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palavras-chave Logística, localização-distribuição, multi-objectivo, serviços semiobnóxios, 
sistemas de apoio à decisão. 
 

resumo A presente tese resulta de um trabalho de investigação cujo objectivo se 
centrou no problema de localização-distribuição (PLD) que pretende abordar, 
de forma integrada, duas actividades logísticas intimamente relacionadas: a 
localização de equipamentos e a distribuição de produtos. 
 
O PLD, nomeadamente a sua modelação matemática, tem sido estudado na 
literatura, dando origem a diversas aproximações que resultam de diferentes 
cenários reais. Importa portanto agrupar as diferentes variantes por forma a 
facilitar e potenciar a sua investigação. Após fazer uma revisão e propor uma 
taxonomia dos modelos de localização-distribuição, este trabalho foca-se na 
resolução de alguns modelos considerados como mais representativos. É feita 
assim a análise de dois dos PLDs mais básicos (os problema capacitados com 
procura nos nós e nos arcos), sendo apresentadas, para ambos, propostas de 
resolução. Posteriormente, é abordada a localização-distribuição de serviços 
semiobnóxios. Este tipo de serviços, ainda que seja necessário e 
indispensável para o público em geral, dada a sua natureza, exerce um efeito 
desagradável sobre as comunidades contíguas. Assim, aos critérios 
tipicamente utilizados na tomada de decisão sobre a localização destes 
serviços (habitualmente a minimização de custo) é necessário adicionar 
preocupações que reflectem a manutenção da qualidade de vida das regiões 
que sofrem o impacto do resultado da referida decisão. 
 
A abordagem da localização-distribuição de serviços semiobnóxios requer 
portanto uma análise multi-objectivo. Esta análise pode ser feita com recurso a 
dois métodos distintos: não interactivos e interactivos. Ambos são abordados 
nesta tese, com novas propostas, sendo o método interactivo proposto 
aplicável a outros problemas de programação inteira mista multi-objectivo. 
 
Por último, é desenvolvida uma ferramenta de apoio à decisão para os 
problemas abordados nesta tese, sendo apresentada a metodologia adoptada 
e as suas principais funcionalidades. A ferramenta desenvolvida tem grandes 
preocupações com a interface de utilizador, visto ser direccionada para 
decisores que tipicamente não têm conhecimentos sobre os modelos 
matemáticos subjacentes a este tipo de problemas. 

 
  



  



  

  

keywords Logistics, location-routing, multi-objective, semi-obnoxious facilities, decision 
support systems. 
 

abstract This thesis main objective is to address the location-routing problem (LRP) 
which intends to tackle, using an integrated approach, two highly related 
logistics activities: the location of facilities and the distribution of materials. 
 
The LRP, namely its mathematical formulation, has been studied in the 
literature, and several approaches have emerged, corresponding to different 
real-world scenarios. Therefore, it is important to identify and group the 
different LRP variants, in order to segment current research and foster future 
studies. After presenting a review and a taxonomy of location-routing models, 
the following research focuses on solving some of its variants. Thus, a study of 
two of the most basic LRPs (capacitated problems with demand either on the 
nodes or on the arcs) is performed, and new approaches are presented. 
Afterwards, the location-routing of semi-obnoxious facilities is addressed. 
These are facilities that, although providing useful and indispensible services, 
given their nature, bring about an undesirable effect to adjacent communities. 
Consequently, to the usual objectives when considering their location (cost 
minimization), new ones must be added that are able to reflect concerns 
regarding the quality of life of the communities impacted by the outcome of 
these decisions. 
 
The location-routing of semi-obnoxious facilities therefore requires to be 
analysed using multi-objective approaches, which can be of two types: non-
interactive or interactive. Both are discussed and new methods proposed in this 
thesis; the proposed interactive method is suitable to other multi-objective 
mixed integer programming problems. 
 
Finally, a newly developed decision-support tool to address the LRP is 
presented (being the adopted methodology discussed, and its main 
functionalities shown). This tool has great concerns regarding the user 
interface, as it is directed at decision makers who typically don’t have specific 
knowledge of the underlying models of this type of problems. 
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Chapter 1 

1. Introduction 

Logistics plays an important role within organizations, dealing with the planning and control of 

material flows and related information. There is always a cost (not necessarily economic) 

associated with the management, maintenance, manipulation, and storage of materials. Although 

this cost cannot be eliminated, its optimization may become a strong competitive argument. 

Therefore, good decisions regarding the design and activities of logistics systems are of the utmost 

importance to managers. 

In this thesis two of the most important decisions in logistics systems activities will be 

addressed: the location of facilities and the distribution of materials. 

When a decision maker (DM) addresses the design and activities of logistics systems, among 

others, (s)he must determine the location of facilities and the distribution of materials. In order to 

do so, several aspects have to be considered, some hardly measurable. 

One of the aspects, and often the most relevant, is cost. The cost of locating facilities typically 

plays an important role in the overall cost of logistics systems, as it may not be easily changed and 

affects the remaining logistics activities. However, if the cost of locating a facility is to be correctly 

obtained, the distribution of materials must also be considered. These are highly related logistics 

activities, and thus, should be considered simultaneously. 

The role of operations research (a field of applied mathematics) is to provide quantitative tools 

to DMs, based on which they can support decisions regarding these activities. In operations 

research, these decisions have already been approached in an integrated fashion, being the 

underlying problem named location-routing problem (LRP). The LRP has had several variants 

reflecting the different main real-world scenarios (which have also led to a currently somewhat 

disperse body of knowledge). 

When intending to determine the location of facilities, cost is, in most cases, the most important 

aspect; however, for some facilities other aspects gain relevance. This is the case with semi-

obnoxious facilities. These are facilities that, although providing useful and indispensable services, 

due to their nature, bring about undesirable effects to communities (e.g. affecting people’s quality 

of life and urban environment, by bringing about traffic chaos, noise, and pollution), when installed 

in their vicinity. Examples of such facilities are landfills, prisons, fire stations, power plants, 

airports, and hospitals. The specific characteristics of semi-obnoxious facilities requires that the 

undesirable effect must also be considered (without completely disregarding cost); as the general 
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public is increasingly gaining environmental awareness and is often not willing to lose quality of 

life. 

The abovementioned situation suggests the use of multi-objective approaches which, unlike 

single-objective ones (where complete ordering of solutions is possible), requires the contribution 

of DMs for the ordering and evaluation of solutions (due to the existing trade-off between cost and 

obnoxious effect, for instance). 

The different facility location (and routing) decisions discussed previously are the subject of this 

thesis, and are studied using operations research methodologies. The underlying single- and multi-

objective problems are formally defined, and new approaches proposed and validated. When 

addressing the multi-objective LRP model, two different types of approaches can be used: non-

interactive and interactive methods. 

Non-interactive multi-objective methods are more prone to be used in situations where there is 

no knowledge of the preferences of the DM (or the DM either has unclear preferences or little 

knowledge of the problem at hand); thus methods attempt to obtain all non-dominated solutions, to 

later be evaluated. These methods may lead to excessive computation time and the generation of an 

overwhelming number of solutions, which may be difficult for DMs to analyse; moreover, most of 

them are not interesting to DMs. 

In interactive multi-objective methods, the computation time is decreased as only solutions 

found to be interesting to DMs are generated. This requires alternation between human intervention 

(DM) and computation phases. The difficulties encountered in such methods are also shared by 

other multi-objective mixed integer programming (MOMIP) problems. Therefore, the newly 

developed method can be used on other such problems. 

The main objective of the developed approaches is to support DMs in their location decisions. 

However, DMs often do not possess specific knowledge of LRP models, making these studies 

seldom known or used outside the academic community. Moreover, the decision-making process 

usually requires a lot of experience on either the addressed problem or the approaches to solve it. 

With computation tools the need for acquired experience, as well as the time to obtain solutions for 

a specific scenario may decrease significantly. This justifies the importance to develop such a tool: 

that is able to incorporate advanced algorithms while making easy the visualization (and editing) of 

data regarding these problems. 

A proposal for a decision-support tool (DST) for LRPs is thus presented. As the success of such 

a tool depends greatly on its correct development and fulfilment of requirements (regarding 

performance, reliability, robustness, usability, etc.), main software development methodologies in 

the literature are reviewed, and key success aspects identified. As the proposed DST is mostly 

directed at users with little knowledge of modelling or optimization, special emphasis should be 

given to the user interface. 

The user interface should aim at allowing the exploration of the solution-finding process in a 

way easily understandable by the user, facilitating it, and eventually fostering greater insight of the 

problem at hand. Moreover, by presenting an interface easy to work with and understand, the 
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general public may have easier access and further understanding of the decision process involved in 

many of the current facility installation decisions. 

To sum up, the previously mentioned considerations motivated the development of this thesis, 

which presents work in three (complementary) dimensions: location-routing, multi-objective, and 

decision support. The underlying research subject (which requires addressing the three 

aforementioned dimensions) is therefore if multi-objective approaches, for LRPs concerning semi-

obnoxious facilities, can contribute to improve the quality of decisions. 

1.1 Objectives 

The main objective of this thesis is to develop new approaches that enable to improve decision 

support in the subject of location-routing. Both single-objective as well as multi-objective problems 

are addressed, albeit main contributions are regarding the multi-objective case (used when locating 

semi-obnoxious facilities). 

The overall objective can be achieved through the following specific objectives: 

· to review and segment current research on LRPs 

· to develop new approaches for basic (single-objective) LRPs 

· to review location models addressing undesirable (obnoxious and semi-obnoxious) facilities 

· to develop non-interactive and interactive multi-objective approaches for the location-routing 

of semi-obnoxious facilities 

· to implement the proposed approaches in a DST directed at DMs 

· to ensure the developed DST is easy to learn and work with. 

Based on the need to develop new approaches for LRPs, current research is to be reviewed and 

segmented, in order to identify basic models and current approaches in the literature. With the 

intent of increasing the knowledge on some of the basic (single-objective) LRPs, new approaches 

are to be developed and validated. 

As the study of the location-routing of semi-obnoxious facilities is another of the main goals of 

this thesis, models considering only location of undesirable facilities (both obnoxious and semi-

obnoxious) are to be reviewed. The goal is to identify main objectives and modelling issues in 

order to incorporate them when tackling the location-routing of semi-obnoxious facilities. To solve 

the resulting multi-objective problem, non-interactive or interactive approaches are required to be 

employed (both corresponding to different decision-making scenarios). Aiming at supporting 

decisions for most of real-world scenarios, both a non-interactive and an interactive approach are to 

be developed and analysed. 

To effectively improve decision support in these problems, not only new approaches should be 

developed, but they should also be made available. This can be achieved by developing a DST, 

directed at DMs (from which the general public may also profit), that is able to incorporate the 

developed approaches. In order to accomplish this goal, the tool’s development must have great 

concerns regarding the user interface. To that extent, usability tests are to be performed to evaluate 

the usability of the tool, ensuring it is easy to learn and work with. 
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1.2 Thesis Outline 

This thesis is organized in eight chapters which address several relevant issues regarding location-

routing, multi-objective, and decision support. 

A brief introduction and general description of the studies made in this thesis is presented in 

Chapter 1, where some general considerations are made, the underlying objectives defined, and the 

outline of the thesis described. 

In Chapter 2 an overview of facility location and vehicle routing (two of the main activities of 

logistics systems) is provided, in which some of the problems in the literature addressing them are 

presented. The integrated location-routing approach is then analysed, where several works with the 

different LRP variants, objectives, and approaches can be found. This motivated the development 

of a comprehensive taxonomy which was proposed in the same chapter. The taxonomy separates 

papers in the literature according to, firstly, the physical characteristics of the models, secondly, the 

algorithmic approach and the number of objectives. 

From the existing LRP variants described in Chapter 2, two of the most basic (single-objective) 

problems are chosen to be studied in Chapter 3: the capacitated LRP (CLRP) and the location-arc 

routing problem (LARP). For the CLRP, a formal definition is provided, existing approaches are 

reviewed, and a new metaheuristic (active guided search – AGS) is proposed. The AGS 

metaheuristic is tested using three sets of benchmark instances from the literature, proving to be 

competitive when compared with other approaches. For the LARP, a formal definition is given and, 

as the literature review revealed this problem as scarcely studied, new constructive methods, 

improvement heuristics, and metaheuristic approaches are proposed. Moreover, a new set of 

benchmark instances had to be devised, allowing to compare the different proposals and draw some 

conclusions. 

As one of the purposes of this thesis is to study the location-routing of semi-obnoxious 

facilities, in Chapter 4, works (and corresponding models) addressing, firstly, solely facility 

location, then the location-routing of undesirable facilities is reviewed. It is shown that this 

problem is inherently multi-objective, and the scarcity of multi-objective location-routing models 

motivates the formal definition and use of a new multi-objective CLRP. This problem is then 

solved using a newly developed metaheuristic approach (a non-interactive multi-objective method), 

which attempts to obtain the full set of non-dominated solutions. Corresponding computational 

results are presented (using a set of benchmark instances from the single-objective CLRP 

literature), and a graphical example is analysed. 

In Chapter 5 a different approach to the previously defined multi-objective CLRP is made. In 

this chapter, rather than attempting to obtain the full non-dominated set, only the non-dominated 

solutions considered to be interesting to DMs are attempted to be generated. This leads to 

interactive multi-objective methods, which are reviewed (focusing on open communication 

protocol), and a new proposal is made. The new proposal uses an open communication protocol to 

interact with DMs in order to obtain non-dominated solutions. The new interactive multi-objective 

method can also be used on other MOMIP problems. The method is applied to a specific multi-

objective CLRP, where a step-by-step example is provided. 
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All the aforementioned approaches are most effective at improving decision support when 

integrated in a DST. The main goal of Chapter 6 is to present development methodologies and key 

success aspects of decision support systems. For the correct development of these information 

systems, several aspects have to be considered regarding: stakeholders involved, main development 

activities, development methodologies, and human computer interaction. These are studied in this 

chapter, where the development of a DST for solving LRPs is also analysed, with main phases of 

the adopted software development process being presented. 

In Chapter 7, the DST developed for LRPs (following the main development phases as 

described in Chapter 6) is presented. Main functionalities are briefly described and the graphical 

user interface (namely data input and visualization features) is evaluated using usability testing. 

The tool is able to obtain results not only for LRPs but also for facility location and vehicle routing 

problems. 

In the last chapter it is presented an overview of the main conclusions of this thesis, 

summarising the developed work and corresponding limitations. Future work and promising 

research directions are also identified. 
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Chapter 2 

2. An Overview of Location and Routing 

When addressing logistics systems several activities have to be taken into consideration. Some of 

these activities are handled on a daily basis while others are tackled on a medium or long term 

perspective. Although they refer to different time horizons, they may be linked, as the former 

corresponding decisions are typically biased by the latter (and vice versa). 

In this chapter an introduction and an overview (mainly focused on mathematical approaches) 

are presented for some of the main decisions in logistics systems (namely facility location and 

vehicle routing), and a discussion concerning the need to tackle these problems in an integrated 

fashion is done. Afterwards, a taxonomy is proposed for the integrated approach (location-routing) 

(Lopes et al., 2008b). 

2.1 Location and Routing Decisions in Logistics Systems 

A logistics system is composed of a set of facilities and final users, where products are to be 

distributed using transportation services (Ghiani et al., 2004). The term facility (or depot) is usually 

used in its broadest sense, as it can refer to factories, schools, warehouses, distribution centres, 

hospitals, retail outlets, post offices, dump sites, to name but a few. The final users can be 

consumers, communities, companies, or even points of demand and/or supply and are often named 

clients. Transportation services, via routes or paths, regard moving materials between facilities (and 

final users) using vehicles. Routes are vehicle tours passing through more than one client or depot, 

before returning to the departure point. Paths include not only routes in which vehicles do not 

return to the departure point but also direct links between origin and destination points. 

The role of logistics systems models is to support the decision maker (DM) in choosing the 

system which will provide the best combination of cost and service among the possible alternative 

configurations. Min and Eom (1994) and Goetschalckx et al. (2002) advocate that these models can 

play an important role in identifying and evaluating alternative courses of logistics actions. This is 

due to their ability to structure complex managerial goals, constraints, and variables with enormous 

accuracy. However, their usage could be jeopardized if they do not successfully link interrelated 

logistics activities and establish an integrated view of the system (Min and Eom, 1994). Therefore, 

correctly modelling logistics systems can prove to be a daunting task. The high degree of 

complexity of these systems, where a large number of components exist, usually with complex 

interrelationships, suggests a systems (namely, systems engineering) approach as the best way to 

develop logistics models (House and Karrenbauer, 1982). 



8 2. An Overview of Location and Routing 

 

Within systems engineering the use of several tools and methods to better comprehend and 

manage complexity is encouraged (Blanchard, 2008). One of the main methodologies, which has 

often been employed in the development of logistics models, is optimization (Ghiani et al., 2004). 

From this field of applied mathematics, the focus of this thesis will be combinatorial optimization 

where, generally, (mixed) integer programming models are used to formally describe problems. 

However, in combinatorial optimization, problems generally belong to the NP class and, as such, 

even the simplest of logistics systems models cannot be solved as a whole in reasonable time. This 

has led to the separate study of the several components (or activities) of logistics systems 

(Daganzo, 2005). Still, in order to provide a model that can portray reality to some extent, a correct 

partition is required. 

Several categorizations for the range of activities (and corresponding decisions) within a 

logistics system have been proposed (Riopel et al., 2005). The most common categorization groups 

activities into three hierarchical levels, depending on the scope, time horizon, and frequency (Perl 

and Sirisoponsilp, 1988): strategic, tactical, and operational. 

Strategic decisions are generally related to major and more expensive logistics aspects which 

are to be considered over relatively long periods of time, and as such, are hardly reversible and 

have long-lasting effects. Tactical decisions are typically related to moderate investments, to be 

made on shorter time frames (annual, semi-annual, or seasonal time horizon), and can usually be 

reverted at a moderate cost. Finally, operational decisions are generally made on a daily basis or in 

real-time and are characterized by low investments, which can be reversed without incurring 

significant costs. 

Examples of some logistics decisions (facility location, transportation, and inventory) 

categorized by the three aforementioned hierarchical levels can be seen in Table 2.1. 

 

Table 2.1 Classification of facility location, transportation, and inventory decisions into three hierarchical 

levels (Perl and Sirisoponsilp, 1988). 

Logistics decisions Strategic Tactical Operational 

Facility location Number and location of 
facilities 

Material handling 
equipment 

 

 Assignment of facilities to 
supply sources 

  

 Allocation of demand to 
facilities 

  

Transportation Mode Carrier Assignment of crew and 
loads to vehicles 

 Type of carriage Shipment size Routing/scheduling 
Inventory Total systems inventory Size of inventories at 

various locations 
Control discipline at 
various locations 

 Location of inventories Levels of safety stock at 
various locations 

 

 

The different decision levels of logistics activities have led to a somewhat natural separation of 

the problems, as practitioners try to adapt models to specific logistics decision environments and 
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time frames. However, as mentioned earlier, this may not be the most correct approach as it lacks 

the interrelation between activities. 

Albeit all logistics activities are of the utmost importance, the objective of this work is to focus 

on facility location and vehicle routing, two components of logistics systems that tend to be closely 

linked. 

It can easily be concluded that they refer to two different kind of decisions (see Table 2.1): 

strategic (location) and operational (routing). For this reason, combined with the inherit complexity 

of the two problems, they have often been tackled separately, which led to several distinct models 

in the literature. The correct planning of these activities can result in a significant improvement 

being currently a critical success factor for many organizations and, in order to achieve this, an 

integrated view of these problems is required. 

In the following subsections an overview of several existing models for these two components 

of logistics systems will be made, to finally address the integrated approach, named location-

routing. 

2.1.1 Facility Location 

When choosing potential facility locations, DMs have in mind several aspects. Among these we 

have physical and economic constraints, but also motivations regarding future company needs, 

service levels, environmental aspects, company policies, and so forth (Tompkins et al., 2010). 

Nevertheless, when such a problem is addressed, often there is a preliminary study, in which the 

DM has narrowed the choices to a subset of potential locations compliant with the system’s 

specification. 

Based on the subset of candidate sites it is necessary to determine which is the most suitable 

regarding a given objective. This objective can be, for example, cost minimization, coverage 

maximization, obnoxious effect minimization, optimization of some equity measure, a combination 

of the above, or even, it can be desirable to simultaneously consider several different opposite 

objectives (Eiselt and Laporte, 1995). 

Facility location problems can thus be defined as intended to determine the optimal location of a 

fixed or variable number of facilities, with respect to some economical or social measure, while 

guaranteeing a predetermined service level (Albareda-Sambola, 2003). 

Currently there are several surveys regarding facility location problems (Daskin, 1995; Drezner 

and Hamacher, 2002; ReVelle and Eiselt, 2005; Melo et al., 2009). Based on the previously 

assumed DM’s position (where there is only a subset of potential facility locations) this work will 

focus mainly on discrete facility location problems as opposed to continuous and network facility 

location problems where, respectively, the facility can be located anywhere on a d-dimensional 

space ℝd, d ∈ ℕ (usually d = 2, and is named planar location), or the feasible region is a network 

(note that discrete problems can be considered as a particular case of network problems).()()()() 

Much of the literature on facility location modelling has been directed at formulating new 

models and modifications to existing ones, rather than directing at specific applications (Current et 
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al., 2002). This has led to the definition of a set of basic problems from which adaptations can be 

later made to tackle specific scenarios. As follows, some of these problems will be presented, 

where the underlying network is given, as well as the location of the demand points to be serviced 

by the facilities. 

Set Covering Problem 

In the set covering problem, first present by Toregas et al. (1971), the objective is to locate the 

minimum number of facilities required to cover all of the demand nodes. The concept of “cover” 

relates to a predefined maximum distance to the facility, to which, if the client is within, is 

considered covered (fully satisfied). Moreover, a client can only be satisfied or not satisfied, 

meaning that being closer than the maximum distance does not improve satisfaction. 

Maximal Covering Location Problem 

The maximal covering location problem (Church and ReVelle, 1974) differs from the set covering 

problem in having an upper limit on the number of facilities to install. Hence, the objective is to 

locate a predetermined number of facilities (p), in order to maximize the covered demand. Unlike 

the set covering problem, there may be unmet demand. 

p-Centre Problem 

The previous location problems assume that the covering distance is a fixed and predetermined 

standard, however it is often not the case. In the p-centre problem (Hakimi, 1964), it is required to 

minimize the maximum distance of all demand nodes to its closest facility constrained by a given 

number p of facilities. In this problem, where equity is sought, there is no longer a predefined 

standard maximal covering distance. 

p-Median Problem 

In the p-median problem (Hakimi, 1964) it is intended to find the location of p facilities that 

minimizes the sum of demand-weighted distances between each client and the facility to which is 

assigned. Instead of the p-centre equity objective, here the goal is efficiency. 

Fixed Charge Location Problem 

In this problem, formulated by Balinski (1965), the objective is to minimize the fixed facility 

location costs and the total travel costs required for demand to be serviced. Unlike the previous 

problems, however, there is a limit associated with the capacity of each facility, which may have 

different installation costs, and there is no a priori limit on the number of facilities to open. 
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Maxisum Location Problem 

Previous problems assume that it is advantageous to locate facilities as close as possible to demand 

points. However, when dealing with undesirable facilities (e.g. power plants, prisons and landfills 

for hazardous wastes) at least one of the objectives involves locating facilities as far as possible 

from demand nodes. The maxisum location problem (Church and Garfinkel, 1978) handles the 

location of p facilities such that the total demand-weighted distance between demand nodes and 

assigned facilities is maximized (as opposed to the p-median minimization objective). 

2.1.2 Vehicle Routing 

A large part of many logistics systems involves the management of a fleet of vehicles used to 

service facilities, retailers and/or clients. In order to control the costs of operating a fleet and meet 

the required level of service, it is necessary to continuously make decisions on how much to load 

on each vehicle and (from) where to send it (Bramel and Simchi-Levi, 1997; Rushton et al., 2006). 

As previously stated, these are operational activities that often require daily analysis leading to 

being one of the most studied in combinatorial optimization.()() 

From these problems it can be identified scenarios in which vehicles can supply more than one 

client (also named “less than a truck-load”). Furthermore, one can distinguish between problems 

with one vehicle, serving the totality of clients, and problems in which capacity constraints force 

the use of several vehicles. The former can be tackled using a travelling salesman problem (TSP), 

where the objective is to find the shortest possible route that visits each client exactly once 

(Applegate et al., 2006); while the latter fall under the general class of vehicle routing problem 

(VRP), which will be addressed hereafter. 

The VRP is one of the most challenging combinatorial optimization task, falling into the 

category of NP-hard problems (Garey and Johnson, 1979), and can be defined on a graph with a 

vertex serving as a depot and travel costs or times associated with each arc. The objective consists 

in designing the optimal set of routes, for a fleet of vehicles, in order to service a given set of 

clients (located on the remaining vertices). The VRP has led to a variety of problems as well as 

closely related ones (comprehensive reviews and some applications can be found in Crainic and 

Laporte, 1998, and Toth and Vigo, 2002). Some of these problems will be addressed as follows.()() 

Capacitated Vehicle Routing Problem 

The capacitated VRP (CVRP), introduced by Dantzig and Ramser (1959), is a VRP in which a fleet 

of vehicles, of uniform capacity, must service a known set of clients demand for a single product 

from a common depot, at minimum transit cost. What basically differs the CVRP from the VRP is 

the additional constraint that every vehicle must have uniform capacity of a single product. The 

objective is thus to minimize the number of vehicles and the sum of travel time. 
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Multi-Depot Vehicle Routing Problem 

It is common for a company to have several depots from which it can service its clients. If the 

clients are heavily clustered around the depots the problem can be reduced to a set of independent 

VRPs. When it is not the case it should be assumed as a multi-depot VRP, where it is required to 

assign clients to depots. In each depot, a fleet of vehicles is based which departures from the depot, 

services the assigned clients, and returns to the same depot. A formulation for this problem can be 

found in Perl and Daskin (1985). 

Vehicle Routing Problem with Time Windows 

Often, the distribution of products is associated with an interval of time wherein the client has to be 

serviced. These problems are named VRPs with time windows (Cordeau et al., 2002) and differ 

from the VRP in having a time window associated with each client (at the depot the interval is 

called the scheduling horizon). Moreover, the objective adds, to the usual vehicle fleet and travel 

distance minimization of the VRP, the minimization of the waiting time needed to service all 

clients in their required hours. 

Vehicle Routing Problem with Pickup and Delivery 

This problem is a VRP in which it is contemplated the possibility of clients returning some 

products (Parragh et al., 2008b). Therefore, it has to be taken into account the products the clients 

want to return to the delivery vehicle, so they can fit into it. This constraint can lead to a poorer 

utilization of the vehicles capacity, increased travel distances or the need for more vehicles, further 

increasing the problem difficulty. 

Vehicle Routing Problem with Backhauls 

Similarly to the previous problem, in the VRP with backhauls (Parragh et al., 2008a), clients can 

demand or return some products. The main difference is, in this problem, all deliveries must be 

completed before any pickups can be made. This arises from the fact that often vehicles are rear-

loaded and rearrangement of the loads during the route is not deemed economical or feasible. 

Arc Routing Problems 

These problems can be seen as closely related to the VRP (Dror, 2000). Likewise, they can be 

defined on a graph with a differentiated vertex (the depot), and costs associated with the arcs. 

Unlike the VRP however, the clients, rather than being on the vertices, are along the arcs, requiring 

them to be visited (all or a subset of the arcs) at least once. Most of the variants of the VRP are 

applicable to arc routing problems, being the most known the capacitated arc routing problem 

(CARP) the CVRP arc routing counterpart. 
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2.1.3 Location-Routing 

The facility location problems addressed earlier consider either the service to be performed in the 

facility site (requiring clients to travel there) or a dedicated trip required from the depot to each 

client. VRPs, although allowing to service several clients with a single trip, are already biased by 

the location of the depot(s). 

