
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
4
3
3
2

|

d
o
w
n
l
o
a
d
e
d
:

1
5
.
7
.
2
0
2
3

Model-based approaches for large-scale optimization

in business operations

INAUGURALDISSERTATION

zur Erlangung der Würde eines Doctor rerum oeconomicarum

der Wirtschafts- und Sozialwissenschaftlichen Fakultät der Universität Bern

Tamara Bigler

Erstbetreuer: Prof. Dr. Philipp Baumann

Professur für Quantitative Methoden der BWL

Departement Betriebswirtschaftslehre

Engehaldenstrasse 4, 3012 Bern

Bern, Januar 2023

Die Fakultät hat diese Arbeit am 30. März 2023 auf Antrag der beiden Gutachter Prof. Dr. Olivier

Gallay und Prof. Dr. Philipp Baumann als Dissertation angenommen, ohne damit zu den darin

ausgesprochenen Auffassungen Stellung nehmen zu wollen.

Contents

Introduction 1

Paper I: A matheuristic for a customer assignment problem in direct

marketing

5

Paper II: MIP-based approaches for multi-site project scheduling 51

Paper III: A matheuristic for locating obnoxious facilities 82

Introduction

Companies nowadays have to operate in an increasingly competitive and complex envi-

ronment. Under these challenging conditions, it has become essential for them to optimize

their business operations, i.e., the activities that they must conduct on a regular, often

daily, basis. The nature of these business operations strongly varies between compa-

nies. For a pharmaceutical company, an important business operation is, for example, the

scheduling of their research activities. With improved scheduling, new drugs are brought

to markets earlier, which can lead to a decisive competitive advantage. For a telecom-

munications company, an important business operation is, for example, the promotion

of new products and services to existing customers. Contacting the right customers for

the right products may lead to an increase in sales and profitability of these products.

Many business operations, including the two examples from above, can be improved by

solving mathematical optimization problems with techniques from the field of Operations

Research. An optimization problem consists of the decisions to be taken, the constraints

that define the set of feasible decisions, and an objective that is either maximized (profit)

or minimized (project duration). In the case of the telecommunications company, the de-

cisions to be taken are which customers are contacted for which product on which day. An

example of a constraint is an overall budget that cannot be exceeded, and an example of

the objective is the maximization of the total expected profit that results from contacting

the customers.

A standard approach for solving such an optimization problem is first to express the

problem as a mathematical model and then use standard optimization software, known as

a solver, to find the best possible solution. A great advantage of this approach is that the

mathematical model can easily be adjusted to changes in the underlying problem. This

flexibility is required in a dynamic business environment where constraints or objectives

may change over time. However, a major drawback of this standard approach is its limited

scalability when applied to specific types of complex optimization problems. For these

problems, the generic solvers fail to find the best or even a good solution in a reasonable

running time. Specialized algorithms, so-called heuristics, are required instead. Heuristics

1

Introduction

apply problem-specific search strategies to derive a good solution to an optimization

problem quickly. However, because these heuristics are designed for specific optimization

problems, they are difficult to adapt if the constraints or the objective of the optimization

problem change. A solution technique that has been shown to be both flexible and

scalable for complex optimization problems are matheuristics. Matheuristics are model-

based approaches that decompose an optimization problem into smaller subproblems and

solve these subproblems using mathematical models. Essential for the performance of a

matheuristic is how the problem is decomposed into subproblems, which is an important

field of research in Operations Research.

This thesis contributes to this field of research by introducing model-based approaches

for large-scale optimization in business operations. It consists of three papers on three spe-

cific optimization problems in direct marketing, project management, and facility location.

Real-world instances of all three of these problems involve a large number of customers,

activities, or facilities and require the flexibility to incorporate practical constraints easily.

To address these challenges, we developed three matheuristics. The matheuristics employ

innovative problem decomposition strategies and outperform state-of-the-art approaches

on large-scale instances.

In the first paper, we study a customer assignment problem from a major telecom-

munications company. The telecommunications company runs different direct marketing

campaigns to promote its products and services. The goal of the telecommunications

company is to assign the customers to the direct marketing campaigns so that the total

expected profit is maximized. Thereby, various business constraints, such as budgets and

sales constraints, must be considered. Also, different customer-specific constraints ensure

that each customer is not assigned to a direct marketing campaign too frequently. A

particular challenge is the size of practical problem instances. These instances involve

millions of customers and hundreds of direct marketing campaigns. The methodological

contribution of this paper consists of decomposing the optimization problem into two

subproblems that each can be solved efficiently. In the first subproblem, customers are

assigned to campaigns based on their membership to a customer group. In the second

subproblem, individual customers are assigned to campaigns based on the solution that

was derived in the first subproblem. The unique feature of our decomposition strategy is

that the customer-specific constraints are already considered in the first subproblem, even

though the first subproblem deals with groups of customers and not individual customers.

In an experimental analysis based on numerous generated and real-world instances, we

can demonstrate that even though we decompose the problem, the resulting solutions are

still of very high quality. The matheuristic has been deployed in the company and is now

2

Introduction

used daily. In a proof of benefit conducted by the company based on a selected campaign,

they observed that using the matheuristic increased the number of sales by 90%, resulting

in an improvement in the profitability of this campaign by 300%.

The second paper deals with a project scheduling problem that often arises in the

pharmaceutical industry, where research activities, e.g., clinical tests, can be executed

at different locations, e.g., research labs. The problem consists of determining a start

time for each activity, selecting a location for the execution of each activity, and assigning

resource units, e.g., research staff or equipment, to the execution of the activities. Various

practical constraints must be considered, such as transportation times that arise when,

e.g., a resource unit must be transported from one location to another. With only a

few activities involved, the number of possible schedules can already grow very large.

We developed a mathematical model and, based on this model, a novel matheuristic for

this problem. The main methodological contribution of the matheuristic is its problem

decomposition strategy. Instead of dividing the project into subprojects, the model in the

matheuristic is set up for all project activities. However, the solver makes some decisions

only for a subset of the activities. To schedule an entire project, multiple iterations

have to be performed, where in each iteration, another subset of activities is considered.

This iterative decision process substantially reduces running times compared to when all

decisions are conducted simultaneously. In a computational experiment, the novel model

outperforms the leading model from the literature on small instances. The matheuristic

outperforms the state-of-the-art heuristics on all considered performance metrics on larger

instances.

In the third paper, we consider the problem of locating obnoxious facilities. Obnox-

ious means that the facilities negatively affect their nearby environment and should thus

be located far away from clients. Examples of obnoxious facilities are waste plants, oil

refineries, and wind turbines. The problem consists of opening from a set of potential

locations a given number of facilities such that the open facilities are far away from the

clients. We further study an extension of this problem that includes practical constraints

which limit the number of facilities that can be opened in certain regions of an instance.

Our matheuristic starts from an initial solution and iteratively improves the solution by

removing and adding facilities. The quality of the final solution (after the improvement

iterations) strongly depends on the initial solution. When two very similar initial so-

lutions are provided, the likelihood of finding very similar final solutions is high. One

main methodological contribution is a procedure that we designed, which is guaranteed

to generate initial solutions that are very different from each other. This diversifica-

tion in the initial solutions increases the likelihood of finding high-quality final solutions.

3

Introduction

The matheuristic outperforms the state-of-the-art metaheuristics on instances including

thousands of clients and potential locations for facilities.

Even though we consider three specific optimization problems in this thesis, the con-

tributions of the three papers can be generalized and applied to related problems and

thus advance the state of knowledge in the field of large-scale optimization.

4

Paper I

A matheuristic for a customer
assignment problem in direct marketing 1

Tamara Bigler Manuel Kammermann Philipp Baumann

Department of Business Administration
University of Bern

Contents
1.1 Introduction . 7

1.2 Planning problem . 10

1.2.1 Business context . 10

1.2.2 Problem description . 11

1.2.3 Illustrative example . 13

1.3 Literature . 15

1.3.1 Related problems in direct marketing 15

1.3.2 More general combinatorial optimization problems with conflict
constraints . 18

1.4 Mixed-binary linear programming formulation 20

1.5 Matheuristic . 23

1.5.1 Build groups by eligibility pattern (Step 1) 24

1.5.2 Divide groups according to expected profits (Step 2) 24

1.5.3 Determine the number of customers of the groups that are as-
signed to the activities (Step 3) 25

1.5.4 Assign individual customers of the groups to the activities (Step 4) 27

1.5.5 Illustrative example . 29

1.6 Preprocessing technique . 31

1.6.1 Step one of the preprocessing technique 31

1.6.2 Step two of the preprocessing technique 31

1.6.3 Step three of the preprocessing technique 32

1.6.4 Step four of the preprocessing technique 33

1.6.5 Step five of the preprocessing technique 33

1.6.6 Step six of the preprocessing technique 34

1Published in European Journal of Operational Research 304, 689–708
(DOI:10.1016/j.ejor.2022.04.009)

5

1.6.7 An alternative mixed-binary linear programming formulation . 35

1.7 Results . 36

1.7.1 Problem instances . 36

1.7.2 Experimental design . 38

1.7.3 Comparison of MBLP and MBLP′ 38

1.7.4 Performance of matheuristic . 41

1.8 Conclusion . 45

Bibliography . 46

6

Paper I: A matheuristic for a customer assignment problem in direct marketing

Abstract

In direct marketing, companies use sales campaigns to target their

customers with personalized product offers. The effectiveness of di-

rect marketing greatly depends on the assignment of customers to cam-

paigns. In this paper, we consider a real-world planning problem of a

major telecommunications company that assigns its customers to indi-

vidual activities of its direct marketing campaigns. Various side con-

straints, such as budgets and sales targets, must be met. Conflict con-

straints ensure that individual customers are not assigned too frequently

to similar activities. Related problems have been addressed in the liter-

ature; however, none of the existing approaches cover all the side con-

straints considered here. To close this gap, we develop a matheuristic

that employs a new decomposition strategy to cope with the large number

of conflict constraints in typical problem instances. In a computational

experiment, we compare the performance of the proposed matheuristic

to the performance of two mixed-binary linear programs on a test set

that includes large-scale real-world instances. The matheuristic derives

near-optimal solutions in short running times for small- to medium-

sized instances and scales to instances of practical size comprising mil-

lions of customers and hundreds of activities. The deployment of the

matheuristic at the company has considerably increased the overall ef-

fectiveness of its direct marketing campaigns.

1.1 Introduction

Companies in competitive sectors such as banking and telecommunications strongly rely

on direct marketing to promote their products (Miguéis et al., 2017). In direct marketing

campaigns, companies contact their customers individually via call, direct mail, email, or

text message to make a personalized offer. The success of such campaigns greatly de-

pends on the assignment of customers to campaigns. Increasing the overall response rate

by targeting the right customers can result in a substantial profit increase. However, con-

tacting individual customers too frequently and offering products they are not interested

in, negatively impacts the effectiveness of direct marketing.

We introduce a real-world planning problem of a major telecommunications provider.

The problem input consists of a set of activities and a set of customers. Each activity

is scheduled for a specific day, and the eligible customers, i.e., the customers who can

7

Paper I: A matheuristic for a customer assignment problem in direct marketing

be assigned, are known for each activity. An expected profit, a response probability,

and a cost are given for every possible assignment of a customer to an activity. Various

business and customer-specific constraints must be considered. The business constraints

include assignment constraints that control the number of assignments to specific activ-

ities, budget constraints that ensure that the total cost associated with assignments to

specific activities does not exceed a prescribed budget, as well as sales constraints that

control the expected number of sales resulting from assignments to specific activities. The

customer-specific constraints include lower and upper bounds on the number of contacts

per customer within a prespecified time window (e.g., one month) and conflict constraints

that ensure that each customer who is eligible for two conflicting activities is assigned to

at most one of the two activities. Two activities are in conflict when they take place in

close succession and are associated with the same channel or promote the same product.

The objective is to assign the customers to the activities such that the total expected

profit is maximized. The company solves this planning problem on a daily basis, each

time with updated data. Before using our approach, a dedicated team of the company

used to manually assign its customers to the activities. To preserve the existing workflow,

a key requirement for the solution approach was that it is capable of producing solutions

for practical instances within 30 minutes.

To the best of our knowledge, none of the existing approaches from the literature

can be directly applied to the above-described planning problem. Approaches that have

been proposed for optimizing direct marketing campaigns only consider subsets of the

constraints of our problem setting (cf. Table 1.5 in Section 1.3.1 for an overview). In par-

ticular, none of the approaches consider customer-specific conflict constraints. Conflict

constraints in a more general sense have received considerable attention in the litera-

ture on related planning problems such as the assignment problem and the bin packing

problem. However, approaches for these problems also cannot be applied directly to our

problem because they do not allow the assignment of the same customer to multiple

activities or the assignment of multiple customers to the same activity. The planning

problem here also differs from related planning problems in terms of the size of typical

instances. Practical instances involve millions of customers and hundreds of activities,

which may lead to hundreds of millions of conflict constraints. This large number of con-

flict constraints hinders the use of exact approaches that employ a mixed-binary linear

programming formulation of the entire planning problem. With hundreds of millions of

conflict constraints, the time required to construct the model alone exceeds the running

time limit prescribed by the company. The large number also makes it difficult to adapt

existing heuristics that were not specifically designed to address this challenge. Hence,

8

Paper I: A matheuristic for a customer assignment problem in direct marketing

the development of a new solution approach is required.

We propose a matheuristic for the above-described problem. The matheuristic fol-

lows the idea of solving a mathematical model for groups of customers rather than indi-

vidual customers. The main methodological feature of the matheuristic is the problem

decomposition strategy, which allows grouping of customers while still enforcing conflict

constraints for individual customers. The decomposition works in four steps. In the first

step, customers who are eligible for the same activities are grouped together such that

the customers in one group are subject to the same conflicts among activities. In the

second step, a clustering algorithm further divides each group into subgroups such that

the customers in the same subgroup have similar expected profits. In the third step, a

linear program decides how many customers of a subgroup are assigned to an activity. To

consider conflicts among activities, the linear program employs new types of constraints

which are defined for sets of activities of maximal size in which every two distinct activi-

ties are conflicting. To derive these sets efficiently without introducing redundancies, we

developed a preprocessing technique. In the fourth step, an iterative algorithm assigns

individual customers to the activities in a carefully selected sequence based on the solu-

tion derived by the linear program. The trade-off between solution quality and running

time can be controlled by changing the number of subgroups created in the second step.

The proposed decomposition scheme is the first to show how conflict constraints can be

grouped and effectively incorporated into an aggregated optimization model. We believe

that these ideas can be useful for the development of heuristics for related combinatorial

optimization problems with conflict constraints.

In an experimental analysis, we use 27 generated and 13 real-world instances to com-

pare the performance of the matheuristic to the performance of two mixed-binary linear

programming formulations. The matheuristic finds near-optimal solutions in short run-

ning times for instances that could be solved to optimality by at least one of the two

mixed-binary linear programming formulations. For all other instances, the matheuristic

clearly outperforms both mixed-binary linear programming formulations in terms of so-

lution quality and running time. We find that the preprocessing technique and the new

types of constraints in the linear program contribute substantially to the effectiveness and

the speed of the matheuristic. The matheuristic has been successfully deployed at the

company and is now used on a daily basis. According to the company, introducing the

matheuristic led to a substantial increase in the overall profitability of the campaigns.

Moreover, the problem decomposition strategy of the matheuristic allows the company

to approximate the impact of strategic decisions (e.g., an increase of budgets) in near

real time by solving the linear program of the third step several times with different

9

Paper I: A matheuristic for a customer assignment problem in direct marketing

parameters.

The rest of the paper is structured as follows. In Section 1.2, we describe the planning

problem in more detail. In Section 1.3, we review the related literature. In Section 1.4,

we formulate the planning problem as a mixed-binary linear program. In Section 1.5, we

describe the four steps of the matheuristic. In Section 1.6, we explain the preprocessing

technique used in the matheuristic in more detail and introduce an alternative mixed-

binary linear programming formulation that makes use of the preprocessing technique. In

Section 1.7, we report the results. Finally, in Section 1.8, we draw conclusions and give

directions for future research.

1.2 Planning problem

In Section 1.2.1, we provide the business context of the planning problem. In Section 1.2.2,

we specify the planning problem. In Section 1.2.3, we illustrate the planning problem with

an example.

1.2.1 Business context

The telecommunications company that reported the planning problem simultaneously

runs multiple direct marketing campaigns to promote its products and services related

to different market segments to existing customers of the company. Each campaign is

created by a marketing manager who selects a set of target products, designs the offer,

identifies eligible customers, and determines the activities of the campaign, i.e., the days

on which customers can be contacted via specific channels. The marketing managers also

define some of the business constraints such as assignment constraints for activities of

their campaigns. Other business constraints such as budgets are defined in a centralized

manner by higher management. The assignment of the company’s customers to its activi-

ties is performed by a central unit instead of the campaign managers to prevent customers

who are eligible for activities of multiple campaigns from being contacted too frequently.

The central unit considers all business constraints when assigning the customers to the

activities. To replace the current practice of manually assigning the customers to the

activities, the company asked us to develop a heuristic to assign its customers automati-

cally. In the next section, we describe the planning problem from the perspective of the

central unit.

10

Paper I: A matheuristic for a customer assignment problem in direct marketing

1.2.2 Problem description

The problem input consists of a set of activities and a set of customers. Each customer

can be assigned to one or multiple activities. An expected profit is given for each possible

assignment. The goal is to assign the customers to the activities such that the total

expected profit is maximized subject to various constraints. We distinguish between

business and customer-specific constraints. The business constraints consist of:

• Minimum assignment constraints, which impose lower bounds on the number of

assignments to sets of selected activities, and maximum assignment constraints,

which impose upper bounds on the number of assignments to sets of selected activ-

ities. These constraints balance the number of assignments over activities and can

be used, for example, to control the utilization of specific channels.

• Budget constraints, which impose upper bounds on the total costs that result

from assignments to sets of selected activities. The cost per assignment depends

on the channel over which a customer is contacted, and hence may differ among

activities. These constraints ensure that funds allocated to individual channels or

groups of channels are not exceeded.

• Minimum sales constraints, which impose lower bounds on the number of ex-

pected sales that result from assignments to sets of selected activities, and maxi-

mum sales constraints, which impose upper bounds on the number of expected

sales that result from assignments to sets of selected activities. Each possible as-

signment is associated with a response probability, which states the likelihood of a

positive customer reaction (i.e., a sale of the target product). The expected sales

that result from assignments to a set of selected activities are computed as the sum

of the corresponding response probabilities. These constraints enable the company

to control the intensity of promoting new products or services. Maximum sales con-

straints are useful to prevent an overload of sales channels. For example, they can

be used to distribute the customer volume in shops over time.

Each activity is associated with different characteristics, such as the day on which the

assigned customers are contacted, the channel that is used to contact the customers, and

the target products that are promoted. These characteristics allow definition of business

constraints for specific time periods, channels, or target products by selecting the corre-

sponding activities. More complicated selections of activities based on combinations of

these characteristics are also possible. For example, minimum and maximum assignment

11

Paper I: A matheuristic for a customer assignment problem in direct marketing

Campaign 1

Campaign 2

Campaign 3

Campaign 4

Campaign 5

Campaign 6

A1 A2

A3 A4

A5

A6

A7

A8

1 2 3 4 5 6 7 Days

Time horizon

Target
product

internet

mobile

internet

mobile

mobile

mobile

Channel

text message

call center

direct mail

email

call center

text message

Figure 1.1: Activities (A1 to A8) of the illustrative example

constraints are typically defined for specific combinations of channels and time periods.

The customer-specific constraints consist of:

• Minimum contact constraints, which impose a lower bound on the number of

times that a customer is assigned to a set of selected activities, and maximum

contact constraints, which impose an upper bound on the number of times that a

customer is assigned to a set of selected activities. These constraints ensure that a

customer is not contacted too frequently. The contact constraints are derived from

contact rules, which may state, for example, that a customer cannot be contacted

more than twice in January.

• Conflict constraints, which ensure that each customer is assigned to at most

one out of two conflicting activities. A conflict arises when two activities take place

within a certain number of consecutive days and use certain combinations of channels

and target products. These constraints ensure that a customer is not assigned too

frequently to similar activities. The conflict constraints are derived from conflict

rules, which may state, for example, that a customer cannot be contacted twice via

a call within one week. A separate conflict constraint would be imposed for each

customer and each pair of activities which use the channel call center and take place

within seven consecutive days.

This planning problem is strongly NP -hard, as it can be reduced to a generalized

assignment problem that is known to be NP -hard (cf. Garey and Johnson, 2002). The

minimum assignment constraints, the minimum and maximum sales constraints, and the

minimum contact constraints reflect strategic decisions rather than operational require-

ments. Also, some of these constraints are defined independently by different marketing

12

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.1: Activities of the illustrative example

Activity Day Channel Target products Cost

A1 1 text message internet 1
A2 5 text message internet 1
A3 2 call center mobile 10
A4 7 call center mobile 10
A5 4 direct mail internet 4
A6 6 email mobile 1
A7 1 call center mobile 10
A8 7 text message mobile 1

managers. This process may lead to contradictory constraints, for example, it is possible

that two marketing managers each define a minimum assignment constraint that indi-

vidually could be satisfied but together cannot be satisfied because of budget or conflict

constraints. These dependencies get more complex if all types of minimum constraints

are considered. Thus, the company wants to treat the constraints of the aforementioned

four constraint types (minimum assignment, minimum and maximum sales, and minimum

contact constraints) in almost all instances as soft constraints that can be violated subject

to a penalty. The rest of the constraints must be treated as hard constraints because they

represent operational requirements. The main purpose of using the soft constraints is

to be able to generate a solution even if some constraints cannot be satisfied. Another

advantage of the soft constraints is that users at the company are able to observe which

slack variables take a positive value and thus, which constraints cannot be satisfied in

the current setting. The penalty is computed for every soft constraint by multiplying

the difference between the achieved assignments (or sales) and the prescribed bound by

a constant. The constant can be set individually for each constraint type. The objective

is to maximize the total expected profit minus the total penalty.

1.2.3 Illustrative example

The illustrative example comprises 20 customers and eight activities that belong to six

different campaigns. Figure 1.1 shows for each activity the day on which it takes place,

the channel over which the customers are contacted, and the target products that are

promoted. Table 1.1 additionally lists the cost per assignment for each activity. Table 1.2

specifies the expected profit and the response probability for each possible assignment.

The business constraints comprise a maximum assignment constraint, which ensures that

at most 11 calls are used to contact the customers, a budget constraint, which ensures that

all assignments associated with the channels direct mail, email, and text message do not

13

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.2: Expected profits and response probabilities of the illustrative example

Customer Activity Exp. profit Response prob.

1 A3 105 0.29
1 A4 105 0.29
1 A5 88 0.16
2 A5 78 0.17
2 A6 91 0.23
3 A5 88 0.28
3 A6 75 0.20
4 A5 80 0.14
4 A6 90 0.26
5 A3 91 0.19
5 A4 91 0.19
5 A5 107 0.26
6 A1 75 0.22
6 A2 75 0.22
6 A6 85 0.15
7 A5 100 0.24
7 A7 85 0.11
7 A8 71 0.22
8 A3 109 0.25
8 A4 109 0.25
8 A5 91 0.18
9 A5 76 0.15
9 A6 89 0.25

10 A5 102 0.22
10 A7 87 0.12
10 A8 68 0.23
11 A3 90 0.18
11 A4 90 0.18

Customer Activity Exp. profit Response prob.

11 A5 108 0.25
12 A3 85 0.17
12 A4 85 0.17
12 A5 106 0.25
13 A3 88 0.18
13 A4 88 0.18
13 A5 110 0.24
14 A5 65 0.17
14 A7 75 0.23
14 A8 80 0.24
15 A1 102 0.25
15 A2 102 0.25
15 A6 93 0.21
16 A3 112 0.30
16 A4 112 0.30
16 A5 90 0.20
17 A5 89 0.29
17 A6 77 0.21
18 A1 101 0.29
18 A2 101 0.29
18 A6 95 0.19
19 A5 68 0.20
19 A7 73 0.21
19 A8 85 0.26
20 A5 66 0.19
20 A7 76 0.22
20 A8 83 0.25

incur costs of more than 40 Euros, and a maximum sales constraint, which ensures that

the number of expected sales for the target product mobile does not exceed five. Moreover,

minimum contact constraints are based on a contact rule that states that each customer

must be assigned at least once. Maximum contact constraints are based on a contact rule

that states that each customer must be assigned at most twice. Table 1.3 specifies for

the business constraints and the contact rules the type, the start day, the end day, the

channels, the target products, and the bound associated with the respective constraint

or contact rule. The illustrative example has four conflict rules. First, each customer

cannot be contacted more than once within two days. Second, each customer cannot be

contacted more than once within five days via a call. Third, each customer cannot be

contacted more than once within four days via direct mail. Fourth, each customer cannot

be contacted more than once within four days via a text message. Table 1.4 indicates

the combinations of channels and target products that lead to a conflict and the time

14

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.3: Business constraints and contact rules of the illustrative example

Index Type Start day End day Channels Target products Bound

1 Maximum assignment 1 7 call center ALL 11
2 Budget 1 7 direct mail, email, ALL 40

text message
3 Maximum sales 1 7 ALL mobile 5
4 Minimum contact 1 7 ALL ALL 1
5 Maximum contact 1 7 ALL ALL 2

Table 1.4: Conflict rules of the illustrative example

Index Channel 1 Target product 1 Channel 2 Target product 2 Lag

1 ALL ALL ALL ALL 2
2 call center ALL call center ALL 5
3 direct mail ALL direct mail ALL 4
4 text message ALL text message ALL 4

lag related to a conflict rule. In Tables 1.3 and 1.4, the entry “ALL” indicates that all

channels or target products are affected by this constraint or rule.

All constants used to compute the total penalty for the soft constraints are set to

112 Euros (maximum absolute expected profit). The optimal assignment is marked in

bold in Table 1.2 and produces an expected profit of 2,973 Euros. The maximum sales

constraint is violated by 0.12, which leads to a penalty of 112(0.12) = 13.44 Euros. The

objective function value in the optimal solution is thus 2,959.56 Euros.

1.3 Literature

The literature review is organized as follows. In Section 1.3.1, we focus on related problems

in direct marketing. In Section 1.3.2, we focus on more general combinatorial optimization

problems that share specific constraints with our planning problem. Table 1.5 gives an

overview of the discussed approaches and shows which problem features are exactly (X)

or partially ((X)) covered.

1.3.1 Related problems in direct marketing

There are two large streams of literature in direct marketing. The first stream is concerned

with the development of response models that predict the responses of customers to direct

marketing efforts (e.g., Ma et al., 2016 and Lessmann et al., 2021). The second stream

15

Paper I: A matheuristic for a customer assignment problem in direct marketing

pertains to the optimization of direct marketing operations given the output of response

models. We focus on the second stream because it is more closely related to our planning

problem.

Many of the planning problems considered in direct marketing involve the assignment

of individual customers to product offers. The objective in these planning problems is

to maximize the expected profit subject to various side constraints. Table 1.5 shows the

side constraints that are covered by the different approaches. Cohen (2004) is the first to

propose a binary linear program for assigning customers to direct marketing campaigns.

For large-scale instances, he introduces a heuristic that is based on the idea of grouping

similar customers and using a linear program to determine how many customers of a

group are assigned to a campaign. Bhaskar et al. (2009) formulate a similar problem as

the one of Cohen (2004) as a binary linear program and propose a heuristic that builds

on the idea of grouping customers. Sundararajan et al. (2011) describe the integration of

the heuristic of Bhaskar et al. (2009) in a retail bank, which led to an estimated financial

benefit of $20 million. Nobibon et al. (2011) consider a planning problem in which a

subset of products must be selected for a campaign and the customers must be assigned

to the selected products. They provide a binary linear formulation, a branch-and-price

algorithm, and eight heuristics for this planning problem. The two heuristics that are

based on column generation and on tabu search tend to perform best. For the same

planning problem as Nobibon et al. (2011), Oliveira et al. (2015) develop a heuristic that

is based on a greedy randomized adaptive search procedure combined with a variable

neighborhood search, and Cetin and Alabas-Uslu (2017) propose two heuristics, which

in a first step use a rule-based procedure to select the products that will be part of a

campaign, and in a second step assign the customers to the selected products. These

two-step heuristics are competitive with the best heuristics of Nobibon et al. (2011).

Finally, Coelho et al. (2017) develop a metaheuristic for a variant of the planning problem

considered by Nobibon et al. (2011) where the objective function includes a reward-to-

variability indicator, which is inspired by the Sharpe ratio. One major difference between

our planning problem (cf. Section 1.2) and the ones discussed above is the existence of a

temporal dimension. In our planning problem, each activity is scheduled on a specific day

of the time horizon. This timing information is relevant for various business constraints,

and especially for the conflict constraints. In the direct marketing literature, only few

planning problems include a temporal dimension. The planning problems which involve

a temporal dimension, however, focus primarily on the design of campaigns rather than

the assignment of individual customers.

Nair and Tarasewhich (2003), for example, study a planning problem that consists of

16

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.5: Approaches and problem features from related literature

D
ir

ec
t

m
a
rk

et
in

g

Approach Time Dec. Obj. Constraints

G
en

er
al

Authors E
x
ac

t

H
eu

ri
st

ic

T
em

p
or

a
l

d
im

.

C
u

st
o
m

er
a
sg

m
t

E
x
p

ec
te

d
p

ro
fi

t

M
in

/
M

a
x

as
g
m

t

B
u

d
g
et

M
in

/
M

a
x

sa
le

s

M
in

/
M

a
x

co
n
ta

ct

C
o
n

fl
ic

t

Cohen (2004) X X X X (X)/X X (X)/(X)
Bhaskar et al. (2009) X X (X) X X (X)/(X)
Nobibon et al. (2011) X X X X (X/X) X X/X
Oliveira et al. (2015) X X X (X/X) X X/X
Cetin and Alabas-Uslu (2017) X X X (X/X) X X/X
Coelho et al. (2017) X X X (X) (X/X) X X/X
Nair and Tarasewhich (2003) X X X (X)
Delanote et al. (2013) X X (X) X X/(X) X (X)/(X) (X)/(X)
Ma and Fildes (2017) X X X X (X/X) (X)/(X)

Darmann et al. (2011) X (X/X) (X/X) (X)

Öncan et al. (2019) X (X/X) (X/X) (X)
Elhedhli et al. (2011) X (X) (X/X) (X)
Sadykov and Vanderbeck (2013) X (X) (X/X) (X)

Bigler et al. (2019) X X X X (X)/X X (X/X) (X)/X X

This paper X X X X X X/X X X/X X/X X

designing a series of promotions over time. Some of the side constraints are similar to

the conflict constraints from our planning problem. These similar constraints ensure that

selected pairs of promotions cannot take place within a certain number of consecutive

days in the time horizon. Nair and Tarasewhich (2003) formulate a non-linear integer

program and develop a genetic algorithm for this planning problem. Delanote et al.

(2013) formulate an integer linear model for the planning of multi-round direct marketing

campaigns, which consists of determining how many customers of each customer segment

are assigned to which product and which channel in each round, in order to maximize the

total expected profit. Customers who react positively in one round cannot be assigned

to the same product in later rounds. The number of customers who react positively

is estimated by multiplying the response probability of a segment with the respective

number of assigned customers. Ma and Fildes (2017) formulate a non-linear program and

develop a genetic algorithm for the planning of multi-period promotions, which consists

of determining for each period which products to advertise such that the total expected

profit of the campaign is maximized. Bigler et al. (2019) study a variant of the planning

17

Paper I: A matheuristic for a customer assignment problem in direct marketing

problem from Section 1.2, in which all constraints are hard constraints. The authors

formulate a binary linear program for this slightly different planning problem and apply

it to four small- to medium-sized instances and one large-sized instance. To the best of

our knowledge, no other customer assignment approach solved instances of similar size.

However, this binary linear program does not scale to very large real-world instances.

As we can see from Table 1.5, none of the discussed planning problems fully cover

all the features of our planning problem. For example, most planning problems do not

consider conflict constraints. Conflict constraints, however, have received considerable

attention as an extension of more general combinatorial optimization problems such as

the assignment problem and the bin packing problem. In the next section, we review

these planning problems.

