
Venables, Harry (2011) Ant Colony Optimisation – A Proposed Solution

Framework for the Capacitated Facility Location Problem. Doctoral thesis,

University of Sunderland.

Downloaded from: http://sure.sunderland.ac.uk/4061/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively

contact sure@sunderland.ac.uk.

Ant Colony Optimisation – A

Proposed Solution Framework for

the Capacitated Facility Location

Problem

Harry Venables

A thesis submitted in partial fulfilment of

the requirements of the

University of Sunderland

for the degree of

Doctor of Philosophy

June 2011

Abstract

This thesis is a critical investigation into the development, application and evalu-

ation of ant colony optimisation metaheuristics, with a view to solving a class of

capacitated facility location problems. The study is comprised of three phases.

The first sets the scene and motivation for research, which includes; key con-

cepts of ant colony optimisation, a review of published academic materials and a

research philosophy which provides a justification for a deductive empirical mode

of study. This phase reveals that published results for existing facility location

metaheuristics are often ambiguous or incomplete and there is no clear evidence

of a dominant method. This clearly represents a gap in the current knowledge

base and provides a rationale for a study that will contribute to existing knowl-

edge, by determining if ant colony optimisation is a suitable solution technique for

solving capacitated facility location problems.

The second phase is concerned with the research, development and appli-

cation of a variety of ant colony optimisation algorithms. Solution methods pre-

sented include combinations of approximate and exact techniques. The study

identifies a previously untried ant hybrid scheme, which incorporates an exact

method within it, as the most promising of techniques that were tested. Also a

novel local search initialisation which relies on memory is presented. These hy-

bridisations successfully solve all of the capacitated facility location test problems

available in the OR-Library.

The third phase of this study conducts an extensive series of run-time analy-

ses, to determine the prowess of the derived ant colony optimisation algorithms

against a contemporary cross-entropy technique. This type of analysis for mea-

suring metaheuristic performance for the capacitated facility location problem is

not evident within published materials. Analyses of empirical run-time distribu-

tions reveal that ant colony optimisation is superior to its contemporary opponent.

All three phases of this thesis provide their own individual contributions to ex-

isting knowledge bases: the production of a series of run-time distributions will be

a valuable resource for future researchers; results demonstrate that hybridisation

of metaheuristics with exact solution methods is an area not to be ignored; the

hybrid methods employed in this study ten years ago would have been impractical

or infeasible; ant colony optimisation is shown to be a very flexible metaheuristic

that can easily be adapted to solving mixed integer problems using hybridisation

techniques.

Acknowledgements

Initially, my sincere thanks must go to Dr. Mitchell Andrews, a former colleague

from the University of Sunderland Business School, who coerced me into starting

a Ph.D. study. Next, I would like to thank my original supervisor Prof. Alfredo

Moscardini. He gave me that initial spark about agent based modelling, that

made me think of ants and how they solved everyday problems by their social

interactions; I owe him a great deal. His encouragement for letting me just get

on with it, allowing me to develop the confidence to present my work to academic

peers and use the experience as a vital part of the research apprenticeship. Upon

Alfredo’s retirement from the university, Dr. Valentina Plekhanova, had the task of

taking over. Thankyou for your thoughts and guidance through those initial writing

stages at a vulnerable time of life.

However, my biggest thanks must go to my wife Laura for all of the emotional

support through the highs and lows of this study. This work would not have been

worth it or even completed without her being there for me when I needed more

than just kind words. Finally, my two children Louis and Rachel their infectious

giggles and laughs make everything worthwhile.

Contents

1 Introduction 1

1.1 Research Study Outline . 2

1.2 Ant Colony Optimisation . 3

2 A Review of Facility Location 9

2.1 Facility Location . 9

2.2 P-Median Facility Location Problems 12

2.3 Uncapacitated Facility Location Problems 14

2.4 Capacitated Facility Location Problems 15

2.4.1 Lagrangean Relaxation . 17

2.4.2 Metaheuristics . 19

2.5 Summary . 23

2.5.1 Research Question . 25

3 Research Methodology 26

3.1 Introduction . 27

3.2 Research Philosophy . 27

3.3 Research Strategy . 29

3.3.1 Key Features for Empirical Analysis of the CFLP 30

3.3.2 Research Hypothesis . 31

3.4 Research Methods . 31

3.5 OR-Library Test Problems . 36

3.6 Summary . 38

4 Preliminary Development and Experimentation 40

4.1 Formal Specification of the CFLP 40

4.1.1 Complexity of the CFLP . 42

4.2 ACO Framework: Modelling Criteria 45

iii

Contents iv

4.2.1 Characteristics of an ACO Construction Graph for the CFLP 45

4.3 Design of an ACO Algorithm . 47

4.3.1 Solution Construction Phase 48

4.3.2 Pheromone Update Phase 51

4.3.3 Ant System and Max-Min Ant System for the CFLP 52

4.4 Computational Design and Experimentation 55

4.5 Initial Conclusions and Recommendations 57

5 Hybrid-ACO Development for the CFLP 63

5.1 ACO Hybridisation . 64

5.2 Hybrid Construction Phase . 66

5.3 Transportation Problem Approximation 71

5.4 Derivation of Ant Visibility . 72

5.5 Hybridisation of MMAS . 75

5.6 Local Search Methods for Solution Improvement 77

5.6.1 Drop Facilities . 78

5.6.2 Swap Facilities . 80

5.7 Hybrid MMAS: Initial Experimentation 81

5.7.1 MMAS and Basic DROP 81

5.7.2 Pheromone Based DROP and DROP-SWAP 82

5.8 Hybrid MMAS: Initial Evaluation 84

5.9 Hybrid MMAS: An Alternative Approach 88

5.9.1 Larger OR-Library Instances 93

5.10 Hyper-cube Framework for the CFLP 95

5.11 HCF: Restricted Pheromone Interval 97

5.11.1 HCF: Pheromone Update 98

5.12 HCF: Experimentation . 99

5.13 Hybrid-ACO: Conclusions and Recommendations 101

6 ACO: Run-Time Analysis and Evaluation 106

6.1 Classification of Stochastic Local Search Algorithms 108

6.2 Empirical Run-Time Analysis for Stochastic Local Search 110

6.3 Deriving ACO and CE Empirical RTDs for the CFLP 111

6.3.1 Measuring RTDs . 113

6.4 Qualitative Analysis of Empirical RTDs 114

6.5 Comparative Qualitative Analysis 117

6.6 Comparative Quantitative Analysis 121

Contents v

6.6.1 RTD Median Run-Times . 122

6.6.2 Investigation of the Run-Time Median 124

7 Conclusions 131

7.1 Conclusions: Study Rationale . 132

7.2 Conclusions: ACO for the CFLP 134

7.3 Conclusions: Evaluation . 136

7.4 Testing the Research Hypothesis 138

7.5 Future Research . 143

7.6 Contribution to Knowledge . 145

Appendix 166

A Research Output 167

B Algorithmic Solution Quality: Empirical Run-Time Distributions 169

C Algorithmic Solution Quality: Graphical Descriptive Summaries of

Run-Time Distributions 180

D Algorithmic Solution Quality: Graphical Descriptive Summaries of

Bootstrapped Median Distributions 191

E Algorithmic Solution Quality: Bootstrapped 95% Confidence Inter-

vals for Median Run-Times 202

List of Tables

3.1 OR-Library test problems . 38

4.1 Parameter setting for AS and MMAS 57

4.2 Experimental results using a bipartite graphical representation for

the CFLP . 58

5.1 Non-local search (ZNLS) and facility “DROP” local search (ZD) re-

sults for problem instances using a best-improvement technique

and approximate transportation solutions; where Z∗ are the known

optimum solutions (Beasley, 1993) 83

5.2 Results for a selection of problem instances using local search: ZD

method of Venables and Moscardini (2006) and pheromone based

DROP and DROP-SWAP heuristics ZDτ
and ZSτ

. 85

5.3 Available literature results of B93 - Beasley (1993), BA981 and

BA982 - Bornstein and Azlan (1998), BC04 - Bornstein and Campelo

(2004) and the approximate hybrid MMAS ACO algorithm - MMAS

ZSτ
. 87

5.4 OR-Library test problems using various MMAS parameter set-

tings: A – α = 2.5, β = 0.8 and ρ = 0.06; B – α = 2.5, β = 0.8 and

ρ = 0.9; C – α = 1.0, β = 0.0 and ρ = 0.9; secs – seconds; its –

iterations . 92

5.5 Computational results of the OR-Library large test problems (100

× 1000): MMAS Single Ant A - α = 2.5, β = 0.8 and ρ = 0.9;

MMAS Colony (5 ants) B - α = 2.5, β = 0.8 and ρ = 0.9; secs –

seconds; its – iterations . 94

5.6 OR-Library test problems using parameter settings: C - α = 1.0, β =

0.0 and ρ = 0.9 . 100

5.7 Computational results of the OR-Library large test problems (100

× 1000): HCF (5 ants) C - α = 1.0, β = 0.0 and ρ = 0.9 101

vi

List of Tables vii

6.1 Qualitative Summary Table . 120

6.2 RTDs: Variable Width Notched Box Plots Rankings 125

6.3 Boostrapped Median Sampling Distribution Rankings 129

6.4 Bootstrapped 95% Confidence Intervals 130

List of Figures

1.1 Random Search and Convergence 5

1.2 A foraging strategy by African army ants 6

1.3 A mature ant trail . 7

4.1 Bipartite graphical representation of potential assignments of cus-

tomers to facilities. 47

4.2 Example of an ant’s tour to assign customers to facilities 51

4.3 Run-time experimentation for two OR-Library Instances 59

5.1 Schematic for an ACO hybrid algorithm for the CFLP 66

5.2 Construction graph for a hybrid CFLP ACO algorithm consisting of

facilities I ∈ {1, 2, . . . , i}. The plain links between facility nodes

represent possible pathways that an ant could take during the con-

struction phase, whereas the arrowed links represent an example

of a pathway taken by an ant. 68

5.3 Schematic for DROP and SWAP local search mechanisms 79

6.1 Justification and Verification of Sample Size 116

6.2 Comparative RTDs for two OR-Library Instances 119

6.3 ACO and CE RTDs: Variable Width Notched Box Plots for Cap63

and Cap 113 . 123

6.4 Boostrapped Median Run-Time Sampling Distributions: Box Plots

and 95% Confidence Intervals . 127

viii

Chapter 1

Introduction

Many behavioural characteristics of ants have been studied by scientists includ-

ing their social interactions, brood sorting, colony welfare, hierarchical systems,

division of labour, cooperative transport and adaptive foraging strategies. These

same topics have provided substance for many humorous children’s stories and

even several animated big-screen adventures. A fascinating statistic is that:

“Ants are everywhere on earth. When combined, all ants in the world

weigh about as much as all humans ...” (Hölldobler and Wilson, 1994)

A simple fact is that ants are very successful which is primarily due to their

adaptive nature. There are literally tens of thousands of different species of ants

that have evolved throughout the natural world. Their intrinsic behaviour to work

and search for food all for the good of the colony to which they belong is incredible.

Their peculiar foraging behaviour often incites laughter from both adult and child

observers. If we can use what is known about their incessant quest for food and

their success at delivering it safely back to the colony nest, then we ought to

able to solve many logistical and transportation problems. In essence, it is the

ants desire for food that motivates and provides a rationale for using Ant Colony

Optimisation on problems that can be modelled as a network of pathways, such

1

1.1. Research Study Outline 2

as those associated with facility location.

Initially, this chapter provides a research study outline and then gives a brief

background and overview of Ant Colony Optimisation to demonstrate that an ob-

servation in nature can be used artificially, in a computing environment, to solve

hard combinatorial optimisation problems. The method exploits the fact that ants

have an adaptive ability to forage for food and return it to the colony nest in an ef-

fective and efficient manner by discovering and using shortest pathways to fetch

and carry food supplies. Their ability to find a series of shortest pathways is analo-

gous to minimum-cost optimisation problems, particularly those types of problems

encountered in discrete combinatorial optimisation.

1.1 Research Study Outline

This research study is primarily comprised of three phases, relating to the appli-

cation of Ant Colony Optimisation to facility location. These are a study rationale

phase, research design and development phase, with the final phase being a

critical evaluation.

The first phase is organised as follows: Chapter 1, which provides a useful

background to Ant Colony Optimisation. Chapter 2 concentrates on various pub-

lished methods that have been used within facility location, with an emphasis on

applications to capacitated facility location problems. Chapter 3 discusses and

rationalises the need for an empirical study, to determine performance related

measures for Ant Colony Optimisation that are required for comparative analy-

ses.

The second phase of this study, initially compares two common ant based al-

gorithms to determine the suitability of Ant Colony Optimisation in its standard

format to solve the capacitated facility location problem and is discussed in Chap-

1.2. Ant Colony Optimisation 3

ter 4. Hybrid algorithms that exploit solution structure and make use of local

search routines are developed and investigated in Chapter 5.

The final phase presents a rigorous series of run-time analyses, in Chapter

6, of algorithms developed during the second phase alongside a Cross-Entropy

algorithm obtained from a research source (Caserta and Quiñonez Rico, 2009).

These analyses contain empirical probability distribution profiles and bootstrapped

statistical inferences, that are unknown to metaheuristic approaches in facility lo-

cation. Conclusions, suggestions for future research and contributions to existing

knowledge are summarised in Chapter 7.

1.2 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a metaheuristic technique that is based on

natural scientists’ behavioural observations of foraging ants (Deneubourg et al.,

1990). They observed that colonies of ants whilst searching for food from a nest

site intially behaved in swarm-like random manner to locate a food source. How-

ever, once food was returned to the nest, then most of the ants then quickly

converged to a single route to both fetch and carry food back to the nest site. De-

spite these insects being relatively simple creatures, that are almost blind, they

seemed to be able to communicate efficiently and effectively for the well-being

of the colony. Also, it was observed that if a food source became depleted or

the convergent pathway unusable then the ants would adapt by returning to their

swarm-like behaviour to find an alternative solution. This type of self-organising

behaviour or intelligence is crucial to their dominant success and stems for their

ability to react and respond to any environmental change.

To assist the ants reactive systems they have a very acute sense of smell that

enables them to detect and respond to any environmental change. Each ant also

1.2. Ant Colony Optimisation 4

has a facility for producing and laying chemical or odour based substances known

as pheromones. Different types and intensities of pheromone deposits can occur

and are used to indicate different types of food sources, or types of nest-based

problems that need to be overcome. Their ability to smell and lay various types of

pheromones acts as an indirect communication system, that ants may respond to

in different ways depending upon their hierarchy within the colony. This process

of communication via environmental change is known as “stigmergy” (Bonabeau

et al., 1999, Theraulaz and Bonabeau, 1999).

When ants search for a new food source they have no overall vision or in-

sight of prior knowledge towards the problem that they are faced with. However,

through their ability to lay pheromones whilst searching for food they can com-

municate to other ants promising pathways by the type or intensity of pheromone

that they lay. Thus, those pathways that have high intensities of pheromones are

deemed more likely to used by other ants. Once a source is found then food is

initially carried back along the original pathway. A colony requires the ants to be

able to locate food and take it back to the nest efficiently, i.e. as quickly as possi-

ble. To achieve this a stigmatic process is applied when returning food to the nest

and higher intensities of pheromones are laid on the most promising or shortest

pathways. This process continues until a near complete convergence of the ants

locating the source and carrying food along the same pathway emerges (Beckers

et al., 1992, Deneubourg et al., 1990, Dréo et al., 2006).

An important observation is that not all of the ants converge to the same path-

way, it is the behaviour of these non-conformists that give rise to the adaptive

nature of a colony of ants. These rogue ants may find new or better food sources

nearer to the nest site, or should the convergent pathway become blocked they

may have already discovered an alternative route both of which could then be

communicated via stigmergy. Figure 1.1 depicts a typical modelling represen-

1.2. Ant Colony Optimisation 5

Figure 1.1: Random Search and Convergence

Initially ants randomly search various pathways, then converge to a shortest route

(Bonabeau et al., 1999).

tation of foraging behaviour: initially ants search through the pathways laying

pheromones and intensifying the trails taken on the return journey to the nest,

most ants then converge to a common shortest path. Whereas, Figure 1.2 dis-

plays foraging behaviour of army ants observed in nature and Figure 1.3 displays

a well-established path from a nest to highly significant and stable food source.

The emergence of a shortest or optimal pathway from foraging behaviour

was the impetus for the then contemporary works of Colorni et al. (1992) and

Dorigo (1992); which paved the way for future ACO developments. Originally

the metaphor of ACO and its algorithmic application to the travelling salesman

problem gave results that were a little disappointing. The methodology displayed

asymptotic convergence to shortest paths but suffered from long computational

run-times. However, researchers realised the potential of such a strong metaphor

and its general application, so much so that it later became a popular and ac-

cepted metaheuristic technique. It was in the late 1990’s that ACO started to show

a trend in research works for solving hard combinatorial optimisation problems.

1.2. Ant Colony Optimisation 6

Figure 1.2: A foraging strategy by African army ants

Food is sent back to the nest along the central highway, soldier ants protect the

flanks whilst some other army ants look for alternative foods sources and pathways

(Courtesy of Science Photo Library).

These research areas lent themselves towards solving purely discrete classical

decision based optimisation problems: the travelling salesman and quadratic as-

signment problem. The most significant contributions made to ACO algorithmic

research and development at the time were the Max-Min Ant System by Stützle

and Hoos (1997, 2000) and Ant Colony System by Gambardella et al. (1999),

which are still cited as amongst the best performing algorithms by Blum et al.

(2008).

Although ACO algorithms were inspired by foraging ants, it is important to re-

member that these techniques do not try to completely model their behaviour,

moreover they model their key features in an artificial intelligent manner; i.e. ACO

uses principles of stigmergy and pheromones artificially to help make stochas-

tic based decisions to find shortest paths within a given search area. ACO is a

metheuristic that was developed as a procedure to solve hard combinatorial op-

1.2. Ant Colony Optimisation 7

Figure 1.3: A mature ant trail

A well established trail of the chaco leafcutter ant in Argentina (Courtesy of

http://www.alexanderwild.com).

timisation problems in a global sense using a probabilistic local step or decision

process and thus can also be described as a stochastic local search optimisation

technique (Hoos and Stützle, 2005).

ACO has played a significant role in solving many types of combinatorial op-

timisation problems and at times achieved state-of-art performances on various

classical operational research style problems and applications; examples can be

found in the works of Dorigo and Stützle (2004), Dréo et al. (2006) and Blum et al.

(2008). Interestingly, ACO like some other types of metaheuristic techniques is

described as an ‘incomplete algorithm’ by Hoos and Stützle (2005). As an optimal

solution may be found but it can not be guaranteed that the algorithm will find an

optimal solution within specific run-time bounds. Typically these bounds may in-

clude combinations of clock run-time limits and/or a limit on the maximum number

of iterations permitted. However, asymptotic convergence of ACO algorithms are

1.2. Ant Colony Optimisation 8

usually observed, i.e. an optimal solution is likely to be found if the algorithm is

allowed to run for a long enough period of time. Theoretical concepts of conver-

gence and asymptotic behaviour are discussed by Dorigo and Blum (2005) and

suggestions for empirical research is given by Hoos and Stützle (2005). Conse-

quently, as indefinite computational run-times are impractical then caution should

be heeded when using metaheuristic solution techniques to determine inferences

and decisions based on experimentation.

ACO solution methods are usually designed to be applied to true/false type

combinatorial optimisation problems. However, Dorigo and Stützle (2004) state

that the ACO metaphor can be applied to other types of optimisation problems;

such as optimisation problems containing a mixed-integer or continuous vari-

ables. Research in these areas is in its infancy and evidence is somewhat limited

(Dorigo et al., 2008, 2006). The capacitated facility location problem (CFLP) is

a mixed-integer problem that had remained unsolved by various metaheuristic

techniques including Simulated Annealing, Genetic Algorithms and Tabu Search,

(Arostegui et al., 2006, Bornstein and Azlan, 1998, Bornstein and Campelo, 2004,

Filho and Galváo, 1998, Sörensen, 2008) until recent hybrid methods were pre-

sented by Caserta and Quiñonez Rico (2007), Venables and Moscardini (2008)

and Caserta and Quiñonez Rico (2009). Two primary aims of this research are

to be able to solve the CFLP using ACO and to provide a corresponding critical

evaluation of the proposed techniques.

Chapter 2

A Review of Facility Location

This chapter provides a review of research materials relevant to this study and

is compiled from the fields of facilities location, ACO and metaheuristics. The

specific aims of this chapter are to determine the validity of conducting a Ph.D.

research study into the use of ACO as a potential generic platform to solve ca-

pacitated location problems, and to identify what area should the research focus

on to ensure that contributions to existing literature and knowledge are attainable.

Initially an overview of facility location is presented, which then procedes to

focus on advancements in heuristic solution techniques to a particular class of

theoretical facility location problems. The final section summarises the key points

associated with capacitated location problems, identifies a focused theme for re-

search purposes and presents a general research question.

2.1 Facility Location

Facility location, which is also referred to as location analysis or location science,

is concerned with the siting of facilities on a plane or within a network. The lo-

cation of a facility is dependant upon various attributes such as demand placed

upon a facility by a set of customers, the cost of supplying those customers and

9

2.1. Facility Location 10

the costs of opening facilities at potential locations. Customer supply costs are

measurable, yet variable across the set of available facilities and are often pre-

sented in terms of transportation or allocation costs. Objectives of facility location

problems are usually dependent upon the type of scenario being modelled, e.g.

minimise fixed and variable costs (Daskin, 1995); minimise customer’s travelling

distances or times to facilities (Mirchandani and Francis, 1990), or maximise cus-

tomer coverage with various distance criteria (Drezner, 1995). Applications of

facility location have been used in various domains: public sector (recreation and

leisure, health centres, etc.), private sector (supermarkets, distribution centres,

factories, etc.) and in environmentally sensitive areas (production and disposal

of obnoxious waste, chemicals, etc.), (Agar and Salhi, 1998, Church and Murray,

2008, Daskin, 1995, Drezner, 1995, Klose and Drexl, 2004, Love et al., 1988,

Smith et al., 2009, Zanjirani and Hekmmatfar, 2009).

A recent paper of Smith et al. (2009) provides a review of milestone contri-

butions to facility location applications and theoretical models. The authors cate-

gorise these works into three time periods; Period 1: Early contributions, Period

2: Coming of age and Period 3: Fruitfulness with new models and applications.

The first period attributes the works of Weber (1909) and Hotelling (1929) as

having significant influences on early and present-day facility location develop-

ment. This view is also shared within the review works of Daskin (2008), Owen

and Daskin (1998), ReVelle and Eislet (2005), ReVelle et al. (2008). The second

period provides insight into a twenty year period during the 1960s and 1970s,

that produced theoretical models which form the backbone for many modern-day

theoretical location problem formulations. These problems include median and

covering problems (Hakimi, 1964, 1965, Kariv and Hakimi, 1979a,b), plant and

warehouse location problems (Balinski, 1966, Kuehn and Hamburger, 1963) and

the quadratic assignment problem (Lawler, 1963). The third period refers to the

2.1. Facility Location 11

development of problems and new applications from the 1980s to present day

which includes important works on algorithmic solution techniques within facility

location, such as enhanced developments of Lagrangean relaxation techniques

that were based on the original DUALOC algorithm of Erlenkotter (1978) for the

uncapacitated facility location problem.

Recent facility location reviews by Daskin (2008) and ReVelle et al. (2008)

categorise location problems into four classes of models: analytical, continuous,

network and discrete. The first class of problems refers to simple contrived prob-

lems, that have some useful analytical value and are solved using classical math-

ematical optimisation techniques. However, their simplicity leads to limited uses

in practical applications. Continuous problems allow for the location of facilities

anywhere within a region or on a plane, yet customer demand is usually restricted

to fixed points or nodes within the region or plane. These types of problems are

referred to as Weber-type problems and are often solved using analytical tech-

niques. A review of algorithmic techniques and applications to solve these types

of problems is given by Drezner et al. (2001). A recent paper by AltInel et al.

(2009) gives an interesting recent development of this problem, that considers

demand nodes within the plane to have stochastic locations. This is an attempt

to find optimal facility locations when customers change their location, such as

the relocation of manufacturing process that requires raw materials via a supply

chain. The third and fourth classes are described separately. However there is

a great deal of similarity between these types of problems as network models

can be used to describe discrete location models and vice versa. Indeed the two

classical p-median and p-centre problems described by Hakimi (1964, 1965) were

originally described as graph or network problems but are now often referred to as

discrete location problems (Daskin, 2008, Mirchandani and Francis, 1990, ReV-

elle et al., 2008). In a taxonomy of location models, by Daskin (2008), discrete lo-

2.2. P-Median Facility Location Problems 12

cation models fall into one of three sub-classes: covering models, median-based

models and other discrete models. Covering based models include set covering,

max covering and p-centre problems. Median based models include p-median

and fixed-charge problems. Whilst, the other discrete models include the clas-

sic quadratic assignment problem (Lawler, 1963), p-dispersion and various types

of combined max-min problems. All three classes may or may not include extra

modelling constraints placed upon them such as capacity and distance-covering

constraints. Furthermore, some of these problems may also incur strict binary

constraints associated not only with facilities selection but also whether a cus-

tomer’s demand is fulfilled from a single or multiple facilities.

2.2 P-Median Facility Location Problems

This thesis concentrates on a derivative of the p-median problem namely the

fixed-charge capacitated facility location problem and the rest of this sub-section

presents a review of advancements made with associated problems. The p-

median problem is an adaption of the classical Weber problem and is attributed

to Hakimi (1964). The main difference between the two problems is that in a

Weber problem customers, or demand nodes, are allocated to their nearest fa-

cility whereas in a median problem this allocation is made by considering least

weighted distances; where the weighted distance is a product of distance from a

facility and customer demand. Should a 1-median problem be considered then

this is analogous to applying the method of moments to obtain the centre of grav-

ity for the problem. Hakimi (1964), also proved that if a p-median location problem

can be modelled as a network, consisting of customer and potential facility nodes

connected by edges, then an optimal set of p-medians occur at p-nodes of the

network. Consequently, if the number of potential facilities is say a handful and

2.2. P-Median Facility Location Problems 13

the number of customers is of a similar size then the problem could be solved by

complete enumeration. However, Kariv and Hakimi (1979a,b) went on to prove

that on a network the p-median problem is generally NP-hard (Garey and John-

son, 1979). Thus, it is particularly difficult to solve when considering problems

of a more practical size where the number of variables may run into the order

of hundreds or even thousands. Hence heuristic solution methods are often em-

ployed, as the complete enumeration time component increases exponentially

with the number of binary variables to be considered (facilities and customers).

The combinatorial nature of the p-median problem meant that advances in solu-

tion techniques were often made using combinations of mathematical program-

ming and heuristic search techniques such as branch and bound and Lagrangean

relaxation. The more successful of these solution techniques provided a means

of solving to other types of location problems. Beasley (1982), Christofides and

Beasley (1982) applied Lagrangean relaxation and subgradient optimisation to

a tree search procedure for the p-median problem. These works provided the

instigation for further developments for solving median based location problems,

(Beasley, 1988, 1990, Christofides and Beasley, 1983), with the culmination of a

Lagrangean based framework for solving a variety of location problems (Beasley,

1993). This significant work, along with it’s results, is still often cited today by

many authors.

Reese (2006), provides an annotated bibliography for the p-median problem

which indicates that since the late 1980s there has been a significant shift from

using traditional mathematical programming relaxation techniques, such as La-

grangean and surrogate relaxation, towards the use of more modern metaheuris-

tics techniques. The use of these methods have resulted in not only obtaining

more accurate solutions efficiently but have also allowed the consideration of,

and solution generation to, much larger problem instances. Some of these meth-

2.3. Uncapacitated Facility Location Problems 14

ods for the p-median problem are based on well known metaheuristics: Simu-

lated Annealing (Al-khedhairi, 2008, Levanova and Loresh, 2004), Genetic Al-

gorithms (Alp et al., 2004, Fathali, 2006), Tabu Search (Rolland et al., 1997,

Salhi, 2002), greedy adaptive search procedure (Resende and Werneck, 2004)

and ACO (Fathali et al., 2006, Kaveh and Shojaee, 2008, Levanova and Loresh,

2004). Whatever metaheuristic procedure is used, the quality of solution and

the time-efficiency is dependant on appropriate applications of local search struc-

tures and strategies embedded within the algorithms. Mladenovic et al. (2007)

concluded that it was too difficult at the time to determine which was the more

dominant metaheuristic for solving these type of problems, but stated that “the ad-

vent of metaheuristics has advanced the state-of-the-art significantly”. Hoos and

Stützle (2005) suggested that it is necessary to conduct more rigorous testings of

metaheuristic procedures, that use stochastic steps, than is often accepted within

academic literature to gain more general insights into algorithmic behaviour and

enable unbiased comparisons.

2.3 Uncapacitated Facility Location Problems

Historically, the next derivative of the p-median problem was the simple plant lo-

cation problem. Which considers each facility (median) to include a one-off fixed

opening cost and the number of facilities to be used is such that the overall costs

are minimised; i.e. the number of medians or facilities required are not pre-fixed.

This problem was first formulated by Balinski (1965, 1966) and is often referred to

as the uncapacitated facility location problem (UFLP) or the warehouse location

problem (Beasley, 1993, ReVelle and Eislet, 2005). Like its predecessor, the p-

median, the uncapacitated facility location problem is NP-hard and various heuris-

tic solution methods have made significant advances into solving these types of

2.4. Capacitated Facility Location Problems 15

problems. Lagrangean dual methods to this problem have been used successfully

by Barahona and Chudak (2005), Beasley (1993), Erlenkotter (1978) and Guig-

nard (1988). A useful survey is given by Karup and Pruzan (1983). More recently

advances have been made using Lagrangean relaxation and branch and peg

techniques (Canovas et al., 2007, Goldengorin et al., 2004, Lu et al., 2005). Meta-

heuristics and hybrid methods have also had significant roles to play in improving

solution techniques: Simulated Annealing (Aydin and Fogarty, 2004), Genetic

Algorithms (Jaramillo et al., 2002, Sun, 2006), Tabu Search (Michel and Hen-

tenryck, 2004), variable neighbourhood search (Ghosh, 2003), greedy adaptive

search (Resende and Werneck, 2006) and particle swarm algorithms have also

been considered by Guner and Sevkli (2008), Sevkli and Guner (2006). Hoefer

(2003) performed empirical analyses on five different types of local search algo-

rithms and concluded that Tabu Search was the most promising solution method.

This was tested against a hybrid method designed by Resende and Werneck

(2006) on the same computational platform. The results obtained were very sim-

ilar with the hybrid method being slightly more favourable. However, although the

tests were carried out on the same set of problem instances the statistical mea-

sures obtained were only concerned with ten randomised runs on each instance,

which may have led to incorrect inferences.

2.4 Capacitated Facility Location Problems

Both of the p-median and uncapacitated location problems consider facilities that

have sufficient supply or capacity to supply all of their assigned customers. In

practise this may not be the case as facilities may only have a finite supply or

capacity available. Thus, most customers may be assigned to their nearset facil-

ity until the supply runs out, whilst some customers may be partially assigned to

2.4. Capacitated Facility Location Problems 16

their nearest and/or nearest available facilities. Two scenarios arise, firstly where

a binary constraint is placed on the assignment of customers to facilities to en-

sure that a customer is served from a single facility, and secondly the customer

demand constraint is allowed to be fractional to ensure demand is satisfied from

one or more facilities. As a consequence studies have been conducted into ca-

pacitated p-median and capacitated facility location problems. The introduction of

capacity constraints effectively makes these problems theoretically more difficult

to solve and are generally NP-hard. Contributions to solving the capacitated p-

median problem are primarily metaheuristic or hybrid based. Lorena and Senne

(2003, 2004) had some success with applications of local search and Lagrangean

relaxation. Olivetti et al. (2005) made a useful contribution by considering a hy-

brid ACO procedure which involved a new type of embedded local search routine

and França et al. (2006) provided a successful Tabu Search algorithm. A scat-

ter search algorithm was presented by Scheuerer and Wendolsky (2006), and

claimed that the algorithm out-performed those available at the time. Recently,

Fleszar and Hindi (2008), Osman and Ahmadi (2007) have applied various vari-

able neighbourhood search techniques which include elements of hybridisation,

both gave better results than previously published efforts by other authors.

The capacitated facility location problem can either be viewed as an extension

of the capacitated p-median problem that includes fixed facility opening costs,

or more appropriately as extension to the uncapacitated facility location problem

that considers each facility to have a finite supply/capacity constraint. The capac-

itated facility location problem is often referred to be NP-hard and literature works

generally cite either Kariv and Hakimi (1979a,b) or Garey and Johnson (1979);

neither of whom considered this problem. However, as the problem is modelled

on a network and then it is highly likely to be at least as hard as the p-median

problem. This thesis presents a formal problem specification for the capacitated

2.4. Capacitated Facility Location Problems 17

facility location problem, with its mathematical formulation and demonstrates that

its complexity is NP-hard. Solution techniques presented within the literature are

generally heuristic based algorithms. ReVelle and Eislet (2005) indicated that the

introduction of capacity constraints destroy the property that all the demand of a

customer ought to be assigned to a single facility, which makes problem much

more difficult to solve. They also claimed that available literature conclusions in

this area were ambiguous, i.e. there was no evidence of a dominant or state of

the art solution technique at that time. Introducing the capacity constraints leads

to two possible scenarios. The first is that if each customer’s demand has to be

completely satisfied then a customer’s demand may be supplied from more than

one facility; which gives a mixed-integer optimisation problem. Whilst the sec-

ond, considers that a customer’s demand has to be supplied from a single facility;

which gives a pure 0–1 integer or binary decision optimisation problem.