Most of the existing mathematical models focus on these two components of the logistics 

system individually, however, location and distribution are two components that tend to be closely 

linked. In many real-world situations, it is necessary to install one or more facilities (or services) 

and, simultaneously, establish the distribution between facilities and customers. The traditional 

approach of locating first and then designing the distribution routes has been, in these cases, 

gradually replaced by an integrated approach of the location and routing (Balakrishnan et al., 

1987). Salhi and Rand (1989) consider that these components are strongly linked and should not be 

optimized separately. 

The integrated approach has been named location-routing problem (LRP) (Laporte, 1988) and 

aims to model and solve facility location problems, while creating the distribution routes. LRPs 

typically combine three different decisions: the number, size and, location of facilities; the 

allocation of the demand points to the facilities; and the design of the vehicle routes emanating 

from the facilities. 

Location-routing encompasses a set of problems within location theory. Balakrishnan et al. 

(1987) observe that LRPs are strategic decisions concerning facility location; Nagy and Salhi 

(2007) state that these problems aim to solve facility location problems simultaneously solving a 

VRP. Overall, these can be seen as strategic problems that intend to determine the location of 

facilities taking into account distribution aspects. 

The distribution aspect of LRPs can be generalized in order to include all types of vehicle 

distribution considerations, be it by using either routes or paths. Other approaches can also be used 

in the routing aspect of LRPs, such as route length estimation, in which the actual routing is 

substituted by a cost (or a surrogate like length) estimation (Laporte and Dejax, 1989; Chien, 1993; 

Nagy and Salhi, 1996b; Bruns et al., 2000; Shen and Qi, 2007).()()()()() 

Moreover, the only distribution considered in LRPs is “offline” routing (knowledge about the 

environment in which routing takes place is available beforehand). For “online” (or real-time) 

routing it becomes a queueing location problem (reviewed by Berman and Krass, 2002).() 

The LRP can also be identified by looking at the desired physical structure (Laporte, 1988). 

Figure 2.1 exemplifies some possible situations (which will be addressed later) where both location 

and distribution are addressed at several levels. From the presented problems (Figure 2.1) only the 

location-allocation problem is not considered to be an LRP, due to having no routes/paths between 

supply (depots) and demand points (clients), meaning no true distribution decisions are considered. 
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Location-allocation problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LRP with standard structure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transportation-location problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Many-to-many LRP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vehicle routing-allocation problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multi-level LRP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Depot (first level) 
      Depot (second level) 
      Client 

  D   Demand point 
  S    Supply point 
D/S  Demand and/or supply point 

                 Route or path 
                 Path (direct link) 
                 Allocation 

Figure 2.1 Graphical representation of some problems regarding location and distribution. 
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Other very similar types of problems usually not considered as LRPs are the generalized 

network design problems – like the generalized TSP (Laporte and Nobert, 1983) or the generalized 

VRP (Ghiani and Improta, 2000). These can be defined as follows: given a depot and several sets 

of nodes, it is intended to determine the Hamiltonian circuit through the depot and at least one node 

from every set. Although dealing with node selection and sequencing on a tree, they are mainly 

directed at problems with null (or next to null) depot installation costs (node selection). Having no 

fixed cost, their precise locations on the various sets of nodes are immaterial, therefore, not dealing 

with true location issues but rather distribution decisions (e.g. transhipment). Nagy and Salhi 

(2007) briefly discuss other related problems. 

2.2 Taxonomy of Location-Routing Problems 

By now, it is common knowledge that location and routing are interrelated (Salhi and Rand, 1989). 

However, both practitioners and academics often ignore this when approaching integrated logistics 

problems on locating facilities. Many practitioners albeit being aware of this, still tend to search for 

a separate answer (Rand, 1976). According to Nagy and Salhi (2007), there are some possible 

explanations for this behaviour: the practical situation does not require routing aspects; the 

researchers share a view in which these are two different levels of decision (location being a 

strategic decision with a long-term planning horizon, while the routing component is mainly 

operational with short-term planning objectives, hence more inclined to be recalculated and redraw 

on a more regular basis); and the LRP is conceptually more difficult than the location problem, 

making the latter easier to manage. 

Although some of these arguments have been refuted in the literature (Salhi and Nagy, 1999), it 

is possible, nevertheless, to identify situations where it may be even more important to find 

solutions using this type of problems: when routing has a significant impact, be it cost wise (in 

many product distribution application) or due to the nature of the transported products (e.g. dealing 

with the transportation of hazardous material – HAZMAT). 

There has been a significant thread of works regarding the LRP and it may be important to 

segment them in order to find gaps and foster new research. In this section a survey will be made 

with this purpose: providing a new proposal for a taxonomy of LRPs; updating and adding other 

less known (and somewhat neglected) works; reviewing the approaches adopted in the literature; 

and addressing a common issue in the day-to-day life of many of these decisions which is the 

multi-objective problem. 

Firstly, it will be discussed the methodology adopted for the taxonomical classification. Then, 

the taxonomy primarily based on the problems intrinsic characteristics will be addressed. Finally, it 

will be presented an overview of the current algorithmic approaches and main objectives. A brief 

analysis of the classified papers can be found in Appendix A. 
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2.2.1 Methodology 

In the development of the presented taxonomy, a review of several surveys and taxonomies 

addressing the LRP was made (Madsen, 1981; Laporte, 1988, 1989; Min et al., 1998; Nagy and 

Salhi, 2007). Some of the issues raised in these papers are also addressed in this work. It is 

intended to propose a taxonomy that can be widely accepted and can cope with all current LRP 

works as well as flexible enough to easily adjust to future research.()()()()() 

The focus will be on journal articles published (or available online) in major English language 

publications as this is the current lingua franca of the academic world. Consequently, working 

papers, conference proceedings, book chapters, master and doctoral theses, and non-English 

articles regarding this issue are not presented here. This exclusion derives from the specific nature 

of these works which are not generally disseminated. Decisions regarding inclusion of articles in 

any literature review are somewhat arbitrary and reflect biases and special interest of the reviewer. 

This taxonomy tries to be as unbiased, exhaustive, and extensive as possible. 

Due to the diversity of characteristics of location-routing models, there are several approaches 

for this type of problem, generally corresponding to real-world needs and according to the 

addressed scenario. Table 2.2 shows a set of (default) characteristics that can be considered when 

tackling an LRP. 

 

Table 2.2 Default and possible characteristics of an LRP. 

  Default Other possible characteristics 

Depots Number Maximum allowed Fixed  
Capacity Capacitated Uncapacitated  
Type Homogeneous Heterogeneous  
Cost Fixed Variable  
Service provided Desirable Semi-obnoxious Obnoxious 
Candidate sites Finite set (discrete) Infinite set (continuous)  

Clients Operation All deliveries or all 
collections 

Mixed deliveries and 
collections (only one) 

Both deliveries and 
collections (per client) 

Nature of demand Deterministic Stochastic  
Location Nodes Edges Mixed 
Serviced Once Several trips  
Service schedule No constraints Fixed time Time windows 

Vehicles Number per depot Several One  
Type Homogeneous Heterogeneous  
Capacity Capacitated Uncapacitated  
Cost Fixed Variable  
Assigned routes One Several  
Covered distance No constraints Maximum allowed Equity 
Route type Route (ends at the 

departure point) 
Path (does not end at the 
starting point) 

Path (direct link) 

Route time No constraints Maximum duration Time windows 
Products Number One Several  

Characteristics None addressed Hazardous Volume 
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Based on the diversity of these characteristics the task of addressing a complete characterization 

of the models may represent a challenging and difficult task. In order to surpass this, the articles 

were grouped according to the major concerns addressed, always taking into consideration that 

there may exist other specific issues that differ among works inside the main categories. This 

somewhat simplified taxonomy focuses primarily in the models topology and is composed of two 

levels (presented in Figures 2.2-2.16). 

In the first level of the proposed taxonomy, the algorithmic approach is not taken into 

consideration, but rather the physical aspects of the models. The decision to initially categorize the 

articles this way was based upon the desire to create a general view of the LRP, to foster future 

research on the several proposed segmented areas. Classification decisions, at this level, were based 

upon the underlying purpose of the formulation, that is, the physical characteristics of the studied 

problems. 

Later, a second level of the taxonomy, encompassing the algorithmic approach and the objective 

focus is provided. This final level is composed of two tiers. The first is based upon the solution 

technique which separates into two broad categories: exact solution techniques and heuristic 

techniques. The second tier separates the articles according to the number of objective functions 

(single-objective or multi-objective). Although further classification may be possible, it would 

eventually add unnecessary complexity to the classification. 

2.2.2 Taxonomy and Classification 

The main focus of this taxonomy is to group the papers in the literature according to its topology, 

trying to encompass all the works considered as LRPs. Further works may afterwards be 

incorporated in this classification, possibly even extending it horizontally. 

The admittedly arbitrary decision to create this segmentation derives from the need to create 

smaller topological groups and is in line with the recent review of Nagy and Salhi (2007). 

As previously stated, this taxonomy is mainly oriented to the physical characteristics of the 

problem. In order to segment the different models, a first separation according to the main features 

of common LRPs was considered (Figure 2.2). Thus, in a first layer, the hierarchical structure of 

most LRPs, which consists of clients and depots (with possible several depot levels), in which 

depots service a number of clients by means of vehicle routes, was addressed. The mainstream 

research focuses on this topology, however, some stray from this characterization, be it by 

considering routing at several levels (e.g. routing in-between depots), or even by using paths 

instead of routes. The former are categorized as [1] while the latter are labelled [2] (see Figure 2.2). 
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Figure 2.2 First level of the proposed LRP taxonomy. 

 

Going further into the differences between LRP approaches, a new separation of the problems 

considered to sustain a standard hierarchical structure [1] can be made. In this second layer it is 

possible to split the problems according to the perceived certainty. On one hand, studies where 

there is a significant knowledge of the situation at hand (a predictable or static environment exists), 

in which case the problem is approached using deterministic data and assuming a single period of 

time (generally named static problems) [1.1]. On the other hand, group [1.2] copes with problems 

where there is a degree of uncertainty being reflected into the model by either performing several 

analyses over time (dynamic problems) or by incorporating stochasticity into the model (typically, 

clients demand). 

The final layer of this first classification groups the problems into somewhat defined distinct 

models in the literature (e.g. round-trip location problem, travelling salesman location problem, and 

transportation-location problem) as seen in Figure 2.2. 

Moreover, a typically important characteristic of location problems is displayed: continuous or 

discrete location. Some of these problems work with location (anywhere) on a plane, with an 

infinite set of possible depot location (continuous), in opposition to the usual finite set (discrete) 

approach, where a set of previously selected candidate sites for depots exist. 

The second level of the taxonomy (further addressed in Section 2.2.3) intends to classify the 

papers according to the adopted approach. Firstly, the classification is based on the solution method 

dividing into exact and heuristic techniques. Secondly, the objective function(s) is(are) tackled by 

presenting the problems classified according to single-objective (when a single objective is 

considered) or multi-objective (where several opposite objectives are simultaneously addressed). 
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However, some papers address several issues or even algorithms, and were categorized according 

to what can be considered as the most defining aspect of the work. 

As follows, each different type of problem will be briefly described and some examples of 

possible real-life applications are presented. 

Round-Trip Location Problem [1.1.1] 

Vehicles start out from a depot, pick up a cargo from a client and deliver it to another client, then 

returning to the depot. A common application is the determination of the location of a courier 

service. Some of these problems work with continuous location. 

 

Figure 2.3 Round-trip location problem branch of the proposed taxonomy. 

 

Capacitated Location-Routing Problem [1.1.2] 

From the mainstream of LRP studies a problem with specific characteristics has emerged. This is 

the capacitated LRP (CLRP) where only two levels are considered (clients and depots) and the only 

route constraints are regarding the vehicle capacity (a fleet of identical vehicles with homogeneous 

capacity of a single product is assumed). Moreover, a capacity may be assigned to each depot. This 

can be seen as an extension to the CVRP and several real-world scenarios may fit this definition 

(e.g. determining the location of a production facility which services a number of clients). 
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Figure 2.4 CLRP branch of the proposed taxonomy. 

 

Location-Arc Routing Problem [1.1.3] 

The location-arc routing problem (LARP) encompasses problems in which the clients instead of 

being on the nodes of the networks are on the arcs (i.e. Euler cycles are assumed). Possible real-

world applications would be situations where it is intended to determine location when the demand 

is throughout the arc. Examples of such scenarios include locating facilities for postal delivery, 

garbage collection, road maintenance, winter gritting, and street sweeping. 
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Figure 2.5 LARP branch of the proposed taxonomy. 

 

Hamiltonian p-Median Problem [1.1.4] 

It is intended to locate exactly p depots (in which the number of depot locations can correspond to 

the number of clients, being each client a potential depot site) and each depot has exactly one 

vehicle. The problem embeds the p-median problem (by finding the least cost partition for p 

depots) and the TSP. 

 

Figure 2.6 Hamiltonian p-median problem branch of the proposed taxonomy. 

 

Planar Location-Routing Problem [1.1.5] 

In these problems rather than discrete location, continuous location is considered. Although the 

road network is generally assumed as discrete there may exist situations where the location of a 

facility may not necessarily be on a road (but on the plane instead). As some works on the round-

trip location problem [1.1.1], these problems deal with an infinite set of possible locations (depots 

can be established in a continuous space, usually on the plane). 
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Figure 2.7 Planar LRP branch of the proposed taxonomy. 

 

Plant-Cycle Location Problem [1.1.6] 

It is simultaneously considered the location of stations and the design of (optical fibre) rings 

connecting radio antennae to the stations. In this problem instead of vehicle routes it is addressed 

communication rings (making the routing decision less at the operational level and more at a 

strategic level due to unlike vehicle routes, where often a road network with alternative routes is 

available, once the communication rings are established between the radio station, significant costs 

may be incurred to alter the established ring). Telecommunications antennae determination is an 

obvious application for these problems. 

 

Figure 2.8 Plant-cycle location problem branch of the proposed taxonomy. 
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General Location-Routing Problem [1.1.7] 

This category encompasses general deterministic problems that are not incorporated in the 

previously mentioned classes, including some works where the standard LRP is modified to model 

specific scenarios. These represent several usual applications, for instance, determining the location 

of an intermediary facility and necessary vehicle routing of a three level (two depots and a client 

levels) logistics system. 

 

Figure 2.9 General LRP branch of the proposed taxonomy. 

 

Travelling Salesman Location Problem [1.2.1] 

This is one of the most addressed problems in the LRP literature where it is intended to determine 

the home base of a travelling salesman. It deals with a single depot and vehicle while the stochastic 

variation is concerning the customer demand (only a subset of the clients is randomly selected to be 
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serviced). The only exception to this is the work by Berman and Simchi-Levi (1989) where the 

lengths of the links in the network are stochastic. 

Some of these problems deal with location on the plane (continuous location or infinite set 

approach). In this LRP variant it can also be included the probabilistic TSP (using a priori tours: 

firstly a tour is constructed for all the clients; secondly each client that, for a given route, doesn’t 

require service is skipped). Possible applications may consist in determining the location of a 

district sales office, or a tourist choice of the hotel to check-in in order to visit several places of 

interest. 

Other extensions to this problem have also appeared in the literature: the delivery man location 

problem and the sales-delivery man location problem (in which the main difference lies in the 

sought objective); and the location of several travelling salesman. These variants however, have 

only considered the deterministic approach (the only exception is the work by Averbakh and 

Berman, 1995, for the probabilistic sales-delivery man location problem), and as such they can be 

found in [1.1.7.A.I] (Simchi-Levi and Berman, 1990; Averbakh and Berman, 1994, 2002).()()() 

 

Figure 2.10 Travelling salesman location problem branch of the proposed taxonomy. 

 

Stochastic Location-Routing Problem [1.2.2] 

Addresses general stochastic problems not included in the previous category. These represent 

general LRP where stochastic data are considered (usually the clients demand). Practical situations 
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may be depot installations where there is a degree of uncertainty regarding future demand or even 

when distributing goods with seasonal demand. 

 

Figure 2.11 Stochastic LRP branch of the proposed taxonomy. 

 

Dynamic Location-Routing Problem [1.2.3] 

In these problems the location of depots over a planning horizon of several periods of time is 

studied, instead of the usual static approach. Similarly to the stochastic problems it is intended to 

insert into the model some degree of variation in order to provide more flexible solutions and to 

cope with uncertainty. 

 

Figure 2.12 Dynamic LRP branch of the proposed taxonomy. 

 

- Drezner et al. (1985) 
- Liu and Lee (2003) 
- Liu and Lin (2005) 
- Albareda-Sambola et al. 
(2007) 
- Shen and Qi (2007) 
 

  - Laporte et al. (1989) 
 

Exact algorithm 

A 

Heuristic algorithm 

B 

Stochastic LRP 

1.2.2 

Single-objective 

I 

Multi-objective 

II 

Single-objective 

I 

Multi-objective 

II 

- Nambiar et al. (1989) 
- Salhi and Nagy (1999) 
- Chan et al. (2001) 
 

  - Laporte and Dejax (1989) 
 

Exact algorithm 

A 

Heuristic algorithm 

B 

Dynamic LRP 

1.2.3 

Single-objective 

I 

Multi-objective 

II 

Single-objective 

I 

Multi-objective 

II 



26 2. An Overview of Location and Routing 

 

Transportation-Location Problem [2.1] 

It deals with locating depots and finding paths instead of routes (direct links are usually 

considered). The path is, in most cases, between supply and demand points. This is frequent in the 

transportation of hazardous/nuisance materials, in which falls upon most papers in this category. 

Another example is the location of hospitals where it is crucial not to have stops for each 

ambulance run and transportation to adjacent communities must be considered. A special case of 

this problem, referred in the literature as the transhipment location problem, is when the facility to 

locate is between the origin-to-destination paths, typically involving cargo transhipment. 

 

Figure 2.13 Transportation-location problem branch of the proposed taxonomy. 

 

Many-to-Many Location-Routing Problem [2.2] 

In this problem, introduced by Nagy and Salhi (1998), it is intended to locate depots where several 

clients wish to send products to each other (meaning all clients potentially have pickup and 

delivery). A real-world scenario would be the postal flow between communities or even freightliner 

terminals for road transportation. Moreover, in-between depots it is only assumed to exist direct 

links and different routing costs may exist at both distribution levels (inter-depot and depot-to-

client). 
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Figure 2.14 Many-to-many LRP branch of the proposed taxonomy. 

 

Vehicle Routing-Allocation Problem [2.3] 

This category addresses problems where routing is inter-depot (at the depot level) instead of the 

most common depot-to-client (client level). This is the case when clients have do make a (typically 

small) trip to the depot, like in the determination of the location of post boxes. This problem was 

firstly presented and formulated by Beasley and Nascimento (1996)1. 

 

Figure 2.15 Vehicle routing-allocation problem branch of the taxonomy. 

 

                                                      

1 The authors did not present an algorithm for solving the problem, reason why the work is not included in 

the proposed taxonomy. 
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Multi-Level Location-Routing Problem [2.4] 

This problem tackles routing at both the depot and client levels. A practical example may be the 

distribution of newspapers. Firstly the distribution is made between the factory and the transfer 

points and finally from these to the clients. This category also includes the road-train routing 

problem which contains similar characteristics. 

 

Figure 2.16 Multi-level LRP branch of the proposed taxonomy. 

 

2.2.3 Algorithmic Approaches and Objectives 

In this section, a listing of the different algorithmic approaches and used objectives found in the 

proposed taxonomy is presented. 

Algorithmic Approaches 

The second level of the taxonomy tends to classify the problems according to the adopted 

approach. The first rank in this classification is based on the solution method and is divided into 

exact and heuristic techniques. In some articles, however, both techniques are considered. When 

that is the case, the article is considered only once, inside the exact category (e.g. Cooper, 1978, 

Berman and Simchi-Levi, 1989, and Laporte and Dejax, 1989).()()() 

Exact algorithms in the LRP literature can be categorized as follows (in squared brackets is the 

problem classification and the biggest solved instances – [problem: clients x potential depots]): 

· branch-and-bound [1.1.7: 80x3] (Laporte et al., 1988) [1.2.2: 30x3] (Laporte et al., 1989) 

- Jacobsen and Madsen 
(1980) 
- Madsen (1983) 
- Semet and Taillard (1993) 
- Semet (1995) 
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· branch-and-cut [1.1.3: 200x50] (Ghiani and Laporte, 1999) [1.1.6: 120x30; 100x100] (Labbé 

et al., 2004) 

· branch-and-price [1.1.7: 100x10] (Berger et al., 2007) 

· cutting-plane method [1.1.7: 50x15; 40x40] (Laporte et al., 1983) 

· dynamic programming [1.1.7: 5x5 – theoretical] (Averbakh and Berman, 1994) 

· non-linear programming [2.1: 14x14] (Stowers and Palekar, 1993). 

Since both location and routing problems are NP-hard under most scenarios, accordingly, their 

combination leads undoubtedly to a NP-hard problem, so big instances can hardly be solved by 

exact approaches (exception to this being the round-trip location problem [1.1.1]). Moreover, 

although it is possible to devise exact solution methods for many hard combinatorial problems, 

they may be too slow and inappropriate for practical purposes (mainly because hardly all variables 

are inserted into the model). 

In this context, approximate or heuristic approaches are often more suitable than exact 

algorithms to achieve real-world needs. This is mainly due to their ability to provide high quality 

solutions, in reasonable time, to problems with significant computational complexity. These 

reasons have prompted researchers to increasingly use heuristics (see Appendix A), since they also 

have the advantage of producing more than one solution and are easier to understand, modify and 

implement. 

LRP heuristic approaches are often classified according to the adopted framework (Nagy and 

Salhi, 2007). Here, a second classification based on the methods used to obtain the solution is 

proposed. Any LRP heuristic can therefore be classified using this two categories: the heuristic 

framework (Nagy and Salhi, 2007) and the heuristic methods. A single heuristic approach typically 

adopts a combination of the two: the framework, which defines how the location and routing 

phases interact and how information is passed on between them; and the methods, used in order to 

obtain the solution (possibly a combination of more than one). 

The heuristic framework can be: 

· Sequential – these can be “locate-first, route-second” or “route-first, locate-second”. In both 

cases the problems are solved separately and sequentially, basically differing between them 

which problem is tackled first (Gerdessen, 1996; Murty and Djang, 1999). Most authors do 

not consider these as true LRP, due to the absence of an integrated view. Still, they are 

typically included in order to provide literature for benchmarking and solution quality 

evaluation. Some authors state that this approach may lead to the suboptimal design of 

logistics systems (Balakrishnan et al., 1987).()() 

· Clustering-based – the routing phase is decomposed into the clustering of customers (one per 

potential depot or per vehicle route) and the actual route construction (through a VRP or a 

TSP). Afterwards, it can locate the depot in each cluster and find the corresponding route 

(Chan et al., 2001) or, design the route and then locate the corresponding depot (Barreto et 

al., 2007). 

· Iterative – iteration is made between the location and routing phases. The problem is 

decomposed into the two subproblems, which are solved iteratively until some stopping 
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criteria are met (with feedback between both phases) (Salhi and Nagy, 2009; Schwardt and 

Fischer, 2009).()() 

· Hierarchical (or nested, Nagy and Salhi, 1996a) – decisions are made at different levels. The 

main goal is the location decision while routing algorithms or route length estimation is used 

to obtain the associated cost. Hence, location is considered hierarchically superior 

(dominating problem) to the routing phase (Albareda-Sambola et al., 2007; Schittekat and 

Sörensen, 2009). Moreover, bilevel programming approaches (Marinakis and Marinaki, 

2008a) can also be considered a hierarchical framework.()()() 

The following heuristic methods can be found: 

· Tour construction and improvement – these methods are used for route 

construction/improvement, typically later combined with “add”, “drop”, or “swap” moves 

for depot location (where depots are respectively added, dropped, or swapped to/from the 

solution). Methods found in the literature are the Clarke and Wright (or “savings”) algorithm 

(Tuzun and Burke, 1999; Chan et al., 2001) and k-opt heuristics (Branco and Coelho, 1990; 

Barreto et al., 2007).()()()() 

· Lagrangian relaxation – in these methods, hard constraints are moved into the objective 

function in order to penalize it if they are not satisfied (Shen and Qi, 2007; Aksen and 

Altinkemer, 2008).()() 

· Metaheuristic – these are present in many of the most recent publications in the area and 

currently include genetic algorithms (Su, 1998; Marinakis and Marinaki, 2008a), simulated 

annealing (Lin et al., 2002; Wu et al., 2002), tabu search (Lin and Kwok, 2006; Caballero et 

al., 2007), greedy randomized adaptive search procedure (Prins et al., 2006; Duhamel et al., 

2010), particle swarm optimization (Marinakis and Marinaki, 2008b), and variable 

neighbourhood search (Melechovský et al., 2005).()()()()()()()() 

· Neural network – methods which aim to simulate the human brain processing (Schwardt and 

Dethloff, 2005; Schwardt and Fischer, 2009).()() 

· Fuzzy programming – fuzzy logic derives from the fuzzy set theory, where it is possible to 

have intermediate values between the usual boolean values. This applies when there is a 

significant degree of uncertainty regarding a situation. So far, the only paper addressing this 

type of methods is the work by Ehrgott and Verma (2001) on the transportation-location 

problem [2.1]. 

Objectives 

The final tier of the second level of the taxonomy regards the objective function(s). The different 

papers are classified according to single- or multi-objective. The former encompasses a single 

objective (typically cost minimization) while the latter incorporates articles that study several 

objectives regarding location-routing. 

Within single-objective models, the majority of papers fall upon the minimization of a linear 

combination of costs. These can be regarding: depot installation and operating, routes design, and 
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vehicle fixed costs. Typically these costs are weighted and scaled down so that they relate to the 

same time horizon, in order to obtain a single objective. 

Exceptions to cost minimization include: 

· The round-trip location problem [1.1.1], where it is intended to minimize the maximum 

distance per route, which could be seen more as an equity measure, rather than cost 

minimization. This happens due to the need not to surpass a given route length (or cost) 

bound. Regarding this LRP variant only Kolen (1985) addresses cost minimization (namely, 

number of new facilities to install) besides the minimax aforementioned objective. 

· The paper by Watson-Gandy and Dohrn (1973) where instead of minimizing costs it is 

intended to maximize profits. 

· The work of Averbakh and Berman (1995), where the goal is to minimize the total waiting 

time of all customers. On Averbakh and Berman (1994) the abovementioned objective is 

combined with a surrogate of cost minimization (minimization of total tour length). 

· Nema and Gupta (1999) use a composite single objective function consisting of total cost 

and total risk in response to a hazardous waste management model. 

Even though most papers in this taxonomy (109 out of 128 – around 85%) deal with single-

objective models, most real-life decisions cannot be accurately modelled with a single objective 

function. This causes growing interest in techniques taking into account multiple objectives. In the 

literature, although there are some works reviewing the LRP, seldom multi-objective models and 

approaches have been given much attention. Typically this aspect is relegated to a lesser role 

compared to the most addressed algorithmic approach. 

When dealing with multi-objective models, one of the objectives is typically cost minimization 

(as in single-objective models). Other objectives include: risk minimization, work time and load 

imbalance minimization, and so forth. 

In the reviewed multi-objective papers, objectives can be classified according to: 

· cost minimization 

· environmental aspects 

· equitable distribution. 

As follows, these three general categories will be examined, and the articles addressing them 

will be identified. 

Cost minimization (or some surrogate such as minimization of total travel distance or number of 

depots to install) is, as previously stated, a traditional objective in location-routing models. Most 

single-objective models intend to minimize some measure of cost. Given this, it is to be expected 

that a significant amount of papers, in multi-objective, address cost minimization in some way. 

This is the case with almost all articles reviewed in this modelling approach, where some degree of 

cost is defined as an objective (the only exception being the work by Stowers and Palekar, 1993).() 

Nowadays, environmental aspects are critical in many real-world facility installation decisions. 