1.3.2 More general combinatorial optimization problems with

conflict constraints

More general combinatorial optimization problems such as the assignment problem and

the bin packing problem have been extended to consider conflict constraints. In the

assignment problem, equal numbers of agents (here customers) and tasks (here activities)

are given, and exactly one agent must be assigned to each task such that the total cost

is minimized. In the assignment problem with conflict constraints (APC), an assignment

of an agent to a task may conflict with another assignment of an agent to a task. This

structure of the conflict constraints is visualized in Figure 1.2. The dashed lines correspond

to potential assignments of agents to tasks, the solid lines correspond to assignments of

agents to tasks in a feasible solution, and the bold red line indicates a conflict. Because

of the conflict, agent i2 cannot be assigned to task j2 when agent i1 is assigned to task j1,

or vice versa. Darmann et al. (2011) prove that the APC is an NP -hard optimization

problem. Öncan et al. (2019) propose a branch-and-bound and a Russian doll search

algorithm for the APC. Figure 1.2 also illustrates the structure of the conflict constraints

in this paper. The customers are eligible for some, but generally not all activities. Thus,

a potential assignment in the context of our planning problem means that customer i is

eligible for activity j. Other than in the APC, a customer can be assigned to multiple

activities. The conflicts in this paper occur between activities and apply to all customers

who are eligible for the conflicting activities. For example, a conflict exists between

activities j1 and j2, and thus both customers i1 and i2 can at most be assigned to one of

the two activities. In the feasible assignment shown in Figure 1.2, customer i1 is assigned

only to activity j1 and customer i2 is assigned only to activity j2. An infeasible assignment

18

Paper I: A matheuristic for a customer assignment problem in direct marketing

APC

Agents Tasks

i1= 1

i2= 1

i3= 1

j1 = 1

j2 = 1

j3 = 1

BPPC

Items Bins

i1= 1

i2= 1

i3= 1

j1 ≥ 0

j2 ≥ 0

j3 ≥ 0

This paper

Customers Activities

i1≥ 0

i2≥ 0

i3≥ 0

j1 ≥ 0

j2 ≥ 0

j3 ≥ 0

i4) j 4)

j′ 4)

1) potential assignment

2) assignment in a
2) feasible solution

3) conflict

4) #allowed assignments

1)

2)
3)

Legend

Figure 1.2: Conflict constraints in more general combinatorial optimization problems

would be, for example, if customer i1 was assigned to both activities j1 and j2.

In the bin packing problem, items (here customers) of different size must be packed

in a minimum number of identical bins (here activities) with limited capacity. Each item

must be assigned to exactly one bin, and each bin may contain multiple items that do

not exceed its bin capacity. In the bin packing problem with conflict constraints (BPPC),

conflicts occur between items and apply to all bins. This structure is also illustrated

in Figure 1.2, where items i1 and i2 are in conflict and thus cannot be assigned to the

same bin. Elhedhli et al. (2011) and Sadykov and Vanderbeck (2013) develop different

branch-and-price algorithms for the BPPC. Our planning problem differs from the BPPC

in several ways. First, each item in the BPPC can be assigned to each bin if the capacity

of the bin allows it. Second, while in our planning problem the conflicts occur between

activities and apply to all customers who are eligible for these conflicting activities, the

conflicts in the BPPC occur between items (here customers) and apply to all bins (here

activities). Even if we consider items to be bins and bins to be items in the BPPC, there

is no direct analogy to our planning problem because items must be assigned exactly once

in the BPPC, while customers can be assigned multiple times and activities can have

multiple assigned customers in our planning problem. Thus, the conflict constraints have

the same structure only if we adjust our planning problem such that all customers are

eligible for all activities and each activity must have exactly one assigned customer.

Also other planning problems such as the knapsack problem with conflict constraints

(cf. Bettinelli et al., 2017 and Coniglio et al., 2021), the maximum flow problem with

conflict constraints (cf. Şuvak et al., 2020), and the transportation problem with con-

flict constraints (cf. Sun, 2002) have attracted considerable attention in the literature.

However, these planning problems differ considerably from our planning problem. In the

knapsack problem, a conflict constraint ensures that only one of two items is included in

the knapsack while in our planning problem a conflict constraint ensures that a customer

19

Paper I: A matheuristic for a customer assignment problem in direct marketing

is assigned to at most one of two conflicting activities. In the maximum flow problem,

a conflict can involve any two edges of a graph while in our planning problem, a con-

flict always involves the assignments of one customer to two conflicting activities. In the

transportation problem, a conflict constraint ensures that two conflicting goods cannot

be shipped to the same warehouse. These conflict constraints are structurally similar to

our conflict constraints if we consider warehouses to be customers and goods to be ac-

tivities. However, in the transportation problem with conflict constraints, the supply of

goods is given while in our planning problem the number of assignments to the activities

is to be determined. Also, the warehouses in the transportation problem do not need to

have a minimum number of assigned goods while the customers in our planning problem

can be affected by minimum contact constraints. Finally, the assignment decisions in the

transportation problem are integer (quantities of goods) while in our planning problem

the assignment decisions are binary.

Table 1.5 also shows some side constraints besides the conflict constraints that the

approaches for the APC and the BPPC cover. However, we can see that none of the

existing approaches cover all problem features of our planning problem.

1.4 Mixed-binary linear programming formulation

In this section, we formulate the planning problem as a mixed-binary linear programming

formulation (MBLP). Table 1.6 summarizes the sets, parameters and decision variables of

the MBLP. The superscripts (i.e., a, a, b, m, m, s, s) indicate for which type of constraint

a set, parameter, or decision variable has been introduced. The information required to

generate these sets and parameters for a specific instance can be derived from four tables.

These four tables are exemplarily provided for the illustrative example in Section 1.2.3 (cf.

Tables 1.1, 1.2, 1.3, and 1.4). From the equivalent of Table 1.1, we can derive information

about all activities. From the equivalent of Table 1.2, we can derive information on all

eligible customers for each activity. From the equivalent of Table 1.3, we can identify the

activities that are associated with the business constraints and the contact rules. Based

on the equivalents of Tables 1.1 and 1.4, we can identify all pairwise conflicts between

activities. The MBLP uses binary decision variables xij, which take the value of one if

customer i is assigned to activity j, and zero otherwise. Furthermore, continuous slack

variables are introduced for all soft constraints. The expected profit eij is computed by

multiplying the change in revenue that results if customer i accepts the offer times the

corresponding response probability qij minus the cost per assignment cj. The MBLP reads

as follows:

20

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.6: Notation of MBLP

Sets

I Customers
J Activities
T Pairs of conflicting activities
Ij Eligible customers of activity j
Ji Activities for which customer i is eligible
J
a
l Activities associated with minimum assignment constraint l = 1, . . . , na

Ja
l Activities associated with maximum assignment constraint l = 1, . . . , na

Jb
l Activities associated with budget constraint l = 1, . . . , nb

J
m
l Activities associated with minimum contact rule l = 1, . . . , nm

Jm
l Activities associated with maximum contact rule l = 1, . . . , nm

J
s
l Activities associated with minimum sales constraint l = 1, . . . , ns

Js
l Activities associated with maximum sales constraint l = 1, . . . , ns

Parameters

b
a
l Lower bound of minimum assignment constraint l = 1, . . . , na

bal Upper bound of maximum assignment constraint l = 1, . . . , na

bbl Upper bound of budget constraint l = 1, . . . , nb

b
m
l Lower bound of minimum contact rule l = 1, . . . , nm

bml Upper bound of maximum contact rule l = 1, . . . , nm

b
s
l Lower bound of minimum sales constraint l = 1, . . . , ns

bsl Upper bound of maximum sales constraint l = 1, . . . , ns

cj Cost per assignment to activity j
eij Expected profit of customer i when assigned to activity j
na Number of minimum assignment constraints
na Number of maximum assignment constraints

nb Number of budget constraints
nm Number of minimum contact rules
nm Number of maximum contact rules
ns Number of minimum sales constraints
ns Number of maximum sales constraints
qij Response probability of customer i when assigned to activity j
α Constant to penalize the extent to which bound in a minimum

assignment constraint is violated
β Constant to penalize the extent to which bound in a minimum

sales constraint is violated
γ Constant to penalize the extent to which bound in a maximum

sales constraint is violated
δ Constant to penalize the extent to which bound in a constraint

resulting from a minimum contact rule is violated

Decision variables

xij = 1, if customer i is assigned to activity j; = 0, otherwise
z
a
l ∈ [0, b

a
l], Slack variable of minimum assignment constraint l = 1, . . . , na

z
s
l ∈ [0, b

s
l], Slack variable of minimum sales constraint l = 1, . . . , ns

zsl ∈ [0, q], Slack variable of maximum sales constraint l = 1, . . . , ns with q =
∑

j∈J

∑
i∈Ij

qij
z
m
il ∈ [0, b

m
l], Slack variable of minimum contact rule l = 1, . . . , nm for customer i ∈ I

21

Paper I: A matheuristic for a customer assignment problem in direct marketing

(MBLP)

Max.
∑

j∈J

∑

i∈Ij

eijxij − (α
na∑

l=1

zal + β
ns∑

l=1

zsl + γ
ns∑

l=1

zsl + δ
∑

i∈I

nm∑

l=1

zmil) (1)

s.t.
∑

j∈Ja
l

∑

i∈Ij

xij + zal ≥ bal (l = 1, . . . , na) (2)

∑

j∈Ja
l

∑

i∈Ij

xij ≤ bal (l = 1, . . . , na) (3)

∑

j∈Jb
l

∑

i∈Ij

cjxij ≤ bbl (l = 1, . . . , nb) (4)

∑

j∈Js
l

∑

i∈Ij

qijxij + zsl ≥ bsl (l = 1, . . . , ns) (5)

∑

j∈Js
l

∑

i∈Ij

qijxij − zsl ≤ bsl (l = 1, . . . , ns) (6)

∑

j∈Jm
l ∩Ji

xij + zmil ≥ bml (i ∈ I; l = 1, . . . , nm) (7)

∑

j∈Jm
l ∩Ji

xij ≤ bml (i ∈ I; l = 1, . . . , nm : |Jm
l ∩ Ji| > bml) (8)

xij1 + xij2 ≤ 1 ((j1, j2) ∈ T ; i ∈ Ij1 ∩ Ij2) (9)

xij ∈ {0, 1} (j ∈ J ; i ∈ Ij) (10)

zal ∈ [0, bal] (l = 1, . . . , na) (11)

zsl ∈ [0, bsl] (l = 1, . . . , ns) (12)

zsl ∈ [0, q] (l = 1, . . . , ns) (13)

zmil ∈ [0, bml] (i ∈ I; l = 1, . . . , nm) (14)

The objective function (1) is a linear combination of the total expected profit and the

total penalty. The total expected profit corresponds to the sum over all expected profits

eij that result from assigning a customer i to an activity j. The total penalty corresponds

to the sum of the products of the slack variables and the corresponding penalty con-

stants α, β, γ, or δ. Constraints (2) represent the minimum assignment constraints. For

each minimum assignment constraint l, the number of customers assigned to the relevant

activities Ja
l plus the corresponding slack variable zal must satisfy the lower bound bal .

Constraints (3) correspond to the maximum assignment constraints. For each maximum

assignment constraint l, the number of customers assigned to the relevant activities Ja
l

must not exceed the upper bound bal . Constraints (4) represent the budget constraints.

Each assignment of a customer i to an activity j generates a cost cj. For each budget con-

straint l, a budget bbl is imposed on the total cost that results from assigning customers to

the relevant activities J b
l . Constraints (5) represent the minimum sales constraints. Each

assignment of a customer i to an activity j leads to a positive customer response with a

22

Paper I: A matheuristic for a customer assignment problem in direct marketing

probability qij. For each minimum sales constraint l, the number of expected sales that

results from assigning customers to the relevant activities Js
l , i.e., the sum of the corre-

sponding response probabilities of the assigned customers, plus the corresponding slack

variable zsl must satisfy the lower bound bsl . Constraints (6) represent the maximum sales

constraints. For each maximum sales constraint l, the number of expected sales that re-

sults from assigning customers to the relevant activities Js
l minus the corresponding slack

variable zsl must not exceed the upper bound bsl . Constraints (7) represent the minimum

contact constraints. For each contact rule l = 1, . . . , nm, a separate constraint is imposed

for each customer. This constraint ensures that the number of times customer i is as-

signed to the relevant activities Jm
l ∩ Ji plus the corresponding slack variable zmil satisfies

the lower bound bml . Constraints (8) correspond to the maximum contact constraints.

For each contact rule l = 1, . . . , nm, a separate constraint is imposed for each customer

if this customer is eligible for more than bml relevant activities Jm
l ∩ Ji. This constraint

ensures that the number of times customer i is assigned to the relevant activities Jm
l ∩ Ji

does not exceed the upper bound bml . Constraints (9) represent the conflict constraints.

The conflict constraints guarantee for each pair of conflicting activities (j1, j2) in set T

and for each customer i who is eligible for both activities j1 and j2 that the customer

can only be assigned to one of the two conflicting activities. Note that this formulation

is very similar to the formulation of Bigler et al. (2019) that was developed for a slightly

different planning problem. If one wants to consider all constraints as hard constraints,

the upper bounds on the slack variables can be set to zero.

1.5 Matheuristic

The main idea of the matheuristic is to solve a mathematical model for groups of cus-

tomers rather than individual customers. The key feature is that we incorporate customer-

specific constraints in the group-level model, which allows transforming the solution from

the group-level model into a customer-level solution with almost no loss in solution qual-

ity. Moreover, the matheuristic is designed in such a way that the user can control

the trade-off between solution quality and running time with a single parameter. The

matheuristic consists of four steps. Figure 1.3 provides an overview of these four steps.

In Sections 1.5.1–1.5.4, we explain the four steps in detail. In Section 1.5.5, we apply the

proposed matheuristic to the illustrative example from Section 1.2.3.

23

Paper I: A matheuristic for a customer assignment problem in direct marketing

Step 1 Step 2 Step 3 Step 4

Build groups by

eligibility pattern

Divide groups according

to expected profits

Determine the number of

customers of the groups that

are assigned to the activities

Assign individual customers

of the groups to the activities

Figure 1.3: Steps of the matheuristic

1.5.1 Build groups by eligibility pattern (Step 1)

In the first step of the matheuristic, the customers are grouped according to their eligibility

patterns. An eligibility pattern p indicates the activities for which a customer is eligible.

Two customers share the same eligibility pattern if they are eligible for the same activities.

For example, for an instance with three activities and a customer who is eligible for

activities 1 and 3, but not for activity 2, the customer’s eligibility pattern corresponds

to [1, 0, 1]. We generate an eligibility matrix with |I| rows and |J | columns. This matrix

contains values of only zero and one, where a value of one indicates that a customer i ∈ I
is eligible for an activity j ∈ J . All customers with the same eligibility pattern are

grouped together. This grouping can be efficiently produced by sorting the rows of the

eligibility matrix. The grouping by eligibility patterns is essential for the decomposition

strategy of the matheuristic because it ensures that the customers in the same group

are affected by the same conflicts between activities. Only due to this feature of the

customer groups we are able to enforce customer-specific constraints in the third step of

the matheuristic. Note that if the number of eligibility patterns is not much smaller than

the number of customers, one can reduce the number of different eligibility patterns by

grouping similar but not identical patterns and replacing all patterns within each group

with the intersection of the different patterns in the group. However, according to the

telecommunications company, the number of different patterns is always substantially

lower than the number of customers in real-world instances because the customers with

the same subscriptions (or products) are mostly eligible for the same activities.

1.5.2 Divide groups according to expected profits (Step 2)

In the second step of the matheuristic, each group is further divided into up to k subgroups.

We determine the subgroups by considering a clustering problem for each group. The

goal is to partition the customers of the group into k clusters (subgroups) such that the

customers in the same cluster have similar expected profits for the activities for which

they are eligible. Note that all customers of the same group are eligible for the same

activities. Hence, the input to each clustering problem is a matrix which has one row for

each customer and one column for each activity for which the customers are eligible. The

24

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.7: Additional notation of linear model

Sets

G Groups determined in step 2 of the matheuristic
P Eligibility patterns
Gp Groups with eligibility pattern p
Jg Activities for which customers in group g are eligible
Jc
lp Activities associated with constraint l = 1, . . . , nc

p, which ensures conflict rules for

groups with eligibility pattern p

Parameters

egj Average expected profit of customers of group g when assigned to activity j
ncp Number of constraints that are set up for each group g with eligibility pattern p to

ensure conflict rules
og Number of customers in group g
qgj Average response probability of customers of group g when assigned to activity j

Decision variables

xgj ∈ [0, og], Number of customers of group g that are assigned to activity j
z
m
gl ∈ [0, b

m
l og], Slack variable of group g for minimum contact rule l = 1, . . . , nm

values in the matrix correspond to the expected profits of the customers for the respective

activities. To determine the partition, we apply the mini batch k-means algorithm of

Sculley (2010). The mini batch k-means algorithm is particularly suitable for large-scale

applications due to its speed and memory efficiency. If there are fewer than k customers in

a group, all customers are placed in separate subgroups. Increasing the parameter k leads

to smaller but more homogeneous subgroups. For the sake of simplicity, the subgroups

that result from this grouping step are subsequently referred to as groups of customers.

1.5.3 Determine the number of customers of the groups that

are assigned to the activities (Step 3)

In the third step of the matheuristic, a linear model (LP) determines how many customers

of each group are assigned to the activities. We introduce continuous decision variables

xgj that indicate how many customers of group g are assigned to activity j. For each

decision variable, we compute the corresponding average expected profit egj and the av-

erage response probability qgj based on the respective expected profits eij and response

probabilities qij of the customers of group g. Table 1.7 shows the notation that is used,

in addition to the notation already introduced in Table 1.6. The LP reads as follows:

25

Paper I: A matheuristic for a customer assignment problem in direct marketing

(LP)

Max.
∑

g∈G

∑

j∈Jg

egjxgj − (α
na∑

l=1

zal + β
ns∑

l=1

zsl + γ
ns∑

l=1

zsl + δ
∑

g∈G

nm∑

l=1

zmgl) (15)

s.t.
∑

g∈G

∑

j∈Jg∩Ja
l

xgj + zal ≥ bal (l = 1, . . . , na) (16)

∑

g∈G

∑

j∈Jg∩Ja
l

xgj ≤ bal (l = 1, . . . , na) (17)

∑

g∈G

∑

j∈Jg∩Jb
l

cjxgj ≤ bbl (l = 1, . . . , nb) (18)

∑

g∈G

∑

j∈Jg∩Js
l

qgjxgj + zsl ≥ bsl (l = 1, . . . , ns) (19)

∑

g∈G

∑

j∈Jg∩Js
l

qgjxgj − zsl ≤ bsl (l = 1, . . . , ns) (20)

∑

j∈Jg∩Jm
l

xgj + zmgl ≥ ogb
m
l (g ∈ G; l = 1, . . . , nm) (21)

∑

j∈Jg∩Jm
l

xgj ≤ ogb
m
l (g ∈ G; l = 1, . . . , nm) (22)

∑

j∈Jc
lp

xgj ≤ og (p ∈ P ; g ∈ Gp; l = 1, . . . , nc
p) (23)

xgj ∈ [0, og] (g ∈ G; j ∈ Jg) (24)

zmgl ∈ [0, bml og] (g ∈ G; l = 1, . . . , nm) (25)

(11)− (13)

In the objective function (15), the total average expected profit minus the total penalty

associated with the soft constraints is maximized. Constraints (16)–(22) are formulated

analogously to the constraints from Section 1.4 for groups of customers instead of indi-

vidual customers. In the group-level model, it is not sufficient to simply consider pairs of

conflicting activities for incorporating the conflict rules. Considering only pairs of activi-

ties, as in constraints (9), will result in excessive assignments on the group level, as shown

in the following example. Consider two customers i1 and i2 who both belong to group g1.

Assume that these customers are eligible for three activities j1, j2, and j3, which all have

conflicts among each other. Therefore, each customer can only be assigned to one of the

three activities. The analogous pairwise constraints to the constraints (9) for this example

would be formulated as follows: xg1,j1 +xg1,j2 ≤ og1 , xg1,j1 +xg1,j3 ≤ og1 , xg1,j2 +xg1,j3 ≤ og1

with og1 = 2. The solution xg1,j1 = xg1,j2 = xg1,j3 = 1 satisfies these constraints. How-

ever, because there are only two customers in group g1 and each customer can only be

assigned to one of the three activities j1, j2, and j3, this solution cannot be translated into

26

Paper I: A matheuristic for a customer assignment problem in direct marketing

a customer-level solution without losing one assignment. To better represent the conflict

rules already in the group-level model, we introduce an alternative modeling technique.

For each eligibility pattern p, we generate one or multiple sets J c
lp of conflicting activi-

ties of maximal size. Constraints (23) ensure that a maximum of og customers can be

assigned to two or more conflicting activities J c
lp for each eligibility pattern p and each

group g with eligibility pattern p. In Section 1.6, we will explain in detail how these

sets of conflicting activities J c
lp are efficiently generated. Note that there are still special

cases in which the LP might assign too many customers on the group level. Consider five

activities j1–j5 with T = {(j1, j2), (j2, j3), (j3, j4), (j4, j5), (j5, j1)}. Assume that group g1

has two customers i1 and i2 who are eligible for all five activities. Then, the solution

xg1,j1 = xg1,j2 = xg1,j3 = xg1,j4 = xg1,j5 = 1 is feasible for constraints (23). However, one

of these five assignments will be lost in the customer-level assignment.

1.5.4 Assign individual customers of the groups to the activities

(Step 4)

In this step, we apply an iterative algorithm to assign individual customers to the activ-

ities based on the group-level assignment from the previous step. Figure 1.4 provides a

flowchart of the algorithm. The basic idea is to assign the most profitable customers of

group g to activity j for each variable xgj of the LP with a non-zero value. The iterative

algorithm assigns the customers to the activities without violating hard constraints. Next,

we explain the iterative algorithm step-by-step.

First, the algorithm determines a specific sequence for the group-activity pairs of the

decision variables xgj with a value greater than or equal to one. This sequence determines

in which order the customers are assigned to the activities. A random sequence is likely to

lead to a loss of group-level assignments, as illustrated by the following example. Consider

a group g1 that contains two customers i1 and i2. Assume that the customers of group g1

are eligible for the three activities j1, j2, and j3 and that activity j1 conflicts with both

activities j2 and j3. Further assume that the solution of the LP is xg1,j1 = xg1,j2 =

xg1,j3 = 1 and that the following random sequence [(g1, j2), (g1, j3), (g1, j1)] of the group-

activity pairs is given. If customer i1 is assigned to activity j2 in the first iteration, and

customer i2 is assigned to activity j3 in the second iteration, then no customer can be

assigned to activity j1 in the third iteration because both customers are already assigned

to activities that conflict with activity j1. Instead of using a random sequence, we prepare

a sequence based on a conflict graph G = (V,E) which can be constructed from the conflict

rules. The nodes V of the conflict graph G correspond to the activities of an instance (i.e.,

27

Paper I: A matheuristic for a customer assignment problem in direct marketing

Start

1) Prepare sequence
of group-activity pairs

2) Select first/next group-
activity pair in sequence

3) Get candidates

4) Select and assign candidates

5) Update eligibilities

Sequence empty?

Stop

No

Yes

No

Figure 1.4: Flowchart of the iterative algorithm

V = J), and the edges E between nodes represent conflicts among activities. We first

sort all group-activity pairs according to the group index such that all activities of the

same group are processed sequentially. To determine the sequence of activities for each

group g, we construct a subgraph of the conflict graph G that only contains the activities

as nodes to which customers from group g are assigned. The activity that corresponds to

the node with the highest degree in this subgraph is selected first. Then, activities are

added iteratively to the sequence in decreasing order of the number of edges that connect

the respective nodes in the subgraph to nodes that represent already added activities.

Note that this number of edges is recomputed every time an activity is added to the

sequence. In case of ties, the activity with the lower index is first. For the example from

above, this sorting mechanism results in the sequence [(g1, j1), (g1, j2), (g1, j3)], based on

which all three assignments can be conducted on the customer level.

Second, the iterative algorithm selects the first/next group-activity pair (g, j) in the

sequence.

Third, the iterative algorithm identifies the customers of group g that can be assigned

to activity j without violating any hard customer-specific constraints. Even though all

customers of group g are initially eligible for activity j, it is possible that some customers

of group g cannot be assigned to activity j because such an assignment would violate

a conflict rule or a maximum contact rule due to assignments in earlier iterations. The

customers of group g that can be assigned are referred to as candidates.

28

Paper I: A matheuristic for a customer assignment problem in direct marketing

Fourth, the iterative algorithm selects the bxgjc candidates with the highest expected

profits for activity j and assigns them. If the number of candidates is lower than bxgjc,
then all candidates are assigned. The number of candidates can be lower than bxgjc
in special cases. Such a special case is the example from Section 1.5.3 in which the

conflict graph G represents a circle of five activities j1, j2, j3, j4, and j5, i.e., set T =

{(j1, j2), (j2, j3), (j3, j4), (j4, j5), (j5, j1)}. The last group-activity pair in this example may

have no candidate because all customers of the group have been assigned to conflicting

activities in previous iterations, even though the solution of the LP intended to assign

one or more customers.

Fifth, the iterative algorithm updates the eligibilities of the assigned candidates for

other activities. All assigned candidates are no longer eligible for activities that are in

conflict with activity j. Moreover, it is possible that with the assignment to activity j,

some of the candidates will reach their maximum number of assignments for one or mul-

tiple maximum contact rules. These customers are no longer eligible for other activities

that are affected by these maximum contact rules. Finally, the iterative algorithm de-

termines whether the sequence of group-activity pairs is empty. If that is the case, the

iterative algorithm stops and returns the customer-level assignment xij; otherwise, the

next group-activity pair is selected from the sequence.

1.5.5 Illustrative example

We apply the matheuristic to the illustrative example from Section 1.2.3 step-by-step. In

the first step, the customers who are eligible for the same activities are grouped together.

This leads to the following four groups: {7, 10, 14, 19, 20}, {2, 3, 4, 9, 17}, {1, 5, 8, 11, 12, 13,

16}, and {6, 15, 18}. In the second step, these groups are further divided using the mini

batch k-means algorithm with a value of k = 2. The first two columns of Table 1.8 show

the resulting eight groups and the customers Ig who belong to these groups. In the third

step, the LP is set up and solved for the eight groups and eight activities. Table 1.8 shows

the resulting values of the decision variables xgj. A dash (-) indicates that the customers

of this group are not eligible for this activity, and thus no assignment can be conducted. In

the fourth step, the customers are iteratively assigned to the activities. Figure 1.5 shows

the conflict graph G based on which the sequence of the group-activity pairs is determined.

The complete sequence of the group-activity pairs is: [(1,A7), (1,A8), (2,A7), (2,A8),

(3,A6), (4,A6), (5,A4), (5,A5), (6,A3), (6,A4), (6,A5), (7,A1), (7,A6), (8,A1), (8,A6)].

The algorithm iterates over all group-activity pairs in the derived order. In most of the

iterations, all customers of the respective groups are assigned to the activities (as intended

by the solution of the LP). Next, we will describe the iterations in which not all customers

29

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.8: Groups in the illustrative example

xgj
Group g Customers Ig j = A1 j = A2 j = A3 j = A4 j = A5 j = A6 j = A7 j = A8

1 {7, 10} - - - - 0 - 2 2
2 {14, 19, 20} - - - - 0 - 2 3
3 {3, 17} - - - - 0 2 - -
4 {2, 4, 9} - - - - 0 3 - -
5 {5, 11, 12, 13} - - 0 4 4 - - -
6 {1, 8, 16} - - 1 2 2 - - -
7 {15, 18} 2 0 - - - 2 - -
8 {6} 1 0 - - - 1 - -

A1 A2

A3 A4

A5

A6

A7

A8

1 2 3 4 5 6 7 Days

Time horizon

Figure 1.5: Conflict graph G for the illustrative example

of a group are assigned to the considered activity. In the third iteration, customers of

group 2 are assigned to activity A7. All three customers of group 2 are candidates, but

bx2,A7c = 2. Thus, only the two customers with the highest expected profits for activity A7

are assigned (here, customers 20 and 14). Also, in iteration 9, only one customer of group 6

must be assigned to activity A3. Thus, customer 16 is assigned. In iterations 10 and 11,

only customers 8 and 1 of group 6 are candidates because customer 16 has been assigned

to a conflicting activity in a previous iteration. Thus, these two customers are assigned

to both activities A4 and A5. The total expected profit of the solution obtained by

the matheuristic is 2,973 Euros (the same as in the optimal solution). The maximum

sales constraint is violated by 0.14 (+0.02 as compared to the optimal solution), which

leads to a penalty of 112(0.14) = 15.68 Euros. The objective function value of the solution

derived by the matheuristic is thus 2,957.32 Euros, which is 2.24 Euros below the objective

function value of the optimal solution.

30

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.9: Matrices used in the preprocessing technique

Matrix Initial dimensions Domain Description

A (c× |J |) Binary Contains the c maximal cliques of conflict graph G in rows
B (c′ × |J |) Binary Contains the c′ rows with two or more non-zero entries that result

from an element-wise multiplication of each row of matrix A
with eligibility pattern p

C (c′ × c′) Integer Obtained by multiplying the matrices B and (B)T

D (c′ × c′) Integer Contains diagonal elements of matrix C in each row
E (c′ × c′) Integer Obtained by subtracting matrix D from matrix C

1.6 Preprocessing technique

In this section, we present the preprocessing technique that is used in the third step of

the matheuristic in more detail. To implement constraints (23), we need to determine

for each eligibility pattern p ∈ P one or several sets of conflicting activities J c
lp. De-

termining these sets without introducing redundancies is non-trivial and may become a

computational bottleneck for large-scale instances if not implemented in an efficient man-

ner. We propose a preprocessing technique that combines concepts from graph theory

with array-computing to efficiently generate these sets. By using arrays (matrices) as

the fundamental data structure, we can benefit from highly optimized array-computing

libraries. The preprocessing technique consists of six steps. In Sections 1.6.1–1.6.6, we

explain each step by means of an example that involves five activities j1, j2, j3, j4, and j5.

Figure 1.6 shows an overview of the different steps of the preprocessing technique using

this example. Table 1.9 provides the notation of the matrices used for the preprocessing

technique. In Section 1.6.7, we introduce an alternative mixed-binary linear programming

formulation that uses the sets generated by the preprocessing technique.

1.6.1 Step one of the preprocessing technique

In step 1), we generate the conflict graph G from the predefined conflict rules. The nodes

represent the activities and the edges represent the conflicts between activities. The

conflict graph of the example used in this section is shown at the top of Figure 1.6.

1.6.2 Step two of the preprocessing technique

In step 2), we identify all maximal cliques in the conflict graph G using the NetworkX

implementation (cf. Hagberg et al., 2008) of the algorithm of Bron and Kerbosch (1973).

Even though the problem of finding all maximal cliques in a graph is NP -hard, real-world

31

Paper I: A matheuristic for a customer assignment problem in direct marketing

Start

1) Generate conflict graph G

2) Identify maximal cliques in
G and store them in matrix A

3) Select first/next
eligibility pattern p

4) Derive clique matrix B for
selected eligibility pattern p

5) Remove redundant
cliques from clique matrix B

6) Derive parame-
ter nc

p and set(s) Jc
lp

All eligibility pat-
terns processed?

Stop

No

Yes

j2

j1 j3

j4j5

0 1 1 1 0

1 1 1 0 0

1 1 0 0 1

A =

(
1 1 1 0 0

)
= =

0 1 1 0 0

1 1 1 0 0

1 1 0 0 0

B =

B =
(
1 1 1 0 0

)

nc
1 = 1, Jc

11 = {j1, j2, j3}

Figure 1.6: Flowchart of the preprocessing technique illustrated with an example

graphs often exhibit properties that enable solving clique problems in a few seconds, even

when the graph has millions of nodes. Walteros and Buchanan (2020) found that the

maximum clique problem is easy to solve on graphs with a small clique-core gap which

they define to be the difference between the graph’s clique number and its degeneracy-

based upper bound on the clique number. Like many other real-world graphs, also the

conflict graphs considered in this paper have a clique-core gap of zero. We store these

maximal cliques in a binary matrix A. Each row of matrix A corresponds to a maximal

clique, and each column corresponds to an activity. A value of one indicates that the

activity in the corresponding column is part of the maximal clique in the corresponding

row. The conflict graph G of the example has three maximal cliques, and thus matrix A

consists of c = 3 rows and |J | = 5 columns (cf. Figure 1.6).