2.4.1 Lagrangean Relaxation

Although early attempts at solving the capacitated facility location problem (CFLP)

were based on branch and bound techniques and linear relaxation of the integral

constraints and they were only applied to contrived small-scale problems (Baker,

1982, Sa, 1969). Later, major developments in solution techniques are attributed

to the use of approximate techniques based on the application of Lagrangean re-

laxation (Barceló and Casanovas, 1984, Christofides and Beasley, 1983). Initially

these ideas were applied to the mixed integer formulation of the CFLP and the

term ‘large problems’ appeared (Beasley, 1988). Other contemporary and mathe-

matical programming solution techniques, together with recent applications of the

time were documented in the text by Love et al. (1988) and briefly discussed in

the theoretical text of Mirchandani and Francis (1990). Sridharan (1993) applied

Lagrangean relaxation to both the mixed-integer (CFLP) and discrete versions

2.4. Capacitated Facility Location Problems 18

(0–1 CFLP). However, Beasley (1993) provided the most significant advance-

ment by using Lagrangean relaxation as a framework for solving a host of facility

location problems. This work involved not only the development of Lagrangean

relaxation but also implemented ideas of approximate local strategies and was

applied to a series of test problems that are part of the OR-Library and almost

twenty years later are still often used and cited today (Beasley, 1990). A review

of the CFLP was published by Sridharan (1995) that gave researchers a good

insight into the best known techniques of the time and possibilities for future re-

search directions. A sub-drop local search method was proposed by Salhi and

Atkinson (1995). This starts with a potential set of facilities then attempts to re-

duce the overall costs by dropping or closing facilities and reassigning customers

to their nearest available facility. This technique is still very relevant today in more

contemporary metaheuristic methods. Daskin (1995) also published his facility

location text that gave detailed expositions of Lagrangean heuristic approaches

to uncapacitated and capacitated fixed-charge location problems. This text also

offered insights that embraced and integrated ideas of ‘add’, ‘’drop and ‘swap’ lo-

cal search improvement methods. A review and perspective on future directions

of facility location including those issues associated with the CFLP was discussed

by ReVelle (1997).

A major problem with Lagrangean relaxation is that even the best lower bound

obtained may not provide an optimal solution or feasible solution. During the pro-

cedure, lower bounds need to be checked against upper bounds. Both of these

require solutions to sub-problems of the original problem that may be difficult to

solve in their own right and consequently need to be approximated. Indeed, lower

bound calculations are required at each step of the Lagrangean process, which

may take thousands of iterations with many sub-problem solution required at each

iteration. The difference between upper and lower bounds is known as the du-

2.4. Capacitated Facility Location Problems 19

ality gap. Should this gap be zero then an optimal solution is observed. The

types of sub-problems that need to be solved for the CFLP are dependent upon

the constraints that are relaxed and the type of problem being solved. Beasley

(1993) gave a good overview of these issues. Typically, if the mixed-integer CFLP

is considered, then for a set of known facilities the problem reduces to solving

an unbalanced transportation problem. Similarly, for the 0–1 CFLP the problem

reduces to a special form of generalised assignment problem which is NP-hard.

Although efficient specialist algorithms for transportation problems, based on lin-

ear programming existed at the time, for example see (Goldberg, 1997), they

were considered computationally too expensive to solve these problems at each

iteration of a CFLP solver. Consequently, in both cases the transportation prob-

lem and generalised assignment problems were approximated. Agar and Salhi

(1998) tackled the issue of obtaining solutions to large scale CFLPs by imple-

menting a new interchange local search heuristic and step size criteria within

their Lagrangean heuristic. This approach allowed for the consideration of some

considerably larger problems containing one hundred facilities and one thousand

customers. Results obtained were very encouraging and solution quality was

comparable and marginally better on the small to medium sized problems as used

by Beasley (1993) and significantly better for the larger instances.

2.4.2 Metaheuristics

Metaheuristic techniques started to make some advancements over Lagrangean

techniques in the mid-to-late period of the 1990s. Two promising techniques to

solve the CFLP were derived using Simulated Annealing and Tabu Search (Born-

stein and Azlan, 1998, Filho and Galváo, 1998). The Simulated Annealing ap-

proach used by Bornstein and Azlan (1998) tested a technique that incorporated

approximate and exact solution methods for any transportation sub-problems

2.4. Capacitated Facility Location Problems 20

that were encountered. The results obtained for the approximate method indi-

cated that the Lagrangean relaxation method of Beasley (1993) was a better

method. However, the exact method gave results comparable to the the La-

grangean method in terms of the average relative error. The Tabu Search method

of Filho and Galváo (1998) gave a slight improvement over the Lagrangean, and

Simulated Annealing methods methods for the concentrator problem which is sim-

ilar to the CFLP. Attention then turned towards the 0–1 CFLP, Hindi and Pieńkosz

(1999) designed an efficient Lagrangean relaxation algorithm that outperformed

the method used by Beasley (1993). A hybrid branch and bound method that was

embedded within Lagrangean relaxation by Holmberg et al. (1999), out-performed

a CPLEX integer programming technique, but was not tested against any of the

main published methods. The trend for Lagrangean based approaches to solve

the 0–1 CFLP continued for some time. Some of the more noteworthy contri-

butions, for various reasons, that often appear within the literature are: Ahuja

et al. (2004), Barahona and Chudak (2005), Cortinhal and Captivo (2003), Dı́az

(2001), Dı́az and Fernádez (2002), Rönnqvist et al. (1999). The CFLP was also

considered within the combinatorial optimisation vehicle routing problem using an

effective algorithm by Bramel and Simchi-Levi (1995).

During the first five years of the new millennium interest in the UFLP and

CFLP dwindled. However, some useful work was carried out. A Genetic Algo-

rithm for the CFLP was developed by Jaramillo et al. (2002). This performed

well on the UFLP, finding optimal solutions for all of the test problems in rela-

tively small computational times, but suffered with excessively long run-times for

the CFLP and thus was abandoned as a potential solution technique. A very

successful problem-reduction local search technique based on a facility domi-

nance criteria was developed by Bornstein and Campelo (2004). This algorithm

gave results similar to previous Simulated Annealing and Lagrangean relaxation

2.4. Capacitated Facility Location Problems 21

techniques of Bornstein and Azlan (1998) and Beasley (1993) for the CFLP, but

with significantly improved run-times. It was during this period that ACO became

a popular technique for solving a variety of discrete combinatorial optimisation

problems. Stützle and Hoos (2000) published a paper on an ant algorithm to

solve the travelling salesman problem and the quadratic assignment problem; the

latter being a facility location problem. Their algorithm gave results that were

classed as state-of-the-art for both problems. The generalised assignment prob-

lem was successfully tackled by two location experts, Lourenço and Serra (2002),

using a hybrid algorithm based on ACO and Tabu Search. They also indicated

that it may be possible to adapt their ideas into a solution techniques for the 0–1

CFLP. Although Kumweang and Kawtummachai (2005) attempted to solve this

problem and claimed that the problem could be solved effectively and efficiently

using ACO, their results were somewhat misleading as insufficient experimenta-

tion had been carried out. However, Olivetti et al. (2005) did manage to produce

a successful ant based algorithm to solve the capacitated p-median problem,

that was an adaption and extension to the algorithms presented by Stützle and

Hoos (2000). Montemanni et al. (2005) went on to successfully apply ACO to the

vehicle routing problem, which has since been adapted into an industrial-based

planning solution technique.

A recent publication by Arostegui et al. (2006) concluded from empirical re-

search testing that Tabu Search was more reliable than Genetic Algorithms and

Simulated Annealing for solving different types of CFLPs. A multiple ant system

algorithm, that used two colonies, was implemented to solve the 0–1 CFLP by

Chen and Ting (2006). The first colony was used to derive what facilities to open

and the second to solve the underlying general assignment problems for those

facilities opened in the first stage. Although, this method gave some encouraging

results the process was prone to long run-times. The same authors improved on

2.4. Capacitated Facility Location Problems 22

this method by using a hybrid scheme based on combining Lagrangean relaxation

to identify what facilities to use and then apply an ant system to the generated

sub-problems (Chen and Ting, 2008). Levanova and Loresh (2006) designed an

ant algorithm, similar to that of Venables et al. (2005) for the CFLP, to solve the 0–

1 version based on traversing a bipartite graph; which incorporated a swap local

search technique and gave some encouraging results. Although the two tech-

niques were similar, the results for the CFLP indicated that solution convergence

was very slow and prone to stagnation. Consequently, this method was aban-

doned for the CFLP and various ant hybrid metaheuristics were later developed

to solve this problem (Venables and Moscardini, 2006, 2008)

A Tabu Search procedure for the CFLP was developed by Sörensen (2008)

that managed to find optimal solutions to all but two of the small to medium sized

OR-Library test problems. Although those instances were not identified within

their paper, relative errors were reported to be less than 0.1% which was an im-

provement over any other previously published works for the CFLP. Indeed, this

work not only backed up the conclusions made by Arostegui et al. (2006) but also

suggests that Tabu Search may be a dominant methodology to use when solving

the CFLP. However, a contemporary paper that used a Cross-Entropy approach

by Caserta and Quiñonez Rico (2009) claimed to obtain optimum solutions to

all of the CFLP test problems in the OR-Libray; including all of the larger prob-

lems (100 facilities and 1000 customers), which is something previously unseen

or reported on within the literature. The Cross-Entropy method was originally de-

signed to model the occurrence of rare events, within network systems, and was

later adapted to be used in combinatorial optimisation (Rubinstein, 2002, Ru-

binstein and Krose, 2004). The analogy between rare events and combinatorial

optimisation is that the probability of selecting an optimal solution for a decision

problem with many variables is very small, and thus selecting an optimal solu-

2.5. Summary 23

tion is considered to be a rare event. Caserta and Quiñonez Rico (2009) used

the basic ideas of Cross-Entropy in a hybrid manner by integrating a local search

mechanism based on multiple ‘add’ and ‘drop’ type procedures. The methodol-

ogy of Cross-Entropy is very similar to a specific type of ACO algorithm which

was recognised by Dorigo et al. (2002).

It appears that any future work to solve the CFLP effectively and efficiently

using metaheuristics would have to be of a hybrid nature. This is something

that is now being recognised by the academic community and the term hybrid

metaheuristics is being used and qualified within literature sources and dedicated

international conferences. Although the idea of combining or integrating different

heuristic or metaheuristic techniques is not entirely new, authors have been busy

identifying and defining the concepts and implications of these approaches (Blum

et al., 2008, Jourdan et al., 2009).

2.5 Summary

It is obvious from the literature that Lagrangean relaxation has played a key role

in research into the solution of facility location problems and is still actively used

nowadays (Ahuja et al., 2004, Beasley, 1993). What is more important is the

wealth of information available on the use of various metaheuristic techniques to

solve these types of problems. What is not clear is if there exists a particularly

dominant type of heuristic method to generally solve the network based facility

location problems. This leads to a certain amount of ambiguity as discussed

by ReVelle et al. (2008) for the CFLP. The p-median in both uncapacitated and

capacitated forms along with the 0–1 CFLP have acquired a great deal of atten-

tion from researchers. However, there is the opportunity for further developments

to be made by using hybrid techniques, such as those discussed by Blum et al.

2.5. Summary 24

(2008), because more needs to be known about the reliability of these techniques

when applied to the CFLP. Tabu search is seen as a good technique to use that

generates many optimal solutions to a variety of facility location problems, and

has successfully been integrated with other heuristics such as Lagrangean relax-

ation and ACO (Chen and Ting, 2008, Levanova and Loresh, 2006, Lourenço and

Serra, 2002, Sörensen, 2008). Hybridisation of ACO procedures is an emerging

technique for solving facility locations that have purely discrete decision variables,

such as the p-median, capacitated p-median, UCFLP, and the 0–1 CFLP. Ant

colony optimisation is given a thorough overview by Dorigo and Stützle (2004)

and appropriate analyses of these types of algorithms are discussed by Hoos

and Stützle (2005). However, when presented with a mixed-integer problem such

as the CFLP then hybrids that integrate with either approximate or exact meth-

ods in an attempt to efficiently exploit the solution space are worth exploring.

Although, in theoretical terms mixed-integer problems are not as difficult to solve

than pure 0–1 integer problems, (Dréo et al., 2006), it may be practically more

difficult to solve these mixed-integer problems. This conundrum was also inferred

from the results obtained by Agar and Salhi (1998), who commented that they

had observed this behaviour during their study.

Research and literature evidence presented in this chapter suggests that ACO

can be successfully used to derive solutions to pure discrete facility location prob-

lems such as the p-median and discrete capacitated problems, yet there is very

little evidence of its application to mixed-integer location problems. This Ph.D. re-

search focuses on the use of ACO as a platform to solve the CFLP, to gain further

knowledge about the behaviour and suitability of using these metaheuristic solu-

tion techniques. Some of the research undertaken during the development and

testing phases has been either published or presented at several international

conferences and shall be discussed in detail in subsequent chapters. The main

2.5. Summary 25

objective of this research project is to determine if ACO can be used as a potential

solution technique for the CFLP. If so, then determine whether it can be competi-

tive with contemporary methods, such as the Cross-Entropy method (Caserta and

Quiñonez Rico, 2007, 2009). Initial research conducted for this thesis (Venables

et al., 2005, Venables and Moscardini, 2006) suggests that ACO used in its origi-

nal format of traversing a graph/network (Dorigo, 1992, Dorigo and Stützle, 2004)

may not be an appropriate technique to solve the CFLP. Thus, the hybridisation

of ant algorithms may benefit from the integration of approximate heuristic tech-

niques and/or some type of exact methods that exploit the structure of the CFLP.

These types of designs are collectively termed as hybrid-metaheuristics (Blum

et al., 2008). Consequently, research output from this Ph.D. study shall make

contributions to three areas; location analysis, ACO and hybrid metaheuristics.

2.5.1 Research Question

Clearly, the ambiguity associated with published results of heuristic solution meth-

ods raised by ReVelle and Eislet (2005) and ReVelle et al. (2008) indicated that

there was a gap in the existing knowledge base. Furthermore, ACO had not been

applied to the CFLP. A study into the use of ACO as a solution technique would

provide sufficient information to determine if it was a suitable solution method for

the CFLP and identify if a dominant heuristic method existed.

A general research question is: Does ACO provide a suitable solution frame-

work platform for solving capacitated location problems?

Chapter 3

Research Methodology

The previous chapter indicated that there was a gap within research materials

associated with the development and application of ACO to solve mixed-integer

optimisation problems, such as the capacitated facility location problem (CFLP).

Evidence showed, (Agar and Salhi, 1998, Bischoff and Dächert, 2007, Chen and

Ting, 2008, Lorena and Senne, 2003), that metaheuristics had been applied to

pure discrete forms, but there had only been a varied amount of success in solv-

ing mixed-integer forms of the CFLP, (Arostegui et al., 2006, Bornstein and Azlan,

1998, Bornstein and Campelo, 2004, Sörensen, 2008), on those test instances

available from the OR-Library. The best results obtained were accomplished us-

ing metaheuristics or some type of hybrid technique based on local search or

mathematical programming techniques (Arostegui et al., 2006, Sörensen, 2008).

Recent research conducted by Caserta and Quiñonez Rico (2007, 2009) based

on the Cross-Entropy method of Rubinstein (2001) had a great deal of success in

tackling the CFLP, and they openly claimed to have solved all of the test problems

from the OR-Library.

This thesis investigates the mixed-integer form of the CFLP and critically eval-

uates the use of ACO as a solution framework. The latter part of this thesis

presents a rigorous series of comparative tests on a variety of ant based algo-

26

3.1. Introduction 27

rithms against the aforementioned Cross-Entropy method presented by Caserta

and Quiñonez Rico (2007, 2009).

3.1 Introduction

This thesis addresses the solution of the CFLP, which is a well-known theoretical

problem within the field of operational research (OR). OR is the discipline of ana-

lytical decision making that can be employed by business organisations to assist

in their strategic decision making policies. Although the CFLP is a theoretical

problem, it belongs to the strategic business field of supply-chain management.

Consequently, research output associated with this thesis can be used in both

algorithmics and a business context.

This chapter presents a methodological approach that incorporates the essence

of a philosophical standing which is often applied within business research and

relates it specifically to this study. Once the research philosophy is discussed,

a section detailing an appropriate research strategy is presented along with a

series of research questions. A breakdown of the design, methods and structure

required to conduct the proposed research is rationalised to address the research

questions. The final section gives a key-point summary.

3.2 Research Philosophy

The act of conducting research requires some initial intellectual thought about

why, what and how the research subject and processes are to be implemented

and justified. A theoretical research methodology framework generally includes

branches of philosophy that relate to the nature of knowledge, i.e its existence

and how it is acquired. Research can be described as the search for knowledge

3.2. Research Philosophy 28

or a critical investigation required to establish facts about a certain problem or

scenario.

There are three philosophical areas associated with research methodology;

epistemology, ontology and axiology (Bryman and Bell, 2007, Saunders et al.,

2007). The first, epistemology, concerns itself with the theory and nature of

knowledge including; what is knowledge, the quest for knowledge, how should

any knowledge acquired be tested and validated. This is often referred to as the

natural scientist’s model (Saunders et al., 2007). The second term, ontology, is re-

ferred to as meta-physics that deals with the existence and knowledge of entities

and their hierarchical social groupings. Whilst the final term, axiology, concerns

itself to the philosophical study of value in terms of morality, emotional and ethical

issues.

The research project at hand involves analysing results at various stages of

development of algorithmic procedures and giving a critical investigation and eval-

uation of the designed features. This will also include comparisons with contem-

porary published works within the field of study. Although this study relates to

operational and strategic business management, the research and development

sides of this project domain belong to a computing environment. This lends itself

to processes of observation, measuring and testing. Thus an epistemological

approach is the most suitable philosophy.

This research focuses upon a specific class of facility location problems, namely

CFLPs, and the integrated use of an artificial intelligence optimisation modelling

solution procedure. ACO is a technique derived from phenomena observed in

natural science and is based on the ability and efficiency in which ants forage for

food (Bonabeau et al., 1999, Dorigo, 1992, Dorigo and Stützle, 2004). The natural

scientist’s methodology of observe, measure, test and infer is appropriate and es-

sential to this research as it enables a thorough testing of any derived procedures.

3.3. Research Strategy 29

This methodological view point reflects the principles of positivism (Bryman and

Bell, 2007, Saunders et al., 2007). Furthermore, the nature of this thesis relies

upon creating new knowledge from existing knowledge within relevent areas of

facility location and ACO. To achieve this scrutiny of theory, research statements

and testing of hypotheses are necessary, and by collecting data and rigorous test-

ing, the theory is either accepted or rejected. This process of gaining knowledge

is thus empirical and deductive. Knowledge is enhanced or gained from expe-

rience generated from a thorough testing and then theory is either accepted or

revised.

3.3 Research Strategy

A successful research strategy not only relies upon the selection, implementation

and inference of relevent methods but also a justification of any methods to be

used and how they relate to the study’s research aims and objectives. ACO is a

stochastic technique that randomly selects moves on a graph or network, where

the probability of making a move is based upon a feedback system that uses a

combination of pheromone and problem instance information. As the algorithm

progresses iteratively these combined levels may change and moves are made

with some bias based on these levels at the beginning of each iteration. Conse-

quently, any underlying ACO system is very complex to consider theoretically and

an empirical study is an appropriate methodology to use.

The primary aims of this research project are concerned with a critical inves-

tigation and evaluation of an adaptive search technique, and its application to a

class of combinatorial optimisation problems encountered in the area of capaci-

tated facility location. The objectives of the study are to determine the effective-

ness, reliability and potential of using ACO as a solution framework for solving

3.3. Research Strategy 30

capacitated facility location problems, in particular this research is focused on

solving the CFLP.

3.3.1 Key Features for Empirical Analysis of the CFLP

To be able to perform a suitable empirical analysis of this case study, various

aspects of performance measures for ACO algorithms need to be considered

that will help to outline characteristics of algorithmic performance:

• Solution variability due to the randomness of moves made at each iter-

ation the quality of solutions in terms of relative errors of final costs may

vary.

• Algorithmic robustness with respect to problem instance, in terms of fixed

costs, assignment costs, capacity and demand.

• Problem size and run-time issues related to numbers of potential facilities

and customers.

Furthermore, the analysis will need to:

• Provide suitable metrics for comparison with other algorithmic approaches

such as Lagrangean Relaxation and Cross-Entropy (Beasley, 1990, 1993,

Caserta and Quiñonez Rico, 2007).

• Characterise algorithmic behaviour such as solution convergence and stag-

nation.

• Identify areas for improvement within the ACO paradigm for facility location.

• Determine the suitability of ACO for capacitated facility location.

3.4. Research Methods 31

3.3.2 Research Hypothesis

The research hypothesis for this empirical study is derived from the general re-

search question proposed in the previous chapter: The ACO algorithm is a useful

metaheuristic for solving capacitated facility location problems.

To support the acceptance or rejection of this hypothesis, the following re-

search questions need to be answered:

1. What is a suitable representation for the CFLP within an ACO modelling

framework?

2. How well do any derived solution techniques perform on test problems avail-

able from the OR Library, (Beasley, 1990)?

3. Is there a dominant ACO solution technique?

4. How well does ACO compare to the successful Cross-Entropy solution method,

(Caserta and Quiñonez Rico, 2009), across a range of test problems avail-

able from the OR Library?

5. Does ACO provide a suitable framework for solving the CFLP?

3.4 Research Methods

The main body of this thesis focuses on research output generated during this

Ph.D. study and a critical evaluation of the final solution methods adopted. All al-

gorithmic development is implemented using C++ and any results obtained from

the study will follow the guidelines given by Barr et al. (1995) and Hoos and

Stützle (2005) on reporting on computational experiments when using heuris-

tics. Also, any statistical analysis shall be performed using the open-source R

statistics package. Primarily, the main research methods to be employed are

3.4. Research Methods 32

those of theoretical derivation, experimentation, statistical observation and eval-

uation. The main body of research development, experimentation and evaluation

are presented in four key chapters:

• Preliminary Development and Experimentation – A formal specification

of the CFLP is presented. Also details of how to map the CFLP onto the

prescribed ACO framework solution space are discussed. Research is re-

stricted to two common ACO algorithms (Ant System and Max-Min Ant Sys-

tem) and a sample of test problems from the OR Library are used to deter-

mine the effectiveness of these methods. Basic statistical descriptors and

graphical output are used to assess solution quality in terms of computa-

tional run-time and relative percentage errors from known optimal solutions.

This shall provide evidence to address issues associated with the first re-

search question.

• ACO Hybrid-Metaheuristics for Facility Location – Using Max-Min Ant

System, an alternative solution representation is proposed, which divides

the process into two parts:

(a) uses ACO to select what facilities to locate;

(b) obtain approximate solutions to any underlying subproblems derived

by (a), i.e. approximation of transportation problems.

Initially experiments are carried out on 37 test instances from the OR-Library.

These experiments are repeated for a handful of times, using the experi-

mental strategy adopted by Lourenço and Serra (2002), and basic statistical

descriptors are used for reporting on run-time and solution quality. At this

stage two local search solution improvement methods similar to those used

by Agar and Salhi (1998) are introduced; where local solution improvements

are sought after by one method that closes open facilities, whilst a second

3.4. Research Methods 33

method combines the first one with swapping open facilities for closed ones.

Since the two ACO methods are developed on the same computational plat-

form, their run-time statistics can be directly compared.

Research presented in this chapter breaks away from traditional aspects of

heuristics for the CFLP, (Agar and Salhi, 1998, Beasley, 1993, Bornstein and

Azlan, 1998, Bornstein and Campelo, 2004), which depend upon approxi-

mations during their iterative solution procedures as in (b), and presents a

novel technique that embeds exact solution methods into the iterative solu-

tion process. The ACO technique iteratively selects feasible subsets of facil-

ities which inturn defines many transportation problems, that are solved us-

ing an exact linear programming algorithm from the COIN-OR open-source

project (Lougee-Heimer, 2003). Recent applications of hybridisation based

on combining approximate and exact solution techniques can be found in

Blum et al. (2008). As with the approximate hybrid method, solution im-

provements are sought after by the dropping and swapping of facilities.

Again basic statistical techniques are applied to experimental run-times and

solution quality for comparison with previous developments. Furthermore,

all of the test problems available in the OR-Library are used in the exper-

iments. These experiments are designed to give results that shall help to

answer question two.

• Hyper-Cube Framework for the CFLP – A natural extension to the Max-

Min Ant System algorithm is to fix the lower and upper pheromone limits to

remain betwen zero and one. Blum and Dorigo (2004), Blum et al. (2001)

developed a Hyper-Cube Framework algorithm in an attempt to overcome

sensitivity issues that were thought to exist with Max-Min Ant System. A

main feature of the algorithm is that pheromone levels converge to their

limits as the algorithm progresses, i.e. zero or one, which is analogous to

3.4. Research Methods 34

facilities either being selected to be opened or closed. Although this method

has been applied to the p-median problem, (Olivetti et al., 2005), there is lit-

tle evidence of applications to the CFLP, (Venables and Moscardini, 2008).

Hybridisations as used with the Max-Min Ant System are also implemented

and a series of similar experiments are carried out for comparison purposes.

These experiments are also designed to give results that shall help to an-

swer question two.

• ACO: Run-Time Analysis and Evaluation – ACO and Cross-Entropy meth-

ods are examples of stochastic optimisation techniques. The implication of

this is that solution quality and computational run-times are likely to be ran-

dom statistical distributions, that may by impossible to consider theoretically

and thus an empirical analytical approach is often more appropriate. Subse-

quently, when performing algorithmic comparisons, it is not recommended

to use a small sample of experiments and simple statistical descriptors as

false inferences may be made. Consequently, techniques that need to be

employed are based upon conducting many experiments over a variety of

test problems. How many experiments to conduct is open to statistical de-

bate as these types of algorithms are deemed to be incomplete, i.e. they

can not be guaranteed to find optimal solutions to problems in finite time.

However, a sample size can be justified experimentally.

A run is defined as the execution of an algorithm on a particular problem in-

stance, that is terminated upon reaching some predefined stopping criteria.

The run-time of a particular problem instance is the elapsed period of time

taken from the start to reaching the algorithm’s stopping criteria, which can

either be measured in units of CPU clock-time or computational operational

counts. ACO is a stochastic process where the time taken to generate a so-

lution is a random variable. Thus to make any inference about algorithmic

3.4. Research Methods 35

performance for a particular problem instance the behaviour of its random

solution run-time distribution needs to be statistically determined. To gen-

erate a run-time distribution for a particular instance a series of runs must

be completed and their run-times recorded. If the algorithm being tested

has any parameters that need to be set prior to execution then, to avoid pa-

rameter dependant variations, these must be identical for all of the executed

runs. Run-time distributions can also be derived for ensembles of problem

instances to help determine any general qualitative algorithmic run-time is-

sues. This approach of using statistical techniques to characterise randomly

generated run-time distributions is referred to as run-time analysis by Hoos

and Stützle (2005).

Two run-time methods are available to determine the behaviour of these

algorithms. The first is based on computational run-time measures (CPU)

whilst the second uses run-time operational counts. To compare ACO and

the Cross Entropy method, the former is chosen as both algorithms can

be executed on the same machine and direct run-time distributions can be

compared both qualitatively and quantitatively. The latter method is rejected

because within the ACO algorithm an exact method is employed, where it is

not possible to obtain operation counts when called upon.

Initially, a qualitative comparison of the distributions can be made by com-

paring graphs of the probability of solving a given problem against the time

required to solve that problem. To construct a probability distribution, for a

given problem consists of an experiment of one thousand runs. Guidelines

for conducting these types of experiments are given in Hoos and Stützle

(2005). Should any further analysis be required then non-parametric hy-

pothesis testing based on median run-times may be conducted using the

Mann-Whitney U-test. However, this test may lead to false acceptance or

3.5. OR-Library Test Problems 36

rejection of the appropriate null and alternate hypotheses (Type I and Type

II errors). Alternatively, an approach that is becoming more acceptable than

standard hypothesis testing is that of statistical bootstrapping. This method

can be used to random sample from a sampling framework (large set of

experiments for a given problem) to obtain a confidence interval of median

run-times. This bootstrapping method is at present not evident in the appli-

cation of metaheuristics to facility location research literature. Upon comple-

tion of the analysis and evaluation the answers to research questions three,

four and five shall be available.

Furthermore, conducting a thorough set of run-time experiments on the OR-

Library test problems and performing comparative analyses with the Cross-

Entropy method shall provide insights into the behaviour and design of these

hybrid-metaheuristic methods. Although Hoos and Stützle (2005) presented

a thorough overview of using run-time analysis for stochastic optimisation,

there is little evidence of this type of empirical approach to algorithmic per-

formance and design within metaheuristic applications to facility location.

Thus, this section will advance existing knowledge and provide substantial

new material for future publications and indicate directions to follow for fur-

ther research.

3.5 OR-Library Test Problems

Throughout this study the test problems that are available from the OR-library

shall be used. Table 3.1 presents a summary of the test problems available, fur-

ther details of which can be found in Beasley (1988). The rationale to use only use

these problems is that their optimal solutions are already known and they often

used as standard problem instances by researchers (Beasley, 1993, Bornstein

3.5. OR-Library Test Problems 37

and Azlan, 1998, Bornstein and Campelo, 2004, Caserta and Quiñonez Rico,

2007, 2009, Sörensen, 2008). Additional medium sized test instances could be

generated, as discussed by Caserta and Quiñonez Rico (2009), and then op-

timally solved using a commercial mixed-integer solver such as CPLEX or the

CBC module of the COIN-OR Library (Lougee-Heimer, 2003). However, it is the

inconsistent use of test problems that go towards explaining the term ambigu-

ity that is used by ReVelle and Eislet (2005) and ReVelle et al. (2008). The

use of these library problems allows for a thorough series of experiments to be

conducted, which are required to conduct run-time analyses and construct any

corresponding empirical run-time distributions.

Run-time distribution analysis requires a great deal of computational experi-

mentation. Consequently, run-time execution time limits need to be adhered to

when collecting sample data. A CPU-clock time of ten minutes shall be set a the

maximum time allowed for a single experimental run, i.e. a problem has to be

solved in under ten minutes otherwise the run is terminated and the best least-

cost solution is recorded along with the time when it occurred. Approximately

1000 runs per problem are required to build an empirical distribution, (Hoos and

Stützle, 2005). Potentially, each problem may not be solved within the maximum

time limit. There are 49 test problems available in the OR-Library, which indicates

a worst-case run-time of 10×1000×49 mins ≈ 341 days per algorithm to be tested.

To enable a practical experimental methodology, a handful of experiments con-

ducted on each test problem shall help to decide which problems are to be se-

lected for the set of substantial run-time analyses later in this study. The empirical

run-time distributions will indicate any algorithmic traits, whether then positive or

negative. These characteristics would also be evident in larger and more difficult

problems to solve, but would be compounded by longer run-times. So, by using

the OR-Library problems more control is placed over experimentation without the

3.6. Summary 38

Problem Potential Number of Facility Facility

Set Facilities (m) Customers (n) Capacity Fixed Costs (000s)

cap41-44 16 50 5000 7.5/12.5/17.5/25.0

cap51 16 50 10000 17.5

cap61-64 16 50 15000 7.5/12.5/17.5/25.0

cap71-74 16 50 58268 7.5/12.5/17.5/25.0

cap81-84 25 50 5000 7.5/12.5/17.5/25.0

cap91-94 25 50 15000 7.5/12.5/17.5/25.0

cap101-104 25 50 58268 7.5/12.5/17.5/25.0

cap111-114 50 50 5000 7.5/12.5/17.5/25.0

cap121-124 50 50 15000 7.5/12.5/17.5/25.0

cap131-134 50 50 58268 7.5/12.5/17.5/25.0

A 100 1000 8000/10000/12000/14000 Random

B 100 1000 5000/6000/7000/8000 Random

C 100 1000 5000/5750/6500/7250 Random

Table 3.1: OR-Library test problems

loss of valuable algorithmic behaviour.

3.6 Summary

This chapter began by introducing the research topic and related it to academic

fields of business, management, computing, computer science and operational

research. The research philosophy section discussed how and why epistemol-

ogy, positivism, deductive and empirical approaches were appropriate to this

study based on a natural scientist’s point of view. The research strategy sec-

tion presented the research aims and objectives and focused on a particular type

of capacitated facility location problem, the CFLP. Details of important areas for

consideration were discussed and a series of research questions were given. The

research methods section discussed four key areas of the research project and

how they related to obtaining answers to the derived research questions. Also,

discussions were made concerning the merits and use of various data collections

and statistical analyses. Finally, the potential of contribution to knowledge and

3.6. Summary 39

future research directions were indicated through the uses of run-time analyses.

Chapter 4

Preliminary Development and

Experimentation

This chapter presents a formal specification for the CFLP and describes its rela-

tionship to the p-median problem, and shows that the complexity of the problem is

NP-hard. Various aspects of ACO are discussed including algorithmic framework,

design and execution phases with an emphasis on applications to the CFLP. Two

popular ant colony algorithms are developed, a series of experiments are con-

ducted, important results are presented and discussed. Conclusions and recom-

mendations for further research and development for using ant colony algorithms

are detailed in the final section.