Such is the goal of this set of objectives: to minimize the risk to environment (and subsequently 

social rejection) caused by both the transportation and the proximity to a specific depot. Obviously, 
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this is most applicable in scenarios where there is a degree of nuisance or hazard (or even possible 

risk in case of accident) relating to either the transported product or the normal functioning of the 

facility. Although, in most cases, this holds true, it is not always so. In this category is also 

included the satisfaction level, a measure used in the determination of the installation of desirable 

facilities, or as an effectiveness measure, representing the total demand serviced. 

Given the probable social rejection in the transportation and location of undesirable 

products/facilities, there is a tendency to distribute equitably this obnoxious factor through the 

several demand points (usually population centres) in order to counter the typical opposition. This 

objective is addressed in several real-life situations and, as such, it has been incorporated into 

several models in the literature. Other equity objectives considered are regarding the balance of the 

work time and load of the vehicles, in an effort to make a correct distribution through all. These 

latter objectives are used only once, in the work by Lin and Kwok (2006). A final equity objective 

is the minimization of total distance to unmet demand. This objective incorporates the DM’s desire 

to ensure that, in the future, the unmet demand can be met as easily as possible, by installing a new 

depot, or increasing the capacity of an existing one. This may be the case when the demand 

surpasses the (desired to install) supply, as in Johnson et al. (2002). 

Table 2.3 provides a summary of the different main objectives considered so far in multi-

objective LRPs. On Table 2.4 the articles classification of the multi-objective LRPs in the literature 

is made according to their objectives. 

 

Table 2.3 Summary of the objectives addressed in articles using location-routing multi-objective models. 

Objective type Addressed objective 

Cost minimization C1 Minimization of the number of depots 
 C2 Minimization of depot installation cost 
 C3 Minimization of transportation cost 
 C4 Minimization of travel distance 
 C5 Minimization of travel time 
 C6 Minimization of transportation burden (weight per distance) 
 C7 Minimization of distance travelled by clients accessing depots 
  Maximization of proximity to depots 
 C8 Minimization of total costs (depot installation and transportation) 
Environmental aspects E1 Minimization of transportation risk (or nuisance) 
 E2 Minimization of location risk (proximity to obnoxious depot) 
 E3 Minimization of total risk (transportation and location) 
 E4 Maximization of population satisfaction level (population serviced) 
Equitable distribution D1 Minimization of maximum transportation risk 
 D2 Minimization of maximum location risk 
 D3 Minimization of maximum total risk (transportation and location) 
 D4 Minimization of work time imbalance 
 D5 Minimization of load imbalance 
 D6 Minimization of total distance to unmet clients demand 
Others O Other objectives regarding a specific model 
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Table 2.4 LRP articles using multi-objective models.a 

 Cost Environment Equity   

Article C1 C2 C3 C4 C5 C6 C7 C8 E1 E2 E3 E4 D1 D2 D3 D4 D5 D6 O Total 

Ogryczak et al. (1989)  + +                + 3 
Zografos and Samara (1989)     +    + +          3 
List and Mirchandani (1991)        +   +    +     3 
ReVelle et al. (1991)      +   +           2 
Ogryczak et al. (1992)  +  +   +     +        4 
Boffey and Karkazis (1993)    +     +  +         3 
Stowers and Palekar (1993)           +    +     2 
Jacobs and Warmerdam (1994)        +   +         2 
Current and Ratick (1995)        + + +   + +      5 
Wyman and Kuby (1995)        +   +    +     3 
Kulcar (1996) +  +                 2 
Giannikos (1998)        + +    + +      4 
Murty and Djang (1999) +   +   +             3 
Ehrgott and Verma (2001)    ++                2 
Johnson et al. (2002)        +    +      +  3 
Lin and Kwok (2006)        +        + +   3 
Alumur and Kara (2007)        + +           2 
Caballero et al. (2007)  + +      + +   +       5 
Boffey et al. (2008)  + +      +     +      4 
a For further explanation on the abbreviations, the reader is referred to Table 2.4. 
 

It should be noted that out of the 19 multi-objective papers addressed, 15 are transportation-

location problems [2.1], from which most are regarding the location of undesirable facilities 

(and/or transportation of HAZMATs). This type of problems is inherently multi-objective in that 

the trade-offs between cost and exposure risk or nuisance to communities must be simultaneously 

considered. This will be further addressed in Chapter 4. 

2.3 Summary 

This chapter made an introduction to and an overview of the models handling both location and 

routing. Also, a review of the main issues regarding LRPs (the integrated approach) was made and 

a taxonomy proposed, in order to identify existing gaps and foster future studies. 

Among the most overlooked LRP variants in the literature, one can distinguish between 

problems which have recently emerged (usually as the result of a recent real-world application) and 

problems which have attracted little attention over the years. Within the former there is the planar 

LRP [1.1.5], the plant-cycle location problem [1.1.6], and the many-to-many LRP [2.2]. The latter 

encompass the LARP [1.1.3], the Hamiltonian p-median problem [1.1.4], the stochastic LRP 

[1.2.2], the dynamic LRP [1.2.3], and the vehicle routing-allocation problem [2.3]. All of the above 

LRP variants have been mostly addressed using heuristic approaches and single-objective models. 
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Besides the mentioned taxonomy, current approaches and objectives on location-routing were 

also analysed in this chapter. 

Due to the lack of comprehensive studies benchmarking solution quality, no absolute conclusion 

can be made on the effectiveness of a single method or approach. Nevertheless, on exact 

approaches, branch-and-cut and branch-and-price methods have been able to solve instances of up 

to, respectively, 200 clients and 50 potential depot locations for the LARP [1.1.3] (Ghiani and 

Laporte, 1999), and 100 clients and 10 potential depot locations for the general LRP [1.1.7] (Berger 

et al., 2007). On the other hand, dynamic programming seems unfit for this type of problems as it 

was only solved (theoretically) once in a very small tree network (Averbakh and Berman, 1994). 

Regarding heuristic approaches (possibly more prone to be used in real-world location-routing 

scenarios), the lack of strong lower bounds makes difficult to draw conclusions on the performance 

of heuristics for large instances. Albeit some authors (e.g. Nagy and Salhi, 2007, and Schittekat and 

Sörensen, 2009) point hierarchical frameworks as being more likely to obtain better results, both 

clustering-based and iterative frameworks have proven to be equally competitive (as is the case for 

the CLRP [1.1.2], which has recently been receiving the most attention). Moreover, at this point, 

the largest test instances solved (using heuristic approaches and excluding case-oriented papers) 

include 400 clients and 400 potential depot locations. Being mostly randomly generated, they may 

still lack the scalability to be used when analysing real-world scenarios.()() 

Concerning objectives, a more thorough analysis was presented for multi-objective models. In 

spite of the fact that in real-life most facility installation situations have to consider several 

opposing objectives, this category has been surprisingly frequently overlooked in the literature. 

However, this approach is essential to correctly tackle the location(-routing) of (semi-obnoxious) 

facilities which is one of the main subjects of this thesis. 
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Chapter 3 

3. Basic Location-Routing Problems 

As shown in the previous chapter there are various location-routing models. Moreover, according 

to Nagy and Salhi (2007), about a fifth of the literature address real applications, providing 

evidence of the importance and usefulness of these models. 

However, location(-routing) decisions are application oriented, meaning, their structural form 

(objectives, constraints, and variables) is determined by the specific problem under study. 

Consequently, it does not exist a general model appropriate for all potential or existing applications 

(Current et al., 2002). This justifies an effort to formulate new models and to adapt existing ones, 

as well as to devise efficient solution techniques to essential models. These studies can later be 

adapted to address specific applications. 

The purpose of this chapter is to formally define, review, and develop new approaches to two 

specific problems in the location-routing problem (LRP) literature, which can be seen as some of 

its most basic models: the capacitated LRP (CLRP) and the location-arc routing problem (LARP). 

These problems derive, respectively, from the capacitated vehicle routing problem (CVRP) 

(Laporte et al., 1986) and the arc routing counterpart, the capacitated arc routing problem (CARP) 

(Ghiani and Laporte, 2001). 

The approaches developed for both problems were implemented and results obtained. The 

collected data were analysed using exploratory data analysis (EDA) (Hoaglin et al., 2000), 

parametric (Box et al., 2005) and non-parametric tests (Kvam and Vidakovic, 2007), and 

multivariate data analysis (Hair et al., 2009). 

These new approaches may allow to, in the future, address more closely similar real-world 

applications. 

3.1 Capacitated Location-Routing Problem 

The CLRP derives from the CVRP and is one of the most addressed problems in the LRP literature 

(as seen in Chapter 2). In this section, the CLRP is formally defined, methods in the literature are 

reviewed, and a newly developed heuristic approach is presented (Lopes et al., 2009). 

The approach is a metaheuristic based on guided local search embedded in a hybrid extended 

savings algorithm, as well as used to control a reduced composite local search. It uses some 

concepts of the AGES metaheuristic (Mester and Bräysy, 2005) applied favourably to the vehicle-

routing problem and will be called active guided search (AGS). 
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The proposed AGS metaheuristic, after obtaining a cooperative starting solution (with both 

location and routing taken into consideration), proceeds to an intensification phase. In the latter, a 

facility location algorithm is performed to obtain the best locations. Then it attempts to find the 

best route configuration for the given locations. This is done iteratively until a stopping criterion is 

met and can be seen as a hierarchical framework. Results for the AGS are presented and compared 

with other approaches in the literature using benchmark instances. 

3.1.1 Problem Definition 

In the CLRP only two levels are considered (clients and depots) and the only route constraints are 

regarding the vehicle capacity (a fleet of identical vehicles with homogeneous capacity of a single 

product is assumed). Capacity constraints may also be assigned to each depot. This problem can be 

seen as an extension to the CVRP. 

The CLRP can be formally defined on a weighted and directed graph � = ( ,!) where   is a 

vertex set and ! is a set of arcs.   comprises a subset " of # potential facility locations and a subset 

$ =  \ " of % clients. The traversal non-negative cost of any arc & = (', () in the arc set ! is given 

by )&  (or )'(  between vertex ' and (). Each client ' ∈ $ has a given demand +' , serviced once, and is 

to be assigned to a single facility ( ∈ " with capacity ,( . The shipment of clients demand is carried 

out by a set of - vehicles, with homogeneous capacity ., which return to the departure depot at the 

end of the route. 

There is a fixed cost /(  incurred when opening a depot at each potential site, and a distribution 

cost associated with routing which includes the cost of traversed arcs (total travelled distance), and 

the fixed cost 0 of acquiring a vehicle. 

The objective is to determine the set of depots to open and the tracing of the routes departing 

from each open depot, in order to minimize a total cost encompassing the fixed cost of opening 

depots and the total distribution cost. 

Being 1 any subset of vertices (1 ⊂  ), 3+(1) (3−(1)) is the set of arcs leaving (entering) 1, and 

5(1) is the set of arcs containing both extremities in 1. If 1 contains a single vertex 6, 3+(6) is a 

simplification for 3+({6}). The following binary variables are used: 7&8 , equal to one if arc & is 

used in the route performed by vehicle 8 ∈ -; 9( , equal to one if depot ( is to be opened; and 9'( , 

equal to one if client ' is assigned to depot (. The CLRP is then formulated as (Prins et al., 2006): 

(CLRP1) min :1 = ; /(9((∈"
+ ; ; )&7&88<-&∈!

+ ; ; 07&8&∈3+(")8∈-
 (3.1) 

 s.t.: ; ; 7&8&∈3−(')8∈-
= 1 ∀' ∈ $, (3.2) 

  ; ; +'7&8&∈3−(')'∈$
≤ . ∀8 ∈ -, (3.3) 

  ; 7&8&∈3+(')
−; 7&8&∈3−(')

= 0 ∀' ∈  , ∀8 ∈ -, (3.4) 
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  ; 7&8&∈3+(")
≤ 1 ∀8 ∈ -, (3.5) 

  ; 7&8&∈5(1)
≤ |1| − 1 ∀8 ∈ -, ∀1 ⊆ $, (3.6) 

  ; 7&8&∈3+(( )∩3−($)
+ ; 7&8&∈3−(')

≤ 1 + 9'(  ∀' ∈ $, ∀( ∈ ", ∀8 ∈ -, (3.7) 

  ; +'9'('∈$
≤ ,(9(  ∀( ∈ ", (3.8) 

  7&8 ∈ {0,1} ∀& ∈ !, ∀8 ∈ -, (3.9) 

  9( ∈ {0,1} ∀( ∈ ", (3.10) 

  9'( ∈ {0,1} ∀' ∈ $, ∀( ∈ ". (3.11) 

The objective function (3.1) seeks to minimize the abovementioned costs. Constraints (3.2) are 

the set partitioning constraints which require that each client ' be serviced exactly once by a single 

route. Constraints (3.3) require vehicle capacity to be obeyed. Constraints (3.4) and (3.5) ensure the 

continuity of each route (flow conservation constraints) and a return to the departure depot, while 

constraints (3.6) are the well-known subtour elimination constraints. Constraints (3.7) ensure that a 

client can only be assigned to a depot if there is a route linking them. Depot capacity constraints are 

satisfied thanks to inequalities (3.8). Finally, (3.9), (3.10), and (3.11) are standard binary 

constraints. 

3.1.2 Recent Algorithmic Developments 

As the CLRP results from the combination of two NP-hard problems, the facility location problem 

and the CVRP, it belongs to the category of NP-hard problems. As such, it is very difficult to solve 

it using exact algorithms, the only being the one presented in the work by Laporte et al. (1986). 

Due to this difficulty, several heuristic approaches have appeared in the literature which will now 

be detailed. 

The CLRP has emerged as one of the most addressed LRP. A two-phase tabu search 

architecture for CLRP with uncapacitated depots was developed by Tuzun and Burke (1999). The 

heuristic uses a hierarchical framework (for each feasible location, a simple routing phase is 

performed) evaluating neighbouring moves and subsequently adding a depot until the total cost is 

increased. 

Wu et al. (2002) studied a CLRP with both homogeneous and heterogeneous fleets and a limited 

number of vehicles. These authors present an iterative procedure that relies on a simulated 

annealing algorithm combined with a tabu list. 

In Barreto et al. (2007) a clustering based heuristic is presented for tackling the CLRP with no 

vehicle acquisition cost. Several clustering methods are used to obtain the routing data and then a 

facility location problem is solved with the collapsed routes. Marinakis and Marinaki (2008a, 
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2008b) solve the same problem using, in the two works, respectively, a bilevel genetic algorithm 

and hybrid particle swarm optimization.()() 

Prins et al. (2006) develop an extended savings heuristics, which is used in a greedy randomized 

adaptive search procedure (GRASP). Finally, Prins et al. (2007) present a more effective heuristic 

where facility location (through Lagrangian relaxation) and vehicle routing (using a granular tabu 

search) is performed iteratively. These two works consider the same CLRP as defined previously 

and to be addressed henceforth (in the AGS). 

3.1.3 Active Guided Search Metaheuristic 

The AGS metaheuristic follows some of the ideas developed by Mester and Bräysy (2005) for the 

vehicle routing problem (VRP), and is composed of two phases. The first phase aims at providing a 

starting solution for the second phase. The starting solution is obtained by hybridizing an extended 

savings method (Prins et al., 2006) which adapts the well known “savings” algorithm (Clarke and 

Wright, 1964) to the LRP. 

The second phase can be seen as an intensification phase, where an attempt is made to improve 

the starting solution. This second stage is composed of a two-step procedure. Firstly, a more 

thorough local search is performed using the GLS metaheuristic (Voudouris, 1997). GLS operates 

by increasing the problems objective function with a penalty term based on a specific solution 

feature to be avoided in a near-optimal solution. In this method, the facility location problem 

heuristic (Filho and Galvão, 1998) handles the location of facilities, hence the penalized feature 

will be regarding the routing component of the solution (long arcs). The GLS is used to guide a 

reduced composite local search procedure consisting of a relocate algorithm (Savelsbergh, 1992) 

and a 2-opt algorithm (Prins et al., 2006) (both used in intra- and inter-route improvements). When 

no more improvements can be found for a number of iterations the algorithm proceeds to the 

second step. It then performs a second run of the hybrid extended savings algorithm, only 

considering the open depots obtained in the best found solution of the former step. 

Hybrid Extended Savings Heuristic 

The “savings” or Clarke and Wright algorithm (Clarke and Wright, 1964) is a well known 

constructive algorithm often used in the VRP. The algorithm starts by assigning each client to a 

single depot (each client is supplied by a dedicated route). Then, each pair of routes whose total 

load does not exceed the maximum vehicle capacity is inspected to evaluate the saving (the gain 

obtained from merging both routes, with four possible combinations per pair of routes). The merger 

providing the largest positive saving is performed continuously until no feasible merge can be 

found. 

Prins et al. (2006) developed an extended version of the abovementioned heuristic for the CLRP 

where, similarly, the solution starts by building the flower-like trivial solution, closing all depots 

with no clients assigned. Then, each route merge is evaluated considering a possible reassignment 
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to all depots (Figure 3.1), hence resulting in 4# possible merges for each pair of routes (C, 1). The 

saving D is computed as follows: 

 D = 0 + )E' + )(E + )F8 + )GF − )(8 − )H' − )GH + /EIE + /FIF − /H(1− 9H). (3.12) 

Where: E, F, and H are respectively the depot of route C, route 1, and the depot currently 

considered to be assigned to the merged route; ', (, 8, and G are the clients connected to the depots 

in each route; IE  (IF) is a binary value equal to 1 if depot E (F) supplies no more routes after the 

merger (thus can be closed); and 9H  is a binary value (defined earlier for the formulation) equal to 1 

if depot H is already open before the merge. 

 

Figure 3.1 Some merges in the extended savings algorithm (Prins et al., 2006). 

 

It has been shown (e.g. Russell, 1995) that hybridizing the building of a solution often leads to 

better results. Hence, in AGS, this method was adapted and hybridized to provide a “good” starting 

solution. Firstly, rather than making a direct assignment to the clients in the first step, a facility 

location problem is solved using a tabu search (TS) heuristic (Filho and Galvão, 1998). Also, rather 

than randomly choosing the saving out of a restricted candidate list, the merger that provides the 

largest feasible saving is always performed. Finally, each time the number of route merges 

performed (#JEKJF) matches 20% of the total number of clients (%), an improvement is made 

using a composite local search and a GLS to guide a reduced composite local search.() 

 

Composite Local Search. The composite local search is composed of a facility location algorithm 

(Filho and Galvão, 1998) applied only once, a relocate algorithm (Savelsbergh, 1992) and a 2-opt 
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single client and the considered distance is the smallest insertion cost of the depot in the original 

route, similarly to Barreto et al. (2007). 

The relocate algorithm performs in the same way as the one used in VRPs (Savelsbergh, 1992), 

where a single client is reinserted in another position inside the current route or in another route 

provided there is an improvement to the solution. In the latter case, an adaptation was made for the 

CLRP in order to account for the depot capacity constraints. Finally, the 2-opt algorithm (Prins et 

al., 2006) inside the routes is equivalent to the well known 2-opt move (Lin and Kernighan, 1973) 

whereas the moves between different routes have to consider depot capacity constraints and depot 

reassignment (Figure 3.2). This 2-opt procedure implements the first found improvement rather 

than the best (empirically found to be better by Hansen and Mladenović, 2006). It should be noted 

that a similar 3-opt algorithm (Branco and Coelho, 1990) was implemented but, since an increased 

computation time was needed and no significant improvement to the final solutions was obtained, it 

was removed from the proposed AGS metaheuristic.() 
 

Figure 3.2 Example of the 2-opt procedure performing inter-route moves (Prins et al., 2006). 

 

Guided Local Search. Guided local search (GLS) is performed in order to escape local optima. 

GLS (Voudouris, 1997) is a memory-based metaheuristic shown to be effective for several 

combinatorial optimization problems (Tsang and Voudouris, 1997; Voudouris and Tsang, 1999; 

Mills et al., 2003; Mester and Bräysy, 2005). The metaheuristic main concept is to penalize a 

solution feature which is considered not to exist in a near-optimal solution. In the CLRP, as the 

facility location algorithm handles the location, the undesirable solution feature is regarding the 

routing, hence long arcs are penalized.()()()() 

A single arc is penalized every time the reduced composite local search (which differs from the 

complete version by not performing the facility location algorithm) gets stuck in a local minimum. 
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In order to choose the arc, the “utility” function in equation (3.13) is used: 

 L =
)'(

1 + M'(  (3.13) 

where M'(  is the number of times the arc (', () has been penalized. The arc with the highest utility 

value is chosen to be penalized as follows: 

 M'(′ = M'( + 1. (3.14) 

The purpose is to penalize the longer arcs (subsequently with higher cost) although the utility of 

doing so decreases as the feature is increasingly penalized. Then, a new cost )'(′  is obtained for the 

reduced composite local search: 

 )'(′ = )'( + M'( O5 (3.15) 

where O is a parameter (with value empirically found: O = 0.05) and 5 is the average length of the 

arcs in the current solution. After the new cost is calculated, the reduced composite local search is 

performed on a neighbourhood restricted to the set of P closest routes. This is called a penalty 

variable neighbourhood (PVN) which size is adjusted dynamically during the search. In order to 

obtain the PVN, firstly, the routes are sorted according to the proximity to the route of the 

penalized arc. Then, the following criteria are adopted for selecting the minimum number of routes 

in the PVN (P#'% ): (1) the route the chosen arc is in; (2) all routes which closest distance to the 

selected arcs route is zero (e.g. routes sharing the same depot); and (3) the two following closest 

routes. The maximum size of the PVN (P#&7 ) is set to the maximum between P#'%  and 75% of the 

number of routes in the current solution. Thus, the size of the PVN (P) can be obtained by: 

 P = P#'% + ⌈(P#&7 − P#'% )E%+⌉ (3.16) 

with E%+ as a random number between 0 and 1 obtained at each iteration. 

This proposed GLS is performed until a given number S of iterations is attained without 

improvements to the solution. Once this number of iterations is achieved, the proposed 

implementation resets the penalties and restarts for an T number of times, using the best found 

solution after performing on it the complete composite local search. Embedded in the hybrid 

extended savings, the following parameters were used: S = 250 and T = 5. These were chosen 

after a preliminary analysis that showed: for S, most improvements were obtained within the next 

250 iterations after the last improvement and hardly any after 500 iterations; for T, after five 

restarts rarely new best solutions were found. 

Intensification 

After obtaining the starting solution from the hybrid extended savings algorithm, the metaheuristic 

proceeds to attempt to improve it with a two step procedure. This can be seen as an intensification 

phase. 

The first step of this phase is again based on the implemented GLS which, in this case, is 

performed with a more thorough search (S = 500). The second step is intended to further intensify 
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the route optimization, thus a second run of the initial algorithm (hybrid extended savings heuristic) 

is performed. In this case, all the depots which were closed in the last best solution are removed 

from the problem, with the exception of one randomly chosen. This provides a small diversification 

and also insures that depot capacity constraints are not violated (in cases where, for the facility 

location problem, the open depots available capacity is highly restrictive). 

After performing the second step, the algorithm returns to the first, where the solution is once 

more explored for better results (now with all depots). In order to improve the accuracy of the AGS 

metaheuristic this intensification phase can be done iteratively until stopping criteria are met (e.g. 

no better solution can be found in both steps). However, in the results presented in this work, the 

second phase is performed only once. 

A flowchart with the main steps of the proposed AGS metaheuristic can be seen in Figure 3.3. 

 

Figure 3.3 Flowchart of the AGS metaheuristic for the CLRP. 
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3.1.4 Computational Results 

In this section experimental results obtained to ascertain the performance of the proposed 

metaheuristic are presented. Implementation issues and the used data sets are briefly described. 

Finally, a comparative analysis of the suggested AGS metaheuristic with other recent methods for 

the CLRP is made. 

Implementation and Benchmark Instances 

The metaheuristic was coded in C# and the results obtained using a 3.00 GHz Intel Xeon E5450 

Quad Core CPU with 8 GB of RAM and Windows XP (no parallel processing was used). 

In order to assess the efficiency of the proposed method, three sets of benchmark instances for 

the CLRP were used. These are the instances by Tuzun and Burke (1999), Barreto et al. (2007), and 

Prins et al. (2006). The sets have, respectively, 36, 19, and 28 problem instances, consider complete 

undirected graphs and Euclidean distances. 

In the set of randomly generated instances by Tuzun and Burke, the number of clients is % ∈
{100, 150, 200} and the number # of depots is 10 and 20. The vehicle capacity . = 150, vehicle 

fixed cost 0 = 10, and the clients have demand following a uniform distribution in the range [1, 

20]. Spatial distribution of the clients and depots was controlled using the number )G of clusters (0, 

3, and 5, where 0 refers to uniformly distributed clients) and the percentage of clients belonging to 

a cluster ()GE&H'W, equal to 75% or 100%). 

The benchmark instances proposed by Barreto et al. are available from 

http://sweet.ua.pt/~iscf143/ and were either obtained from the literature or adapted from VRP 

instances. The number of clients % ranges from 12 to 318, the number of depots # from 2 to 15, 

and several different values of vehicle capacity were considered. Moreover, there is no vehicle 

fixed cost. 

The last set of instances by Prins et al. was randomly generated (available at 

http://prodhonc.free.fr/Instances/instances_us.htm) with % ∈ {20, 50, 100, 200}, # ∈ {5, 10}, . ∈
{70, 150}, and 0 = 1000. Clients are spatially distributed in clusters ()G ∈ {0, 2, 3} with 0 meaning 

a uniform distribution) and distances are multiplied by 100 and rounded up to the next integer. 

Comparative Analysis 

Results for the AGS metaheuristic were obtained for the three sets of benchmark instances and 

compared with results in the literature. Twenty runs were performed for each instance from which 

was found the average and best result (and corresponding computing time). 

Results for the benchmark instances can be seen in Tables 3.1, 3.2 and 3.3. The first columns of 

the tables display the name of the instances while the following three show, respectively, the 

number of clients (%), the number of depots (#), and the vehicles capacity (.). Then, follows the 

data regarding the generation of the instances: the number )G of clusters (for the first and third sets) 
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and the clustering ratio )GE&H'W (for the first set). The AGS average results (Avg.), best results 

(Best) and CPU times in seconds (corresponding to the best results) are reported afterwards. 

In the first and third sets (Table 3.1 and Table 3.3) best results are compared to the best known 

results (BKR) in the literature, by presenting GapBKR which shows, in percentage, the gap between 

the obtained best and the currently best known results. On the instances by Barreto et al. (Table 

3.2) best results are compared to the currently known best lower bound (LB). Hence, GapLB refers 

to the gap (in percentage) to the lower bound. 

Whenever a value with an asterisk is found it means the cost is the optimal value of that specific 

instance. Underlined values (9, 8, and 1 respectively for the first, second, and third sets of 

instances) point to newly found best results obtained by the proposed method from which one is an 

optimal solution (instance Gaskell67-32x5a, see Figure 3.4). Moreover, AGS is able to match 14 

previously known best solutions from which 10 are optimal (out of the 12 previously known). 

 

Figure 3.4 Graphical representation of the newly found optimal solution obtained by the AGS 

metaheuristic for instance Gaskell67-32x5a. 
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(average) is not, Tables 3.1, 3.2, and 3.3 also include the corresponding median values. The 

purpose of the average values is the comparison with algorithms from the literature (Table 3.4), as 

these are the values usually reported. 

 

Table 3.1 Results for the instances by Tuzun and Burke (1999). 