1.6.3 Step three of the preprocessing technique

In step 3), we select the first/next eligibility pattern p from set P . For illustrative pur-

poses, assume that we select an eligibility pattern [1, 1, 1, 0, 0] with index p = 1. All

customers with this eligibility pattern are eligible for the three activities j1, j2, and j3 but

not for the activities j4 and j5.

32

Paper I: A matheuristic for a customer assignment problem in direct marketing

1.6.4 Step four of the preprocessing technique

In step 4), we derive the clique matrix B for the selected eligibility pattern p. The clique

matrix B is computed by an element-wise multiplication of each row of matrix A with

the eligibility pattern p. Only rows that contain two or more non-zero entries are relevant

for setting up constraints to ensure conflict rules, because a conflict must always occur

between at least two activities. Thus, we remove all rows that contain less than two

non-zero entries. In the example, the resulting matrix B has c′ = 3 rows (cf. Figure 1.6).

1.6.5 Step five of the preprocessing technique

In step 5), we remove cliques (rows) from the clique matrix B that are a subset of another

clique (row) of matrix B. Here, a clique is a subset of another clique if it is either identical

to the other clique or if it is contained in the other clique. A clique is contained in another

clique if it has only values of one in columns in which the other clique also has values of

one. In the example, the first and third cliques of matrix B are a subset of the second

clique (cf. Figure 1.6). We detect all cliques which are a subset of another clique using

array-computing steps. These steps are illustrated for the matrix B in Figure 1.7. We

start by multiplying matrix B with the transposed matrix (B)T . The resulting integer

matrix C indicates, in the diagonal, how many values of one the corresponding clique

in the matrix B contains. The off-diagonal elements indicate, for each pair of cliques of

the matrix B, how many values of one they have in common (how many values of one

occur in the same columns). For the example, matrix C is displayed in Figure 1.7 (cf.

1). Moreover, we generate a matrix D that contains the diagonal elements of matrix C

in the rows. In the example, the first and the third rows of matrix D correspond to twos,

and the second row of matrix D corresponds to threes. We then subtract matrix D from

matrix C and store the values in an integer matrix E (cf. 2 in Figure 1.7). The elements

of matrix E show for each pair of cliques of the matrix B if the clique is contained in the

other clique. For example, the element in the first row and second column of matrix E is

zero, which means that the first clique of the matrix B is contained in the second clique

of the matrix B. Naturally, the diagonal elements of the matrix E are zero, because each

clique of the matrix B is identical to itself. We then want to remove the cliques that are

a subset of another clique, i.e., the rows that contain a value of zero in an off-diagonal

element of the matrix E. Here it is important to notice that if two cliques of the matrix B

were exactly identical, then both of the corresponding rows in matrix E would contain a

value of zero as an off-diagonal element, but we only want to remove one of these rows

and keep the other one (otherwise we would miss a clique). To avoid removing too many

33

Paper I: A matheuristic for a customer assignment problem in direct marketing

0 1 1 0 0

1 1 1 0 0

1 1 0 0 0

B =

2 2 1

2 3 2

1 2 2

B(B)T = C =

1 2 2 2

3 3 3

2 2 2

D =, C−D = E =

2

0 −0 −1

−1 0 −1

−1 0 0

3
−1 0 −1

−1 −1 −1

−1 −1 −1

E =

4 0 1 1 0 0

1 1 1 0 0

1 1 0 0 0

B =

1 1 1 0 0

1 1 0 0 0

()
=

2 2 1

2 3 2

1 2 2

C =

,

=
3 2

2 2

() 2 2 2

3 3 3

2 2 2

D =,

3 3

2 2

()
=

0 −1

0 0

C−D = E =

5

6 −1 −1

0 −1

E =

7 1 1 1 0 0

1 1 0 0 0

()
B =

(
1 1 1 0 0

)
=

Figure 1.7: Example for removing cliques from the binary matrix B that are a subset of
another clique

cliques, we first check whether each clique in matrix B is a subset of a clique below it.

Therefore, we fill the lower half and the diagonal of matrix E with values of negative one

(cf. 3 in Figure 1.7). Note that we could fill in any arbitrary non-zero value. Next, we

check which rows in matrix E contain a value of zero. The rows that contain a value of

zero in matrix E indicate that the corresponding clique in matrix B is a subset of another

clique and can be removed. In the example, we remove the first clique from matrix B

(cf. 4 in Figure 1.7). We also update the matrices C and D by removing the first row

and first column. Next, we check whether each clique of matrix B is a subset of a clique

above it. We continue with the updated integer matrix C and again subtract the updated

matrix D to obtain the updated matrix E (cf. 5 in Figure 1.7). Then, we again fill the

diagonal of matrix E with values of negative one (the upper half of matrix E no longer

contains any zeros because these rows have already been removed) and determine whether

any values of zero occur in the lower half of matrix E (cf. 6 in Figure 1.7). The rows

that contain a value of zero in matrix E again indicate that the corresponding clique in

matrix B is a subset of another clique and can be removed. In the example, we remove

the second clique from matrix B (cf. 7 in Figure 1.7).

1.6.6 Step six of the preprocessing technique

In step 6), we derive the parameter nc
p and the set(s) J c

lp from matrix B. Each row

of matrix B results in a constraint for the customers with eligibility pattern p. In the

34

Paper I: A matheuristic for a customer assignment problem in direct marketing

example, matrix B ultimately contains one row, and thus nc
1 = 1. Set J c

lp corresponds to

the activities associated with constraint l = 1, . . . , nc
p. In the example, J c

11 = {j1, j2, j3}
because the first row of matrix B includes activities j1, j2, and j3. Finally, we verify

whether all eligibility patterns have been processed. If that is the case, we stop; otherwise,

we select the next eligibility pattern p. For large-scale instances, steps 3) to 6) of Figure 1.6

can be parallelized for different eligibility patterns to further reduce running times.

As an alternative to applying our preprocessing technique, the sets J c
lp could be de-

termined by computing an individual conflict graph for each eligibility pattern and by

deriving the sets J c
lp from these conflict graphs directly using the algorithm of Bron and

Kerbosch (1973) on each of these conflict graphs. However, constructing a separate conflict

graph for each eligibility pattern and computing the maximal cliques in each of these con-

flict graphs is much slower than the array-computing, especially for instances comprising

a large number of eligibility patterns. Here, it is important to note that our preprocess-

ing technique is not an alternative algorithm to compute maximal cliques but rather a

procedure that generates the sets of conflicting activities J c
lp for each eligibility pattern p

without introducing redundancies; i.e., cliques that are a subset of another clique for a

specific eligibility pattern p are identified efficiently, which prevents introducing a large

number of redundant constraints (see Tables 1.12 and 1.14).

1.6.7 An alternative mixed-binary linear programming formu-

lation

The parameters nc
p and sets J c

lp can also be used in a mixed-binary linear programming

formulation to incorporate the conflict rules. Constraints (26) ensure that each customer i

with eligibility pattern p is assigned to at most one of two or more conflicting activities J c
lp.

Set Ip includes all customers with the eligibility pattern p.

∑

j∈Jc
lp

xij ≤ 1 (p ∈ P, i ∈ Ip, l = 1, . . . , nc
p) (26)

We formulate an alternative mixed-binary linear program that uses constraints (26)

instead of constraints (9) and reads as follows:

(MBLP′)

{
Max. (1)

s.t. (2)–(8), (10)–(14), (26)

With constraints (26), fewer constraints are required to ensure the conflict rules with-

out loss of generality. One advantage that we noticed is that for our problem instances the

35

Paper I: A matheuristic for a customer assignment problem in direct marketing

linear programming relaxation of model MBLP′ was tighter than the linear programming

relaxation of model MBLP.

1.7 Results

In this section, we compare the performance of the matheuristic to the performance

of the MBLP and MBLP′. In Section 1.7.1, we describe the generated and real-world

instances. In Section 1.7.2, we present the experimental design. In Section 1.7.3, we

compare the performance of the MBLP to the performance of the MBLP′. In Section 1.7.4,

we assess the overall performance of our matheuristic and investigate the effect of two key

components of the matheuristic on running time and solution quality.

1.7.1 Problem instances

Our test set comprises 13 real-world instances and 27 instances that we manually gen-

erated based on real-world data (cf. Table 1.10). First, we describe the generated in-

stances in more detail. These instances include small (GS), medium (GM), and large

(GL) instances. The small instances comprise up to 20,000 customers and 75 activi-

ties, the medium instances comprise up to 200,000 customers and 125 activities, and

the large instances comprise up to 1,000,000 customers and 175 activities. We gener-

ated different instances by varying the eligibility fraction (small/large) and the num-

ber of eligibility patterns (few/many). The eligibility fraction specifies the percentage

of activities a customer is eligible for on average. For the generated instances, the

eligibility fraction in Table 1.10 might slightly differ from the actual eligibility frac-

tion of the instance as a consequence of the randomized generation process. The re-

sponse probabilities, the costs per assignment, and the expected profits were derived

from real-world data. The costs per assignment and the expected profits were scaled

with a factor to preserve confidentiality. The constraints were defined for each instance

in consultation with the company. All generated instances are publicly available (cf.

https://github.com/phil85/customer-assignment-instances). The real-world in-

stances consist of five large instances (RL) comprising up to 1.4 million customers and

385 activities, and eight very large instances (RVL) comprising over 2 million customers

and up to 295 activities. While the RL instances have small eligibility fractions but many

eligibility patterns, the RVL instances have high eligibility fractions but few eligibility

patterns. The real-world instances are confidential and thus not publicly available. The

instances GS1’, GM1’, GL1’, RL1’, RVL1’ differ from the respective instances GS1, GM1,

36

https://github.com/phil85/customer-assignment-instances

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.10: Generated and real-world problem instances

ID Customers Activities Eligibility fraction [%] Eligibility patterns

GS1 10,000 50 small (5) few (50)
GS1’ 10,000 50 small (5) few (50)
GS2 10,000 50 large (15) few (50)
GS3 10,000 50 small (5) many (100)
GS4 10,000 50 large (15) many (100)
GS5 20,000 75 small (5) few (50)
GS6 20,000 75 large (15) few (50)
GS7 20,000 75 small (5) many (100)
GS8 20,000 75 large (15) many (100)
GM1 100,000 100 small (5) few (300)
GM1’ 100,000 100 small (5) few (300)
GM2 100,000 100 large (15) few (300)
GM3 100,000 100 small (5) many (800)
GM4 100,000 100 large (15) many (800)
GM5 200,000 125 small (5) few (300)
GM6 200,000 125 large (15) few (300)
GM7 200,000 125 small (5) many (800)
GM8 200,000 125 large (15) many (800)
GL1 500,000 150 small (5) few (300)
GL1’ 500,000 150 small (5) few (300)
GL2 500,000 150 large (15) few (300)
GL3 500,000 150 small (5) many (1,000)
GL4 500,000 150 large (15) many (1,000)
GL5 1,000,000 175 small (5) few (300)
GL6 1,000,000 175 large (15) few (300)
GL7 1,000,000 175 small (5) many (1,000)
GL8 1,000,000 175 large (15) many (1,000)
RL1 987,486 133 small (1.0) many (1,830)
RL1’ 987,486 133 small (1.0) many (1,830)
RL2 1,101,432 215 small (0.8) many (3,196)
RL3 1,401,582 308 small (0.7) many (5,833)
RL4 1,401,582 385 small (0.6) many (5,833)
RVL1 2,171,792 50 large (17.3) few (61)
RVL1’ 2,171,792 50 large (17.3) few (61)
RVL2 2,171,792 75 large (17.3) few (61)
RVL3 2,171,792 100 large (16.6) few (61)
RVL4 2,171,792 150 large (16.9) few (61)
RVL5 2,171,792 200 large (16.9) few (61)
RVL6 2,180,831 250 large (16.9) few (108)
RVL7 2,180,831 295 large (16.3) few (108)

37

Paper I: A matheuristic for a customer assignment problem in direct marketing

GL1, RL1, RVL1 only in terms of constraints. The instances GS1’, GM1’, GL1’, RL1’,

RVL1’ are infeasible if all soft constraints are considered as hard constraints.

1.7.2 Experimental design

The matheuristic, the MBLP, and the MBLP′ are implemented in Python 3.7 and the

Gurobi 8.1 solver is used. All computations are performed on an HP workstation with

one Intel Xeon CPU with 2.20 GHz clock speed and 128 GB RAM. Even though the

running time budget of the company is 30 minutes, we applied the exact approaches

with a time limit of 10,000 seconds to obtain better reference values for evaluating the

solutions of the matheuristic. For the matheuristic, we set parameter k = 20 for all

instances. The matheuristic is further applied to selected instances with different values

of k. In consultation with the company, the constants α, β, γ, and δ are each set to

the maximum absolute expected profit of the corresponding instance. Setting α and δ to

the maximum absolute expected profit ensures that the objective function value cannot

be improved by having fewer assignments or contacts than prescribed by the bounds.

This reflects the preference of the company to reach the prescribed bounds if possible.

The company accepts a shortfall or an exceedance of the lower and upper bounds on the

number of sales if the corresponding assignments have a small or a large expected profit,

respectively. Setting β and γ to the maximum absolute expected profit is an adequate

penalty for sales constraints from the perspective of the company. The reported running

times of all approaches include the time to compute relevant sets and parameters, the

time to set up and solve the optimization models with Gurobi, and the time used for the

iterative algorithm of the matheuristic. The time used for importing and exporting data

is excluded because it is equivalent for all three approaches.

1.7.3 Comparison of MBLP and MBLP′

First, we compare the performances of the MBLP and the MBLP′. Table 1.11 reports, for

each instance and each formulation, the objective function value (OFV), the total penalty

and in brackets the number of slack variables that take a positive value, the MipGap, the

total number of constraints, and the total running time. The entry “lim” means that the

time limit was reached. A dash (-) indicates that setting up the respective model resulted

in an out-of-memory error. From Table 1.11, we can conclude that the MBLP′ has much

fewer constraints than the MBLP for all instances. As a consequence, a larger number of

feasible and also optimal solutions can be derived, and the running times are generally

shorter. Figure 1.8 compares the running times of the MBLP and the MBLP′ using

38

P
ap

er
I:

A
m

ath
eu

ristic
for

a
cu

stom
er

assign
m

en
t

p
rob

lem
in

d
irect

m
arketin

g

Table 1.11: Results of the MBLP, the MBLP′ and the matheuristic for generated and real-world instances

MBLP MBLP′ Matheuristic

OFV Penalty MipGap Constr. CPU OFV Penalty MipGap Constr. CPU OFV Penalty Sum Constr. CPU Gap
[100k] [100k] [%] [1k] [sec] [100k] [100k] [%] [1k] [sec] [100k] [100k] slack [1k] [sec] [%]

ID (#pos. slack.) (#pos. slack.) (#pos. slack.) var.

GS1 1.5 0.00 (0) 0.0 34 3.4 1.5 0.00 (0) 0.0 14 8.4 1.5 0.00 (0) 0.00 2 5.7 0.3
GS1’ 1.2 0.27 (1) 0.0 34 2.7 1.2 0.27 (1) 0.0 14 8.2 1.2 0.27 (1) 47.00 2 4.3 0.4
GS2 1.4 0.00 (0) 0.0 172 8.1 1.4 0.00 (0) 0.0 36 11.5 1.4 0.00 (2) 0.03 4 5.4 1.7
GS3 1.0 0.00 (0) 0.0 41 2.7 1.0 0.00 (0) 0.0 17 9.0 1.0 0.00 (0) 0.00 5 7.9 0.3
GS4 5.1 0.00 (0) 0.0 180 11.4 5.1 0.00 (0) 0.0 36 14.7 5.0 0.00 (0) 0.00 7 10.3 1.6
GS5 1.3 0.00 (0) 0.0 36 3.3 1.3 0.00 (1) 0.0 20 8.9 1.3 0.00 (1) 0.05 2 4.8 0.2
GS6 13.9 0.00 (0) 0.0 815 37.6 13.9 0.00 (0) 0.0 83 26.7 13.5 0.01 (2) 1.00 4 7.3 2.5
GS7 4.2 0.00 (0) 0.0 72 5.0 4.2 0.00 (0) 0.0 29 10.3 4.2 0.01 (1) 1.00 4 8.9 0.5
GS8 9.2 0.00 (0) 0.0 736 39.9 9.2 0.00 (0) 0.0 83 29.8 8.9 0.00 (0) 0.00 8 12.4 2.9
GM1 36.0 0.00 (0) 0.0 1,154 95.0 36.0 0.00 (0) 0.0 275 78.0 35.5 0.00 (1) 0.05 18 32.8 1.4
GM1’ 32.8 1.16 (1) 0.0 1,154 109.2 32.8 1.16 (1) 0.0 275 82.7 32.3 1.16 (2) 135.05 18 32.9 1.3
GM2 88.4 0.00 (0) 0.0 5,993 317.1 88.4 0.00 (0) 0.0 529 184.1 84.8 0.00 (1) 0.10 32 49.8 4.0
GM3 25.1 0.00 (0) 0.0 1,244 68.3 25.1 0.00 (0) 0.0 285 52.3 24.9 0.00 (1) 0.03 48 84.3 0.8
GM4 30.1 0.00 (0) 0.0 5,811 869.0 30.1 0.00 (0) 0.0 524 653.0 29.3 0.00 (0) 0.00 84 114.7 2.7
GM5 47.6 0.00 (0) 0.0 3,162 450.9 47.6 0.00 (0) 0.0 623 341.5 46.8 0.01 (2) 1.13 19 39.0 1.8
GM6 147.4 0.00 (0) 0.0 18,358 1,449.5 147.4 0.00 (0) 0.0 1,210 845.8 141.3 0.00 (1) 0.19 36 65.6 4.2
GM7 71.4 0.00 (0) 0.0 3,292 303.4 71.4 0.00 (0) 0.0 617 233.2 70.5 0.00 (2) 0.15 51 97.8 1.4
GM8 130.0 0.00 (0) 0.0 18,309 7,282.6 130.0 0.00 (0) 0.0 1,200 5,982.5 123.6 0.00 (0) 0.00 96 150.8 4.9
GL1 248.8 0.00 (0) 0.0 10,033 3,708.4 248.8 0.00 (0) 0.0 1,673 3,037.1 243.0 0.01 (2) 1.01 21 58.3 2.4
GL1’ -389.7 616.69 (2) 0.0 10,033 3,335.9 -389.7 616.69 (2) 0.0 1,673 2,696.2 -394.9 616.69 (2) 53,273.00 21 57.2 1.3
GL2 -172.2 295.48 (3) 402.4 69,790 lim -172.2 295.48 (3) 402.1 3,533 lim 256.1 0.00 (0) 0.00 42 115.1 -248.7
GL3 197.3 0.00 (0) 0.0 10,137 1,371.5 197.3 0.00 (0) 0.0 1,641 1,034.9 194.0 0.00 (0) 0.00 67 139.3 1.7
GL4 58.2 31.69 (1) 630.9 67,492 lim 58.2 31.69 (1) 631.2 3,491 lim 211.8 0.01 (2) 1.30 139 251.2 -263.9
GL5 -229.9 323.26 (2) 216.3 25,676 lim -229.9 323.26 (2) 216.3 3,496 lim 202.0 0.00 (1) 0.09 22 89.7 -187.8
GL6 - - (-) - - - 166.7 4.89 (1) 443.6 7,163 lim 452.1 0.00 (1) 0.53 43 209.3 -171.3
GL7 475.3 0.00 (0) 0.0 26,239 5,087.4 475.3 0.00 (0) 0.0 3,528 4,148.5 465.9 0.00 (1) 0.03 72 185.4 2.0
GL8 - - (-) - - - -2,084.1 2,378.82 (3) 201.8 7,136 lim 1,022.2 0.00 (1) 0.01 143 354.6 -149.0
RL1 109.8 0.00 (0) 0.0 388 579.6 109.8 0.00 (0) 0.0 244 548.5 109.2 0.00 (0) 0.00 21 46.5 0.6
RL1’ 110.4 1.83 (1) 0.0 388 623.4 110.4 1.83 (1) 0.0 244 593.6 109.7 1.83 (1) 415.00 21 46.5 0.6
RL2 149.3 0.00 (0) 0.0 755 2,570.6 149.3 0.00 (0) 0.0 538 2,352.9 148.7 0.00 (0) 0.00 39 85.2 0.4
RL3 224.6 0.00 (0) 0.0 2,079 4,937.4 224.6 0.00 (0) 0.0 1,012 4,097.6 223.0 0.00 (0) 0.00 85 173.9 0.7
RL4 237.6 0.00 (0) 0.0 3,200 5,523.6 237.6 0.00 (0) 0.0 1,197 5,044.9 236.0 0.00 (0) 0.00 106 205.8 0.7
RVL1 292.6 0.00 (0) 0.0 64,911 1,724.3 292.6 0.00 (0) 0.0 3,052 545.2 291.7 0.00 (0) 0.00 6 100.2 0.3
RVL1’ 247.8 44.87 (1) 0.0 64,911 1,735.8 247.8 44.87 (1) 0.0 3,052 519.8 246.8 44.87 (1) 2,000.00 6 99.8 0.4
RVL2 - - (-) - - - 378.6 0.00 (0) 0.0 3,999 1,917.1 377.0 0.00 (0) 0.00 9 144.9 0.4
RVL3 - - (-) - - - 537.1 0.00 (0) 0.0 9,431 3,868.9 534.7 0.00 (0) 0.00 15 182.3 0.4
RVL4 - - (-) - - - - - (-) - - - 751.0 0.00 (0) 0.00 28 273.5 -
RVL5 - - (-) - - - - - (-) - - - 975.9 0.00 (0) 0.00 40 365.2 -
RVL6 - - (-) - - - - - (-) - - - 1,273.3 0.00 (0) 0.00 84 476.4 -
RVL7 - - (-) - - - - - (-) - - - 1,501.8 0.00 (0) 0.00 102 554.0 -
(-) Not available due to out-of-memory error

39

Paper I: A matheuristic for a customer assignment problem in direct marketing

1 2 3 4 rM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
 in

st
an

ce
s f

or
 w

hi
ch

 ru
nn

in
g

tim
e

 is
 w

ith
in

 a
 fa

ct
or

 o

f s
ho

rte
st

 ru
nn

in
g

tim
e

MBLP
MBLP´

Figure 1.8: Performance profiles for the MBLP and the MBLP′ (cf. Dolan and Moré,
2002)

performance profiles (Dolan and Moré, 2002). Each curve corresponds to an approach

and indicates for what fraction of problem instances the running time of the respective

approach was within a factor τ of the shortest running time. The parameter rM is set

to the highest factor that occurs plus one; and if an approach cannot solve an instance

to optimality within the time limit, the factor for the corresponding instance is set to

rM . From Figure 1.8 (at τ = 1), we can see that the MBLP′ is the faster approach for

60% of the instances while the MBLP is faster for 17.5% of the instances. Note that the

MBLP is only faster when solving small instances. The MBLP′ maintains a considerably

larger fraction up to τ = 1.3. Also for large values of τ (when the performance profiles

become flat), we can see that the fraction of instances that can be solved to optimality

within the time limit is higher for the MBLP′ than for the MBLP. To further investigate

the substantial difference in the number of constraints of the MBLP and the MBLP′, we

applied the MBLP′ with and without step 5) of the preprocessing technique. As explained

in Section 1.6, step 5) removes the cliques from clique matrices that are a subset of another

clique. Table 1.12 reports the total number of constraints to ensure conflict rules (
∑

)

for groups of instances for the MBLP, the MBLP′, and the MBLP′ without conducting

step 5). The results clearly show that the preprocessing technique is effective and that

step 5) is essential.

We also examined two alternatives to the use of soft constraints. First, we tested a

40

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.12: Number of constraints to ensure the conflict rules

ID MBLP MBLP′ MBLP′ without step 5)
∑

GS 2,039,866 250,808 (-88%) 1,528,941 (-25%)∑
GM 57,273,804 4,334,985 (-92%) 47,112,825 (-18%)∑
GL 569,555,040 27,113,838 (-95%) 422,135,617 (-26%)∑
(RL+RVL) 71,089,558 5,653,887 (-92%) 23,701,370 (-67%)

variant of the model MBLP′ in which all soft constraints are replaced by hard constraints.

Of course, this variant was not able to devise solutions for the instances GS1’, GM1’, GL1’,

RL1’, and RVL1’. For the other instances, the variant with hard constraints obtained

identical or very similar results in terms of solution quality and running time as the

variant with soft constraints.

Second, we tested a Lagrangian relaxation scheme (LRS). To obtain the LRS, we first

formulated all soft constraints as hard constraints and deleted the penalty terms in the

objective function. Next, we dualized the former soft constraints to obtain the Lagrangian

subproblem. We iteratively solved the Lagrangian subproblem using the subgradient

algorithm as described in Fisher (1981) and Fisher (1985). It turns out that for most

instances, the LRS is inferior to the MBLP′ in terms of running time and solution quality.

Only for some of the large instances, the LRS was able to devise better solutions than

the MBLP′. However, these solutions are with one exception (GL5) still much worse

than the solutions obtained by the matheuristic. For problem instance GL5, the LRS

obtained a slightly better solution than the matheuristic (gap of 2.3%). The LRS also

runs out of memory for the largest real-world problem instances. In our view, a main factor

that negatively affects the performance of the LRS is that the Lagrangian subproblem in

each iteration cannot be solved much faster than the original problem with hard or soft

constraints because it still contains the large number of conflict constraints.

1.7.4 Performance of matheuristic

Next, we compare the performance of the matheuristic to the performance of the MBLP′.

The right part of Table 1.11 reports the results of the matheuristic. The columns for the

matheuristic are the same as for the MBLP′ except for the column sum slack variables,

which states the sum of the slack variables, and the last column, which reports the gap

between the OFV of the solution derived by the matheuristic and the OFV of the solution

derived by the MBLP′. For each instance, we highlight the shortest running time and

the highest OFV of all three approaches in bold. Note that some small positive penalties

41

Paper I: A matheuristic for a customer assignment problem in direct marketing

are rounded down to zero in Table 1.11 (cf. e.g., instance GS2). First, we compare the

matheuristic and the MBLP′ in terms of solution quality. Most of the solutions of the

matheuristic obtained with k = 20 are near-optimal. For problem instance GM8, we

investigate how changing the value of parameter k affects the gap to the optimal solution

and the running time of the matheuristic. Figure 1.9 visualizes the gap to the optimal

solution and the running time of the matheuristic for various values of k. We can see that

the gap can be further reduced by increasing parameter k. Interestingly, the gap decreases

faster than linearly, whereas the running time appears to increase linearly. Parameter k

can therefore be used to control the trade-off between solution quality and speed. Overall,

there are only a few slack variables that take positive values, and the resulting penalties

for the matheuristic are minor. Exceptions are the instances GS1’, GM1’, GL1’, RL1’,

RVL1’ which are infeasible if all soft constraints are considered as hard constraints and

thus, a (large) positive penalty value cannot be avoided.

Next, we compare the two approaches in terms of running time. The matheuristic is

substantially faster than the MBLP′, especially for medium instances with a high eligibility

fraction and for large and very large instances. Furthermore, the matheuristic is scalable

to very large real-world instances. Figure 1.10 shows the running time for different steps of

the matheuristic. From the bars, we can see that setting up the LP only plays a significant

role if the instance has many eligibility patterns (cf. e.g., GL3–GL4, GL7–GL8, and RL1–

RL4). In the first step of the matheuristic, customers who are eligible for the same

activities are grouped together. Thus, instances with many eligibility patterns result in

more groups and exhibit larger models, which explains the higher time consumption for

setting up the LP for these instances. With increasing size of the RVL instances, primarily

the running time for generating all sets and parameters increases (e.g., for deriving subsets

of the activities that are associated with a specific constraint), whereas the rest of the steps

require only a slightly longer running time. The preprocessing technique runs fast for all

instances. Even for the largest instances, the matheuristic (with k = 20) always terminates

in less than 10 minutes and is thus well within the running time budget prescribed by the

company.

Next, we analyze the impact of the complexity parameters on the quality of the solu-

tions obtained by the matheuristic. Therefore, we only consider the generated instances

for which we systematically varied the complexity parameters. Generally, the average

gaps increase with increasing eligibility fraction, as we can see from Table 1.13. While

the eligibility fraction has an effect on the average gaps, the number of eligibility patterns

has almost no effect. We can see from Table 1.11 that the gaps remain small even with

increasing numbers of customers and activities in the instances. Overall, the matheuristic

42

Paper I: A matheuristic for a customer assignment problem in direct marketing

1 5 10 20 30 40 50 60 70 80 90 100
Parameter k

0

5

10

15

20

25

30

Ga
p

to
 o

pt
im

al
 so

lu
tio

n
[%

]

Gap to optimal solution [%]

0

200

400

600

800

1000

Ru
nn

in
g

tim
e

[s
ec

]

Running time [sec]

Figure 1.9: Instance GM8: gap to optimal solution vs. running time of the matheuristic
for different values of k

Table 1.13: Average gaps of the matheuristic for generated instances by eligibility fraction
and eligibility patterns. Only instances that are solved to optimality by the MBLP′ are
considered.

Eligibility fraction

Eligibility patterns
few many aggregated

small 1.1 1.1 1.1
large 3.1 3.0 3.1
aggregated 1.8 1.9 1.8

provides high-quality solutions in a shorter running time than the MBLP and the MBLP′.

Finally, we performed two experiments to assess the effect of two key components of

the matheuristic on running time and solution quality. In the first experiment, we analyze

the impact of step 5) of the preprocessing technique and in the second experiment, we

analyze the impact of the new modeling technique used to consider the conflict constraints

in the LP.

Table 1.14 summarizes the results of the first experiment. It shows the total number

of constraints to ensure conflict rules (# conflict const. in LP) for groups of instances (
∑

)

for the matheuristic and the matheuristic without conducting step 5) of the preprocessing

technique. For the matheuristic without step 5), the increase in percent of the number of

constraints to ensure conflict rules in the LP is stated in brackets (increase). Moreover,

Table 1.14 states the total running time of both approaches (CPU). We can see that

applying step 5) removes a substantial number of conflict constraints in the LP, and that

setting up a smaller model leads to a lower total running time for all instance groups.

43

Paper I: A matheuristic for a customer assignment problem in direct marketing

GM
1

GM

1´
GM

2

GM
3

GM

4

GM
5

GM

6

GM
7

GM

8

GL
1

GL

1´
GL

2

GL
3

GL

4

GL
5

GL

6

GL
7

GL

8

RL
1

RL

1´
RL

2

RL
3

RL

4

RV
L1

RV

L1
´

RV
L2

RV

L3

RV
L4

RV

L5

RV
L6

RV

L7

Instances

0

100

200

300

400

500

Ru
nn

in
g

tim
e

[s
ec

]
Generation of sets and parameters
Preprocessing technique
Mini-batch k-means
Set up of LP
Optimization
Iterative algorithm

Figure 1.10: Running times for the different matheuristic steps

Table 1.14: Number of constraints to ensure the conflict rules in matheuristic

Matheuristic Matheuristic without step 5)

#conflict const. in LP CPU #conflict const. in LP CPU
ID [s] (increase) [s]
∑

GS 24,910 67.1 138,030 (+454.1%) 73.7∑
GM 307,346 667.6 3,285,126 (+968.9%) 837.9∑
GL 458,967 1,460.0 7,404,226 (+1,513.2%) 1,912.5∑
(RL+RVL) 389,873 2,754.1 1,570,423 (+302.8%) 2,905.1

Note that the solution quality is not affected by step 5) of the preprocessing technique.