4.1 Formal Specification of the CFLP

The CFLP considers the problem of selecting a subset of facilities from a set I

of m available facility locations, that need to resource a set J of n customers

at a minimum cost. Each customer j ∈ J has an associated demand qj to be

resourced by at least one facility and each facility i ∈ I has a finite amount of

40

4.1. Formal Specification of the CFLP 41

resource available Qi. The transportation cost of resourcing a unit of demand to

a customer j from a facility i is cij. Also, each facility i that is selected incurs a

one-off fixed usage or opening charge fi. The objective is to select facility loca-

tions that can supply all of the customers at an overall minimum cost. Define:

xij = the fraction of the demand of customer j resourced from facility i,

and the decision variable associated with opening a facility i

yi =

1 if facility i is selected,

0 otherwise.

The CFLP is formulated as

min z =
∑

i∈I

∑

j∈J

qjcijxij +
∑

i∈I

fiyi (4.1)

such that
∑

i∈I

xij = 1 ∀ j ∈ J. (4.2)

∑

j∈J

qjxij ≤ Qiyi ∀ i ∈ I. (4.3)

xij ≤ yi ∀ i ∈ I ∧ ∀ j ∈ J. (4.4)

yi ∈ {0, 1} ∀ i ∈ I. (4.5)

0 ≤ xij ≤ 1 ∀ i ∈ I ∧ ∀ j ∈ J. (4.6)

I = {1, 2, . . . , m} ∧ J = {1, 2, . . . , n}. (4.7)

Equation (4.1) is the objective function used to minimise the total fixed and supply

4.1. Formal Specification of the CFLP 42

costs associated with facility and allocation variables yi and xij. Constraint (4.2)

ensures that the demand qj of each customer j is satisfied. Constraint (4.3) en-

sures that an open facility i does not supply more than its capacity Qi. Constraint

(4.4) further strengthens (4.3) by only allowing the assignment of customer j to a

facility i that is open. Constraint (4.5) is a binary or integral condition, concerned

with a facility i being selected as opened or closed. Constraint (4.6) refers to

the fractional assignment condition that allows the demand of customer j to be

allocated to more than one facility. Finally, constraint (4.7) are the sets of indexes

that refer to discrete facility locations and customers.

4.1.1 Complexity of the CFLP

Researchers often describe the CFLP as being NP-hard because of its relation-

ship to the p-median problem. However, although Garey and Johnson (1979) are

often cited for the complexity of the uncapacitated facility location this does not

appear directly within their text. Yet the p-median does appear as a network de-

sign problem, MIN-SUM MULTICENTER [ND51] (Garey and Johnson, 1979). To

show that CFLP belongs to the same class as the p-median problem it is only

necessary to determine an equivalent instance of the CFLP. Then the CFLP is at

least as difficult to solve as the p-median problem and hence NP-hard.

The p-median problem is concerned with obtaining a set of p-facility locations,

where each location is a median, so as to minimise the total demand-weighted

travel distance between demand and facilities nodes on a network. Demand

nodes are represented by a set J of n customers, where J = {1, 2, . . . , n}. Poten-

tial median facility locations are represented by the set I , where I = {1, 2, . . . , n}.

The notation for the p-median problem is similar to that of the CFLP:

Define

4.1. Formal Specification of the CFLP 43

qj = the demand of customer j ∈ J ,

dij = the distance from node j ∈ J to facility node i ∈ I,

p = number of median facilities to be located,

with the supply-demand decision variable

xij =

1 if demand node j ∈ J is supplied by facility node i ∈ I,

0 otherwise,

and the facility decision variable

yi =

1 if facility i ∈ I is opened,

0 otherwise.

The p-median problem is formulated as

min z =
∑

i∈I

∑

j∈J

qjdijxij (4.8)

such that
∑

i∈I

yi = p (4.9)

∑

i∈I

xij = 1 ∀ j ∈ J. (4.10)

xij ≤ yi ∀ i ∈ I ∧ ∀ j ∈ J. (4.11)

yi ∈ {0, 1} ∀ i ∈ I. (4.12)

xij ∈ {0, 1} ∀ i ∈ I ∧ ∀ j ∈ J. (4.13)

The objective function is used to minimise the total demand-weighted distance

between customers and facilities is given in (4.8). Constraint (4.9) ensures that

4.1. Formal Specification of the CFLP 44

p facilities are located. Constraint (4.10) ensures that all demand is supplied.

Constraint (4.11) further strengthens (4.10) by only allowing the demand of a

customer j to be served by a facility i that is open. Constraints (4.12) and (4.13)

are binary or integral conditions, concerned with facilities being selected as either

opened or closed and the assignment of customers to respective facilities.

To transform an instance of the CFLP into a p-median problem, initially set the

capacity of each facility to be Q =
∑n

j=1
qj. This eliminates the need for the capac-

ity constraint (4.3), as each facility is capable of serving all of the customers. Fur-

thermore, due to the property of supply and demand points being network nodes,

all customers’ demands will be assigned to their nearest demand-weighted fa-

cilities. This is achieved without the necessity of sharing single demand needs

amongst several facilities. Hence, the constraint placed on the variable xij given

in (4.6) can be replaced by a binary decision variable xij ∈ {0, 1}. Also, if the fixed

costs of each facility are constant, i.e. fi = f ∀i, then the fixed costs in the ob-

jective function (4.1) can be ignored. Finally, if there are p facilities to be opened

to give an optimal solution then the equality constraint
∑m

i=1
yi = p is introduced.

The objective function (4.1) becomes that of a p-median problem given in

(4.8) as the fixed costs can be ignored. Capacity constraint (4.3) is replaced by p-

median constraint (4.9). Constraint (4.2) is identical to (4.10), as constraint (4.6)

becomes integral it is equivalent to (4.13). Also, constraints (4.4) and (4.11) are

the same. Thus, this instance is equivalent to a p-median problem. Hence, the

CFLP must be at least as difficult to solve as the p-median problem and must also

be NP-hard.

The first stage of this process is to specify the CFLP in terms of the ACO

solution framework, which is the subject of the next section.

4.2. ACO Framework: Modelling Criteria 45

4.2 ACO Framework: Modelling Criteria

The ACO metheuristic initially allows artificial ants to construct solutions to the

proposed combinatorial optimisation problem by performing steps either on a

graph or network representation to create pathways for each ant. An ant’s so-

lution is a completed pathway having a length or cost associated with it, that

usually represents a feasible solution although it is possible to also consider in-

feasible solutions (Dorigo and Stützle, 2004, Lourenço and Serra, 2002). A com-

binatorial minimisation problem can be described as a triplet (S, f, Ω), where S is

the set of potential solutions, f is the objective cost function that assigns a cost

f(s) to each potential solution s ∈ S, and Ω is the set of constraints placed upon

the problem. The aim is to obtain a solution {s∗ | f(s∗) ≤ f(s),∀s ∈ S \ s∗},

whilst simultaneously satisfying all of the constraints placed on the problem i.e.

Ω(s∗) 7→ ⊤.

The solution space S is represented as a network or completely connected

graph that is referred to as a construction graph GC = (C, L), with a set nodes

for components C and a set of links or edges that fully connect the nodes L. A

feasible solution s is obtained by conducting a random walk on the graph GC via

the nodal components C along the nodal links L, whilst adhering to the constraints

Ω. Thus to solve a given problem using ACO, the problem must first be modelled

as a graph according to the conditions described earlier in this section.

4.2.1 Characteristics of an ACO Construction Graph for the

CFLP

As previously discussed any problem under consideration must satisfy certain

modelling criteria before an ACO solution method can be used. The distribution

of potential facilities and customers within the CFLP can be easily modelled as

4.2. ACO Framework: Modelling Criteria 46

a network or graph problem made up of nodes and links. One way of visualising

this is to describe the potential assignments of customers to facilities as a bipar-

tite graph, as shown in Figure 4.1. Other graph modelling schematics shall be

presented and discussed in later chapters.

The first stage of mapping the CFLP onto a combinatorial optimisation triplet

of the form (S, f, Ω), is to define the solution space to be the construction graph

S ⊆ GC = (C,L). Where the set of component nodes C is the combined set of

facility nodes I and demand or customer nodes J , i.e. C = I ∪ J , and the set

of links L are all the links that represent possible assignments of nodes in I with

nodes in J and vice-versa. Artificial ants use this construction graph as network

of various pathways that are built stochastically to provide solutions.

The next step is to define a solution s ⊆ GC , i.e. a solution is a subgraph of the

construction graph GC . Each generated solution contains assignment links from

customers to facilities and vice-versa which have associated costs. Collectively

these costs are known as an objective function cost f , that is defined as the total

fixed and variable costs for a solution s and is stated as z in equation (4.1). Thus

a derived solution s will have an objective cost of z(s). Consequently, any ant that

searches through the construction graph has the ability to build a pathway that

connects all of the customers to a subset of facilities at some overall cost.

The final step determines the feasibility of a generated solution Ω(s) 7→ ⊤, i.e.

all feasible solutions must satisfy the constraints placed on the CFLP as given

by constraints (4.2)–(4.6). Details of how to ensure that only feasible solutions

are built during the construction phase of a solution s are presented in the next

section. The overall aim is to use a colony of artificial ants to find an optimum

solution {s∗ | z(s∗) ≤ z(s),∀s ∈ S \ s∗; Ω(s∗) 7→ ⊤}, where each ant in the colony

builds a feasible solution and at least one ant finds the best solution.

4.3. Design of an ACO Algorithm 47

Figure 4.1: Bipartite graphical representation of potential assignments of cus-

tomers to facilities.

4.3 Design of an ACO Algorithm

There are two primary phases within any ACO algorithm, the first is solution

construction and the second is pheromone update. Many ACO algorithms also

include an optional third phase concerned with solution improvement or local

search, that is usually performed prior to the pheromone update phase. Initially,

this research concentrates on the two primary phases. At this early stage of re-

search it is necessary to determine if a pheromone model that is based on a

bipartite graph is suitable for an ACO development and implementation. Thus a

rational choice is to only consider the influence of a basic ACO algorithm without

the need for local search. A basic outline of the three phases of an ACO algorithm

is shown in Algorithm 4.1.

4.3. Design of an ACO Algorithm 48

Algorithm 4.1: Outline of a basic ACO algorithm

initialise pheromones and heuristic information

while termination condition not met do

Construction Phase

Local Search Phase; // optional phase

Update Phase;

end

4.3.1 Solution Construction Phase

In an ACO algorithm, artificial ants perform random walks on a construction graph

that represents a problem’s discrete solution space. Ants move from one compo-

nent node to another via a link or path. Although ants make random choices when

faced with a move to make, they do so with bias towards more promising links or

component nodes. Effectively, this is an artificial response or reaction to an ant’s

local environment which is known as a stigmergy process. To aid this process

pheromones (τ) are placed either on the component nodes or the connecting

links of the construction graph. Ants can only move from one component node to

another via a single link, i.e. to a neighbouring node. Unlike real ants, artificial

ants can be programmed with some information already known about a specific

problem being solved to assist further with any decisions that need to made. This

a priori information remains fixed throughout the algorithm’s run-time and is called

heuristic information (η). A probability distribution associated with making a move

to a node from a given neighbouring node is a function of current pheromones

levels and heuristic information. When ants tour a construction graph they gen-

erally build feasible solutions, thus a completed ant tour for a prescribed problem

shall have a length or cost and must satisfy all of the given constraints. Tours of

shortest lengths or lowest costs are more likely to contain components or links

4.3. Design of an ACO Algorithm 49

belonging to an optimal solution. Each ant builds its own solution based on the

pheromones and heuristic information available at the beginning of an iteration.

Pheromone and solution improvement updates only occurs after all of the ants

have completed their tours.

The bipartite graphical representation of Figure 4.1 for the CFLP shows links

from facility nodes i ∈ I to customer or demand nodes j ∈ J . Pheromone levels

τij and heuristic information ηij are associated with links (i, j). Thus when an

ant builds a solution, it does so by making alternating moves from either a facility

node to a demand node or from a demand node to a facility node. Consequently,

any probability distribution associated with making a move will not only depend

on pheromone levels and heuristic information but also on the type of move being

made. The probability of making a move from a facility node i to a customer or

demand node j along link (i, j) is calculated as:

pij =
τα
ij ηβ

ij
∑

l∈Ni
τα
il ηβ

il

, if j ∈ Ni, (4.14)

where Ni = {j |q′j > 0, ∀j ∈ J} represents all of the potential moves an ant can

make from facility i to those customers that have some remaining demand, q′j, to

be supplied. Similarly, a move from a customer or demand node j to a facility

node i along link (j, i), which is equivalent to a move along link (i, j), is:

pij =
τα
ij ηβ

ij
∑

l∈Nj
τα
lj ηβ

lj

, if i ∈ Nj, (4.15)

where Nj = {i |Q′

i > 0, ∀i ∈ I} represents all of the potential moves an ant can

make from a customer j to those facilities that have some spare capacity avail-

able, Q′

i. The parameters α and β are fixed and represent the importance of

4.3. Design of an ACO Algorithm 50

pheromone intensity and heuristic information. When a move is made, as much

demand is assigned as possible, which may necessitate respective changes in

facility capacity, Q′

i, and customer demand levels, q′j. The cost of a move is com-

puted as the cost of demand allocation and fixed facility cost if the facility needs to

be opened. A completed tour is made once all of the customers’ demands have

been allocated. Each tour is constructed from an initial starting point or node that

is randomly selected from the set of the construction graph nodes C.

Figure 4.2 displays an example of an ant’s tour for a small problem consisting

of five customers and three facilities. Capacities Q′

i and demands q′j are initialised

to their respective Qi and qj values. The tour starts by randomly selecting a fa-

cility, in this example facility 1 is selected and its one-off fixed cost f1 is recorded

as the initial total cost. Since none of the customers have been assigned then

Ni = {1, 2, 3, 4, 5} and a customer is selected according to equation (4.14), in this

example customer 2 is selected. As much demand as possible is then allocated

from customer 2 to facility 1 and the corresponding Q′

i and q′j values are updated.

The cost of assigning demand from j = 2 to i = 1 is computed as amount of

demand assigned multiplied by the appropriate unit transportation cost, which is

then added to the current total cost. The next move involves randomly selecting a

facility from those facilities that have sufficient spare capacity as defined in equa-

tion (4.15). Although the customer’s demand values and facility capacities are not

explicitly detailed in this example, all of the facilities are assumed to have some

spare capacity, so Nj = {1, 2, 3} and facility 3 is randomly selected. The whole

process of moving alternatively between facilities and customers is repeated un-

til all of the customers’ demands are assigned. The number of elements in Ni

reduces in size until |Ni| = 0 when no further demand requires assigning to a

facility, and the elements in Nj reduces as facilities reach their capacity levels.

4.3. Design of an ACO Algorithm 51

Figure 4.2: Example of an ant’s tour to assign customers to facilities

4.3.2 Pheromone Update Phase

A positive feedback or recruitment system that intensifies pheromone levels on

those nodes or pathways that are likely to be in an optimum solution is imple-

mented. However, an over amplification of pheromones may misguide the ants

to converge to a poor or non-optimal solution. In an effort to overcome this some

negative feedback or reduction of pheromone levels must also take place which

is referred to as pheromone evaporation (ρ). It is the depositing and evaporation

of pheromones in this phase that provides the main differences between vari-

ous ACO based algorithms (Dorigo and Socha, 2006, Dorigo and Stützle, 2004).

Pheromone evaporation takes place first and is applied to all of the pheromones.

Whereas, pheromone deposits that reflect solution quality are made subject to

some criteria depending upon the type of ACO algorithm being implemented.

Two popular ACO algorithms are described in the next subsection together with

their specific design attributes for case of the CFLP and pheromone update rules.

4.3. Design of an ACO Algorithm 52

In both cases solutions are constructed on a bipartite graph as shown in Figure

4.1 and as described in section 4.3.1.

4.3.3 Ant System and Max-Min Ant System for the CFLP

Many ACO algorithms are based on extensions to the original Ant System (AS)

algorithm proposed by Dorigo (1992). The Max-Min Ant System (MMAS) al-

gorithm (Stützle, 1999, Stützle and Hoos, 1997, 2000) is a modification of AS,

which quoted as one of the most successful ACO algorithms for solving a variety

of combinatorial optimisation problems by Blum et al. (2008). As described earlier

in section 4.3 this initial study shall concentrate on the basic influence of ACO for

solving the CFLP.

Dorigo and Stützle (2004) presented a MMAS algorithm to solve the classical

travelling salesman problem (TSP). They empirically observed that the size of the

colony of ants had little impact on computational performance on instances of up

to 500 cities, yet for larger instances there was evidence to support the use of a

colony. However, the downside of this was as the colony size became larger then

computational efficiency was lost. Through experimentation, they claimed that a

suitable size of colony for larger TSP instances would be between two and ten.

Also, they observed that a colony of a single ant produced solutions within 0.5%

of the optimum value which displayed a slower final convergence than those of a

greater colony size. Dorigo and Stützle (2004) suggest that there is evidence to

support the use of a pseudorandom proportional rule for the decision of making a

move on the graph GC for the MMAS algorithm. This was a technique originally

developed as part of the Ant Colony System algorithm (Dorigo and Gambardella,

1997a,b). The MMAS decision rule associated with making a move from a node

i ∈ I to a node j ∈ J on GC for the CFLP:

4.3. Design of an ACO Algorithm 53

j =

argmaxl∈Ni
[τil]

α[ηil]
β if q ≤ q0,

J otherwise.
(4.16)

Where q is a random variable uniformly distributed in interval [0, 1], 0 ≤ q0 ≤ 1

is a parameter, Ni is the set of possible moves from node i, and J is a random

variable that is selected according to the probability distribution given in equation

(4.14). Also, moves from a node j ∈ J to a node i ∈ I can be modelled in a

similar way.

Using a single ant is a valid concept within the ACO solution construction

phase, as a lone ant lays pheromone information for future ants about to leave

the nest site. This is equivalent to having a large colony of ants where only one

ant at a time is allowed to build a solution during each iteration of the algorithm’s

run-time. Consequently, the computational behaviour a simple ACO algorithm

that only uses a single ant construction process can be used to determine the

potential of a bipartite pheromone model to solve the CFLP.

The following update phases and initial pheromone levels τ0 are adapted from

those given by Dorigo and Stützle (2004). Initially, the pheromone levels for AS

are set to τij = τ0 = 1/z0; where z0 is computed as the objective cost using a

minimun link cost discrete allocation heuristic. However, initial pheromone levels

for MMAS are τ0 = 1/ρ z0; where ρ is the pheromone evaporation rate.

AS Update Phase for the CFLP

Once an ant has constructed a tour then pheromone evaporation and an amount

of pheromone deposit takes place. Pheromone evaporation is applied to all links

of the construction graph, whilst pheromones are only deposited on those links

forming the ant’s tour which is defined as:

4.3. Design of an ACO Algorithm 54

τij ← (1 − ρ)τij + ∆τij, ∀(i, j) ∈ L; (4.17)

where ∆τij is the amount of pheromone deposited along the pathway built, T , by

the ant at the current iteration:

∆τij =

1/z if link (i, j) belongs to ant tour T ,

0 otherwise.
(4.18)

Where z is the objective cost of tour T , and is computed as indicated in the right

hand side of equation (4.1). The reciprocal of z given in equation (4.18) en-

sures that greater amounts of pheromones are applied to those links with shorter

lengths or smaller objective costs. Pheromone recruitment occurs on those links

that are commonly selected by a different ant at each iteration. Subsequently, as

the algorithm iteratively advances any future ant will be more likely to select those

links with higher pheromone levels thus converging to a shortest path.

MMAS Update Phase for the CFLP

There are several major differences between the AS and MMAS algorithms.

Firstly, pheromones are laid on the links of the best tours, which may not be the

path chosen by a current ant. If a colony is used during the search process then a

choice can be made between using the best ant solution for the current iteration or

the overall best solution found to date as the pathway of links on which to deposit a

quantity of pheromone. However, if a colony of unit size is used then pheromones

are laid on the pathway of the best solution to date. A potential downside to this

process is that over recruitment may occur as the pheromone intensity of the

best pathway may misguide ants to a non-optimal solution, this phenomena is

referred to as stagnation. The second major difference is that, unlike AS where

4.4. Computational Design and Experimentation 55

pheromone levels are unbounded, MMAS places a restriction on the upper and

lower bounds of the pheromone levels [τmin, τmax] in an attempt to avoid early

stagnation of the algorithm. Furthermore, the upper limit τmax is initially set to

τ0 = 1/z0 as in the AS algorithm. The lower pheromone limit is set to a fraction

of the upper pheromone limit τmin = τmax/a, where a usually represents the size

of the problem in terms of the number of components C in the construction graph

GC = (C,L). Also, the pheromone levels are reinitialised during the run-time of

the algorithm should stagnation occur or no solution improvement occur within a

pre-fixed number of iterations.

τij ← (1 − ρ)τij + ∆τ best
ij , ∀(i, j) ∈ L. (4.19)

Where ∆τ best
ij is the amount of pheromone deposited by an ant along the best

pathway built to date, T best:

∆τ best
ij =

1/zbest if link (i, j) belongs to the best to date ant tour T best,

0 otherwise.

(4.20)

4.4 Computational Design and Experimentation

This section presents computational experiments and results obtained for a series

of benchmark capacitated location problems whose optimal solution are known.

The algorithms were coded in C++ and experiments were carried out on a Dell

Inspiron 8600 with a 1.60 GHz Pentium M processor and 786Mb RAM. The

problems used were taken from the OR-Library (http://people.brunel.ac.uk/ mas-

tjjb/jeb/info.html).

Along with a suitable choice of a heuristic information function η, ACO algo-

4.4. Computational Design and Experimentation 56

rithms require several parameters to be set prior to execution namely α, β and ρ

which are common to both AS and MMAS algorithms, whilst q0 is only required

for MMAS. The function for η reflects the preference of assigning customers to

their nearest facility and is implemented as η = 1/cij; where cij is the transporta-

tion cost of allocating a unit of demand from customer j to facility i. At this stage

of development, it is only necessary to evaluate the usefulness of using a stan-

dard ACO based approach as a potential solution method for the CFLP. Thus,

the dynamic characteristic behaviour of the two algorithms needs to be evalu-

ated in some way. To achieve this fine tuning of the pre-run-time parameters is

not required as a secondary optimisation problem may arise, i.e. optimise the

parameters to give the best solutions according to some criteria.

A series of experiments were carried out to determine suitable parameters

to use for each algorithm and were conducted on the same problem instance

following the guidance given in Dorigo and Stützle (2004). The pheromone am-

plification and heuristic information importance parameters were tested over the

intervals 0 < α ≤ 2 and 1 ≤ β ≤ 5. Also, the pheromone decay rate ρ was

determined in a similar manner for each algorithm. The run-time termination cri-

teria was set at 1000 iterations and a pheromone reset was applied to MMAS

if no solution improvement was observed after a non-improving period of 200 it-

erations. The parameter q0 was tested on the interval 0.1 ≤ q0 ≤ 0.9, and was

observed to have an insignificant influence on the solution quality (relative error

from the known optimal), yet had a role to play in reducing the best solution run-

time. Parameter values were tested using ten runs for each setting. Reliable and

efficient parameter settings are defined as those values that give consistently

greater solution accuracy and shorter run-times. Consequently, the parameter

selection criteria were based on solution accuracy, and the coefficient of variation

values for the relative error and solution run-time.

4.5. Initial Conclusions and Recommendations 57

α β ρ q0

AS 0.1 1.4 0.5 –

MMAS 1.6 1.4 0.06 0.7

Table 4.1: Parameter setting for AS and MMAS

The parameter settings that were selected to be used across a series of in-

stances are given in Table 4.1. These parameters were then used to solve a

series of test instances from the OR-Library. The problems chosen were simply

selected to assess the characteristic behaviour of AS and MMAS and do not re-

flect their levels of difficulty to solve. Each algorithm was executed 30 times and

the best solutions with respect to smallest relative errors and computational run-

times are presented in Table 4.2. Furthermore, qualitative run-time behavioural

aspects are given in Figure 4.3 for two of the instances.

4.5 Initial Conclusions and Recommendations

The charts displayed in Figure 4.3 indicate that the convergence profiles for the

number of iterations completed and CPU times are identical. This is because

there is no local search improvement method used and the algorithm is only con-

cerned with ACO features, thus CPU run-time and iteration counts are qualita-

tively equivalent. This issue is very important when deciding to use either CPU

run-time or operation counts for an in-depth analysis of empirical run-time distri-

butions, as an operation counts based approach must have the same qualitative

profile as the CPU run-time profile.

Results displayed in Table 4.2 and Figure 4.3 display some encouraging re-

sults that indicate further development and investigation is required. Although

none of the optimal solutions were found, MMAS outperformed AS in terms of

solution accuracy and found solutions to within 3% of the optimum in most cases,

but struggled on the two larger instances. The run-times for each instance was

4.5. Initial Conclusions and Recommendations 58

Instance Size Detail AS MMAS

Cap41 16×50 % Error 8.716 2.419

Iterations 851 955

Time (secs) 37.284 43.773

Run Time (secs) 43.803 45.836

Cap51 16×50 % Error 8.241 1.239

Iterations 820 921

Time (secs) 33.919 40.158

Run Time (secs) 41.961 43.603

Cap61 16×50 % Error 4.098 0.696

Iterations 925 853

Time (secs) 37.884 37.414

Run Time (secs) 40.909 44.014

Cap71 16×50 % Error 21.221 0.691

Iterations 557 967

Time (secs) 22.682 41.68

Run Time (secs) 40.688 43.112

Cap81 25×50 % Error 13.939 2.165

Iterations 798 900

Time (secs) 49.922 58.955

Run Time (secs) 62.500 65.494

Cap91 25×50 % Error 8.091 1.678

Iterations 831 989

Time (secs) 49.491 61.989

Run Time (secs) 59.536 62.68

Cap101 25×50 % Error 6.186 1.886

Iterations 348 977

Time (secs) 20.700 61.348

Run Time (secs) 59.355 62.790

Cap121 50×50 % Error 17.618 6.953

Iterations 486 983

Time (secs) 54.068 115.356

Run Time (secs) 111.090 117.359

Cap131 50×50 % Error 16.608 7.642

Iterations 158 939

Time (secs) 17.625 113.032

Run Time (secs) 118.180 120.683

Table 4.2: Experimental results using a bipartite graphical representation for the

CFLP

4.5. Initial Conclusions and Recommendations 59

Figure 4.3: Run-time experimentation for two OR-Library Instances

4.5. Initial Conclusions and Recommendations 60

comparable for both algorithms with a clock limit of 1000 iterations. Interestingly,

AS found its best solutions in quicker times than MMAS for all instances which

is also evident in the run-time graphs in Figure 4.3. The reason for this is that AS

is more exploratory at the beginning of the search procedure whereas MMAS

exploits solutions around the initial solution passed to the search procedure. This

is a potential weakness of MMAS, as a poor initial solution may lead to a pre-

mature stagnation of the algorithm. However, the pheromone limits and reset

conditions allow the search to move away from regions of stagnation which more

than makes up for its early misgivings. As the procedures progress with their

search strategies MMAS becomes the more dominant algorithm, due to the ex-

ploitation of good solutions.

At this present stage ACO does not perform at an equivalent level of other

metaheuristic techniques (Arostegui et al., 2006, Bornstein and Azlan, 1998,

Caserta and Quiñonez Rico, 2009, Sörensen, 2008). So it is necessary to identify

where improvements may be made: use of more sophisticated a priori heuristic

information, hybridisation, use of a different ACO model for the CFLP and finally

the implementation of an appropriate local search strategy. To achieve a more

competitive algorithmic design it is necessary to identify drawbacks associated

with those designs discussed in this chapter.

One such area is the computation of probability distributions for making a

move from a node to a different node when there may be a very large neigh-

bourhood to choose from. A way of overcoming this is to consider a limitation of

the number of nearest neighbours; where a neighbour is defined by some dis-

tance or cost metric similar to that used in the ant colony system algorithm for

the travelling salesman problem (Dorigo and Stützle, 2004). These techniques

can either be applied prior to the main ACO algorithm or less efficiently during

the algorithmic execution phase. Unfortunately, both of these methods introduce

4.5. Initial Conclusions and Recommendations 61

sorting procedures and computational storage issues. Consequently, any gains

in computing smaller probability distributions may be lost from the computational

effort required to perform the sorting and storage prior to each move.

A more promising method would be to reduce the size of the problem in terms

of its ACO representation, i.e. a smaller construction graph. To assist in this ap-

proach the structure of the CFLP can be exploited. If a set of facilities are given

a priori which have a total capacity greater than or equal to the total customer

demand, then the CFLP reduces to an unbalanced transportation problem. Thus,

ACO can be used to determine the best set of facilities to be opened, where the

stigmergy process is governed by a combination of opened facilities and trans-

portation problem solutions. This approach is a hybridisation of an ACO algorithm

which belongs to the current research area of hybrid-metaheuristics (Blum et al.,

2008, Jourdan et al., 2009). Furthermore, a bipartite construction graph would

no longer be appropriate as the nodes of an alternative pheromone model would

represent facilities and not the union of facilities and customers that were used in

this chapter.

A method of addressing the issue of how to compute heuristic information is

to use a technique based on a linear relaxation of the problem to define those

facilities most likely to be in an optimal solution. The relaxation would give a

transportation type problem that can be approximated and used to provide a static

heuristic information measure. A similar technique was used by Adlakha and

Kowlaski (2004) to solve a source-induced transportation problem, that has a

very similar structure to the CFLP.

The use of local search is seen as an optional phase within an ACO algorithm,

research in the form of empirical research evidence suggests that this is essen-

tial to achieve optimal run-time performance. Indeed, Hoos and Stützle (2005)

described ACO as a stochastic local search algorithm. However, during initial de-

4.5. Initial Conclusions and Recommendations 62

velopment stages it is best not to cloud over ACO behavioural characteristics with

the inclusion of local search. It is also a poor approach to spend too much time

in developing and overtune an ACO algorithm by ignoring the importance of local

search within a metaheuristic approach.

The following chapters of this thesis provide details of a critically progressive

investigation of the research and development of an ACO algorithmic approach to

solve the CFLP, that will be competitive with existing state-of-the-art metaheuristic

techniques that are currently available for solving this class of NP-hard problem.

Chapter 5

Hybrid-ACO Development for the

CFLP

This chapter introduces a hybrid solution technique to solve the CFLP, which is

achieved by creating a communication link between an ACO algorithm and a sec-

ondary sub-problem approximation technique. This hybridisation makes use of

an ACO construction graph that differs to the standard one, which was discussed

in the previous chapter. Also, a new technique to assist with the computation of

heuristic information values is derived, that is based on a linear relaxation of the

CFLP. In an attempt to improve computational run-times two solution improvement

methods are implemented; DROP is based on closing open facilities and SWAP

considers swapping open for closed facilities. The research works of Blum et al.

(2008), Dorigo and Stützle (2004), Gambardella et al. (1999) provide a foundation

for the development of a Max-Min Ant System (MMAS) algorithm to solve the

CFLP. The aim of this chapter is to determine if a hybrid ACO algorithm is suitable

to solve the CFLP.

63

5.1. ACO Hybridisation 64

5.1 ACO Hybridisation

The use of a hybrid ACO technique was suggested as a way of reducing computa-

tional effort and increasing solution accuracy in the previous chapter. Exploitation

of the CFLP’s structure considerably reduces the size of an ACO construction

graph and need only consist of facility locations. A rationale for using this ap-

proach is that if a sub-set of facilities are pre-selected that have a total capacity in

excess of the total customer demand, then the CFLP reduces to a transportation

problem. Transportation problems are either solved approximately using various

cost reduction strategies such as Vogel’s method or exactly using specialised lin-

ear programming techniques, the most common techniques are often presented

in operational research texts (Hillier and Lieberman, 2005, Taha, 2006). ACO can

be used to pre-select a sub-set of facilities and a transportation solution technique

can implemented along side it. The solution quality of any underlying transporta-

tion problem then provides positive feedback to the ACO algorithm for pheromone

update purposes, where pheromone intensities indicate the likelyhood of facilities

being in a solution. The ACO selection process and any underlying transporta-

tion problem solution method needs to be applied at each ant move during each

iteration.

A further hybridisation can be applied to aid the computation of heuristic in-

formation, η, which is used by artificial ants as insight to a problem instance.

Ants are guided to components most likely to be in an optimal solution based

on heuristic information, which is referred to as ant visibility (Dorigo and Stützle,

2004, Venables and Moscardini, 2006). In the case of the CFLP this refers to

those facilities that are more likely to be in a final solution.

Figure 5.1 displays the communication process, that is classified as a “High-

level Teamwork Hybrid” cooperation process (Jourdan et al., 2009). The lefthand

side of Figure 5.1 displays the ACO metaheuristic which consists of the construc-

5.1. ACO Hybridisation 65

tion and the updates phases. A communication link is made between the ACO

and transportation solver phases by passing a set of facilities which define a prob-

lem to be solved. Any solution improvements are reported back to the ACO phase

to aid pheromone updates.

The local search phase is also included in this chapter, which investigates the

implementation of two successfully used local search techniques for the CFLP,

DROP and SWAP (Agar and Salhi, 1998, Beasley, 1993). Initially, a current so-

lution is passed to the local search phase, where improvements are sought by

changing the open/closed status of facilities in the current solution which involves

the use of the transportation solver. The current solution is only updated upon

successful application of the local search phase, where success is when a solu-

tion improvement is found.