       
AGS  

Instance % # . )G )GE&H'W BKR Avg. Best CPU GapBKR 

1 111112 100 10 150 0 1 1468.40 1509.17 1469.43 30.4 0.07 
2 111122 100 20 150 0 1 1449.20 1485.47 1449.20 39.8 0.00 
3 111212 100 10 150 0 1 1396.46 1435.11 1399.69 46.0 0.23 
4 111222 100 20 150 0 1 1432.29 1470.47 1432.29 38.7 0.00 
5 112112 100 10 150 3 0.75 1167.53 1179.20 1167.53 39.5 0.00 
6 112122 100 20 150 3 0.75 1102.70 1125.55 1103.53 83.3 0.08 
7 112212 100 10 150 3 1 793.97 839.18 806.16 30.5 1.54 
8 112222 100 20 150 3 1 728.30 732.34 728.40 42.6 0.01 
9 113112 100 10 150 5 0.75 1238.49 1265.19 1238.70 35.7 0.02 

10 113122 100 20 150 5 0.75 1246.34 1259.83 1247.56 38.1 0.10 
11 113212 100 10 150 5 1 902.38 933.37 917.97 25.9 1.73 
12 113222 100 20 150 5 1 1021.31 1046.25 1019.35 59.3 -0.19 
13 131112 150 10 150 0 1 1866.75 1957.49 1930.33 71.6 3.41 
14 131122 150 20 150 0 1 1841.86 1891.89 1847.33 87.4 0.30 
15 131212 150 10 150 0 1 1981.37 2021.09 1976.66 162.1 -0.24 
16 131222 150 20 150 0 1 1809.25 1861.19 1808.81 90.6 -0.02 
17 132112 150 10 150 3 0.75 1448.27 1461.90 1422.27 73.4 -1.80 
18 132122 150 20 150 3 0.75 1444.25 1466.85 1447.13 97.1 0.20 
19 132212 150 10 150 3 1 1206.73 1216.13 1207.21 142.9 0.04 
20 132222 150 20 150 3 1 931.94 955.03 936.01 227.7 0.44 
21 133112 150 10 150 5 0.75 1699.92 1741.78 1712.03 186.3 0.71 
22 133122 150 20 150 5 0.75 1401.82 1431.53 1402.37 83.6 0.04 
23 133212 150 10 150 5 1 1199.51 1235.93 1211.48 593.2 1.00 
24 133222 150 20 150 5 1 1152.86 1184.00 1158.18 88.7 0.46 
25 121112 200 10 150 0 1 2281.78 2322.27 2252.34 168.0 -1.29 
26 121122 200 20 150 0 1 2185.55 2259.89 2182.26 408.2 -0.15 
27 121212 200 10 150 0 1 2234.78 2277.77 2224.05 118.5 -0.48 
28 121222 200 20 150 0 1 2259.52 2294.03 2263.99 286.6 0.20 
29 122112 200 10 150 3 0.75 2101.90 2141.04 2107.65 130.4 0.27 
30 122122 200 20 150 3 0.75 1709.56 1735.73 1714.17 116.8 0.27 
31 122212 200 10 150 3 1 1467.54 1522.43 1473.54 146.2 0.41 
32 122222 200 20 150 3 1 1084.78 1177.25 1091.49 304.8 0.62 
33 123112 200 10 150 5 0.75 1973.28 2002.02 1968.29 168.9 -0.25 
34 123122 200 20 150 5 0.75 1957.23 1986.41 1950.15 179.5 -0.36 
35 123212 200 10 150 5 1 1771.06 1811.41 1778.21 157.2 0.40 
36 123222 200 20 150 5 1 1393.62 1535.41 1405.37 215.7 0.84 

      
 

 
 Average 133.8 0.24 

         Median 93.9 0.09 
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The empirical distribution of CPU time depicted in Figure 3.5 (concerning Table 3.1) shows the 

batch is heavily skewed (skewness = 2.18) and two outlying data points (moderate = 408.2; 

severe = 593.2). Median time is 93.85 seconds and 75% (Q3) CPU times spread to 168.45 seconds. 

 

  
 

Figure 3.5 Boxplot (left) and histogram (right) for the CPU time in seconds (Table 3.1). 

 

Figure 3.6 with severe (-1.80; 3.41) and moderate (-1.29; 1.54; 1.73) outliers suggests the use of 

the median value = 0.09% to characterize the location of GapBKR data (Table 3.1). Moreover, 75% 

of GapBKR values are less than 0.43%. 
 

  
 

Figure 3.6 Boxplot (left) and histogram (right) for the GapBKR in percentage (Table 3.1). 
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Categorized boxplots in Figure 3.7 show the relationship among GapBKR, number of clients (%), 

and depots (#), regarding Table 3.1. Good results for GapBKR remain irrespectively of the increase 

of clients and/or depots. 

 

  
 

Figure 3.7 Categorized boxplots for the GapBKR in percentage: clients = 100, 150, and 200; depots = 10 

and 20 (Table 3.1). 

 

The abovementioned good results, for the AGS metaheuristic, were statistically confirmed using 

a dependent t-test for BKR and best AGS. Figure 3.8 shows the boxplots for both sets of values. 

 

Figure 3.8 Boxplots for best known results (BKR) and best obtained values (best AGS) (Table 3.1). 
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The null hypothesis of equal means is not rejected for a significance level (X) of 5%, as the      

p-value = 0.24 and bigger than X = 0.05. 

 

Table 3.2 Results for the instances by Barreto et al. (2007). 

     
AGS  

Instance % # . LB Avg. Best CPU GapLB 

1 Christofides69-50x5 50 5 160 551.1 578.5 565.8 11.0 2.67 
2 Christofides69-75x10 75 10 140 791.4 865.4 845.9 21.0 6.89 
3 Christofides69-100x10 100 10 200 818.1 861.4 843.9 69.0 3.15 
4 Daskin95-88x8 88 8 9000000 347.0 376.9 368.8 43.6 6.28 
5 Daskin95-150x10 150 10 8000000 43406.0 45284.1 44510.0 62.2 2.54 
6 Gaskell67-21x5 21 5 6000 *424.9 429.9 *424.9 3.5 0.00 
7 Gaskell67-22x5 22 5 4500 *585.1 586.5 *585.1 1.8 0.00 
8 Gaskell67-29x5 29 5 4500 *512.1 565.4 515.1 5.7 0.59 
9 Gaskell67-32x5a 32 5 8000 *562.2 565.2 *562.2 5.1 0.00 

10 Gaskell67-32x5b 32 5 11000 *504.3 508.8 *504.3 4.6 0.00 
11 Gaskell67-36x5 36 5 250 *460.4 464.7 *460.4 4.4 0.00 
12 Min92-27x5 27 5 2500 *3062.0 3062.3 *3062.0 2.4 0.00 
13 Min92-134x8 134 8 850 5423.0 5925.4 5729.3 35.4 5.65 
14 Or76-117x14 117 14 150 12048.4 12646.3 12422.0 54.8 3.10 
15 Perl83-12x2 12 2 140 *204.0 215.0 *204.0 0.8 0.00 
16 Perl83-55x15 55 15 120 1074.8 1122.4 1112.3 29.7 3.49 
17 Perl83-85x7 85 7 160 1568.1 1635.0 1625.2 22.4 3.64 
18 Perl83-318x4a 318 4 25000 

 
582503.1 570200.9 772.3  

19 Perl83-318x4b 318 4 8000 
 

692152.5 674591.9 443.2  

     
  Average 83.8 2.24 

       Median 21.0 2.54 

 

Figure 3.9 shows an asymmetric distribution (skewness = 3.13) as well as two severe outliers 

(443.2; 772.3) for the CPU time (Table 3.2). Median time is 21.0 seconds and 75% (Q3) CPU times 

are less than 54.9 seconds. 
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Figure 3.9 Boxplot (left) and histogram (right) for the CPU time in seconds (Table 3.2). 

 

Removing the severe outliers (it should be noted that, for example, there are no lower bounds 

for those two instances), one gets an improved, although skewed distribution (skewness = 0.92) for 

the CPU time; median time is now 11 seconds and 75% CPU times are less than 36 seconds (as 

seen in Figure 3.10). 

 

    
 

Figure 3.10 Boxplot (left) and histogram (right) for the CPU time, in seconds, without outliers (Table 3.2). 
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Figure 3.11 shows the linear relationship of the AGS metaheuristic CPU time and the number of 

clients (%), with regression bands for a level of confidence of 99% (regarding Table 3.2, without 

outliers). 
 

Figure 3.11 Relationship of the CPU time (in seconds) without outliers and the number of clients (Table 

3.2). 

 

Regarding the results for the instances by Barreto et al. (Table 3.2), 75% of the GapLB values are 

less than 3.5% (as seen in Figure 3.12). Moreover 8 over 17 values are less than 0.6%. 

 

   
 

Figure 3.12 Boxplot (left) and histogram (right) for the GapLB, in percentage, without outliers (Table 3.2). 
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The scatterplot, Figure 3.13, depicts two separate sets of values (A and B), pointing to the 

possibility of “low-level” quality lower bounds for the B set. 

 

Figure 3.13 Scatterplot for the GapLB (in percentage) without outliers and the number of clients (Table 3.2). 
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Table 3.3 Results for the instances by Prins et al. (2006). 

      
AGS  

Instance % # . )G BKR Avg. Best CPU GapBKR 

1 20-5-0a 20 5 70 0 *54793 55517 54875 1.7 0.15 
2 20-5-0b 20 5 150 0 *39104 40846 *39104 1.5 0.00 
3 20-5-2a 20 5 70 2 *48908 49372 *48908 1.9 0.00 
4 20-5-2b 20 5 150 2 *37542 *37542 *37542 1.3 0.00 
5 50-5-0a 50 5 70 0 90111 92136 91975 5.4 2.07 
6 50-5-0b 50 5 150 0 63242 67606 63307 9.4 0.10 
7 50-5-2a 50 5 70 2 88298 90018 88457 13.0 0.18 
8 50-5-2b 50 5 150 2 67340 68217 67496 13.6 0.23 
9 50-5-3a 50 5 70 3 86203 87181 86203 18.1 0.00 

10 50-5-3b 50 5 150 3 61830 62283 61830 9.2 0.00 
11 100-5-0a 100 5 70 0 275993 280410 277539 39.3 0.56 
12 100-5-0b 100 5 150 0 214392 216151 214818 34.2 0.20 
13 100-5-2a 100 5 70 2 194598 197185 195342 20.9 0.38 
14 100-5-2b 100 5 150 2 157173 158418 157200 24.4 0.02 
15 100-5-3a 100 5 70 3 200246 203051 201340 57.1 0.55 
16 100-5-3b 100 5 150 3 152586 155708 153265 23.1 0.44 
17 100-10-0a 100 10 70 0 290429 318073 304274 22.5 4.77 
18 100-10-0b 100 10 150 0 234641 271260 269812 20.5 14.99 
19 100-10-2a 100 10 70 2 244265 247277 245671 53.1 0.58 
20 100-10-2b 100 10 150 2 203988 206035 204391 102.7 0.20 
21 100-10-3a 100 10 70 3 253344 257103 255223 35.0 0.74 
22 100-10-3b 100 10 150 3 204597 206819 205177 45.6 0.28 
23 200-10-0a 200 10 70 0 479425 483803 481123 186.2 0.35 
24 200-10-0b 200 10 150 0 378773 381684 379192 195.0 0.11 
25 200-10-2a 200 10 70 2 450468 454728 452760 157.6 0.51 
26 200-10-2b 200 10 150 2 374435 377599 375710 72.2 0.34 
27 200-10-3a 200 10 70 3 472898 480237 475055 155.9 0.46 
28 200-10-3b 200 10 150 3 364178 367307 363946 113.4 -0.06 

       
 Average 51.2 1.01 

        Median 23.8 0.26 

 

Figure 3.14 shows an asymmetric distribution (skewness = 1.42) as well as several moderate 

outliers (155.9; 157.6; 186.2; 195.0) for CPU time (Table 3.3). Median time is 23.75 seconds and 

75% (Q3) of CPU times are less than 64.65 seconds. 
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Figure 3.14 Boxplot (left) and histogram (right) for the CPU time in seconds (Table 3.3). 

 

Figure 3.15 with severe outliers (2.07; 4.77; 14.99) suggests the use of the median value =

 0.26% to characterize the location of GapBKR data (Table 3.3). Moreover, 75% of GapBKR values 

are less than 0.53%. 

 

    
 

Figure 3.15 Boxplot (left) and histogram (right) for the GapBKR in percentage (Table 3.3). 

 

Categorized boxplots in Figure 3.16 show the performance of the AGS metaheuristic regarding 

the number of clients (%) and depots (#), Table 3.3. GapBKR slightly increases with the number of 

CPU (AGS) 

50 

200 

0 

150 

100 

24 

      Median = 23.75 
      25%-75% 
      = (11.2; 64.65) 
      Non-outlier range 
      = (1.3; 113.4) 
      Outliers 

27 

25 

23 
8 

0 
0 

6 

2 

200 50 100 150 

CPU (AGS) 

4 

25 75 125 175 
F

re
qu

en
cy

 

GapBKR (AGS) 

3 

15 

0 

12 

9 

17 

18 

      Median = 0.255 
      25%-75% 
      = (0.06; 0.53) 
      Non-outlier range 
      = (-0.06; 0.74) 
      Extremes  

6 

50 

25 

0 
-2 

20 

15 

1 16 4 7 

GapBKR (AGS) 

10 13 

10 

5 

Fr
eq

ue
nc

y 



54 3. Basic Location-Routing Problems 

 

clients (for # = 5); on the other hand, for # =10 it decreases when the number of clients 

increases. 

 

  
 

Figure 3.16 Categorized boxplots for the GapBKR in percentage: clients = 20, 100, 100, and 200; depots = 5 

and 10 (Table 3.3). 

 

Using a dependent t-test for BKR and best AGS, the abovementioned good results, of the AGS 

metaheuristic, were statistically confirmed. The boxplots for both sets of values can be seen in 

Figure 3.17. 
 

Figure 3.17 Boxplots for best known results (BKR) and best AGS results (Table 3.3). 
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The null hypothesis of equal means is not rejected for a significance level (X) of 5%, as the      

p-value = 0.08 > X = 0.05. 

On Table 3.4 a comparative analysis is performed, using the average results for the three sets of 

instances, between the best results of the proposed approach (AGS) and algorithms from the 

literature. CPU refers to the average computing time in seconds, GapLB to the average gap (in 

percentage) between the obtained results and the best known lower bound, and GapBKR represents 

the average gap to the currently best known results. The CPU time of the remaining algorithms was 

acquired from the corresponding publication. 

Results suggest that the proposed metaheuristic obtains best average results (by around 1%) for 

the first two sets of instances and the second best result for the third set of instances. Regarding 

CPU time, LRGTS outperforms AGS, by presenting lower computing times while the GRASP has 

similar processing times (to be noted that both GRASP and LRGTS only run 13 out of the 19 

instances from the second set, hence, considering the same 13 instances for AGS, the average CPU 

time is of 20.8 seconds and the GapLB of 2.14%). 

 

Table 3.4 Average results for the three sets of instances. 

 Tuzun and Burke Barreto et al. Prins et al. 

Algorithm CPU GapBKR CPU GapLB CPU GapBKR 

TS (Tuzun and Burke, 1999) 11.5 3.74     
Cluster (Barreto et al., 2007)    4.94   
HybPSO (Marinakis and Marinaki, 2008b)   48.4 4.83   
Genetic (Marinakis and Marinaki, 2008a)    4.82   
GRASP (Prins et al., 2006) 159.6 2.92 †20.3 †3.23 103.2 3.58 
LRGTS (Prins et al., 2007) 21.2 1.27 †17.6 †3.25 18.6 0.52 
AGS 133.8 0.24 83.8 2.24 51.2 1.01 
† Only 13 out of the 19 instances are considered. 

 

Still, as the LRP is typically addressed at a strategic level and the average times to obtain the 

solutions range from one to two minutes, CPU time seems reasonable and serves only as a 

performance indicator among different methods. 

3.2 Location-Arc Routing Problem 

The vast majority of LRP papers address node routing. Nevertheless, one can consider several 

scenarios where the demand rather than being on the nodes of a network (usually a road network is 

assumed) is on the edges. These problems are referred to in the literature as location-arc routing 

problems (LARPs) and can derive from the capacitated arc routing problem (CARP). 

It has been shown that the CVRP can be transformed into the CARP (Golden and Wong, 1981), 

and that the reverse is also possible, replacing each arc with three (Pearn et al., 1987) or two 

vertices (Baldacci and Maniezzo, 2006; Longo et al., 2006), making the two classes of problems 

equivalent. The same holds true for their location counterparts: the CLRP and the LARP.()() 
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For the three transformations of the CARP into the CVRP, the resulting instance requires either 

fixing of variables or the use of edges with infinite cost. Moreover, the resulting CVRP graph is a 

complete graph of larger size. Hence, with the transformation, the problem size increases and the 

planar structure of a usual CARP graph is lost (Wøhlk, 2008). The same can be extrapolated to the 

LARP. 

This motivates the study of the LARP using dedicated methods and algorithms. As follows, a 

formal definition of this problem is given followed by some newly developed heuristic approaches 

and corresponding results, obtained on a new set of instances (Lopes et al., 2010b). 

3.2.1 Problem Definition 

The LARP, first introduced by Levy and Bodin (1989), consists of simultaneously determining 

depot location and routes in a graph in order to serve a specified set of required arcs under given 

operational constraints. Muyldermans (2003) has shown that, for this problem, an optimal solution 

exists with the facilities located on the vertices of the graph. 

Formally, the LARP can be described on a weighted and directed graph  � = ( ,!) with a 

vertex set   and a set of arcs !. The vertex set   contains a non-empty subset " of # potential 

depot locations (" ⊆  ) with a fixed cost /(  and capacity ,(  associated (( ∈ "). Every arc & = (', () 

in the arc set ! has a traversal non-negative cost )&  and a non-negative demand for service +& . The 

arcs with positive demand form the subset C of the arcs required to be serviced, only once, by a 

fleet - of identical vehicles with capacity .. Vehicles start and end the route in the same depot, 

and each new vehicle (or route, as it is assumed that each vehicle performs a single route) involves 

a fixed cost 0. The traversal of non-required arcs is known as “deadheading”, being the associated 

cost denoted Y'(  between any two vertices ', ( ∈   (here, Y'(  is the cost of the shortest path in � 

from ' to (). 
It is intended to determine the set of depots to be open in " and the tracing of the distribution 

routes assigned to each open depot in such a way that the sum of fixed and traversal costs to serve 

all arcs in C is minimized. 

Assuming � to be connected, it is possible to transform it into a complete graph �Z = ( Z ,![) 

where  Z  is composed of the set  C of vertices containing the extremities of the arcs in C ( C ⊆  ), 

and " ( Z =  C ∪ "). As �Z is a complete graph and  C ⊆  Z , C is a subset of ![. Each arc & = (', () in 

the arc set ![ has a non-negative cost )̂&  which takes on the value )&  if & ∈ C, Y'(  otherwise. 

Let 1 be any subset of vertices in  Z  (1 ⊂  Z ), 3+(1) (3−(1)) be the set of arcs leaving (entering) 

1, and 5(1) the set of arcs with both extremities in 1. When 1 contains a single vertex 6, 3+(6) is a 

simplification for 3+({6}). The following binary variables are used: 7&8 , equal to one if arc & ∈ ![ 
is used in the route performed by vehicle 8 ∈ -; 9( , equal to one if depot ( is to be opened; and 

9&( , equal to one if the arc & ∈ C is assigned to depot (. The LARP can be formulated as: 

(LARP) min : = ; /(9((∈"
+ ; ; )̂&7&88<-&∈!

+ ; ; 07&8&∈3+(")8∈-
 (3.17) 
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 s.t.: ; 7&88∈-
= 1 ∀& ∈ C, (3.18) 

  ; +&7&8&∈C
≤ . ∀8 ∈ -, (3.19) 

  ; 7&8&∈3+(')
−; 7&8&∈3−(')

= 0 ∀' ∈  Z , ∀8 ∈ -, (3.20) 

  ; 7&8&∈3+(")
≤ 1 ∀8 ∈ -, (3.21) 

  ; 7&8&∈5(1)
≤ |1| − 1 ∀8 ∈ -, ∀1 ⊆  C, (3.22) 

  ; 7^8^∈3+(( )∩3−( C )
+ 7&8 ≤ 1 + 9&(  ∀& ∈ C, ∀( ∈ ", ∀8 ∈ -, (3.23) 

  ; +&9&(&∈C
≤ ,(9(  ∀( ∈ ", (3.24) 

  7&8 ∈ {0,1} ∀& ∈ ![, ∀8 ∈ -, (3.25) 

  9( ∈ {0,1} ∀( ∈ ", (3.26) 

  9&( ∈ {0,1} ∀& ∈ C, ∀( ∈ ". (3.27) 

The objective function (3.17) minimizes the sum of, respectively, the fixed costs of opening the 

depots, the costs of all traversed arcs, and the cost of acquiring vehicles. Constraints (3.18) ensure 

that each required arc is serviced once by exactly one vehicle. Capacity constraints are satisfied 

thanks to inequalities (3.19) and (3.24). Equalities (3.20) are the flow conservation constraints 

which, coupled with constraints (3.21), ensure the routes return to the departure depot. Constraints 

(3.22) are subtour elimination constraints while the set of constraints (3.23) specify that a required 

arc can be assigned to a depot only if there is a route linking them. Finally, constraints (3.25), 

(3.26), and (3.27) define the variables. 

It can be noted that the LARP considered here can be seen as an extension of the CARP, where: 

multiple depots are considered and it is handled an additional level of decision (since the set of 

depots to install has to be obtained). 

3.2.2 Recent Algorithmic Developments 

As shown in Chapter 2, the LARP is one of the most overlooked in the literature. The great 

majority of papers in the LRP literature handles node routing, leaving the context of arc routing 

virtually untouched. As follows, a review on the current studies for the LARP will be presented. 

The first work on the LARP, by Levy and Bodin (1989), intended to tackle a practical problem 

arising in the scheduling of postal carriers in the United States postal service. The developed 

algorithm used the location-allocation-routing (L-A-R) concepts described by Laporte (1988) for 

the LRP, which includes three steps: firstly, depots are to be located using a depot selection 
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procedure; secondly, arcs with demand are to be allocated to depots; thirdly, an Euler tour route of 

minimum traverse cost is determined for each set of arcs allocated to depots. 

Ghiani and Laporte (1999) addressed an undirected LARP, called location rural postman 

problem, in which depots are to be located and routes to be drawn (serving edges with demand), at 

minimum cost, in an undirected graph. The authors show the problem can be transformed into a 

rural postman problem if there is a single depot to open or no bounds on the number of depots. 

Using an exact branch-and-cut approach they solve the transformed problem. 

On the work by Ghiani and Laporte (2001) a set of common applications for the LARP is 

mentioned (mail delivery, garbage collection and road maintenance). Furthermore the authors 

define the LARP as an extension of one of the three classical arc routing problems: the Chinese 

postman problem, the rural postman problem, and the CARP. The authors also present some insight 

on heuristic approaches using the decomposition of the problem into location (L), allocation (A) 

and routing (R) (Laporte, 1988): location-allocation-routing (L-A-R) and allocation-routing-

location (A-R-L). 

Muyldermans (2003) presents a variant of the LARP: the p dead-mileage problem. In this 

problem, unlike the previously addressed LARPs, splitting of the demand is allowed, that is, the 

client can be serviced more than once. Moreover, the objective is to minimize dead-mileage 

(deadheading). 

Finally, the works by Pia and Filippi (2006) and Amaya et al. (2007) address variants of the 

CARP with a similar structure to the LARP, respectively, the CARP with mobile depots and the 

CARP with refill points. In the first, two different types of vehicles are considered: compactors and 

satellites. Compactors can be seen as moving depots for the satellites. The second problem 

considers vehicles servicing arcs that must be refilled at certain nodes (to be obtained) in order to 

continue its service. 

From the previously mentioned variants, the LARP addressed here (and defined earlier) is the 

same studied by Ghiani and Laporte (1999) which can be seen as the arc routing equivalent to the 

CLRP, and thus an extension to the CARP. 

3.2.3 Constructive Methods and Improvement Heuristics 

The LARP, as mentioned earlier, results from the combination of a facility location problem and 

the CARP, both NP-hard problems and, as such, is NP-hard. Due to this, sharp bounds on the 

optimal value are typically hard to derive so, hardly big instances can be solved using exact 

methods. The best way to tackle these problems is then to use heuristic approaches, commonly 

used in practice (Hertz and Widmer, 2003), some of the most known being constructive methods 

and improvement heuristics. 

Constructive methods are usually used to obtain initial solutions from which improvement 

heuristics can be used to attain better results. Furthermore, they are often used as the first step to 

many metaheuristic approaches. In this section constructive methods (extended augment-merge and 
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extended merge) and improvement heuristics (reverse and relocate with both intra- and inter-route 

moves) are proposed to tackle the LARP. 

Extended Augment-Merge 

The augment-merge algorithm (illustrated in Figure 3.18) was proposed for the CARP by Golden 

and Wong (1981). It starts with a trivial solution in which each arc with demand is serviced by a 

separate route. Then, after sorting the obtained routes in decreasing cost order, it proceeds to the 

augment phase where, starting with the route with highest cost, it is seen if the route already goes 

through demand arcs on less costly routes. If so, and provided vehicle capacity is obeyed, the latter 

route is augmented into the former (the route with highest cost). 
 

Figure 3.18 Augment (left) and merge (right) moves in augment-merge. 

 

Afterwards the algorithm proceeds to the merge phase, where every feasible merge is evaluated 

for any two routes, merging the routes which provide the highest saving. This is done until no 

feasible saving exists. This last step is closely related to the well known “savings” or Clarke and 

Wright algorithm (Clarke and Wright, 1964). 

The extended version (extended augment-merge – EAM) for the LARP obtains the initial 

solution by assigning each required arc to the closest depot in which they can fit, thus building a 

dedicated route. When all required arcs are assigned, the depots without demand to supply are 

closed. The augment phase is similar to augment-merge algorithm, increasingly considering depot 

capacity constraints. In the merge phase of the EAM, the resulting route _, which may result from 

four different merges, is evaluated for reassignment to all depots (totalling 4# possible merges). 

The resulting saving D can be calculated as follows: 

 D = 0 + YE' + Y(E + YF8 + YGF − Y(8 − YH' − YGH + /EIE + /FIF − /H(1− 9H). (3.28) 

IE  (IF) is binary and equal to 1 if depot E (F), the depot of route C (1), supplies no more routes 

after the merger, and thus can be closed. 9H  is a binary value (defined earlier for the formulation) 

equal to 1 if depot H (the depot currently evaluated to be assigned to _) is already open before the 

merge, and ', (, 8, and G are the vertices of the arcs with demand which are connected to the depots 

in each route. The EAM ends when there is no more feasible merge with a positive saving. 
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Extended Merge 

In the augment-merge algorithm it has been contested the use of the augment phase (Belenguer et 

al., 2006). If all the arcs in ! are required to be serviced, it performs well, as the arcs absorbed by 

the higher cost routes are often contiguous. However, if it is not the case, the deadheading distance 

created between absorbed arcs cannot be recovered in the merge phase, leading to degraded results. 

Belenguer et al. (2006) further support this statement by presenting overall better results for the 

algorithm without the augment phase. 

As the EAM derives from the augment-merge, a similar situation may occur. This suggests the 

development of an extended merge (EM) algorithm for the LARP, similar to the EAM, differing in 

not performing the augment phase, identical otherwise. Figure 3.19 depicts the merge phase used in 

both the EAM and the EM algorithms. 
 

Figure 3.19 Some merges in the merge phase of the EAM and EM algorithms. 

 

The extension of the merge phase (in both algorithms) uses some concepts from the extension to 

the savings algorithm proposed by Prins et al. (2006) for the CLRP (previously described in 

Section 3.1.3). 

Reverse 

The reverse improvement heuristic (Beullens et al., 2003) performs inside the routes and the 

corresponding move can be seen as the arc routing equivalent of the 2-opt move (Lin and 

Kernighan, 1973). 

The reverse move is identical to the one used in the CARP (Figure 3.20). The algorithm 

performs by replacing a subsequence of arcs by the reverse, always insuring the required arcs are 

serviced. This may lead to other shortest paths (in the deadheading distance) linking the required 
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arcs. The algorithm implements the first found feasible move that improves the solution. This is 

done sequentially until no more feasible moves can be found. 
 

Figure 3.20 The reverse move applied to a route. 

 

Relocate 

In the relocate improvement heuristic (well known from the node routing context) two possible 

variations are considered: relocate inside the routes and relocate between two routes. In both 

variations the concept is to relocate a given arc (or subsequence of arcs) which requires service to 

another position in the route, or in another route. 