In the second experiment, we compare the proposed matheuristic to a benchmark

version of the matheuristic that does not use the new modeling technique to incorporate

the conflict constraints in the linear program. Instead of using the new modeling tech-

nique, the benchmark version incorporates the conflict constraints in the linear program

by formulating constraints (9) of the MBLP for groups of customers. The resulting linear

program LP reads as follows:

(LP)

Max. (15)

s.t. (11)–(13), (16)–(22), (24), (25)

xgj1 + xgj2 ≤ og (g ∈ G; (j1, j2) ∈ T : j1, j2 ∈ Jg) (27)

Table 1.15 summarizes the results of the second experiment. It reports the objective

function value (OFV), the penalty, the number of assignments (#agmts) in the LP solution

(or in the LP solution), the number of assignments that are conducted in the iterative

44

Paper I: A matheuristic for a customer assignment problem in direct marketing

algorithm (#agmts (it. alg.)), and the total running time (CPU). The results in Table 1.15

demonstrate the advantages of using the new modeling technique. The new modeling

technique considers the customer-specific constraints very effectively already in the group-

level model such that almost all assignments in the LP solution can be conducted by the

iterative algorithm. In contrast, the LP solution has many assignments that cannot

be conducted by the iterative algorithm because they would violate customer-specific

conflict constraints. When a large fraction of assignments cannot be conducted by the

iterative algorithm, some bounds of minimum assignment and sales constraints that were

satisfied in the group-level model are violated after applying the iterative algorithm. This

explains the large penalties and hence lower objective function values of the solutions of

the matheuristic which uses model LP. The new modeling technique not only improves

the solution quality but also reduces the running time because the group-level model

has fewer constraints and a smaller number of assignments needs to be processed by the

iterative algorithm.

1.8 Conclusion

In this study, we introduced a real-world planning problem of a telecommunications com-

pany. The planning problem consists of assigning existing customers to direct marketing

activities subject to various business constraints, such as budget and sales constraints,

and various customer-specific constraints. The customer-specific constraints ensure, for

example, that individual customers are generally not assigned to the activities too often

and that the customers are not assigned to activities that are subject to a conflict. Such a

conflict may exist, for example, between two activities that are scheduled within the same

week. Existing approaches that deal with customer assignment in direct marketing do not

consider such customer-specific constraints and are thus not applicable to the planning

problem at hand. We developed a matheuristic that first solves an optimization problem

for groups of customers and then iteratively assigns individual customers to the activi-

ties based on the solution to the group-level problem. New modeling techniques and a

preprocessing technique are introduced to consider customer-specific constraints already

in the group-level model. In a computational analysis, we demonstrated the effectiveness

of the preprocessing technique and the problem decomposition strategy of the matheuris-

tic based on a test set that includes generated and real-world instances. The proposed

preprocessing technique is able to reduce the number of constraints in the models by up

to 95%. Even when the number of groups is relatively small, the average gap of the

solutions derived by the matheuristic to the optimal solutions of the generated instances

45

Paper I: A matheuristic for a customer assignment problem in direct marketing

is only 1.8%. Increasing the number of groups further reduces the gap while prolonging

the running time only slightly. The matheuristic is currently in use at the company and

has lead to an overall improvement of its key performance indicators. The company esti-

mates based on a proof of benefit conducted on a selected campaign that the use of the

matheuristic increased the number of sales by 90%, which improved the profitability of

this campaign by around 300%.

In future research, we will extend the planning problem to include multi-stage cam-

paigns. In such campaigns, customers can only be assigned to activities of a non-initial

stage when they have been assigned to an activity of each previous stage. A promising

direction for future research is the development of strategies for grouping customers with

different eligibility patterns, as pointed out in Section 1.5.1. Moreover, it would be in-

teresting to adapt the preprocessing technique and the decomposition strategy to related

planning problems such as the bin packing problem with conflict constraints. Finally, an-

other direction for future research is to incorporate the conflict constraints with branching

rules as done in the exact solution approaches of Şuvak et al. (2020) for the maximum

flow problem with conflict constraints and of Şuvak et al. (2021) for the minimum cost

flow problem with conflict constraints.

Acknowledgement

We would like to thank the company for their support and for the excellent collaboration.

46

Paper I: A matheuristic for a customer assignment problem in direct marketing

Table 1.15: Effectiveness of new modeling technique to incorporate conflict constraints in
group-level model

Matheuristic Matheuristic without new modeling technique

OFV Penalty #agmts #agmts CPU OFV Penalty #agmts #agmts CPU
ID [100k] [100k] (LP) (it. alg.) [s] [100k] [100k] (LP) (it. alg.) [s]

GS1 1.5 0.0 8,331 8,331 5.7 1.0 0.4 8,600 7,946 5.4
GS1’ 1.2 0.3 8,331 8,331 4.3 0.7 0.7 8,600 7,946 6.3
GS2 1.4 0.0 17,079 17,079 5.4 -0.1 1.3 20,020 15,722 7.7
GS3 1.0 0.0 9,826 9,826 7.9 0.9 0.1 9,943 9,263 9.3
GS4 5.0 0.0 17,594 17,594 10.3 3.2 1.0 19,193 15,786 13.2
GS5 1.3 0.0 16,698 16,698 4.8 1.3 0.0 18,295 16,014 5.5
GS6 13.5 0.0 40,975 40,975 7.3 1.2 10.2 51,067 34,559 10.6
GS7 4.2 0.0 20,897 20,897 8.9 3.1 0.7 23,304 19,530 10.6
GS8 8.9 0.0 38,903 38,902 12.4 -3.7 10.8 48,212 33,501 18.9
GM1 35.5 0.0 149,790 149,790 32.8 3.3 27.5 184,503 135,298 45.7
GM1’ 32.3 1.2 143,902 143,902 32.9 -46.2 76.4 174,792 133,806 46.7
GM2 84.8 0.0 220,773 220,773 49.8 31.1 35.3 279,628 175,282 81.2
GM3 24.9 0.0 151,642 151,639 84.3 -18.0 38.1 177,748 130,791 118.8
GM4 29.3 0.0 215,672 215,672 114.7 -75.5 98.0 257,281 174,272 216.4
GM5 46.8 0.0 310,369 310,350 39.0 14.5 25.6 390,896 274,002 59.4
GM6 141.3 0.0 448,297 448,297 65.6 71.2 41.4 573,383 365,234 120.7
GM7 70.5 0.0 320,507 320,507 97.8 -22.9 81.0 401,804 279,353 155.2
GM8 123.6 0.0 461,223 461,223 150.8 49.8 42.0 564,119 345,302 308.6
GL1 243.0 0.0 834,008 834,008 58.3 28.3 186.5 1,030,637 760,945 83.1
GL1’ -394.9 616.7 838,189 838,189 57.2 -492.7 694.0 988,698 787,555 81.6
GL2 256.1 0.0 1,149,637 1,149,637 115.1 190.7 15.4 1,468,184 931,097 179.2
GL3 194.0 0.0 787,395 787,395 139.3 146.3 24.0 951,477 712,955 244.0
GL4 211.8 0.0 1,193,477 1,193,477 251.2 -326.5 499.1 1,446,367 936,972 499.2
GL5 202.0 0.0 1,637,333 1,637,333 89.7 124.7 49.5 2,086,706 1,461,946 125.0
GL6 452.1 0.0 2,418,241 2,418,241 209.3 312.0 67.9 2,901,633 1,956,749 306.9
GL7 465.9 0.0 1,611,220 1,611,220 185.4 -404.3 801.3 2,003,448 1,427,594 314.2
GL8 1,022.2 0.0 2,378,114 2,378,114 354.6 74.4 762.1 2,942,362 1,861,592 830.3
RL1 109.2 0.0 231,224 231,224 46.5 109.0 0.0 231,047 230,778 95.8
RL1’ 109.7 1.8 240,704 240,704 46.5 109.0 2.3 240,494 240,008 95.3
RL2 148.7 0.0 369,377 369,377 85.2 147.0 0.0 368,244 365,422 232.9
RL3 223.0 0.0 534,595 534,595 173.9 213.5 1.6 545,604 518,135 614.8
RL4 236.0 0.0 596,515 596,515 205.8 217.3 4.1 594,679 565,202 814.5
RVL1 291.7 0.0 186,499 186,499 100.2 236.4 0.0 186,125 159,361 101.8
RVL1’ 246.8 44.9 187,086 187,086 99.8 191.5 44.9 186,712 159,948 102.7
RVL2 377.0 0.0 257,332 257,309 144.9 288.6 0.0 279,060 195,974 148.6
RVL3 534.7 0.0 350,901 350,751 182.3 403.7 0.0 372,490 274,505 187.9
RVL4 751.0 0.0 510,249 509,998 273.5 554.1 0.0 554,051 380,332 282.8
RVL5 975.9 0.0 658,216 657,843 365.2 742.1 0.0 723,998 497,519 377.2
RVL6 1,273.3 0.0 823,361 822,628 476.4 959.8 6.9 886,967 612,202 506.0
RVL7 1,501.8 0.0 941,824 941,284 554.0 1,119.8 0.0 1,004,740 676,107 592.6

47

Bibliography

Bettinelli, A., Cacchiani, V., Malaguti, E., 2017. A branch-and-bound algorithm for the

knapsack problem with conflict graph. INFORMS Journal on Computing 29, 457–473.

Bhaskar, T., Sundararajan, R., Krishnan, P.G., 2009. A fuzzy mathematical program-

ming approach for cross-sell optimization in retail banking. Journal of the Operational

Research Society 60, 717–727.

Bigler, T., Baumann, P., Kammermann, M., 2019. Optimizing customer assignments to

direct marketing activities: A binary linear programming formulation, in: Wang, M., Li,

J., Tsung, F., Yeung, A. (Eds.), Proceedings of the 2019 IEEE International Conference

on Industrial Engineering and Engineering Management, Macau. pp. 601–605.

Bron, C., Kerbosch, J., 1973. Algorithm 457: finding all cliques of an undirected graph.

Communications of the ACM 16, 575–577.

Cetin, F., Alabas-Uslu, C., 2017. Heuristic solution to the product targeting problem

based on mathematical programming. International Journal of Production Research

55, 3–17.

Coelho, V.N., Oliveira, T.A., Coelho, I.M., Coelho, B.N., Fleming, P.J., Guimarães, F.G.,

Ramalhinho, H., Souza, M.J., Talbi, E.G., Lust, T., 2017. Generic pareto local search

metaheuristic for optimization of targeted offers in a bi-objective direct marketing cam-

paign. Computers & Operations Research 78, 578–587.

Cohen, M.D., 2004. Exploiting response models — optimizing cross-sell and up-sell op-

portunities in banking. Information Systems 29, 327–341.

Coniglio, S., Furini, F., San Segundo, P., 2021. A new combinatorial branch-and-bound

algorithm for the knapsack problem with conflicts. European Journal of Operational

Research 289, 435–455.

48

Paper I: A matheuristic for a customer assignment problem in direct marketing

Darmann, A., Pferschy, U., Schauer, J., Woeginger, G.J., 2011. Paths, trees and matchings

under disjunctive constraints. Discrete Applied Mathematics 159, 1726–1735.

Delanote, S., Leus, R., Nobibon, F.T., 2013. Optimization of the annual planning of

targeted offers in direct marketing. Journal of the Operational Research Society 64,

1770–1779.

Dolan, E.D., Moré, J.J., 2002. Benchmarking optimization software with performance

profiles. Mathematical Programming 91, 201–213.

Elhedhli, S., Li, L., Gzara, M., Naoum-Sawaya, J., 2011. A branch-and-price algorithm for

the bin packing problem with conflicts. INFORMS Journal on Computing 23, 404–415.

Fisher, M.L., 1981. The lagrangian relaxation method for solving integer programming

problems. Management Science 27, 1–18.

Fisher, M.L., 1985. An applications oriented guide to lagrangian relaxation. Interfaces

15, 10–21.

Garey, M.R., Johnson, D.S., 2002. Computers and Intractability Vol. 29. WH Freeman,

New York.

Hagberg, A.A., Schult, D.A., Swart, P.J., 2008. Exploring network structure, dynamics,

and function using NetworkX, in: Varoquaux, G., Vaught, T., Millman, J. (Eds.),

Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena. pp. 11–

15.

Lessmann, S., Haupt, J., Coussement, K., De Bock, K.W., 2021. Targeting customers

for profit: An ensemble learning framework to support marketing decision-making.

Information Sciences 557, 286–301.

Ma, S., Fildes, R., 2017. A retail store SKU promotions optimization model for category

multi-period profit maximization. European Journal of Operational Research 260, 680–

692.

Ma, S., Hou, L., Yao, W., Lee, B., 2016. A nonhomogeneous hidden Markov model of

response dynamics and mailing optimization in direct marketing. European Journal of

Operational Research 253, 514–523.

Miguéis, V.L., Camanho, A.S., Borges, J., 2017. Predicting direct marketing response in

banking: comparison of class imbalance methods. Service Business 11, 831–849.

49

Paper I: A matheuristic for a customer assignment problem in direct marketing

Nair, S.K., Tarasewich, P., 2003. A model and solution method for multi-period sales

promotion design. European Journal of Operational Research 150, 672–687.

Nobibon, F.T., Leus, R., Spieksma, F.C., 2011. Optimization models for targeted offers

in direct marketing: Exact and heuristic algorithms. European Journal of Operational

Research 210, 670–683.

Oliveira, T.A., Coelho, V.N., Souza, M.J., Boava, D.L.T., Boava, F., Coelho, I.M., Coelho,

B.N., 2015. A hybrid variable neighborhood search algorithm for targeted offers in direct

marketing. Electronic Notes in Discrete Mathematics 47, 205–212.

Öncan, T., Şuvak, Z., Akyüz, M.H., Altınel, İ.K., 2019. Assignment problem with con-

flicts. Computers & Operations Research 111, 214–229.

Sadykov, R., Vanderbeck, F., 2013. Bin packing with conflicts: a generic branch-and-price

algorithm. INFORMS Journal on Computing 25, 244–255.

Sculley, D., 2010 Web-scale k-means clustering, in: Rappa, M., Jones, P., Freire, J.,

Chakrabarti, S. (Eds.), Proceedings of the 19th International Conference on World

Wide Web, Raleigh. pp. 1177–1178.

Sun, M., 2002. The transportation problem with exclusionary side constraints and two

branch-and-bound algorithms. European Journal of Operational Research 140, 629–647.

Sundararajan, R., Bhaskar, T., Sarkar, A., Dasaratha, S., Bal, D., Marasanapalle, J.K.,

Zmudzka, B., Bak, K., 2011. Marketing optimization in retail banking. Interfaces 41,

485–505.

Şuvak, Z., Altınel, İ.K., Aras, N., 2020. Exact solution algorithms for the maximum flow

problem with additional conflict constraints. European Journal of Operational Research

287, 410–437.

Şuvak, Z., Altınel, İ.K., Aras, N., 2021. Minimum cost flow problem with conflicts.

Networks 78, 421–442.

Walteros, J.L., Buchanan, A., 2020. Why is maximum clique often easy in practice?

Operations Research 68, 1866–1895.

50

Paper II

MIP-based approaches for multi-site project

scheduling2

Tamara Bigler Mario Gnägi Norbert Trautmann

Department of Business Administration
University of Bern

Contents
2.1 Introduction . 52

2.2 Planning problem . 55

2.2.1 Basic notation . 55

2.2.2 Illustration of the planning problem 55

2.2.3 Related project scheduling problems with transportation times 56

2.3 Continuous-time MBLP model 58

2.3.1 Types of variables . 59

2.3.2 Formulation of objective and constraints 59

2.4 Relax-optimize-and-fix matheuristic 63

2.4.1 Overview . 63

2.4.2 Different steps of the matheuristic 64

2.4.3 Illustration of the matheuristic 69

2.5 Computational results . 71

2.5.1 Experimental design . 71

2.5.2 Description of performance metrics 72

2.5.3 Computational results: Exact approaches 72

2.5.4 Computational results: Heuristic approaches 74

2.6 Conclusion . 76

Appendices . 77

2.A Appendix A . 77

Bibliography . 79

2Published in Annals of Operations Research, to appear (DOI:10.1007/s10479-022-05109-0). Repro-
duced with permission from Springer Nature. Licensed under CC BY 4.0.

51

https://creativecommons.org/licenses/by/4.0/

Paper II: MIP-based approaches for multi-site project scheduling

Abstract

The execution of a project is often distributed among multiple sites.

The planning of such a project includes selecting a specific site for the

execution of each of the project’s activities and allocating the available

resource units to the execution of these activities over time. While

some resource units are available at a certain site only, others can be

moved across sites. Given the spatial distance between sites, trans-

portation times arise if a resource unit must be transported from one

site to another or if the output of an activity must be transported to

another site. This planning problem has been introduced in recent liter-

ature as the multi-site resource-constrained project scheduling problem.

We present a continuous-time model and devise a matheuristic for this

planning problem. The continuous-time model uses, among others, bi-

nary variables to impose a sequence between activities assigned to the

same resource units. In the matheuristic, the binary restrictions on

these variables are initially relaxed and iteratively restored for the sub-

set of activities scheduled in the current iteration. We compare the

performance of the continuous-time model and the matheuristic to the

performance of a discrete-time model and several metaheuristics from

the literature using two sets of test instances from the literature. Both

the continuous-time model and the matheuristic derive on average su-

perior solutions in shorter average running times than the reference

approaches.

2.1 Introduction

Recently, Laurent et al. (2017) introduced the multi-site resource-constrained project

scheduling problem, or short multi-site RCPSP, which allows to consider the execution of

a project’s activities at several sites and the sharing of resources among these sites. This

planning problem is motivated by a real-world application from health care management,

where medical examinations are conducted in different hospitals and the required medical

staff is shared between these hospitals. According to Laurent et al. (2017), this pooling

of medical examinations and staff increases the hospitals’ total productivity even though

additional transportation times occur due to the spatial distance between the hospitals.

Another sample application are R&D projects whose research activities may be carried

out in several laboratories that share some of their resources. In this application, mobile

52

Paper II: MIP-based approaches for multi-site project scheduling

resource units, e.g., research staff or equipment, or the output of some research activities,

e.g., laboratory samples or prototypes, must be transported from one laboratory to an-

other, resulting in transportation times that must be considered. The multi-site RCPSP

is an extension of the widely studied single-site RCPSP, which represents an NP-hard

optimization problem. Consequently, the multi-site RCPSP is also NP-hard.

The multi-site RCPSP—similar to the single-site RCPSP—consists of allocating indi-

vidual units of some renewable resources over time to the execution of the activities of a

project such that the project duration is minimized while taking into account a prescribed

set of completion-start precedence relationships between pairs of activities. In addition,

in the single-site RCPSP, it is assumed that all activities are executed at the same site

and, consequently, that all resources are located at this site. In the multi-site RCPSP,

in contrast, a specific site for the execution of each activity must be selected. Moreover,

the spatial distance between the sites gives rise to two different types of transportation

times that must be considered in the project schedule. First, during the transport of a

resource unit between the sites, the resource unit cannot be allocated to the execution

of an activity. Second, if two activities that are interrelated by a precedence relationship

are executed at different sites, then a minimum time lag between the completion of the

first activity and the start of the second activity must be taken into account, which corre-

sponds to the time required to transport the first activity’s output between the respective

sites. Hereafter, we refer to the first type of transport as resource transport and to the

second type of transport as output transport.

To the best of our knowledge, the only solution approaches to the multi-site RCPSP

that are documented in the literature are the formulation as a binary linear program and

the four different metaheuristics proposed by Laurent et al. (2017). The linear program-

ming formulation belongs to the class of discrete-time models; i.e., the planning horizon is

divided into a set of equally long periods, and it is assumed that an activity can be started

at the beginning of such a period only. In an experimental analysis performed by Laurent

et al. (2017) with CPLEX using a set of 192 instances, where the number of activities

was varied between 5 and 30, it turned out that within a prescribed time limit of 3,600

seconds of running time, none of the instances comprising 30 activities could be solved

to optimality. The four metaheuristics are based on a representation of feasible solutions

by an activity list and a site list and apply the search strategies local search, simulated

annealing and iterated local search. In another experimental analysis performed by Lau-

rent et al. (2017) with instances comprising 30 to 120 activities, it turned out that the

iterated local search and the simulated annealing metaheuristics performed best.

The contribution of this paper is twofold: first, we provide a continuous-time model

53

Paper II: MIP-based approaches for multi-site project scheduling

for the multi-site RCPSP that is applicable to challenging instances comprising up to

30 activities such that it can be used to evaluate the performance of heuristic methods;

and second, we devise a novel matheuristic for the multi-site RCPSP that follows an itera-

tive, relax-optimize-and-fix strategy and applies a relaxation of the novel continuous-time

model in each iteration. More specifically, the novel model, which we elaborate starting

from the single-site RCPSP formulation presented in Rihm and Trautmann (2017), is

formulated as a mixed-binary linear programming (MBLP) model and employs contin-

uous start-time variables and binary site-selection, resource-assignment and sequencing

variables. In an experimental performance analysis, we apply the novel continuous-time

model and the discrete-time model proposed by Laurent et al. (2017) to a set of 960 in-

stances comprising 30 activities and 2 or 3 sites that were generated by Laurent et al.

(2017). Feasible solutions are devised for all instances with the novel continuous-time

model, and a large number of these instances can even be solved to optimality. Moreover,

for a considerable number of instances, using the novel continuous-time model yields a

feasible solution that has a better objective function value than the best solution devised

by the discrete-time model presented in Laurent et al. (2017) in a shorter average running

time. Based on this novel continuous-time model, we propose a matheuristic for larger

instances. In this matheuristic, subsets of the activities are iteratively scheduled using a

relaxation of the model. All activities of the instance are considered in this relaxation.

During the solution process, however, several activities may overlap with each other, i.e.,

use the same resource unit at the same time. In each iteration, the activities in the respec-

tive subset are sequenced among themselves and among the already-scheduled activities,

until after the last iteration, no overlaps remain. The matheuristic obtains good feasible

solutions for instances comprising 30 activities with a lower average gap to the critical-

path-based lower bound than the continuous-time model. For the instances comprising

60 activities, it outperforms the metaheuristics of Laurent et al. (2017) on all considered

performance metrics.

The remainder of this paper is organized as follows. In Section 2.2, we illustrate the

multi-site RCPSP by an example and provide an overview of related project scheduling

problems. In Sections 2.3 and 2.4, we present the novel continuous-time model and the

matheuristic. In Section 2.5, we report our computational results. In Section 2.6, we

provide some conclusions and provide an outlook for future research.

54

Paper II: MIP-based approaches for multi-site project scheduling

2.2 Planning problem

In this section, we introduce some basic notation (Section 2.2.1), illustrate the planning

problem by means of an example project (Section 2.2.2), and provide an overview of

related project scheduling problems with transportation times discussed in the literature

(Section 2.2.3).

2.2.1 Basic notation

We consider a project that consists of n real activities. These real activities form the

set V . In addition, we introduce two fictitious activities, 0 and n + 1, representing the

start and end of the project, respectively; both of these activities are assumed to have a

duration of zero and to require no resources. Each real activity i ∈ V has a prescribed

duration pi and must not be pre-empted after it has been started. Furthermore, given

is a set E containing the pairs of activities between which there is a completion-start

precedence relationship. For the execution of the activities, a set R of different renewable

resource types and a set L of alternative sites are given. For each resource type k ∈ R,

we denote the available number of units as Rk and the required number of units for the

execution of activity i ∈ V as rik ≤ Rk. Moreover, each available unit u ∈ {1, . . . , Rk}
of resource type k ∈ R is either mobile (i.e., Mku = 1) or nonmobile (i.e., Mku = 0).

All mobile resource units are assumed to be initially located at the site at which their

first assigned real activity is executed, i.e., the mobile resource units do not have to be

moved before the start of the first real activity assigned to them. Moreover, the mobile

resource units are assumed to remain at the site at which the last real activity assigned

to them is executed, i.e., the mobile resource units do not have to be moved after the

completion of the last real activity assigned to them. For each nonmobile resource unit,

there is a site locku at which the resource unit is permanently located. Finally, δll′ denotes

the transportation time between sites l and l′ ∈ L× L.

2.2.2 Illustration of the planning problem

We illustrate the planning problem by means of an example project that comprises seven

real activities, i.e., V = {1, . . . , 7}. For the execution of these activities, there are two

sites, A and B, i.e., L = {A,B}, between which we assume a transportation time of

one time unit in both directions, i.e., δAB = δBA = 1. Moreover, two different resource

types are required to execute the activities, i.e., R = {1, 2}, with two resource units of

both resource types available, i.e., R1 = 2 and R2 = 2. Both resource units of resource

55

Paper II: MIP-based approaches for multi-site project scheduling

0

1

2

3

4

5

6

7

8

i j

0

1

3

1

2

1

2

1

0

pi pj

(0,0)

(2,0)

(0,2)

(0,1)

(1,1)

(0,2)

(1,0)

(2,0)

(0,0)

(ri1,ri2) (rj1,rj2)

Figure 2.1: Activity-on-node network for the example project

type k = 1 are nonmobile, i.e., M11 = M12 = 0, and permanently located at site A, i.e.,

loc11 = loc12 = A. The first unit of resource type k = 2 is also nonmobile, i.e., M21 = 0,

and permanently located at site B, i.e., loc21 = B, while the second unit is mobile, i.e.,

M22 = 1. Figure 2.1 shows an activity-on-node network, which depicts the activities

as nodes and the precedence relationships as directed edges between the nodes, for the

example project. The durations and resource requirements of the activities are indicated

above and below the nodes of the network, respectively.

An optimal solution for the example project with a minimal makespan of eight time

units is shown in Figure 2.2. Each line represents a resource unit u of a resource type k,

and the rectangles represent the activities. Each real activity is assigned to at least one

resource unit and exactly one site. Activities 1, 4, 6 and 7 are executed at site A, while

activities 2, 3 and 5 are executed at site B. Resource transport, e.g., between activities 5

and 4, is indicated by a rectangle with a cross. These two activities are both assigned to

the resource unit u = 2 of resource type k = 2 and take place at different sites. Thus,

the commonly used resource unit must be moved from site B to site A before activity 4

can start. Output transports, e.g., between activities 3 and 7, are indicated with arrows.

These two activities are precedence related and take place at different sites. Thus, the

output of activity 3 must be moved from site B to site A before activity 7 can start.

2.2.3 Related project scheduling problems with transportation

times

In addition to the work of Laurent et al. (2017), which introduces and addresses the

multi-site RCPSP for the first time, there are other papers in the literature that discuss

related project scheduling problems. In the following, we outline these related project

56

Paper II: MIP-based approaches for multi-site project scheduling

0 1 2 3 4 5 6 7 8

Resource
type

k = 2

k = 1

Resource
unit

u = 2

u = 1

u = 2

u = 1

Mobility
(Site)

Mobile

Nonmobile
(Site B)

Nonmobile
(Site A)

Nonmobile
(Site A) 1

1

2

2

3

4

4

5

5

67

7

Legend:

i Activity i Site A Site B
Resource
transport

Output
transport

t

Figure 2.2: An optimal solution for the example project

planning problems and point out the differences to the problem considered in this paper.

A well-known scheduling problem that has similar characteristics as the multi-site

RCPSP is the multi-mode RCPSP (cf., e.g., Gnägi et al., 2019). In the multi-mode

RCPSP, the project activities can be executed in alternative modes that differ in terms

of the activities’ durations and resource requirements. Selecting an execution mode for

an activity can be interpreted as assigning the activity to a specific site. The selection

of an execution mode for an activity, however, affects only the duration of this specific

activity individually. Therefore, output transport cannot be addressed since such trans-

port always includes two activities. Resource transport cannot be addressed, either, since

the movement of mobile resource units between different sites cannot be modeled based

on mode selection. Several extensions of the multi-mode RCPSP that explicitly consider

transportation times (also called time lags, setup times or transfer times) are discussed

in the literature. In the multi-mode RCPSP with mode-dependent time lags, which has

been discussed by Sabzehparvar and Seyed-Hosseini (2008), the length of the time lags

depends on the selected modes of two activities. Therefore, when the mode selection

is interpreted as a site selection, output transport, as in the multi-site RCPSP, may be

addressed. However, the sharing of mobile resource units among different sites cannot

be addressed. The multi-mode RCPSP with schedule-dependent setup times, consid-

ered by Mika et al. (2004), explicitly involves the assignment of activities to locations

57

Paper II: MIP-based approaches for multi-site project scheduling

and the movement of semifinished products between the locations of precendence-related

activities. The required time for this movement is interpreted as a setup time for the

subsequent activity. However, also in this planning problem, the locations of the resource

units are assumed to be fixed, and thus, no sharing of mobile resource units among dif-

ferent locations is addressed. Another extension, namely, the multi-mode RCPSP with

sequence-dependent transfer times, is considered by Kadri and Boctor (2014). Transfer

times occur when resource units are moved between several locations, and the duration

of the transfers depends on the locations at which the involved activities are executed.

Unlike in the multi-site RCPSP, however, in this case, the locations for the execution of

the activities are assumed to be given.

A less related stream of literature, initiated by Krüger and Scholl (2009, 2010), deals

with the RCPSP with transfer times in the context of single- and multi-project scheduling.

In these problem settings, transfer times occur when resource units are transferred from

one activity to another, while the duration of the transfer depends on the involved activi-

ties as well as the resource type. These transfer times may occur within the same project

but also among multiple projects, but the belonging of the activities to the projects is

considered as given. Therefore, the multi-project context cannot be exploited to model

the selection of sites for the execution of the activities. The identical planning problem in

the context of single-project scheduling is considered by Poppenborg and Knust (2016),

Kadri and Boctor (2018) and Liu et al. (2021). Liu et al. (2021) focus on the special case

where only resources with one available unit are considered.

In sum, some of the abovementioned papers address isolated parts of the problem

discussed in this paper. Most of them do not explicitly involve the selection of sites for

the execution of the activities and the transport of semifinished products between the

sites of precedence-related activities, and none of them accounts for the sharing of mobile

resource units between different sites.

2.3 Continuous-time MBLP model

In this section, we present the continuous-time MBLP model for the multi-site RCPSP;

a preliminary version of this model is presented in Gnägi and Trautmann (2019). In

Section 2.3.1, we illustrate the different types of variables by means of the example project

introduced in Section 2.2. In Section 2.3.2, we present the formulation of the objective

and the constraints.

58

Paper II: MIP-based approaches for multi-site project scheduling

Table 2.1: Variable descriptions

Variable Description

∗ Si Starting time of activity i

∗ sil

{
= 1, if activity i is executed at site l
= 0, otherwise

∗ ruik

{
= 1, if activity i is assigned to unit u of resource type k
= 0, otherwise

∗ yij

{
= 1, if activity i must be completed before the start of activity j
= 0, otherwise

2.3.1 Types of variables

The model employs the four types of variables listed in Table 2.1. The continuous start-

time variables Si (i ∈ V ∪ {0, n + 1}) indicate when to start the activities. The project

is assumed to start at time point zero, i.e., S0 := 0, and consequently, the starting time

of activity n + 1 represents the project duration. The binary site-selection variables sil

(i ∈ V ; l ∈ L) indicate at which site the activities are executed. The binary resource-

assignment variables ruik (i ∈ V ; k ∈ R; u ∈ {1, . . . , Rk} : rik > 0) indicate to which

resource units the activities are assigned. Finally, the binary sequencing variables yij

(i, j ∈ V × V : i 6= j, (i, j) /∈ TE) indicate the sequence in which two activities i and

j must be executed. Note that the sequencing variables are only defined for all pairs

of activities (i, j) with i 6= j which can be executed simultaneously with respect to the

precedence relationships, i.e., (i, j) /∈ TE. If two of these activities, i.e., activities i and

j, use at least one common resource unit of the same resource type, then a sequencing

between the two activities must be ensured, i.e., either yij or yji will take the value

one. Figure 2.3 illustrates the four types of variables by means of the example project

introduced in Section 2.2. For the binary variables, only those variables with a positive

value in the given optimal solution are displayed.

