEEE, 2020, pp. 1–8.

38

Graduation Project Nooteboom Trailers BV TU/e

[101] L. He, H. Ishibuchi, A. Trivedi, H. Wang, Y. Nan, and D. Srinivasan, “A survey of
normalization methods in multiobjective evolutionary algorithms,” IEEE Transactions
on Evolutionary Computation, vol. 25, no. 6, pp. 1028–1048, 2021.

[102] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2023. [Online]. Avail-
able: https://www.gurobi.com.

39

https://www.gurobi.com

Graduation Project Nooteboom Trailers BV TU/e

A Appendix
A Discrete event simulation

The algorithm below shows the current policy within the jobshop implemented within a
discrete event simulation.

Algorithm 2: function JSSP considering batches simulation
Input: Jobs
Output: Simulation results

1 Schedule release event for input jobs
2 while Not all orders produced do
3 Get next event from FES
4 if Event type is Release then
5 Get jobs from event
6 Get jobs which have not started production from laser queue
7 Schedule Batching event for jobs and add it to FES
8 else if Event type is Batching then
9 Get jobs from event

10 Create batches
11 Register waste material
12 Add batches to laser queue
13 else if Event type is Server Arrival then
14 Get current queue from event
15 while queue is not empty do
16 Get batch/job with EDD from queue
17 Schedule departure event for batch/job and add it to FES
18 if queue is empty then
19 Schedule server arrival event and add it to FES
20 else if Event type is Arrival then
21 Get batch/job from event
22 Get current queue from event
23 Add batch/job to current queue
24 else if Event type is Departure then
25 Get batch/job from event
26 Get current queue from event
27 if Job finished processing then
28 Remove job from current queue
29 Register tardiness of job
30 else if Batch/job needs further processing then
31 Remove job from current queue
32 Schedule arrival event of job in next queue and add it to FES
33 return (Total waste material, total tardiness)

40

Graduation Project Nooteboom Trailers BV TU/e

B Parameter optimization
A second grid search is executed to investigate algorithm performance for population size

values between 1D and 5D. This translates to N ∈ [55, 275]. The other two parameters are set
to CR ∈ [0.8, 1] and F ∈ (0.5, 1.5]. Before the grid search is executed, the termination criterion
is determined by running GDE3 for 50 generations. Results are depicted in Figure 13.

(a) Feasibility (b) Hypervolume indicator (c) Running metric

Figure 13: Grid search termination criterion

Subplot (a) shows that after 440 function evaluations, or 8 generations, all individuals within
the population are feasible. Subplot (b) shows that the hypervolume indicator stopped converg-
ing after 385 function evaluations, or 7 generations. The running metric, depicted in subplot
(c) shows the same result as subplot (b). We therefore set the termination criterion to 20
generations. The results of the second grid search are depicted in Figure 14.

(a) View 1 (b) View 2 (c) View 3

Figure 14: Grid search results N ∈ [55, 275], CR ∈ [0.8, 1] and F ∈ (0.5, 1.5]

Similarly to the first grid search, the color of a dot refers to its hypervolume indicator score
and the size to the speed at which it converged to feasibility. Although the scale of the color
of both searches is equal, the scale of dot size differs between the searches. Again, the three
control parameters will be analysed sequentially in the order CR, F and N .

For CR, results with regards to convergence speed, best seen in subplot (b), are similar
compared to the first search. Performance is best for CR = 1, and deteriorates when the value
for CR decreases. When analysing the different planes displaying CR with respect to dot color,
best seen in subplots (b) and (c), we see the best results in the plane CR = 0.8. We choose to
focus on the plane CR = 0.8, as this value yields acceptable convergence speed in combination
with best performance regarding hypervolume indicator.

Similar to the first grid search, F does not affect convergence speed of the algorithm. When
analysing dot color in the plane CR = 0.8, best seen in subplots (b) and (c), we see equal
performance for values between F = 0.5 and F = 1.25. Thus, the value of F should be set
somewhere within this interval.

41

Graduation Project Nooteboom Trailers BV TU/e

The last parameter to analyse is population size N , starting with dot size. Similarly to
the first grid search, N does not affect convergence speed of the algorithm. If we analyse
the plane CR = 0.8 with respect to dot color, best seen in subplots (b) and (c) we see that
a decreasing value of N yields lower values for hypervolume indicator. If N is decreased to
N = 165 = 3D, we see good performance in combination with F = 0.5 and F = 1. If N
is decreased further, algorithm performance deteriorates. From the second gird search we can
conclude that population size could be decreased to 3D, in combination with CR = 0.8 and
F = 0.75. However, convergence speed will suffer from a decreased population size.