The relocate algorithm inside the routes is based on the CVRP algorithm by Savelsbergh (1992), 

while the inter-route algorithm is based on the work by Beullens et al. (2003) for the CARP. In the 

latter, not only vehicle capacity but also depot capacity constraints have to be taken into account. In 

both algorithms the (subsequence of) required arc(s) or its reversal is reinserted, depending on 

which of two provides the biggest improvement. 

3.2.4 Metaheuristics 

Metaheuristics are general combinatorial optimization techniques that have rapidly demonstrated 

their usefulness and efficiency in solving hard problems (Glover and Kochenberger, 2003; Talbi, 

2009). While in theory they can handle any combinatorial optimization problem, it is often the case 

that an important effort must be put on finding the right way to adapt the general parameters of 

these methods to the particular considered problem (Hertz and Widmer, 2003).()() 

This is the case in this section, where three general metaheuristics (tabu search combined with a 

variable neighbourhood search – TS-VNS; greedy randomized adaptive search procedure – 

GRASP; and tabu search combined with a greedy randomized adaptive search procedure – TS-

GRASP) are adapted and parameters tuned in order to tackle the LARP. The metaheuristics use the 

previously developed constructive and improvement methods in their specific framework. 



62 3. Basic Location-Routing Problems 

 

Tabu Search-Variable Neighbourhood Search 

This approach (TS-VNS) is an iterative framework composed of a tabu search (TS) and a variable 

neighbourhood search (VNS), respectively, for the location and (arc) routing phases. These two 

algorithms are performed iteratively until a stopping criterion is met, namely, a number #&7HF6%F 

of iterations without improvements to the solution (empirically found to be equal to 10). The TS-

VNS approach starts by obtaining a solution using the VNS without constraints on the subset of 

depots 1` to use (1` ⊆ "). 
 

Variable Neighbourhood Search. VNS is a metaheuristic proposed by Mladenović and Hansen 

(1997) in which the main concept is to perform a systematic change of neighbourhood within the 

local search. This is done by exploring increasingly distant neighbourhoods of the current solution. 

If an improvement is made, the search proceeds to the new solution and restarts the search. The 

steps of the basic VNS can be seen in Figure 3.21. 

 

Figure 3.21 Steps of the basic VNS (Hansen and Mladenović, 2001). 

 

In the adopted VNS: aG  is a finite set of pre-selected neighbourhood structures inspired in the 

work by Polacek et al. (2008) for the CARP; the initial solution is obtained by performing the EAM 

(choice over the EM is due to being faster to obtain solutions, as the following steps behave 

similarly in both methods); and the stopping condition is a given number #&76%F of iterations 

reached (equal to the number of arcs in the problem, multiplied by ten: #&76%F = 10|!|). 
The shaking step uses the CROSS-exchange operator proposed by Taillard et al. (1997) for the 

VRP with time windows. It starts by randomly selecting two different routes, to which the CROSS-

exchange operator is applied, swapping the sequence of consecutive required arcs. The number of 

required arcs which get swapped on each route is randomly obtained from an uniform distribution 

in the range [1, min(G, C_)], C_  being the total number of required arcs for route _. When G = G#&7  

(G#&7 = 6, found empirically) the upper bound on the range is substituted by C_ . The described 

Initialization. Select the set of neighbourhood structures aG , G = 1,...,G#&7 , that will be used in the search; 

find an initial solution 1'; choose a stopping condition. 

Repeat the following steps until the stopping criteria is met. 

(1) Set G ∶= 1. 

(2) Until G = G#&7 , repeat the following steps: 

(a) Shaking. Generate a point � ′  at random from the  th neighbourhood of �!  (� ′ ∈ # (�!)). 

(b) Local search. Apply some local search method with �!  as initial solution; denote with � ′′  the so 

obtained local optimum. 

(c) Move or not. If this local optimum � ′′  is better than the incumbent �! , move there (�! ∶= � ′′ ), and 

continue the search with #1 ( ∶= 1); otherwise, set  ∶=   + 1. 
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shaking step is biased to exchange smaller sequences of required arcs, while still allowing to 

perform large swaps. 

The local search is applied solely on the two changed routes, and is composed of the formerly 

proposed reverse and relocate improvement heuristics, performing intra-route (reverse and 

relocate) and inter-route (relocate) improvements, sequentially, until no additional improvement 

can be found. The newly obtained local optimum is only accepted to move to if a cost reduction is 

obtained, thus making this a descent first improvement procedure which, according to Hansen and 

Mladenović (2001), can be easily transformed into a descent-ascent method (although experimental 

trials with this variation proved unfruitful for the present approach). 

After obtaining the best solution �∗ from the VNS, the TS-VNS approach proceeds to the 

location phase, performed by the TS algorithm. 

 

Tabu Search. The used TS algorithm is the one presented by Filho and Galvão (1998), for the 

concentrator location problem, which provides near-optimal results in reduced CPU time, 

validating its use. TS was proposed by Glover (1986) and has become one of the most widespread 

local search methods for combinatorial optimization. It uses a working memory called tabu list in 

which some attributes are stored (and forbidden to be used) for a number of moves. 

In the used TS algorithm some adaptations were made to handle the LARP. Each route in the 

current best solution is collapsed into a single client (regarding demand), and the distance to the 

several feasible depots is the smallest insertion cost of the depot in the route, as in Barreto et al. 

(2007). The problem thus becomes a facility location problem and the algorithm tries to obtain the 

best depot location for the current routes. Using the best obtained depot configuration (excluding 

the remaining depots from the problem), the TS-VNS approach proceeds to constructing the routes 

(routing phase) using the abovementioned VNS algorithm. If no improvement was found in the last 

(five) iteration(s), the approach provides some diversification by randomly opening one (two) 

depot(s) and closing another from �&, always insuring depot capacity constraints are obeyed. 

A flowchart depicting the TS-VNS approach can be seen in Figure 3.22. 

 

Figure 3.22 Flowchart of the TS-VNS metaheuristic for the LARP. 
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Greedy Randomized Adaptive Search Procedure 

In order to obtain the GRASP, the EAM and the EM are randomized to provide the required greedy 

heuristic. Both methods are thus used in the constructive algorithm of the metaheuristic, giving 

place to two variations, based respectively on the two methods: GRASP-EAM and GRASP-EM. 

The only difference between the two variations is the constructive algorithm (which can or not 

have the augment phase). The following features are valid for both variations and apply some 

concepts of the GRASP developed by Prins et al. (2006) for the CLRP. 

For the randomized version of the constructive algorithms a restricted candidate list (RCL) of 

size ( was created from the savings calculated during the merge evaluations. The RCL contains the 

pairs of routes providing the best ( savings, from which one is randomly chosen to be performed. 

Changing the size of the RCL during the GRASP has been shown to often give better results 

(Resende and Ribeiro, 2003). So, at each merge, ( is randomly selected in [1, ()*+ ], where ()*+  

is the maximum RCL size allowed (found empirically: ()*+ = 7). 

The local search (LS), typically used in GRASP metaheuristics, is based on the reverse and 

relocate improvement heuristics previously presented, which performs intra-route (reverse and 

relocate) and inter-route (relocate) improvements, sequentially, until no additional improvement 

can be found. 

Moreover, a learning process was included in the GRASP which reduces the computational time 

and improves the final solution (Prins et al., 2006). The constructive algorithms, at each iteration 

!,, provide a solution �!,  which often has many open depots and, although the merges can close 

some, it may not be enough. In order to obtain better solutions, a subset �& of available depots is 

chosen to be used in the constructive algorithms (�& ⊆ '). In the first iteration of the GRASP all 

depots are used, then, one of them is iteratively picked from '. The remaining depots in �& are 

randomly chosen (both the number to open and which) at each iteration, always insuring there is 

enough capacity to service all clients. This can be seen as a diversification. 

Adding a memorization during the diversification mode enables the GRASP to learn about the 

good subset to open, and to possibly find better solutions. An intensification mode using this 

learning process was implemented, varying the GRASP iterations (using the boolean value 

.!/)0.1 and reaching the maximum of )*+!, = 75) between: 

· Diversification mode – applied for )*+.!/ = 8 iterations, in which the solution space is 

explored by varying the subset of open depots (explained previously). 

· Intensification mode – performed for )*+!2, = 7 iterations, where an attempt is made to 

improve the routing for the selected depots (�&), obtained from the currently best found 

solution. 

The parameters were set after a preliminary experimenting phase and allow five complete runs 

of the two modes returning, in the end, the best found solution (�∗). Figure 3.23 is a flowchart of 

the presented GRASP. 
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Figure 3.23 Flowchart of the GRASP metaheuristic for the LARP. 

 

As stated previously, this GRASP leads to two variations (which will be evaluated in the 

comparative analysis): GRASP-EAM, using the randomized version of the EAM method; and 

GRASP-EM, randomizing the constructive method EM. 

Tabu Search-Greedy Randomized Adaptive Search Procedure 

The approach presented in this section, the TS-GRASP, combines some aspects of the previously 

described TS and GRASP. The TS handles the location phase while the GRASP addresses the (arc) 

routing phase. This is an attempt to integrate the best features of the previous approaches. An 

iterative framework is used, in which the algorithms for both phases are performed iteratively until 

a stopping criterion is met (a number )*+,345*36 of iterations without improvements to the 

solution, empirically found: )*+,345*36 = 10). The required adaptations will be described as 

follows. 
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Similarly to the TS-VNS approach, the TS-GRASP starts by obtaining a solution for the routing 

phase without constraints on the subset of depots �& to use (�& ⊆ '), however, instead of the VNS, 

the GRASP is used. 

 

Greedy Randomized Adaptive Search Procedure. This GRASP uses the EM for the randomized 

constructive algorithm, as it provides bigger diversity and better results (see Section 3.2.5), 

returning a solution �!,  at each iteration !,. The randomization performs similarly, using the RCL 

(with the same value of ()*+ ), as does the LS, with the reverse and relocate improvement 

heuristics (applied sequentially while there is improvement to the solution). Unlike the previous 

GRASP however, there is no diversification mode ()*+.!/ = 0), as the TS handles the location 

phase. Hence, this GRASP tries to obtain the best results (always in intensification mode) for the 

same given depot configuration (�&). 

The )*+!, parameter also differs from the previous approach, varying at each iteration 

according to: 

 )*+!, = ⌈0.25!,,345*36⌉ + 1 (3.29) 

where !,,345*36 is the number of iterations without improvement. This allows to intensify the 

search as less improvements are found (insuring the GRASP is performed at least once). 

The best obtained solution (�∗) is used in the location phase (TS algorithm) to where the TS-

GRASP approach proceeds once the maximum number of iterations )*+!, is reached. 

 

Tabu Search. The TS algorithm in this approach works exactly as in the TS-VNS. Routes are 

collapsed into a single client and distances to depots are updated. Using the algorithm by Filho and 

Galvão (1998), the best subset �& of depots to open is obtained, to which is added a small 

diversification: obeying to capacity constraints, if no improvement was found in the last (five) 

iteration(s), randomly, one (two) depot(s) is (are) chosen to be open and one to be closed. 

The TS-GRASP approach then continues again to the routing phase, restarting the GRASP and 

using only the new subset of depots �&, as seen in Figure 3.24. 
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Figure 3.24 Flowchart of the TS-GRASP metaheuristic for the LARP. 

 

3.2.5 Computational Results 

In order to ascertain the performance of the methods and approaches proposed for the LARP, 

experimental results are obtained. Firstly, implementation issues are described and a new set of 

benchmark instances is proposed. Secondly, a comparative analysis is performed on the algorithmic 

proposals for the LARP using the newly devised instances. 

Implementation and Benchmark Instances 

All the aforementioned approaches were implemented in C# and the results obtained using a 3.00 

GHz Intel Xeon E5450 Quad Core CPU with 8 GB of RAM and Windows XP (without parallel 

processing). For obtaining the deadheading distance (;!< ), in both the constructive methods and 

improvement heuristics (and consequently on the metaheuristic approaches), the well known 

Dijkstra’s algorithm (Dijkstra, 1959) was used. 

In order to compare results and times a new set of instances is proposed (increasingly justified 

by the absence of benchmark instances in the literature). The instances were drawn from the CARP 

literature (the original sets can be found in http://www.uv.es/belengue/carp.html) and adapted to 

the LARP. These are the well known and widely used instances from: Golden et al. (1983), named 
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“gdb”; Benavent et al. (1992), called “bccm”; and Eglese (1994), named “eglese”. The first two 

sets were generated on a graph, with all the edges being required edges, while the latter originates 

from a real-world (winter gritting) problem for the road network of Lancashire (UK), where two 

graphs were obtained and the different instances created by changing the set of required edges and 

the capacities of the vehicles. 

From the referred instances for the CARP, some instances were chosen (promoting diversity) 

and adapted to support more than one depot and a cost structure in which location costs range 30-

70% of the total cost (with distribution costs regarding deadheading distance). Table 3.5 displays 

the data regarding the proposed instances named after the original CARP set followed by the 

instance number/name in the original set (e.g. eglese-E1-A is the instance “E1-A” from Eglese, 

1994). The first columns of the table display the name of the instance and the cardinality of the 

vertex (=), edges (>), and required edges (?) sets (all instances work with undirected graphs). Then 

follows the data regarding the depots, namely, the number of potential depot locations ()) and the 

average depot fixed cost (7)̅. Finally, columns “A” and “B” refer, respectively, to the vehicles 

capacity and fixed cost. The proposed instances are available at http://lore.web.ua.pt/.() 

 

Table 3.5 Data regarding the proposed instances for the LARP. 

Instance |=| |>| |?| ) 7 ̅ A B 

1 gdb-20 11 22 22 3 10 27 1 
2 gdb-22 11 44 44 3 5 27 1 
3 gdb-1 12 22 22 3 20 5 5 
4 gdb-2 12 26 26 3 25 5 5 
5 bccm-1B 24 39 39 5 15 120 2 
6 bccm-2C 24 34 34 5 50 40 2 
7 bccm-8A 30 63 63 5 10 200 5 
8 bccm-6B 31 50 50 5 40 120 5 
9 bccm-7A 40 66 66 5 5 200 2 

10 bccm-4C 41 69 69 5 25 130 2 
11 bccm-9B 50 92 92 5 30 175 5 
12 bccm-10D 50 97 97 5 20 75 5 
13 eglese-E1-A 77 98 51 10 250 305 20 
14 eglese-E2-B 77 98 72 10 750 200 20 
15 eglese-E3-C 77 98 87 10 1000 135 50 
16 eglese-S1-A 140 190 75 10 400 210 50 
17 eglese-S2-B 140 190 147 10 2500 160 100 
18 eglese-S3-C 140 190 159 10 1500 120 100 

 

Comparative Analysis 

Results for the constructive methods (with and without the local search – LS – composed by the 

improvement heuristics applied sequentially until no more improvements can be found) and for the 

metaheuristic approaches were obtained for the newly devised instances. For the constructive 
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methods, a single run for each instance is performed (as there is no randomization), and the 

corresponding result and computing time found. For the metaheuristic approaches, twenty runs 

were made for each instance, from which was acquired the average and best result (and the time to 

obtain it). 

Results for the constructive methods (with and without LS) can be seen in Tables 3.6 and 3.7, 

respectively, for the EAM and EM. Regarding the metaheuristic approaches (TS-VNS, GRASP-

EAM, GRASP-EM, and TS-GRASP) results are shown in Tables 3.8 and 3.9. In the tables, the first 

columns display the instances name, followed by the overall best result (BR). Afterwards, it is 

shown, for each algorithm: the obtained results – Result (or average results – Avg. – and best 

results – Best – for the metaheuristic approaches); CPU time, in seconds; and the gap (GapBR), in 

percentage, between the overall best result and the algorithm (best) result. Similarly to the CLRP, 

for each of the tables (in the LARP) average and median values are provided as data showed, for 

CPU time and GapBR, heavily skewed distributions and/or outlying data points. 

 

Table 3.6 Results for the EAM constructive method with and without LS. 

  
EAM 

 
EAM + LS  

Instance BR Result CPU GapBR Result CPU GapBR 

1 gdb-20 135 154 0.00 14.07 148 0.00 9.63 
2 gdb-22 214 229 0.00 7.01 229 0.00 7.01 
3 gdb-1 353 403 0.00 14.16 390 0.00 10.48 
4 gdb-2 390 462 0.00 18.46 447 0.00 14.62 
5 bccm-1B 211 296 0.00 40.28 294 0.00 39.34 
6 bccm-2C 370 487 0.00 31.62 487 0.00 31.62 
7 bccm-8A 424 550 0.01 29.72 519 0.01 22.41 
8 bccm-6B 329 488 0.00 48.33 488 0.00 48.33 
9 bccm-7A 297 355 0.01 19.53 338 0.01 13.80 

10 bccm-4C 458 563 0.01 22.93 543 0.01 18.56 
11 bccm-9B 406 601 0.01 48.03 570 0.02 40.39 
12 bccm-10D 546 630 0.02 15.38 630 0.02 15.38 
13 eglese-E1-A 2985 5157 0.01 72.76 4679 0.01 56.75 
14 eglese-E2-B 5480 11237 0.02 105.05 11081 0.02 102.21 
15 eglese-E3-C 8643 14630 0.02 69.27 14606 0.02 68.99 
16 eglese-S1-A 4315 7369 0.02 70.78 6806 0.02 57.73 
17 eglese-S2-B 15069 33970 0.08 125.43 33919 0.08 125.09 
18 eglese-S3-C 16029 26020 0.08 62.33 25869 0.09 61.39 

   Average 0.02 45.29  0.02 41.32 
   Median 0.01 35.95  0.01 35.48 

 

Looking at the results for the constructive methods, it can be concluded that, overall, EM 

performs better than EAM. This may lead to conclude that, the claim by Belenger et al. (2006) for 

the CARP, suggesting the augment phase generally leads to poorer results, is valid for the LARP. 

However, as the EAM obtains faster results (and with somewhat similar final results) it may be an 

interesting constructive method to be used in metaheuristics. 
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Table 3.7 Results for the EM constructive method with and without LS. 

  
EM 

 
EM + LS  

Instance BR Result CPU GapBR Result CPU GapBR 

1 gdb-20 135 160 0.00 18.52 160 0.00 18.52 
2 gdb-22 214 223 0.01 4.21 223 0.01 4.21 
3 gdb-1 353 389 0.00 10.20 389 0.00 10.20 
4 gdb-2 390 448 0.00 14.87 448 0.00 14.87 
5 bccm-1B 211 277 0.01 31.28 273 0.01 29.38 
6 bccm-2C 370 533 0.00 44.05 529 0.00 42.97 
7 bccm-8A 424 550 0.03 29.72 534 0.03 25.94 
8 bccm-6B 329 496 0.01 50.76 494 0.01 50.15 
9 bccm-7A 297 366 0.03 23.23 353 0.03 18.86 

10 bccm-4C 458 564 0.04 23.14 550 0.04 20.09 
11 bccm-9B 406 574 0.09 41.38 562 0.09 38.42 
12 bccm-10D 546 672 0.10 23.08 661 0.10 21.06 
13 eglese-E1-A 2985 4520 0.03 51.42 4424 0.03 48.21 
14 eglese-E2-B 5480 9166 0.07 67.26 9058 0.07 65.29 
15 eglese-E3-C 8643 14696 0.11 70.03 14542 0.11 68.25 
16 eglese-S1-A 4315 5152 0.11 19.40 4847 0.11 12.33 
17 eglese-S2-B 15069 31626 0.61 109.87 31516 0.62 109.14 
18 eglese-S3-C 16029 24626 0.72 53.63 24552 0.72 53.17 

   Average 0.11 38.11  0.11 36.17 
   Median 0.03 30.50  0.03 27.66 

 

Table 3.8 Results for the TS-VNS and the GRASP (using EAM) metaheuristic approaches. 

  
TS-VNS 

 
GRASP-EAM  

Instance BR Avg. Best CPU GapBR Avg. Best CPU GapBR 

1 gdb-20 135 139 139 0.36 2.96 136 135 0.03 0.00 
2 gdb-22 214 218 216 1.38 0.93 217 215 0.29 0.47 
3 gdb-1 353 366 359 0.61 1.70 363 353 0.02 0.00 
4 gdb-2 390 400 400 0.47 2.56 405 400 0.04 2.56 
5 bccm-1B 211 222 220 1.19 4.27 221 216 0.09 2.37 
6 bccm-2C 370 384 384 0.77 3.78 385 384 0.04 3.78 
7 bccm-8A 424 445 433 5.41 2.12 436 427 0.56 0.71 
8 bccm-6B 329 335 335 1.62 1.82 339 336 0.14 2.13 
9 bccm-7A 297 312 304 4.69 2.36 309 302 0.44 1.68 

10 bccm-4C 458 473 467 5.51 1.97 471 458 0.52 0.00 
11 bccm-9B 406 417 415 5.60 2.22 419 413 1.30 1.72 
12 bccm-10D 546 568 553 6.51 1.28 557 549 1.63 0.55 
13 eglese-E1-A 2985 3275 3256 6.16 9.08 3332 3231 0.43 8.24 
14 eglese-E2-B 5480 5888 5811 4.97 6.04 6095 5856 0.87 6.86 
15 eglese-E3-C 8643 9194 9147 5.07 5.83 9290 9123 1.42 5.55 
16 eglese-S1-A 4315 4692 4586 8.06 6.28 4699 4404 1.10 2.06 
17 eglese-S2-B 15069 15989 15820 33.21 4.98 16109 15592 6.76 3.47 
18 eglese-S3-C 16029 17273 17090 40.96 6.62 17471 16933 7.88 5.64 

    Average 7.36 3.71   1.31 2.66 
    Median 5.02 2.76   0.48 2.10 
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Regarding the metaheuristic approaches, computing times are, on average, less than 10 seconds, 

being the GRASP-EAM the fastest, followed by the TS-GRASP, the TS-VNS, and the GRASP-

EM (albeit the difference between them is negligible as this is a strategic problem). 

 

Table 3.9 Results for the GRASP (using EM) and the TS-GRASP metaheuristic approaches. 

  
GRASP-EM 

 
TS-GRASP  

Instance BR Avg. Best CPU GapBR Avg. Best CPU GapBR 

1 gdb-20 135 136 135 0.10 0.00 137 135 0.04 0.00 
2 gdb-22 214 217 214 0.74 0.00 217 214 0.29 0.00 
3 gdb-1 353 359 359 0.10 1.70 360 353 0.05 0.00 
4 gdb-2 390 394 390 0.17 0.00 397 390 0.11 0.00 
5 bccm-1B 211 216 211 0.59 0.00 218 211 0.39 0.00 
6 bccm-2C 370 382 370 0.35 0.00 374 370 0.17 0.00 
7 bccm-8A 424 434 425 3.07 0.24 438 424 0.97 0.00 
8 bccm-6B 329 336 329 1.38 0.00 339 329 0.64 0.00 
9 bccm-7A 297 303 297 3.01 0.00 309 301 1.18 1.35 

10 bccm-4C 458 466 458 3.35 0.00 465 458 1.36 0.00 
11 bccm-9B 406 412 406 9.52 0.00 414 408 4.78 0.49 
12 bccm-10D 546 560 552 11.17 1.10 559 546 3.83 0.00 
13 eglese-E1-A 2985 3166 3014 2.07 0.97 3139 2985 2.14 0.00 
14 eglese-E2-B 5480 5730 5584 5.29 1.90 5649 5480 2.20 0.00 
15 eglese-E3-C 8643 8738 8643 10.31 0.00 8819 8665 4.13 0.25 
16 eglese-S1-A 4315 4535 4378 8.16 1.46 4438 4315 2.78 0.00 
17 eglese-S2-B 15069 15602 15307 55.04 1.58 15400 15069 22.64 0.00 
18 eglese-S3-C 16029 16587 16109 65.01 0.50 16251 16029 24.21 0.00 

    Average 9.97 0.52   4.00 0.12 
    Median 3.04 0.00   1.27 0.00 

 

Concerning the gap to best results (GapBR), both the line plots and boxplots in Figure 3.25 

suggest two overall groups (A and B) with different performance: constructive methods (EAM and 

EM with and without LS) and metaheuristic approaches (TS-VNS, GRASP-EAM, GRASP-EM, 

and TS-GRASP). 

Using a correspondence analysis (CA) to analyse overall results of the algorithms, the two-

dimensional scatterplot for axis 1 and 2 (accounting for 99% of inertia), Figure 3.26, clearly 

distinguishes three groups (I, II, III), further splitting constructive methods. It should be noted that 

dimension 1 (with 86.44% of inertia), being the most important dimension, separates and confirms 

the suggested two overall groups (A and B). 
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Figure 3.25 Line plots (left) and boxplots (right) for the GapBR, in percentage, concerning constructive 

methods (EAM and EM with and without LS) and metaheuristic approaches (TS-VNS, GRASP-EAM, 

GRASP-EM, and TS-GRASP), Tables 3.6, 3.7, 3.8, and 3.9. 

 

Figure 3.26 Two-dimensional scatterplot for axis 1 and 2 (accounting for 99% of inertia), for results 

concerning: EAM, EAM+LS, EM, EM+LS, TS-VNS, GRASP-EAM, GRASP-EM, and TS-GRASP (Tables 

3.6, 3.7, 3.8, and 3.9). 

 

Exploratory data analysis (EDA) suggests that metaheuristic approaches perform better, to this 

set of instances, than constructive methods. Thus, in Figure 3.27, the use of correspondence 

analysis and cluster analysis for results concerning just metaheuristics and best results, indicates 

that TS-GRASP is the most similar to best results (BR). 
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Figure 3.27 Two-dimensional correspondence analysis scatterplot (left) and cluster analysis dendogram 

(right) for results concerning: BR, TS-VNS, GRASP-EAM, GRASP-EM, and TS-GRASP (Tables 3.8 and 

3.9). 

 

The lack of normality (depicted in the boxplots of Figure 3.28) as well as the small data size (18 

instances) strongly advise the use of a non-parametric test. Therefore, the abovementioned good 

results for the TS-GRASP metaheuristic, were statistically confirmed using the Wilcoxon matched 

pairs test for BR and best TS-GRASP results. The null hypothesis of equal median is not rejected 

for a significance value (C) of 5%, as the p-value = 0.11. 

 

Figure 3.28 Boxplots for best results (BR) and best TS-GRASP results (Table 3.9). 
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The TS-VNS approach is the one which presents the worst results which, looking at the results 

of the TS-GRASP, leads to conclude that this is due to the VNS (used in the routing phase) not 

performing as well as the GRASP on the route building/improvement. Comparing the results of the 

two GRASP (GRASP-EAM and GRASP-EM), GRASP-EM performs better by providing an 

average as well as a median improvement of around 2%. This may be due to, by not having an 

augment phase, the approach allows for bigger diversity in the possible merges (inside the 

randomized constructive algorithm), thus facilitating the finding of better results. 

Looking at the TS-GRASP, when compared to the GRASP-EM results, it can be concluded that 

the TS, used in the location phase, performs better than the diversity mechanism used in the 

choosing of open depots in the GRASP (as the route building works similarly). Moreover, this 

difference is further stressed in the last six instances, which have more possible depot locations. 

Thus, as the TS-GRASP has a better location algorithm, it does not waste so much time trying to 

obtain the best depot configuration, resulting in smaller computing times and allowing further 

intensification of the routing phase (enabling to find better results). 

3.3 Summary 

In this chapter two specific problems in the LRP literature were addressed: the CLRP and the 

LARP. Both were formally defined, existing approaches reviewed and new (heuristic) approaches 

proposed. 

Regarding the CLRP, the new metaheuristic (AGS) is composed of two phases, in which GLS is 

used to build the starting solution, embedded in a hybrid extended savings algorithm (in the first 

phase), as well as to control a reduced composite local search (in the second phase). The algorithm 

was tested on three sets of instances from the literature (a total of 83 different problems) with up to 

318 clients, and a comparative analysis (with other published approaches) was performed. Results 

suggest that AGS is competitive, providing best average results for two out of the three sets with 

reasonable computing times. Moreover, new best results were found as well as several best known 

results were matched. 