2.3.2 Formulation of objective and constraints

The objective is to minimize the duration of the project:

Min. Sn+1

Constraints (2.1) account for the prescribed precedence relationships among the real

59

Paper II: MIP-based approaches for multi-site project scheduling

0 1 2 3 4 5 6 7 8

Resource

unit

k = 2

u = 2

k = 2

u = 1

k = 1

u = 2

k = 1

u = 1

Mobility

(Site)

Mobile

Nonmobile

(Site B)

Nonmobile

(Site A)

Nonmobile

(Site A)

1

1

2

2

3

4

4

5

5

67

7

Legend:

i Activity i Site A Site B
yij Sequencing

variables

S1 = 0

S1 = 0

S2 = 1

S2 = 1

S3 = 0

S4 = 6

S4 = 6

S5 = 4

S5 = 4

S6 = 3

S7 = 2

S7 = 2

s1A = 1

s1A = 1

s2B = 1

s2B = 1

s3B = 1

s4A = 1

s4A = 1

s5B = 1

s5B = 1

s6A = 1

s7A = 1

s7A = 1

r111 = 1

r211 = 1

r122 = 1

r222 = 1

r132 = 1

r141 = 1

r242 = 1

r152 = 1

r252 = 1

r261 = 1

r171 = 1

r271 = 1

y16 = 1

y17 = 1

y17 = 1

y76 = 1

y25 = 1

y25 = 1

y32 = 1

y54 = 1

y74 = 1

t

Figure 2.3: Illustration of the types of variables for the example project

60

Paper II: MIP-based approaches for multi-site project scheduling

activities. Moreover, a transportation time of δll′ is triggered if two precedence-related

real activities i and j are performed at two different sites l and l′. This transportation

time is required to move the output of the first activity between the respective sites.

Si + pi + (sil + sjl′ − 1)δll′ ≤ Sj (i, j ∈ V × V : (i, j) ∈ E; l, l′ ∈ L× L) (2.1)

Constraints (2.2) enforce that if two real activities i and j are both assigned to the

same unit u of a resource type k, then either activity i must be completed before the start

of activity j or vice versa, i.e., either yij = 1 or yji = 1.

ruik + rujk ≤ yij + yji + 1 (i, j ∈ V × V ; k ∈ R; u ∈ {1, . . . , Rk} :

i < j, (i, j) /∈ TE, rik > 0, rjk > 0) (2.2)

Constraints (2.3) link the start-time variables and the sequencing variables, where

δmax := maxl,l′∈L×L{δll′} corresponds to the longest transportation time between all pairs

of sites. A transportation time of δll′ is triggered if two activities i and j are both assigned

to at least one common resource unit and are performed at two different sites l and l′.

This transportation time is required to move the commonly used resource units between

the respective sites.

Si + pi + (sil + sjl′ − 1)δll′ ≤ Sj + (
∑

h∈V

ph + nδmax)(1− yij)

(i, j ∈ V × V : i 6= j, (i, j) /∈ TE; l, l′ ∈ L× L) (2.3)

Constraints (2.4) ensure that all real activities are completed before the project ends.

Constraints (2.4) are required in addition to constraints (2.1) because the latter only

account for the precedence relationships between all real activities, which do not include

activity n+ 1.

Si + pi ≤ Sn+1 (i ∈ V ∪ {0}) (2.4)

Constraints (2.5) guarantee that the number of resource units allocated to each activity

is equal to the number of required resource units of the respective activity.

Rk∑

u=1

ruik = rik (i ∈ V ; k ∈ R : rik > 0) (2.5)

Constraints (2.6) enforce that each activity i that is assigned to a nonmobile unit

61

Paper II: MIP-based approaches for multi-site project scheduling

u of any resource type k must be performed at the site at which the respective unit is

permanently located.

ruik ≤ si,locku (i ∈ V ; k ∈ R; u ∈ {1, . . . , Rk} : Mku = 0, rik > 0) (2.6)

Constraints (2.7) ensure that each activity is performed at exactly one site.

∑

l∈L

sil = 1 (i ∈ V) (2.7)

Finally, (2.8) and (2.9) are redundant constraints, where the set F 2 comprises all pairs

of activities i and j that cannot be performed in parallel since together they require more

resource units than are available, i.e., rik + rjk > Rk for some resource type k. These

redundant constraints turned out to substantially speed up the solution process of the

mathematical programming solver used during our computational experiment.

yij + yji = 1 ((i, j) ∈ F 2) (2.8)

yij + yji ≤ 1 (i, j ∈ V × V : i < j, (i, j) /∈ TE) (2.9)

The novel model, which we refer to as the model (CT) hereafter, reads as follows:

(CT)

Min. Sn+1

s.t. (2.1) – (2.9)

Si ∈ R≥0 (i ∈ V ∪ {0, n+ 1})
sil ∈ {0, 1} (i ∈ V ; l ∈ L)

yij ∈ {0, 1} (i, j ∈ V × V : i 6= j, (i, j) /∈ TE)

ruik ∈ {0, 1} (i ∈ V ; k ∈ R; u ∈ {1, . . . , Rk} : rik > 0)

Alternatively, the start-time variables can also be defined as nonnegative integer vari-

ables, i.e., Si ∈ Z≥0 (i ∈ V ∪ {0, n + 1}), as long as the durations of the activities and

the transportation times are all integers. In Section 2.5, we report some results of our

computational experiment that indicate that this accelerates the solution process of the

mathematical programming solver used.

The continuous-time model presented in this section turns out to be applicable to

challenging instances comprising up to 30 activities (see Section 2.5). For instances com-

prising considerably more than 30 activities, a heuristic approach such as the matheuristic

62

Paper II: MIP-based approaches for multi-site project scheduling

presented in the following section, which is able to derive feasible solutions within a rea-

sonable running time, may be more appropriate.

2.4 Relax-optimize-and-fix matheuristic

In this section, we present the relax-optimize-and-fix matheuristic for the multi-site RCPSP.

In Section 2.4.1, we give an overview of the novel matheuristic. In Section 2.4.2, we de-

scribe the different steps of our matheuristic in detail. In Section 2.4.3, we illustrate the

matheuristic with the example project from Section 2.2.

2.4.1 Overview

Matheuristics are recent approaches for combinatorial optimization problems that combine

advantages of mathematical models and heuristic techniques (cf. Maniezzo et al., 2021) or

metaheuristic techniques (cf. Boschetti et al., 2009). As to the four essential characteristics

of accuracy, speed, simplicity and flexibility of good heuristics (cf. Cordeau et al., 2002),

matheuristics especially excel regarding their simplicity and flexibility. Matheuristics

are simple to implement since nowadays relatively easy-to-use modeling languages and

interfaces to various programming languages are available. Moreover, matheuristics are

flexible because additional constraints or alternative objective functions can easily be

incorporated using mathematical modeling.

As mentioned above, our matheuristic is specifically designed for devising good feasible

solutions within reasonable running time to instances of the multi-site RCPSP whose

size does not permit an immediate application of the mathematical model presented in

Section 2.3. To this end, we combine the mathematical model with a heuristic technique.

Among the different types of matheuristics presented in Della Croce et al. (2013), our

approach is related to the group of the continuous relaxation based matheuristics, which

according to Della Croce et al. (2013) cleverly exploit information extracted from the LP

relaxation of a mathematical model. The basic idea of our matheuristic is to iteratively

schedule subsets of the activities by solving an appropriate relaxation of the mathematical

model, which is obtained by relaxing the binary restrictions for subsets of the sequencing

variables.

More specifically, our matheuristic runs as follows. In each iteration, a subset of

the activities is scheduled while taking into account all activities of the instance. We

use an appropriate variant of the model (CT) presented in Section 2.3 to schedule these

activities. The matheuristic follows a relax-optimize-and-fix strategy; i.e., initially, the

binary restrictions on the sequencing variables in the variant of the model (CT) are relaxed

63

Paper II: MIP-based approaches for multi-site project scheduling

and then iteratively restored for a subset of the activities scheduled in the next iteration.

After each iteration, some activities of the subset are considered as scheduled, and hence,

some variables are fixed for these activities. The other activities remain in the subset

and can be rescheduled along with newly selected activities in the next iteration. An

important advantage of using the model (CT) in the matheuristic is that in the model

(CT), the sequence of the activities and the start times of the activities are captured using

different variable types. Hence, we can fix the sequence between the scheduled activities

and still keep the flexibility to move these activities along the timeline.

In our matheuristic, the trade-off between solution quality and running time can be

controlled by two parameters. The first parameter indicates how many activities are

scheduled in each iteration, i.e., it influences the number of variables for which the binary

restrictions are restored in each iteration. In general, the solution quality improves with

an increasing number of activities scheduled in each iteration, but the running time to

solve the variant of the model (CT) in each iteration also increases. Therefore, this

parameter trades off the solution quality against the running time in a single iteration.

The second parameter indicates how many activities are considered as scheduled after

each iteration and consequently how many activities are allowed to be rescheduled and

how many new activities are selected. In general, the solution quality improves with a

decreasing number of activities that are considered as scheduled after each iteration, but

the overall running time also increases because an increasing number of iterations has to

be conducted. Hence, this parameter allows us to control the number of iterations that

are required to derive a feasible solution to an instance, and it trades off the solution

quality against the running time over the entire process of the matheuristic.

2.4.2 Different steps of the matheuristic

In the matheuristic, set V is divided into three sets that contain the activities V N that

have not yet been scheduled, the activities V C that are scheduled in the current iteration

and the activities V S that have been scheduled and for which several variables are fixed.

Figure 2.4 shows an overview of the different steps of the matheuristic. In the following,

we describe these steps in more detail.

• In step 1 , the set V N is initialized to contain all real activities, and the sets V C

and V S are initialized as empty sets.

• In step 2 , c > 0 activities are selected from V N . To select these activities, a priority

rule is applied which may be of the same type such as those used in, e.g., the serial

schedule generation scheme. Please note that the selection of an appropriate priority

64

Paper II: MIP-based approaches for multi-site project scheduling

Start

Initialize V N := V , V C := ∅ and V S := ∅

Select c activities from V N based on prior-
ity rule. Let V t be the set of these c activi-

ties, then V N := V N \ V t and V C := V C ∪ V t

Apply ratio-based rule to derive ini-
tial site assignment for activities in V C

Set up model (CT′) and pass initial
site assignment to variables of (CT′)

Solve model (CT′)

V N = ∅?

Retrieve values of variables (start-time, site-
selection, resource-assignment, sequencing) in cur-

rent solution of (CT′) for activities in V S ∪ V C

and store these values as a partial solution

Select s activities from V C based on prior-
ity rule. Let V t be the set of these s activi-

ties, then V C := V C \ V t and V S := V S ∪ V t

Select s activities from V N based on prior-
ity rule. Let V t be the set of these s activi-

ties, then V N := V N \ V t and V C := V C ∪ V t

Pass updated sets V C and V S to (CT′) and pass
partial solution (see step) to variables of (CT′)

1

2

3

4

5

6

7

8

9

6

Stop

No

Yes

Figure 2.4: Overview of the different steps of the matheuristic

65

Paper II: MIP-based approaches for multi-site project scheduling

rule considerably influences the performance of the matheuristic. In Section 2.5.4,

we discuss how to define a suitable value for c.

• In step 3 , we derive an initial site assignment for the activities in V C . The idea here

is to select for each activity i a resource type k, of which many units are required to

execute activity i and of which only a few mobile units are available; therefore, it

might be promising to schedule activity i at a site where many nonmobile resource

units of resource type k are available. Thus, we propose a rule that is based on a ratio

between two key figures that can be computed for each activity i and each resource

type k. For each activity, the resource type k∗ with the largest ratio rik∗

1+
∑Rk∗

u=1 Mk∗u
is selected. Next, we determine at which site the highest number of nonmobile

resource units of the selected resource type k∗ are located. This site is selected

as the initial site assignment of activity i. If resource type k∗ has no nonmobile

resource units, the site at which the highest number of nonmobile resource units are

located over all resource types is selected as the initial site assignment of activity i.

In the case of any ties, the respective resource or site index is used as tie-breaker.

Initial testing has indicated that providing an initial site assignment by using this

simple rule improves the solution quality of the matheuristic without increasing the

running time. It is further important to note that the initial site assignment will be

passed to the corresponding variables of a variant of the model (CT) introduced in

step 4 as initial values, but the values of these variables may still change during

the solution process.

• In step 4 , a variant of the model (CT) referred to as model (CT′) is set up. The

model (CT′) differs from the model (CT) in regard to several constraints and the

domains of some of the variables. The binary restrictions on the sequencing variables

yij are initially relaxed for all activities and restored only if both activities i and j

are in V C ∪ V S. In the model (CT), the redundant constraints (2.8) and (2.9) are

added for all activities. However, it turns out to substantially speed up the solution

process in the model (CT′) to add only the constraints in which the corresponding

sequencing variables are defined as binary in each iteration instead of also adding

the constraints in which the corresponding binary restrictions of the sequencing

variables are relaxed. Hence, the redundant constraints (2.10) are set up for the

activities (i, j) in F 2 only if these activities are in V C ∪ V S:

yij + yji = 1 ((i, j) ∈ F 2 : i, j ∈ V C ∪ V S) (2.10)

For the same reason, the second type of redundant constraints (2.11) are added only

66

Paper II: MIP-based approaches for multi-site project scheduling

for the activities in V C ∪ V S:

yij + yji ≤ 1 (i, j ∈ V C ∪ V S : i < j, (i, j) /∈ TE) (2.11)

Starting from the second iteration, some of the variables associated with the activ-

ities in V S are fixed. Here, s∗il, r
∗u
ik and y∗ij denote the values that the site-selection,

resource-assignment and sequencing variables took in the solution to the model

(CT′) in the previous iteration, respectively. Constraints (2.12) fix the site-selection

variables of the activities in V S to the values that the corresponding variables took

in the last iteration.

sil = s∗il (i ∈ V S; l ∈ L) (2.12)

Constraints (2.13) fix the resource-assignment variables of the activities in V S to

the values that these variables took in the last iteration.

ruik = r∗uik (i ∈ V S; k ∈ R; u = 1, . . . , Rk : rik > 0) (2.13)

Finally, constraints (2.14) fix the sequencing variables between activities in V S to

the values that the corresponding variables took in the last iteration.

yij = y∗ij (i, j ∈ V S) (2.14)

The complete model (CT′) reads as follows:

(CT′)

Min. Sn+1

s.t. (2.1) – (2.7)

(2.10) – (2.14)

Si ∈ Z≥0 (i ∈ V ∪ {0, n+ 1})
sil ∈ {0, 1} (i ∈ V ; l ∈ L)

ruik ∈ {0, 1} (i ∈ V ; k ∈ R; u = 1, . . . , Rk : rik > 0)

yij ∈ {0, 1} (i, j ∈ V C ∪ V S : i 6= j, (i, j) /∈ TE)

yij ∈ [0, 1] (i, j ∈ V : i 6= j, (i, j) /∈ TE, {i, j} * V C ∪ V S)

For instances that include activities with noninteger durations or noninteger trans-

portation times, we set Si ∈ R≥0 (i ∈ V ∪ {0, n+ 1}). Moreover, we pass the initial

67

Paper II: MIP-based approaches for multi-site project scheduling

site assignment derived in step 3 as initial values for the corresponding variables of

(CT′). Furthermore, the parameter c (see step 2) influences how many sequencing

variables are defined as binary in the model (CT′). We discuss in Appendix 2.A

how an appropriate value for parameter c can be derived.

• In step 5 , the model (CT′) is solved using a generic MBLP solver with a prescribed

time limit. If no feasible solution is found within the time limit, the limit is extended

until a feasible solution is found. If V N is empty, we stop; otherwise, there are still

activities that need to be scheduled, and we continue with step 6 .

• In step 6 , a partial solution is stored based on the devised solution to the model

(CT′). The partial solution comprises the values of the start-time, the site-selection

and the resource-assignment variables for the activities in V S ∪ V C as well as the

values of the sequencing variables between the activities in V S ∪ V C in the devised

solution.

• In step 7 , s activities with 0 < s ≤ c are selected from V C based on the priority rule

from step 2 . These activities are then removed from V C and included in V S. For

these activities, some variables are fixed in the next iteration (see constraints (2.12)–

(2.14)).

• In step 8 , s activities are selected from V N based on the priority rule from step

2 . These activities are removed from V N and included in V C to be scheduled in

the next iteration. If there are fewer than s activities in V N , all activities in V N

are selected.

• In step 9 , because V C was updated in steps 7 and 8 , some binary restrictions

that were relaxed are now restored (see the domains of the sequencing variables in

(CT′)). Moreover, as V S was updated in step 7 , some variables that were not fixed

are now fixed to their corresponding values (see constraints (2.12)–(2.14)). Finally,

some redundant constraints are added (see constraints (2.10)–(2.11)). Next, the

partial solution from step 6 is provided as initial values for the variables of the

model (CT′) in the same way as the initial site assignment in step 4 .

The matheuristic stops when—after step 5 is completed—V N is empty and, thus, a

feasible solution has been derived.

68

Paper II: MIP-based approaches for multi-site project scheduling

Table 2.2: Latest start times (LST) and latest finish times (LFT) of the activities in the
example project

Activity 1 2 3 4 5 6 7

LST 2 0 2 3 4 3 4
LFT 3 3 3 5 5 5 5

2.4.3 Illustration of the matheuristic

We illustrate the matheuristic with the example project from Section 2.2 with c = 4 and

s = 3. First, the sets V S = ∅, V C = ∅, and V N = {1, 2, 3, 4, 5, 6, 7} are initialized.

Second, c = 4 activities are selected from V N . Here, we apply the latest start time

priority rule with the latest finish time priority rule as a tie breaker (LST + LFT); i.e., the

activity with the smallest latest start time (and, in case of a tie, with the smallest latest

finish time) is selected first. The latest start time and the latest finish time of each real

activity are determined by (forward and) backward pass calculation (cf. Demeulemeester

and Herroelen, 2002). The latest start time and the latest finish time are standard priority

rules that have been shown to perform well in the recent scheduling literature (cf., e.g.,

Almeida et al., 2016) and perform well in our matheuristic. Table 2.2 states the latest

start time and the latest finish time of each real activity, which results in V C = {2, 1, 3, 4}
and V N = {5, 6, 7}.

Third, the initial site assignment is derived by the ratio-based rule. The rule derives

site A as the initial site for activities 1 and 4 and site B as the initial site for activities 2

and 3. For activity 4, for example, the resource type k∗ = 1 is selected, since it has the

largest ratio r41

1+
∑R1

u=1 M1u
= 1

1+0
= 1. Resource type k∗ = 1 has two nonmobile resource

units located at site A but none at site B. Thus, site A is selected as the initial site for

activity 4.

Fourth, the model (CT′) is set up, and the initial site assignment is passed to the

variables of the model (CT′).

Fifth, the (CT′) is solved with the Gurobi solver and a time limit of 60 seconds.

Figure 2.5 (top) shows the optimal solution obtained in the first iteration. The activities in

V C are highlighted in bold and the activities in V N are highlighted as slightly transparent.

Two pairs of activities {2, 5} and {6, 7} are executed in parallel, which is feasible because

the binary restrictions on the sequencing variables between these pairs of activities were

relaxed in the model (CT′) in the first iteration.

69

Paper II: MIP-based approaches for multi-site project scheduling

0 1 2 3 4 5 6 7 8

Resource
type

k = 2

k = 1

Resource
unit

u = 2

u = 1

u = 2

u = 1

Mobility
(Site)

Mobile

Nonmobile
(Site B)

Nonmobile
(Site A)

Nonmobile
(Site A) 1

1

2

2

3

4

4

5

5

6

7

7

Legend:

i Activity i ∈ V C

i Activity i ∈ V S

i Activity i ∈ V N Site A

Site B

Resource
transport
Output
transport

t

0 1 2 3 4 5 6 7 8

Resource
type

k = 2

k = 1

Resource
unit

u = 2

u = 1

u = 2

u = 1

Mobility
(Site)

Mobile

Nonmobile
(Site B)

Nonmobile
(Site A)

Nonmobile
(Site A) 1

1

2

2

3

4

4

5

5

67

7

t

Figure 2.5: Schedule for the example project derived by the matheuristic after Iteration 1
(top) and after Iteration 2 (bottom)

70

Paper II: MIP-based approaches for multi-site project scheduling

Sixth, the partial solution based on the current solution to the model (CT′) is stored.

For example, for the site-selection variable s4A, the value of 1 is stored.

Seventh, the s = 3 activities with the highest priority among the c activities in V C

are removed from V C and included in V S. In the first iteration, these are the activities

{2, 1, 3}.
Eighth, s = 3 activities with the highest priority among the activities in V N are

removed from V N and included in V C . These are the activities {6, 5, 7}.
In Iteration 2, the activities V C = {4, 6, 5, 7} must be scheduled. Figure 2.5 (bottom)

shows the optimal solution obtained in the second iteration. The activities V S are not

highlighted. No activities are executed in parallel because all activities are either in V C

or V S and, thus, all sequencing variables are defined as binary. Activity 2 is scheduled

one time unit later than in Iteration 1 even though it is in V S. This is possible because

only the sequencing variables between all activities in V S are fixed, but not their start

time variables. After Iteration 2, the matheuristic stops, and a feasible solution has been

found that also turns out to be an optimal solution for our example project.

2.5 Computational results

In this section, we provide the results of our computational experiments in which we

compare the model presented in Section 2.3 and the matheuristic presented in Section 2.4

with the state-of-the-art approaches from the literature presented by Laurent et al. (2017).

In Section 2.5.1, we describe the experimental design, and in Section 2.5.2, we describe the

metrics used to evaluate the performance of the examined approaches. In Section 2.5.3,

we compare the performance of three exact approaches based on the presented continuous-

time model and the discrete-time model proposed by Laurent et al. (2017) using a standard

mathematical programming solver. In Section 2.5.4, we analyze the trade-off between

solution quality and running time that can be controlled by setting the parameter values

of the presented matheuristic, and we compare its performance to the performance of the

four metaheuristics of Laurent et al. (2017).

2.5.1 Experimental design

We implemented all models and our matheuristic in Python 3.7, and as mathematical

programming solver we used the Gurobi Optimizer 9.1 with the default solver settings. All

computations were performed on an HP workstation with one Intel Xeon CPU with 2.20

GHz clock speed and 128 GB RAM. For the three exact approaches, we set a time limit

of 300 seconds. For the matheuristic, we used the same parameter setting as described

71

Paper II: MIP-based approaches for multi-site project scheduling

in Section 2.4.3 except for the values of the parameters c and s (see Section 2.5.4 and

Appendix 2.A). The initial values passed to the model (CT′) in the matheuristic are

provided to the Gurobi Optimizer by the start attribute of the variables (cf. https://www.

gurobi.com/documentation/9.1/refman/start.html). To ensure a fair comparison of

the performance, we also ran the implementation of the four metaheuristics of Laurent

et al. (2017) on the same workstation; this implementation was kindly provided by the

authors. Moreover, Laurent et al. (2017) adjusted the test instances of the sets j30 and j60

from the PSPLIB (cf. Kolisch and Sprecher, 1996) to the multi-site context and named

these newly generated sets MSj30 and MSj60, respectively. We used the same sets of

instances for our experiments.

2.5.2 Description of performance metrics

To evaluate the performance of the tested exact and heuristic approaches, we use the

following metrics:

• #Feas: Number of instances for which a feasible schedule is found within the pre-

scribed time limit.

• #Opt: Number of instances for which a feasible schedule is found and proved to be

optimal within the prescribed time limit.

• GapCP (%): Average relative deviation between the objective function value of the

best solution returned by the respective approach (OFV) and the critical-path-based

lower bound (CP), calculated as (OFV − CP)/CP .

• CPU (s): Average running time to derive the best solution returned by the respective

approach.

• #MH+: Number of instances for which the matheuristic finds a solution with a

lower OFV than the respective metaheuristic.

• #MH−: Number of instances for which the matheuristic finds a solution with a

higher OFV than the respective metaheuristic.

In all tables, bold values indicate the best results among all tested approaches.

2.5.3 Computational results: Exact approaches

In Table 2.3, we report the results of the exact approaches based on the model (CT), the

model (CT) with integer start-time variables, subsequently referred to as model (CTint),

72

https://www.gurobi.com/documentation/9.1/refman/start.html
https://www.gurobi.com/documentation/9.1/refman/start.html

Paper II: MIP-based approaches for multi-site project scheduling

Table 2.3: Results for all MSj30 instances with the models (CT), (CTint) and (DT)

Activities Sites Model #Feas #Opt GapCP (%) CPU (s)

30 2
(CT) 480 327 25.86 112.00
(CTint) 480 331 25.17 110.83
(DT) 455 272 34.93 159.44

30 3
(CT) 480 284 33.92 138.40
(CTint) 480 289 33.28 139.25
(DT) 444 224 51.80 190.93

Table 2.4: Results for the MSj30 instances for which with each of the models (CT), (CTint)
and (DT) at least a feasible solution was obtained

Activities Sites Model #Feas #Opt GapCP (%) CPU (s)

30 2
(CT) 455 323 22.04 102.92
(CTint) 455 325 21.35 102.80
(DT) 455 272 34.93 151.71

30 3
(CT) 444 279 28.51 127.50
(CTint) 444 284 27.91 128.25
(DT) 444 224 51.80 182.08

and the discrete-time model of Laurent et al. (2017), subsequently referred to as model

(DT), for all MSj30 instances. In addition, in Table 2.4, we present the corresponding

results for the MSj30 instances for which each approach obtains at least a feasible solution.

With the model (CT), a feasible solution for all MSj30 instances is found. In contrast,

with the model (DT), no feasible solutions are found for numerous instances. In terms

of all other performance metrics, the model (CT) outperforms the model (DT); i.e., with

the model (CT), a higher number of optimal solutions are derived, a lower average gap

to the critical-path-based lower bound is achieved, and a lower average running time is

required. Moreover, our results indicate that the problem becomes more challenging as

the number of sites increases. We find that defining the start-time variables of the model

(CT) as integer variables further improves its performance.

73

Paper II: MIP-based approaches for multi-site project scheduling

2.5.4 Computational results: Heuristic approaches

In this section, we analyze an important feature of our matheuristic, namely the possibility

to control the trade-off between solution quality and computation time. Moreover, we

compare the performance of our matheuristic to the performance of the state-of-the-art

heuristic approaches from the literature.

First, we examine the trade-off between solution quality and running time that can

be controlled by the two parameters c and s of our matheuristic. Recall that parameter c

indicates how many activities are scheduled in each iteration, and parameter s indicates

how many activities are considered as scheduled after each iteration. To examine this

trade-off, we ran our matheuristic for various values of parameter s, while fixing param-

eter c to a value of c = 12. For the sake of readability, we explain how we derived this

value for parameter c in Appendix 2.A.

In Table 2.5, we report the results of the matheuristic with these parameter settings

for all MSj30 and MSj60 instances. The results indicate that decreasing parameter s

improves the solution quality considerably at the expense of additional running time.

Moreover, the results show that our matheuristic finds a feasible solution for all MSj30

and MSj60 instances within a reasonable running time. Additionally, compared to the

exact approach based on the model (CT) with the imposed time limit of 300 seconds, the

matheuristic on average derives solutions with a lower objective function value, while its

average running time is considerably lower. We further evaluated the percentage of the

running time that the matheuristic spends in the mathematical programming component

(i.e., the total time used to set up and solve model (CT′)) versus the percentage of the

running time it spends in the heuristic component (e.g., to apply the priority rule to select

the first c or the next s activities). Overall, more than 99% of the total running time is

spent in the mathematical programming component.

Second, we compare the performance of our matheuristic to the performance of the

following four metaheuristics of Laurent et al. (2017): local search (LS), simulated an-

nealing (SA), iterated local search with a better walk acceptance criterion (ILS BW) and

iterated local search with a simulated annealing acceptance criterion (ILS SA). For a fair

comparison, we use for each combination of the number of activities (30 and 60) and

the number of sites (2 and 3) in the instances the parameter setting of the matheuristic

for which the average running time is the closest to the average running times of the

metaheuristics.

In Table 2.6, we report the results of the matheuristic with these parameter settings

and the four metaheuristics for all MSj30 and MSj60 instances. For the MSj30 instances,

the average running time of the matheuristic is slightly higher than the average running

74

Paper II: MIP-based approaches for multi-site project scheduling

Table 2.5: Results for all MSj30 and MSj60 instances for the matheuristic (MH) for various
values of s

Activities Sites Parameters of MH #Feas GapCP (%) CPU (s)

30 2 c = 12

s = 2 480 25.02 61.86
s = 4 480 25.48 36.75
s = 6 480 26.01 28.81
s = 8 480 27.13 24.39
s = 10 480 27.98 21.14
s = 12 480 29.48 18.81

30 3 c = 12

s = 2 480 31.59 102.57
s = 4 480 32.35 61.32
s = 6 480 32.86 47.97
s = 8 480 34.21 38.83
s = 10 480 34.90 34.07
s = 12 480 37.20 29.76

60 2 c = 12

s = 2 480 23.17 277.73
s = 4 480 23.91 164.50
s = 6 480 24.99 123.18
s = 8 480 25.59 100.40
s = 10 480 26.62 88.50
s = 12 480 28.05 83.45

60 3 c = 12

s = 2 480 31.09 375.90
s = 4 480 32.52 221.63
s = 6 480 33.45 166.20
s = 8 480 35.42 137.08
s = 10 480 38.14 122.94
s = 12 480 39.52 117.38

75

Paper II: MIP-based approaches for multi-site project scheduling

Table 2.6: Comparison of the matheuristic to the state-of-the-art heuristics for all MSj30
and MSj60 instances

Activities Sites Approach #Feas GapCP (%) #MH+ #MH− CPU (s)

30 2

MH (c = 12, s = 2) 480 25.02 0 0 61.86
LS 480 29.72 258 61 55.50
SA 480 26.50 178 93 55.51
ILS LS 480 25.86 153 103 70.35
ILS SA 480 26.04 152 110 70.80

30 3

MH (c = 12, s = 4) 480 32.35 0 0 61.32
LS 480 37.65 276 89 60.17
SA 480 34.11 219 119 60.44
ILS LS 480 33.42 180 142 76.53
ILS SA 480 33.37 192 152 76.42

60 2

MH (c = 12, s = 6) 480 24.99 0 0 123.18
LS 480 27.95 231 133 128.97
SA 480 26.19 211 168 130.26
ILS LS 480 26.41 198 163 168.71
ILS SA 480 26.57 197 161 168.68

60 3

MH (c = 12, s = 8) 480 35.42 0 0 137.08
LS 480 38.29 289 123 142.76
SA 480 35.51 235 172 143.66
ILS LS 480 36.03 242 172 185.79
ILS SA 480 36.43 249 149 185.98

time of some of the metaheuristics, while the matheuristic has on average a better solution

quality than do the four metaheuristics. For the MSj60 instances, the matheuristic has

a shorter average running time than all four metaheuristics and derives solutions with

a lower average gap to the critical-path-based lower bound. Moreover, we can see from

Table 2.6 that for a large number of instances, the matheuristic derives a solution with a

lower objective function value than the metaheuristics.

2.6 Conclusion

In this paper, we studied a variant of the resource-constrained project scheduling problem

in which activities can be scheduled at different sites and some of the resource units can be

transported between sites. We proposed a continuous-time model and a matheuristic for

this planning problem. The continuous-time model is based on continuous variables that

76

Paper II: MIP-based approaches for multi-site project scheduling

represent the start times of the activities and binary variables that represent the selection

of a site for the activities, the assignment of the activities to the resource units and

the sequence between the activities if the activities are assigned to at least one common

resource unit. The matheuristic is based on a variant of the continuous-time model

in which the binary restrictions on the sequencing variables are initially relaxed for all

activities and then iteratively restored for a subset of the activities that is scheduled in the

current iteration. In each iteration of the matheuristic, all activities are taken into account

when the respective subset of activities is scheduled. The model and the matheuristic

outperform state-of-the-art exact and heuristic approaches from the literature in terms of

various performance measures on a set of standard instances.

In future research, the developed approaches could be used to further analyze the

benefit of pooling resources among different sites. Furthermore, for instances with sub-

stantially more than 60 activities, the time used to solve the variant of the continuous-time

model in each iteration of the matheuristic may strongly increase. Thus, we suggest divid-

ing these instances into several smaller instances and successively deriving a schedule for

these smaller instances. Finally, similar matheuristics based on the relax-optimize-and-fix

strategy could be designed for related resource-constrained project scheduling problems.

For the multi-mode RCPSP, for example, the sequencing between activities could be sim-

ilarly disregarded in a first step and then iteratively determined.