A generic algorithm for the CFLP is presented in Algorithm 5.1. Each ant in

the colony is defined to have a memory associated with which facilities it has

chosen to locate and the corresponding objective costs which consist of fixed

and transportation costs. Then while some stopping criteria has not been met,

which can either be based on computational run-time and/or a maximum number

of iterations, the algorithm proceeds. Firstly each ant selects which facilities to

open from a complete set of closed facilities, y, ensuring that there is sufficient

capacity to supply all of the customers’ demand. The cost of an ant’s set of facil-

ities is computed as the sum of the opened facility fixed costs and its associated

transportation costs. All transportation costs are calculated either approximately

or exactly using a transportation problem solver (TPsolve). If the optional local

search phase is chosen then the ant with the least cost is selected as a can-

didate for improvement testing. Should an improvement be obtained during the

local search then the ant has its memory updated. It should be noted that the local

search strategy also makes use of the transportation problem solver (TPsolve).

5.2. Hybrid Construction Phase 66

Figure 5.1: Schematic for an ACO hybrid algorithm for the CFLP

The least cost ant is then checked against a global least cost ant to determine

if a global improvement update is required. The final stage of the algorithm is to

perform a pheromone update phase which is based on the solution quality of the

global ant solution or a combination of each of the ant’s solutions.

5.2 Hybrid Construction Phase

The solution construction graph presented in the previous chapter was a bipar-

tite graph with vertices made from the union of facilities and customer demand

nodes. The edges of the graph were connections from facility to customer nodes

such that each customer was reachable form each facility and vice versa. This

type of approach is typical in most ACO applications (Dorigo and Stützle, 2004).

However, some construction graphs take on other forms that are more advan-

tageous when considering the structure of certain types of discrete optimisation

problems (Dorigo et al., 2008, Tarrent and Bridge, 2005). Unlike real ants, artificial

ants can lay pheromones on either the links connecting the solution components

of the construction graph or on the solution components themselves. If the con-

5.2. Hybrid Construction Phase 67

Algorithm 5.1: Generic outline of a hybrid ACO algorithm for the CFLP

define ant : // ant’s structure

ant.facilities // ant’s facility selection

ant.cost // total fixed facility and TP costs

initialise ant, bestant, LocalSearchPhase

while termination condition not met do

// Construction Phase

foreach ant[k] do

// ant selects facilities using ACO solution construction

y ← {yi|yi = 1 if selected, 0 otherwise}
ant[k].facilities ← y

// compute opened fixed costs and transportation costs

z ←
∑

i∈I fiyi+ TPsolve(y)

ant[k].cost ← z

end

// select ant with least cost

k′ ← argmink∈K(ant[k].cost) // K is the set of ants

// Optional Local Search Phase

if LocalSearchPhase then

// attempt to improve current solution found by ant[k′]
ant[k′] ← LocalSearch(ant[k′]) // makes use of TPsolve

end

if ant[k′].cost < bestant.cost then

bestant ← ant[k′] // update bestant solution

end

// Update Phase

ApplyPheromoneUpdate()

end

5.2. Hybrid Construction Phase 68

Figure 5.2: Construction graph for a hybrid CFLP ACO algorithm consisting of fa-

cilities I ∈ {1, 2, . . . , i}. The plain links between facility nodes represent

possible pathways that an ant could take during the construction phase,

whereas the arrowed links represent an example of a pathway taken by

an ant.

struction graph for the CFLP only contains components that represent facilities,

and the links connecting these components are merely a representation to re-

flect pathways from one facility to another facility, then the size of construction

graph is significantly reduced. Thus, ACO can be used stochastically to identify

which facilities belong to a feasible solution, i.e. from a set of potential facilities

ACO would select which facilities to open or close. To ensure that the capacity

constraint (4.3) is satisfied, any tour on the graph would have to open sufficient

facilities to guarantee a feasible solution. Figure 5.2 shows a construction graph

structure containing only facility nodes, I ∈ {1, 2, . . . , i}, and links between facil-

ity nodes to demonstrate that all facilities are reachable from one another via a

single link or pathway, which defines a large neighbourhood.

5.2. Hybrid Construction Phase 69

Initially all facilities are set to be closed, i.e. yi = 0, ∀i ∈ I. A facility is

then selected at random from a uniform distribution to define a starting point for

the tour. The capacity and demand constraints must be adhered to during the

construction phase to ensure that valid and feasible solutions are constructed.

Firstly, all constructed solutions must be feasible, i.e. the total capacity of those

facilities chosen to be included in a solution must be capable supplying all of the

customers’ demand. Secondly, to avoid recycling of facilities during the construc-

tion phase, facilities should only be visited only once to determine their open or

closed status. Thirdly, any facility that is randomly selected via pheromone bias

has its status set by evaluating an overall objective cost, z, which is the sum of

the fixed open costs and the associated transportation costs, fiyi + TPsolve(y).

If a constructed solution improvement occurs, z < z∗

c , then the facility is fixed as

open by setting yi = 1 and the best constructed solution cost, z∗c , is updated oth-

erwise the facility remains closed. It is important to note that the fixed status of

facilities is only applied during an ant’s tour and that all further tours have facilities

initially set to be closed. A mini-step algorithmic scheme that describes the solu-

tion construct phase is given in Algorithm 5.2 and an example of an ant’s pathway

is shown in Figure 5.2.

As discussed in Section 5.1, if a selected set of facilities satisfies the capacity

constraint (4.3), then the CFLP reduces to a transportation problem. When a tour

is constructed, facilities are only added to a current solution if there is an overall

cost improvement. This cost evaluation requires a solution to a transportation

problem at each step made on the construction graph; where the overall cost

is the sum of the opened facility fixed costs and the underlying transportation

problem costs. Computing solutions to transportation problems each time a sub-

problem is a time-costly process and is a well known issue for the CFLP, which

is particularly highlighted in algorithmic approaches using Lagrangean relaxation

5.2. Hybrid Construction Phase 70

Algorithm 5.2: Ant solution construction phase

Input: τ, η // pheromone and heuristic information

Output: y // set of open/closed facilities

// initialise

forall the i ∈ I = {1, 2, . . . ,m} do

yi ← 0 // all facilities set to be closed

z∗c ← ∞ // objective costs (fixed and TP)

νi ← 0 // set all facilities to be unvisited

end

while not allvisited do

i ← ACOselect(τ, η, ν) // select an unvisited facility

νi ← 1
yi ← 1
// test for facility inclusion

if
∑

i∈I Qi yi >=
∑

j∈J qj then // ensure there is sufficient capacity

z ←
∑

i∈I fiyi + TPsolve(y) // compute objective cost

if z < z∗c then

z∗c ← z // update best solution found

else

yi ← 0 // do not included facility

end

end

end

5.3. Transportation Problem Approximation 71

(Agar and Salhi, 1998, Beasley, 1988, 1993, Christofides and Beasley, 1983,

Daskin, 1995). When using iterative heuristic techniques, which may also use

local search solution improvement methods, it not unusual to require the solution

to hundreds or thousands of transportation problems (Agar and Salhi, 1998). Al-

though, exact solution algorithms based on linear programming exist to solve the

transportation problem, see Goldberg (1997), approximate solution techniques

are usually used.

5.3 Transportation Problem Approximation

The use of approximate methods to find solutions to transportation problems

defined by open facilities in the CFLP has also been applied to various meta-

heuristic algorithms with limited success: a Simulated Annealing algorithm that

used an approximation transportation algorithm was developed by Bornstein and

Azlan (1998), Bornstein and Campelo (2004). Their research provided results for

twenty five of the OR-Library test instances, which found the optimum solutions

for seven instances and gave an average relative error of 0.17% with a maximum

error of 2.42%; Genetic Algorithm, Simulated Annealing and Tabu Search solu-

tion methods for the CFLP were the subject of a thorough empirical research by

Arostegui et al. (2006). They found that Tabu Search was most promising method,

which was closely followed by Simulated Annealing whilst a Genetic Algorithm

performed which performed very poorly on the CFLP; support for Tabu Search

was also provided by Michel and Hentenryck (2004) and Sörensen (2008).

As with Lagrangean relaxation methods, metaheuristic approaches have often

adopted approximation techniques that were based on the use of Vogel’s approxi-

mation method, which is a standard technique that can be found in most introduc-

tory operational research text books (Hillier and Lieberman, 2005, Taha, 2006).

5.4. Derivation of Ant Visibility 72

However, most types of transportation problems for the CFLP turn out to be un-

balanced versions where total capacity is larger than total demand. Although

this issue can easily be rectified by introducing a dummy variable to balance

the capacity and demand, Kirca and Satir (1990) developed a total opportunity

cost method (TOM) that was superior to Vogel’s method at generating solutions

for unbalanced problems; see Algorithm 5.3. Recent works of Mathirajan and

Meenakshi (2004) and Krishnaswamy et al. (2009) deduced that although the

method of Kirca and Satir (1990) performed well on unbalanced problems, yet

it struggled in comparison to Vogel’s method on certain types of balanced prob-

lems. A major advantage of the algorithm outlined by Kirca and Satir (1990) is that

it is computationally more efficient than Vogel’s method. This computational effi-

ciency was successfully exploited by Agar and Salhi (1998) in their Lagrangean

relaxation heuristic. Consequently, TOM shall be used in the ACO algorithms

developed in this chapter to compute approximate solutions to any derived trans-

portation method. Furthermore, calculation of penalty values that are used by the

TOM algorithm, Tij, play a key role in providing heuristic information within the

proposed ACO algorithms and are detailed in the next section.

5.4 Derivation of Ant Visibility

As in the previous chapter the use of a priori information is used to assist the

search process of an ACO algorithm, this information is referred to as heuristic

information, η. Its role is to provide bias towards solution components that are

most likely to be in an optimum solution. This is analogous to artificial ants be-

ing provided with a rough plan of what tour to take prior to any ants leaving the

nest and is referred to as ant visibility by Dorigo and Stützle (2004), Venables

and Moscardini (2006). Dorigo and Blum (2005) state that the use of heuristic

5.4. Derivation of Ant Visibility 73

Algorithm 5.3: Outline for Total Opportunity Method (TOM) of Kirca and

Satir (1990)

Define:

Cij = unit transportation cost from supply point i to customer demand point j,

Si = capacity of supply point i,

Dj = customer demand at demand point j,

Eij = supply opportunity cost,

Fij = demand opportunity cost,

Tij = total opportunity cost,

Xij = amount of customer demand allocated from j to supply point i.

Compute:

Eij = Cij − Cij∗ , i = 1, . . . , m and j∗ = argminj∈J {Cij};

Fij = Cij − Ci∗j , j = 1, . . . , n and i∗ = argmini∈I {Cij};

Tij = Eij + Fij , i = 1, . . . , m and j = 1, . . . , n;

while spare demand do
Allocate the maximum possible demand units Xij to that cell to the (next)

smallest Tij . In the case of a tie use the following tie breakers:

Step 1. Make the allocations to cell ij with the smallest Cij

Step 2. in the case of a tie in Step 1, make the allocation to cell ij with the

largest possible demand Xij

Step 3. in the case of a tie in Step 1 and Step 2, make the allocation to cell

ij with the smallest allocation cost

Remove i or j, where supply Si is depleted or demand Dj is fully satisfied;

end

5.4. Derivation of Ant Visibility 74

information is optional. They recommended that, for efficient computational per-

formance, static versions are more preferable to dynamic versions, as the values

can be computed prior to the main ACO algorithm. Dorigo and Stützle (2004)

reported that the importance of using a priori instance information becomes less

significant with the use of embedded local search strategies for small-scale prob-

lems, but it still has a role to play for large-scale problems. Their definition of small

and large-scale is somewhat unclear, but relates to empirical observations relat-

ing to various instances solved for the travelling salesman problem. This section

provides a novel approach to the application of heuristic information, by using a

relaxation of the CFLP to derive heuristic information.

Relaxation techniques can be used to derive lower bounds for the CFLP and

are usually based on sophisticated mathematical programming methods such as

those used in Lagrangean relaxation (Agar and Salhi, 1998, Beasley, 1993). Less

sophisticated methods based on linear relaxation can also be applied to the CFLP

and lend themselves to theoretical development, but are prone to be computation-

ally unreliable for anything other than small-scale instances, having only a handful

of facilities (Baker, 1982, Sa, 1969). However, heuristic information is only con-

cerned with the likelihood of facilities being in an optimal solution and not whether

they have to occur. Thus, it is possible to use linear relaxation to help identify

some of those facilities that may be in an optimum solution.

One way of applying linear relaxation to the CFLP is to relax the facility integral

constraint given in equation (4.5), in a similar way to that used by Adlakha and

Kowlaski (2004) for the source induced fixed-charge transportation problem:

yi =
∑

j∈J

xij/mij, ∀ i ∈ I; (5.1)

where

mij = min(qj, Qi), ∀ i ∈ I ∧ ∀ j ∈ J. (5.2)

5.5. Hybridisation of MMAS 75

This relaxation results in an unbalanced transportation problem with unit costs:

Cij = cij + fi/mij. (5.3)

It is worth noting that if an individuals entire demand may be supplied by a

single facility, then the unit costs within the transportation problem become Cij =

cij + fi/qj, which is computationally more efficient to obtain. Another, way of

saving computational effort is to consider the notation that those facilities most

likely to be in an optimum solution will have the lowest Tij values (Venables and

Moscardini, 2006). This approach has the advantage of not having to completely

approximate the transportation problem associated with the linear relaxation. Ant

visibility for each facility i can then be defined as:

ηi =
1

Ti

∀ i ∈ I; (5.4)

where Ti =
∑

j∈J Tij ∀ i ∈ I is the total opportunity cost for facility i and Tij is

defined in Algorithm 5.3 (see also Kirca and Satir (1990)).

5.5 Hybridisation of MMAS

The process of making a move on a construction graph to select a facility to in-

clude into the current solution is based on the pseudo-random proportional rule,

in the same way as described in the previous chapter. Each move is defined

as follows: with some probability q0 select the facility with the greatest combined

pheromone and ant visibility value, otherwise select a facility using a selective

probability function. The parameter q0 predetermines the level of exploitation of

the search space, whereas exploration of the search space is chosen with prob-

ability 1 − q0.

5.5. Hybridisation of MMAS 76

A move on the construction graph to select a new facility i to potentially include

in a current solution is:

i =

argmaxl∈L

{

[τl]
α [ηl]

β
}

, if q ≤ q0,

I, otherwise.
(5.5)

where q is a random variable uniformly distributed in [0, 1], q0 is a predefined pa-

rameter where (0 ≤ q0 ≤ 1), L is the set of unopened facilities, and I is a random

variable that is selected according to the following probability distribution:

pi =
[τi]

α [ηi]
β

∑

l∈L [τl]
α [ηl]

β
, (5.6)

where α and β are parameters corresponding to the influential roles of pheromone

intensity τi and ant visibility ηi = 1/Ti, whilst the set of unvisited facilities to be con-

sidered is L. Once a potential facility is selected then the corresponding trans-

portation problem is approximated, as described in section 5.3, and the facility is

added to the current solution if an overall cost improvement is observed. After the

status of all potential facilities have been determined then the current ant tour is

complete and a solution improvement or a local search phase, see section 5.6, is

entered followed by a pheromone update phase:

τi ← (1 − ρ)τi ∀ i ∈ I. (5.7)

Pheromones are deposited on those facilities belonging to the best tour to-date:

τi ← τi + ∆τbest
i ∀ i ∈ I , (5.8)

where ∆τbest
i = 1/zbest and zbest is the overall cost of the best tour. Upper

and lower limits τmax and τmin are placed on the pheromones in an attempt to

5.6. Local Search Methods for Solution Improvement 77

avoid convergence to a local optimum. These are set as τmax = 1/ρzbest and

τmin = τmax/a where a is a parameter (a > 1). Also, τmax is updated whenever

an improvement is made in the best overall cost zbest . If the procedure begins to

converge to potentially a local optimum, or there is no improvement in the overall

cost after a chosen number of iterations, then the pheromones are reset to the

current value of τmax. This is an attempt to encourage a new exploratory search

away from the region of stagnation Stützle (1999), Stützle and Hoos (2000). Algo-

rithmic stagnation occurs when the pheromone levels approach their upper and

lower limits, τmax and τmin. A method to test if stagnation occurs is implemented,

which is based upon one used by Dorigo and Stützle (2004):

∑

τi∈T min{τmax − τi, τi − τmin}

m
→ 0, (5.9)

as the algorithm approaches stagnation, where T are the pheromones for the

current tour and m is the number of facilities. Alternatively, a maximum deviation

measure could be used such as Maxτi∈T min{τmax − τi, τi − τmin} which would

also tend towards zero as stagnation occurs. These stagnation conditions also

hold true at an optimum solution. Consequently, it would be unwise to use these

tests as a potential termination conditions for an ACO algorithm, as the solution

obtained may not be a global optimal solution.

5.6 Local Search Methods for Solution Improvement

During the construction phase some facilities that are fixed open early on may

later only play a minor role in accommodating customer demand. Thus, improve-

ments may be made locally by closing one or more facilities in the current solution.

A DROP heuristic is presented, which uses a best-improvement strategy. Further

improvements may be obtained by swapping open facilities with closed ones us-

5.6. Local Search Methods for Solution Improvement 78

ing a SWAP heuristic in a similar manner to those used in Lagrangean techniques

Agar and Salhi (1998), Beasley (1993). Consequently, a two-stage improvement

method consisting of two local search procedures, DROP and SWAP, is also

described. The combined DROP-SWAP method employs a first-improvement

technique that initially relies on current pheromone intensities at each facility to

help identify those most likely candidates. Existing research techniques usually

employ local search strategies based on cost/structure neighbourhoods (Dorigo

and Stützle, 2004, Hoos and Stützle, 2005, JI et al., 2009, Lorena and Senne,

2003, Pang et al., 2009, Stützle, 1999, Stützle and Hoos, 1997, Xu et al., 2006).

Whereas using the internal stigmergy learning mechanism to help define local

search regions is relatively novel (Venables and Moscardini, 2008). A disadvan-

tage of using local search procedures for the CFLP, that consist of dropping and

swapping facilities is that they require solutions to many transportation problems

and are often described as being computationally too expensive (Agar and Salhi,

1998, Beasley, 1993, Bornstein and Campelo, 2004, Daskin, 1995, 2008). As

a compromise, any local search strategy shall only be applied to the best-ant

solution (least-cost) at each iteration.

5.6.1 Drop Facilities

Improvements are sought after by closing one or more facilities in the current so-

lution. It is necessary to close a facility that gives the best solution improvement.

The total cost of a current solution is the sum of the fixed costs of the opened

facilities and the corresponding TP solution costs. Thus, if the current solution

has facilities Y = {yi|yi ∈ {0, 1}} with associated fixed and transportation costs

z, then select an open facility {i∗|yi∗ = 1} that gives the least total cost and then

reset yi∗ = 0 and Y accordingly. The process is repeated until no further improve-

ments can be made. This method was applied used with some limited success

5.6. Local Search Methods for Solution Improvement 79

Figure 5.3: Schematic for DROP and SWAP local search mechanisms

by Venables and Moscardini (2006).

Alternatively, a first-improvement procedure that when coupled with pheromone

intensity ought to provide a more efficient local search mechanism. Firstly, facil-

ities need to be sorted into increasing order of pheromone intensity; see Figure

5.3. Then, starting with the highest pheromone intensity, facilities are sequentially

closed and tested for any overall cost improvements; if an improvement occurs

then that facility is closed and the current solution is updated, otherwise it remains

open. The advantage of this is that once the open facilities are sorted, each fa-

cility is only considered once during the process whereas a best-improvement

method requires repeated searches over the set of open facilities. Its disadvan-

tage is that a solution improvement may not be as good as one obtained using

a computationally more expensive best improvement method. Although the pro-

posed technique may be more efficient, the overall ACO procedure may require a

larger number of iterations to obtain good solutions; as shown by the experimental

results given in Table 5.2.

5.6. Local Search Methods for Solution Improvement 80

5.6.2 Swap Facilities

In an effort to improve the DROP solutions a SWAP heuristic in a similar manner

to those used in Lagrangean relaxation is implemented. Both Beasley (1993) and

Agar and Salhi (1998) used an interchange or SWAP method that used a mea-

sure derived from the Lagrangean relaxation, which indicated whether a facility

belonged to a current solution. Both considered restricting the number of inter-

change candidates in the closed set of facilities for a known open facility. The

method presented in this section has a similar structure to that of Agar and Salhi

(1998), Beasley (1993). Initially the current iterative solution is sorted into sets

of opened, F , and closed facilities, F̄ , based on increasing pheromone intensity;

F = {i|yi = 1} and F̄ = {i|yi = 0}. Also, the number of candidates in both sets

are restricted. SWAP-candidates are selected by their pheromone levels such

that those opened facilities with low intensities are considered for swapping with

closed facilities having high levels. The idea is to encourage the interchange of

opened facilities with ones that were previously overlooked. Since the size of the

complete local search space includes all of the facilities |F ∪ F̄ | = m, then the

complexity of the local search grows exponentially with m and is referred to as a

very-large scale neighbourhood (Ahuja et al., 2002). To overcome computational

inefficiency the candidate search space is restricted in size by max(15, 0.1|S|)

where |S| is the size of the set of opened or closed facilities being considered,

Agar and Salhi (1998) used the same technique. Also a first-improvement local

search policy is adopted, that seeks out the first-swap which gives a solution im-

provement for an opened candidate facility; see Figure 5.3. The technique is then

repeated for all remaining open candidates. Experimental results conducted on

a small number of instances are given in Table 5.2, suggest that the sequential

application of DROP-SWAP is worth pursuing.

5.7. Hybrid MMAS: Initial Experimentation 81

5.7 Hybrid MMAS: Initial Experimentation

This section presents computational experiments and results obtained for a vari-

ety of approximate hybrid MMAS algorithms, that are applied to the same capac-

itated location problems as described in section 4.4. The algorithms were coded

in C++ and experiments were carried out on the same Dell Inspiron 8600 with a

1.60 GHz Pentium M processor and 786Mb RAM as previously used. The num-

ber of experiments were limited to five per problem instance as used by Dorigo

and Stützle (2004), Lourenço and Serra (2002) and the median run-time (secs),

number of iterations (iters) and relative errors (% err) were recorded. All trans-

portation sub-problems were approximated using the TOM method of Kirca and

Satir (1990). At this stage of development it was felt unnecessary to optimally

solve the final solution’s TP, but that it ought not to be ignored for later compar-

isons with literature results. ACO parameters were set according to experimental

guidance given in Dorigo and Stützle (2004) and the following setting were found

to be robust to small changes: α = 2.5, β = 0.8, ρ = 0.06, q0 = 0.5 and a = 2n,

where n is the number of customers in the problem instance being solved. The

number of iterations in each experiment was limited to two hundred as testing

displayed little significant change in the best solution beyond this value. To en-

courage exploration of the solution space, pheromones were reset to the current

value of τmax if there was no improvement in the best solution after fifty iterations.

5.7.1 MMAS and Basic DROP

The results of the first series of experiments are given in Table 5.1. The last

three rows show three basic statistical descriptors for run-times and relative er-

rors across the set of instances (average, standard deviation and coefficient of

variation). Two series of data are shown: one for the performance of the basic

5.7. Hybrid MMAS: Initial Experimentation 82

MMAS algorithm, whilst the second combines MMAS with a best-improvement

DROP procedure that ignores pheromone intensity.

The descriptive statistics given in Table 5.1 supports the use of the DROP im-

provement strategy, ZD, as the relative error’s coefficient of variation of 1.25 is

36% lower than that 1.94 of the basic MMAS method, ZNLS. However, there is

a trade-off with the computational run-time coefficient of variation, as this experi-

ences a 23% increase. Upon closer inspection out of the 31 problems considered,

solutions were generated for 23 in a shorter time where 26 required fewer itera-

tions and 19 benefited from improved objective values. This is further reinforced

by lower errors from known optimal values being obtained. Without DROP, the

average error is 5.83% with a standard deviation of 11.33%, whereas correspond-

ing values using the DROP strategy are 3.16% and 3.94% respectively, which

suggests significant improvements are made with greater reliability. Although not

shown in Table 5.1, all the instance trials converged to their best solution even

when there was evidence of algorithmic stagnation and the pheromones had to

be reset. Solutions to 52% of the problems were obtained with an error of less

than 1.0% indicating some worthy merit in the DROP MMAS algorithm. These

results are summarised in the published research of Venables and Moscardini

(2006).

5.7.2 Pheromone Based DROP and DROP-SWAP

A second series of experiments were carried out to determine if the pre-ordering

of pheromone intensities combined with proposed first-improvement local search

methods, gave any performance improvements. Results of DROP and DROP-

SWAP compared to DROP procedure given in Table 5.1. To ensure a fair com-

parison, the ACO parameters and the number of trials conducted per problem

instance remained unchanged. However, the experiments were restricted to two

5.7. Hybrid MMAS: Initial Experimentation 83

ZNLS ZD

Problem m×n Z∗ secs iters % err secs iters % err

cap51 16×50 1025208.225 5.217 71 60.01 0.631 2 12.45

cap61 16×50 932615.75 3.024 35 3.38 2.443 12 3.29

cap62 977799.4 4.517 55 3.12 2.313 9 3.12

cap63 1014062.05 5.38 71 3.42 1.282 8 2.89

cap64 1045650.25 2.694 35 4.03 8.001 62 4.03

cap71 16×50 932615.75 12.588 135 1.29 0.351 1 1.29

cap72 977799.4 1.19 13 0.86 0.59 3 0.86

cap73 1010641.45 0.551 6 0.45 0.29 1 0.45

cap74 1034976.975 0.431 5 0.39 0.421 1 0.39

cap81 25×50 838499.288 4.777 30 15.34 4.267 5 11.48

cap82 910889.563 4.907 31 15.04 3.605 4 9.75

cap83 975889.563 4.947 32 14.33 5.88 9 9.09

cap91 25×50 796648.438 10.886 54 0.84 45.225 107 0.20

cap92 855733.5 3.124 16 0.62 2.433 4 0.62

cap93 896617.538 3.375 18 1.61 1.452 2 1.15

cap101 25×50 896617.538 18.277 86 0.29 26.238 62 0.20

cap102 854704.2 4.236 21 0.38 0.671 1 0.38

cap103 893782.112 29.162 166 0.18 1.212 2 0.18

cap104 928941.75 8.803 52 0.10 2.544 10 0.10

cap111 50×50 826124.713 52.826 79 11.89 100.385 69 8.26

cap112 901377.213 37.774 57 12.28 20.089 7 7.23

cap113 970567.75 124.95 195 11.62 67.317 56 8.94

cap114 1063356.488 29.923 46 11.99 13.97 5 7.61

cap121 50×50 793439.563 73.556 110 0.61 61.137 54 0.21

cap122 852524.625 23.74 36 0.91 21.301 17 0.65

cap123 895302.325 18.207 29 2.32 88.537 101 1.15

cap124 946051.325 93.705 158 1.63 120.694 160 0.92

cap131 50×50 793439.562 61.368 89 0.61 129.216 115 0.33

cap132 851495.325 61.218 95 0.41 11.877 10 0.41

cap133 893076.712 57.763 94 0.70 2.593 2 0.26

cap134 928941.75 89.74 160 0.10 55.149 82 0.10

Average 27.51 5.83 25.87 3.16

STD 33.16 11.33 38.22 3.94

COV 1.21 1.94 1.48 1.25

Table 5.1: Non-local search (ZNLS) and facility “DROP” local search (ZD) results

for problem instances using a best-improvement technique and approx-

imate transportation solutions; where Z∗ are the known optimum solu-

tions (Beasley, 1993)

5.8. Hybrid MMAS: Initial Evaluation 84

sets of instances based on the previous results. In particular the two sets of

instances were selected based on their relative errors; one displayed poor per-

formance (Cap81-83), whilst the second displayed good performance (Cap131-

134). Computational results for the selected seven instances are given in Table

5.2.

The coefficients of variation for the second set of results again support the use

of local search, as there are significant improvements in the computational run-

times when pheromone based local search procedures are implemented. The

run-time COV for the pheromone based DROP local search procedure, ZDτ
, in-

dicates a reduction by 38%. Similarly, improvements solution accuracy were ob-

served across all but one of the instances to give a COV reduction of 36%. Al-

though the number of iterations required to find the best solutions increased and

the run-times increased across most of the seven instances, the standard devia-

tion was approximately half of that obtained for the basic DROP procedure, ZD.

This implies that the pheromone based local search is a more reliable method.

The results obtained for the DROP-SWAP method, ZSτ
, show that the best

solutions found for the seven instances, are the same as those found using the

pheromone based DROP method. However, upon inspection of the instance run-

times and number of iterations required to obtain the same solutions, they are far

superior to those solely using a pheromone based DROP local search strategy.

Thus due to overwhelming improvements made, the MMAS with DROP-SWAP

shall provide the backbone for subsequent development.

5.8 Hybrid MMAS: Initial Evaluation

Thus far, experimentation has only considered algorithmic development that em-

ploys approximate solutions to any transportation problems that arise during dur-

5.8. Hybrid MMAS: Initial Evaluation 85

ZD ZDτ
ZSτ

Problem m×n secs iters % err secs iters % err secs iters % err

cap81 25×50 4.27 5 11.48 6.39 20 0.51 2.65 2 0.51

cap82 3.61 4 9.75 38.50 148 0.80 2.67 3 0.80

cap83 5.88 9 9.09 5.34 21 0.92 2.71 2 0.92

cap131 50×50 129.22 115 0.33 60.38 121 0.21 5.71 2 0.21

cap132 11.88 10 0.41 47.22 124 0.28 3.58 2 0.28

cap133 2.59 2 0.26 8.76 34 0.17 1.98 2 0.17

cap134 55.15 82 0.10 4.77 22 0.10 1.08 3 0.10

Average 30.37 4.49 24.48 0.43 2.91 0.43

STD 43.91 4.91 21.82 0.30 1.35 0.30

COV 1.45 1.09 0.89 0.70 0.46 0.70

Table 5.2: Results for a selection of problem instances using local search: ZD

method of Venables and Moscardini (2006) and pheromone based

DROP and DROP-SWAP heuristics ZDτ
and ZSτ

ing run-time. Often to solve a problem instance there may be many of these

sub-problems that also need solving. Consequently, approximate sub-problem

solution are sought after and different approximation techniques will have some

bearing on computational run-time. Even so, approximate techniques can lead to

optimal or near optimal solutions (within an acceptable degree of accuracy). A

technique that is often employed, is to find the optimal solution corresponding to

the final approximate solution upon completion of the algorithmic search. Thus

the set of facilities belonging to the best solution found, define a transportation

problem that is solved exactly by using a specific algorithm or computer soft-

ware. This stage may be included in the computer program used to implement

the method being tested or treated as a separate external problem.

At this stage in the development a decision was taken to solve the transporta-

tion problem defined by the best solution found, as used by Beasley (1993) and

Agar and Salhi (1998), using a linear programming tool available in MATLAB.

The results are presented in the final two columns of Table 5.3, where the final

two rows display the relative errors from the known optimums and the time taken

to find the best approximate solution using DROP-SWAP. The literature results

given in the table are for those problems that were published by their respective

5.8. Hybrid MMAS: Initial Evaluation 86

authors, hence the missing data. Also, the results of Bornstein and Campelo

(2004) were obtained using an exact transportation problem solver for all sub-

problems encountered.

The mean and standard deviation values of the MMAS ZSτ
algorithm given in

Table 5.3 are significantly lower than those corresponding values for MMAS ZD

in Table 5.1. This reinforces earlier observations that DROP-SWAP is the superior

ACO algorithm and ought to provide a basis for further development. However,

the algorithm does not fair too well with those Lagrangean based algorithms of

Beasley (1993) and Bornstein and Campelo (2004). Interestingly in terms of so-

lution accuracy, MMAS ZSτ
outperforms the Simulated Annealing algorithm of

Bornstein and Azlan (1998), that used a similar sub-problem approximation ap-

proach. Their exact version of the algorithm displayed that Simulated Annealing

was able to find more optimum solutions than the developed ACO algorithm, yet

the pairs of relative error statistics were very similar.

The MMAS ZSτ
algorithm managed to find 32.4% of the optimal solutions,

whereas 89.2% of those solution found had a relative error of less than 0.5%.

These results are very encouraging and indicate that an appropriately constructed

hybrid ACO algorithm is capable of deriving optimal or near optimal solutions for

the CFLP. Although these results are very supportive, it is too early to make any

firm conclusions about overall behaviour. ACO is stochastic and any statistics de-

rived by observation may change significantly with a different set of experimental

trials. The next stage in the developmental process is to determine the effects on

solution performance when using an exact transportation problem solver within

the hybrid algorithm, in a similar manner to that of the exact Simulated Annealing

algorithm developed by Bornstein and Azlan (1998).