For the LARP, several new approaches were proposed and analysed (two constructive methods, 

three heuristic improvements and, using these, four metaheuristic approaches). Due to the absence 

of benchmark instances in the literature, a new set of instances was devised, deriving from the 

CARP literature. The TS-GRASP outperformed the remaining approaches, results wise, and was 

extremely competitive regarding computing times. Moreover, the computational analysis allowed 

to validate the proposed instances as they appear to be balanced (regarding location and routing 

costs) and representative of several different cost configurations. 
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Chapter 4 

4. Location-Routing of Semi-Obnoxious 

Facilities 

The previous chapters addressed location-routing approaches, firstly, reviewing the different 

problems in the literature, afterwards, proposing approaches for two basic single-objective models. 

Here, the location-routing of semi-obnoxious facilities is mainly studied. These are facilities which 

combine both desirable and undesirable features, and, as such, should be addressed with multi-

objective approaches. 

As the focus of this chapter is the semi-obnoxious facility location-routing problem (LRP), 

firstly, a review (and term definition) of facility location models dealing with undesirable facilities 

is made, where, models (and objectives) used in the location literature are introduced. Then, the 

integrated location-routing approach is reviewed, focusing on the main modelling issues. Finally, a 

multi-objective capacitated LRP (CLRP) is introduced, formally defined, and solved using a newly 

developed evolutionary algorithm. 

4.1 A Review of Obnoxious and Semi-Obnoxious Facility Location 

The location of undesirable facilities has been the subject of increased concern as environmental 

aspects and quality of life are becoming increasingly important in modern societies. Despite the 

fact that these facilities are, in general, necessary to communities, their location might cause a 

certain disagreement; which has become an opposition toward the installation of undesirable 

facilities close to people. Recently, a new nomenclature has been developed to define this 

opposition (Colebrook and Sicilia, 2007): NIMBY (not in my back yard), NIMNBY (not in my 

neighbour’s back yard), NIABY (not in anyone’s back yard), NOPE (not on planet earth), and 

BANANA (build absolutely nothing anywhere near anyone). Also, several terms, such as 

“obnoxious”, “semi-obnoxious”, and “undesirable” have been used (although often wrongly made 

indistinctively) to classify different types of facilities. 

Obnoxious facilities are potentially dangerous (such as nuclear or highly toxic chemical plants) 

due to, in the event of an accident, being able to cause serious problems to safety or health which 

would be felt over a wide area and possibly for a long time (Erkut and Neuman, 1989). 

Semi-obnoxious is addressed by Church and Garfinkel (1978) to name facilities often 

indispensable to communities however, due to the nature of the services they provide, causing an 
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undesirable or even harmful effect to communities when installed in its proximity (e.g. landfills, 

prisons, fire stations, power plants, airports and hospitals). Another term used for semi-obnoxious 

facilities is “semi-desirable” (both have been recently used interchangeably). 

The term “undesirable” is often used undifferentiated to address the previous terms. An 

undesirable facility causes nuisance or deteriorates, in some measure, the surrounding environment 

(Melachrinoudis and Cullinane, 1986). This terminology will also be used here, where, undesirable 

facilities can be either obnoxious or semi-obnoxious. 

The risk these facilities pose and the nuisance to nearby communities has led to a differentiated 

analysis when addressing their location. In fact, these are the two main aspects in the location of 

undesirable facilities: risk (to both the environment and communities), in the event an accident 

occurs (often related with an occurrence probability) causing serious consequences to the 

surroundings; and nuisance or obnoxious effect (perceived by communities), which has a 

continuous and lasting effect. 

The first study addressing undesirable facilities is by Church and Garfinkel (1978) which 

investigated the maxisum location problem, equivalent to the median problem, but using a 

maxisum objective instead. It intends to locate a facility that maximizes the sum of distances 

between the facility and all of the demand nodes (e.g. population centres). These became known as 

obnoxious facility location problems. 

Another way to model the location of undesirable facilities consists of adding to a minimization 

problem, lower bounds on the distance between clients and facilities (a forbidden zone imposed by 

the clients). These are usually semi-obnoxious facility location problems, as the facility provides a 

desirable and needed service, but is not required to exist too close (within the forbidden zone) to a 

given population centre (Moon and Chaudhry, 1984). Additionally, it can be devised scenarios 

where from a facility point of view it is desired to be located as far as possible from some clients, 

as these have an undesirable effect (e.g. locating in areas with high taxes, rents or criminality). 

In this work both problems will be reviewed (as they share the same objectives), however, the 

focus will be on the semi-obnoxious case. An example would be, when addressing the location of 

an airport. On one hand, customers would like the airport to be close so that they do not need to 

travel a long distance to receive service. On the other hand, customers do not want the airport to be 

too close because it generates noise and pollution (Berman and Wang, 2008). 

As follows, a brief review will be made on used models and approaches for both these problems 

according to: firstly, the number of objectives; and secondly, the number of facilities to install. The 

solution space will also be addressed, which can be discrete, network or continuous. More 

comprehensive reviews can be found in Erkut and Neuman (1989), Cappanera (1999), Plastria 

(1996), Ferreira (1997), Carrizosa and Plastria (1999), and Krarup et al. (2002); the latter three 

specifically addressing the semi-obnoxious case. 
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4.1.1 Single-Objective Approaches 

When locating p undesirable facilities, most models handle a single-objective, in the simplest case, 

handling the location of a single facility (p = 1). When more than one facility has to be located 

(p > 1), not only the location has to be considered but also the allocation of clients to facilities. 

Both cases are addressed hereafter, where the majority regard obnoxious facilities. 

Single-Facility 

In single-facility location models only the distance between the facility to install and the clients is 

relevant, thus, criteria are usually maxisum or maximin to model, respectively, the undesirable 

median problem and the undesirable centre problem. 

The work of Church and Garfinkel (1978) addressed the location of an obnoxious facility on a 

network with an exact algorithm, where clients are on the vertices of the network and the facility 

can be located in any of the vertices or in any point in the edges. The objective function consisted 

in maximizing the weighted sum of the distances between the communities and the facility (1-

maxisum). These problems, on networks, are also known as the 1-maxian or anti-median as the 

objective is to ensure clients are as far as possible from facilities, hence, replacing the median 

minimization objective, used in desirable facilities, with a maximization objective. 

Minieka (1983) addresses both the anti-median and the anti-centre problems on a network. The 

anti-centre, similarly to the anti-median, seeks to minimize rather than maximize the objective of 

the desirable facility location counterpart (in this case, the 1-centre problem). 

The 1-maxisum problem in the plane is addressed by Hansen et al. (1981) and Hansen et al. 

(1985), in the first with a minisum objective (using a decreasing non-linear function of distance). It 

is proposed a geometrical solution technique: big square small square (BSSS). The BSSS method is 

a continuous branch-and-bound procedure which starts with a square containing the admissible 

region. The square is continuously divided into smaller squares, discarding those found to be 

unfeasible or non promising. The procedure stops when the side of the square is inferior to a 

predetermined value. The method was later extended by Plastria (1992) to the general single 

facility location problem in the plane. 

Maximin models were proposed by Dasarathy and White (1980) and Drezner and Wesolowsky 

(1980). The unweighted maximin model is solved by Dasarathy and White (1980) in a convex 

polyhedron in ℝd, using Euclidean distances, and suggest enumerating all local optima using the 

Karush-Kuhn-Tucker (KKT) conditions. Drezner and Wesolowsky (1980) deal with the maximin 

model on the plane, with weighted Euclidean distances to reflect the relative importance of existing 

facilities, and propose a numerical bisection search procedure. Both methods suggest simple 

graphical solutions involving growing circles around facilities or client locations. 

The objective in the 1-maximin problem in the plane is to locate a facility so as to maximize the 

distance to any of the clients. Cappanera (1999) observes this is equivalent to the geographical 

problem of finding the largest circle not including any client, the centre of it, being the optimal 

location of the undesirable facility. On a network, the unweighted 1-maximin problem is trivial (an 
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optimal location always exists halfway the longest edge), and the weighted problem, according to 

Erkut and Neuman (1989), can be solved by considering all pairs of vertices (polynomial time 

algorithms can be found in Melachrinoudis and Zhang, 1999, Berman and Drezner, 2000, and 

Colebrook et al., 2002, being the only works found to address this problem on a network).()()() 

Melachrinoudis and Cullinane (1985) present a formulation for the 1-maximin problem 

constraining the location of the facility to a bounded region, and additionally assuming a minimum 

circular region around the clients where location is not allowed. Karkazis and Karagiorgis (1986, 

1988) present exact approaches equally for the 1-maximin on the plane; in the latter work with the 

use of protected or forbidden regions (not necessarily circular) where locating the facility is not 

allowed, for example, nature reserves or parks.()() 

Melachrinoudis and Cullinane (1986) consider a more realistic formulation, where the 

maximum weighted inverse square distance between the facility and the clients is minimized (1-

minimax): 1/e2, where e is the distance to the facility. This is due to the various types of pollution, 

such as radiation and noise, which tend to decrease according to the proposed measure. 

A version of the weighted 1-maximin problem in a convex polygon was studied by Erkut and 

Öncü (1991). The weights are functions of a parameter, which by using different values can obtain 

different disutility (obnoxious) functions for the clients. The authors show this problem to be 

equivalent to the 1-minimax problem where the costs are a decreasing function of distance. 

Melachrinoudis and Smith (1995) developed an algorithm for the Euclidean weighted maximin 

problem in a polygonal region using the weighted Voronoi diagram as a data structure. 

Erkut and Neuman (1989) observe that the maximin objective (in the single-objective case) is 

better suited than the maxisum objective for determining the location of undesirable facilities. This 

is due to: the first aiming at obtaining the individual biggest minimum distances; the second 

concerning the sum of distances, which may result in the optimal location in the vicinity of clients. 

This can be overcome by adding constraints imposing a lower bound on the distance to the facility. 

Still, the maxisum objective is useful when solving multi-objective problems. 

Muñoz-Pérez and Saameño-Rodríguez (1999) develop the problem of locating an obnoxious 

facility, using Euclidean distances, in a bounded polygonal region which includes several existing 

facilities (or population centres). The region may contain forbidden polygonal regions. The 

proposed general problem can lead to, among others, the maxisum and the maximin problem. The 

authors show that an optimal solution can be found in polynomial time, and such an algorithm is 

presented in Saameño-Rodríguez et al. (2006). 

Besides the usual maxisum and maximin objectives, minisum objectives have also been studied. 

When using minisum objectives, two situations are usually considered: the facility is obnoxious 

and a measure other than distance is used (inversely proportional to distance) (Hansen et al., 1981; 

Sung and Joo, 1994); or, it is intended to minimize another aspect (e.g. transportation cost) and the 

obnoxious effect is handled by a lower bound on the distance to the facility (Brimberg and 

Wesolowsky, 1995; Berman et al., 2003). The latter approach is more suitable for the location of 

semi-obnoxious facilities.()()()() 
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Sung and Joo (1994) present an exact solution technique for locating an obnoxious facility on a 

network, where damage could be inflicted within a distance from the facility. The objective is to 

find a location minimizing the sum of weights within the circle centred at the location point (1-

minisum). Each weight is assigned to a point on the network and represents a numerical scale 

reflecting the extent of undesirability resulting from the proximity to the facility. 

The 1-minisum on the plane was studied by Brimberg and Wesolowsky (1995), where the 

objective function measures the transportation cost, while social (obnoxious) costs are included 

implicitly as distance lower bound constraints. The authors propose a branch-and-bound algorithm 

for rectilinear distances. 

Other objectives and issues have also been proposed recently. 

Gordillo et al. (2006) handle the location of a semi-obnoxious facility in the plane where clients 

are required to be serviced and a set of populated areas (defined using convex polygons) is to be 

protected from the obnoxious effect of the facility. The problem if formulated as a margin 

minimization model, and a polynomial solution method is presented. 

Berman et al. (2003) and Berman and Wang (2008) study the location of semi-obnoxious 

facilities where, if the location is too close to clients, expropriation is allowed at a given cost. In 

both works the problem is formulated on a network. In the first using: a maximin model 

considering the distance from the facility to the non-expropriated nodes, subject to an expropriation 

budget; and a minisum of the expropriation costs, while ensuring the facility is not within a given 

distance (related to the maximal covering location problem, of the desirable location literature). In 

the second: the difference between the maximum and the minimum weighted distances is 

minimized; and the minimum weighted distance is maximized, subject to a limit on the maximum 

weighted distance. 

Multi-Facility 

Addressing the location of several facilities requires to consider not only the distances between 

facilities and clients but also between facilities. Both will be analysed here, however, while the first 

are clearly directed at addressing the location of undesirable facilities, the second are mostly 

directed at dispersion models (as the obnoxious effect is among facilities), in which they are to be 

located in such a way as to affect each other the least possible. 

According to Ferreira (1997), objectives are usually: maximinmin, maximinsum or 

maxisummin. These objectives can be analysed based on the operator found in the three syllables 

which compose them (Erkut and Neuman, 1989). For example, maximinsum has, respectively, the 

operators: “max”, “min”, and “sum”. 

When the operator in the second syllable is “min” (maximinmin and maximinsum), it is sought 

an equitable solution, as it is maximized the performance (minimization of the obnoxious effect) in 

the worst case for each location. If it is “sum” (maxisummin), it is maximized the overall systems 

performance, possibly at the expense of individual results. 
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The operator in the third syllable determines the interactions most valued by the model. When 

“min” (maximinmin and maxisummin), the model considers only the minimum distances between 

the several entities, for example, between facilities and clients. Using the operator “sum” 

(maximinsum), the model handles the sum of the distances between the entities. 

Looking at a specific example: the maximinsum model aims to maximize (1st operator) the 

minimum (2nd operator) of the summed (3rd operator) distances between, for example, facilities. 

For the location of p obnoxious facilities in the continuous space, Drezner and Wesolowsky 

(1985) propose two formulations: p-minimaxsum, where it is minimized the maxisum weighted 

distance between facilities and demand points, subject to lower bound constraints on the distance 

between them; and p-maximinsum, where it is maximized the minimum weighted distances 

between the facility and the demand points, subject to upper bound constraints on the distance 

between them. The authors show that both problems are linked by duality and present an exact 

approach for location on ℝ1 (i.e. a line). Giannikos (1993) also proposes formulations for location 

in the plane. If the demand point (client) is only affected by the closest facility, the use of p-

maximinmin models is suggested; if the client is affected by all the facilities, a p-maximinsum 

model should be used. 

The location of several facilities on networks where it is intended to maximize the sum of 

minimum distances between facilities and clients (p-maxisummin model) is known as the p-maxian 

or anti-p-median problem (Church and Garfinkel, 1978). Without any further constraints all p 

facilities would be located nearby (which may prove useful when defining zones for polluting 

factories, having them aggregated rather than dispersed). This problem was addressed by Erkut et 

al. (1990), where it is shown to be NP-hard, and an exact branch-and-bound method and a heuristic 

procedure are presented. The same problem on a tree has been addressed by Burkard et al. (2007), 

where it has been shown that it can be solved in linear time. 

The discrete anti-p-centre problem (extension of the anti-centre to the multi-facility case), 

introduced by Klein and Kincaid (1994), aims at maximizing the minimum weighted distance 

between demand nodes and their nearest facility (belonging to the class of p-maximinmin models). 

The authors present an algorithm to solve this problem in polynomial time. Later, Zmazek and 

Žerovnik (2004) presented an algorithm with linear time complexity for this problem. 

Moon and Chaudhry (1984) address the network location of facilities requiring to be separated 

from, either other facilities, or demand points (using distance constraints). p-maximinmin models 

are used and, when it is considered the inter-facilities distances (intended to ensure dispersion of 

facilities throughout the network; hence clients not playing any role in the model) the problem is 

called anti-covering concerning the location of the maximum number of facilities so that no two 

facilities are within a given time or distance of each other. 

The anti-covering problem on networks (similar to the maximum independent set problem) was 

also addressed by Chaudhry et al. (1986), Murray and Church (1997), and Chaudhry (2006) where, 

respectively, a greedy heuristic, a Lagrangian relaxation solution approach, and a genetic algorithm 

are used. New formulations are provided by Erkut et al. (1996) where linear relaxations provide, in 

most cases, 0-1 solutions to the problem. Tamir (1991) presents a linear time algorithm for this 
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problem on trees. This problem is also addressed as the r-separation problem, with r being the 

minimum value allowed between two points (facilities). 

If rather than constraining the minimum distance between facilities, it is intended to maximize 

it, the problem becomes a p-dispersion problem, also known as the maximum diversity problem 

(seeking for the maximum dispersion between facilities, e.g., locating mutually undesirable 

facilities such as: missile silos, that pose a threat to each other; franchises, that when located too 

close together can affect each other’s profits; radio transceivers to service cellular phones, in order 

to minimize interference problems). This is the most used model in locating undesirable facilities 

mainly due to its duality with the (p – 1)-centre problem (from the desirable facility location 

literature) on specific networks: trees (Shier, 1977). For the p-dispersion problem on trees, 

Chandrasekaran and Daughety (1981) presents a polynomial algorithm. On general networks, this 

problem is proven to be NP-hard (Erkut, 1990), hence, several approaches have appeared in the 

literature. Erkut (1990) presents both an exact branch-and-bound method and a heuristic 

(combining a greedy method with a 2-opt local search). Several other heuristic methods such as 

simulated annealing (Kincaid, 1992), tabu search (Kincaid, 1992; Palubeckis, 2007), and greedy 

randomized adaptive search procedure (Ghosh, 1996; Resende et al., 2010) have been proposed. 

Also, other variants of the problem have appeared, like the p-dispersion under facility capacity and 

budget constraints (Rosenkrantz et al., 2000).()()()() 

On the plane, the p-dispersion problem has been addressed by Drezner and Erkut (1995) where, 

the relationship with the p-circle packing problem is investigated (the p-dispersion in a square is 

equivalent to packing p circles with maximal radius), and a non-linear programming formulation is 

presented. 

Erkut (1990) also proposes a model similar to the p-dispersion where, rather than considering 

only inter-facility distances, it is also considered facility-to-client distances. This problem is named 

p-anticentre-dispersion and is proven to be NP-hard on general networks (Tamir, 1991). The 

version of this problem on the plane is presented by Brimberg and Mehrez (1994) and, the p = 2 

case is later addressed by Tamir (2006) where subquadratic algorithms are proposed. 

If rather that maximizing the minimum distance between facilities, it is intended to maximize 

the smallest sum of distances (consider the overall obnoxious effect, rather than the closest 

individual one), we are dealing with the p-dispersion-sum problem, which belongs to the class of p-

maximinsum models. This problem on networks was addressed by Kincaid and Yellin (1993) 

where: polynomial algorithms are found for the location of less than four facilities on trees; and, a 

simulated annealing metaheuristic is presented for general networks (as the problem in this case is 

NP-hard). Pisinger (2006) studies the same problem on networks, presenting an exact branch-and-

bound algorithm (solving moderately large problems to optimality) and an heuristic based on 

Lagrangian relaxation, concluding that, although the p-dispersion-sum problem is difficult to 

approximate in the worst-case situation, greedy heuristics may perform very well on instances 

occurring in practice. 

Another way to promote facility dispersion is given by the p-defense problem. This problem is a 

p-maxisummin model in which it is sought to maximally disperse facilities through the use of the 

sum of the minimum distances between them. Moon and Chaudhry (1984) identifies this problem, 
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which has several applications in military defense, where it is common to scatter installations in 

order to make it more difficult for enemies to disarm them (justifying it’s name). 

The only problem found to explicitly address the semi-obnoxious p facilities location was 

presented by Carrizosa and Conde (2002), where facilities are to be located on a network 

maximizing the average distance to population centres (distributed in the plane) per unit of 

transportation cost (function of the network distances). The authors aggregate into a single 

objective function transportation cost (to be minimized) and the sum of individual environmental 

utilities (to be maximized). To tackle this, they propose a fractional objective representing the 

environmental utility per transportation cost (to be maximized). 

4.1.2 Multi-Objective Approaches 

Generally, in multi-objective approaches, in order to consider the location of undesirables facilities 

three different types of criteria are used (usually in a bi-objective model): cost, risk/obnoxious 

effect, and equity. Also, while on the single-objective approaches most works consider locating 

obnoxious facilities, where risk/obnoxious effect is usually taken into consideration (when 

additional issues are concerned they are in the form of constraints); on multi-objective approaches, 

semi-obnoxious facilities are mostly addressed, as these are prone to be tackled with multi-

objective models (due to its attracting and repelling effects). 

As follows, and due to the smaller number of works concerning more than one objective (the 

review of Erkut and Neuman, 1989, points to a lack of previous works), both single and multi-

facility location will be simultaneously addressed. For concepts regarding multi-objective problems 

the reader is referred to Section 5.1.1.() 

One of the first works in this subject is due to Ratick and White (1988) where a model for 

locating obnoxious facilities with three objective functions is studied. Two new concepts are added 

to the traditional (desirable facility) location approach (intended to locate close to population 

centres in order to reduce cost): perceived risk (by the communities), which is a function of the size 

of the facilities and opposition faced increases disproportionately (i.e. if a facility is twice the size 

of another, the public will perceive the resulting burden, or disutility, as being more than twice); 

and a measure of equity, called a “complementary anticover”, measured as a function of the 

number of installed facilities. Based on these objectives, the authors propose the location of smaller 

facilities (rather than a single large one), although higher costs are incurred. 

This work laid the foundation to the multi-objective approach by Erkut and Neuman (1992) 

addressing a three-objective (mixed-integer) model on networks in which trade-offs are made 

between: cost, regarding both location and transportation; opposition, resulting from the sum of the 

individual disutilities (hence proportional to the population of the community) which, regarding 

each facility, is a non-linear decreasing function of the Euclidean distance to it (following the 

measure proposed by Melachrinoudis and Cullinane, 1986, but using a parameter as the inverse 

power of distance), and a non-linear increasing function of the facility size; and equity concerns, 

where the maximum individual disutility is minimized. The final two objectives follow the 

concepts addressed in single-objective approaches, where respectively, minisum and minimax 
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objectives are used. The authors also point as a future research the incorporation of transportation 

risk into the model (suitable when dealing with hazardous materials – HAZMAT), thus advocating 

the need to address both location and routing in a combined model.() 

Melachrinoudis et al. (1995) study the location of semi-obnoxious facilities (landfills) using a 

dynamic (multi-period) mixed-integer programming model. They propose four objectives, which 

minimize (over the planning horizon): cost, composing the sum of location and transportation 

costs; total risk, posed to all human population centres; total risk, posed to all non-human 

population centres; and disequity, a measure of the maximum risk on each individual over all 

population centres. Discrete location is addressed, as is assumed a previous analysis narrowing 

down the number of potential locations. Unlike previous model, not only human but also non-

human population centres (ecosystems) are considered. Cost minimization is found to be in conflict 

with the other three risk related, and positively correlated, objectives (which is to be expected as 

risk minimization is achieved by opening and shipping to the most remote landfills, in turn 

increasing transportation cost). Since on the test example the proposed model generated 100 

efficient solution alternatives (far exceeding the maximum limit of nine, pointed by the literature, 

Miller, 1956, as the limit for an effective evaluation by the decision maker – DM) a filtering 

method is used to reduce the number of alternatives to be presented to the DM. To be noted that a 

high number of efficient solutions is common for multi-objective models.() 

The formerly presented works are the only to study the location of undesirable facilities with 

more than two objectives (even though some are highly related). The remainder of the reviewed 

papers focus on bi-objective models, commonly, with opposing push (risk/obnoxious effect 

minimization, typically using distance maximization as a surrogate) and pull (cost/distance 

minimization) objectives. 

The location of an obnoxious facility on a general network was addressed by Zhang and 

Melachrinoudis (2001), where a bi-objective model maximizes the sum of weighted distances 

between the facility and the vertices (maxisum) and maximizes the minimum weighted distance 

from the facility to the vertices in the network (maximin). A polynomial algorithm is developed in 

order to generate the efficient set. 

When dealing with semi-obnoxious location a model combining push and pull objectives is 

most suited. This has led Hamacher et al. (2002) to study models with maxisum (push) as well as 

minisum (pull) objectives. The authors present a polynomial time algorithm (using CPLEX as a 

solver) and generalize the results to also incorporate maximin (push) and minimax (pull) objective 

functions. 

Also on networks, Colebrook and Sicilia (2007) handle the location of undesirable facilities 

with the E-anti-cent-dian problem. This problem analyses the undesirable centre and median 

models which, on the location of desirable facilities, is addressed as the E-cent-dian problem 

(Halpern, 1978), combining the minimax (centre) and minisum (median) objectives by a parameter 

E. On the undesirable facility location the objectives used in the convex combination are the 

maximin and maxisum. The authors present a polynomial algorithm (with the same complexity as 

the work by Hamacher et al., 2002).() 



84 4. Location-Routing of Semi-Obnoxious Facilities 

 

On the plane, all papers handle the location of a single semi-obnoxious facility (the only 

exception being the paper by Rakas et al., 2004, where several of these facilities are to be located). 

These will be discussed as follows.() 

Romero-Morales et al. (1997) use two objective functions: one measuring the environmental 

impact caused in communities by the facility (with a non-increasing convex function of the 

distances); the other, gathering the transportation costs between the facility and the communities 

(using a Lipschitz-continuous non-decreasing function of distances). They propose an approach 

based on the BSSS method, with a new bounding scheme which exploits the structure of the 

problem based on Lagrangian relaxation techniques. 

The objectives used by Brimberg and Juel (1998) are: minimization of the weighted sum of the 

Euclidean distances between the facility and the communities (intended to measure the 

transportation cost); and the minimization of the weighted sum of the Euclidean distances between 

the facility and the communities, raised to a negative power (in an attempt to estimate social 

rejection or environmental impact resulting from the installation of the facility). The approach 

considers the convex combination of the two minisum objective functions, varying the weights 

attributed to each objective function in order to obtain a trajectory of the efficient set. The existence 

of a discontinuity in the trajectory makes more difficult the process of obtaining solutions. The 

same push (depending positively on the distance function) and pull (depending negatively on the 

distance function) objectives were addressed by Skriver and Andersen (2003) (instead of 

combining the two objective functions, the authors considered the model bi-objective) where an 

adaptation of the BSSS method tackles the problem on the plane and on networks. 

Melachrinoudis (1999) presents the problem of locating a semi-obnoxious facility in the plane 

where other facilities already exist. It is intended that the new facility be installed near existing 

ones in order to minimize transportation costs and, at the same time, due to its nuisance, farthest 

possible. Thus, minisum and maximin objectives are considered. As the number of constraints in 

each of linear bi-criteria problems is small, the author solves them using an adaptation of the 

Fourier-Motzkin elimination method. This method, in each iteration, reduces in one the number of 

variables but increases the number of constraints, thus only suited for problems with few 

constraints. The same objectives are addressed by Melachrinoudis and Xanthopulos (2003) where 

an algorithm is developed to obtain the complete set of efficient solutions. They solve the 

discontinuity problem in the set of efficient solutions raised in Brimberg and Juel (1998) and found 

that most of these efficient solutions are on the edges of a Voronoi diagram. 

Algorithms for minisum-maximin models have also been presented by Blanquero and Carrizosa 

(2002) and Karasakal and Nadirler (2008). In the former, the authors present an algorithm to obtain 

a finite feasible subset that approximates the Pareto-optimal front for the bi-objective problem. In 

the latter, a three-phase interactive geometrical branch-and-bound algorithm is suggested to find 

the most preferred efficient solution. The first two phases aim at eliminating the parts of the 

feasible region to which inefficiency is proved. The third phase is based on an interactive search in 

the remaining regions with the involvement of a DM where she/he is given the opportunity to use 

either an exact or an approximate procedure to carry out the search. 
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Ohsawa and Tamura (2003) extend the model by Ohsawa (2000) (which uses maximin and 

minimax criteria) to address elliptic maximin and rectangular minisum criteria using different 

metrics simultaneously; in what the authors consider to be a more suitable approach for analyzing 

real-world location decisions. Polynomial time algorithms for finding the efficient set and the 

trade-off curve are presented in both works. 