Appendix

2.A Appendix A

We derived the value of parameter c used for the computational analysis in Section 2.5.4

by running our matheuristic for various values of parameter c, while fixing parameter s

to a value of s = 2. We fixed the value of parameter s to a small value, since small

values generally lead to a better solution quality than large values (at the expense of a

longer running time). To derive a value for parameter c, we selected the largest instances

comprising 60 activities and 3 sites.

In Table 2.A.1, we report the results of this examination. When parameter c is in-

creased, the solution quality first improves and then deteriorates again while the average

running time increases consistently. From the tested values of parameter c, we selected

c = 12 because this value resulted in the best solution quality.

In general, the solution quality improves for increasing values of parameter c at the ex-

pense of additional running time. The deterioration of the solution quality that we observe

77

Paper II: MIP-based approaches for multi-site project scheduling

Table 2.A.1: Results for the MSj60 instances comprising 3 sites for the matheuristic for
various values of c

Activities Sites c #Feas GapCP (%) CPU (s)

60 3

8 480 33.90 230.04
12 480 31.09 375.90
16 480 31.21 470.80
20 480 33.72 532.09

for large values of parameter c, however, is due to the running time limit of 60 seconds

imposed in each iteration of the matheuristic. We imposed this running time limit to

prevent excessively long total running times. However, for large values of parameter c,

this running time limit may force the solution process of model (CT′) to be terminated

prematurely which may lead to a poor solution quality.

78

Bibliography

Almeida, B.F., Correia, I., Saldanha-da-Gama, F., 2016. Priority-based heuristics for

the multi-skill resource constrained project scheduling problem. Expert Systems With

Applications 57, 91–103.

Boschetti, M.A., Maniezzo, V., Roffilli, M., Bolufé Röhler, A., 2009. Matheuristics: Op-

timization, simulation and control, in: Blesa, M.J., Blum, C., Di Gaspero, L., Roli,

A., Sampels, M., Schaerf, A. (Eds.), International Workshop on Hybrid Metaheuristics.

Springer, pp. 171–177.

Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y., Semet, F., 2002. A guide to

vehicle routing heuristics. Journal of the Operational Research Society 53(5), 512–522.

Della Croce, F., Grosso, A.C., Salassa, F., 2013. Matheuristics: embedding MILP solvers

into heuristic algorithms for combinatorial optimization problems, in: Siarry, P. (Ed.),

Heuristics: Theory and Applications. Nova Science Publishers, New York, pp. 53–67.

Demeulemeester, E.L., Herroelen, W., 2002. Project Scheduling: a Research Handbook.

Kluwer Academic Publishers, Boston.

Gnägi, M., Trautmann, N., 2019. A continuous-time mixed-binary linear program-

ming formulation for the multi-site resource-constrained project scheduling problem,

in: Wang, M., Li, J., Tsung, F., Yeung, A. (Eds.), Proceedings of the 2019 IEEE Inter-

national Conference on Industrial Engineering and Engineering Management, Macau.

pp. 611–614.

Gnägi, M., Rihm, T., Zimmermann, A., Trautmann, N., 2019. Two continuous-time

assignment-based models for the multi-mode resource-constrained project scheduling

problem. Computers & Industrial Engineering 129, 346–353.

Kadri, R., Boctor, F., 2014. Multi-mode resource-constrained project scheduling with

sequence dependent transfer times, in: Fliedner, T., Kolisch, R., Naber, A. (Eds.),

79

Paper II: MIP-based approaches for multi-site project scheduling

14th International Conference on Project Management and Scheduling, Munich. pp.

116–119.

Kadri, R., Boctor, F., 2018. An efficient genetic algorithm to solve the resource-

constrained project scheduling problem with transfer times: The single mode case.

European Journal of Operational Research 265(2), 454–462.

Kolisch, R., Sprecher, A., 1996. PSPLIB—a project scheduling problem library. European

Journal of Operational Research 96(1), 205–216.

Krüger, D., Scholl, A., 2009. A heuristic solution framework for the resource constrained

(multi-)project scheduling problem with sequence-dependent transfer times. European

Journal of Operational Research 197(2), 492–508.

Krüger, D., Scholl, A., 2010. Managing and modelling general resource transfers in

(multi-)project scheduling. OR Spectrum 32(2), 369–394.

Laurent, A., Deroussi, L., Grangeon, N., Norre, S., 2017. A new extension of the RCPSP in

a multi-site context: Mathematical model and metaheuristics. Computers & Industrial

Engineering 112, 634–644.

Liu, Y., Zhou, J., Lim, A., Hu, Q., 2021. Lower bounds and heuristics for the unit-capacity

resource constrained project scheduling problem with transfer times. Computers &

Industrial Engineering 161, 107605.

Maniezzo, V., Boschetti, M.A., Stützle, T., 2021. Preface, in: Maniezzo, V., Boschetti,

M.A., Stützle, T. (Eds.), Matheuristics. Springer, Cham, pp. 143–158.

Mika, M., Waligora, G., Weglarz, J., 2008. Tabu search for multi-mode resource-

constrained project scheduling with schedule-dependent setup times. European Journal

of Operational Research 187(3), 1238–1250.

Poppenborg, J., Knust, S., 2016. A flow-based tabu search algorithm for the RCPSP with

transfer times. OR Spectrum 38(2), 305–334.

Rihm, T., Trautmann, N., 2017. An assignment-based continuous-time MILP model for

the resource-constrained project scheduling problem, in: De Meyer, A., Chai, K.H.,

Jiao, R., Chen, N., Xie, M. (Eds.), Proceedings of the 2017 IEEE International Con-

ference on Industrial Engineering and Engineering Management, Singapore. pp. 35–39.

80

Paper II: MIP-based approaches for multi-site project scheduling

Sabzehparvar, M., Seyed-Hosseini, S.M., 2008. A mathematical model for the multi-mode

resource-constrained project scheduling problem with mode dependent time lags. The

Journal of Supercomputing 44(3), 257–273.

81

Paper III

A matheuristic for locating obnoxious facilities3

Tamara Bigler

Department of Business Administration
University of Bern

Contents
3.1 Introduction . 84

3.2 Obnoxious p-median problem 86

3.2.1 Problem description . 86

3.2.2 Illustrative example . 87

3.3 Literature . 88

3.3.1 Exact approaches . 88

3.3.2 Metaheuristic approaches . 89

3.3.3 Research gap . 91

3.4 Matheuristic . 91

3.4.1 Overview . 91

3.4.2 Generation of initial solutions 92

3.4.3 Improvement procedure . 94

3.4.4 Illustrative example . 98

3.4.5 Clustering of clients . 100

3.5 Computational results . 101

3.5.1 Instances . 101

3.5.2 Leading metaheuristics . 103

3.5.3 Experimental design . 103

3.5.4 Results benchmark instances 104

3.5.5 Results new instances . 105

3.5.6 Results when clustering clients 107

3.6 Extension . 111

3.6.1 Description of extension . 111

3.6.2 Results on selected instances 113

3.7 Conclusion . 114

Appendices . 116

3Paper under review, submitted to Computers & Operations Research

82

3.A Appendix A . 116

3.B Appendix B . 116

3.C Appendix C . 118

3.D Appendix D . 118

3.E Appendix E . 120

Bibliography . 134

83

Paper III: A matheuristic for locating obnoxious facilities

Abstract

Facilities such as waste plants or wind turbines are often referred

to as obnoxious facilities because they negatively affect their nearby en-

vironment, for example, through noise or pollution. In the obnoxious

p-median problem, a set of clients and a set of potential locations for

obnoxious facilities are given. From the set of potential locations, p

facilities must be opened. The goal is to place the facilities far away

from clients to avoid high negative effects on them. Existing approaches

for this planning problem are either not scalable to large instances or

not flexible in considering practical constraints that often occur in real-

world settings. To address these limitations, we propose a matheuristic

for this planning problem that scales to instances involving thousands

of clients and potential locations and is flexible to incorporate practi-

cal constraints. Our computational results show that the matheuristic

outperforms the leading metaheuristics from the literature on large in-

stances and is competitive with the leading metaheuristics on small and

medium instances.

3.1 Introduction

Facility location problems typically consist of placing facilities in a given space (cf. ReVelle

and Eiselt, 2005). Depending on the facilities’ characteristics, different objectives arise.

Some facilities are desirable to the nearby population because they generate added value

and should thus be located close to the population, i.e., the clients. Other facilities

are obnoxious because they have adverse effects on their close surroundings and should

therefore be placed away from the population. Examples of obnoxious facilities are waste

plants, wind turbines, and quarantine sites. The undesirable effects include odor nuisance

in the case of a waste plant, noise in the case of a wind turbine, and risk of infection in

the case of a quarantine site. The location decisions of these facilities have far-reaching

consequences for the population because an obnoxious facility may impact the nearby

population’s health or life quality and substantially influences real estate prices.

An often-studied planning problem is the obnoxious p-median problem (OPMP), which

we consider in this paper. In the OPMP, a set of clients and a set of potential locations

for obnoxious facilities are given. From the set of potential locations, p facilities must

be selected to be open. For each client, the distance to the nearest open facility must

be determined. The sum of these distances must be maximized. Although clients do not

84

Paper III: A matheuristic for locating obnoxious facilities

necessarily receive services from the obnoxious facilities, the term client is common in

the literature. Therefore, we also refer to them as clients in this paper. In this planning

problem, a client is assumed to be only affected by the undesirable effects of the nearest

open facility. For example, when a facility emits an unpleasant odor, the main contributor

to the strength of the odor is assumed to be the client’s nearest open facility.

Several exact approaches for the OPMP have been recently introduced. Of the exact

models, the model of Lin and Chiang (2021) has been shown to deliver the best perfor-

mance. It derives good feasible solutions to instances involving up to 300 clients and

300 potential locations for facilities in reasonable running time. For larger instances, ex-

act approaches are unsuitable due to their limited scalability. To address the issue of

scalability, various metaheuristics have been introduced for the OPMP. The two leading

metaheuristics have been proposed by Gokalp (2020) and Chang et al. (2021) and have

been applied to instances comprising up to 450 clients and 450 potential locations for fa-

cilities. Since real-world instances can involve a substantially higher number of clients and

potential locations (cf. Kalczynski et al., 2022), it is important to evaluate the scalability

of these metaheuristics on even larger instances. A drawback of existing metaheuristics

is their lack of flexibility in incorporating practical constraints. In practical settings, it

is often the case that additional constraints must be enforced. For example, authorities

may impose an upper bound on the number of open facilities in specific regions. While

exact approaches can easily be adjusted to incorporate practical constraints, the existing

metaheuristics are difficult to adjust. Hence, none of the existing approaches are both

scalable and flexible, which is why we propose here a matheuristic that combines the

flexibility of exact approaches with the scalability of metaheuristics.

The proposed matheuristic consists of an initialization procedure and an improvement

procedure. The initialization procedure constructs a set of diverse initial solutions. The

improvement procedure improves the initial solutions by iteratively removing and adding

a given number of facilities. The removal and addition of facilities is accomplished with

two adapted versions of the model of Lin and Chiang (2021). The main methodolog-

ical contributions are fourfold. First, we design the initialization procedure such that

the generated solutions are guaranteed to be very different from each other. This diver-

sification ensures that the solution space is explored effectively. Second, we introduce

enhancements for the model formulations used in the improvement procedure. These

enhancements substantially reduce the running time for setup and solution of the mod-

els. Third, the improvement procedure generates new subproblems based on information

from previous subproblems, which increases the likelihood of finding large improvements

early in the search process. Fourth, for instances involving a vast number of clients, we

85

Paper III: A matheuristic for locating obnoxious facilities

additionally present a scaling technique that is based on the clustering of clients. All

these contributions are useful for the development of matheuristics for related planning

problems.

We compare the performance of our matheuristic to the performance of the two leading

metaheuristics from Gokalp (2020) and Lin and Chiang (2021) on well-known benchmark

instances from the literature and new instances that we introduce in this paper. Our pro-

posed matheuristic outperforms the leading metaheuristics on large instances comprising

thousands of clients and potential locations for facilities. Moreover, it is competitive with

both metaheuristics for small and medium instances. Finally, we show that practical

constraints can be easily incorporated in our matheuristic.

The rest of this paper is structured as follows. In Section 3.2, we describe the planning

problem in more detail. In Section 3.3, we provide an overview of the most closely related

literature. In Section 3.4, we present the proposed matheuristic. In Section 3.5, we report

the computational results for the instances of the OPMP. In Section 3.6, we introduce

an extension of the OPMP and provide results of the matheuristic for selected instances.

Finally, in Section 3.7, we give some concluding remarks and an outlook on promising

directions for future research.

3.2 Obnoxious p-median problem

In this section, we describe the planning problem in more detail (cf. Section 3.2.1) and

illustrate it by means of a small example (cf. Section 3.2.2).

3.2.1 Problem description

The planning problem can be stated as follows (cf., e.g., Lin and Chiang, 2021). Given are

a set of n clients denoted as I = {1, . . . , n} and a set of m potential locations for facilities

denoted as J = {1, . . . ,m} and subsequently referred to as potential facilities. Each

client i ∈ I and each potential facility j ∈ J corresponds to a point in a plane vi ∈ R2 and

wj ∈ R2, respectively. The parameter dij denotes the distance (e.g., Euclidean) between

each client i and each potential facility j that can be computed based on the respective

coordinates. Please note that the matheuristic introduced in Section 3.4 is also applicable

to instances where only the distances dij but not the coordinates are available. For each

client i, the distance Di to the nearest open facility must be determined. The goal is to

open p < m facilities such that the sum of the distances Di is maximized. Tamir (1991)

show that this planning problem is NP-hard.

86

Paper III: A matheuristic for locating obnoxious facilities

Lin and Chiang (2021) introduce a mixed-integer program for the OPMP, subsequently

referred to as model (OM). The variables are described in Table 3.2.1. For each client i,

a facility sequence Fi is derived in which the potential facilities are sorted in ascending

order of the distances dij. The index of a potential facility at position k of the sequence

is denoted by fik and Fi = {fik : k = 1, . . . ,m}.

(OM)

Max.
∑

i∈I

Di

s.t.
∑

j∈J

yj = p

Di ≤ difim −
∑

k<m

(difi,k+1
− difik)vifik (i ∈ I)

vifik ≤ vifi,k+1
(i ∈ I, k < m)

∑

i∈I

vij ≥ nyj (j ∈ J)

yj ∈ {0, 1} (j ∈ J)

vij ∈ {0, 1} (i ∈ I, j ∈ J)

Di ≥ 0 (i ∈ I)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

In the objective function (3.1), the sum of the distances from each client i to the client’s

nearest open facility is maximized. Constraint (3.2) ensures that exactly p facilities are

opened. Constraints (3.3) pose an upper bound on the distance Di from each client i to

the client’s nearest open facility in the form of a telescopic sum. Constraints (3.4) force

the variable vij to take the value one if facility j is further away from client i than at

least one open facility. Constraints (3.5) ensure that the variables vij take the value of

one for each client i if facility j is opened. Finally, constraints (3.6) and (3.7) define the

domains of the binary variables, and constraints (3.8) define the domains of the continuous

variables.

3.2.2 Illustrative example

We present a small example to illustrate the planning problem described in Section 3.2.1.

Given is a set of n = 45 clients and a set of m = 45 potential facilities. In total, p = 8

facilities must be opened. Figure 3.2.1 shows the coordinates of all clients and potential

facilities and an optimal solution to the example. The distances dij between each client i

and each potential facility j are computed using the Euclidean distance. The distance

to the nearest open facility for each client is highlighted with a gray line. The objective

87

Paper III: A matheuristic for locating obnoxious facilities

Table 3.2.1: Variable descriptions

Variable Description

Di Distance of client i to nearest open facility

yj

{
= 1, if facility j is open
= 0, otherwise

vij

= 1, if facility j is open or further away from client i than
at least one open facility
= 0, otherwise

function value of this optimal solution is 455.7.

3.3 Literature

In the literature, various obnoxious facility location problems have been studied (cf.

Church and Drezner, 2022 for an overview). Here, we focus on the literature on the

OPMP. In Section 3.3.1, we present the exact solution approaches from the literature, and

in Section 3.3.2, we discuss the metaheuristic approaches that have been introduced for

the OPMP. To the best of our knowledge, these are the only types of solution approaches

that exist for the OPMP. Readers interested in extensions of the OPMP are referred to

the following articles: Colmenar et al. (2018), Sánchez-Oro et al. (2022), Kalczynski et al.

(2020), Kalczynski and Drezner (2021), and Kalczynski and Drezner (2022).

3.3.1 Exact approaches

Labbé et al. (2001) introduce the OPMP and provide a proof of its NP-hardness. In Belotti

et al. (2007), the same authors introduce a binary linear program (BLP) for the OPMP

and present a branch-and-cut approach based on several valid inequalities. They apply

their branch-and-cut approach to instances including up to 300 clients and 300 potential

facilities and show that their approach outperforms the BLP. Many instances involving

100 clients and 100 potential facilities or more cannot be solved by the branch-and-cut

approach within 4 hours of running time.

Chiang and Lin (2017) introduce a compact, mixed-integer linear program for the

OPMP. They prove its equivalence to the model of Belotti et al. (2007) and apply their

model to instances comprising up to 200 clients and 200 potential facilities. The compact

88

Paper III: A matheuristic for locating obnoxious facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Clients
Potential facilities
Open facilities
Nearest facility

Figure 3.2.1: An optimal solution for the illustrative example

model uses considerably less running time to solve most instances. However, it still could

not solve the largest considered instance within 12 hours of running time.

Lin and Chiang (2021) introduce two alternative mixed-integer linear programs for

the OPMP. The first model is based on the unified model of Lei and Church (2015) for

the unweighted partial-sum dispersion problem. The second model utilizes the sorting of

distances between clients and potential facilities. Lin and Chiang (2021) apply the models

to instances comprising up to 200 clients and 200 potential facilities. They show that the

model based on sorting distances outperforms all previously introduced models for the

OPMP. Hence, this model represents the state-of-the-art among the exact approaches.

3.3.2 Metaheuristic approaches

Colmenar et al. (2016) develop a metaheuristic for the OPMP based on a greedy random-

ized adaptive search procedure (GRASP). They introduce two constructive procedures

in which facilities are iteratively added to a partial solution. They further present two

improvement strategies that apply a facility exchange move. Their GRASP metaheuristic

outperforms the branch-and-cut approach of Belotti et al. (2007) (applied with a time

limit) in terms of solution quality and running time on instances comprising up to 450

clients and 450 potential facilities. The instances introduced by Colmenar et al. (2016)

are also used in the subsequently discussed papers to evaluate the performance of the

metaheuristics.

89

Paper III: A matheuristic for locating obnoxious facilities

Lin and Guan (2018) propose a hybrid binary particle swarm optimization (HBPSO).

The metaheuristic approach combines particle swarm optimization with an iterated greedy

local search. They introduce a new position updating rule designed to inherit the good

structure of previous good solutions. On average, their HBPSO metaheuristic derives

solutions with a slightly better objective function value than the GRASP heuristic of

Colmenar et al. (2016) in shorter running times.

Herrán et al. (2020) introduce a parallel variable neighborhood search (PVNS) meta-

heuristic for solving the OPMP. One of the main features of their PVNS metaheuristic is

to use a smaller neighborhood than the previously introduced metaheuristics as a way to

reduce the computation time. Instead of applying an exchange move on facilities, they

first remove an open facility from the solution and then add a currently closed potential fa-

cility to the partial solution. They also parallelize multiple VNS procedures. Their PVNS

metaheuristic overall outperforms the approaches of Belotti et al. (2007) and Colmenar

et al. (2016).

Mladenović et al. (2020) develop a basic variable neighborhood search (VNS) for the

OPMP that follows the “less is more” principle. They start from a random initial solution

and apply a simple local search strategy in which, for a given facility, the best replacement

facility is identified. Furthermore, they use a shaking step in which two facilities are

exchanged randomly. The VNS is able to outperform the single-thread approaches from

Belotti et al. (2007) and Colmenar et al. (2016) and derives solutions with a slightly worse

solution quality than the PVNS of Herrán et al. (2020).

Gokalp (2020) propose an iterated greedy (IG) metaheuristic for the OPMP. The

IG metaheuristic starts from a random initial solution and then applies a destruction

and a construction phase. In the destruction phase, a given number of facilities are closed

randomly. In the construction phase, a given number of facilities are opened using a greedy

rule. The IG metaheuristic outperforms the approaches of Belotti et al. (2007), Colmenar

et al. (2016), and Mladenović et al. (2020) and is competitive with the metaheuristic of

Herrán et al. (2020).

Chang et al. (2021) introduce a parallel iterative solution-based tabu search (PISTS)

metaheuristic for the OPMP. Similar to Herrán et al. (2020), they apply a remove-add

move instead of an exchange move. Additionally, they track already visited solutions in

a tabu list so that these solutions cannot be revisited. They parallelize their approach

using multiple threads, as done in Herrán et al. (2020). The multiple threads share one

tabu list. Their PISTS metaheuristic finds on average solutions with a better objective

function value than the approaches of Belotti et al. (2007), Colmenar et al. (2016), Herrán

et al. (2020), and Mladenović et al. (2020).

90

Paper III: A matheuristic for locating obnoxious facilities

3.3.3 Research gap

Although there have been great advancements in exact approaches for the OPMP, they are

still not scalable to medium and large instances. Metaheuristic approaches are generally

known to find good solutions in short running times. However, they cannot easily be

adapted to extensions of a planning problem. In this regard, the matheuristic we propose

in Section 3.4 is more flexible in considering additional practical constraints. Another

disadvantage of the metaheuristics from Section 3.3.2 is that they either exchange or

remove and add facilities based on iterative procedures. Most of these metaheuristics

only remove and add the best facility (in terms of solution quality) per iteration. Those

that remove and add more than one facility per iteration apply a greedy rule to select the

set of facilities. The solution that results from applying this greedy rule may not be the

same as when the best set of facilities is removed and added. Additionally, the solution

that results when the best facility is removed and added over multiple iterations may not

be the same as when the best set of facilities is removed and added at once. We close this

gap by introducing a matheuristic in which the best set of more than one facility can be

removed and added in each iteration using mixed-integer programming.

3.4 Matheuristic

Matheuristics are recent approaches that exploit the mutual advantages of mathematical

models and heuristic techniques (cf. Maniezzo et al., 2021). They combine the flexibility

of mathematical models with the scalability of heuristic techniques. Additionally, the

performance of mathematical programming solvers has improved considerably over the

past few years (cf. Koch et al., 2022), which directly improves the performance of the

matheuristics that are using these solvers. In this section, we present our matheuristic for

the OPMP. In Section 3.4.1, we give an overview of our matheuristic. In Section 3.4.2,

we describe the procedure to generate initial solutions. In Section 3.4.3, we describe the

procedure to improve the initial solutions. We illustrate our matheuristic in Section 3.4.4

using the small example introduced in Section 3.2.2. Finally, in Section 3.4.5, we explain

how the procedure of the matheuristic can be further sped up, especially for instances

including many clients.

3.4.1 Overview

Our proposed matheuristic includes two procedures: an initialization procedure and an

improvement procedure. In the initialization procedure, a diverse set of initial solutions

91

Paper III: A matheuristic for locating obnoxious facilities

Start

Derive k initial solutions

Apply improvement pro-
cedure to initial solution 1

Apply improvement pro-
cedure to initial solution k

Return best solution

Stop

. . .

Figure 3.4.1: Multi-start of matheuristic

are constructed using heuristic techniques. In the improvement procedure, an initial solu-

tion is iteratively improved by applying a local search paired with mixed-integer program-

ming. Our matheuristic is a multi-start approach where each initial solution is improved,

but only the best solution is returned in the end. Figure 3.4.1 gives an overview of the

multi-start approach of the matheuristic. Parameter k determines the number of initial

solutions that are constructed and improved.

3.4.2 Generation of initial solutions

The leading metaheuristics generate the set of initial solutions independently of each other.

However, when the initial solutions are generated independently from each other, they

may be very similar to each other, which means that a local search starting from these

different initial solutions explores very similar neighborhoods. Our main idea is to apply

a procedure that guarantees the construction of initial solutions that are very different

from each other, i.e., that cover different parts of the solution space. Consequently,

the matheuristic searches a large portion of the solution space during the improvement

iterations, which increases the likelihood of quickly finding high-quality solutions. We

further observed that in good solutions to instances of the OPMP, open facilities are

often located close to each other. Accordingly, a second rationale behind generating our

initial solutions is to open facilities close to each other.

Assume that k initial solutions must be generated. We use the k-means++ algorithm

to identify k facilities that are well distributed over the entire instance. From each of

the k identified facilities, we generate an initial solution by opening the identified facility

92

Paper III: A matheuristic for locating obnoxious facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Initial solution 1

Clients Potential facilities Open facilities

5 10 15
x-coordinates

5

10

15

20

25
Initial solution 2

5 10 15
x-coordinates

5

10

15

20

25
Initial solution 3

5 10 15
x-coordinates

5

10

15

20

25
Initial solution 4

Figure 3.4.2: Four initial solutions for the illustrative example derived by the k-means++-
based procedure described in Section 3.4.2

and its p− 1 closest facilities. The p open facilities are stored in a set Jsol. Figure 3.4.2

visualizes for the illustrative example from Section 3.2.2 four different initial solutions

that result from this procedure.

Furthermore, it can also be beneficial to include some randomly generated initial

solutions. For example, if an instance includes two regions in which exactly p
2

potential

facilities and no clients are located, a good solution would be to open the p
2

facilities

in both regions. However, suppose the matheuristic starts from a solution in which all

facilities are opened close to each other. In this case, it may not find the solution in which

the p
2

facilities of both regions are opened. To help cover such special cases, in addition

to the procedure from above, we decided to use two randomly generated initial solutions

and k − 2 initial solutions generated based on the above procedure.

Note that for some instances from the literature, the coordinates vi, i ∈ I, of the

clients and wj, j ∈ J , of the facilities are not given. Only the distances dij between the

clients and facilities are available for these instances. When we apply the matheuristic

to these instances, the above procedure to generate initial solutions cannot be applied

because the inter-facility distances are unavailable. Hence, we use an adapted version of

the procedure. This adapted procedure is described in detail in Appendix 3.A.

93

Paper III: A matheuristic for locating obnoxious facilities

Start

1. Receive initial solution as input

2. Derive a partial solution by removing b fa-
cilities from solution using the model (OMr)

3. Derive a solution by adding b facilities
to partial solution using the model (OMa)

4. Termination criterion
satisfied?

5. Improvement found?

6a. Increase b by δ 6b. Reset b to initial value

No Yes

No

Yes
Stop

Figure 3.4.3: Flowchart of the improvement procedure of matheuristic

3.4.3 Improvement procedure

Flowchart 3.4.3 shows the different steps of the improvement procedure. In the following,

we will describe these steps in more detail.

1. First, an initial solution in which p facilities are opened is received as input. We de-

note the set that contains the p currently opened facilities as Jsol (cf. Section 3.4.2).

2. Second, we remove a given number b of facilities from the current solution Jsol. A

straightforward approach would be to use model (OM) from Section 3.2.1 to remove

facilities from the solution. The variables yj of the facilities j ∈ J \Jsol that are cur-

rently not opened could be fixed to a value of zero, and from the p currently opened

facilities j ∈ Jsol, b would have to be closed. However, this model would contain

many unnecessary variables and constraints. For large instances, it is no longer

practicable to set up and solve such a model within an appropriate running time.

Hence, we derive a version of model (OM), subsequently referred to as model (OMr),

that contains substantially fewer variables and constraints than model (OM) and

can thus be set up and solved in a shorter running time. The main idea behind

the adaptations in the model is that only facilities j ∈ Jsol that are opened in the

94

Paper III: A matheuristic for locating obnoxious facilities

Table 3.4.1: Additional notation of model (OMr)

Set Description

Jsol Set of open facilities in current solution, i.e., {j ∈ J : yj = 1}
Ḟi Facility sequence {ḟik : k = 1, . . . , b+ 1} of facilities j ∈ Jsol

sorted in ascending order of the distances dij for each client i
including facilities up to (and including) position b+ 1

İj Set of clients i ∈ I for which facility j ∈ Jsol is among the b
nearest facilities

J̇i Set of facilities j ∈ Jsol that are among the b nearest facilities
for client i ∈ I

Parameter

b Number of facilities that are removed or added

current solution can be removed and have to be considered in the model (OMr).

Table 3.4.1 describes the additional notation used in the model (OMr).

(OMr)

Max. (3.1)

s.t.
∑

j∈Jsol

yj = p− b

Di ≤ diḟi,b+1
−

∑

k<b+1

(diḟi,k+1
− diḟik)viḟik (i ∈ I)

viḟik ≤ viḟi,k+1
(i ∈ I, k < b)

∑

i∈İj

vij ≥ |İj|yj (j ∈ Jsol)

yj ∈ {0, 1} (j ∈ Jsol)

vij ∈ {0, 1} (i ∈ I, j ∈ J̇i)
Di ∈ [0, diḟi,b+1

] (i ∈ I)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The objective function corresponds to the objective function of the model (OM).

Constraint (3.9) ensures that exactly p − b facilities are opened, i.e., that exactly

b facilities are removed from the current solution Jsol. Constraints (3.10) pose an

upper bound on the distance Di from each client i to the client’s nearest open facility.

95

Paper III: A matheuristic for locating obnoxious facilities

Because exactly b facilities are removed, the distance Di cannot exceed diḟi,b+1
, the

distance to the facility that is at position b+ 1 of the facility sequence Ḟi of client i.

Constraints (3.11) force the variable vij to take the value one if facility j is further

away from client i than at least one open facility in Jsol. Constraints (3.12) ensure

that the variables vij take the value one for each client i ∈ İj if facility j ∈ Jsol is

opened. Finally, constraints (3.13), (3.14), and (3.15) specify the domains of the

variables. To further speed up the solution process, we provide a warm start to

the variables yj. We sort the facilities j ∈ Jsol in descending order of the sum

of the distances
∑

i∈I dij to all clients and provide a value of one as the initial

value for the variables yj of the first p − b facilities. Then, the model (OMr) is

solved using a generic mixed-integer linear programming (MILP) solver. The p− b
facilities that are opened in the resulting partial solution are stored in a set Jpart,

i.e., Jpart = {j ∈ Jsol : yj = 1}.

3. Third, we add the same number b of facilities to the partial solution Jpart from step 2.

When adding facilities, we also substantially decrease the number of variables and

constraints in the used model compared to the model (OM). These adjustments

again considerably decrease the time used to set up and solve the model. The general

idea is to only consider a subset of the potential facilities in each iteration. Hence, in

each iteration, only facilities from a subset J ′ ⊆ (J \ Jpart) of all potential facilities

can be added. The parameter mmax denotes the number of potential facilities that

can be considered in the model such that it can still be solved relatively quickly by

a generic MILP solver. Hence, we set the value for parameter mmax depending on

the number of clients in an instance (cf. Section 3.5.3). We describe in detail how

we derive the subset of considered facilities J ′ in Appendix 3.B.

Furthermore, we already know that the facilities of the partial solution j ∈ Jpart

are open. Hence, the minimum distance of client i to these facilities poses an upper

bound on the shortest distance Di of client i to the nearest open facility. Thus, to

derive the correct value of Di, i ∈ I, only the facilities j ∈ J ′ that are closer to

client i than the closest facility j ∈ Jpart must be considered. In more detail, we can

derive an upper bound ui on the distance Di to the nearest open facility of client i.

This upper bound ui is equal to the minimum distance of client i to the facilities

j ∈ Jpart, i.e., ui = minj∈Jpart{dij}, if Jpart 6= ∅. If Jpart = ∅, i.e., if all facilities are

removed in step 2, ui is set to di,fi,m−b+1
, the distance to the b-furthest facility from

client i. Additionally, the variables vij are only required for each client i ∈ I and

the facilities j ∈ J ′ for which dij < ui. These adjustments again decrease the size

of the model. We subsequently refer to the model used to add facilities to a partial

96

Paper III: A matheuristic for locating obnoxious facilities

solution as the model (OMa). Table 3.4.2 describes the additional notation used.

