34 research outputs found

    Locating a bioenergy facility using a hybrid optimization method

    Get PDF
    In this paper, the optimum location of a bioenergy generation facility for district energy applications is sought. A bioenergy facility usually belongs to a wider system, therefore a holistic approach is adopted to define the location that optimizes the system-wide operational and investment costs. A hybrid optimization method is employed to overcome the limitations posed by the complexity of the optimization problem. The efficiency of the hybrid method is compared to a stochastic (genetic algorithms) and an exact optimization method (Sequential Quadratic Programming). The results confirm that the hybrid optimization method proposed is the most efficient for the specific problem. (C) 2009 Elsevier B.V. All rights reserved

    Model-based approaches for large-scale optimization in business operations

    Get PDF
    Companies nowadays have to operate in an increasingly competitive and complex environment. Under these challenging conditions, it has become essential for them to optimize their business operations, i.e., the activities that they must conduct on a regular, often daily, basis. The nature of these business operations strongly varies between companies. For a pharmaceutical company, an important business operation is, for example, the scheduling of their research activities. With improved scheduling, new drugs are brought to markets earlier, which can lead to a decisive competitive advantage. For a telecommunications company, an important business operation is, for example, the promotion of new products and services to existing customers. Contacting the right customers for the right products may lead to an increase in sales and profitability of these products. Many business operations, including the two examples from above, can be improved by solving mathematical optimization problems with techniques from the field of Operations Research. An optimization problem consists of the decisions to be taken, the constraints that define the set of feasible decisions, and an objective that is either maximized (profit) or minimized (project duration). In the case of the telecommunications company, the decisions to be taken are which customers are contacted for which product on which day. An example of a constraint is an overall budget that cannot be exceeded, and an example of the objective is the maximization of the total expected profit that results from contacting the customers. A standard approach for solving such an optimization problem is first to express the problem as a mathematical model and then use standard optimization software, known as a solver, to find the best possible solution. A great advantage of this approach is that the mathematical model can easily be adjusted to changes in the underlying problem. This flexibility is required in a dynamic business environment where constraints or objectives may change over time. However, a major drawback of this standard approach is its limited scalability when applied to specific types of complex optimization problems. For these problems, the generic solvers fail to find the best or even a good solution in a reasonable running time. Specialized algorithms, so-called heuristics, are required instead. Heuristics apply problem-specific search strategies to derive a good solution to an optimization problem quickly. However, because these heuristics are designed for specific optimization problems, they are difficult to adapt if the constraints or the objective of the optimization problem change. A solution technique that has been shown to be both flexible and scalable for complex optimization problems are matheuristics. Matheuristics are model-based approaches that decompose an optimization problem into smaller subproblems and solve these subproblems using mathematical models. Essential for the performance of a matheuristic is how the problem is decomposed into subproblems, which is an important field of research in Operations Research. This thesis contributes to this field of research by introducing model-based approaches for large-scale optimization in business operations. It consists of three papers on three specific optimization problems in direct marketing, project management, and facility location. Real-world instances of all three of these problems involve a large number of customers, activities, or facilities and require the flexibility to incorporate practical constraints easily. To address these challenges, we developed three matheuristics. The matheuristics employ innovative problem decomposition strategies and outperform state-of-the-art approaches on large-scale instances. In the first paper, we study a customer assignment problem from a major telecommunications company. The telecommunications company runs different direct marketing campaigns to promote its products and services. The goal of the telecommunications company is to assign the customers to the direct marketing campaigns so that the total expected profit is maximized. Thereby, various business constraints, such as budgets and sales constraints, must be considered. Also, different customer-specific constraints ensure that each customer is not assigned to a direct marketing campaign too frequently. A particular challenge is the size of practical problem instances. These instances involve millions of customers and hundreds of direct marketing campaigns. The methodological contribution of this paper consists of decomposing the optimization problem into two subproblems that each can be solved efficiently. In the first subproblem, customers are assigned to campaigns based on their membership to a customer group. In the second subproblem, individual customers are assigned to campaigns based on the solution that was derived in the first subproblem. The unique feature of our decomposition strategy is that the customer-specific constraints are already considered in the first subproblem, even though the first subproblem deals with groups of customers and not individual customers. In an experimental analysis based on numerous generated and real-world instances, we can demonstrate that even though we decompose the problem, the resulting solutions are still of very high quality. The matheuristic has been deployed in the company and is now used daily. In a proof of benefit conducted by the company based on a selected campaign, they observed that using the matheuristic increased the number of sales by 90%, resulting in an improvement in the profitability of this campaign by 300%. The second paper deals with a project scheduling problem that often arises in the pharmaceutical industry, where research activities, e.g., clinical tests, can be executed at different locations, e.g., research labs. The problem consists of determining a start time for each activity, selecting a location for the execution of each activity, and assigning resource units, e.g., research staff or equipment, to the execution of the activities. Various practical constraints must be considered, such as transportation times that arise when, e.g., a resource unit must be transported from one location to another. With only a few activities involved, the number of possible schedules can already grow very large. We developed a mathematical model and, based on this model, a novel matheuristic for this problem. The main methodological contribution of the matheuristic is its problem decomposition strategy. Instead of dividing the project into subprojects, the model in the matheuristic is set up for all project activities. However, the solver makes some decisions only for a subset of the activities. To schedule an entire project, multiple iterations have to be performed, where in each iteration, another subset of activities is considered. This iterative decision process substantially reduces running times compared to when all decisions are conducted simultaneously. In a computational experiment, the novel model outperforms the leading model from the literature on small instances. The matheuristic outperforms the state-of-the-art heuristics on all considered performance metrics on larger instances. In the third paper, we consider the problem of locating obnoxious facilities. Obnoxious means that the facilities negatively affect their nearby environment and should thus be located far away from clients. Examples of obnoxious facilities are waste plants, oil refineries, and wind turbines. The problem consists of opening from a set of potential locations a given number of facilities such that the open facilities are far away from the clients. We further study an extension of this problem that includes practical constraints which limit the number of facilities that can be opened in certain regions of an instance. Our matheuristic starts from an initial solution and iteratively improves the solution by removing and adding facilities. The quality of the final solution (after the improvement iterations) strongly depends on the initial solution. When two very similar initial solutions are provided, the likelihood of finding very similar final solutions is high. One main methodological contribution is a procedure that we designed, which is guaranteed to generate initial solutions that are very different from each other. This diversification in the initial solutions increases the likelihood of finding high-quality final solutions. The matheuristic outperforms the state-of-the-art metaheuristics on instances including thousands of clients and potential locations for facilities. Even though we consider three specific optimization problems in this thesis, the contributions of the three papers can be generalized and applied to related problems and thus advance the state of knowledge in the field of large-scale optimization