5.8. Hybrid MMAS: Initial Evaluation 87

B93 BA981 BA982 BC04 MMAS ZSτ

Problem m×n % err % err % err % err % err secs

cap41 16×50 0.00 0.00 0.00 0.00 0.00 0.40

cap42 0.00 0.00 0.00 0.00 0.22 0.39

cap43 0.00 0.00 0.00 0.00 0.64 0.76

cap44 0.00 0.00 0.00 0.00 0.00 0.37

cap51 16×50 0.00 0.13 0.00 0.00 0.00 0.70

cap61 16×50 0.00 0.00 0.00 0.00 1.07 0.47

cap62 0.00 0.00 0.00 0.00 0.51 0.75

cap63 0.00 0.00 0.05 0.00 0.00 0.86

cap64 0.00 0.72 0.00 0.00 0.00 0.27

cap71 16×50 0.76 0.48

cap72 0.22 0.40

cap73 0.00 0.47

cap74 0.26 0.32

cap81 25×50 0.00 0.56 0.00 0.00 0.46 2.65

cap82 0.00 1.81 0.00 0.00 0.30 2.67

cap83 0.00 2.00 0.51 0.00 0.00 2.71

cap84 0.00 1.93 0.50 0.38 0.00 1.26

cap91 25×50 0.00 0.10 0.00 0.00 0.34 1.54

cap92 0.00 0.06 0.09 0.00 0.07 2.42

cap93 0.00 1.95 0.00 0.00 0.24 0.98

cap94 0.06 0.37 0.25 0.00 0.23 0.96

cap101 25×50 0.00 2.73

cap102 0.15 1.38

cap103 0.14 0.24

cap104 0.06 1.23

cap111 50×50 0.00 0.71 0.07 0.00 0.00 5.97

cap112 0.00 0.06 0.08 0.38 0.08 8.01

cap113 0.00 2.42 0.85 0.22 0.06 7.81

cap114 0.44 1.80 0.67 0.00 0.35 9.56

cap121 50×50 0.00 0.88 0.00 0.00 0.00 8.33

cap122 0.00 0.56 0.00 0.00 0.01 4.98

cap123 0.00 1.25 0.12 0.00 0.03 3.54

cap124 0.17 0.62 0.06 0.00 0.17 3.58

cap131 50×50 0.00 5.71

cap132 0.02 3.58

cap133 0.12 1.98

cap134 0.06 1.08

Average 0.03 0.72 0.13 0.04 0.18 2.47

STD 0.09 0.81 0.24 0.11 0.24 2.60

Table 5.3: Available literature results of B93 - Beasley (1993), BA981 and BA982 -

Bornstein and Azlan (1998), BC04 - Bornstein and Campelo (2004) and

the approximate hybrid MMAS ACO algorithm - MMAS ZSτ

5.9. Hybrid MMAS: An Alternative Approach 88

5.9 Hybrid MMAS: An Alternative Approach

All of the algorithmic development, described in this chapter, has made use of

obtaining approximate solutions to any TPs encountered during the run-time of

a problem instance. Rationale for an approximation approach, is that during

run-time many-many TPs need to be solved, which is common place with La-

grangean based heuristics and various metaheuristic solution based methods

that are reported upon within academic research literature, (Agar and Salhi, 1998,

Al-khedhairi, 2008, Alp et al., 2004, Arostegui et al., 2006, Barahona and Chu-

dak, 2005, Beasley, 1993, Bornstein and Azlan, 1998, Bornstein and Campelo,

2004, Correa et al., 2004, Daskin and Melkote, 2001, Ghoseiri and Ghannad-

pour, 2009, Jaramillo et al., 2002, Levanova and Loresh, 2004, 2006, Lorena and

Senne, 2003, Michel and Hentenryck, 2004, Sridharan, 1995). To emphasise this

point consider the hybrid MMAS that uses a pheromone based drop-swap lo-

cal improvement method where two phases predominantly require the solution

to TPs: a) the construction phase needs to evaluate a TP at every made step

along the construction graph and b) the local search method needs to evaluate a

TP initially at every step of the facility drop phase and then at every step of the

facilities swap phase until no solution further improvements are observed. Con-

sequently, the larger the number of facilities in a problem then the number of TPs

needed to be evaluated grows rapidly and thus an approximate TP solution tech-

nique is generally adopted. Research published by Bornstein and Azlan (1998)

effectively demonstrates computational run-time issues when using an exact TP

solver; most but not all of the test instances were solved yet their run-times were

excessive in comparison to those using an approximate TP method (on average

≈ 230 times greater).

Recently, a Cross-Entropy method (Rubinstein, 2002, Rubinstein and Krose,

2004) for the CFLP was proposed by Caserta and Quiñonez Rico (2007, 2009)

5.9. Hybrid MMAS: An Alternative Approach 89

which claimed to solve all of the test problems in the OR-library effectively and effi-

ciently. Their method used an exact TP solver that was implemented via a callable

routine from the open-source COIN-OR distribution (Lougee-Heimer, 2003). The

routine solves the TP by using dual simplex method that is based on the minimum

cost-flow algorithm of Goldberg (1997). Although no experimentation details were

given, they stated that all optimal solutions to the basic 37 test instances were

found in less than 2 seconds, whilst the 12 larger problems were also solved

optimally within 2 minutes.

Consequently, it is worthwhile investigating the performance of the DROP-

SWAP MMAS algorithm across the 37 test instances by replacing the approxi-

mate TP solver with the COIN-OR exact solver. This would allow for experimen-

tation to be conducted on the 37 test instances, to identify if any improvements

in computational run-times and relative errors are possible. Table 5.4 displays

a series of experiments carried out to determine the potential of using an exact

TP solver in place of an approximation method. As with previous experimenta-

tion five trials were conducted on each instance and the median run-time solution

was recorded. A series of three experiments were carried out on the 37 basic test

instances using a single ant as described in section 5.8 and are displayed under

the Table 5.4 column heading MMAS Single Ant. The sub-columns labelled A, B

and C refer to various ACO parameter settings: A - has the same settings as de-

fined in section 5.7; B - the Cross-Entropy method uses a smoothing factor which

is equivalent to an ACO pheromone decay rate and was set to ρ = 0.9 as used

by Caserta and Quiñonez Rico (2007, 2009); C - attempts to assess the effects

of a simple pheromone model that ignores the iterative use of ant visibility whilst

coupled with a rapid pheromone decay rate as in B by setting α = 1.0, β = 0.0

and ρ = 0.9.

To help facilitate the use of the COIN-OR distribution it was necessary to use

5.9. Hybrid MMAS: An Alternative Approach 90

a LINUX based system: the algorithms were coded in C++ and experiments were

executed on a Pentium 4 3.0GHz Linux PC with 2Gb of RAM. Source codes were

compiled using the GNU g++ compiler using the -O option. Furthermore obser-

vations made from the results of ZSτ
given in Table 5.2, suggest that if optimal

or near optimal solutions can be derived in a small number of iterations then the

maximum number of iterations allowed during run-time can be set to a small num-

ber. All of the instances that were previously tested found their best solution in

less than 10 iterations, so a new setting of a maximum of 20 iterations would not

be unreasonable. Also, because of the small number of iterations allowed it would

not be beneficial to have an algorithmic stagnation reset criteria as the intention

is to find the best solution over 20 iterations.

The results for MMAS Single Ant algorithm given in Table 5.4 indicate that

the majority of the five trials derived optimal solutions. Those results shown with

an asterisk (*), are where only one of the five trials failed to find the optimal solu-

tion; in each of these cases the relative error was less than 0.1%. These results

are remarkable and appear to contradict previous academic research policy of

using an approximate TP solver. When the means and standard deviations of the

three experiments are compared then the parameter setting B comes out on top.

However, the parameter settings of A was the only scheme that solved all of the

instances for each of the five trials.

Interestingly, the parameter setting scheme C (α = 1.0, β = 0.0 and ρ = 0.9),

which ignores the compounded influence of heuristic information and has a high

pheromone evaporation rate gives some very encouraging results. A rationale for

its success is that as the evaporation rate is high, then those facilities not in the

current best solution will have low pheromone levels. So, the DROP-SWAP pro-

cedure then actively encourages those ignored facilities with low pheromones to

be tested for inclusion into a solution and thus will have a better chance of improv-

5.9. Hybrid MMAS: An Alternative Approach 91

ing the objective function. By setting β = 0.0, heuristic information or ant visibility

is not completely lost, as it is used to help define an initial solution from which

future solutions are derived. Consequently, facilities belonging to the initial best

ant will have some pheromone deposited on them, which will contain some facili-

ties constantly belonging to improving solutions and thus experience pheromone

reinforcement during the iterative procedure.

The success of using a single ant approach was very encouraging. So, the

next stage is to consider the effects of using a colony of ants in sequential man-

ner as discussed in the text by Dorigo and Stützle (2004). Their experiments

on the travelling salesman and quadratic assignment problems (TSP and QAP)

concluded that with a MMAS algorithmic approach which uses an embedded

local search need only use a small colony size of less than ten ants, as there

was a trade-off between solution quality and computation time which worsened

as the number of ants grew. ACO procedures used on the TSP and QAP were

based on adding path-links and costs which did not require the need to solve any

sub-problems at each step in the constructive phase, unlike the more complex

structure associated with the CFLP.

Also, increasing the colony size needs more ants per iteration and would re-

quire more computation effort. So a series of experiments were carried out using

a colony of five ants and as with the single ant experiments the three parameter

strategies A, B and C were investigated. The results of which are shown under

the column heading MMAS 5 Ants in Table 5.4. Trials that did not find optimum

solutions gave errors of less than 0.1%. Parameter setting C was the most reli-

able as all the optimal solutions were found. Although, parameter setting B failed

to find the optimal solution for all five trails of a particular instance (Cap113), the

run-times for the remaining 36 instances were the most reliable of the three pa-

rameter settings. What is evident is that the COVs for the small colony are lower

5.9. Hybrid MMAS: An Alternative Approach 92

MMAS Single Ant MMAS 5 Ants

A B C A B C

Problem m×n secs its secs its secs its secs its secs its secs its

cap41 16×50 0.09 1 0.09 1 0.09 1 0.12 1 0.12 1 0.12 1

cap42 0.09 1 0.10 1 0.09 1 0.13 1 0.12 1 0.12 1

cap43 0.10 1 0.10 1 0.09 1 0.12 1 0.12 1 0.12 1

cap44 0.10 1 0.10 1 0.09 1 0.13 1 0.13 1 0.11 1

cap51 16 × 50 0.15 2 0.15 2 0.08 1 0.35 3 0.77 7 0.12 1

cap61 16 × 50 0.06 1 0.07 1 0.06 1 0.10 1 0.11 1 0.10 1

cap62 0.20 3 0.12 2 0.06 1 0.21 3 0.21 2 0.11 1

cap63∗ 0.12 2 0.19∗ 2 0.42 7 0.21 2 0.10 1 0.11 1

cap64 0.06 1 0.06 1 0.06 1 0.09 1 0.10 1 0.10 2

cap71 16 × 50 0.06 1 0.06 1 0.06 1 0.10 1 0.10 1 0.10 1

cap72 0.13 2 0.06 1 0.06 1 0.10 1 0.10 1 0.11 1

cap73 0.09 2 0.06 1 0.56 13 0.26 3 0.73 9 0.58 7

cap74 0.07 2 0.04 1 0.04 1 0.08 1 0.08 1 0.08 1

cap81 25 × 50 0.39 2 0.40 2 0.38 2 0.27 1 0.27 1 0.52 2

cap82 1.10 5 0.44 2 0.43 2 1.21 4 0.58 2 0.56 2

cap83 1.16 5 0.68 3 0.43 2 1.24 4 0.88 3 0.56 2

cap84 1.47 6 0.47 2 0.69 3 1.55 5 0.60 2 0.91 3

cap91 25 × 50 0.33 3 0.33 2 0.32 2 0.48 2 0.48 2 0.25 1

cap92 0.57 4 0.29 2 0.44 3 0.44 2 0.44 2 0.44 2

cap93 0.26 2 0.37 3 0.61 5 0.79 4 0.59 3 0.22 1

cap94 0.91 8 0.91 8 0.24 2 0.72 4 1.27 7 0.39 2

cap101 25 × 50 0.66 4 0.32 2 1.81 11 0.71 3 0.49 2 1.68 7

cap102 0.55 4 0.28 2 0.28 2 0.42 2 0.42 2 0.43 2

cap103 0.42 4 0.80 8 1.17 11 0.86 5 0.36 2 0.20 1

cap104 0.12 2 0.07 1 0.07 1 0.13 1 0.13 1 0.14 1

cap111∗ 50 × 50 5.87 9 5.18∗ 8 7.02 11 5.00 5 1.69 2 1.75 2

cap112 7.07 11 1.31 2 1.96 5 5.01 6 1.70 2 1.74 2

cap113∗ 7.58 12 2.06∗ 3 2.57∗ 3 8.12∗ 5 ∗ 1.72 2

cap114 6.70 10 1.99 3 3.22 5 6.99 8 2.48 3 2.49 3

cap121 50 × 50 1.95 4 0.99 2 3.83 8 3.33 5 1.30 2 1.33 2

cap122 3.82 11 0.95 3 1.05 3 2.91 6 1.48 3 1.46 3

cap123 3.67 12 0.89 3 0.90 3 3.67 8 1.39 3 1.31 3

cap124 1.80 8 2.14 9 3.02 12 1.66 4 1.51 4 1.23 3

cap131 50 × 50 0.93 2 0.99 2 0.95 2 1.99 3 1.26 2 1.31 2

cap132 2.27 7 0.93 3 0.95 3 2.04 4 0.97 2 1.08 2

cap133 1.15 5 0.46 2 2.60 11 1.94 5 0.79 2 0.80 2

cap134 0.30 2 0.37 3 0.25 2 0.54 2 0.30 1 0.79 3

Mean 1.42 0.67 1.00 1.46 0.70 0.70

St. Dev. 2.10 0.94 1.42 1.96 0.61 0.68

COV 1.48 1.40 1.42 1.34 0.87 0.97

Table 5.4: OR-Library test problems using various MMAS parameter settings: A

– α = 2.5, β = 0.8 and ρ = 0.06; B – α = 2.5, β = 0.8 and ρ = 0.9; C –

α = 1.0, β = 0.0 and ρ = 0.9; secs – seconds; its – iterations

5.9. Hybrid MMAS: An Alternative Approach 93

than those of the single ant method, which statistically suggests that using a small

colony of ants is more favourable.

5.9.1 Larger OR-Library Instances

Observations made from statistical information for the basic test instances using

an exact TP solver, shows that the proposed method works very well at finding

solutions that match known optimums. A follow-on from this is to determine if

the MMAS algorithm is capable of finding optimal solutions to the 12 larger

test instances from the OR-Library; each having 100 potential facilities and 1000

customers. Experiments were carried under the same conditions: obtain the

best solution in 20 iterations, using the best parameter settings from the previous

experiments conducted with a single ant (A) and a colony of five ants (B). To

avoid excessive computational run-time issues the number of experimental trials

was restricted to a maximum of five and terminated if a solution matched the

known optimal solution.

Terminating an algorithm based upon knowing the optimum solution a priori

is a contentious issue because, the optimal or best solutions are not known in

advance for real problems. The rationale for using this as a stopping condition for

experimental purposes was a pragmatic decision that was based on the elitist bias

of pheromone laying in the ACO algorithms being tested. When pheromone de-

positation takes place the intensity of the pheromone levels becomes greater on

the current best solution unless an improvement is found, if no improvements are

found then stagnation about this solution is likely to occur. Thus, when attempting

to solve a problem instance where the optimal is known a priori and a solution

is found that matches this value, then emergent behaviour of stagnation will be

evident. Knowing the optimal solution in advance can help to save on experi-

mental time by terminating the algorithm when a matching solution is observed.

5.9. Hybrid MMAS: An Alternative Approach 94

MMAS Single Ant MMAS Colony

A B

Problem m × n secs its % err trial secs its % err trial

A-1 100 × 1000 283.66 13 0.01 1 148.11 4 0.00 1

A-2 100 × 1000 370.42 13 0.00 4 58.21 2 0.00 4

A-3 100 × 1000 358.65 14 0.00 1 66.35 2 0.00 1

A-4 100 × 1000 26.48 1 0.00 1 121.57 5 0.00 1

B-1 100 × 1000 931.50 15 0.95 3 119.35 3 0.00 4

B-2 100 × 1000 851.68 14 0.05 1 208.83 3 0.00 1

B-3 100 × 1000 253.84 6 0.21 2 176.88 4 0.21 5

B-4 100 × 1000 104.40 3 0.00 1 101.64 2 0.00 1

C-1 100 × 1000 1323.81 19 0.00 1 234.77 4 0.00 1

C-2 100 × 1000 646.08 13 0.00 1 105.11 2 0.00 1

C-3 100 × 1000 631.92 14 0.00 1 191.11 4 0.00 2

C-4 100 × 1000 499.12 13 0.00 1 155.20 4 0.00 1

Mean 523.46 0.10 140.59 0.02

Table 5.5: Computational results of the OR-Library large test problems (100 ×
1000): MMAS Single Ant A - α = 2.5, β = 0.8 and ρ = 0.9; MMAS

Colony (5 ants) B - α = 2.5, β = 0.8 and ρ = 0.9; secs – seconds; its –

iterations

However, should the solution to a general problem instance be sought, then the

algorithm would have to run either for a fixed period of time or a maximum number

of iterations as ACO derives feasible upper-bounds without the guarantee of ob-

taining an optimum solution and thus the best solution found would be recorded.

This is a typical issue associated with experimentation of ACO and other stochas-

tic local search algorithms, for examples see Dorigo and Stützle (2004) and Hoos

and Stützle (2005).

Consequently, the time taken to obtain the best solution, the relative error

from the known optimal and the number of iterations were recorded. If the best

solution matched the known optimal then the experimental trial number was also

recorded, otherwise the trial with the least error was recorded. The last row of

the table displays the mean run times and mean relative errors. Again there is

strong evidence that MMAS has the ability to provide very high quality solutions

for most problem instances.

Caution is required when regarding average solution times for this set of prob-

lems, as not all of the problems were solved the same number of times. However,

5.10. Hyper-cube Framework for the CFLP 95

they do provide some evidence of computational performance and efficiency. Re-

sults are presented in Table 5.5 that display the problem instance in the first col-

umn, problem size in the second column, the remaining columns display time

taken in seconds (sec), number of iterations (its), relative error from the known

optimum (% err) and the trial number for which the values were recorded (trial).

The results indicate that MMAS with a colony of five ant obtains all but one of the

twelve optimum solutions with an error of 0.21% and an average computational

run-time of 140.59 seconds. Whereas the single ant version, the average run-

time was 523.46 seconds but one of the optimal solutions was not found which

has a maximum error of 0.95%. The statistical evidence infers that the best option

is to use a colony of five ants, as the average run-times are shorter.

5.10 Hyper-cube Framework for the CFLP

The Hyper-Cube Framework (HCF) developed by (Blum, 2004, Blum and Dorigo,

2004, Blum et al., 2001) is a natural extension to the MMAS algorithm. The

original objectives of the algorithm were to standardise the pheromone levels to

belong to the interval [0,1] with the intention of pheromone levels to directly rep-

resent probabilities. Rationale behind this development was to overcome scaling

problems associated with pheromone levels of MMAS being influenced by ob-

jectives costs, where these costs were observed to have a negative influence on

the efficiency of the algorithm depending on their order of magnitude. Advan-

tages of the HCF are that due to an entropy based pheromone update phase, not

only do the pheromone levels remain in the prescribed interval but they also tend

towards binary values as the algorithm converges to a steady state solution, i.e.

ants converge to a dominant pathway. The HCF algorithm has similar traits to

another meta-heuristic technique called the Cross-Entropy method.

5.10. Hyper-cube Framework for the CFLP 96

The Cross-Entropy Method (CE) was originally developed to help simulate

the occurrence of rare events that can take place within stochastic networks, by

Rubinstein (1997), where the probability of such rare event occurring needs to

be accurately estimated. The author realised that the CE method could be easily

adapted to solve combinatorial optimisation problems (Rubinstein, 1999, 2001,

2002). Initially, research centred around solving the TSP, QAP and maximal cut

problems which culminated in a generalised strategy for solving combinatorial

optimisation problems (Rubinstein and Krose, 2004). As with ACO the algorithm

is iterative and originally had two main phases: the first phase creates a large

set of randomly generated solution components, while the second phase uses

common components generated by the first phase to update and guide future

iterations. Similarities between the HCF ACO algorithm and CE were detailed by

Blum et al. (2001) and Blum and Dorigo (2004) which concentrated on the QAP

and they demonstrated that if the same update selection criteria was used, then

the two methods were identical.

There is also some commonality between the MMAS algorithm and the HCF.

Primarily, the pheromone lower and upper limits of MMAS are set to zero and

one respectively in the HCF algorithm. However, the pheromone update phases

differ significantly. MMAS uses an update based only on the best solution found

as described in equations (5.7) and (5.8), whereas HCF implements an entropic

style update derived from the solution obtained from each ant within the colony

and the best solution found. The HCF update mechanism is defined later in equa-

tions (5.10) and (5.11). The HCF pheromone update phase enables higher levels

of pheromones to be placed on those facilities common to each ant at each iter-

ation. This is a similar function to that employed in the CE method, which places

future bias on common solution components from a subset of ranked solutions

derived at each iteration. Consequently, both of the HCF and CE methods adopt

5.11. HCF: Restricted Pheromone Interval 97

a procedure that places emphasis or bias for future selection based on com-

mon components across a set of solutions or concentrator sets. Recently the

CE method has been used to solve the CFLP by Caserta and Quiñonez Rico

(2009), their method derived optimal solutions to all of the test problems in the

OR-Library and conducted further successful experiments on a series of larger

randomly generated problem instances. Consequently, because of the similarities

between HCF and CE it is worthwhile considering the HCF as a potential solution

method which would then allow for a critical comparison of HCF, MMAS and CE

to be conducted.

The development of a HCF algorithm initially takes advantage of the initialisa-

tion, construction and pheromone based local search phases that were used for

the MMAS algorithm described in the previous sections. Initially experimenta-

tion focuses on the 37 basic test instances and results are compared with those

given in Table 5.4 and then moves onto the 12 larger test instances to make com-

parisons with results from Table 5.5.

5.11 HCF: Restricted Pheromone Interval

As previously stated, the main difference between HCF and other ACO algorithms

is that pheromone levels are restricted to the interval [0, 1]. This restriction is im-

posed and guaranteed by implementing a specific pheromone update rule that is

defined by information collectively gathered from each ant within the colony. This

method basically favours those facilities that are commonly visited by a colony of

ants, and is referred to as entropy (Blum and Dorigo, 2004, Blum et al., 2001).

The method has the advantage that as the algorithm iterates the pheromone lev-

els then tend towards binary values i.e. the limits of the interval [0, 1]. This is a

desirable feature for the CFLP since solution components represent facilities that

5.11. HCF: Restricted Pheromone Interval 98

are modelled as binary decision variables and used by ACO to derive a set of

facilities to be opened. Thus, as the algorithm converges to the binary limits then

the corresponding facilities tends towards a set of optimal facilities.

5.11.1 HCF: Pheromone Update

Blum and Dorigo (2004) raised an issue concerned with the performance of

MMAS potentially being affected by instance specific data. Their rationale im-

plied that since the pheromone update phase was inversely related to the mag-

nitude of the best objective value obtained for minimisation problems, then algo-

rithmic performance would be sensitive to this and a scaling of instance data or

a scaled pheromone update would be required to address this potentiality. For-

tunately, the HCF algorithm takes care of this by having a restricted pheromone

interval and an update procedure that guarantees the pheromone limits remains

within the interval [0, 1] without the need to scale the original instance data.

The HCF update phase for the CFLP is defined as:

τi ← (1 − ρ)τi + ρ ∆τbest
i ∀ i ∈ I , (5.10)

with entropy deposit

∆τbest
i =

1/zbest

∑k

h=1
(1/zh)

, (5.11)

where zbest is the overall cost of the best solution to-date and k is the number

of ants. Note that equation (5.10) is similar to the combination of equations (5.7)

and (5.8), with two exceptions. Firstly, a pheromone factor ρ has been introduced

into the pheromone deposit term (5.8), which is also evident in the CE method of

Caserta and Quiñonez Rico (2009), and secondly the product of ρ and the HCF

entropy deposit terms (5.11) ensure that the pheromone levels remain within the

interval [0, 1].

5.12. HCF: Experimentation 99

5.12 HCF: Experimentation

A series of experiments consisting of five trials per instance for each of the 37 ba-

sic OR-Library test instances were conducted, using the the same computational

platform as used in section 5.9. Parameter settings were based on strategy C by

setting α = 1.0, β = 0.0 and ρ = 0.9. Rationale for using these setting were based

on those adopted by Caserta and Quiñonez Rico (2009) for the CE method. It

is worthwhile noting at this stage that should it be possible to derive optimal or

near optimal solutions without the iterative use of ant visibility, then the algorithm

becomes much simpler to design and implement. However, the simpler design

may require a greater number of iterations and computational time to converge to

optimal solutions. To reflect this, the maximum number of iterations allowed was

set to 50.

Table 5.6 displays the computational results for the median run-times using

a colony of five ants, these results were then compared to those given in Table

5.4. The coefficient of variation for the series of HCF experiments is 0.95 which

is greater than that of MMAS colony algorithm (0.87) with B parameter settings.

However, upon closer inspection all of the optimal solutions were found using

the HCF algorithm in less than 20 iterations, with a shorter average run-time

(0.62 < 0.70) and a lower standard deviation (0.59 < 0.61). These observations

suggest that HCF with C parameter settings performs better than the MMAS

colony algorithm.

As in section 5.9.1, a series of experiments were carried out to determine if

the HCF algorithm was capable of finding optimal solutions to the 12 larger test

instances of the OR-Library. The HCF algorithm was executed a maximum of five

times per instance and the best solution of the five trials was recorded. The best

solutions obtained for these 12 problems were found to match the known optimal

solutions and are presented in Table 5.7. Comparisons were then made with the

5.12. HCF: Experimentation 100

HCF

C

Problem m×n secs its

cap41 16×50 0.11 1

cap42 0.12 1

cap43 0.12 1

cap44 0.12 1

cap51 16 × 50 0.12 1

cap61 16 × 50 0.10 1

cap62 0.11 1

cap63 0.10 1

cap64 0.19 2

cap71 16 × 50 0.10 1

cap72 0.10 1

cap73 0.09 1

cap74 0.08 1

cap81 25 × 50 0.52 2

cap82 0.56 2

cap83 0.57 2

cap84 0.59 2

cap91 25 × 50 0.25 1

cap92 0.44 2

cap93 0.22 1

cap94 0.39 2

cap101 25 × 50 0.48 2

cap102 0.43 2

cap103 0.20 1

cap104 0.14 1

cap111 50 × 50 1.72 2

cap112 1.56 2

cap113 2.50 3

cap114 2.51 3

cap121 50 × 50 1.33 2

cap122 1.40 3

cap123 1.35 3

cap124 1.21 3

cap131 50 × 50 1.30 2

cap132 1.05 2

cap133 1.11 3

cap134 0.78 3

Mean 0.62

St. Dev. 0.59

COV 0.95

Table 5.6: OR-Library test problems using parameter settings: C - α = 1.0, β = 0.0
and ρ = 0.9

5.13. Hybrid-ACO: Conclusions and Recommendations 101

HCF

C

Problem secs its % err trial

A-1 223.04 6 0.00 3

A-2 154.52 5 0.00 2

A-3 430.91 15 0.00 2

A-4 126.68 5 0.00 2

B-1 240.08 4 0.00 3

B-2 208.83 3 0.00 1

B-3 104.48 3 0.00 1

B-4 100.97 3 0.00 1

C-1 306.50 5 0.00 1

C-2 237.55 4 0.00 1

C-3 278.09 6 0.00 5

C-4 143.57 4 0.00 2

Mean 212.94 0.00

Table 5.7: Computational results of the OR-Library large test problems (100 ×
1000): HCF (5 ants) C - α = 1.0, β = 0.0 and ρ = 0.9

MMAS colony algorithm results presented in Table 5.5, which showed that the

HCF method required a greater number of iterations to find a best solution and

more computational run-time.

5.13 Hybrid-ACO: Conclusions and Recommenda-

tions

This chapter discussed various aspects required to exploit the structure of the

CFLP with an aim to design an efficient and effective ACO algorithm, that would

be capable of solving the CFLP by a hybridisation of MMAS with a suitable TP

solver. Impetus for such an approach is that, if a set of facilities are selected

whose total service capacity is guaranteed to satisfy the total customer demand,

then the CFLP reduces to a TP. Thus, ACO can be applied to select those facili-

ties to use and future facility selection based on ACO would be derived from the

underlying TP cost and fixed facility costs. Modelling issues associated with this

5.13. Hybrid-ACO: Conclusions and Recommendations 102

hybridisation were discussed in sections 5.1–5.5.

Originally local search procedures, referred to as daemon actions (Dorigo and

Stützle, 2004), were seen as an optional phase within ACO algorithms. However,

these days the local search phase is accepted as an integral part of any ACO al-

gorithmic development (Dorigo and Blum, 2005, Dorigo and Socha, 2006). Sec-

tions 5.6 and 5.7 discussed local search techniques that were based an dropping

and swapping facilities in an iteratively derived solution, with an aim of decreasing

overall facility-customer allocation costs. Section 5.6 described an approach new

to ACO that used pheromone intensities to define local search neighbourhoods

and initial results are displayed in Tables 5.2 and 5.3. By using a pheromone

based neighbourhood structure, each time the local search is implemented the

order in which facilities are tested for dropping or swapping are likely to be dif-

ferent due to depositation and evaporation within the ACO pheromone update

phase. Thus providing a readily available mechanism to give a randomly dis-

tributed local search region, which is a desirable local search attribute (Hoos and

Stützle, 2005).

Section 5.7 discussed the use of a hybrid MMAS that approximated any

underlying TP by using a method by Kirca and Satir (1990) that works well on

unbalanced TPs (Agar and Salhi, 1998, Krishnaswamy et al., 2009, Mathirajan

and Meenakshi, 2004). This TP approximation method obtained some reason-

able results when applied to the OR-Library basic test instances and managed to

find over 30% of the optimal solutions with almost 90% of solutions have a rela-

tive error of less than 0.5%. However, solution quality of results produced by the

algorithm did not fair well against the heuristics of Beasley (1993) and Bornstein

and Azlan (1998); who also used approximated TP solutions.

Section 5.9 presented a method that is usually thought of as being prone to

excessive computational run-times for little gain in solution accuracy (Arostegui

5.13. Hybrid-ACO: Conclusions and Recommendations 103

et al., 2006, Bornstein and Azlan, 1998). This method involved solving all of

the TPs encountered with an exact solver, using a callable linear programming

tool from the COIN-OR distribution (Lougee-Heimer, 2003). Analysis of the re-

sults presented in Tables 5.4 and 5.5 contradict those thoughts of previous re-

searchers, as all the best solutions found were optimal solutions. Also, the solu-

tions were found in quicker times using the exact TP solver and were obtainable

across a variety parameter settings for the hybrid MMAS algorithm without expe-

riencing any excessive run-times. Furthermore, if the best solution found during

an experimental trial was not optimal then the average relative error was less than

0.1%. The statistical evidence further indicated that a colony of ants was more

efficient at deriving best solutions.

Recent research by Caserta and Quiñonez Rico (2009) described a CE method,

which is the only published meta-heuristic research that claims to be able to solve

all of the test instances available in the OR-Library: less than two seconds for

each of the 37 instances and less than 2 minutes for the 12 larger problems. Their

method also made use of the COIN-OR linear programming solver. Although it

is evident that the developed ACO MMAS algorithm can also solve all of these

problems, it would be unwise at this stage to claim which one is the superior. Fur-

ther experimentation and statistical analyses of both ACO MMAS and CE need

to be conducted to determine if a significant difference exists.

Similarities between the HCF algorithm and the CE method were discussed

in sections (5.10) and (5.11). Results for the HCF algorithm are very encour-

aging as they indicate that all of the test instances are indeed solvable using

a hybrid embedded technique. However, as the number of facilities increases

then the average run-time performance favours the use of MMAS (on average

212 > 140 seconds). Potential reasons for this behaviour are that the pheromone

evaporation rate is at 90% which will produce very low pheromone levels for some

5.13. Hybrid-ACO: Conclusions and Recommendations 104

facilities during the construction phase that ought to be included. This is not an

issue for the smaller test instances, as the pheromone based local search mech-

anism of DROP-SWAP is able to bring omitted facilities back into a constructed

solution. Also, as the pheromone levels rapidly evaporate then the levels of omit-

ted facilities rapidly tend towards zero which could lead to algorithmic stagnation.

This issue grows as the number of decision variables increases, because the

DROP-SWAP mechanism has a restricted neighbourhood as depicted in Figure

5.3, which can be explained by observing that some facilities may remain in the

middle region of the local search space and consequently be overlooked by the

search process. The computational run-times for HCF compare well with those

reported by Caserta and Quiñonez Rico (2007, 2009) for the 37 basic problems,

but take much longer (on average 75% longer) for the 12 larger instances.

One way of ensuring that all facilities are considered within a local search

procedure is to use a combination of adding, dropping and swapping facilities

as outlined by Daskin (1995). The local search strategy used by Caserta and

Quiñonez Rico (2007, 2009) contained two stages; Add One Drop Many and

Drop One Add Many. Blum et al. (2001) had some success using a first-level

binary flip local method within the HCF algorithm to solve the QAP, which was

later omitted by two of the main authors in later research using the HCF by Blum

and Dorigo (2004).

The use of a 1-binary flip for the CFLP is an interesting idea as it can be easily

implemented in a first-improvement strategy as used in DROP-SWAP. Also, it

acts as a hybrid ADD-DROP-SWAP mechanism and ought to be considered as

an alternative to the DROP-SWAP method used thus far. Furthermore, there is

no evidence of published research within ant systems associated with this type of

local search being applied to the CFLP.

As previously stated, it would be unwise to claim which is the more dominant

5.13. Hybrid-ACO: Conclusions and Recommendations 105

algorithmic procedure without conducting a more in depth set of statistical analy-

ses. As MMAS, HCF and CE are all able to solve the OR-Library test instances,

then a study need only concern itself with the generation of run-time distributions

required to obtain optimal solutions.

Chapter 6

ACO: Run-Time Analysis and

Evaluation

According to a location analysis survey conducted by ReVelle and Eislet (2005)

“... the capacitated plant location problem ... Work in this area seems

to offer ambiguous results ...”

There are several implications associated with this statement: there is some con-

fusion concerning a variety algorithmic research results that have been published

on CFLP; it is unclear which algorithmic approach is more suited to solving the

CFLP; the mixed-integer formulation the CFLP is more difficult to solve than pre-

viously thought.