(OMa)

Max. (3.1)

s.t.
∑

j∈J ′
yj = b

Di ≤ ui − (ui − dif ′i,ei)vif ′i,ei
−
∑

k<ei

(dif ′i,k+1
− dif ′ik)vif ′ik (i ∈ I : ei > 0)

vif ′ik ≤ vif ′i,k+1
(i ∈ I, k < ei)

∑

i∈I

vij ≥ sjyj (j ∈ J ′)

yj ∈ {0, 1} (j ∈ J ′)
vij ∈ {0, 1} (i ∈ I, j ∈ J ′ :

dij < ui)

Di ∈ [0, ui] (i ∈ I)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

The objective function is the same as in models (OM) and (OMr). Constraint (3.16)

ensures that exactly b facilities are opened in addition to the p− b facilities in Jpart

that are already open. Constraints (3.17) pose an upper bound on the distance Di

from each client i to the client’s nearest open facility. The right-hand sides of

constraints (3.17) result from the upper bound ui and the distances dij of client i to

the considered facilities j ∈ J ′ : dij < ui. Constraints (3.18) force the variable vij to

take the value one if facility j is further away from client i than at least one open

facility j ∈ J ′ : dij < ui. Constraints (3.19) ensure that the variables vij take the

value one for each client i ∈ I if facility j ∈ J ′ is opened. Finally, constraints (3.20),

(3.21), and (3.22) define the domains of the variables. We again provide a warm

start to the variables yj to speed up the solution process. We provide an initial value

of one to the variables yj, j ∈ Jsol \ Jpart, i.e., of the facilities that were removed in

step 2. Next, the model (OMa) is solved using a generic MILP solver. The set Jsol

is updated to contain the facilities that are opened in the resulting solution, i.e.,

Jsol = Jpart ∪ {j ∈ J ′ : yj = 1}.

4. Fourth, we check if a termination criterion is satisfied. We use a time limit combined

with the condition b = p as the termination criteria. As long as neither of the two

termination criteria are satisfied, we go to step 5; otherwise, we stop.

5. Fifth, we check if the solution derived in step 3 is an improvement over the previous

97

Paper III: A matheuristic for locating obnoxious facilities

Table 3.4.2: Additional notation of model (OMa)

Set Description

Jpart Set of open facilities in current partial solution, i.e.,
{j ∈ Jsol : yj = 1}

J ′ Set of facilities that are considered in current iteration
F ′i Facility sequence {f ′ik : k = 1, . . . , ei} of facilities j ∈ J ′ : dij < ui

sorted in ascending order of the distances dij for each client i

Parameter

ei Number of facilities j ∈ J ′ with dij < ui, i ∈ I
sj Number of clients i ∈ I with dij < ui, j ∈ J ′
ui = di,fm−b+1

, if Jpart = ∅; = minj∈Jpart{dij}, otherwise

solution, i.e., if the objective function value of the solution derived in step 3 is higher

than the objective function value of the solution derived in the last iteration (or the

initial solution if we are in the first iteration). If no improvement has been found,

we go to step 6a. Otherwise, we go to step 6b.

6a. In step 6a, we increase b by a given number denoted by δ.

6b. In step 6b, we reset b to its initial value.

3.4.4 Illustrative example

We illustrate the matheuristic using the small example from Section 3.2.2 with a single-

start procedure, i.e., we only consider one initial solution. We set the parameters b = 2,

δ = 1, and mmax = 20, and we set a time limit of 10 seconds and the condition b = p as

the termination criteria. Figure 3.4.4 illustrates the first two iterations.

First, we generate an initial solution. The potential facility with coordinates (12, 17)

is arbitrarily opened here. Then, the p− 1 = 7 nearest facilities are additionally opened,

which results in the initial solution depicted in Figure 3.4.4 (Iteration 1, left).

Second, we derive a partial solution, i.e., we remove two facilities from the initial

solution by applying the model (OMr). Here, the two facilities with coordinates (10, 18)

and (11, 16) are removed.

Third, we derive a solution, i.e., we add two facilities to the partial solution from

step 2 by applying the model (OMa). The set J ′ of the considered facilities is highlighted

98

Paper III: A matheuristic for locating obnoxious facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

Clients
Potential facilities
Open facilities

Removed facilities
Considered facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 1

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 2

Figure 3.4.4: Iterations 1 and 2 of the matheuristic for the illustrative example

99

Paper III: A matheuristic for locating obnoxious facilities

in blue. It contains mmax = 20 facilities that are selected based on the distance-based

priority rule described in Appendix 3.B. Here, the two facilities with coordinates (13, 23)

and (14, 24) are opened. They are marked in solid green with a blue border in Figure 3.4.4

(Iteration 1, right).

Fourth, we check if the time limit is reached or if b = p. Because neither are satisfied,

we go to step 5.

Fifth, we check if an improvement has been found. The objective function value of

the initial solution is 233.66, and the objective function value of the solution derived in

Iteration 1 is 251.74. Hence, an improvement has been found, and we go to step 6b.

In step 6b, parameter b is reset to its initial value of two.

In Iteration 2, again, two facilities are removed from the current solution. The two

facilities are highlighted in red in Figure 3.4.4 (Iteration 2, left). Figure 3.4.4 (Iteration

2, right) shows the two facilities that are added to the partial solution from Figure 3.4.4

(Iteration 2, left). Again, an improvement is found. Figures 3.C.1–3.C.5 in Appendix 3.C

illustrate the remaining iterations. The matheuristic stops after Iteration 12 because

b = p, i.e., all facilities are removed and added again.

3.4.5 Clustering of clients

For large instances involving thousands of clients, we additionally propose a scaling tech-

nique. The idea is to decrease the number of clients that must be considered by clustering

them. By considering fewer clients (or clusters of clients), the number of variables and

constraints in the models (OMr) and (OMa) is further decreased, which leads to speed-

ups in the solution processes of the models in each iteration. On the other hand, an

aggregated version of the distance matrix must be used, which provides less accurate in-

formation on the impact of opening a specific facility. To cluster clients, we must decide

on the clustering algorithm, the number of clusters, and how to determine the distances

between the clusters of clients and potential facilities.

We use the k-means algorithm to cluster clients because its running time remains low,

even if the number of objects is large. It is essential to cluster clients quickly because we

want to use most of the available time in the improvement procedure of our matheuristic.

We derive the number of clusters from a percentage r and the number of clients n in the

instance as br × nc (cf. Section 3.5.6). Let C denote the set that contains the cluster

indices, i.e., C = {1, . . . , br × nc}, and Cl denote the set that contains all clients of

cluster l ∈ C. Finally, we set the distance dlj of cluster l to potential facility j to the sum

of the distances of all clients in cluster l to the potential facility j, i.e., dlj =
∑

i∈Cl
dij,

l ∈ C, j ∈ J . Subsequently, we refer to the distances dlj, l ∈ C, j ∈ J as the adjusted

100

Paper III: A matheuristic for locating obnoxious facilities

distances.

After clustering the clients into br × nc clusters, we apply the matheuristic using the

adjusted distances dlj. Steps 1–6 of the improvement procedure work as described in

Section 3.4.3 except for some minor adjustments that must be made to the models (OMr)

and (OMa). In the models (OMr) and (OMa), all sets related to the clients i ∈ I must be

replaced by sets associated with the clusters l ∈ C. This means that the clusters l ∈ C are

treated as the clients. Furthermore, the distances dij, i ∈ I, j ∈ J must be replaced by the

adjusted distances dlj, l ∈ C, j ∈ J . Hence, the facility sequences Ḟl and F ′l are derived

for each cluster l ∈ C based on the adjusted distances dlj. After a termination criterion

is satisfied, the solution quality must be evaluated based on the original distances dij,

i ∈ I, j ∈ J . Figure 3.4.5 (left) illustrates for the illustrative example the clusters that

result when deriving |C| = br × nc = 0.2 × 45 = 9 clusters. The objective function

value of the solution depicted in Figure 3.4.5 (right) using the adjusted distances dlj is

460.0. When using the original distances dij, the objective function value is 455.7, as in

the solution illustrated in Figure 3.2.1. Note that the difference between these two values

arises because not all clients of a cluster are nearest to the same open facility when the

original distances dij are used.

3.5 Computational results

In this section, we compare the performance of our matheuristic to the performance of the

two leading metaheuristics from the literature. In Section 3.5.1, we describe the problem

instances used for the computational experiment. In Section 3.5.2, we provide details on

the two metaheuristics from the literature. In Section 3.5.3, we present the experimental

design and explain how we derived the parameter settings used in Sections 3.5.4 and 3.5.5.

In Section 3.5.4, we compare the performance of the matheuristic to the performances of

the two leading metaheuristics for small benchmark instances from the literature. In

Section 3.5.5, we compare their performances for newly generated instances, including

medium and large instances. Finally, in Section 3.5.6, we show how the performance of

the matheuristic can be further improved by clustering the clients.

3.5.1 Instances

We use two test sets to compare the performance of the matheuristic to the performances

of the two leading metaheuristics. The first test set comprises 144 small test instances

that were first introduced by Colmenar et al. (2016) for the OPMP (cf. https://grafo.

etsii.urjc.es/optsicom/opm.html). These instances include up to n = 450 clients and

101

https://grafo.etsii.urjc.es/optsicom/opm.html
https://grafo.etsii.urjc.es/optsicom/opm.html

Paper III: A matheuristic for locating obnoxious facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s
Clients (colored
according to cluster
membership)

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Clients
Potential facilities
Open facilities
Nearest facility

Figure 3.4.5: Cluster membership of the clients (left) and solution derived by the
matheuristic when the clients are clustered (right) with r = 0.2

m = 450 potential facilities, and the value for p is set as m
8

(low), m
4

(medium), and m
2

(high). We subsequently refer to the instances of this test set as the benchmark instances.

The second test set consists of various small, medium, and large test instances that

we derived from instances of the VLSI collection (cf. Rohe, 2013) and the TSPLIB (cf.

Reinelt, 1991). We used the same procedure as described in Colmenar et al. (2016), i.e.,

we randomly split the original data points into a set of clients and a set of potential

facilities, and we set the value of p to m
8

(low), m
4

(medium), and m
2

(high). Table 3.D.1

in Appendix 3.D reports the main characteristics of the instances in this test set. The

instances include up to n + m = 1,972 clients and potential facilities (small), up to

n + m = 15,112 clients and potential facilities (medium), and up to n + m = 21,214

clients and potential facilities (large). Other than Colmenar et al. (2016), we varied the

percentage of the original data points that we selected as clients and potential facilities.

Instances 1–36 and 55–69 include the same number of clients and potential facilities,

i.e., n = m, as in Colmenar et al. (2016). Instances 37–45 comprise 75% clients and

25% potential facilities, i.e., n > m, and instances 46-54 comprise 25% clients and 75%

102

Paper III: A matheuristic for locating obnoxious facilities

potential facilities, i.e., n < m. The shape of the instances is either “square”, where all

data points lie within a rectangular shape or “other”, where the shape of the instance is

arbitrary. We subsequently refer to the instances of this test set as the new instances.

We have also made these test instances available to the community (cf. https://github.

com/tabigler/OPMP-instances).

3.5.2 Leading metaheuristics

We compare our matheuristic to the two leading metaheuristics PISTS and IG of Chang

et al. (2021) and Gokalp (2020), respectively. For the first time, the performances of

the PISTS and IG metaheuristics are also directly compared. These two metaheuristics

both start from randomly generated initial solutions. For both metaheuristics, we use the

parameter settings that were used in the respective paper. We check for each instance

the time required by the PISTS metaheuristic, which results from a time limit of 2,834

seconds and an iteration limit of 20p (cf. Chang et al., 2021). The time required by the

PISTS metaheuristic is set as a time limit for the matheuristic and the IG metaheuristic.

We apply a multi-start with eight different initial solutions for the PISTS and the IG

metaheuristic (analogously to the matheuristic, cf. Section 3.5.3).

3.5.3 Experimental design

We tested our matheuristic and the PISTS and IG metaheuristics on an HP workstation

with one Intel Xeon CPU with 2.20 GHz clock speed and 128 GB RAM. The matheuristic

was implemented in Python 3.7, and we used the Gurobi Optimizer 9.5.2 as a solver. The

code of the matheuristic is available upon request. Note that all distances computed are

Euclidean distances and rounded to the nearest integer. We applied the matheuristic

with a multi-start with eight different initial solutions. Two of the eight initial solutions

are set to random initial solutions for both test sets. The rest of the initial solutions are

generated according to the procedures described in Section 3.4.2.

We considered three different values for each of the parameters b, δ, and mmax and

tested all combinations of these parameter values on a small, representative subset of

the instances. The considered values are the following: b = 1, 5, 10, δ = 1, 2, 5, and

mmax = 3002

n
, 450

2

n
, 600

2

n
. The value of parameter mmax depends on the number of clients n

because the number of variables in the model (OMa) increases with n and m. If we

want to keep the models small, fewer potential facilities can be considered if an instance

includes many clients, and vice versa. In preliminary tests, the model (OMa) could be

solved in a reasonable running time when including approximately 450 clients and 450

103

https://github.com/tabigler/OPMP-instances
https://github.com/tabigler/OPMP-instances

Paper III: A matheuristic for locating obnoxious facilities

potential facilities. Thus, we tested values for mmax in a similar range. For the benchmark

instances, we used the same subset of instances as in Colmenar et al. (2016) to tune the

parameters. For the new instances, we used a subset of seven representative instances

to tune the parameters. We selected the instances such that different instance sizes and

values of p are represented. These instances are highlighted in bold in Table 3.D.1. Please

note that for the instances of Colmenar et al. (2016), the value of mmax = 6002

n
was not

tested because with the value mmax = 4502

n
all potential facilities are already considered

in each iteration, i.e., J ′ = J . We selected the best combination of parameter values

concerning the average objective function value for both test sets. For the benchmark

instances, several combinations resulted in the same average objective function value.

Thus, we selected the combination for which the matheuristic derived the best solutions

on average at the earliest time, which resulted in the values b = 1, δ = 2, and mmax = 4502

n
.

For the new instances, the values b = 5, δ = 1, and mmax = 4502

n
yielded the best solution

quality on average. Note that, however, the differences in the average objective function

values for the different values of mmax and δ are rather small. Because we only use a small

subset of instances for deriving the parameter values, these instances are also included

in the results in the next two sections. Note that the main insights would not change if

these instances were not included in the results.

3.5.4 Results benchmark instances

In this section, we compare the performance of the matheuristic to the performances of the

two leading metaheuristics based on the small benchmark instances from Section 3.5.1.

Figure 3.5.1 shows the average gap between the solutions derived by the matheuristic and

the solutions derived by the PISTS and IG metaheuristics. The average gap is zero for

the combinations of n, m, and p, where no bar is visible in the plot. On average, the

matheuristic derives slightly better solutions in terms of solution quality than the PISTS

metaheuristic, with an average gap of −0.011%. The average gap to the solutions derived

by the IG metaheuristic on the benchmark instances is slightly positive (0.003%), meaning

that our matheuristic derives solutions with a slightly inferior solution quality on average.

However, due to the small difference, we can conclude that the results are competitive for

the benchmark instances. Table 3.E.1 in Appendix 3.E contains the objective function

values derived by the matheuristic, the PISTS metaheuristic, and the IG metaheuristic

for all benchmark instances.

104

Paper III: A matheuristic for locating obnoxious facilities

200 250 300
 small p

350 400 450 200 250 300
 medium p

350 400 450 200 250 300
 high p

350 400 450

Number of clients (n) and potential facilities (m), and value of p

0.06

0.04

0.02

0.00

Av
er

ag
e

ga
p

[%
]

Average gap to solutions of PISTS and IG metaheuristics for different values of n, m, and p
Average gap to solutions derived by PISTS
Average gap to solutions derived by IG

Figure 3.5.1: Results for the benchmark instances (a negative average gap indicates that
the matheuristic outperforms the metaheuristics in terms of solution quality)

3.5.5 Results new instances

In this section, we compare the performance of the matheuristic to the performances of the

two leading metaheuristics based on the new instances (cf. Section 3.5.1). Table 3.5.1 re-

ports the average gaps of the solutions derived by the matheuristic to the solutions derived

by the PISTS metaheuristic (∅ GapPISTS) and the IG metaheuristic (∅ GapIG) for in-

stances 1–36 with n = m and a squared shape. Table 3.5.2 reports the gaps (GapPISTS and

GapIG) between these approaches for instances 37–54 with n 6= m and a squared shape.

Table 3.5.3 reports the average gaps between the three approaches for instances 55-69,

which have an arbitrary shape. The results in the tables are grouped by the size of the in-

stances (small, medium, large) and the value of p (low, medium, high). The matheuristic

is competitive with the leading metaheuristics for small instances. For medium instances,

it clearly outperforms the PISTS metaheuristic in terms of solution quality. It derives

very similar results to the IG metaheuristic for medium instances with low and medium

values of p. For medium-sized instances with a high value of p, it outperforms the IG

metaheuristic. For large instances, the matheuristic substantially outperforms both meta-

heuristics in terms of solution quality. Table 3.E.2 in Appendix 3.E contains the objective

function values derived by the three approaches for all new instances.

We also tested the effect of our distance-based priority rule to derive the considered

facilities J ′. We compared the distance-based priority rule to a random selection of the

considered facilities J ′. Using our distance-based priority rule improves the average gap of

105

Paper III: A matheuristic for locating obnoxious facilities

Table 3.5.1: Aggregated results for instances with shape “squared” and n = m (a negative
average gap indicates that the matheuristic outperforms the metaheuristics in terms of
solution quality)

∅ GapPISTS [%] ∅ GapIG [%]

Size low p medium p high p low p medium p high p

small 0.1 0.0 -1.0 0.1 -0.4 -0.2

medium -1,102.3 -1,554.8 -1,225.2 0.3 0.1 -6.4

large -3,235.8 -3,369.1 -2,271.4 -153.1 -177.2 -146.8

Table 3.5.2: Results for instances with shape “squared” and n 6= m (a negative gap indi-
cates that the matheuristic outperforms the metaheuristics in terms of solution quality)

GapPISTS [%] GapIG [%]

Division Size low p medium p high p low p medium p high p

n < m small -7.0 0.0 0.0 0.0 0.0 -15.6

medium -2,421.5 -3,017.5 -2,238.1 0.1 0.0 -0.2

large -3,383.8 -3,324.4 -2,043.2 -223.4 -243.7 -192.6

n > m small 0.0 0.0 -9.8 0.0 0.0 -9.8

medium -239.7 -1,002.3 -960.0 4.1 0.1 -4.9

large -1,761.7 -1,777.7 -1,192.1 -2.5 -28.5 11.0

106

Paper III: A matheuristic for locating obnoxious facilities

Table 3.5.3: Aggregated results for instances with shape “other” (a negative average
gap indicates that the matheuristic outperforms the metaheuristics in terms of solution
quality)

∅ GapPISTS [%] ∅ GapIG [%]

Size low p medium p high p low p medium p high p

small 0.1 -3.9 0.0 0.1 0.0 0.0

medium -1,914.0 -2,066.4 -1,596.1 1.3 1.8 -0.4

all new instances to the solutions derived by the PISTS metaheuristic by 72.23 percentage

points and to the solutions derived by the IG metaheuristics by 4.46 percentage points

compared to using a random selection. Using our distance-based priority rule also yields

better results than applying a deterministic greedy selection of the facilities where the

nearest facilities to the currently opened facilities are selected.

From Tables 3.5.1 and 3.5.2, we can see that our matheuristic performs especially well

for instances for which the number of potential facilities m is the same or larger than the

number of clients n. The inferior performance on instances with n > m motivates the

clustering of clients introduced in Section 3.4.5. We discuss the results of the matheuristic

with the clustering of clients in the following section.

3.5.6 Results when clustering clients

In this section, we show how the clustering of clients further improves the performance

of the matheuristic, especially for large instances with n > m. First, we explain how

we determined a value for the parameter r, which represents a percentage that, when

multiplied by the number of clients, results in the number of clusters that are created.

Then, we present the results of the matheuristic when clients are clustered for the medium

and large instances of the second test set (new instances).

We ran the matheuristic for different values of r (1%, 5%, and 10%) on the medium

and large new instances. We omitted the small instances because the clustering of clients

is only useful when the number of clients is large. On average, the matheuristic with

r = 5% derived the best solution quality. Figure 3.5.2 indicates for the three exemplary

instances 64–66 how the objective function value changes over time for the matheuristic

and the matheuristic with clustering of clients with r = 1%, 5%, and 10%. The three

107

Paper III: A matheuristic for locating obnoxious facilities

Table 3.5.4: Aggregated results for instances with shape “squared” and n = m when
clients are clustered with r = 5% (a negative average gap indicates that the matheuristic
outperforms the metaheuristics in terms of solution quality)

∅ GapPISTS [%] ∅ GapIG [%]

Size low p medium p high p low p medium p high p

medium -1,113.4 -1,562.6 -1,228.9 -0.1 -0.2 -6.7

large -3,281.6 -3,546.1 -2,351.6 -155.9 -199.2 -158.3

instances 64–66 are based on the same clients and potential facilities and differ only by

their value of p (low, medium, high). Through the clustering of clients, the number of

clients (clusters) that must be considered in the models (OMr) and (OMa) is smaller,

which decreases the model sizes and running times to solve the models. We can see from

Figure 3.5.2 that the iterations take less time when the clients are clustered. Additionally,

the value of mmax depends on n; thus, when fewer clients (clusters) must be considered

in the model (OMa), mmax is set to a larger value. Hence, more potential facilities J ′

are considered in each iteration, and overall, the improvements found are larger. From

Figure 3.5.2, we can also see that the effect of clustering clients is larger when the value

of p is medium or high than when it is low. We also applied an elbow heuristic with

r = 1%, 5%, 10%, 15%, and 20% to the representative instance 64. Hence, we clustered

the clients using different values of r and visualized the sum of the squared Euclidean

distances of all clients to their nearest cluster center (objective function) for the different

values of r (cf. Figure 3.5.3). We can see that a value of r = 5% seems appropriate (for

this instance) because increasing r from 1% to 5% leads to a substantial decrease in the

objective function value, while further decreasing r only has a small effect. Note that the

plot looks similar for other instances of this test set.

Tables 3.5.4, 3.5.5, and 3.5.6 show the (aggregated) results of the matheuristic with

r = 5% on all medium and large instances. From these tables, we can see that the

clustering of clients leads to a substantial improvement in the results, especially when

n > m, n = m, or when the value of p is high. This framework of clustering clients and

applying an optimization approach to the reduced-size instance could also be helpful for

other heuristic approaches or mixed-integer linear programs for the obnoxious p-median

problem.

108

Paper III: A matheuristic for locating obnoxious facilities

0 500 1,000 1,500 2,000 2,500 3,000
Running time [s]

21,600,000

21,700,000

21,800,000

21,900,000

22,000,000

22,100,000

22,200,000

Ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Instance 64
MH
MH with clustering (1%)
MH with clustering (5%)
MH with clustering (10%)

0 500 1,000 1,500 2,000 2,500 3,000
Running time [s]

12,500,000

13,000,000

13,500,000

14,000,000

14,500,000

Ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Instance 65

0 500 1,000 1,500 2,000 2,500 3,000
Running time [s]

6,000,000

6,250,000

6,500,000

6,750,000

7,000,000

7,250,000

7,500,000

7,750,000

Ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Instance 66

Figure 3.5.2: Objective function value over time for the matheuristic without and with
the clustering of clients for instances 64–66 (note that higher values are better)

109

Paper III: A matheuristic for locating obnoxious facilities

20151051
r [%]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

1e8
Objective function values of k-means algorithm

 for different values of r

Figure 3.5.3: Elbow heuristic for selected instance 64 (note that smaller values are better)

Table 3.5.5: Results for instances with shape “squared” and n 6= m when clients are
clustered with r = 5% (a negative gap indicates that the matheuristic outperforms the
metaheuristics in terms of solution quality)

GapPISTS [%] GapIG [%]

Division Size low p medium p high p low p medium p high p

n < m medium -2,427.4 -3,027.8 -2,237.1 -0.2 -0.3 -0.1

large -3,432.1 -3,330.0 -2,273.8 -227.9 -244.2 -224.1

n > m medium -254.4 -1,003.1 -960.0 0.0 0.0 -4.9

large -1,828.7 -2,060.8 -1,377.0 -6.2 -47.9 -1.8

Table 3.5.6: Aggregated results for instances with shape “other” when clients are clustered
with r = 5% (a negative average gap indicates that the matheuristic outperforms the
metaheuristics in terms of solution quality)

∅ GapPISTS [%] ∅ GapIG [%]

Size low p medium p high p low p medium p high p

medium -1,986.3 -2,185.5 -1,656.9 -1.4 -2.1 -3.1

110

Paper III: A matheuristic for locating obnoxious facilities

3.6 Extension

One great advantage of matheuristics over metaheuristics is that practical constraints can

easily be incorporated into a matheuristic. In this section, we present an extension of

the OPMP that includes such practical constraints. In Section 3.6.1, we introduce the

extension and describe the few minor changes required in the matheuristic to be applicable

to this extension of the OPMP. In Section 3.6.2, we analyze how the adjustments affect

the structure of the solutions.

3.6.1 Description of extension

We observe that solutions to the OPMP are often clustered, i.e., the open facilities are

all located very close to one another. Figure 3.2.1 illustrates this observation for the

illustrative example. In real-world applications, however, such clustered solutions may not

be ideal, and for political reasons, authorities may want to include practical constraints

to control the placement of obnoxious facilities. Many constraints are plausible; in this

paper, we concentrate on practical constraints that are set up for different regions of an

instance. In real-world instances, regions are often given as neighborhoods in a city or

states in a country. We assume that the authorities want to ensure that not all facilities

are opened in the same region. Hence, the extension includes upper bounds on the number

of open facilities per region of an instance.

The model (OM) of Lin and Chiang (2021) can be extended to include these practical

constraints as follows. In addition to the already introduced notation, let H denote the

set of all regions. The parameters rh indicate the maximum number of open facilities per

region h ∈ H and the sets Jh denote the sets of facilities j ∈ J that lie in the region h ∈ H.

Constraints (3.23) ensure the upper bound rh on the number of open facilities for each

region h ∈ H.

∑

j∈Jh

yj ≤ rh (h ∈ H) (3.23)

The model (OMext) can be used to derive a solution to the extension of the OPMP

and reads as follows.

(OMext)

Max. (3.1)

s.t. (3.2)− (3.7)

(3.23)

Two minor changes to the matheuristic are required to derive feasible solutions to an

111

Paper III: A matheuristic for locating obnoxious facilities

instance of the extension of the OPMP:

1. The generated initial solution must be feasible, i.e., satisfy the upper bounds on the

number of open facilities per region.

2. When facilities are added to the partial solution in step 3 of the matheuristic, the

model (OMa) must include the upper bounds for each region to ensure feasibility.

We also consider additional constraints when removing facilities. If no such constraints

are considered, the matheuristic often removes b facilities from one region and then adds

the same b facilities again because the upper bounds on the number of open facilities

in the other regions are tight. Hence, the matheuristic cannot open an additional facil-

ity in another region without violating one of the respective regional constraints. The

matheuristic can often only escape this local optimum by substantially increasing the

parameter b. Thus, we decided to include an additional constraint in the model (OMr)

that ensures that at least one facility is removed from each region in each iteration.

Next, we describe in detail how we generate the initial solutions and how we adapt the

models (OMr) and (OMa). We derive an initial solution for an instance of the extension

as follows. In our instances,
∑

h∈H rh = p; thus, we randomly select exactly rh facilities

from each region h ∈ H and open them. If
∑

h∈H rh is greater than p, we can derive an

initial solution by opening fewer than rh facilities in each of the regions in such a way

that the number of opened facilities sums up to p. Let H∗ denote a set that is set to

H if b ≥ |H|, i.e., if more or the same number of facilities must be removed than there

are regions. If b < |H|, i.e., if fewer facilities must be removed than there are regions, b

regions are selected randomly from H into H∗. We add the constraints (3.24) to the model

(OMr) to ensure that at least one facility must be removed from each region h ∈ H∗.

∑

j∈Jsol∩Jh

yj ≤ |Jsol ∩ Jh| − 1 (h ∈ H∗) (3.24)

The adapted model (OMr ext) reads as follows.

(OMr ext)

Max. (3.1)

s.t. (3.9)− (3.15)

(3.24)

Furthermore, we add the constraints (3.25) to the model (OMa) to ensure that the

112

Paper III: A matheuristic for locating obnoxious facilities

upper bounds rh on the number of open facilities per region h ∈ H are not exceeded.

∑

j∈J ′∩Jh

yj ≤ rh − |Jpart ∩ Jh| (h ∈ H) (3.25)

The adapted model (OMa ext) reads as follows.

(OMa ext)

Max. (3.1)

s.t. (3.16)− (3.22)

(3.25)

3.6.2 Results on selected instances

In this section, we first give some information on the instances used below and then

present the results of the matheuristic for two exemplary instances.

In our instances, the parameters rh were generated so that they are inversely propor-

tional to the number of clients in a region and sum up to p. If there are many clients in

a region, only a few facilities can be opened in this region, and vice versa. The assigned

region per client and potential facility and the parameters rh per region are available at

https://github.com/tabigler/OPMP-instances for the instances used below.

First, we look at instance 59. For this instance, we generated four regions H =

{1, 2, 3, 4} with r1 = 33, r2 = 46, r3 = 44, and r4 = 49. When the matheuristic is

applied to instance 59 without the practical constraints using a time limit of 500 seconds,

it stops in the solution depicted in Figure 3.6.1 (left). In this solution, almost all facilities

are opened in region 2. However, if we consider the extension of the OPMP, where the

upper bounds on the number of open facilities per region are included, the matheuristic

stops (after the same time limit) in the solution depicted in Figure 3.6.1 (right). Clearly,

the facilities are better divided among the four regions in Figure 3.6.1 (right) than in

Figure 3.6.1 (left).

Second, we examine instance 61. For this instance, we generated three regions H =

{1, 2, 3} with r1 = 88, r2 = 102, and r3 = 88. Figure 3.6.2 (left) shows the solution that

the matheuristic derives for the OPMP without the practical constraints using a time

limit of 500 seconds. Again, all facilities are opened in the same region in this solution.

Figure 3.6.2 (right) shows the solution that the matheuristic derives for the extension of

the OPMP, where the facilities are opened in the three different regions. We also applied

the matheuristic to other instances including the upper bounds per region and comprising

thousands of clients and potential facilities and observed similar results.

113

https://github.com/tabigler/OPMP-instances

Paper III: A matheuristic for locating obnoxious facilities

3000 4000 5000
x-coordinates

6000

6500

7000

7500

8000

y-
co

or
di

na
te

s
Region 1
Region 2

Region 3
Region 4

Clients
Potential facilities

Open facilities

3000 4000 5000
x-coordinates

6000

6500

7000

7500

8000

Figure 3.6.1: Solution derived by the matheuristic for the OPMP (left) and for the ex-
tension of the OPMP (right) for instance 59

3.7 Conclusion

In this paper, we consider the obnoxious p-median problem in which a set of clients and

a set of potential locations for obnoxious facilities are given. From the set of potential

locations, a given number of facilities must be opened. For each client, the distance to the

closest open facility must be determined. The objective is to maximize the sum of these

distances. Various extensions may arise in practice that include practical constraints on

the locations of the obnoxious facilities. In this paper, we consider the classical obnoxious

p-median problem and, in addition, an extension that includes upper bounds on the

number of open facilities for different regions of an instance. In the literature, several exact

and metaheuristic approaches have been introduced for the obnoxious p-median problem.

However, while the exact approaches are not scalable to instances involving a large number

of clients and potential locations, the metaheuristic approaches are not easily adaptable to

extensions of the obnoxious p-median problem. We close this gap by introducing a novel

matheuristic that is scalable to large instances and easily extendable to include practical

constraints. Our matheuristic ensures that a large portion of the solution space is searched

by starting from diverse initial solutions. It iteratively improves the initial solutions by

exploring promising neighborhoods. In each iteration, a given number of facilities is

removed and added by applying two adapted, appropriate versions of a model from the

literature. We show that our matheuristic outperforms the leading metaheuristics from

114

Paper III: A matheuristic for locating obnoxious facilities

6000 7000 8000 9000
x-coordinates

6000

7000

8000

9000

10000

y-
co

or
di

na
te

s
Region 1
Region 2

Region 3
Clients

Potential facilities Open facilities

6000 7000 8000 9000
x-coordinates

6000

7000

8000

9000

10000

Figure 3.6.2: Solution derived by the matheuristic for the OPMP (left) and for the ex-
tension of the OPMP (right) for instance 61

the literature on large instances, including up to 21,000 clients and potential locations,

and is competitive with them on small and medium instances. Furthermore, we illustrate

the flexibility of our matheuristic by applying it to an extension of the obnoxious p-median

problem with only minor changes made to the procedure.