A bi-criteria model seeking the lowest effect on the population at the highest level of protection 

is presented in Plastria and Carrizosa (1999). This is done by taking into account a radius of 

influence to be maximized (indicating within which distance from the facility, population 

disturbance is taken into consideration) and the total covered population (within the influence 

radius from the facility) to be minimized. They developed low complexity polynomial algorithms 

to construct the complete trade-off curve between both objectives together with corresponding 

efficient solutions. 

Yapicioglu et al. (2007) introduce a model composed of a weighted minisum function (for 

transportation costs) and a distance-based piecewise function (for the obnoxious effects of the 

facility). A bi-objective particle swarm optimizer is devised to produce a diverse set of non-

dominated solutions. An analysis on the method’s computational complexity shows a linear 

increase in effort with problem size. 

The only work to address the location of multiple facilities is by Rakas et al. (2004) with a bi-

objective model minimizing costs (concerning both transportation and installation) and political 

opposition by communities (obtained with a newly devised scenario-specific formulae). The 

authors reduce the number of potential locations using multi-attribute decision methods and apply 

the developed approach to a real case in Maryland, USA. Then, CPLEX is used to obtain the 

optimal solution (solving a weighted sum of both initial objectives). A method is also proposed to 

address uncertainty (on the amount of garbage generated per area, as well as the cost) using fuzzy 

linear programming. 

4.2 A Review of Obnoxious and Semi-Obnoxious Location-Routing 

When routing is considered in the location of undesirable facilities, two scenarios can be devised: 

when the transported product is undesirable (due to causing risk or nuisance) and the corresponding 

transportation has to be treated accordingly; and, when no risk/nuisance exists in transportation 

(albeit the facility where the product is stored is undesirable itself). 

When the transported product is undesirable it typically refers to waste, where one can classify 

it into high-, medium-, and low-level waste (Boffey et al., 2008). High-level waste (also known as 

HAZMAT) could, in case an accident occurs, cause serious problems which would be felt over a 

wide area and possibly for a long time (e.g. nuclear or highly toxic chemical waste). Moreover, the 

disposal facilities which handle it are clearly obnoxious and should be located far from population 

centres. Low-level waste (e.g. domestic or non-toxic industrial waste) on the other hand, is more of 

a nuisance than a danger, and its effect (noise, smell, vermin, insect spread disease, etc.) is 

relatively restricted. The effect of a single shipment may be short lasting, but the overall effect of 
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repeated shipments can be long lasting. Moreover, the effect of the corresponding disposal facilities 

may be mild and, when contemplated, it may be done by merely imposing a lower bound on the 

distance to the facility. Medium-level waste has characteristics of both high- and low-level waste. 

In the low-level waste case, although the transported materials have undesirable features, the 

facility where they are transported to, often has not. Even though these may not be regarded as 

(semi-)obnoxious facilities, works handling their location are discussed here for the sake of 

completeness. On the reviewed works, none addresses the location of undesirable facilities with 

non-undesirable products. Hence, in most cases, rather than considering routes, in order to 

minimize transportation risk/nuisance, paths in-between the demand and supply points are used. 

The location to be determined is usually between these points. 

A survey of works addressing only routing of HAZMAT is given by Erkut and Verter (1995). 

Regarding problems in this area handling both location and routing, several authors point to the 

lack of works (Boffey and Karkazis, 1995; Lozano and Mesa, 2000). This view is confirmed in the 

previously presented taxonomy (Chapter 2) where few works handle multiple objectives and even 

less the location of obnoxious or semi-obnoxious facilities (inherently multi-objective). Here, 

existing works will be analysed (both formulation and algorithms wise), where only the work by 

Boffey et al. (2008) handles continuous location.() () 

For the single-objective case, only two papers handle the location-routing of undesirable 

facilities: 

· The paper by Cappanera et al. (2004), where a model is presented for the location of 

obnoxious facilities and routing of HAZMAT between facilities and communities. The 

objective is the minimization of the totals costs composed of installation and transportation 

(between the points where materials are produced and installed facilities) costs; establishing 

upper bounds on the communities exposure to the obnoxious effect resulting from both 

location and transportation. They consider a directed graph and present two Lagrangian 

heuristics and a branch-and-bound algorithm for this problem. Computational results are 

shown on randomly generated data. 

· The work by Nema and Gupta (1999), presenting a model where both total costs (location 

and transportation) and total risk (site and transportation) are weighted and combined into a 

single utility function. Two different types of facilities are to be installed (treatment and 

disposal sites), and an example network is addressed consisting of 16 nodes (six being waste 

generators, two representing potential treatment sites and another two potential disposal 

sites) and 20 links. The example is solved to optimality using five different combinations of 

weights in the utility function. 

The remaining works address several objectives, where, following the location literature, can be 

categorized as: cost, risk/obnoxious effect, and equity. Cost is usually based on network distances 

(or a surrogate as time) for transportation and facility installation costs; while risk is often obtained 

by measuring the population exposure to the HAZMAT (during either transportation or 

processing/storage/disposal at facilities). In Chapter 2, an overview of the objectives used in each 

of the following papers is shown. Moreover, high-level waste has received the most attention, 

being addressed firstly. 
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Zografos and Samara (1989) present a model addressing minimization of: travel time, 

transportation risk, and disposal (location) risk. The travel time is associated with the links of the 

transportation network. Transportation risk is defined as the product of the probability of an 

accident occurring with the consequence of that accident. For measuring disposal risk, the total 

distance between population centres and the disposal site is used as a surrogate (the greater the total 

distance, the lower the risk), seen as a maxisum objective (similar to the ones used in the location 

literature). The work is mostly theoretical and can be seen as the first integrated location-routing 

approach handling HAZMAT. The authors propose as future research further data collection for 

calculating routing risk, in which can be seen as one of the biggest drawbacks of this model, as it 

may be difficult to estimate. 

In the work by List and Mirchandani (1991) cost, risk and risk equity are considered. Costs are 

related with network distances, while risk are considered “zonal” attributes as their effect is spread 

over the plane. The zonal risk is considered as the sum of the risk resulting from transportation and 

processing, storage or disposal at facilities. Risk equity is measured as the maximum zonal risk per 

unit population (to be minimized). The authors present a model and apply it to a case study in 

Albany, New York, where trade-offs for each objective are analysed. 

Minimization of transportation burden and perceived risk are addressed in the model by ReVelle 

et al. (1991). Albeit the material is hazardous, the facility is not considered so (as is considered that 

in case an accident occurs, impacts are confined to the facility itself, due to the presence of 

containment/cleanup personnel, therefore, the general public is not threatened or even aware of 

these accidents), hence, the risk only concerns the transportation activity. The transportation burden 

is measure in ton-miles (weight carried per distance, a surrogate for transport cost) and the 

perceived risk in tons-past-people. Here, the risk is not considered as a probability of shipping 

accidents happening (as in previous models) but as the people’s perception of risk, which depends 

on the quantity carried past population centres (population exposure). Optimal solutions are found 

for the presented case (by minimizing the convex combination of both objectives) and the authors 

demonstrate how transportation burden and risk influence location decisions. 

Boffey and Karkazis (1993) review existing HAZMAT models for separate location and 

routing, as well as the integrated location-routing approach. General models are proposed for LRPs 

concerning HAZMAT where the facility may or may not be obnoxious. 

The location-routing of a single obnoxious facility is considered by Stowers and Palekar (1993). 

A bi-objective minisum-minimax (of total transportation and location risk) model is developed, 

quantifying the total exposure of the population during transportation as well as long term storage 

(location). Although only addressing risk in their model, the authors show that for the class of bi-

objective location problems considering only travel risk and travel cost, an optimal solution is at a 

node, thus suggesting the problem only becomes difficult when location risk is considered. When 

location risks are considered and population is concentrated at nodes, the problem exhibits a finite 

dominating set. 

Jacobs and Warmerdam (1994) model the hazardous waste LRP as a continuous network flow 

problem. The proposed model minimizes a linear combination of risk and cost in time. Risk is 

defined as the total probability of an accident occurring during transportation, storage or disposal. 
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To demonstrate the model, the authors describe a hypothetical location and transportation network 

for a 10-month planning period. 

Current and Ratick (1995) propose a model where both materials and disposal sites have a risk 

associated (HAZMAT and obnoxious facility). One of the objectives is cost minimization, 

comprising of per unit transportation (network) costs and fixed and variable costs at facilities. 

Risks and equity are spatially determined (risk is measured with population exposure) and are 

addressed on an aggregated (using two minisum objectives) and individual level (using two 

minimax objectives) for both transportation and location. The model is mixed-integer (with binary 

variables only for location decisions) totalling five objective functions, and is solved to optimality 

in a sample network with 50 nodes (15 waste generating sites, 31 transportation nodes and four 

potential location sites) and 146 directed arcs. The authors point the main problem not being 

solving the problem, but rather generating all the efficient solutions and interpreting the trade-offs 

between them, classifying it as a “daunting if not intractable task”. Hence, they propose the use of 

interactive decision support systems in order to reduce the total number of solutions to be generated 

and analysed (and possibly facilitate the analysis). 

A similar formulation is provided by Wyman and Kuby (1995) but considering risk and equity 

for transportation and location jointly (thus providing only three objective functions). Additionally, 

the selection of different technologies for treatment facilities is considered, where a new solar-

driven waste detoxification is compared with incineration regarding cost, risk, and equity. Model 

wise, new risk and (dis)equity measures are proposed. For risk, transportation and location 

(treatment) risks are measured in population, times the concentration to which they are exposed, 

multiplied by the number of hours they are exposed (µg/m3 person hrs). For equity, a minimaxsum 

objective is used (minimizing the maximum sum of kg*km shipped to facilities), based on the 

premise that is most equitable to treat waste where is produced. This formulation leads to similar 

results as Current and Ratick (1995), but rather than seeking to equitably share risks, it is attempted 

not to take on other people’s risks (assuming risks should be incurred by the people who produce 

waste). 

Giannikos (1998) considers four objective functions for discrete location of garbage treatment 

facilities, in which garbage (deemed obnoxious) has to be transported through a network 

representing the road between possible facility locations and communities. The author presents an 

approach using goal programming in which the objectives are: total cost (transportation and 

location), minimization of total perceived risk (similar to population exposure), equitable risk 

distribution in the transportation activity, and equitable distribution of the disutility (obnoxious 

effect) caused by facilities. A theoretical example using 13 nodes, in which 3 are communities that 

produce garbage and 5 are possible facility locations, is used to test the approach. Functions of 

growing penalties were considered, allowing better results, since large detours of the goals were 

more penalized. Difficulties of this model come from: the correct selection of the priority weight 

expressing the relative importance of each goal; the goals to achieve; and the selection of the type 

of penalties to establish to each objective. 

A bi-objective model, minimizing total cost and transportation risk, is proposed by Alumur and 

Kara (2007). As in the work by ReVelle et al. (1991) the facility is not deemed obnoxious. 
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Additionally, the authors consider several technologies (different types of facilities) and define a 

set of constraints to ensure that a given treatment technology (type of facility) is opened only if a 

minimum amount of materials for that technology exists. A large-scale implementation of the 

model in the Central Anatolian region of Turkey is presented (with 92 generation nodes and with 

15 and 20 candidate sites). The problem is solved to optimality using CPLEX, although the authors 

point the need to develop heuristics (even more as none was yet existing) in order to tackle larger 

problems. 

More recent approaches have addressed the location-routing of low-level waste. 

The work by Boffey et al. (2008) studies such problems using four of the five objectives 

provided by Current and Ratick (1995), the only excluded being the one concerning minimizing 

risk to towns from the facility (handled by imposing a minimum distance constraint between the 

town and the facility). Also, the potential facility locations form a continuous set, as facilities can 

be placed on an off-road site. The authors develop a Lagrangian relaxation (heuristic) approach and 

apply it to a real scenario: the location of a disposal site for low-level waste in the district of 

Algarve, Portugal. The corresponding transportation network has 945 nodes (from which 84 are 

towns) and 1218 (undirected) edges. 

A heuristic method is also proposed by Caballero et al. (2007) in order to locate two 

incineration plants in the region of Andalusia, Spain, for the disposal of solid animal (low-level) 

waste, and design the routes to service the slaughterhouses in the region (unlike the remaining 

models, rather than paths linking demand-to-supply nodes, routes are used, as products cause 

nuisance rather than posing risk). Here, both the transported product and the facility are deemed 

obnoxious, and five objective functions are considered regarding cost (both minisum, one for 

location related costs and another for transportation costs), nuisance measured as social rejection 

(both minisum, one regarding the population close to the facility to install and another for the 

population through which routes pass), and equity (a minimax objective intended to minimize the 

maximum social rejection of the town most affected by waste transportation). The authors propose 

a metaheuristic based on tabu search in order to obtain the efficient set as the problem could not be 

solved using CPLEX. The problem has route capacity and duration constraints, 93 clients to service 

and 6 possible locations (from which at most two can be chosen). 

4.3 A Multi-Objective Capacitated Location-Routing Problem 

Previous sections allowed to identify and analyse currently addressed issues in the literature 

regarding the location(-routing) of undesirable facilities. However, on the reviewed works, none 

addresses the location-routing of (semi-)obnoxious facilities with desirable products/services, albeit 

several examples can be thought of (e.g. locating paper mills). Although the location of such 

facilities raises negative social responses and environmental pollution, routing (of the products) 

does not, and should be considered in order to correctly manage costs (even if objectives reflect 

interests of different entities/DMs). 
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This is a problem which, although it hasn’t been specifically addressed in the literature before, 

can be tackled using some of the existing models. For this specific problem, the CLRP has been 

extended to address it. This is done by considering several opposing objectives, thus the problem 

will be named multi-objective CLRP. As follows, a definition will be made for this problem, to 

which an evolutionary approach is proposed, and corresponding computational analysis presented 

(Lopes et al., 2010a). 

4.3.1 Problem Definition 

The multi-objective CLRP can be defined as intended to locate facilities, while drawing the 

distribution routes of a single product, subject to (homogeneous) vehicle capacity constraints. 

Unlike the single-objective counterpart where only location and routing cost are considered, several 

opposing objectives are taken into account. This makes the problem applicable to the location of 

(semi-)obnoxious facilities, where the distributed product possesses few (e.g. low-level waste) or 

no undesirable features. 

This is the problem addressed here where, as the facility has undesirable features, to the usual 

cost objective function, two other objectives are considered, namely, facility obnoxious effect and 

the corresponding equitable distribution. 

The considered obnoxious effect, caused by each facility over the communities, depends on the 

Euclidean distance between the facility and the community and on the size (population) of the 

community, although an underlying road network is assumed. Following the notation given in 

Section 3.1.1 for the single-objective CLRP, for each community (client) ! ∈ F and each facility 

(depot) < ∈ ', the obnoxious effect is obtained by a function that decreases inversely with the 

square of the Euclidean distance 1!<  and directly with the size of the community 3!  (following the 

measure by Melachrinoudis and Cullinane, 1986). The system overall obnoxious effect is to be 

minimized.() 

In order to equitably distribute the obnoxious effect, for each individual in the community, the 

overall obnoxious effect is obtained (considering the effect upon the individual of all facilities to be 

installed), and the maximum of these individual effects is to be minimized. 

Thus, for the multi-objective CLRP considered here, the following formulation is used: 

(CLRP2) min G1 = H 7< I<<∈'
+ H H J*+*KKLM*∈N

+ H H B+*K*∈O+(')K∈M
 (4.1) 

 min G2 = H H 3!
1

1!<2
I<!∈F<∈'

 (4.2) 

 min G3 = max !∈F H
1

1!<2
I<<∈'

 (4.3) 

 s.t.: + ∈ R.   

The objective function (4.1) is equivalent to (3.1) and manages total costs. Function (4.2) aims 

at minimizing the total obnoxious effect (a minisum objective), and in order to achieve equity, 
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function (4.3) is used (minimaxsum objective). Constraints used are the same as defined from (3.2) 

to (3.11). 

4.3.2 A Multi-Objective Evolutionary Algorithm 

An introduction to multi-objective optimization can be seen in Ehrgott and Gandibleux (2002) 

where an annotated bibliography and general definitions are given. In order to tackle these 

problems, a possible approach is to attempt to obtain the full Pareto front using heuristic methods. 

Evolutionary methods are population based heuristics, which may be more suitable for multi-

objective approaches, as it allows to possess several solutions at a given time, possibly approaching 

the Pareto front more easily. This has led to being one of the most used heuristic approaches in 

multi-objective optimization. Recent references on multi-objective evolutionary methods are the 

works by Deb (2001) and Coello Coello et al. (2007). 

The evolutionary method chosen in this work was the genetic algorithm, where a general 

framework, the second version of the non-dominated sorting genetic algorithm (NSGA-II), is 

adapted and used to tackle the previously defined multi-objective CLRP. The NSGA-II is an elitist 

algorithm (as it favours the elites of a population) presented by Deb et al. (2002) which has had 

several successful applications to a wide range of problems (e.g. Lacomme et al., 2006, and 

Dugardin et al., 2010). The algorithm obtains successive generations of a population of solutions 

which is partitioned into non-dominated fronts using a sorting method.()() 

The method is called non-dominated sorting and will be described as follows. Firstly, the non-

dominated set is obtained and is ranked 1 (forming the front 1) being temporarily disregarded from 

the population 606. Then, the following non-dominated solutions are obtained, ranked 2 (giving 

the front 2), and also disregarded from 606. This is performed repeatedly until all solutions are 

ranked (e.g. Figure 4.1). 

After the sorting is performed (with the ranks corresponding to the solution fitness value, being 

1 the fittest, hence to be minimized), solutions (named parent solutions) are selected to generate 

new (children) solutions, at each generation 412, by applying crossover and mutation operators. In 

order to obtain each parent solution, a crowded tournament selection operator is used. This operator 

uses binary tournament where, two individuals are randomly chosen in which the fitter (with the 

smallest rank) of the two is selected as a parent. If the solutions share the same rank, a crowding 

distance J. is used, from which the solution with the biggest is chosen. 
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Figure 4.1 Four non-dominated fronts of the population of solutions (minimizing two objectives). 

 

For each objective function GJ  (J = 1, 2, 3), corresponding maximum G)*+J  and minimum G)!2J  

values are obtained. Let ? be a front of 25 solutions, all solutions in ? are sorted according to 

increasing values of GJ , being ? J  the  th solution in the sorted front. The corresponding crowding 

distance, for 1 <  < 25, is computed as follows: 

 J. = H GJ(? +1
J ) − GJ(? −1

J )
G)*+J − G)!2J .

3

J=1
 (4.4) 

For  = 1 or  = 25, J. = ∞, and thus corresponding solution is always chosen. This crowding 

distance favours the extreme points of the front, to try to enlarge it, and promotes the choice of 

solutions most widely spread in the obtained fronts (thus preventing clustering of solutions). A 

specific adaptation to the NSGA-II presented here is that, for the crowded tournament selection 

operator, solutions are randomly obtained from fronts 1 and 2 (unlike usual implementations where 

the entire population is considered). This allows breeding to be performed between higher quality 

solutions (as diversity is guaranteed by the high probability associated with mutation). The same 

operator is used to determine the solutions to be disregarded from the population at the end of each 

generation (used inversely: being randomly chosen from the two higher ranks and, the one with the 

higher rank, or the lower J., if ranks are the same, being selected to leave the population). 

The remainder of the algorithm follows the usual genetic algorithm structure (see Figure 4.2) 

and other main components are detailed as follows; with all parameters presented hereafter being 

tuned experimentally. 

 

G1 
 

G2 

Front 1 

Front 2 

Front 3 

Front 4 
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Figure 4.2 Flowchart of the working principle of a genetic algorithm. 

 

Chromosome Representation 

The chromosome in the proposed NSGA-II represents a complete solution, being the collection of 

routes. Both the route (gene) length and the chromosome length are variable and depend on the 

number of clients serviced and the number of routes in the solution. For example, given a CLRP 

with 15 clients F = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} and 4 possible depot locations 

' = {16, 17, 18, 19}, the chromosome representation of a feasible solution is provided as follows. 

Solution 1: 

16 1 3 4 7 10 16 

18 2 6 18 

18 5 9 8 13 18 

16 11 12 15 14 16. 

This solution represents installing facilities 16 and 18, and servicing the clients in the given 

order by four routes (vehicles). 

The adopted representation allows to later build feasible children solutions, thus avoiding the 

need to use repair methods to restore feasibility (which would increase the processing time and 

complicate the algorithm). 

Solution out selection 

Initialize population 

Evaluation 

Mutation Crossover 

Parents selection 

Assign fitness 

Start 

No 

Stop 

Stopping 
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Yes 
412 ∶= 0 

412 ∶= 412 + 1 
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Initial Population 

Following most of the published genetic algorithms, the initial population 606 is made of random 

chromosomes, but including good solutions to accelerate convergence. To obtain the set of good 

solutions, the randomized extended savings heuristic presented by Prins et al. (2006) for the single-

objective CLRP is used. The initial population is composed of 100 solutions (|606| = 100) from 

which half are random chromosomes and the remaining half obtained using the randomized 

extended savings heuristic. 

Crossover Operator 

The crossover operator tries to copy complete routes from the parent to the child, thus will be 

named route copy crossover (RCX). It operates by copying to the child a random number of routes 

(between 1/3 and 2/3) from one of the parents, and the remaining unvisited clients are placed in a 

relocation pool following the original order in the other parent. The clients in the relocation pool 

are then inserted in the child, in new routes, and using the currently open depots (as long as 

capacity is obeyed, randomly opening a new one otherwise). This prevents the use of repair 

methods as child solutions are always feasible. An illustration of the RCX is provided as follows. 

Parent 1: 

16 1 3 4 7 10 16 

18 2 6 18 

18 5 9 8 13 18 

16 11 12 15 14 16. 

Parent 2: 

17 3 2 4 7 17 

19 1 6 13 19 

18 9 12 8 18 

18 11 5 14 10 15 18. 

Assuming the first and third routes of Parent 1 are selected, both are copied to Child 1. 

Child 1 (partial encoding): 

16 1 3 4 7 10 16 

18 5 9 8 13 18. 

The remaining clients not yet included in Child 1 (shown underlined in Parent 2) are copied, 

following their order of appearance, to the relocation pool. 

Relocation pool: 

2 6 12 11 14 15. 

The clients in the relocation pool are then used to form new routes in Child 1, using the 

currently open depots (opening more when depot capacity constraints are violated) and following 

the sequence as long as vehicle (route) capacity is obeyed. 

Child 1: 

16 1 3 4 7 10 16 

18 5 9 8 13 18 



4.3. A Multi-Objective Capacitated Location-Routing Problem 95 

 

16 2 6 12 16 

16 11 14 15 16. 

The second child is created similarly, but using the parents in reverse roles. The RCX thus 

allows to inherit some of the routes from the parent while at the same time randomizing the 

building of the child solution routes (yet still partially inheriting the structure of the route from the 

other parent). Moreover, the operator promotes solutions with few open depots and routes with low 

available capacity, two features often found in good solutions (cost wise). 

Mutation Operators 

As mentioned previously, the RCX is more inclined to obtaining low cost solutions, both regarding 

the number of depots to install as well as regarding the tracing of the routes. As the remaining 

objectives do not depend on the routes structure (but rather on the installed depots), the mutation 

operators are more focused on changing the depot structure of the solutions. 

Two mutation operators were developed, one directed at changing the routes, and the other 

more oriented at changing the depots to be installed. 

The first operates by randomly swapping the position in the tracing of the routes of two clients 

(possibly between two routes, depot and vehicle capacity allowing), hence named swap mutation 

operator. This operator aims at providing a small randomization to the building of the routes. In the 

following example the operator is applied on the underlined clients. 

Solution 1: 

16 1 3 4 7 10 16 

18 2 6 18 

18 5 9 8 13 18 

16 11 12 15 14 16. 

Solution 1 (after swap mutation): 

16 1 3 4 9 10 16 

18 2 6 18 

18 5 7 8 13 18 

16 11 12 15 14 16. 

The second, named add mutation operator seeks to avoid a fast convergence to solutions with 

few depots (prone to happen due to the RCX operator), at the same time that diversifies the open 

depots, by opening a new one and reassigning some routes to it, depot capacity allowing (see 

following example with changes underlined). 

Solution 1: 

16 1 3 4 7 10 16 

18 2 6 18 

18 5 9 8 13 18 

16 11 12 15 14 16. 

Solution 1 (after add mutation): 

16 1 3 4 7 10 16 

18 2 6 18 

19 5 9 8 13 19 

19 11 12 15 14 19. 

The mutation operators are applied to all the population with a percentage of, respectively, 5% 

and 50% for the first and second operators. These percentages aim at obtaining a large number of 
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non-dominated solutions, in which the high probability of the second operator allowed to, in fewer 

generations, significantly diversify the open depots. 

Stopping Criterion 

In the proposed algorithm the stopping criterion is based on the number of generations 412, where 

after a fixed number is attained, the algorithm stops. Unlike most implementations of the NSGA-II 

(where usually only the final set of efficient solutions is returned) non-dominated solutions are 

obtained and stored/updated at the end of each generation. Although this represents an increased 

computational burden, it prevents the loss of good solutions during the course of the algorithm as: 

the initial population often already possesses good solutions (regarding cost); there is a high 

mutation rate (applied to all the population); and the solution quality of the population is allowed to 

deteriorate to potentiate the search for the full Pareto front. 

After 1000 generations (412 = 1000), the algorithm is stopped and the set of stored non-

dominated solutions is returned. 

4.3.3 Computational Results 

An implementation of the proposed NSGA-II for the defined multi-objective CLRP is tested and 

discussed in the following subsections, where: implementation issues, used test instances, and 

quality metrics are described; results are presented and discussed; and a graphical example is 

provided. 

Implementation, Tested Instances, and Evaluation 

The multi-objective metaheuristic presented here was implemented in C# and results were obtained 

using a 3.00 GHz Intel Xeon E5450 Quad Core CPU with 8 GB of RAM and Windows XP 

(without parallel processing). 

For the single-objective CLRP benchmark instances are available in the literature (explanation 

on the instances can be found in Section 3.1.4), still this is not the case for the multi-objective 

counterpart. Thus, in order to analyse results, some instances were drawn from the single-objective 

literature, namely from the benchmark set by Barreto et al. (2007). This set was selected as it is 

based on real-world instances, unlike the remaining sets which were randomly generated. From the 

chosen set, some instances were disregarded due to having few possible depot locations (instances 

Perl83-12x2, Perl83-318x4a, and Perl83-318x4b) and thus not prone to exist a reasonable number 

of non-dominated solutions. Moreover, it is considered that the size 3!  of each community (client) 

! ∈ F is equal to its demand (.!). It should be noted that, although the problem structure can fit the 

multi-objective approach, the original instances were directed at obtaining the location of desirable 

facilities. Here, the depots to locate are undesirable, so these constitute mere test examples as, for 

the same problem structure (regarding clients) the depot locations to be considered could/should be 

different. 
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Regarding evaluation of methods, whereas on single-objective optimization usually only the 

value of the objective function (and possibly CPU time) are relevant to access the efficiency of a 

given algorithm; on multi-objective optimization several other quality metrics have been used, 

either to evaluate the quality of the front 1 at the end of a given algorithm, or to provide a relative 

comparison between the final fronts obtained by two algorithms. Moreover, the main inherent 

evaluation ideas are (Jaszkiewicz, 2004): the ability to provide a good approximation of the exact 

non-dominated set, and the ability to obtain diversity in the sets of non-dominated solutions (as it is 

not known the DM’s preferences). Thus, the proposed NSGA-II method will be analysed according 

to one of the objectives (cost, as lower and upper bounds already exist in the literature), and to the 

number of non-dominated solutions obtained. 

Results 

In order to obtain results, twenty runs were performed on each instance, from which was obtained: 

the best solution, cost wise; the number of overall non-dominated solutions; and the average 

computing time for each instance. 