Published research for the CFLP indicates that early dominant heuristic tech-

niques relied upon Lagrangean relaxation to provide “good” solutions to the test

problems available in the OR-Library. The Lagrangean relaxation research con-

ducted by Beasley (1993) used a Cray super-computer and provided a foundation

for future researchers. However, 12 of the 37 basic problems in the OR-Library

were for some reason omitted from the analysis. Research conducted by Agar

and Salhi (1998), went on to publish results for only four of the basic test instances

106

Chapter 6. ACO: Run-Time Analysis and Evaluation 107

that did not display any improvement over Beasley’s results. However, results for

the 12 larger test instances did indicate significant improvements in terms of rel-

ative errors. Although solution run-times were given in both cases, they were

not considered for comparison. The reason being disparity between the comput-

ers that the experiments were conducted on; Cray super-computer ‘v’ Sun Sparc

workstation. Already, some ambiguity had set in and questions ought to have

been raised. Even though different computational platforms were used, which is

understandable and highly likely even today, why were some test instances omit-

ted in favour of others? No rationale for test problem selection was presented in

either of the papers. This behaviour associated with test instance selection con-

tinued. It is also evident even in those works considered to have made significant

contributions to knowledge of solving the CFLP using metaheuristics (Arostegui

et al., 2006, Bornstein and Azlan, 1998, Bornstein and Campelo, 2004).

The first clear indication that all of the 37 basic test OR-Library instances had

been used with metaheuristics, was given in a series of results published for a

Tabu Search application to the CFLP by Sörensen (2008). These experiments

were conducted on an AMD Athlon 1100 PC with 512 Mb RAM and all but two

of these instances were solved optimally. The average run-times were given with

respect to their potential facility size, yet those instances that were not solved

were not identified.

Until recently there was no evidence of research that had been conducted us-

ing metaheuristic techniques to solve the CFLP which had managed to solve all

of the OR-Library test instances. A summary of ACO experimental results based

on applications of MMAS and HCF were reported by Venables and Moscardini

(2008), which solved all of the test instances; these are explained in Chapter 5 of

this thesis. Also, research by Caserta and Quiñonez Rico (2007, 2009) based on

an application of CE claimed to have solved all of the OR-Library test instances

6.1. Classification of Stochastic Local Search Algorithms 108

for the CFLP. However, the design for the experimental analysis was not dis-

cussed and no individual run-times were given for the OR-library test instances.

Their research focused on efforts to solve “large” randomly generated instances.

Although the authors looked at ten randomly generated instances per problem

specification and reported averages of run-time and relative errors over the ten

instances, what was not made clear was the number of experiments per instance

that were carried out.

The purpose of this chapter is to determine and comprehensively evaluate

the differences in behaviour between the CE method, MMAS and HCF ACO

algorithms by using empirical analysis based on run-time solutions. This analysis

should help address the shortcomings of ambiguity, as raised by ReVelle and

Eislet (2005), and identify if a dominant solution procedure exists.

6.1 Classification of Stochastic Local Search Algo-

rithms

A stochastic local search algorithm is a method that randomly selects candidate

solutions to a combinatorial optimisation problem. In essence, ACO generates

solutions to a combinatorial optimisation problem by making randomised moves

on a construction graph for a given problem instance. The CE method adopts

a similar approach by randomly selecting a subset of clearly defined solution

components, belonging to a combinatorial optimisation problem. In both algo-

rithmic approaches there are probabilities associated with selecting components

that change during run-time. The effect of this selection procedure is an artificial

learning process which aims to select the most suitable components to derive

candidate solutions and determine an optimal solution. Thus, both ACO and CE

are types of stochastic local search algorithms.

6.1. Classification of Stochastic Local Search Algorithms 109

When applied to the CFLP both ACO and CE are required to derive candi-

date solutions that satisfy any constraints place upon a problem instance, i.e.

both algorithmic approaches generate only feasible candidate solutions. Further-

more, since any candidate solutions are generated by making stochastic selec-

tions, then a final selection is the product of a series of embedded stochastic

choices. This implies that the time taken to derive a solution is also a stochastic

process, i.e. the time taken to obtain a desired solution will be a random vari-

able. These two properties give rise to a special type of stochastic local search

algorithm known as a (generalised) Las Vegas algorithm, see Definition 1.

Definition 1 : Las Vegas Algorithm

An algorithm A for a problem class Π is a (generalised) Las Vegas algorithm

(LVA) if, and only if it has the following properties:

1. If for a given problem instance π ∈ Π, algorithm A terminates returning a

solution s, s is guaranteed to be a correct solution of π.

2. For each given instance π ∈ Π, the run-time of A applied to π is a random

variable RTA,π.

(Hoos and Stützle (2005), pp 150)

Since the CFLP is a combinatorial optimisation problem and the solution run-

time is a random variable, it is possible that for a given fixed time neither ACO or

CE may find an optimal solution in a prescribed fixed time. Although stochastic

local search algorithms have asymptotic run-time behaviour, an optimal solution

may not be found in a given time limit; this property is known as an algorithm’s in-

completeness (Dorigo and Stützle, 2004, Hoos and Stützle, 2005). Consequently,

the relative error or quality of a final solution is a time dependant random variable

and thus according to Definition 2 both ACO and CE are (generalised) Optimisa-

tion Las Vegas algorithms.

6.2. Empirical Run-Time Analysis for Stochastic Local Search 110

Definition 2 : Optimisation Las Vegas Algorithm

An algorithm A for an optimisation problem Π′ is a (generalised) optimisation

Las Vegas algorithm (OLVA) if, and only if, it is a (generalised) Las Vegas algo-

rithm, and for each problem instance π′ ∈ Π′ the solution quality achieved after

any run-time t is a random variable.

(Hoos and Stützle (2005), pp 151)

Theoretical analyses of optimisation Las Vegas algorithms and stochastic lo-

cal search usually rely upon idealised assumptions to derive average, worst-case

and asymptotic behaviours. Although there has been some recent advances in

the theoretical application of run-time analyses to some ACO algorithms (Blum,

2004, Dorigo and Blum, 2005, Neumann et al., 2008, Neumann and Witt, 2009),

their practical use is still somewhat limited and unrelated to the hybrid models as

developed and discussed in this thesis. Consequently, any run-time analysis shall

be implemented empirically.

6.2 Empirical Run-Time Analysis for Stochastic Lo-

cal Search

The properties of stochastic local search and its direct relationship to optimisation

Las Vegas algorithms as outlined in the previous section state that run-times and

solution quality are random variables. In fact, the probability distribution associ-

ated with obtaining a solution for any instance is a bi-variate distribution based on

the random variables associated with run-time and solution quality as indicated in

Definitions 1 and 2. A formal definition for a run-time distribution (RTD) is given

in Definition 3:

6.3. Deriving ACO and CE Empirical RTDs for the CFLP 111

Definition 3 : Run-Time Distribution Given an optimisation Las Vegas algo-

rithm A′ for an optimisation problem Π′ and a soluble problem instance π′ ∈ Π′, let

PS(RTA′,π′ ≤ t, SQA′,π′ ≤ q) denote the probability that A′ applied to π′ finds a so-

lution of quality less than or equal to q in time less than or equal to t. The run-time

distribution (RTD) of A′ on π′ is the probability distribution of the bi-variate random

variable (RTA′,π′ , SQA′,π′), which is characterised by the the run-time distribution

function rtd : R
+ × R

+ 7→ [0, 1] defined as rtd(t, q) = PS(RTA′,π′ ≤ t, SQA′,π′ ≤ q).

(Hoos and Stützle (2005), pp 159)

Although a RTD is a bi-variate distribution which could be graphically repre-

sented in a three-dimensional graph with orthogonal axes RT , SQ and PS, it is

usually common practise to work with either a fixed solution quality SQ = qf to

obtain an empirical distribution of PS(t) or a fixed time parameter RT = tf to ob-

tain a distribution of PS(q). Each empirical distribution is a collection of cumulative

probabilities for a given instance and is used to determine the overall qualitative

behaviour of an algorithm. A RTD can also be used to obtain performance statis-

tical descriptors such as mean, standard deviation, median, inter-quartile range,

etc. Thus, empirical RTDs can provide valuable information for the comparison of

various different algorithms either for a particular instance and/or a group of test

cases to determine any algorithmic dominance.

6.3 Deriving ACO and CE Empirical RTDs for the

CFLP

Research into solving the CFLP using ACO and CE shows that all of the test in-

stances in the OR-Library are solvable using a suitable metaheuristic. A detailed

run-time analysis is required to determine which of the ACO algorithms together

6.3. Deriving ACO and CE Empirical RTDs for the CFLP 112

with the CE algorithm, of Caserta and Quiñonez Rico (2009), is the most domi-

nant method. The first stage of this process is to determine what type of run-time

analysis is required, the number of runs required per instance to generate the

RTDs via cumulative probability distributions and which problem instances ought

to be used for the analysis.

Research presented, in this thesis, on the hybridisation of ACO and an exact

transportation problem solver indicates that all of the 37 basic test instances can

be solved using a colony of five ants with MMAS and HCF algorithms in an

average time of less than 1.5 seconds per instance. Whereas CE, claims to solve

these problems in less than 2.0 seconds per instance. However, there ought to be

caution taken with these values as the number of runs per instance was limited

to five with the median run-time being recorded for ACO, whilst the number of

CE experiments per instance remains unknown. Average run-time statistics for

the ACO application on the 12 larger test instances of less than 3.5 minutes per

instance is even more spurious, as these experiments were aimed at indicating

that ACO was able to solve these problems. Again the number of experiments

conducted on the larger instances with the CE algorithm is unknown, although

times of less than 2.0 minutes were reported.

There is some inherent ambiguity associated with these average run-times.

However an important observation is that for any one of the test instances an op-

timal solution can be found either using an ACO or CE algorithm in a reasonably

short run-time. This is advantageous when deriving empirical RTDs, because the

solution quality can be fixed for optimality, i.e. 100% quality or 0% error. Thus, a

RTD need only consider the probability distribution of the time taken to obtain an

optimal solution for a given problem instance, within an acceptable experimen-

tal time window (e.g. algorithm terminates when either a maximum number of

iterations is reached or a fixed time limit expires).

6.3. Deriving ACO and CE Empirical RTDs for the CFLP 113

One of the issues associated with obtaining run-time distributions is that many

experimental runs are required to construct the cumulative probability distribu-

tions. Hoos and Stützle (2005) discuss the implications of sample distribution

size and use a basic sampling premise “the more the better” and use a sample

size of 1000 individual experimental runs to construct their RTDs. So, using the

average ACO run-times from the preliminary experiments for the 37 basic prob-

lems of 1.5 seconds, a RTD would take on average 1.5 × 1000 ≈ 25 minutes of

computational effort per instance to collect sample data. Using the same tactic

for the larger problems an average time of 213 seconds would take approximately

59 hours per instance. The vast difference in these times suggest that the com-

putational effort required to collect sample data for a RTD of a particular instance

is more manageable from those problems belonging to the basic set of 37. This

will also make algorithmic comparison for the various ACO MMAS, HCF and CE

algorithms a more manageable task.

6.3.1 Measuring RTDs

There are two methods that can be used to measure the data required to build

a RTD for empirical analysis. The first is computational run-time that is associ-

ated with a computer based clock timer and is referred to as CPU time. Whilst

the second is termed as operation counts, which reflects the number of important

operations that can be used to determine or measure algorithmic performance.

In a stochastic local search algorithm the count may refer to the total number

of local search steps or evaluations made upon completion of a single run-time

experiment. The use of operation counts is seen as the more flexible of the two

methods as the RTDs obtained then become computational platform invariant, i.e.

the RTD for an algorithm remains the same regardless of the computer it is exe-

cuted on. The main disadvantage is that different algorithm designers may place

6.4. Qualitative Analysis of Empirical RTDs 114

emphasis on counting in different ways to one another and that the counts may

also affected by different types of algorithmic hybridisation, e.g. how to count the

use of an exact solver called from a library where access to the code is unavail-

able and then compare it to a user defined heuristic based upon approximation

techniques.

Ultimately to compare different algorithms, it would be ideal to use CPU clock

time as a measure whilst minimising the number of external variables that may

affect performance such as using the same: computer, programming language,

compiler with identical options, source callable library functions. The C++ code

for the CE algorithm was available to download from the main author’s web pages

(http://iwi.econ.uni-hamburg.de/mcaserta/). Only the links to the problem instance

data files and the COIN-OR solver had to be changed prior to compilation and

program execution. The ACO algorithms were also coded in C++ and used the

same COIN-OR solver. Since each of the algorithms could be compiled and run

on the same computer, CPU-time was used as a performance measure. Although

during the algorithmic development stages different computers had been used, all

of the RTD experiments and associated sample data were generated for each of

the algorithms on the same computer (Pentium 4 3.0GHz Linux PC with 2Gb of

RAM, C++ compiled using the GNU g++ compiler using the -O option, COIN-OR

version coin-linux-ix86-gcc4.0-02).

6.4 Qualitative Analysis of Empirical RTDs

The first stage of analysis was to select a problem instance from the set of 37

OR-Library test problems and construct a series of RTDs using the exact-hybrid

MMAS algorithm described in chapter 5. Hoos and Stützle (2005) suggest that

to obtain a reliable empirical RTD the sample size of the distribution, or number

6.4. Qualitative Analysis of Empirical RTDs 115

of runs for a particular instance, needs to be between 100 and 10000. Although

sampling theory can be used to determine a sample size, such as the use of the

central limit theorem for normal and student distributions, RTDs for stochastic

local search algorithms size generally do not conform to standard assumptions

and thus empirical sampling techniques are more appropriate.

A way to validate a selected sample size is to visually check and ensure that

the RTD displays asymptotic behaviour as the sample size increases towards its

chosen limit. This is to ensure that the run-time data collected for a problem in-

stance provides an accurate representation of its run-time distribution. For the

purpose of this study cap63 was chosen as a typical instance to verify and val-

idate the RTD sample size. RTD data for sample sizes of 100, 300, 500, 700

and 1000 runs were independently generated. Figure 6.1 clearly displays similar

qualitative behaviour across all five sample sizes. Also, the graph demonstrates

convergence to a common RTD as the sample size increases.

The whole process was then repeated using a second problem instance cap113

and an extra set using a sample size of 1300 was also included. The extra set

of 1300 run-times displayed a very similar behaviour and showed only minor dif-

ferences when compared with a sample size of 1000, thus indicating asymptotic

convergence. Hence, it is not worth the extra overall time-costs associated with

generating 300 further run-time solutions when a sample size of 1000 is sufficient,

i.e. a justifiable RTD sample size is 1000 run-time solutions.

Graphs of RTDs provide some very useful qualitative information about the

probabilistic behaviour of the algorithm(s) that are being investigated. Stochastic

local search algorithms such as ACO are adaptive search procedures that are

able to move away from areas of stagnation, to avoid getting trapped at local

minima (Dorigo and Stützle, 2004, Hoos and Stützle, 2005). Often evidence of

this behaviour is demonstrated by the graphing of solution quality against run-time

6.4. Qualitative Analysis of Empirical RTDs 116

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random Samples of size 100, 300, 500, 700, 1000
RTDs for Cap63

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1 5 10 50 100 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random Samples of size 100, 300, 500, 700, 1000, 1300
RTDs for Cap113

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure 6.1: Justification and Verification of Sample Size

6.5. Comparative Qualitative Analysis 117

for a single computational run of a particular instance (Arostegui et al., 2006).

Although this approach may show evidence of the ability to move away from local

minima or regions of stagnation, any inferences made relate only to that particular

run and do not lend themselves to a generalisation of algorithmic behaviour. The

empirical RTD for a given instance is an attempt at creating a general picture of

algorithmic behaviour for that problem. Thus, across a series of test problems

RTD graphical plots ought to provide evidence of an algorithm’s adaptability as

well as its suitability to solve those problems within some fixed time constraints

(CPU-time and/or a maximum number of iterations).

The two graphs shown in Figure 6.1 were not only useful for setting the sam-

ple size, but they also displayed two of ACOs main attractive features, namely;

adaptability and asymptotic convergence to a solution with a prescribed level of

quality. Both graphs show a comparatively large flat region, this is evidence of

algorithmic stagnation that occurs when the same facilities are being selected re-

peatedly. Fortunately, due to pheromone decay and local search the algorithm

manages to overcome this situation and proceeds to find solutions that are op-

timal 100% of the time. The steepness of the RTD profile indicates the speed

of convergence, where as the decreasing profile of the latter part of the graph

displays characteristics of asymptotic behaviour. It is worthwhile restating that

ACO may demonstrate incompleteness when trying to solve a problem. This oc-

curs when the RTD profile falls short of a probability equal to one, or an optimal

solution is not guaranteed 100% of the time within the fixed run-time constraints.

6.5 Comparative Qualitative Analysis

Assuming that a RTD can be effectively constructed using a sample size of 1000

for all 37 test instances, then a comparative graph displaying the qualitative be-

6.5. Comparative Qualitative Analysis 118

haviour of a set of algorithms can be simultaneously plotted for each test instance.

This type of plot helps to identify any run-time issues associated with algorithmic

stagnation, convergence rates, incompleteness and probabilistic dominance. Al-

gorithmic stagnation often occurs when the algorithm becomes trapped at a local

optima, this is observed in an RTD as a time-period when the probability of ob-

taining an optimal solution does not increase; e.g. in Figure 6.1 stagnation occurs

in both cap63 and cap113 at times associated with a probability of obtaining an

optimal solution of 0.3, which may relate to a general run-time characteristic of

the algorithm that would be identifiable from further test instances. The conver-

gence rates are observed by the steepness and shape of the RTD curve profile;

e.g. cap113 the rates of convergence prior and post stagnation are different, and

suggests that the algorithm finds optimal solutions quicker once stagnation has

occurred. Incompleteness is easily recognised from an RTD plot, as the distri-

bution curve would fail to reach a probability of 1.0. This may occur either when

an algorithm fails to move away from a region of stagnation or when an algorithm

fails to converge quickly enough during the run-time. Probabilistic dominance of

one algorithm over another is also easily identified from a RTD, as this occurs

when the RTD curve profiles do not intersect with each other.

The following algorithms are considered for comparison: hybrid-exact MMAS,

HCF and CE. Both MMAS, HCF algorithms are tested with DROP-SWAP and

a binary one-flip local search procedures. The five algorithms are referred to as:

MMAS, 1F-MMAS, HCF, 1F-HCF and CE. The RTDs for test instance were gen-

erated using a sample size of 1000 runs per instance, Figure 6.2 shows instances

cap63 and cap113 and all of the RTDs plots are displayed in appendix B.

The graphs displayed in Figure 6.2 indicate that there may be some existence

of algorithmic dominance for a given instance (1F-MMAS Cap63) but not for all

instances. Closer inspection of both test instances reveals: 1F-MMAS, HCF and

6.5. Comparative Qualitative Analysis 119

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap63 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap113 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure 6.2: Comparative RTDs for two OR-Library Instances

6.5. Comparative Qualitative Analysis 120

MMAS 1F-MMAS HCF 1F-HCF CE

Dominance 3 15 16 2 0

Completeness 37 36 37 36 0

Stagnation 19 3 7 2 3

Steepness 18 2 16 2 2

Table 6.1: Qualitative Summary Table

1F-HCF have probabilistic dominance over MMAS; there is no single probabilistic

dominant algorithm, because the RTD profiles for 1F-MMAS, HCF and 1F-HCF

intersect at various places; 1F-MMAS displays evidence of stagnation indicating

that HCF and 1F-HCF are more reliable; profile for 1F-HCF looks more favourable

than HCF (probabilistic dominance and steep smooth profile for cap113). Inter-

estingly, although the CE profile for cap63 is steep and smooth, it displays poor

performance in obtaining a complete set of optimal solutions for both instances

(66% and 3% success rates). Although, the RTDs for only two problems are dis-

played there is a clear indication that CE is less likely to be reliable at solving the

CFLP than a hybrid ACO based algorithm.

A summary table of the five different qualitative performances for all 37 test

instances is given in Table 6.1: Dominance is the number of times an algorithm

appears to the left hand side of the plot; Completeness is the number of times

an algorithm was 100% successful across the test instances; Stagnation refers to

the number of times an algorithm appears to have the worst stagnation behaviour,

but ignores any incompleteness that may be present; Steepness identifies the

number of times an algorithm has the steepest profile regardless of stagnation

and incompleteness attributes.

Although this analysis is very rudimentary, Table 6.1 clearly indicates issues

of incompleteness and stagnation associated with the CE algorithm. Stagnation

issues are also evident with the MMAS algorithm, yet it has the ability to solve

the problems quickly if stagnation does not occur. A single probabilistic dominant

6.6. Comparative Quantitative Analysis 121

algorithm does not emerge from the RTDs. However, there is some indication

that 1F-MMAS and HCF may be the most reliable. A Chi-square test for inde-

pendence also indicated that the outcomes of the four performance indicators are

dependent upon the algorithm used. The expected counts for this test indicate

that CE outcomes can be pooled, as the expected counts were all less than 5.

Pooling 1F-HCF and CE outcomes leads to a rejection of a null hypothesis of

independence, with the stagnation of MMAS being the most likely cause for re-

jection of the null hypothesis due to this having a standardised residual at the

extreme end of the standard normal distribution.

6.6 Comparative Quantitative Analysis

Appropriate quantitative analyses are required to gain further statistical insights

into the performance differences between the various algorithms. The profiles of

RTDs are often a good starting point when comparing algorithmic performance,

but comparative analyses also benefit from the inclusion of basic statistical de-

scriptors. The stochastic nature of RTD profiles can display a great deal of vari-

ation in run-time data, due to effects of asymptotic behaviour and stagnation,

so care needs to be taken when selecting what descriptive statistics to present.

It would be unwise to present mean and standard deviation measures because

these are affected by extreme data values that may be present in the tails of the

RTDs. Also, standard differences of means hypothesis testing makes assump-

tions about the distributed data such as normality which are typically inappropri-

ate for many RTD distributions. Analyses of RTDs lend themselves to quantile

descriptors and non-parametric hypothesis testing.

This comparative study shall concentrate on the behaviour associated with the

median run-times of RTDs and all of the analysis shall be conducted using the

6.6. Comparative Quantitative Analysis 122

open source statistical programming package R. Initially, box-plots are presented

to determine if any obvious algorithmic differences occur. Then a statistical boot-

strapping technique is applied to display median sampling distributions, which is

then followed up with comparisons of median confidence intervals.

6.6.1 RTD Median Run-Times

Standard box plots are often referred to as five-figure summary plots, which

graphically display the minimum, lower-quartile, median, upper-quartile and maxi-

mum. There are some common useful adaptions to the basic box plot that display

information such as outliers and extreme values. However, when comparing RTD

data these basic plots may yield some useful information, but they may also lead

to some misinterpretations. The likely cause for this is that the box plot is too

basic and could benefit from some further adaption or annotation: confidence

intervals about the median, variable width that could indicate relative distribution

sizes or distribution density. Fortunately, these issues have been considered for

some time and are readily available in R, (McGill et al., 1978). Figure 6.3 dis-

plays variable width notched box plots for cap63 and cap113. The box width is

relatively proportional to the number of data items in each category (number of

optimal solutions found) and the maximum number of data items across each cat-

egory (1000). The notch is a representation for a 95% confidence interval about

the median. If the notches of boxes do not overlap then there is a significant differ-

ence between the medians. Thus the box plots for Cap63 indicate that 1F-MMAS

has the shortest median run-time and because the notch does not overlap with

any other notch it is significantly different to any of the other median run-times.

The cap113 plot clearly displays that the CE algorithm has the significantly

shortest median run-time. However its width is the very small compared to the

others, which implies that any inference based on the CE median run-time is un-

6.6. Comparative Quantitative Analysis 123

MMAS 1F−MMAS HCF 1F−HCF CE

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

10
.0

0
20

.0
0

50
.0

0

Cap63 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0
20

0.
0

50
0.

0

Cap113 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure 6.3: ACO and CE RTDs: Variable Width Notched Box Plots for Cap63 and

Cap 113

6.6. Comparative Quantitative Analysis 124

reliable as a comparative statistical descriptor. These plots provide a very useful

diagnostic way of ranking algorithmic performance across an ensemble of prob-

lem instances, where ranking is associated with the box width, the median and

95% confidence interval. Appendix C displays the solution quality plots for all 37

instances and Table 6.2 shows the ranking of each algorithm.

The penultimate row of Table 6.2 lists the sums of ranks for each algorithm

across the set of test problems. The final row displays the rank sum order, which

supports the evidence from the qualitative analysis that the HCF algorithm to be

the most reliable of the five algorithms tested.

6.6.2 Investigation of the Run-Time Median

One of the advantages of using the median run-time as a descriptor is that it

corresponds to an average run-time that it will take to find the best solution. A

disadvantage with this statistic is that it is derived from a sample of 1000 runs

and may not accurately reflect the true population median measure. A large sam-

ple size for a RTD helps to reduce any significant sampling error, but too large

a sample size would be impractical across all of the test instances. The asymp-

totic convergence of the RTDs displayed in Figure 6.1 justified the use of 1000

run-times to generate acceptable RTD probability profiles. These profiles suggest

that the empirical approximation of a RTD would contain characteristics of its ac-

tual cumulative probability function, i.e. the empirical distribution is a reasonable

representation. Thus, it is possible to use the RTD data as a sampling framework

to generate a sampling distribution of the median. Furthermore, the sampling dis-

tribution of the median can then be used to obtain confidence intervals associated

with the median.

To construct a sampling distribution of the median for a particular problem in-

stance, it is necessary to have an appropriate representative sampling framework

6.6. Comparative Quantitative Analysis 125

Prob MMAS 1F-MMAS HCF 1F-HCF CE

cap41 3 1 3 2 5

cap42 3 1 4 2 5

cap43 3 1 3 2 5

cap44 4 1 3 2 5

cap51 3 2 3 1 5

cap61 3 1 4 2 5

cap62 4 1 2 3 5

cap63 4 1 2 3 5

cap64 1 4 1 3 5

cap71 3 1 3 2 5

cap72 3 1 3 2 5

cap73 4 1 3 2 5

cap74 2 1 2 4 5

cap81 4 1 2 3 5

cap82 4 1 3 2 5

cap83 3 1 2 4 5

cap84 2 3 1 4 5

cap91 2 4 1 3 5

cap92 2 3 1 4 5

cap93 2 4 1 3 5

cap94 1 4 1 3 5

cap101 4 1 3 2 5

cap102 1 4 1 3 5

cap103 3 4 1 2 5

cap104 1 4 2 3 5

cap111 4 3 2 1 5

cap112 2 4 1 3 5

cap113 5 2 3 1 4

cap114 1 4 2 3 5

cap121 1 3 2 4 5

cap122 2 3 1 4 5

cap123 2 3 1 4 5

cap124 2 3 1 4 5

cap131 3 2 1 4 5

cap132 2 3 1 4 5

cap133 3 4 1 2 5

cap134 1 4 2 3 5

Rank Sum 97 89 73 103 184

Rank 3 2 1 4 5

Table 6.2: RTDs: Variable Width Notched Box Plots Rankings

6.6. Comparative Quantitative Analysis 126

to select samples from. Each sample selected has a median value and a collec-

tive set of samples has a corresponding set of medians that form a sampling

distribution. Bootstrap sampling adopts this technique to build empirical distribu-

tions which can then be used to obtain confidence intervals for a given statistical

descriptor (Efron and DiCiccio, 1996). Thus a set of run-time distribution data can

be used to derive confidence intervals for the median run-time, which is easily im-

plemented in R. The main advantage of bootstrapping over traditional statistical

methods is that no assumptions about the underlying sample distribution shape

are necessary, whilst its disadvantage is that it is computationally intensive and

often requires many samples to reduce sampling errors.

A rule of thumb for generating confidence intervals using boostrapping is to

make the number of bootstrap samples as large as it needs to be by checking

the stability of the 2.5% and 97.5% percentiles (Wood, 2005). Bootstrapped sam-

ples of 10,000 and 100,000 median run-times were generated from the median

run-time distributions for each of the problem instances, cap63 and cap113. The

confidence intervals were calculated ten times for each problem using 10,000

and 100,000 samples. The bootstrapped sample of 100,000 median run-times

gave a more reliable series of confidence intervals, and displayed a stability of

two decimal places for both upper and lower percentiles. Box plots and confi-

dence interval plots for the bootstrapped median sampling distributions for two

test instances are given in Figure 6.4, with complete sets being presented in ap-

pendices D and E. The box plot boxes are very short, i.e. the data is mainly

grouped around the median, which indicates that the sampling distributions are

reliable. The plots also infer that 1F-MMAS has the significantly shortest median

run-time for Cap63 and 1F-HCF has the significantly shortest median run-time for

Cap113 (ignore CE due to small amount of data available in the run-time distri-

bution). The 95% confidence intervals of median run-times for Cap63 are difficult

6.6. Comparative Quantitative Analysis 127

MMAS 1F−MMAS HCF 1F−HCF CE

0
5

10
15

Cap63 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0
20

40
60

80
10

0
12

0
14

0

Cap113 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Time (secs)

0 2 4 6 8 10

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap63

Time (secs)

0 20 40 60 80 100 120

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap113

Figure 6.4: Boostrapped Median Run-Time Sampling Distributions: Box Plots and

95% Confidence Intervals

6.6. Comparative Quantitative Analysis 128

to interpret as the median run-times distributions for four of the algorithms were

very similar. However, the same plot for Cap113 clearly shows the CE algorithm

having the smallest confidence interval without crossing over any others. Since,

the CE values are unreliable for this instance then the next best is the 1F-HCF

algorithm as previously indicated.

These plots can be used simultaneously to create a ranking system, should

pairs of confidence intervals overlap then they are treated as having equal rank.

Table 6.3 shows the ranking of each algorithm per problem instance and Table

6.4 contains the associated 95% confidence intervals. Ranking supports HCF as

having the most reliable median run-time, which is followed by the CE. However

the median run-time sampling distributions were obtained from those runs that

managed to find optimal solutions, i.e. the CE median run-time sampling distri-

butions were derived from a smaller original data set. Although this may give an

unfair advantage to the CE method for comparisons, HCF still outperformed it

which indicates the advantage of using a HCF ACO based algorithm to solve the

CFLP.

6.6. Comparative Quantitative Analysis 129

Prob MMAS 1F-MMAS HCF 1F-HCF CE

cap41 3 1 3 2 5

cap42 3 1 4 2 5

cap43 3 1 3 2 5

cap44 4 1 3 2 5

cap51 3 2 4 1 5

cap61 3 1 4 2 5

cap62 4 1 2 3 5

cap63 5 1 2 4 3

cap64 2 5 1 4 3

cap71 3 1 3 2 5

cap72 3 1 3 2 5

cap73 4 1 3 2 5

cap74 2 1 2 4 5

cap81 5 1 2 3 4

cap82 5 1 4 2 3

cap83 4 2 3 5 1

cap84 3 4 1 5 2

cap91 3 5 1 4 2

cap92 3 4 1 5 2

cap93 3 5 1 4 2

cap94 2 5 3 4 1

cap101 2 3 5 4 1

cap102 2 5 1 4 3

cap103 4 5 2 3 1

cap104 1 5 2 3 4

cap111 5 4 3 2 1

cap112 3 5 2 4 1

cap113 5 3 4 2 1

cap114 2 5 3 4 1

cap121 2 4 3 5 1

cap122 3 4 2 5 1

cap123 3 4 2 5 1

cap124 3 4 2 5 1

cap131 5 3 2 4 1

cap132 3 4 2 5 1

cap133 4 5 2 3 1

cap134 1 5 2 4 3

Rank sum 118 113 92 126 101

Rank 4 3 1 5 2

Table 6.3: Boostrapped Median Sampling Distribution Rankings

6.6. Comparative Quantitative Analysis 130

MMAS 1F-MMAS HCF 1F-HCF CE

Prob 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

cap41 0.12 0.12 0.04 0.04 0.12 0.12 0.07 0.07 0.34 0.35

cap42 0.12 0.12 0.04 0.05 0.13 0.13 0.06 0.06 0.25 0.27

cap43 0.12 0.12 0.04 0.05 0.12 0.12 0.06 0.06 0.25 0.27

cap44 0.13 0.13 0.05 0.06 0.12 0.12 0.07 0.08 0.26 0.27

cap51 0.23 0.23 0.12 0.14 0.17 0.23 0.07 0.08 0.31 0.33

cap61 0.10 0.11 0.06 0.06 0.10 0.11 0.07 0.07 0.26 0.28

cap62 0.21 0.21 0.06 0.06 0.11 0.11 0.13 0.14 0.28 0.29

cap63 9.92 10.18 0.09 0.11 0.21 0.21 0.28 0.31 0.27 0.28

cap64 0.10 0.10 0.38 0.48 0.10 0.10 0.28 0.31 0.26 0.27

cap71 0.10 0.10 0.06 0.07 0.10 0.10 0.08 0.08 0.25 0.26

cap72 0.10 0.10 0.06 0.06 0.10 0.10 0.07 0.07 0.26 0.27

cap73 0.17 0.17 0.05 0.06 0.09 0.09 0.07 0.07 0.25 0.27

cap74 0.08 0.08 0.05 0.05 0.08 0.08 0.12 0.13 0.22 0.23

cap81 0.55 0.80 0.37 0.45 0.53 0.54 0.52 0.62 0.73 0.76

cap82 1.15 1.16 0.15 0.25 0.63 0.87 0.64 0.77 0.75 0.78

cap83 1.24 1.51 0.77 0.87 0.94 1.23 2.23 2.64 0.74 0.79

cap84 1.22 1.23 3.01 7.31 0.65 0.67 5.84 6.71 0.76 0.82

cap91 0.73 0.97 1.07 1.36 0.48 0.73 1.08 1.26 0.48 0.50

cap92 0.65 0.66 0.64 0.75 0.44 0.44 1.41 1.58 0.49 0.53

cap93 0.60 0.61 1.45 1.67 0.40 0.40 1.26 1.52 0.43 0.44

cap94 0.55 0.57 1.28 1.46 0.55 0.56 0.83 0.99 0.44 0.47

cap101 0.97 12.44 0.94 1.15 0.96 1.22 1.00 1.21 0.46 0.48

cap102 0.43 0.43 0.71 0.80 0.43 0.43 0.60 0.70 0.47 0.50

cap103 11.59 12.81 16.06 20.72 3.18 4.20 3.52 4.56 0.39 0.41

cap104 0.13 0.14 0.49 0.59 0.14 0.14 0.32 0.41 0.35 0.36

cap111 48.85 53.89 29.16 33.77 10.14 12.27 7.80 9.32 1.05 1.16

cap112 5.82 6.02 16.37 18.34 4.26 5.03 8.64 9.52 1.03 1.13

cap113 105.23 117.60 21.45 23.09 23.77 28.94 12.37 13.98 1.04 1.17

cap114 6.62 6.94 89.58 103.94 8.63 9.61 60.14 70.03 0.98 1.50

cap121 3.97 5.94 17.99 19.20 4.67 6.00 18.48 22.15 0.90 0.97

cap122 2.60 2.98 4.76 5.45 2.02 2.08 16.08 19.34 0.85 1.04

cap123 2.70 2.75 4.19 4.79 1.86 2.27 22.11 25.21 0.82 0.89

cap124 2.79 2.85 3.67 4.54 1.67 2.02 21.06 24.16 0.72 0.84

cap131 5.24 35.33 16.33 18.03 7.13 8.52 34.37 38.65 0.85 0.94

cap132 2.27 2.44 4.53 5.10 1.52 1.55 5.47 6.05 0.70 0.85

cap133 22.12 22.82 50.44 59.07 8.03 13.60 20.91 23.99 0.68 0.85

cap134 0.30 0.52 4.20 5.13 0.53 0.54 3.16 3.69 0.62 0.65

Table 6.4: Bootstrapped 95% Confidence Intervals

Chapter 7

Conclusions and Future Research

Directions

The aims of this chapter are to provide a series of conclusions, directed by the

results of research obtained during this study; generate a direct response to the

general research question presented at the end of Chapter 2; give an indication

of future research directions that emerge directly from this thesis.