A promising future research direction could be applying the matheuristic to other

relevant extensions of the obnoxious p-median problem. For example, from a practical

perspective, it could be interesting to consider upper bounds on the number of open

facilities located within a certain distance of each client. These constraints would ensure

that clients are not close to too many obnoxious facilities at once. Furthermore, the

matheuristic could be adapted to other versions of the p-median problem. The general

strategy of removing facilities from a solution and adding facilities to a partial solution

using a model from the literature could also be applied to, for example, fault-tolerant

versions where each client must be assigned to more than one open facility. As shown in

this paper, our matheuristic could also easily be adapted to extensions of the p-median

problem that include additional constraints such as capacities or fairness constraints.

115

Paper III: A matheuristic for locating obnoxious facilities

Appendix

3.A Appendix A

Here, we describe how initial solutions are generated for the instances where only the

distances dij between the clients and facilities are available but not the coordinates. We

select a random client i and open the p facilities nearest to this client because we assume

that these facilities are located close to each other. When the second initial solution

is generated, we want to ensure that different areas of the solution space are covered.

Hence, we select the facility j that is furthest away from the randomly selected client i

from the first initial solution. Then, we select the closest client i′ to facility j. We derive

the second initial solution by opening the p closest facilities to client i′. We repeat the

procedure if more than two initial solutions must be generated. Furthermore, two initial

solutions are generated according to two simple rules. In the first rule, all facilities are

sorted in descending order of their minimum distance to all clients i ∈ I. The first p

facilities, i.e., the p facilities with the largest minimum distance, are opened (cf. Belotti

et al., 2007). In the second rule, the p facilities with the highest sum of distances to all

clients i ∈ I are opened. Please note that the initial solution that results from the second

rule represents an optimal solution to an adapted version of the OPMP in which the sum

of distances between all clients and all facilities must be maximized. Additionally, also for

the instances for which the coordinates are not given, two initial solutions are generated

randomly.

3.B Appendix B

Here, we describe how we derive the set of considered facilities J ′. In preliminary testing,

we observed that facilities in good solutions are often located close to each other and far

away from a center of the instance. Based on this observation, we developed a distance-

based priority rule in which potential facilities that are close to an already open facility

j ∈ Jpart and far away from a center of the instance have a high probability of being

selected into J ′. In detail, the distance-based priority rule works as follows.

First, we initialize J ′ = ∅. Then, we add all potential facilities to J ′ that were removed

from the solution in step 2. By adding these potential facilities to J ′, we ensure that the

solution resulting from the current iteration will have at least the same solution quality

as the solution derived in the last iteration (given that the subproblems are solved to

optimality). It is also important to ensure that there are additional potential facilities

116

Paper III: A matheuristic for locating obnoxious facilities

in J ′ allowing the matheuristic to find improvements. We want to ensure that each of

the b potential facilities that were removed from the solution in step 2 can potentially

be replaced by another facility. Therefore, we compute the number of potential facilities

that are additionally added to J ′ based on mmax, the number of potential facilities that

can be considered in the model such that it can still be solved relatively quickly by a

generic MILP solver, and b, the number of facilities that were removed from the solution

in step 2. More precisely, we set the number of potential facilities that are added to

J ′ in addition to the already added b potential facilities to max(mmax − b, b). In the

following two paragraphs, for the sake of simplicity, we will refer to the potential facilities

as facilities.

Next, we derive a set of facilities Jnear from which we select the facilities into J ′.

For each facility j ∈ Jpart, we sort the facilities in J \ Jsol ascending in their distance

to facility j. The set Jnear then corresponds to the union of the mmax nearest facilities

to each facility j ∈ Jpart. Next, we compute a probability for each facility j ∈ Jnear of

being selected into J ′. These probabilities are computed as follows: we first compute the

centroid of the facilities by averaging over each of the coordinates of the facilities j ∈ J .

Then, we compute the Euclidean distance of each facility j ∈ Jnear to this centroid. We

normalize the Euclidean distances by deducting their minimum and adding a value of 0.01

(to avoid having distances of exactly zero). Next, we divide them by their sum, which

results in a probability value for each facility j ∈ Jnear of being selected into J ′. Based

on the derived probability values, we select max(mmax − b, b) facilities from Jnear into

J ′. This distance-based priority rule has been shown to work substantially better than a

random selection of facilities from J and better than a deterministic greedy selection of

the facilities where the nearest facilities to the currently opened facilities are selected (cf.

Section 3.5.5). In case |Jnear| ≤ max(mmax − b, b), all facilities from Jnear are added to

J ′.

Note that for some instances, the coordinates vi, i ∈ I, of the clients and wj, j ∈ J ,

of the facilities are unavailable (cf. last paragraph of Section 3.4.2). Hence, the described

procedure to derive J ′ cannot be applied. For these instances, the facilities can be ran-

domly selected into J ′. However, note that for the instances from the literature for which

the coordinates of the clients and facilities are not given, mmax ≥ m in the experimental

design used in Section 3.5.4. Hence, no selection criterion is needed, and J ′ is set to J in

each iteration.

117

Paper III: A matheuristic for locating obnoxious facilities

3.C Appendix C

Figures 3.C.1–3.C.5 illustrate Iterations 3–12 of the illustrative example when the matheuris-

tic is applied. In Iterations 7–12, b is continuously increased because no improvement is

found. The matheuristic stops when either the time limit is reached or b = p, i.e., all

facilities are removed and added again, as is the case in Iteration 12.

3.D Appendix D

Table 3.D.1 shows information for the new instances.

Table 3.D.1: 69 small, medium, and large test instances for the OPMP

ID Name Size n m p (level) Shape Source

1 xit1083 small 540 540 67 (low) square Rohe (2013)

2 xit1083 small 540 540 135 (medium) square Rohe (2013)

3 xit1083 small 540 540 270 (high) square Rohe (2013)

4 dka1376 small 688 688 86 (low) square Rohe (2013)

5 dka1376 small 688 688 172 (medium) square Rohe (2013)

6 dka1376 small 688 688 344 (high) square Rohe (2013)

7 icw1483 small 740 740 92 (low) square Rohe (2013)

8 icw1483 small 740 740 185 (medium) square Rohe (2013)

9 icw1483 small 740 740 370 (high) square Rohe (2013)

10 fra1488 small 744 744 93 (low) square Rohe (2013)

11 fra1488 small 744 744 186 (medium) square Rohe (2013)

12 fra1488 small 744 744 372 (high) square Rohe (2013)

13 dkd1973 small 986 986 123 (low) square Rohe (2013)

14 dkd1973 small 986 986 246 (medium) square Rohe (2013)

15 dkd1973 small 986 986 493 (high) square Rohe (2013)

16 irw2802 medium 1,400 1,400 175 (low) square Rohe (2013)

17 irw2802 medium 1,400 1,400 350 (medium) square Rohe (2013)

18 irw2802 medium 1,400 1,400 700 (high) square Rohe (2013)

19 bgb4355 medium 2,177 2,177 272 (low) square Rohe (2013)

20 bgb4355 medium 2,177 2,177 544 (medium) square Rohe (2013)

Continued on next page

118

Paper III: A matheuristic for locating obnoxious facilities

Table 3.D.1: 69 small, medium, and large test instances for the OPMP

ID Name Size n m p (level) Shape Source

21 bgb4355 medium 2,177 2,177 1,088 (high) square Rohe (2013)

22 xsc6880 medium 3,440 3,440 430 (low) square Rohe (2013)

23 xsc6880 medium 3,440 3,440 860 (medium) square Rohe (2013)

24 xsc6880 medium 3,440 3,440 1,720 (high) square Rohe (2013)

25 ida8197 medium 4,098 4,098 512 (low) square Rohe (2013)

26 ida8197 medium 4,098 4,098 1,024 (medium) square Rohe (2013)

27 ida8197 medium 4,098 4,098 2,049 (high) square Rohe (2013)

28 xrb14233 medium 7,116 7,116 889 (low) square Rohe (2013)

29 xrb14233 medium 7,116 7,116 1,779 (medium) square Rohe (2013)

30 xrb14233 medium 7,116 7,116 3,558 (high) square Rohe (2013)

31 pjh17845 large 8,922 8,922 1,115 (low) square Rohe (2013)

32 pjh17845 large 8,922 8,922 2,230 (medium) square Rohe (2013)

33 pjh17845 large 8,922 8,922 4,461 (high) square Rohe (2013)

34 ido21215 large 10,607 10,607 1,325 (low) square Rohe (2013)

35 ido21215 large 10,607 10,607 2,651 (medium) square Rohe (2013)

36 ido21215 large 10,607 10,607 5,303 (high) square Rohe (2013)

37 dkd1973 small 1,479 493 61 (low) square Rohe (2013)

38 dkd1973 small 1,479 493 123 (medium) square Rohe (2013)

39 dkd1973 small 1,479 493 246 (high) square Rohe (2013)

40 ida8197 medium 6,147 2,049 256 (low) square Rohe (2013)

41 ida8197 medium 6,147 2,049 512 (medium) square Rohe (2013)

42 ida8197 medium 6,147 2,049 1,024 (high) square Rohe (2013)

43 ido21215 large 15,911 5,303 662 (low) square Rohe (2013)

44 ido21215 large 15,911 5,303 1,325 (medium) square Rohe (2013)

45 ido21215 large 15,911 5,303 2,651 (high) square Rohe (2013)

46 dkd1973 small 493 1,479 184 (low) square Rohe (2013)

47 dkd1973 small 493 1,479 369 (medium) square Rohe (2013)

48 dkd1973 small 493 1,479 739 (high) square Rohe (2013)

49 ida8197 medium 2,049 6,147 768 (low) square Rohe (2013)

50 ida8197 medium 2,049 6,147 1,536 (medium) square Rohe (2013)

51 ida8197 medium 2,049 6,147 3,073 (high) square Rohe (2013)

Continued on next page

119

Paper III: A matheuristic for locating obnoxious facilities

Table 3.D.1: 69 small, medium, and large test instances for the OPMP

ID Name Size n m p (level) Shape Source

52 ido21215 large 5,303 15,911 1,988 (low) square Rohe (2013)

53 ido21215 large 5,303 15,911 3,977 (medium) square Rohe (2013)

54 ido21215 large 5,303 15,911 7,955 (high) square Rohe (2013)

55 dsj1000 small 500 500 62 (low) other Reinelt (1991)

56 dsj1000 small 500 500 125 (medium) other Reinelt (1991)

57 dsj1000 small 500 500 250 (high) other Reinelt (1991)

58 nrw1379 small 689 689 86 (low) other Reinelt (1991)

59 nrw1379 small 689 689 172 (medium) other Reinelt (1991)

60 nrw1379 small 689 689 344 (high) other Reinelt (1991)

61 fnl4461 medium 2,230 2,230 278 (low) other Reinelt (1991)

62 fnl4461 medium 2,230 2,230 557 (medium) other Reinelt (1991)

63 fnl4461 medium 2,230 2,230 115 (high) other Reinelt (1991)

64 brd14051 medium 7,025 7,025 878 (low) other Reinelt (1991)

65 brd14051 medium 7,025 7,025 1,756 (medium) other Reinelt (1991)

66 brd14051 medium 7,025 7,025 3,512 (high) other Reinelt (1991)

67 d15112 medium 7,556 7,556 944 (low) other Reinelt (1991)

68 d15112 medium 7,556 7,556 1,889 (medium) other Reinelt (1991)

69 d15112 medium 7,556 7,556 3,778 (high) other Reinelt (1991)

3.E Appendix E

Table 3.E.1 shows the objective function values (OFVs) derived by the matheuristic, the

PISTS metaheuristic, and the IG metaheuristic for the benchmark instances from the

literature. Table 3.E.2 shows the objective function values (OFVs) derived by the three

approaches for the new instances. The best values are highlighted in bold.

120

Paper III: A matheuristic for locating obnoxious facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

Clients
Potential facilities
Open facilities

Removed facilities
Considered facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 3

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 4

Figure 3.C.1: Iterations 3 and 4 of the matheuristic for the illustrative example

121

Paper III: A matheuristic for locating obnoxious facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

Clients
Potential facilities
Open facilities

Removed facilities
Considered facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 5

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 6

Figure 3.C.2: Iterations 5 and 6 of the matheuristic for the illustrative example

122

Paper III: A matheuristic for locating obnoxious facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

Clients
Potential facilities
Open facilities

Removed facilities
Considered facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 7

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 8

Figure 3.C.3: Iterations 7 and 8 of the matheuristic for the illustrative example

123

Paper III: A matheuristic for locating obnoxious facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

Clients
Potential facilities
Open facilities

Removed facilities
Considered facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 9

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 10

Figure 3.C.4: Iterations 9 and 10 of the matheuristic for the illustrative example

124

Paper III: A matheuristic for locating obnoxious facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

Clients
Potential facilities
Open facilities

Removed facilities
Considered facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 11

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Remove facilities

5 10 15
x-coordinates

5

10

15

20

25

y-
co

or
di

na
te

s

Add facilities
Iteration 12

Figure 3.C.5: Iterations 11 and 12 of the matheuristic for the illustrative example

125

Paper III: A matheuristic for locating obnoxious facilities

Table 3.E.1: Objective function values derived by the matheuristic, PISTS metaheuristic,
and IG metaheuristic for the benchmark instances (note that higher values are better)

ID OFV matheuristic OFV PISTS OFV IG

pmed17-p25.A 7,317 7,317 7,317

pmed17-p50.A 5,411 5,411 5,411

pmed17-p100.A 4,054 4,054 4,054

pmed18-p25.A 7,432 7,432 7,432

pmed18-p50.A 5,746 5,746 5,746

pmed18-p100.A 4,220 4,220 4,220

pmed19-p25.A 7,020 7,020 7,020

pmed19-p50.A 5,387 5,387 5,387

pmed19-p100.A 4,033 4,033 4,033

pmed20-p25.A 7,648 7,648 7,648

pmed20-p50.A 5,872 5,872 5,872

pmed20-p100.A 4,063 4,063 4,063

pmed21-p31.A 7,304 7,304 7,304

pmed21-p62.A 5,784 5,775 5,784

pmed21-p125.A 4,155 4,155 4,155

pmed22-p31.A 7,900 7,900 7,900

pmed22-p62.A 5,995 5,995 5,995

pmed22-p125.A 4,358 4,358 4,358

pmed23-p31.A 7,841 7,841 7,841

pmed23-p62.A 5,785 5,785 5,785

pmed23-p125.A 4,114 4,114 4,114

pmed24-p31.A 7,425 7,425 7,425

pmed24-p62.A 5,528 5,528 5,528

pmed24-p125.A 4,091 4,091 4,091

pmed25-p31.A 7,552 7,552 7,552

pmed25-p62.A 5,767 5,767 5,767

pmed25-p125.A 4,155 4,155 4,155

pmed26-p37.A 8,112 8,112 8,112

pmed26-p75.A 5,789 5,789 5,789

pmed26-p150.A 4,339 4,339 4,341

Continued on next page

126

Paper III: A matheuristic for locating obnoxious facilities

Table 3.E.1: Objective function values derived by the matheuristic, PISTS metaheuristic,
and IG metaheuristic for the benchmark instances (note that higher values are better)

ID OFV matheuristic OFV PISTS OFV IG

pmed27-p37.A 7,556 7,556 7,556

pmed27-p75.A 5,668 5,668 5,668

pmed27-p150.A 4,062 4,052 4,062

pmed28-p37.A 7,366 7,366 7,366

pmed28-p75.A 5,681 5,681 5,681

pmed28-p150.A 4,099 4,099 4,099

pmed29-p37.A 7,395 7,404 7,404

pmed29-p75.A 5,880 5,880 5,880

pmed29-p150.A 4,141 4,140 4,141

pmed30-p37.A 7,704 7,704 7,704

pmed30-p75.A 6,184 6,184 6,189

pmed30-p150.A 4,385 4,385 4,385

pmed31-p43.A 7,424 7,424 7,424

pmed31-p87.A 5,905 5,905 5,905

pmed31-p175.A 4,136 4,135 4,136

pmed32-p43.A 7,794 7,794 7,794

pmed32-p87.A 5,925 5,925 5,925

pmed32-p175.A 4,242 4,242 4,242

pmed33-p43.A 7,598 7,598 7,598

pmed33-p87.A 5,793 5,793 5,793

pmed33-p175.A 4,105 4,103 4,105

pmed34-p43.A 7,725 7,725 7,725

pmed34-p87.A 5,844 5,849 5,849

pmed34-p175.A 4,287 4,286 4,287

pmed35-p50.A 7,155 7,155 7,155

pmed35-p100.A 5,845 5,845 5,845

pmed35-p200.A 4,007 4,005 4,007

pmed36-p50.A 8,179 8,179 8,179

pmed36-p100.A 6,461 6,461 6,461

pmed36-p200.A 4,318 4,317 4,319

Continued on next page

127

Paper III: A matheuristic for locating obnoxious facilities

Table 3.E.1: Objective function values derived by the matheuristic, PISTS metaheuristic,
and IG metaheuristic for the benchmark instances (note that higher values are better)

ID OFV matheuristic OFV PISTS OFV IG

pmed37-p50.A 7,830 7,830 7,830

pmed37-p100.A 6,203 6,203 6,203

pmed37-p200.A 4,593 4,588 4,593

pmed38-p56.A 7,432 7,432 7,432

pmed38-p112.A 5,912 5,914 5,915

pmed38-p225.A 4,428 4,428 4,428

pmed39-p56.A 7,712 7,712 7,712

pmed39-p112.A 5,935 5,935 5,935

pmed39-p225.A 4,369 4,368 4,369

pmed40-p56.A 8,211 8,211 8,211

pmed40-p112.A 6,272 6,272 6,272

pmed40-p225.A 4,572 4,572 4,572

pmed17-p25.B 6,905 6,905 6,905

pmed17-p50.B 5,563 5,563 5,563

pmed17-p100.B 3,992 3,992 3,992

pmed18-p25.B 7,662 7,662 7,662

pmed18-p50.B 5,852 5,852 5,852

pmed18-p100.B 4,122 4,122 4,122

pmed19-p25.B 6,816 6,816 6,816

pmed19-p50.B 5,423 5,423 5,423

pmed19-p100.B 4,016 4,016 4,016

pmed20-p25.B 7,349 7,349 7,349

pmed20-p50.B 5,665 5,665 5,665

pmed20-p100.B 4,067 4,067 4,067

pmed21-p31.B 7,331 7,331 7,331

pmed21-p62.B 5,870 5,870 5,870

pmed21-p125.B 4,033 4,033 4,033

pmed22-p31.B 7,695 7,695 7,695

pmed22-p62.B 6,259 6,259 6,259

pmed22-p125.B 4,338 4,338 4,338

Continued on next page

128

Paper III: A matheuristic for locating obnoxious facilities

Table 3.E.1: Objective function values derived by the matheuristic, PISTS metaheuristic,
and IG metaheuristic for the benchmark instances (note that higher values are better)

ID OFV matheuristic OFV PISTS OFV IG

pmed23-p31.B 7,137 7,137 7,137

pmed23-p62.B 5,724 5,724 5,724

pmed23-p125.B 4,095 4,095 4,095

pmed24-p31.B 7,190 7,190 7,190

pmed24-p62.B 5,752 5,752 5,752

pmed24-p125.B 4,072 4,072 4,072

pmed25-p31.B 7,552 7,552 7,552

pmed25-p62.B 5,692 5,692 5,692

pmed25-p125.B 4,233 4,227 4,233

pmed26-p37.B 7,643 7,643 7,643

pmed26-p75.B 5,923 5,923 5,923

pmed26-p150.B 4,173 4,173 4,173

pmed27-p37.B 7,448 7,448 7,448

pmed27-p75.B 5,844 5,844 5,844

pmed27-p150.B 4,144 4,144 4,144

pmed28-p37.B 7,388 7,388 7,388

pmed28-p75.B 5,642 5,633 5,642

pmed28-p150.B 4,069 4,069 4,069

pmed29-p37.B 7,529 7,529 7,529

pmed29-p75.B 5,709 5,709 5,709

pmed29-p150.B 4,157 4,157 4,157

pmed30-p37.B 8,048 8,048 8,048

pmed30-p75.B 6,040 6,041 6,041

pmed30-p150.B 4,313 4,313 4,313

pmed31-p43.B 7,320 7,320 7,320

pmed31-p87.B 5,620 5,621 5,621

pmed31-p175.B 4,138 4,138 4,138

pmed32-p43.B 7,899 7,899 7,899

pmed32-p87.B 5,852 5,836 5,852

pmed32-p175.B 4,244 4,244 4,244

Continued on next page

129

Paper III: A matheuristic for locating obnoxious facilities

Table 3.E.1: Objective function values derived by the matheuristic, PISTS metaheuristic,
and IG metaheuristic for the benchmark instances (note that higher values are better)

ID OFV matheuristic OFV PISTS OFV IG

pmed33-p43.B 7,611 7,611 7,611

pmed33-p87.B 5,840 5,840 5,840

pmed33-p175.B 4,156 4,153 4,156

pmed34-p43.B 7,514 7,514 7,514

pmed34-p87.B 5,857 5,857 5,857

pmed34-p175.B 4,270 4,270 4,270

pmed35-p50.B 7,570 7,570 7,570

pmed35-p100.B 5,639 5,639 5,639

pmed35-p200.B 4,109 4,109 4,109

pmed36-p50.B 8,144 8,144 8,144

pmed36-p100.B 6,219 6,200 6,219

pmed36-p200.B 4,321 4,319 4,321

pmed37-p50.B 8,379 8,379 8,379

pmed37-p100.B 6,210 6,203 6,212

pmed37-p200.B 4,609 4,609 4,609

pmed38-p56.B 7,532 7,535 7,535

pmed38-p112.B 5,949 5,949 5,949

pmed38-p225.B 4,446 4,445 4,446

pmed39-p56.B 7,625 7,625 7,625

pmed39-p112.B 6,198 6,198 6,198

pmed39-p225.B 4,268 4,265 4,267

pmed40-p56.B 8,022 8,022 8,022

pmed40-p112.B 6,200 6,199 6,200

pmed40-p225.B 4,532 4,532 4,532

130

Paper III: A matheuristic for locating obnoxious facilities

Table 3.E.2: Objective function values derived by the matheuristic, PISTS metaheuristic,
and IG metaheuristic for the new instances (note that higher values are better)

ID OFV matheuristic OFV PISTS OFV IG

1 55,980 56,159 56,159

2 42,330 42,330 42,330

3 19,501 19,501 19,501

4 65,882 66,073 66,073

5 45,204 45,204 44,250

6 23,205 23,205 23,205

7 76,073 76,073 76,073

8 59,786 59,786 59,786

9 27,442 27,442 27,442

10 98,673 98,739 98,739

11 71,988 71,988 71,988

12 33,370 32,159 33,370

13 229,564 229,564 229,564

14 183,637 183,637 183,637

15 75,969 75,063 75,063

16 221,718 221,718 221,718

17 162,768 162,768 162,768

18 79,340 30,731 79,340

19 303,304 186,079 302,835

20 225,823 35,895 225,160

21 107,396 13,736 108,286

22 739,146 65,895 738,217

23 533,201 31,517 533,201

24 246,009 18,285 244,955

25 915,182 51,995 915,691

26 684,514 27,889 689,318

27 329,720 17,615 330,311

28 2,327,042 81,179 2,367,170

29 1,805,546 53,124 1,802,959

30 833,905 35,208 628,184

Continued on next page

131

Paper III: A matheuristic for locating obnoxious facilities

Table 3.E.2: Objective function values derived by the matheuristic, PISTS metaheuristic,
and IG metaheuristic for the new instances (note that higher values are better)

ID OFV matheuristic OFV PISTS OFV IG

31 3,035,021 78,543 2,005,425

32 2,283,958 53,472 1,105,949

33 1,042,475 36,524 529,401

34 2,925,845 104,218 824,377

35 1,882,518 70,590 541,078

36 904,664 47,903 304,831

37 344,665 344,665 344,665

38 278,501 278,501 278,501

39 121,824 110,982 110,982

40 1,342,871 395,335 1,400,903

41 1,079,035 97,887 1,079,836

42 466,468 44,005 444,802

43 4,339,605 233,102 4,231,777

44 2,891,112 153,969 2,249,735

45 1,383,672 107,086 1,554,307

46 118,038 110,298 118,038

47 88,181 88,181 88,181

48 40,164 40,164 34,749

49 453,398 17,981 453,708

50 342,088 10,973 342,136

51 162,451 6,948 162,164

52 1,439,845 41,330 445,221

53 967,498 28,253 281,518

54 408,555 19,063 139,627

55 282,292,767 282,872,870 282,872,870

56 185,590,004 185,628,514 185,628,514

57 106,074,079 106,074,079 106,074,079

58 765,743 765,743 765,743

59 506,857 469,701 506,857

Continued on next page

132

Paper III: A matheuristic for locating obnoxious facilities

Table 3.E.2: Objective function values derived by the matheuristic, PISTS metaheuristic,
and IG metaheuristic for the new instances (note that higher values are better)

ID OFV matheuristic OFV PISTS OFV IG

60 246,398 246,398 246,398

61 4,023,975 2,789,450 4,023,975

62 2,855,926 555,675 2,855,926

63 1,439,070 173,932 1,439,070

64 22,162,973 652,892 22,209,219

65 13,809,139 445,238 14,414,789

66 7,252,232 320,394 7,651,457

67 55,179,625 2,204,329 57,293,470

68 43,018,826 1,491,705 43,556,600

69 21,623,304 1,082,564 20,292,880

133

Bibliography

Belotti, P., Labbé, M., Maffioli, F., Ndiaye, M.M., 2007. A branch-and-cut method for

the obnoxious p-median problem. 4OR 5, 299–314.

Chang, J., Wang, L., Hao, J.K., Wang, Y., 2021. Parallel iterative solution-based tabu

search for the obnoxious p-median problem. Computers & Operations Research 127,

105155.

Chiang, Y.I., Lin, C.C., 2017. Compact model for the obnoxious p-median problem.

American Journal of Operations Research 7, 348–355.

Church, R.L., Drezner, Z., 2022. Review of obnoxious facilities location problems. Com-

puters & Operations Research 138, 105468.

Colmenar, J.M., Greistorfer, P., Mart́ı, R., Duarte, A., 2016. Advanced greedy randomized

adaptive search procedure for the obnoxious p-median problem. European Journal of

Operational Research 252, 432–442.

Colmenar, J.M., Mart́ı, R., Duarte, A., 2018. Multi-objective memetic optimization for

the bi-objective obnoxious p-median problem. Knowledge-Based Systems 144, 88–101.

Gokalp, O., 2020. An iterated greedy algorithm for the obnoxious p-median problem.

Engineering Applications of Artificial Intelligence 92, 103674.

Herrán, A., Colmenar, J.M., Mart́ı, R., Duarte, A., 2020. A parallel variable neighborhood

search approach for the obnoxious p-median problem. International Transactions in

Operational Research 27, 336–360.

Kalczynski, P., Drezner, Z., 2021. The obnoxious facilities planar p-median problem. OR

Spectrum 43, 577–593.

Kalczynski, P., Drezner, Z., 2022. The obnoxious facilities planar p-median problem with

variable sizes. Omega 111, 102639.

134

Paper III: A matheuristic for locating obnoxious facilities

Kalczynski, P., Suzuki, A., Drezner, Z., 2020. Obnoxious facility location: The case of

weighted demand points. ArXiv preprint arXiv:2008.04386.

Kalczynski, P., Suzuki, A., Drezner, Z., 2022. Obnoxious facility location in multiple

dimensional space. TOP, 1–24.

Koch, T., Berthold, T., Pedersen, J., Vanaret, C., 2022. Progress in mathematical pro-

gramming solvers from 2001 to 2020. EURO Journal on Computational Optimization

10, 100031.

Labbé, M., Maffioli, F., Ndiaye, M.M., Belotti, P., 2001. Obnoxious p-median problems:

valid inequalities and a branch-and-cut approach. The OR Peripatetic Post-Graduate

Programme, 26–29.

Lei, T.L., Church, R.L., 2015. On the unified dispersion problem: Efficient formulations

and exact algorithms. European Journal of Operational Research 241, 622–630.

Lin, C.C., Chiang, Y.I., 2021. Alternative formulations for the obnoxious p-median prob-

lem. Discrete Applied Mathematics 289, 366–373.

Lin, G., Guan, J., 2018. A hybrid binary particle swarm optimization for the obnoxious

p-median problem. Information Sciences 425, 1–17.

Maniezzo, V., Boschetti, M.A., Stützle, T., 2021. Preface, in: Maniezzo, V., Boschetti,

M.A., Stützle, T. (Eds.), Matheuristics. Springer, Cham, pp. 143–158.

Mladenović, N., Alkandari, A., Pei, J., Todosijević, R., Pardalos, P.M., 2020. Less is more

approach: basic variable neighborhood search for the obnoxious p-median problem.

International Transactions in Operational Research 27, 480–493.

Reinelt, G., 1991. TSPLIB—A traveling salesman problem library. ORSA Journal on

Computing 3, 376–384.

ReVelle, C.S., Eiselt, H.A., 2005. Location analysis: A synthesis and survey. European

Journal of Operational Research 165, 1–19.

Rohe, A., 2013. VLSI collection. Website. http://www.math.uwaterloo.ca/tsp/vlsi/

index.html. Accessed: 2022-06-20.

Sánchez-Oro, J., López-Sánchez, A.D., Colmenar, J.M., 2022. A multi-objective parallel

variable neighborhood search for the bi-objective obnoxious p-median problem. Opti-

mization Letters 16, 301–331.

135

http://www.math.uwaterloo.ca/tsp/vlsi/index.html
http://www.math.uwaterloo.ca/tsp/vlsi/index.html

Paper III: A matheuristic for locating obnoxious facilities

Tamir, A., 1991. Obnoxious facility location on graphs. SIAM Journal on Discrete Math-

ematics 4, 550–567.

136

	1
	
	Introduction
	Planning problem
	Business context
	Problem description
	Illustrative example

	Literature
	Related problems in direct marketing
	More general combinatorial optimization problems with conflict constraints

	Mixed-binary linear programming formulation
	Matheuristic
	Build groups by eligibility pattern (Step 1)
	Divide groups according to expected profits (Step 2)
	Determine the number of customers of the groups that are assigned to the activities (Step 3)
	Assign individual customers of the groups to the activities (Step 4)
	Illustrative example

	Preprocessing technique
	Step one of the preprocessing technique
	Step two of the preprocessing technique
	Step three of the preprocessing technique
	Step four of the preprocessing technique
	Step five of the preprocessing technique
	Step six of the preprocessing technique
	An alternative mixed-binary linear programming formulation

	Results
	Problem instances
	Experimental design
	Comparison of MBLP and MBLP'
	Performance of matheuristic

	Conclusion
	Bibliography

	
	Introduction
	Planning problem
	Basic notation
	Illustration of the planning problem
	Related project scheduling problems with transportation times

	Continuous-time MBLP model
	Types of variables
	Formulation of objective and constraints

	Relax-optimize-and-fix matheuristic
	Overview
	Different steps of the matheuristic
	Illustration of the matheuristic

	Computational results
	Experimental design
	Description of performance metrics
	Computational results: Exact approaches
	Computational results: Heuristic approaches

	Conclusion
	Appendices
	Appendix A
	Bibliography

	
	Introduction
	Obnoxious p-median problem
	Problem description
	Illustrative example

	Literature
	Exact approaches
	Metaheuristic approaches
	Research gap

	Matheuristic
	Overview
	Generation of initial solutions
	Improvement procedure
	Illustrative example
	Clustering of clients

	Computational results
	Instances
	Leading metaheuristics
	Experimental design
	Results benchmark instances
	Results new instances
	Results when clustering clients

	Extension
	Description of extension
	Results on selected instances

	Conclusion
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Bibliography