    Facility location optimization model for emergency humanitarian logistics

    Get PDF
    Since the 1950s, the number of natural and man-made disasters has increased exponentially and the facility location problem has become the preferred approach for dealing with emergency humanitarian logistical problems. To deal with this challenge, an exact algorithm and a heuristic algorithm have been combined as the main approach to solving this problem. Owing to the importance that an exact algorithm holds with regard to enhancing emergency humanitarian logistical facility location problems, this paper aims to conduct a survey on the facility location problems that are related to emergency humanitarian logistics based on both data modeling types and problem types and to examine the pre- and post-disaster situations with respect to facility location, such as the location of distribution centers, warehouses, shelters, debris removal sites and medical centers. The survey will examine the four main problems highlighted in the literature review: deterministic facility location problems, dynamic facility location problems, stochastic facility location problems, and robust facility location problems. For each problem, facility location type, data modeling type, disaster type, decisions, objectives, constraints, and solution methods will be evaluated and real-world applications and case studies will then be presented. Finally, research gaps will be identified and be addressed in further research studies to develop more effective disaster relief operations

    Machine learning assisted optimization with applications to diesel engine optimization with the particle swarm optimization algorithm

    Get PDF
    A novel approach to incorporating Machine Learning into optimization routines is presented. An approach which combines the benefits of ML, optimization, and meta-model searching is developed and tested on a multi-modal test problem; a modified Rastragin\u27s function. An enhanced Particle Swarm Optimization method was derived from the initial testing. Optimization of a diesel engine was carried out using the modified algorithm demonstrating an improvement of 83% compared with the unmodified PSO algorithm. Additionally, an approach to enhancing the training of ML models by leveraging Virtual Sensing as an alternative to standard multi-layer neural networks is presented. Substantial gains were made in the prediction of Particulate matter, reducing the MMSE by 50% and improving the correlation R^2 from 0.84 to 0.98. Improvements were made in models of PM, NOx, HC, CO, and Fuel Consumption using the method, while training times and convergence reliability were simultaneously improved over the traditional approach

    Problemas de localização-distribuição de serviços semiobnóxios: aproximações e apoio à decisão