The objectives of this chapter are to summarise three key phases of this the-

sis’ study, which are related to the development and application of ACO for facility

location and identify any contributions made to existing knowledge. The overall

integration of these three phases shall provide the evidence required to support

the acceptance or rejection of the research hypothesis, that was defined in Chap-

ter 3. To assist making this decision a series of specific research questions that

were designed to test the research hypothesis are revisited and answered.

The penultimate section of this chapter presents some recommendations for

future research directions, which are initially aimed at the CFLP and then at a

much broader context of capacitated facility location. Whereas the ultimate sec-

tion clearly details this thesis’ contributions to knowledge and how they will be of

131

7.1. Conclusions: Study Rationale 132

benefit to future researchers using stochastic local search and metaheuristics as

solution techniques to combinatorial optimisation problems.

7.1 Phase One – Study Rationale

The first phase of the thesis was aimed at providing a rationale for this study,

which was motivated by the ingenuity and captivating behaviour of ants in their

quest for food. The first chapter described concepts of how ACO was derived

from the behavioural observations of foraging ants and then developed into a

metaheuristic for combinatorial optimisation. Although ACO was originally de-

signed to solve discrete optimisation problems, Dorigo and Stützle (2004) stated

that it could also be used for various types of optimisation such as mixed-integer

problems, but did not give any examples. So, the development of an ACO al-

gorithm which could solve the CFLP would contribute to the existing knowledge

base of ACO related applications, specifically the solution of a previously untried

mixed-integer problem.

The second chapter presented a review of academic research materials for

the facility location, with an aim to identify if a dominant metaheuristic technique

for solving the CFLP existed. ReVelle and Eislet (2005) and ReVelle et al. (2008)

indicated that there was some ambiguity associated within published research

associated with the CFLP and suggested that the problem may be more difficult

to solve than previously thought. The review conducted for this study supports

those claims of ambiguity. Not only was there evidence of inconsistencies with

the results of test problems used by various heuristic techniques, but there was

also a lack of continuity associated with the selection of test problems which was

compounded by a desire to solve large randomly generated instances. Although

commonly used metaheuristic techniques such as Simulated Annealing, Tabu

7.1. Conclusions: Study Rationale 133

Search and Genetic Algorithms had been applied to the CFLP, none had man-

aged to solve all of the OR-Library test instances. At the start of this study, there

was no published research evidence available on the application of ACO to the

mixed-integer form of the CFLP. Clearly, there was a gap in the existing knowl-

edge base associated with identifying if a dominant metaheuristic for solving the

CFLP existed.

The third chapter derived a research hypothesis to be tested by providing an-

swers to a series of research questions and justified an empirical methodology as

a means of experimental study. A series of run-time analyses were proposed as a

suitable method for dealing with stochastic optimisation techniques, because run-

time distributions were unlikely to conform to standard statistical distributions. In

order to obtain statistical metrics for comparing algorithmic performance the sam-

pling with replacement method of boot strapping was deemed most appropriate,

as it reduces the chance of introducing inference errors.

This phase justified a rationale for study, as an attempt to determine if ACO

was a suitable mechanism to solve the CFLP and how well it compared to other

metaheuristic applications. In the quest for the advancement of existing knowl-

edge, contributions in this phase were made by: recognising that a robust and

consistent empirical design was necessary to determine algorithmic behaviour

of metaheuristic heuristic applications to the CFLP, by using a previously untried

probabilistic run-time distribution technique which would provide ample data for

thorough qualitative and quantitative analyses. This approach was necessary

to eradicate those ambiguities and shortcomings of previously published exper-

imental designs and results. These new experimental design features would be

augmented and tested by the development of several proposed ACO solution

strategies, which would contribute to existing knowledge.

7.2. Conclusions: ACO for the CFLP 134

7.2 Phase Two – ACO Research Design and Devel-

opment for the CFLP

The second phase of this study was aimed at designing and developing several

ACO algorithms, tailored to the CFLP, with an objective of solving the OR-Library

test problems. A design feature for an ACO implementation is that the problem

must be represented as a graph or network. Various representations of the CFLP

and their merits were discussed in Chapters 4 and 5.

The application of ACO with a bipartite graphical representation of the CFLP

was investigated in Chapter 4. Two ACO algorithms were implemented, Ant Sys-

tem and Max-Min Ant System, without a local search procedure and neither found

any optimal solutions. The Max-Min Ant System algorithm derived solutions of a

better quality than Ant System as it gave smaller relative errors. However, it was

concluded that the use of a bipartite solution construction graph with ACO was

inappropriate and unlikely to produce high quality solutions for the CFLP. Two rea-

sons for this are firstly, it is very difficult for ACO to provide partial solutions that

require customer demand to be supplied by more than one facility and secondly,

the solution graph does not sufficiently exploit the structure of the CFLP.

To exploit the structure of the CFLP a construction graph that used a hybrid

approach to primarily select what facilities to locate using ACO was investigated

in Chapter 5. Facilities selected by ACO define a transportation problem, that can

either be approximated or solved exactly. A known issue with this approach is

that transportation problems are needed to be solved at every step in the ACO

solution construction phase and at each step of any local search procedure for

every iteration. The local search strategies adopted at this stage were based on

identifying facilities that could be dropped or swapped in order to improve feasible

solutions obtained from the ACO construction phase. A novel local search initial-

7.2. Conclusions: ACO for the CFLP 135

isation was implemented that made use of the pheromone levels to determine

the order in which the search was to be executed. This was found to improve

computational performance when combined with the DROP-SWAP strategy and

thus a worthy contribution. Published research on heuristic methods for the CFLP

advocate the use of approximation techniques for embedded transportation prob-

lems, as exact solution method are considered to be computationally inefficient,

see Bornstein and Azlan (1998), Bornstein and Campelo (2004) and Arostegui

et al. (2006). Both approximate and exact techniques were investigated empiri-

cally. Surprisingly, those algorithms that used an embedded exact transportation

solver were not only superior in run-time, they also managed to find optimal so-

lutions for all of the OR-Library test instances; which had only been achieved

by one other metaheuristic, (Caserta and Quiñonez Rico, 2009). Although this

was an exciting observation that contradicts the issues of prolonged run-times,

any interpretation of these results required some caution as only a handful of

experiments per instance were performed. Consequently, to make any general

conclusions a thorough empirical investigation was necessary. However, the re-

sults certainly demonstrated that combining ACO and an exact method in the

way described resulted in an algorithmic design that was able to solve all of the

OR-Library problems.

Chapter 5 introduced a HCF algorithm as an attempt to improve on the MMAS

and avoid algorithmic stagnation, that was observed during previous experiments.

The main difference between HCF and MMAS is in the pheromone update

phase; HCF uses an entropic update based on the colony size and its perfor-

mance, whereas MMAS only uses a best ant solution update. Also, a different

type of local search strategy (binary-flip) was implemented and experiments using

a colony of five ants were conducted. Again all of the OR-Library test problems

were solved for a handful of experiments on each test problem and the results

7.3. Conclusions: Evaluation 136

were favoured towards the use of HCF, but further experimentation was required

to give a clearer insight.

Although further experimentation was needed, the ability to solve these mixed-

integer problems using ant algorithms was previously unknown and thus this re-

search phase provides contributions to ACO, metaheuristics and facility location

knowledge bases. Only one other metaheuristic has claimed to be able to solve

all of these problems, namely the CE method by Caserta and Quiñonez Rico

(2007, 2009). This research and development phase had clearly reached a point

where a thorough empirical evaluation was needed to identify any general char-

acteristics of algorithmic performance and to determine which, if any, was the

dominant method.

7.3 Phase Three – Critical Evaluation

The final stage of this study, presented in Chapter 6, was aimed at conducting an

extensive series of run-time analyses with an objective to evaluate any prowess

of the derived ACO algorithms against a contemporary CE technique. As previ-

ously stated, this type of analysis for measuring metaheuristic performance for the

CFLP is not evident within published research. Four ACO algorithms that were

designed in the previous research study phase, combined with two different lo-

cal search mechanisms, were investigated; MMAS with DROP-SWAP, MMAS

with 1-Flip, HCF with DROP-SWAP and HCF with 1-Flip. The analyses of run-

time probability distributions (RTDs) for ACO and CE were proposed during the

first phase of research. Sample sizes for the RTDs were derived empirically by

examining two problem instances using MMAS algorithm with DROP-SWAP,

see Figure 6.1, because these problems displayed algorithmic incompleteness

with initial experimentation detailed in Table 5.4 of Chapter 5.

7.3. Conclusions: Evaluation 137

RTDs were collated using median run-times consisting of 1000 runs per prob-

lem instance. A rationale for the selection of 37 problems from the OR-Library

was detailed in Section 6.3 and their RTDs, for each of the five algorithms, are

given in Appendix B and Appendix C. These RTDs confirmed that all five algo-

rithms are capable of deriving high quality or optimal solutions. However, the CE

method consistently failed to find complete sets of optimal solutions across all of

the 37 problems. Although, this could be explained by algorithmic incomplete-

ness due to experimental time limits (maximum of 1000 iterations or 10 minutes),

the CE method always met its convergence criteria before these time limits were

reached. Clearly indicating that its convergence criteria was unreliable, which had

a detrimental effect on the algorithm’s ability to find optimal solutions.

The MMAS and HCF algorithms that used the DROP-SWAP local search

strategies successfully solved each of the problem instances, for all 1000 runs.

However MMAS had a tendency to suffer from stagnation (flat sections in a

RTD), but demonstrated an adaptability by moving away from sticking points to

eventually finding optimal solutions. Interestingly, the use of a 1-Flip local search

appeared to enhance the performance of MMAS more than the HCF. Also the

use of 1-Flip local search failed to obtain optimal solutions, for both MMAS and

HCF, to one problem instance cap114. This can be explained by algorithmic

incompleteness or stagnation, but is more likely to be caused by a weakness in

the 1-Flip local search design. Analyses of qualitative run-time distribution profiles

revealed that ACO is superior to its contemporary opponent. However, it is not too

clear which of the derived ACO algorithms is the most dominant as intersecting

profiles were observed.

To help identify if there were any significant statistical differences between the

ACO variants a succession of quantitative statistical analyses were conducted on

the RTD data sets and their results were presented. Sampling distributions of me-

7.4. Testing the Research Hypothesis 138

dian run-times were generated using a bootstrapping technique, these were used

to construct 95% confidence intervals and are presented in Table 6.4. Graphi-

cal summaries of bootstrapped median run-times and their confidence intervals

are displayed in Appendix D and Appendix E. Although no probabilistic domi-

nant ACO algorithm prevailed, rankings of the boostrapped confidence intervals

indicated that the HCF algorithm, combined with a DROP-SWAP local search

strategy, was statistically the most reliable and efficient.

The third phase of this research study presented a soundly justified collection

of empirical analyses that had been previously unconsidered for the CFLP. The

RTD profiles that were generated will provide future researchers with a valuable

source of evidence in terms identifying characteristic behaviour of the developed

ACO algorithms and exemplars of how to conduct qualitative and quantitative run-

time analyses not only for facility location, but also across a variety of metaheuris-

tic applications. The whole of this third phase is beneficial and makes worthwhile

contributions to ACO, metaheuristics and facility location knowledge bases.

7.4 Testing the Research Hypothesis

The first phase of this study included a research methodology chapter which pre-

sented five research questions that needed to be answered to test the proposed

research hypothesis: The ACO algorithm is a useful metaheuristic for solving ca-

pacitated facility location problems. The aims and objectives of this section are

to provide answers to the five questions and thus make a decision on whether to

accept or reject the research hypothesis.

1. What is a suitable representation for the CFLP within an ACO modelling

framework?

Answer: If ACO is restricted to determine the state of facility decision vari-

7.4. Testing the Research Hypothesis 139

ables, then the structure of the CFLP can be exploited as it re-

duces to a transportation problem. ACO can then make moves

on a construction graph consisting only of facility locations, where

the edges or links of the graph fully connect one facility to all other

facilities by single links, which represent the possible pathways

an ant take from one facility to another. The pheromone model

then associates pheromone levels with facility locations and ants

are guided to facilities with higher pheromone levels via an edge

or link. This is different to the standard pathway constructions

that are presented by Dorigo and Stützle (2004) as pheromones

are placed on links or edges. The hybridisation model allows

pheromones to be influenced by not only selecting which facili-

ties to locate but also the solutions to any underlying transporta-

tion problems. This technique allows for a more directed search

procedure than those using a standard graphical representation

for the CFLP, such as a bipartite graph.

Thus, a suitable graphical representation is to use a hybrid one

that combines ACO to select facility locations with an exact method

to assign customers to the selected facilities, as depicted in Fig-

ures 5.1 and 5.2.

2. How well do any of the derived solution techniques perform on test problems

available from the OR-Library, (Beasley, 1990)?

Answer: A hybrid MMAS with an embedded approximate transporta-

tion problem solution technique was developed and tested on

instances from the OR-Library. The results obtained were en-

couraging, but the solution errors were not as good as some of

those in existing published research (Beasley, 1993, Bornstein

7.4. Testing the Research Hypothesis 140

and Azlan, 1998, Bornstein and Campelo, 2004). However, when

the approximate transportation solver was replaced with an exact

solver from the COIN-OR distribution, (Lougee-Heimer, 2003), a

different picture emerged as solutions were found in faster times

and they matched the known optimums.

Two ACO variants of MMAS and HCF were implemented, where

each was tested with two local search techniques (DROP-SWAP

and 1-Flip), all of the OR-Library test problems were solved. Fur-

thermore, extensive run-time analyses were carried out on 37

of the test problems, which involved 148,000 experiments with

run-time limits of 1000 iterations or 10 minutes. Both MMAS

and HCF failed to completely solve only one test instance within

these run-time limits (cap114) with an average error of 0.2%, in

both cases the 1-Flip had been used.

It is clear that hybrid ACO algorithms that make use of an ex-

act transportation problem solver are able to solve all of the OR-

Library test problems. However, there is a correlation between

run-time performance and the type of local search technique be-

ing used. Further run-time efficiency could also be achieved by

restricting the usage of the exact transportation solver to only

newly generated solutions rather than all solutions that would in-

clude repeated ones.

3. Is there a dominant ACO solution technique?

Answer: Observations of qualitative RTD graph profiles were used to help

determine if there was a dominant ACO solution technique. The

first stage was to check if there was any evidence of a probabilis-

7.4. Testing the Research Hypothesis 141

tic dominant algorithm. An algorithm is said to have probabilistic

dominance over another algorithm if their run-time distributions

do not intersect with each other, the dominant algorithm has a

profile furthest to the left or closest to the vertical axis of the

RTD graph. Should the profiles intersect with each other then

dominance can be determined in terms of statistical significance,

i.e. does one algorithm perform significantly better than another

algorithm based upon a statistical measure such as mean or me-

dian run-times.

The main issue that arises when dealing RTDs is that these em-

pirically derived distributions do not necessarily conform to as-

sumptions that are required to perform classical parametric and

non-parametric statistical significance testing. A way of overcom-

ing this is to use statistical bootstrapping sampling techniques on

the RTDs of each problem instance to determine confidence in-

tervals for the median run-times. The sampling distributions for

the median run-times can then be examined graphically and nu-

merically to determine if any significant differences are present.

The RTD analyses revealed that at present there is no proba-

bilistic dominant solution method. However, ranking confidence

intervals of median run-times for four different ACO algorithms,

using statistical boostrapping, indicated that HCF combined with

a DROP-SWAP local search procedure gave the most efficient

and reliable results.

4. How well does ACO compare to the successful CE solution method, (Caserta

and Quiñonez Rico, 2009), across a range of test problems available from

the OR Library?

7.4. Testing the Research Hypothesis 142

Answer: A further series of 1000 experiments for each of the 37 OR-

Library instances were conducted to allow for RTD comparisons

with the corresponding ACO RTD data sets. During the experi-

ments the CE reached its termination convergence criteria very

quickly, yet a close inspection of the data collected revealed vari-

ations in the solution quality. The CE algorithm was able to find

optimal solutions but not all of the time, which was not indicated

in the published research of Caserta and Quiñonez Rico (2009).

In fact the CE algorithm failed to reach a 100% optimal solution

hit across all of the 37 instances. This behaviour was not due to

run-time limitations. Thus, there appears to be an issue with the

convergence criteria for this algorithm.

Clearly then, from the results obtained ACO is currently supe-

rior to the CE method. RTD analysis revealed although CE was

able to find optimal solutions it was unreliable as it had tendency

to converge to early, which resulted in poor solutions across all

problem instances and many of the experiments that were con-

ducted.

5. Does ACO provide a suitable framework for solving the CFLP?

Answer: Yes, the evidence acquired and accumulated during this study,

particularly the contributions made from RTD and statistical anal-

yses, strongly support the use of an hybridised ACO solution

technique.

Research conducted and answers to the above questions in this Ph.D. study,

clearly support the acceptance of the research hypothesis. Thus, ACO is a use-

ful metaheuristic for solving CFLPs. Furthermore, as CE and ACO are the only

7.5. Future Research 143

metaheuristics currently known to be able to solve all of the OR-Library test prob-

lems and ACO outperforms CE, then ACO is currently the most promising (hybrid)

metaheuristic solution method available for solving the CFLP. Consequently, the

use of ACO as a solution platform for solving CFLPs is certainly a worthy proposal

and provides a contribution to existing knowledge in the field of facility location.

7.5 Future Research Directions

This section provides a focus for future research directions which is intially aimed

at the CFLP, before moving onto broader areas associated with the integration

and practical application of facility location within other academic fields. Future

research of the use of ACO to solve the CFLP could take several pathways:

• Algorithmic enhancement and run-time optimisation of the four ACO algo-

rithms developed within this thesis, which would include:

– A reduction in the number of transportation problems that need to be

solved.

– The use of facility selection lists to avoid re-evaluating previously de-

rived transportation problems.

– Recognise that efficiency improvements would not change the RTD

profiles, significant run-time improvements would result in a left-shift of

the RTD.

• Development of a swarm based HCF algorithm that addresses iterative so-

lution construction issues for larger problems (100+ facilities and 1000+ cus-

tomers).

– Use a swarm (large colony) of ants.

7.5. Future Research 144

– Each ant selects a subset of facilities.

– Evaluate the transportation problem for each ant.

– Only apply local search to a small selection of the most promising ant

solutions.

• Design an ACO process that simultaneously decides which facilities to in-

clude and not include in a solution.

– Graphical representation would a chain involve facility binary state vari-

ables.

– Use a swarm of ants.

– Purpose of each ant is to select the solution state of a facility.

– Only apply local search to a small selection of the most promising ant

solutions.

• Hybridisation of ACO with Lagrangean heuristics or Tabu Search are also

possible avenues for exploration, see Chen and Ting (2008) and Katagiri

et al. (2009), Yoshikawa and Otani (2010).

The broader area of facility location and its integration within in what was tradi-

tionally separate areas of study has recently been brought to the attention of the

academic community. Some of the main areas of focus are: facility location and

supply chain management (Melo et al., 2009); facility location and vehicle rout-

ing (Salhi and Nagy, 2009); facility location and layout (Domschke and Krispin,

1997); facility location and network design (Drezner and Wesolowsky, 2003). All

of these areas can be represented by a customer-facility network and thus could

benefit from the application of ACO.

There are many real world business and industrial applications that can be

solved using ACO including; transportion and logistics, vehicle routing, schedul-

7.6. Contribution to Knowledge 145

ing and data mining. AntOptima is an innovative commercial company that was

set up in 2001 by members of the Istituto Dalle Molle di Studi sull’Intelligenza Arti-

ficiale (IDSIA) in Switzerland, which aims to provide solutions to industry by using

contemporary artificial intelligence techniques and thus creating a link between

theory and practice. The company provides services that utilise other concepts

besides ACO, such as Tabu Search, Genetic Algorithms, simulation, Bayesian

and Credal Networks. Its scientific team consists of academics who have all

made significant contributions to artificial intelligence and include Prof. Marco

Dorigo, the inventor of ACO and research director of IRIDIA at the Université Li-

bre de Bruxelles, and Prof. Luca Maria Gambardella of IDSIA who has derived

state of the art ACO algorithms for a variety of hard combinatorial optimisation

problems.

7.6 Contribution to Knowledge

All three phases of this thesis provide their own individual contributions to existing

knowledge bases in three areas of academic study; facility location, metaheuris-

tics and ACO. Firstly, the area of capacitated facility location, by solving all of

the OR-Library test problems a series of run-time distributions were produced

that will be a valuable resource for future researchers. Secondly, metaheuristics

utilising techniques that can simplify solution design by the integration of exact

solution methods in a hybrid way is an area not to be ignored, especially as ev-

eryday computing power continues to increase. Thirdly, ACO is shown to be a

very flexible metaheuristic that can be adapted to solving mixed integer problems

using hybridisation techniques. A summary of this thesis’ contributions to existing

knowledge are:

• A clear rationale for the study is given by recognising a gap in the current

7.6. Contribution to Knowledge 146

knowledge base associated with metaheuristics and capacitated facility lo-

cation.

• A previously untried ant hybrid scheme, that incorporates an exact method

within it, and provides the ACO and facility location knowledge bases with a

new technique that successfully solves all of the capacitated facility location

test problems available in the OR-Library. This hybridisation of ACO in also

inputs to the currently emergent academic field of hybrid metaheuristics and

would have been impractical or infeasible to implement ten years ago.

• Run-time analyses for measuring metaheuristic performance for the capac-

itated location problem has not been considered in this way before. The

RTD data revealed that ACO is superior to its contemporary opponent and

is currently the most reliable metheuristic available to solve the CFLP.

• The most reliable ACO algorithm for solving the CFLP is a HCF implemen-

tation.

The successful implementation of the COIN-OR (Computational Infrastruc-

ture for Operations Research), (Lougee-Heimer, 2003), distribution package to

solve transportation problems played a pivotal role in the research and develop-

ment of this thesis. Without an effective and efficient exact transportation problem

solver, the production of RTDs would have relied on more traditional approxima-

tion techniques and the integrity of any conclusions drawn from algorithmic be-

haviour would have been compromised. This software distribution is open-source

and freely available to the operations research community and is real contender

against its expensive commercial counterparts.

Finally, a trend in presenting algorithmic solution methods to the CFLP is to

gloss over the problems available in the OR-Library as though they are trivial and

quickly go on to consider and report on larger randomly generated instances.

7.6. Contribution to Knowledge 147

What this research demonstrates is that in order to test a stochastic algorithm

you must first ascertain its behaviour on standard problems before considering

larger and potentially more difficult ones. A stringent set of run-times analyses

can provide a great deal of information about an algorithm’s behaviour and thus

has the ability to help a researcher design and develop more reliable and effi-

cient algorithms. Consequently, any future research into the use of ACO, or any

other metheuristic, for capacitated facility location problems would benefit from

the works undertaken during this study. A listing of research output associated

with this study is given in Appendix A, all of which are available on request.

Bibliography

Adlakha, V. and K. Kowlaski (2004). A simple algorithm for the source-induced

fixed-charge transportation problem. J Opl Res Soc 55(12), 1275–1280.

Agar, M. and S. Salhi (1998). Lagrangean heuristics applied to variety of large

capacitated plant location problems. J Opl Res Soc 49(10), 1072–1084.

Ahuja, R., O. Ergun, J. Orlin, and A. Punnan (2002). A survey of very large-scale

neighborhood search techniques. Discrete Applied Mathematics 123(13), 75–

102.

Ahuja, R., J. Orlin, S. Pallottino, M. Scaparra, and M. Scutellà (2004). A multi-

exchange heuristic for the single-source capacitated facility location problem.

Mgmt Sci 50(6), 749–760.

Al-khedhairi, A. (2008). Simulated annealing metaheuristic for solving p-median

problem. Int. J. Contemp. Math. Sciences 3(28), 1357–1365.

Alp, O., E. Erkut, and Z. Drezner (2004). An efficient genetic algorithm for the

p-median problem. Annals of Operations Research 122(1-4), 21–42.

AltInel, I., E. Durmaz, N. Aras, and K. ÖzkIsacIk (2009). A location–allocation

heuristic for the capacitated multi-facility weber problem with probabilistic cus-

tomer locations. European Jounal of Operational Research 198(3), 790–799.

148

BIBLIOGRAPHY 149

Arostegui, M. J., S. Kadipasaogul, and B. Khumawala (2006). An empirical com-

parison of tabu search, simulated annealing and genetic algorithms for facilities

location problems. International Journal of Production Economics (103), 742–

754.

Aydin, M. and T. Fogarty (2004). A distributed evolutionary simulated annealing

algorithm for combinatorial optimisation problems. Journal of Heuristics 10(3),

269–292.

Baker, B. (1982). Linear relaxation of the capacitated warehouse location prob-

lem. J Opl Res Soc 33, 475–479.

Balinski, M. (1965). Integer programming: Methods, uses, computation. Mgmt

Sci (12), 253–276.

Balinski, M. (1966). On Finding Integer Solutions to Linear Programs. Mathemat-

ica. New Jersey: Princeton.

Barahona, F. and F. Chudak (2005). Near-optimal solutions to large scale facility

location problems. Discrete Optimization 2(1), 35–50.

Barceló, J. and J. Casanovas (1984). A heuristic lagrangean algorithm for the

capacitated plant location problem. European Journal of Operational Re-

search (15), 212–226.

Barr, R., B. Golden, J. Kelly, M. Resende, and J. W. Stewart (1995). designing

and reporting on computational experiments with heuristic methods. Journal of

Heuristics (1), 9–32.

Beasley, J. (1982). A note on solving large p-median problems. European Jounal

of Operational Research 21(2), 270–273.

BIBLIOGRAPHY 150

Beasley, J. (1988). An algorithm for soving large capacitated warehouse location

problems. European Journal of Operational Research (33), 314–325.

Beasley, J. (1990). Or-library: Distributing test problems by electronic mail. In

Operations Research Proceedings, Volume 41, pp. 1069–107. Springer.

Beasley, J. (1993). Lagrangean heuristcs for location problems. Eur J Opl Res 65,

383–399.

Beckers, R., J.-L. Deneubourg, and NewAuthor3 (1992). Trials and u-turns in the

selection of a path by the ant lasius niger. Journal of Theoretical Biology (159),

397–415.

Bischoff, M. and K. Dächert (2007). Allocation search methods for a general-

ized class of location-allocation problems. European Jounal of Operational Re-

search.

Blum, C. (2004, February). Theoretical and Practical Aspects of Ant Colony Op-

timization. Ph. D. thesis, IRIDIA, Université Libre de Bruxelles, Brussels, Bel-

gium.

Blum, C., M. J. B. Aguliera, A. Roli, and M. Sampels (Eds.) (2008). Hybrid Meta-

heuristics: An Emerging Approach to Optimization. Studies in Computational

Intelligence 114. Springer.

Blum, C. and M. Dorigo (2004). The hyper-cube framework for ant colony opti-

mization. IEEE Transactions on Systems, Man, and Cybernetics - Part B 34(2),

1161–1172.

Blum, C., A. Roli, and M. Dorigo (2001). HC–ACO: The hyper-cube framework

for Ant Colony Optimization. In Proceedings of MIC’2001 – Metaheuristics In-

ternational Conference, Volume 2, Porto, Portugal, pp. 399–403.

BIBLIOGRAPHY 151

Bonabeau, E., M. Dorigo, and G. Theraulaz (1999). Swarm Intelligence: From

Natural to Artificial Systems. New York: Oxford University Press.

Bornstein, C. and H. Azlan (1998). The use of reduction tests and simulated

annealing for the capacitated plant location problem. Loc Sci 6, 67–81.

Bornstein, C. and M. Campelo (2004). An add/drop procedure for the capacitated

plant location problem. Pesquisa Operacional 24(1), 151–162.

Bramel, J. and D. Simchi-Levi (1995). A location-based heuristic for general rout-

ing problems. Operations Research 43, 649–660.

Bryman, A. and E. Bell (2007). Business Research Methods (2nd ed.). Oxford

University Press.

Canovas, L., S. Garcia, M. Labbe, and A. Marin (2007). A strengthened formu-

lation for the simple plant location problem with order. Operations Research

Letters 35(2), 141–150.

Caserta, M. and E. Quiñonez Rico (2007, June). A cross entropy-based meta-

heuristic algorithm for large scale facility location problems. In MIC - VII Meta-

heuristic International Conference.

Caserta, M. and E. Quiñonez Rico (2009). A cross entropy-based metaheuris-

tic algorithm for large-scale capacitated facility location problems. J Opl Res

Soc 60(10), 1439–1448.

Chen, C. and C. Ting (2006). Applying multiple ant colony system to solve single

source capacitated facility location problem. In M. Dorigo, L. Gambardella,

M. Birattari, A. Martinoli, R. Poli, and T. Stützle (Eds.), Ant Colony Optimization

and Swarm Intelligence, 5th International Workshop, ANTS 2006, Volume 4150

of Lecture Notes in Computer Science, Berlin, Germany, pp. 508–509. Springer

Verlag.

BIBLIOGRAPHY 152

Chen, C. and C. Ting (2008). Combining lagrangian heuristic and ant colony

system to solve the single source capacitated facility location problem. Trans-

portation Research Part E 44(6).

Christofides, N. and J. Beasley (1982). A tree search algorithm for the p-median

problem. European Jounal of Operational Research 10(2), 196–204.

Christofides, N. and J. Beasley (1983). Extensions to a lagrangean relaxation

approach for the capacitated warehouse location problem. European Journal

of Operational Research (12), 19–28.

Church, R. and A. Murray (2008). Business Site Selection, Location Analysis and

GIS. New York: John Wiley and Sons, Inc.

Colorni, A., M. Dorigo, and V. Maniezzo (1992). Distributed optimization by ant

colonies. In Proceedings of ECAL’91- First European Conference on Artificial

Life, pp. 134–142. Elsevier Publishing.

Correa, E., M. Steiner, A. Freitas, and C. Carnieri (2004). A genetic algorithm

for solving a capacitated p-median problem. Numerical Algorithms 35(2-4),

373–388.

Cortinhal, M. and M. Captivo (2003). Upper and lower bounds for the single

source capacitated location problem. European Jounal of Operational Re-

search (151), 333–351.

Daskin, M. (1995). Network and Discrete Location: Models, Algorithms and Ap-

plications. New York: John Wiley and Sons, Inc.

Daskin, M. (2008). What you should know about location modelling. Naval Res

Logis (55), 283–294.

BIBLIOGRAPHY 153

Daskin, M. and S. Melkote (2001). Capacitated facility location/network design

problems. European Jounal of Operational Research (129), 481–495.

Deneubourg, J.-L., S. Aron, S. Goss, and J. L. Pasteels (1990). The self-

organizing exploratory pattern of the argentine ant. Journal of Insect Be-

haviour (3), 159–168.

Dı́az, J. A. (2001). Algorithmic Approaches for the Single Source Capaci-

tated Location Problem. Ph. D. thesis, Universitat Polytechnica de Catalunya,

Barcelona, Spain.

Dı́az, J. A. and E. Fernádez (2002). A branch and price algorithm for the single-

source capacitated plant location problem. J Opl Res Soc 53(7), 728–740.

Domschke, W. and G. Krispin (1997). Location and layout planning. OR Spec-

trum 19, 181–194. 10.1007/BF01545586.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms [in Italian]. Ph.