42

Graduation Project Nooteboom Trailers BV TU/e

C Solving problem instances with GDE3
The plots below show the performance indicators resulting from running GDE3 for 100 gen-

erations with parameter settings CR = 1, F = 1 and N = 800 for the three different problem
instances. When analysing the first problem instance, subplot (a) shows the convergence of
population feasibility. After 9600 function evaluations, or 12 generations, all individuals within
the population are feasible. Subplot (b) shows the convergence of the hypervolume indicator.
After 47200 function evaluations, or 59 generations, the hypervolume indicator stopped con-
verging and thus the algorithm reached an optimum. The running metric, depicted in subplot
(c) shows that after approximately 30 generations, hypervolume indicator convergence is very
limited. With computational time of the grid search in mind, it is decided to set the termination
criterion to 50 generations. It is expected that GDE3 has converged to a near optimal solution
before this point.

(a) Feasibility (b) Hypervolume indicator (c) Running metric

Figure 15: Performance measures 10 jobs, 100 generations, instance 1

Subplot (a) of the second problem instance shows the convergence of population feasibility.
After 16000 function evaluations, or 20 generations, all individuals within the population are
feasible. Subplot (b) shows the convergence of the hypervolume indicator. After 35200 func-
tion evaluations, or 44 generations, the hypervolume indicator stopped converging and thus
the algorithm reached an optimum. The running metric, depicted in subplot (c) shows that
after approximately 40 generations, hypervolume indicator convergence is very limited. With
computational time of the grid search in mind, it is decided to set the termination criterion to
60 generations. It is expected that GDE3 has converged to a near optimal solution before this
point.

(a) Feasibility (b) Hypervolume indicator (c) Running metric

Figure 16: Performance measures 10 jobs, 100 generations, instance 2

Subplot (a) of the third problem instance shows the convergence of population feasibility.
After 12000 function evaluations, or 15 generations, all individuals within the population are
feasible. Subplot (b) shows the convergence of the hypervolume indicator. After 34400 func-

43

Graduation Project Nooteboom Trailers BV TU/e

tion evaluations, or 43 generations, the hypervolume indicator stopped converging and thus
the algorithm reached an optimum. The running metric, depicted in subplot (c) shows that
after approximately 30 generations, hypervolume indicator convergence is very limited. With
computational time of the grid search in mind, it is decided to set the termination criterion to
60 generations. It is expected that GDE3 has converged to a near optimal solution before this
point.

(a) Feasibility (b) Hypervolume indicator (c) Running metric

Figure 17: Performance measures 10 jobs, 100 generations, instance 3

For each of the problem instances, 5 runs are executed. Per run, a figure displaying the
performance measures convergence speed with regards to population feasibility and hypervolume
indicator is shown below. Next to the performance measures, the found Pareto set including
feasible solutions found during the evolution of the algorithm are included as well.

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 18: Problem instance 1, run 1

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 19: Problem instance 1, run 2

44

Graduation Project Nooteboom Trailers BV TU/e

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 20: Problem instance 1, run 3

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 21: Problem instance 1, run 4

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 22: Problem instance 1, run 5

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 23: Problem instance 2, run 1

45

Graduation Project Nooteboom Trailers BV TU/e

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 24: Problem instance 2, run 2

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 25: Problem instance 2, run 3

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 26: Problem instance 2, run 4

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 27: Problem instance 2, run 5

46

Graduation Project Nooteboom Trailers BV TU/e

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 28: Problem instance 3, run 1

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 29: Problem instance 3, run 2

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 30: Problem instance 3, run 3

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 31: Problem instance 3, run 4

47

Graduation Project Nooteboom Trailers BV TU/e

(a) Feasibility (b) Hypervolume indicator (c) Pareto set

Figure 32: Problem instance 3, run 5

48

	Introduction
	Literature review
	Problem description
	Definition and processing of batches
	Processing of jobs

	Mathematical formulation
	Linearize model

	Solution approach
	GDE3 and its control parameters
	Parameter optimization
	Performance measures
	GDE3 implementation
	Decision space normalization

	Numerical study: application to the Nooteboom jobshop
	Data set
	Current policy
	Results parameter optimization
	Results optimization with GDE3
	Comparison of GDE3 with benchmarks
	Results safety factor batch area

	Managerial insights
	Conclusions
	References
	Appendix
	Discrete event simulation
	Parameter optimization
	Solving problem instances with GDE3