    Get PDF
    Doutoramento em Gestão IndustrialA presente tese resulta de um trabalho de investigação cujo objectivo se centrou no problema de localização-distribuição (PLD) que pretende abordar, de forma integrada, duas actividades logísticas intimamente relacionadas: a localização de equipamentos e a distribuição de produtos. O PLD, nomeadamente a sua modelação matemática, tem sido estudado na literatura, dando origem a diversas aproximações que resultam de diferentes cenários reais. Importa portanto agrupar as diferentes variantes por forma a facilitar e potenciar a sua investigação. Após fazer uma revisão e propor uma taxonomia dos modelos de localização-distribuição, este trabalho foca-se na resolução de alguns modelos considerados como mais representativos. É feita assim a análise de dois dos PLDs mais básicos (os problema capacitados com procura nos nós e nos arcos), sendo apresentadas, para ambos, propostas de resolução. Posteriormente, é abordada a localização-distribuição de serviços semiobnóxios. Este tipo de serviços, ainda que seja necessário e indispensável para o público em geral, dada a sua natureza, exerce um efeito desagradável sobre as comunidades contíguas. Assim, aos critérios tipicamente utilizados na tomada de decisão sobre a localização destes serviços (habitualmente a minimização de custo) é necessário adicionar preocupações que reflectem a manutenção da qualidade de vida das regiões que sofrem o impacto do resultado da referida decisão. A abordagem da localização-distribuição de serviços semiobnóxios requer portanto uma análise multi-objectivo. Esta análise pode ser feita com recurso a dois métodos distintos: não interactivos e interactivos. Ambos são abordados nesta tese, com novas propostas, sendo o método interactivo proposto aplicável a outros problemas de programação inteira mista multi-objectivo. Por último, é desenvolvida uma ferramenta de apoio à decisão para os problemas abordados nesta tese, sendo apresentada a metodologia adoptada e as suas principais funcionalidades. A ferramenta desenvolvida tem grandes preocupações com a interface de utilizador, visto ser direccionada para decisores que tipicamente não têm conhecimentos sobre os modelos matemáticos subjacentes a este tipo de problemas.This thesis main objective is to address the location-routing problem (LRP) which intends to tackle, using an integrated approach, two highly related logistics activities: the location of facilities and the distribution of materials. The LRP, namely its mathematical formulation, has been studied in the literature, and several approaches have emerged, corresponding to different real-world scenarios. Therefore, it is important to identify and group the different LRP variants, in order to segment current research and foster future studies. After presenting a review and a taxonomy of location-routing models, the following research focuses on solving some of its variants. Thus, a study of two of the most basic LRPs (capacitated problems with demand either on the nodes or on the arcs) is performed, and new approaches are presented. Afterwards, the location-routing of semi-obnoxious facilities is addressed. These are facilities that, although providing useful and indispensible services, given their nature, bring about an undesirable effect to adjacent communities. Consequently, to the usual objectives when considering their location (cost minimization), new ones must be added that are able to reflect concerns regarding the quality of life of the communities impacted by the outcome of these decisions. The location-routing of semi-obnoxious facilities therefore requires to be analysed using multi-objective approaches, which can be of two types: noninteractive or interactive. Both are discussed and new methods proposed in this thesis; the proposed interactive method is suitable to other multi-objective mixed integer programming problems. Finally, a newly developed decision-support tool to address the LRP is presented (being the adopted methodology discussed, and its main functionalities shown). This tool has great concerns regarding the user interface, as it is directed at decision makers who typically don’t have specific knowledge of the underlying models of this type of problems

    Ant Colony Optimisation – A Proposed Solution Framework for the Capacitated Facility Location Problem

    Get PDF
    This thesis is a critical investigation into the development, application and evaluation of ant colony optimisation metaheuristics, with a view to solving a class of capacitated facility location problems. The study is comprised of three phases. The first sets the scene and motivation for research, which includes; key concepts of ant colony optimisation, a review of published academic materials and a research philosophy which provides a justification for a deductive empirical mode of study. This phase reveals that published results for existing facility location metaheuristics are often ambiguous or incomplete and there is no clear evidence of a dominant method. This clearly represents a gap in the current knowledge base and provides a rationale for a study that will contribute to existing knowledge, by determining if ant colony optimisation is a suitable solution technique for solving capacitated facility location problems. The second phase is concerned with the research, development and application of a variety of ant colony optimisation algorithms. Solution methods presented include combinations of approximate and exact techniques. The study identifies a previously untried ant hybrid scheme, which incorporates an exact method within it, as the most promising of techniques that were tested. Also a novel local search initialisation which relies on memory is presented. These hybridisations successfully solve all of the capacitated facility location test problems available in the OR-Library. The third phase of this study conducts an extensive series of run-time analyses, to determine the prowess of the derived ant colony optimisation algorithms against a contemporary cross-entropy technique. This type of analysis for measuring metaheuristic performance for the capacitated facility location problem is not evident within published materials. Analyses of empirical run-time distributions reveal that ant colony optimisation is superior to its contemporary opponent. All three phases of this thesis provide their own individual contributions to existing knowledge bases: the production of a series of run-time distributions will be a valuable resource for future researchers; results demonstrate that hybridisation of metaheuristics with exact solution methods is an area not to be ignored; the hybrid methods employed in this study ten years ago would have been impractical or infeasible; ant colony optimisation is shown to be a very flexible metaheuristic that can easily be adapted to solving mixed integer problems using hybridisation techniques