D. thesis, Departimento di Elettronica, Politecnico di Milano, Milan.

Dorigo, M., M. Birattari, C. Blum, M. Clerc, T. Stützle, and A. F. T. Winfield (2008).

Ant Colony Optimization and Swarm Intelligence, 6th International Conference,

ANTS 2008, Volume 5217 of Lecture Notes in Computer Science. Berlin, Ger-

many: Springer-Verlag.

Dorigo, M. and C. Blum (2005). Ant colony optimization theory: A survey. Theo-

retical Computer Science (344), 243–278.

Dorigo, M. and L. Gambardella (1997a). Ant colonies for the travelling salesman

problem. BioSystems 43(2), 73–81.

BIBLIOGRAPHY 154

Dorigo, M. and L. Gambardella (1997b). Ant colony system: A cooperative learn-

ing approach to the travelling salesman problem. IEEE Transactions on Evolu-

tionary Computation 1(1), 53–66.

Dorigo, M., L. Gambardella, M. Birattari, A. Martinoli, R. Poli, and T. Stützle (Eds.)

(2006). Ant Colony Optimization and Swarm Intelligence, 5th International

Workshop, ANTS 2006, Volume 4150 of Lecture Notes in Computer Science.

Berlin, Germany: Springer Verlag.

Dorigo, M. and K. Socha (2006, April). An introduction to ant colony optimization.

Technical Report TR/IRIDIA/2006-010, Université Libre de Bruxelles.

Dorigo, M. and T. Stützle (2004). Ant Colony Optimization. Cambridge, MA: The

MIT Press.

Dorigo, M., M. Zlochin, N. Meuleau, and M. Birattari (2002). Updating ACO

pheromones using stochastic gradient ascent and cross-entropy methods. In

S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and G. R. Raidl (Eds.), Appli-

cations of Evolutionary Computing: EvoWorkshops 2002: EvoCOP, EvoIASP,

EvoSTIM/EvoPLAN, Volume 2279 of Lecture Notes in Computer Science, pp.

21–30. Berlin, Germany: Springer-Verlag.

Dréo, J., A. Pétrowski, P. Siarr, and E. Taillard (2006). Metaheuristics for Hard

Optimization. Berlin, Germany: Springer-Verlag.

Drezner, Z. (Ed.) (1995). Facility Location. A Survey of Applications and Methods.

New York: Springer.

Drezner, Z., K. Klamroth, A. Schobel, and G. Wesolowsky (2001). The Weber

Problem, pp. 1–36. Berlin, Germany: Springer-Verlag.

BIBLIOGRAPHY 155

Drezner, Z. and G. O. Wesolowsky (2003). Network design: selection and de-

sign of links and facility location. Transportation Research Part A: Policy and

Practice 37 (3), 241–256.

Efron, B. and T. DiCiccio (1996). Boostrap confidence intervals. Statistical Sci-

ence 11(3), 189–228.

Erlenkotter, D. (1978). A dual-based procedure for uncapacitated facility location.

Operations Research (26), 992–1009.

Fathali, J. (2006). A genetic algorithm for the p-median problem with pos/neg

weights. Applied mathematics and Computation 183(2), 1017–1083.

Fathali, J., H. Kakhki, and R. Burkard (2006). An ant colony algorithm for the

pos/neg weighted p-median problem. Central European Journal of Operations

Research 14(3), 229–246.

Filho, V. and R. Galváo (1998). A tabu search heuristic for the concentrator loca-

tion problem. Location Science (6), 189–209.

Fleszar, K. and K. Hindi (2008). An effective vns for the capacitated p-median

problem. European Jounal of Operational Research 191(3), 612–622.

França, P., N. M. Sosa, and V. Pureza (2006). An adaptive tabu search algorithm

for the capacitated clustering problem. International Transactions in Opera-

tional Research 6(6), 665–678.

Gambardella, L., E. Taillard, and G. Agazzi (1999). MACS-VRPTW: A Multiple Ant

Colony System For Vehicle Routing Problems With Time Windows, pp. 63–76.

McGraw-Hill.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman.

BIBLIOGRAPHY 156

Ghoseiri, K. and S. Ghannadpour (2009). An efficient heuristic method for capac-

itated p-median problem. International Journal of Management Science and

Engineering Science 4(1), 72–80.

Ghosh, D. (2003). Neighborhood search heuristics for the uncapacitated facility

location problem. European Journal of Operational Research (150), 150–162.

Goldberg, A. (1997). An efficient implementation of a scaling minimum-cost flow

algorithm. Journal of Algorithms (22), 1–29.

Goldengorin, B., D. Ghosh, and G. Sierksma (2004). Branch and peg algo-

rithms for the simple plant location problem. Computers and Operations Re-

search 31(2), 241–255.

Guignard, M. (1988). A lagrangean dual ascent method for simple plant location

problems. European Jounal of Operational Research 35, 193–200.

Guner, A. and M. Sevkli (2008). A discrete particle swarm optimization algorithm

for uncapacitated facility location problem. Journal of Artificial Evoloution and

Applications 2008(Article ID 861512), 9 pages.

Hakimi, S. (1964). Optimum locations of switching centres and the absolute cen-

tres and medians of a graph. Operations Research (12), 450–459.

Hakimi, S. (1965). Optimum locations of switching centres in a communica-

tions network and some graph related theoretical problems. Operations Re-

search (13), 462–475.

Hillier, F. and G. Lieberman (2005). Introduction to Operations Research (8th

ed.). McGraw-Hill.

Hindi, K. and K. Pieńkosz (1999). Efficient solution of large single-source, capac-

itated plant location problems. J Opl Res Soc 50(3), 268–274.

BIBLIOGRAPHY 157

Hoefer, M. (2003). Experimental comparision of heuristic and approximation al-

gorithms for uncapacitated facility location. In Proceedings of the Second Inter-

national Workshop on Experimental and Efficient Algorithms (WEA), Volume

2647 of Lecture Notes in Computer Science, Berlin, Germany, pp. 165–178.

Springer-Verlag.

Hölldobler, B. and E. Wilson (1994). Journey to the Ants. A story of scientific

exploration. Cambridge, Massachusetts: The Belknap Press.

Holmberg, K., D. Ronnqvist, and D. Yuan (1999). An exact algorithm for the

capacitated facility location problem with single sourcing. Eur J Opl Res 113,

544–559.

Hoos, H. and T. Stützle (2005). Stochastic Local Search Foundations and Appli-

cations. San Francisco, CA 94111: Morgan Kaufman.

Hotelling, H. (1929). Stability in competition. Ecomonic Journal (39), 41–57.

Jaramillo, J., J. Bhadur, and R. Batta (2002). On the use of genetic algorithms to

solve location problems. Computers and Operations Research (29), 761–779.

JI, J.-Z., H.-X. ZHANG, R.-B. HU, and C.-N. LIU (2009). A bayesian network

learning algorithm based on independence test and ant colony optimization.

Acta Automatica Sinica 35(3), 281–288.

Jourdan, L., M. Basseur, and E.-G. Talbi (2009). Hybridizing exact methods and

metaheuristics: A taxomony. European Jounal of Operational Research (199),

620–629.

Kariv, O. and S. Hakimi (1979a). An algorithmic approach to network location

problems, part i: The p-centres. SIAM Journal of Applied Mathematics (37),

513–538.

BIBLIOGRAPHY 158

Kariv, O. and S. Hakimi (1979b). An algorithmic approach to network location

problems, part ii: The p-median. SIAM Journal of Applied Mathematics (37),

539–560.

Karup, J. and P. Pruzan (1983). The simple plant location problem: Survey and

synthesis. European Jounal of Operational Research 12, 36–81.

Katagiri, H., T. Hayashida, I. Nishizaki, and J. Ishimatsu (2009). A hybrid algo-

rithm based on tabu search and ant colony optimization for minimum spanning

tree problems. In V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.), Modeling

Decisions for Artificial Intelligence, Volume 5861 of Lecture Notes in Computer

Science, pp. 315–326. Springer Berlin.

Kaveh, A. and S. Shojaee (2008). Optimal domain decomposition via p-median

methodology using aco and hybrid acga. Finite Elements in Analysis and De-

sign 44(8), 505–512.

Kirca, Ö. and A. Satir (1990). A heuristic for obtaining an initial solution for the

transportation problem. J Opl Res Soc 41(9), 865–867.

Klose, A. and A. Drexl (2004). Facility location models for distribution system

design. European Jounal of Operational Research.

Krishnaswamy, K. N., A. I. Sivakumar, and M. Mathirajan (2009). Management

Research Methodology: Integration of Methods and Techniques (3rd ed.). Pal-

grave.

Kuehn, A. and M. Hamburger (1963). A heuristic program for locating ware-

houses. Mgmt Sci (9), 643–666.

Kumweang, K. and R. Kawtummachai (2005). Solving a sscflp in a supply chain

with aco. Suranaree J Sci Technol 12(1), 28–38.

BIBLIOGRAPHY 159

Lawler, E. (1963). The quadratic assignment problem. Mgmt Sci (9), 586–599.

Levanova, T. and M. Loresh (2004). Algorithms of ant system and simulated

annealing for the p-median problem. Automation and Remote Control 65(3),

431–438.

Levanova, T. and M. Loresh (2006). Ant colony optimization algorithm for the

capacitated plant location problem. In 12th IFAC Symposium on Information

Control Problems in Manufacturing - INCOM 2006, Volume 3, pp. 423–428.

Lorena, L. and E. Senne (2003). Local search heuristics for capacitated p-median

problems. Networks & Spatial Economics 3(4), 407–419.

Lorena, L. and E. Senne (2004). A column generation approach to capacitated

p-median problems. Computers and Operations Research 31(6), 863–876.

Lougee-Heimer, R. (2003). The common optimization interface for operations

research. IBM Journal of Research and Development 47 (1), 57–66.

Lourenço, H. and D. Serra (2002). Adaptive search heuristics for the generalized

assignment problem. Math & Soft Comp 9, 209–234.

Love, R., J. Morris, and G. Wesolowsky (1988). Facilities Location: Models and

Methods. New York: North Holland.

Lu, Z., N. Bostel, and P. Dejax (2005). Simple Plant Location Problem with Re-

verse Flows, Volume 94 of Applied Optimization, pp. 151–166. Berlin, Ger-

many: Springer-Verlag.

Mathirajan, M. and B. Meenakshi (2004). Experimental analysis of some var-

ints of vogel’s approximation method. Asia-Pacific Journal of Operational Re-

search 21(4), 447–462.

BIBLIOGRAPHY 160

McGill, R., J. Tukey, and W. Larsen (1978). Variations of box plots. The American

Statistician 32(1), 12–16.

Melo, M., S. Nickel, and F. S. da Gama (2009). Facility location and supply chain

management - a review. European Journal of Operational Research 196(2),

401–412.

Michel, L. and P. Hentenryck (2004). A simple tabu search for warehouse location.

European Jounal of Operational Research 157 (3), 576–591.

Mirchandani, P. and R. Francis (Eds.) (1990). Discrete Location Theory. New

York: John Wiley and Sons, Inc.

Mladenovic, N., J. Brimberg, P. Hansen, and J. Moreno-Perez (2007, June). The

p-median problem: A survey of metaheuristic approaches. European Journal

of Operational Research 127 (3), 927–939.

Montemanni, R., L. Gambardella, A. Rizzoli, and A. Donati (2005). Ant colony

system a dynamic vehicle routing problem. Journal of Combinatorial Optimiza-

tion (10), 327–343.

Neumann, F., D. Sudholt, and C. Witt (2008). Rigorous analyses for the combina-

tion of ant colony optimization and local search. In Ant Colony Optimization and

Swarm Intelligence, 6th International Conference, ANTS 2008, Volume 5217 of

Lecture Notes in Computer Science, pp. 132–143.

Neumann, F. and C. Witt (2009). Runtime analysis of a simple ant colony opti-

mization algorithm. Algorithmica 54(2), 243–255.

Olivetti, F., F. V. Zuben, and L. N. de Castro (2005). Max min ant system and

capacitated p-medians: Extensions and improved solutions. Informatica 29,

163–171.

BIBLIOGRAPHY 161

Osman, I. and S. Ahmadi (2007). Guided construction search metaheuristics for

the capacitated p-median problem with single source constraint. J Opl Res

Soc (58), 100–114.

Owen, S. and M. Daskin (1998). Strategic facility location: A review. European

Jounal of Operational Research (111), 423–447.

Pang, C.-Y., W. Hu, X. Li, and B.-Q. Hu (2009, July). Apply local clustering method

to improve the running speed of ant colony optimization.

Reese, J. (2006). Methods for solving the p-median problem: An annotated bibli-

ography. Networks 48(3), 125–142.

Resende, M. and R. Werneck (2004). A hybrid heuristic for the p-median problem.

Journal of Heuristics 10(1), 59–88.

Resende, M. and R. Werneck (2006). A hybrid multistart heuristic for the un-

capacitated facility location problem. European Jounal of Operational Re-

search 174(1), 54–68.

ReVelle, C. (1997). A perspective on location science. Location Science 5(1),

3–13.

ReVelle, C. and H. Eislet (2005). Location analysis: A synthesis and survey.

European Jounal of Operational Research (165), 1–19.

ReVelle, C., H. Eislet, and M. Daskin (2008). A bibliography for some funda-

mental problem categories in discrete location science. European Jounal of

Operational Research (184), 817–848.

Rolland, E., D. Schilling, and J. Current (1997). An efficient tabu search procedure

for the p-median problem. European Jounal of Operational Research 96(2),

329–342.

BIBLIOGRAPHY 162

Rönnqvist, M., S. Tragantalerngsak, and J. Holt (1999). A repeated matching

heuristic for the single-sourced capacitated facility location problem. European

Journal of Operational Research (116), 51–68.

Rubinstein, R. (1997). Optimization of computer simulation models with rare

events. European Jounal of Operational Research (99), 89–112.

Rubinstein, R. (1999). The simulated entropy method for combinatorial and con-

tinuos optimization. Methodology and Computing in Applied Probability (2),

127–190.

Rubinstein, R. (2001). Combinatorial Optimization, Cross-Entropy, Ants and Rare

Events, pp. 304–358. Stochastic optimization: Algorithms and Applications.

Kluwer.

Rubinstein, R. (2002). The cross-entropy method and rare-events for maximal

cut and bipartition problems. ACM Transactions on Modelling and Computer

Simulation 12(1), 27–53.

Rubinstein, R. and D. Krose (2004). The Cross-Entropy Method: a Unified Ap-

proach to Combinatorial Optimization, Monte Carlo Simulation and Machine

Learning. Springer-Verlag.

Sa, G. (1969). Branch and bound and approximate solutions to the capacitated

plant location problem. Operations Research (17), 1005–1016.

Salhi, S. (2002). Defining tabu list size and aspiration criterion within tabu search

methods. Computers and Operations Research (29), 67–86.

Salhi, S. and R. Atkinson (1995). Subdrop: A modified drop heuristic for location

problems. Location Science 3(4), 267–273.

BIBLIOGRAPHY 163

Salhi, S. and G. Nagy (2009). Local improvement in planar facility loca-

tion using vehicle routing. Annals of Operations Research 167, 287–296.

10.1007/s10479-007-0223-z.

Saunders, M., P. Lewis, and A. Thornhill (2007). Research Methods for Business

Students (4th ed.). Prentice Hall.

Scheuerer, S. and R. Wendolsky (2006). A scatter search heuristic for the capac-

itated clustering problem. European Jounal of Operational Research 169(2),

533–547.

Sevkli, M. and A. Guner (2006). A continuous particle swarm optimization algo-

rithm for uncapacitated facility location problem. In M. Dorigo, L. Gambardella,

M. Birattari, A. Martinoli, R. Poli, and T. Stützle (Eds.), Ant Colony Optimization

and Swarm Intelligence, 5th International Workshop, ANTS 2006, Volume 4150

of Lecture Notes in Computer Science, Berlin, Germany, pp. 316–323. Springer

Verlag.

Smith, H., G. Laporte, and P. Harper (2009). Locational analysis: Highlights of

growth to maturity. J Opl Res Soc 60(1), S140–S148.

Sörensen, K. (2008, May). Investigation of practical, robust and flexible deci-

sions for facility location problems using tabu search and simulation. J Opl Res

Soc 59(5), 624–636.

Sridharan, R. (1993). A lagrangean heuristic for the capacitated plant location

problem. European Journal of Operational Research (66), 305–312.

Sridharan, R. (1995). Invited review: The capaciated plant location problem. Eur

J Opl Res 87, 203–213.

BIBLIOGRAPHY 164

Stützle, T. (1999). Local Search Algorithms for Combinatorial Problems: Analy-

sis, Improvements and New Applications, Volume 220. Germany, Infix: Sankt

Augustin.

Stützle, T. and H. Hoos (1997). The max-min ant system and local search for the

travelling salesman problem. In S. Voss, S. Martello, I. Osman, and C. Roucairol

(Eds.), Proceedings of the 1997 IEEE International Conference on Evolutionary

Computation (ICEC’97), Piscataway, NJ, pp. 309–314. IEEE Press.

Stützle, T. and H. Hoos (2000). The max-min ant system. Fut Gen Com Sys 16(8),

889–914.

Sun, M. (2006). Solving the uncapacitated facility location problem using tabu

search. Computers and Operations Research 33(9), 2563–2589.

Taha, H. (2006). Operations Research: An Introduction (8th ed.). Prentice Hall.

Tarrent, F. and D. Bridge (2005). When ants attack: Ant algorithms for constraint

satisfaction problems. Art Int Rev 24, 455–476.

Theraulaz, G. and E. Bonabeau (1999). A brief history of stigmergy. Artificial

Life 5, 97–116.

Venables, H., H. Chen, and A. Moscardini (2005). The fixed charge capacitated

location problem – an ant colony optimization approach. In Tenth International

Symposium on Locational Decisions – Abstracts, pp. 247–248.

Venables, H. and A. Moscardini (2006). An adaptive search heuristic for the ca-

pacitated fixed charge facility location problem. In M. Dorigo, L. Gambardella,

M. Birattari, A. Martinoli, R. Poli, and T. Stützle (Eds.), Ant Colony Optimization

and Swarm Intelligence, 5th International Workshop, ANTS 2006, Volume 4150

of Lecture Notes in Computer Science, Berlin, Germany, pp. 348–355. Springer

Verlag.

BIBLIOGRAPHY 165

Venables, H. and A. Moscardini (2007a). An ant based heuristic for the capaci-

tated fixed charge location problem. Unpublished working paper.

Venables, H. and A. Moscardini (2007b). The fixed charge capacitated location

problem: – an ant based solution procedure. Conference Paper. 22nd Euro-

pean Conference on Operational Research, available on request.

Venables, H. and A. Moscardini (2008). Ant based heuristics for the capcitated

fixed charge location problem. In M. Dorigo, M. Birattari, C. Blum, M. Clerc,

T. Stützle, and A. F. T. Winfield (Eds.), Ant Colony Optimization and Swarm

Intelligence, 6th International Conference, ANTS 2008, Volume 5217 of Lecture

Notes in Computer Science, pp. 234–242.

Venables, H. and A. Moscardini (2010, July). Evaluation of anant based hybrid

metaheuristic used to solve the capacitated facility location problem. Confer-

ence Paper. 24th European Conference on Operational Research, available on

request.

Weber, A. (1909). Uber den standort der industrien.

Wood, M. (2005). Bootstrapped confidence intervals as an approach to statistical

inference. Organizational Research Methods 8(4), 454–470.

Xu, Y., M.-H. Lim, Y.-S. Ong, and J. Tang (2006). A ga-aco-local search hy-

brid algorithm for solving quadratic assignment problem. In M. Cattolico (Ed.),

GECCO, pp. 599–606. ACM.

Yoshikawa, M. and K. Otani (2010). Ant colony optimization routing algorithm with

tabu search. In Proceedings of The International MultiConference of Engineers

and Computer Scientists 2010, Volume III, pp. 2104–2107.

Zanjirani, F. and M. Hekmmatfar (Eds.) (2009). Facility Location: Concepts,

BIBLIOGRAPHY 166

Models. Algorithms and Case Studies. Contributions to Management Science.

Berlin, Germany: Springer-Verlag.

Appendix A

Research Output

1. A conference paper was presented at ISOLDEX, Seville, Spain, Venables

et al. (2005).

2. A presentation, research poster and research publication were outcomes

of an international conference on Ant Conoly Optimisation at the Universit

Libre de Bruxelles, Brussels, Belgium, Venables and Moscardini (2006).

3. A working paper on Max-Min Ant System with the use of approximation of

transportation problems was completed as part of a research deliverable,

Venables and Moscardini (2007a).

4. A conference paper on the use of Ant Colony System, was prepared and

presented at an international conference EURO XXII at the University of

Economics Prague, Czech Republic, Venables and Moscardini (2007b).

5. A presentation, research poster and research publication were outcomes

of an international conference on Ant Conoly Optimisation at the Universit

Libre de Bruxelles, Brussels, Belgium, Venables and Moscardini (2008).

6. A conference paper on the evaluation of ACO as a solution technique for the

CFLP, was prepared and presented at an international conference EURO

167

Appendix A. Research Output 168

XXIV at at the Faculty of Sciences of the University of Lisbon, FCUL, Ven-

ables and Moscardini (2010).

Appendix B

Algorithmic Solution Quality:

Empirical Run-Time Distributions

169

Appendix B. Algorithmic Solution Quality: Empirical Run-Time

Distributions 170

0.01 0.05 0.10 0.50 1.00 5.00 10.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap41 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.001 0.005 0.010 0.050 0.100 0.500 1.000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap42 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.001 0.005 0.010 0.050 0.100 0.500 1.000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap43 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.001 0.005 0.010 0.050 0.100 0.500 1.000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap44 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure B.1

Appendix B. Algorithmic Solution Quality: Empirical Run-Time

Distributions 171

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap51 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure B.2

Appendix B. Algorithmic Solution Quality: Empirical Run-Time

Distributions 172

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap61 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.01 0.05 0.10 0.50 1.00 5.00 10.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap62 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap63 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap64 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure B.3

Appendix B. Algorithmic Solution Quality: Empirical Run-Time

Distributions 173

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap71 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap72 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.01 0.05 0.10 0.50 1.00 5.00 10.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap73 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.01 0.05 0.10 0.50 1.00 5.00 10.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap74 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure B.4

Appendix B. Algorithmic Solution Quality: Empirical Run-Time

Distributions 174

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap81 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap82 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−02 1e+00 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap83 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−02 1e+00 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap84 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure B.5

Appendix B. Algorithmic Solution Quality: Empirical Run-Time

Distributions 175

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap91 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap92 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap93 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.1 0.5 1.0 5.0 10.0 50.0 100.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap94 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure B.6

Appendix B. Algorithmic Solution Quality: Empirical Run-Time

Distributions 176

1e−02 1e+00 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap101 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap102 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap103 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap104 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure B.7

Appendix B. Algorithmic Solution Quality: Empirical Run-Time

Distributions 177

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap111 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap112 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap113 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap114 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure B.8

Appendix B. Algorithmic Solution Quality: Empirical Run-Time

Distributions 178

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap121 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap122 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap123 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.1 0.5 1.0 5.0 10.0 50.0 100.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap124 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure B.9

Appendix B. Algorithmic Solution Quality: Empirical Run-Time

Distributions 179

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap131 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.1 0.5 1.0 5.0 10.0 50.0 100.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap132 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

1e−01 1e+00 1e+01 1e+02 1e+03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap133 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

0.1 0.5 1.0 5.0 10.0 50.0 100.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTDs for Cap134 (1000 runs)

time (secs)

P
ro

b(
O

pt
im

al
 S

ol
ut

io
n)

Figure B.10

Appendix C

Algorithmic Solution Quality:

Graphical Descriptive Summaries of

Run-Time Distributions

180

Appendix C. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Run-Time Distributions 181

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
20

0.
50

1.
00

Cap41 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
00

5
0.

01
0

0.
02

0
0.

05
0

0.
10

0
0.

20
0

0.
50

0

Cap42 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
00

5
0.

01
0

0.
02

0
0.

05
0

0.
10

0
0.

20
0

0.
50

0

Cap43 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
00

5
0.

01
0

0.
02

0
0.

05
0

0.
10

0
0.

20
0

0.
50

0

Cap44 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure C.1

Appendix C. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Run-Time Distributions 182

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

10
.0

0

Cap51 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure C.2

Appendix C. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Run-Time Distributions 183

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
20

0.
50

Cap61 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

Cap62 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

10
.0

0
20

.0
0

50
.0

0

Cap63 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

10
.0

0

Cap64 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure C.3

Appendix C. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Run-Time Distributions 184

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
20

0.
50

1.
00

Cap71 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
20

0.
50

Cap72 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

10
.0

0

Cap73 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

Cap74 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure C.4

Appendix C. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Run-Time Distributions 185

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Cap81 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Cap82 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

Cap83 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

Cap84 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure C.5

Appendix C. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Run-Time Distributions 186

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

Cap91 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Cap92 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

Cap93 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

Cap94 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure C.6

Appendix C. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Run-Time Distributions 187

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

Cap101 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Cap102 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

5e
−

02
1e

−
01

5e
−

01
1e

+
00

5e
+

00
1e

+
01

5e
+

01
1e

+
02

Cap103 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

10
.0

0

Cap104 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure C.7

Appendix C. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Run-Time Distributions 188

MMAS 1F−MMAS HCF 1F−HCF CE

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0
20

0.
0

50
0.

0

Cap111 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0

Cap112 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0
20

0.
0

50
0.

0

Cap113 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

1
2

5
10

20
50

10
0

20
0

50
0

Cap114 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure C.8

Appendix C. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Run-Time Distributions 189

MMAS 1F−MMAS HCF 1F−HCF CE

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0
20

0.
0

50
0.

0

Cap121 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0

Cap122 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0

Cap123 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0

Cap124 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure C.9

Appendix C. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Run-Time Distributions 190

MMAS 1F−MMAS HCF 1F−HCF CE

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0
20

0.
0

50
0.

0

Cap131 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

Cap132 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

Cap133 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

Cap134 RTDs with 95% Median Confidence Intervals

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure C.10

Appendix D

Algorithmic Solution Quality:

Graphical Descriptive Summaries of

Bootstrapped Median Distributions

191

Appendix D. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Bootstrapped Median Distributions 192

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Cap41 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
15

0.
20

0.
25

Cap42 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
15

0.
20

0.
25

Cap43 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
15

0.
20

0.
25

Cap44 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure D.1

Appendix D. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Bootstrapped Median Distributions 193

MMAS 1F−MMAS HCF 1F−HCF CE

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Cap51 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure D.2

Appendix D. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Bootstrapped Median Distributions 194

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
15

0.
20

0.
25

Cap61 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
10

0.
15

0.
20

0.
25

0.
30

Cap62 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0
5

10
15

Cap63 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
1

0.
2

0.
3

0.
4

0.
5

Cap64 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure D.3

Appendix D. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Bootstrapped Median Distributions 195

MMAS 1F−MMAS HCF 1F−HCF CE

0.
10

0.
15

0.
20

0.
25

Cap71 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
10

0.
15

0.
20

0.
25

Cap72 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
15

0.
20

0.
25

Cap73 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
05

0.
10

0.
15

0.
20

Cap74 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure D.4

Appendix D. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Bootstrapped Median Distributions 196

MMAS 1F−MMAS HCF 1F−HCF CE

0.
4

0.
5

0.
6

0.
7

0.
8

Cap81 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Cap82 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

1.
0

1.
5

2.
0

2.
5

Cap83 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

2
4

6
8

Cap84 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure D.5

Appendix D. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Bootstrapped Median Distributions 197

MMAS 1F−MMAS HCF 1F−HCF CE

0.
5

1.
0

1.
5

Cap91 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Cap92 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Cap93 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
0

0.
5

1.
0

1.
5

Cap94 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure D.6

Appendix D. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Bootstrapped Median Distributions 198

MMAS 1F−MMAS HCF 1F−HCF CE

0
2

4
6

8
10

12

Cap101 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
5

0.
6

0.
7

0.
8

Cap102 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0
5

10
15

20

Cap103 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0.
2

0.
3

0.
4

0.
5

0.
6

Cap104 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure D.7

Appendix D. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Bootstrapped Median Distributions 199

MMAS 1F−MMAS HCF 1F−HCF CE

0
10

20
30

40
50

60

Cap111 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

5
10

15

Cap112 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0
20

40
60

80
10

0
12

0
14

0

Cap113 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0
20

40
60

80
10

0

Cap114 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure D.8

Appendix D. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Bootstrapped Median Distributions 200

MMAS 1F−MMAS HCF 1F−HCF CE

0
5

10
15

20
25

30
35

Cap121 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0
5

10
15

20

Cap122 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0
5

10
15

20
25

Cap123 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0
5

10
15

20
25

Cap124 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure D.9

Appendix D. Algorithmic Solution Quality: Graphical Descriptive

Summaries of Bootstrapped Median Distributions 201

MMAS 1F−MMAS HCF 1F−HCF CE

0
10

20
30

40

Cap131 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

1
2

3
4

5
6

Cap132 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

0
10

20
30

40
50

60

Cap133 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

MMAS 1F−MMAS HCF 1F−HCF CE

1
2

3
4

5

Cap134 Boostrapped Medians Distributions

Algorithm

R
un

−
T

im
e

(s
ec

s)

Figure D.10

Appendix E

Algorithmic Solution Quality:

Bootstrapped 95% Confidence

Intervals for Median Run-Times

202

Appendix E. Algorithmic Solution Quality: Bootstrapped 95% Confidence

Intervals for Median Run-Times 203

Time (secs)

0.05 0.10 0.15 0.20 0.25 0.30 0.35

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap41

Time (secs)

0.05 0.10 0.15 0.20 0.25

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap42

Time (secs)

0.05 0.10 0.15 0.20 0.25

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap43

Time (secs)

0.05 0.10 0.15 0.20 0.25

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap44

Figure E.1

Appendix E. Algorithmic Solution Quality: Bootstrapped 95% Confidence

Intervals for Median Run-Times 204

Time (secs)

0.10 0.15 0.20 0.25 0.30

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap51

Figure E.2

Appendix E. Algorithmic Solution Quality: Bootstrapped 95% Confidence

Intervals for Median Run-Times 205

Time (secs)

0.10 0.15 0.20 0.25

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap61

Time (secs)

0.10 0.15 0.20 0.25

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap62

Time (secs)

0 2 4 6 8 10

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap63

Time (secs)

0.1 0.2 0.3 0.4

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap64

Figure E.3

Appendix E. Algorithmic Solution Quality: Bootstrapped 95% Confidence

Intervals for Median Run-Times 206

Time (secs)

0.10 0.15 0.20 0.25

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap71

Time (secs)

0.10 0.15 0.20 0.25

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap72

Time (secs)

0.05 0.10 0.15 0.20 0.25

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap73

Time (secs)

0.05 0.10 0.15 0.20

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap74

Figure E.4

Appendix E. Algorithmic Solution Quality: Bootstrapped 95% Confidence

Intervals for Median Run-Times 207

Time (secs)

0.4 0.5 0.6 0.7 0.8

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap81

Time (secs)

0.2 0.4 0.6 0.8 1.0 1.2

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap82

Time (secs)

1.0 1.5 2.0 2.5

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap83

Time (secs)

1 2 3 4 5 6 7

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap84

Figure E.5

Appendix E. Algorithmic Solution Quality: Bootstrapped 95% Confidence

Intervals for Median Run-Times 208

Time (secs)

0.6 0.8 1.0 1.2

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap91

Time (secs)

0.4 0.6 0.8 1.0 1.2 1.4 1.6

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap92

Time (secs)

0.4 0.6 0.8 1.0 1.2 1.4 1.6

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap93

Time (secs)

0.4 0.6 0.8 1.0 1.2 1.4

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap94

Figure E.6

Appendix E. Algorithmic Solution Quality: Bootstrapped 95% Confidence

Intervals for Median Run-Times 209

Time (secs)

0 2 4 6 8 10 12

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap101

Time (secs)

0.5 0.6 0.7 0.8

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap102

Time (secs)

0 5 10 15 20

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap103

Time (secs)

0.2 0.3 0.4 0.5 0.6

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap104

Figure E.7

Appendix E. Algorithmic Solution Quality: Bootstrapped 95% Confidence

Intervals for Median Run-Times 210

Time (secs)

0 10 20 30 40 50

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap111

Time (secs)

5 10 15

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap112

Time (secs)

0 20 40 60 80 100 120

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap113

Time (secs)

0 20 40 60 80 100

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap114

Figure E.8

Appendix E. Algorithmic Solution Quality: Bootstrapped 95% Confidence

Intervals for Median Run-Times 211

Time (secs)

5 10 15 20

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap121

Time (secs)

5 10 15 20

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap122

Time (secs)

0 5 10 15 20 25

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap123

Time (secs)

0 5 10 15 20 25

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap124

Figure E.9

Appendix E. Algorithmic Solution Quality: Bootstrapped 95% Confidence

Intervals for Median Run-Times 212

Time (secs)

0 10 20 30 40

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap131

Time (secs)

1 2 3 4 5 6

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap132

Time (secs)

0 10 20 30 40 50 60

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap133

Time (secs)

1 2 3 4 5

MMAS

1F−MMAS

HCF

1F−HCF

CE

Bootstrapped 95% Confidence Intervals for Median Run−Time
Problem Instance: cap134

Figure E.10