    Ant colony optimisation : a proposed solution framework for the capacitated facility location problem

    Get PDF
    This thesis is a critical investigation into the development, application and evaluation of ant colony optimisation metaheuristics, with a view to solving a class of capacitated facility location problems. The study is comprised of three phases. The first sets the scene and motivation for research, which includes; key concepts of ant colony optimisation, a review of published academic materials and a research philosophy which provides a justification for a deductive empirical mode of study. This phase reveals that published results for existing facility location metaheuristics are often ambiguous or incomplete and there is no clear evidence of a dominant method. This clearly represents a gap in the current knowledge base and provides a rationale for a study that will contribute to existing knowledge, by determining if ant colony optimisation is a suitable solution technique for solving capacitated facility location problems. The second phase is concerned with the research, development and application of a variety of ant colony optimisation algorithms. Solution methods presented include combinations of approximate and exact techniques. The study identifies a previously untried ant hybrid scheme, which incorporates an exact method within it, as the most promising of techniques that were tested. Also a novel local search initialisation which relies on memory is presented. These hybridisations successfully solve all of the capacitated facility location test problems available in the OR-Library. The third phase of this study conducts an extensive series of run-time analyses, to determine the prowess of the derived ant colony optimisation algorithms against a contemporary cross-entropy technique. This type of analysis for measuring metaheuristic performance for the capacitated facility location problem is not evident within published materials. Analyses of empirical run-time distributions reveal that ant colony optimisation is superior to its contemporary opponent. All three phases of this thesis provide their own individual contributions to existing knowledge bases: the production of a series of run-time distributions will be a valuable resource for future researchers; results demonstrate that hybridisation of metaheuristics with exact solution methods is an area not to be ignored; the hybrid methods employed in this study ten years ago would have been impractical or infeasible; ant colony optimisation is shown to be a very flexible metaheuristic that can easily be adapted to solving mixed integer problems using hybridisation techniques.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Ant colony optimisation : a proposed solution framework for the capacitated facility location problem

    Get PDF
    This thesis is a critical investigation into the development, application and evaluation of ant colony optimisation metaheuristics, with a view to solving a class of capacitated facility location problems. The study is comprised of three phases. The first sets the scene and motivation for research, which includes; key concepts of ant colony optimisation, a review of published academic materials and a research philosophy which provides a justification for a deductive empirical mode of study. This phase reveals that published results for existing facility location metaheuristics are often ambiguous or incomplete and there is no clear evidence of a dominant method. This clearly represents a gap in the current knowledge base and provides a rationale for a study that will contribute to existing knowledge, by determining if ant colony optimisation is a suitable solution technique for solving capacitated facility location problems. The second phase is concerned with the research, development and application of a variety of ant colony optimisation algorithms. Solution methods presented include combinations of approximate and exact techniques. The study identifies a previously untried ant hybrid scheme, which incorporates an exact method within it, as the most promising of techniques that were tested. Also a novel local search initialisation which relies on memory is presented. These hybridisations successfully solve all of the capacitated facility location test problems available in the OR-Library. The third phase of this study conducts an extensive series of run-time analyses, to determine the prowess of the derived ant colony optimisation algorithms against a contemporary cross-entropy technique. This type of analysis for measuring metaheuristic performance for the capacitated facility location problem is not evident within published materials. Analyses of empirical run-time distributions reveal that ant colony optimisation is superior to its contemporary opponent. All three phases of this thesis provide their own individual contributions to existing knowledge bases: the production of a series of run-time distributions will be a valuable resource for future researchers; results demonstrate that hybridisation of metaheuristics with exact solution methods is an area not to be ignored; the hybrid methods employed in this study ten years ago would have been impractical or infeasible; ant colony optimisation is shown to be a very flexible metaheuristic that can easily be adapted to solving mixed integer problems using hybridisation techniques.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Bee Colony Optimization - part II: The application survey

    Get PDF
    Bee Colony Optimization (BCO) is a meta-heuristic method based on foraging habits of honeybees. This technique was motivated by the analogy found between the natural behavior of bees searching for food and the behavior of optimization algorithms searching for an optimum in combinatorial optimization problems. BCO has been successfully applied to various hard combinatorial optimization problems, mostly in transportation, location and scheduling fields. There are some applications in the continuous optimization field that have appeared recently. The main purpose of this paper is to introduce the scientific community more closely with BCO by summarizing its existing successful applications. [Projekat Ministarstva nauke Republike Srbije, br. OI174010, OI174033, TR36002] Document type: Articl
    corecore