The results can be seen in Table 4.1. The first column displays the name of the instances, 

followed by the lower bound for the first objective function (LB G1). Then, data regarding the 

proposed NSGA-II are shown, namely, the best obtained cost value (Best G1), the number of non-

dominated solutions regarding all the runs of the algorithm (NDS) and the average CPU time in 

seconds. Finally, Gap LB  G1  refers to the gap, in percentage, between the lower bound and the best 

obtained result for the first objective function, and Gap Best AGS concerns the gap (also in percentage) 

between the best obtained result and the best result from the active guided search (AGS) 

metaheuristic (Table 3.2). When a value is found with an asterisk it means it is the optimal cost 

(first objective) of that specific instance. Average and median values are also provided as data 

showed, for CPU time, Gap LB  G1 , and Gap Best AGS, skewed distributions and/or outlying data 

points. 
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Table 4.1 Results of the proposed NSGA-II for some of the instances by Barreto et al. (2007). 

  
NSGA-II   

Instance LB G1 Best G1 NDS CPU Gap LB  G1  Gap Best AGS 

1 Christofides69-50x5 551.1 615.0 9 4.7 11.59 8.70 
2 Christofides69-75x10 791.4 881.7 19 6.6 11.41 4.23 
3 Christofides69-100x10 818.1 894.1 14 10.2 9.29 5.95 
4 Daskin95-88x8 347.0 387.7 13 8.6 11.73 5.12 
5 Daskin95-150x10 43406.0 45883.4 18 32.6 5.71 3.09 
6 Gaskell67-21x5 *424.9 *424.9 4 3.6 0.00 0.00 
7 Gaskell67-22x5 *585.1 *585.1 3 4.3 0.00 0.00 
8 Gaskell67-29x5 *512.1 517.9 7 4.2 1.13 0.54 
9 Gaskell67-32x5a *562.2 562.8 7 4.1 0.11 0.11 

10 Gaskell67-32x5b *504.3 504.6 6 5.0 0.06 0.06 
11 Gaskell67-36x5 *460.4 470.8 5 4.3 2.26 2.26 
12 Min92-27x5 *3062.0 3065.2 4 4.1 0.10 0.10 
13 Min92-134x8 5423.0 6237.8 18 18.7 15.02 8.88 
14 Or76-117x14 12048.4 13254.1 24 14.9 10.01 6.70 
16 Perl83-55x15 1074.8 1159.8 4 5.5 7.91 4.27 
17 Perl83-85x7 1568.1 1704.5 5 8.6 8.70 4.88 

   
 Average 8.8 5.94 3.43 

    Median 5.3 6.81 3.70 

 

Average and median computing times are, respectively, of 8.8 seconds and 5.3 seconds, 

comparing favourably with other algorithms. A direct comparison with the CPU times of the AGS 

metaheuristic (corresponding data can be found in Table 3.2) is given in Figure 4.3, showing the 

NSGA-II to obtain overall faster results. 

 

  
 

Figure 4.3 Line plots (left) and boxplots (right) for the CPU time, in seconds, concerning the AGS and 

NSGA-II metaheuristics, Tables 3.2 and 4.1. 
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Looking at the results, the obtained best solutions regarding cost are, in average, around 6% to 

the lower bounds and 3.4% to the best AGS results, while median values are, respectively, of 6.8% 

and 3.7%. Furthermore, two of the known optimal solutions were attained by the proposed   

NSGA-II. Figure 4.4 depicts a comparison, for the NSGA-II metaheuristic (concerning the cost 

objective, G1), between the gap to the lower bounds and best AGS results (left), and between the 

gaps to lower bounds of both metaheuristics (right). Figure 4.4 suggests low-quality cost lower 

bounds for some instances, as the gaps to lower bound of both metaheuristics present similar 

behaviour. 

 

  
 

Figure 4.4 Line plots for the gaps, in percentage, between the results from NSGA-II regarding the 

objective function G1 and the best AGS results (left), and for the GapLB (of G1), in percentage, concerning the 

AGS and NSGA-II metaheuristics (right), Tables 3.2 and 4.1. 

 

Finally, looking at Table 4.1, it can also be concluded that the number of non-dominated 

solutions increases with the number of possible depot locations, thus, when addressing a real-world 

scenario, a previous narrowing of the locations to consider may prove fruitful (as it allows to 

reduce both the computation and cognitive burden). 

Graphical Example 

In order to further understand specific real-world scenarios, the use of graphical examples may 

prove adequate and useful. As follows, in order to better understand the three objective model, an 

instance is selected, from which non-dominated solutions are obtained and results analysed. The 

instance chosen to be studied is the Gaskell67-21x5 instance from the previously tested set. 

For this instance, the previously presented NSGA-II obtained 4 non-dominated solutions, which 

can be seen in Table 4.2 where, for each solution, objective function values are displayed. When an 
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asterisk is found it indicates optimality regarding the objective function; when underlined, it points 

to the best overall result in the corresponding objective. 

 

Table 4.2 Obtained non-dominated solutions for instance Gaskell67-21x5. 

Solution G1 G2 G3 

�1  *424.9 139.81 0.20049 

�2  443.4 130.78 0.20051 

�3  461.6 139.55 0.02110 

�4  480.4 130.52 0.02232 

 

Looking at the obtained solutions, several conclusions may be drawn. 

Firstly, although cost (G1) increases from �1 to �4, the increase is of at most 13%; similarly, the 

overall obnoxious effect (G2) has a variation of 7%; however, regarding equity (G3), where the 

maximum individual obnoxious effect is minimized, solutions �3 and �4 are only 10% of the other 

solutions. Hence, if the DM seeks a more equitable solution, it does not incur in a significant 

increase in both cost and obnoxious effect. 

Secondly, obnoxious effect and equity seem positively correlated (as Melachrinoudis et al., 

1995, suggest), while cost is negatively correlated with the remaining two.() 

Also, looking at the solutions in the objectives space (Figure 4.5), regarding equity, two 

different types of solutions are found (with low and high equity values), each with two different 

solutions, mostly differing between them the overall obnoxious effect. 
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Figure 4.5 Obtained non-dominated solutions in the objectives space (instance Gaskell67-21x5). 

 

Finally, the graphical representation of the efficient solutions (Figure 4.6) shows that, although 

the routes of �1 and �3 have the same tracing (only the depots to open are different, and 

consequently, their links to clients), this does not hold for �2 and �4. This validates the use of an 

integrated location-routing multi-objective approach, as the routes (and corresponding cost) may 

change significantly when different depots are considered to be installed. 
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Figure 4.6 Graphical representation of the obtained efficient solutions (instance Gaskell67-21x5). 
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4.4 Summary 

In this chapter, the location-routing of semi-obnoxious facilities was mainly addressed. Firstly, a 

review on the location of obnoxious and semi-obnoxious facilities was made, where problems were 

separated according to the number of objectives (one or several), and the number of facilities to 

install (single or multiple facilities). 

Then, works handling both location (of undesirable facilities) and routing were reviewed. When 

routing is considered, the transported product can be hazardous or not, and, when models handle 

hazardous products, routing is also undesirable (thus, passing through population centres and long 

trips should be avoided). Regarding routing of non-hazardous products (and undesirable facility 

location), as no work exists in the literature, a formal (multi-objective) definition is given based on 

the CLRP. 

The defined multi-objective CLRP is then solved using an evolutionary algorithm. Results are 

presented and discussed. Furthermore, the non-dominated solutions of a specific instance are 

analysed, and conclusions drawn regarding the usefulness of multi-objective approaches for the 

location-routing of this type of facilities. 
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Chapter 5 

5. Decision Support in Multi-Objective 

Mixed Integer Programming 

A multi-objective mixed integer programming (MOMIP) problem is a mathematical programming 

problem which considers more than one objective function and some variables are constrained to 

be integer (being either binary or taking on general integer values). If all variables are integer it is a 

multi-objective integer programming (MOIP) problem. 

As seen previously (see Chapter 4), the location-routing of semi-obnoxious facilities is 

inherently multi-objective, thus it should be modelled using MOMIP/MOIP. In Chapter 4 a 

metaheuristic is presented in order to attempt to obtain the whole set of non-dominated solutions. 

This, in some cases, may not be the best approach as the number of solutions may be too high and, 

some of them, uninteresting to the decision maker (DM). Here, the decision support for MOMIP 

will be addressed with different approaches being discussed, and a new method proposed and 

applied to a small example of a multi-objective capacitated location-routing problem (CLRP). 

5.1 Introduction to Multi-Objective Mixed Integer Programming 

Mixed integer programming (and the special case, “pure” integer programming) has been used 

recurrently in many applications. Often, models incorporate discrete values, requiring the 

consideration of integer variables. Examples include modelling: investment choices, production 

levels, logical conditions, and location analysis. 

The use of these variables brings additional difficulty to models (when comparing with linear 

programming), as the feasible set is no longer convex. The complexity further increases when 

multi-objective is considered, as non-dominated solutions exist in the duality gaps. Unlike single-

objective approaches, where the optimal solution can be obtained by ordering all the feasible 

solutions based on the objective function value, in multi-objective, the concept of optimal solution 

is substituted by the notion of Pareto optimality. In these cases, DMs rather than looking for the 

optimal solution, they are looking for the “most preferred” solution: the one which (s)he is 

convinced is the best one. 

Therefore, the complete ordering of feasible solutions assumes knowledge about the DM’s 

preferences (the focus of this work being on scenarios where the DM is a single person or a group 

of people sharing the same objectives and preferences). 
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Based on this, multi-objective methods can be classified according to the DM’s degree of 

intervention in the solution-finding process (Shin and Ravindran, 1991): 

· the DM has full knowledge regarding her/his preference function (a priori articulation of 

preferences) 

· the DM does not possess any information regarding the preference function (a posterior 

articulation of preferences) 

· partial information is obtained progressively from the DM (progressive articulation of 

preferences). 

The three cases correspond to the different types of information flow found in the decision-

making process. In the first case, as the DM states her/his preferences a priori, the information 

flow is from the DM to the method (even though an intermediate person may exist in the process: 

the analyst). In the a posteriori case, the information flow is from the method to the DM, where the 

preference is stated in the DM’s final decision. Finally, in the progressive articulation of 

preferences, information flows in both directions, from the method to the DM and vice versa, 

usually with a progressive reduction of the number of choices until the final solution (and 

corresponding decision) is obtained. 

The first two cases encompass methods named non-interactive, as no interaction exists   

between the DM and the used method. For this reason, methods aim at obtaining the whole set (or a 

subset) of the non-dominated solutions (e.g. the NSGA-II presented in Chapter 4). As they are 

designed to generate the whole set or a subset of non-dominated solutions, they may require 

increased computation time. Moreover, often a large (or even overwhelming) number of solutions 

is obtained and presented to the DM, adding difficulty to the task of analysing solutions and 

choosing one. 

In the latter case, as methods are characterized by the alternation between human intervention 

and computation phases, they are named interactive methods. These methods enable reducing the 

computational effort, as the set of non-dominated solutions is obtained by a progressive articulation 

of the DM’s preferences (thus, only a part of them needs to be generated and evaluated). Preference 

elicitation (human intervention/decision phase) and solution generation (computation/optimization 

phase) alternate until the DM considers to have sufficient knowledge of the non-dominated set. In 

each iteration, the DM is provided with some information and is asked to evaluate the proposed 

solutions, or to provide additional information regarding her/his preferences (Miettinen et al., 

2008). 

Figure 5.1 depicts a general framework for an interactive method, where it can be seen that 

single-objective models are part of multi-objective models. 
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Figure 5.1 Flowchart of the general framework of an interactive method. 

 

When comparing interactive with non-interactive methods, the main difference lies in the 

involvement of the DM in the solution-finding process. Not only does interactive methods allow 

the DM to specify and correct her/his preferences during the process, but also it is not required to 

exist a prespecified global preference structure. This constitutes an important benefit of these 

methods, as the DM can learn during the process, increasing the knowledge about the problem, its 

trade-offs, possibilities and limitations (which is often valued by DMs). 

Thus, interactive methods overcome weaknesses of a priori and a posteriori (non-interactive) 

methods by not requiring a global preference structure from the DM, and generating only non-

dominated solutions found to be interesting to the DM (reducing computational effort as well as 

avoiding the need to compare several non-dominated solutions simultaneously). Moreover, the 

underlying idea of interactive methods constitutes the major motivation of contemporary decision 

support systems (Sayin, 2009). Still, some of the advantages can also be seen as drawbacks: as 

interactive methods rely greatly on the information provided by DMs, and may lack the global view 

of the non-dominated set, DMs with less knowledge of the situation at hand may end up choosing a 

less preferred solution. 
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Overall, each of methods may be more or less appropriate according to the specific decision-

making scenario. While a non-interactive method was proposed in the previous chapter, here the 

focus will be on interactive methods. 

As follows, some basic formulations and concepts regarding multi-objective programming will 

be presented providing background for some of the issues raised in subsequent sections. 

5.1.1 Multi-Objective Problem: Formulations and Concepts 

Consider the following multi-objective problem: 

(MOP) max G1 = 71(+)  

 ...   

 max GK = 7K(+)  

 s.t.: + ∈ R.   

R ⊂ ℝ2  denotes the non-convex set of feasible solutions defined by the set of functional 

constraints, + ≥ 0 and +<  integer for < ∈ ' ⊆ {1, 2, ..., 2}. R is assumed compact (closed and 

bounded) and non-empty. If all variables of MOP are integer, the problem is considered a multi-

objective integer problem; multi-objective mixed integer problem otherwise. 

As is assumed the existence of K objective functions, the complete ordering of feasible solutions 

is not possible, emerging the concepts of efficiency and non-dominance (following Alves and 

Clímaco, 2009).() 

A solution +̅ ∈ R is efficient for the MOP if and only if there is no + ∈ R such that 7 !(+) ≥
7 !(+̅) for all ! ∈ {1, 2, ..., K} and 7 !(+) > 7 !(+̅) for at least one !. 

A solution +̅ ∈ R is weakly efficient for the MOP if and only if there is no + ∈ R such that 

7 !(+) > 7 !(+̅) for all ! ∈ {1, 2, ..., K}. 

Let G ⊂ ℝK  be the image of the feasible region R in the objective functions (criteria) space. A 

point ;̅ ∈ G is called (weakly) non-dominated if it corresponds to a (weakly) efficient solution 

+̅ ∈ R. The terms “efficient”, “non-dominated” and “Pareto optimal” are often used indistinctively 

as synonymous. 

A non-dominated point (solution) ;̅ ∈ G is called unsupported if is dominated by a convex 

combination (not belonging to G) of other non-dominated criterion points (belonging to G). As the 

feasible region is non-convex, unsupported non-dominated solutions may exist (lying inside the 

duality gaps). Thus, unlike in multi-objective linear programming, the set of non-dominated 

solutions of MOP cannot be fully obtained by varying the parameter E on the weighted sum of the 

objective functions: 

(MOP E ) max H E!7 !(+)
K

!=1
  

 s.t.: + ∈ R   
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where E ∈ W = {E ∈ ℝK : E! > 0 ∀!, ∑ E! = K!=1 1}. 

Even if the complete parameterization of E is attempted, unsupported non-dominated solutions 

cannot be reached. One way to overcome this is by adding additional constraints into MOP E , 

imposing bounds on the objective function values (Soland, 1979): 

(MOP E ,C ) max H E!7 !(+)
K

!=1
  

 s.t.: + ∈ R,   

  G! ≥ C!  ! = 1, 2, ..., K  

where E ∈ W and C ∈ ℝK . 

Every solution obtained by MOP E ,C  is non-dominated and there is always an C such that 

MOP E ,C  returns a specific non-dominated solution. Thus, MOP E ,C  allows determining the 

complete set of non-dominated solutions of MOP. 

The ideal values (G! ∗, ! = 1, 2, ..., K) are defined by the maximum criterion values over the set 

of efficient solutions >, and can be obtained by individually optimizing each objective function. 

The resulting ideal point G∗ = (G1∗
, G2∗

, ..., GK∗
) is usually not feasible, otherwise no conflict 

exists between criteria and the solution is optimal. 

The minimum criterion values over the efficient set > are called nadir values (GZ! , ! = 1, 2, ..., 

K). Unlike the ideal point, the nadir point GZ = (GZ1, GZ2, ..., GZK) is generally very hard to obtain (for 

K ≥ 3). 

Both points (ideal and nadir) provide the range of objective values within which all non-

dominated solutions are found. This information is valuable as (Alves and Costa, 2009): it allows 

DMs to size the multi-objective problem, is relevant for the graphical representation of non-

dominated points, and can be used to normalize objectives. 

Due to the estimation of the true nadir values being an unsolved computing problem (for more 

than two objectives), the minimum values of the payoff table are often used. The payoff table 

comprises the non-dominated solutions which optimize each objective function individually (see 

Table 5.1). In the !th row of the table it can be found the criterion values (G1(+!), ..., G! ∗, ..., 

GK(+!)) for the efficient solution +! ∈ > that maximizes the !th objective (! = 1, 2, ..., K). 

 

Table 5.1 Payoff table. 

Efficient solution G1 G2  GK  

+1 G1∗
= G1(+1) G2(+1) ... GK (+1) 

+2 G1(+2) G2∗
= G2(+2) ... GK (+2) 

... ... ... ... ... 

+K  G1(+K) G2(+K) ... GK∗
= GK (+K) 
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The main diagonal of the payoff table provides the ideal point G∗, while the minimum values for 

each column provides an estimate for the nadir point GZ. This is in most cases an overestimation of 

the true nadir point that tends to be farthest from it as the size of the problem increases (Isermann 

and Steuer, 1988). However, in the bi-objective case (K = 2), the true nadir point always 

corresponds to the minimum value for each column of the payoff table. 

5.2 Interactive Multi-Objective Mixed Integer Programming Methods 

In the last section the two main type of approaches in multi-objective programming were presented 

and discussed: non-interactive and interactive methods. As follows, the focus will be on interactive 

methods for multi-objective mixed integer programming (MOMIP) models (thus also applicable to 

multi-objective integer programming – MOIP – models), where some of the works in the literature 

are reviewed. This subject has been surveyed by Evans (1984), Rasmussen (1986), Clímaco et al. 

(1997), and Alves and Clímaco (2007). 

According to Alves and Clímaco (2007) different paradigms exist for interactive methods. Some 

represent the DM’s preferences by an implicit utility function (then, methods try to obtain the best 

result regarding it, usually requiring no contradictions exists in the human/DM intervention phase). 

Others aim at a progressive and selective learning of the non-dominated set (open communication 

protocol). In the latter, the method does not intend to converge to any given solution, but rather 

help the DM in identifying satisfactory solutions. Furthermore, in the open communication 

paradigm, there are no irrevocable decisions during the solution-finding process, allowing the DM 

to return to previous iterations. 

The characteristics of open communication protocol methods leads to believe that these may be 

more fit for current decision-making scenarios (view equally shared by Alves and Clímaco, 2007, 

2009). This justifies the study of this type of methods, being the main focus of this section.()() 

For multi-objective methods, a natural separation can be made regarding the number of 

objectives (due to the inherit difference in complexity). Methods for bi-objective models are not 

directly applicable for models with three or more objectives as complexity increases (e.g. when 

obtaining the nadir point). However, models for three objectives are easily adaptable to several 

other objectives. This leads to the separation between methods for bi-objective and multi-objective 

models. 

Looking at the literature on open communication interactive methods, only the method by 

Ferreira et al. (1996) is restricted to the bi-objective case. It starts by obtaining the pair of non-

dominated solutions that individually optimize each of the objective functions (thus gaining 

knowledge on the ideal and nadir points, and subsequently on the objectives range) from which a 

region is defined. Then, at each iteration, the DM is required to choose a pair of non-dominated 

solutions or specify bounds on the objective function values. Based on this information, a 

subregion is defined, within which a weighted sum program (MOP E ,C ) is solved to optimality. This 

allows eliminating areas in the objectives space: by unfeasibility (the complete subregion), if no 

solution is found; or by dominance and unfeasibility (parts of the original region), if a new non-
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dominated solution is attained. The use of the Tchebycheff metric, instead of the weighted sum 

program (otherwise the same), was proposed later by Ferreira (1997), allowing the elimination of 

larger regions by unfeasibility (when a non-dominated solution is attained). This method requires 

minimal cognitive effort from DMs. 

The remaining of the reviewed methods are able to address multi-objective models and will be 

discussed as follows. 

Durso (1992) modified the interactive branch-and-bound method by Marcotte and Soland 

(1986) in order to account for mixed integer linear programming. The modification was on the 

approach used for obtaining non-dominated solutions where, rather than a weighted sum program, 

an augmented weighted Tchebycheff metric is used. For each node in the branch-and-bound tree, 

the non-dominated solutions which allow determining the ideal point are obtained. At each iteration 

the DM chooses the preferred ideal point, thus indicating the node to further analyse. For that node 

the augmented weighted Tchebycheff metric determines the “central” non-dominated solution 

(using equal weights for all criteria). The DM is then required to choose the preferred non-

dominated solution out of all known in the node under analysis (the parent node), originating the 

creation of new (child) nodes. The child nodes to be created (at most equal to the number of 

objective functions) have to be within a range (defined by the DM) to the ideal point of the parent 

node. Each child node inherits the constraints of the parent node plus new lower bounds resulting 

from the chosen non-dominated solution. This is a progressive reduction of the non-dominated set, 

performed until the DM is satisfied with the obtained solutions. 

Similar concepts were used in the work by L’Hoir and Teghem (1995) with a method called 

MOMIX, also applicable to mixed integer linear programming. Following the work by Marcotte 

and Soland (1986) the method uses an interactive branch-and-bound tree. For each node (of the 

tree), a non-dominated solution is firstly obtained minimizing a weighted Tchebycheff distance to 

the corresponding ideal point. The method is then composed of two steps: a “depth first” 

progression in the tree and a “backtracking” procedure. In the depth first progression step (aimed at 

obtaining a first solution), for each node, the DM chooses the objective function to improve in 

priority (and eventually prioritizing all the objectives), upon which a new subnode is created. The 

new subnode has a new lower bound based on the non-dominated solution obtained by the 

Tchebycheff program in the node. The backtracking step intends to confirm the degree of 

satisfaction of the DM with regards to the achieved solution (or to find a new preferred solution if 

needed). This is done by examining other parts of the tree where new subnodes are generated based 

on the priority of objectives provided by the DM. According to Teghem (2009), generating more 

than 2 or 3 new subnodes rarely brings any improved solution, thus, the backtracking procedure 

does not need to explore the whole tree. 

Other open communication interactive methods are the ones by Vassilev and Narula (1993), 

Narula and Vassilev (1994), and Karaivanova et al. (1995) which, although proposed for multi-

objective integer linear programming, according to Alves and Clímaco (2007), are also applicable 

to the mixed integer case. In the three methods, the same type of information is required from the 

DM, namely, her/his preferences: the aspiration (reference point) and reservation levels for the 

objective functions. 
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The method by Vassilev and Narula (1993) starts by obtaining a non-dominated solution. Then, 

in the human intervention phase, if the DM is not satisfied with solution, (s)he is required to 

specify a new reference point with better, worse and equal value(s), respectively, for the objective 

function(s) to improve, allowed to deteriorate and to maintain unaltered. Based on the reference 

point and the non-dominated solution, a scalarizing program is solved, being the newly obtained 

non-dominated solution again submitted to the human intervention phase. Later, Narula and 

Vassilev (1994) propose a modification in order to reduce the computational effort: rather than 

integer solutions, continuous solutions are obtained. In the human intervention phase, the DM may 

continue to search for non-dominated continuous solutions or require the computation of the 

“closest” integer solution. 

Karaivanova et al. (1995) presented two methods with similar concepts. In the first, integer non-

dominated solutions are computed, while in the second, both continuous and integer solutions are 

obtained. The first method has an underlying principle similar to that of Vassilev and Narula (1993) 

where, instead of maximizing the smallest standardized difference to the solution under analysis 

(regarding the objective functions to improve), the largest standardized difference to the reference 

point (for the same objective functions) is minimized. The reference point values of the remaining 

objective functions are used as lower bounds. The second method uses the Pareto race method 

(Korhonen and Wallenius, 1988) to obtain new solutions along the continuous non-dominated 

frontier. When the DM considers to have found the preferred solution for the continuous problem, 

the integer solution closest to it is computed (as in Narula and Vassilev, 1994). The authors 

compare both methods and conclude that, while the first is more time consuming, the second 

produces solutions which may be unsatisfactory to DM. Thus, a system that combines both 

methods is proposed.() 

More recently, Alves and Clímaco (2000) presented a method that uses branch-and-bound 

techniques for mixed integer linear programming. At each iteration, the DM must specify a 

reference point or choose an objective function intended to improve (regarding the previously 

obtained non-dominated solution). If the DM opts to use the latter, the reference point’s component 

corresponding to the chosen criterion is automatically adjusted (seen as a directional search). 

Tchebycheff scalarizing programs are then solved successively by branch-and-bound in order to 

obtain non-dominated solutions. The use of sensitivity analysis enables to profit from previous 

iterations, as it allows to gain knowledge on the range to the previous reference point within which 

the structure of the previous branch-and-bound tree remains unchanged. To continue the search in 

the same direction the range is surpassed slightly, being the previous tree used to proceed to the 

next computations. To obtain new branching, an attempt is firstly made to simplify the previous 

tree, before expanding it until a new non-dominated solution is obtained. With this 

simplification/branching procedure, the time of computation phases can be reduced. 

In interactive methods, main concerns are the computational effort and the cognitive burden to 

DMs. Methods by Durso (1992) and L’Hoir and Teghem (1995) require to solve at each iteration 

several mixed integer programs, and thus are very demanding computation wise. Vassilev and 

Narula (1993), Narula and Vassilev (1994), Karaivanova et al. (1995), and Alves and Clímaco 

(2000) attempt to reduce the computational effort without placing many questions to the DM. Still, 
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the method by Ferreira et al. (1996) (later extended in Ferreira, 1997) seems to be the least 

demanding from both computational and cognitive point of view. However, the method’s 

application is limited to bi-objective models.() 

5.3 An Interactive Method for Multi-Objective Mixed Integer 

Programming 

In the previous section open communication interactive methods for MOMIP were reviewed. From 

the reviewed methods the most attractive, regarding computational and cognitive burden, is the 

method by Ferreira et al. (1996). Still, the method has a drawback: its applicability is limited to bi-

objective problems. 

In this section, a proposal is made with the purpose of extending the method by Ferreira et al. 

(1996) to the three-objective case (and consequently applicable to more than three objectives) 

(Ferreira et al., 2010). The proposal should therefore maintain the main goal of the method, that is, 

obtain solutions posing little computational effort and allowing to search the objectives space with 

the least cognitive effort. 

In the following subsections the proposal will be presented and a step-by-step example will 

illustrate its application to a MOIP model (although also applicable to MOMIP): a multi-objective 

CLRP. 

5.3.1 Proposal 

The proposal presented here to tackle MOMIP searches for non-dominated solutions in the 

objectives space, allowing the DM to obtain any non-dominated solution (both supported and 

unsupported). There are no irrevocable decisions throughout the process, and the method is not too 

demanding regarding the information required from the DM. The general framework of the 

proposed method is depicted in Figure 5.2 as a flowchart. 

The following graphical and numerical information are provided and updated at each iteration. 
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Figure 5.2 Flowchart of the general framework of the proposed interactive method. 

 

Graphical information in the objectives space: 

· the range of values allowed for each objective (obtained with the ideal and nadir points) 

· the currently known non-dominated solutions, represented by  

· a colour hierarchy regarding the different regions (red overrides yellow which, in turn 

surpasses green), otherwise explored 

· subregion which the DM wants to explore (region of interest) 

 

Numerical information: 

· value of efficient solutions (decision space) 

· value of non-dominated solutions (objective). 
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The method starts out by computing the ideal and nadir points. This is done by individually 

optimizing each objective function, thus obtaining the payoff table with three solutions 

(considering � = (G1(+ ), G2(+ ), G3(+ )), obtained solutions are �1, �2, and �3), from where the 

ideal point G∗ and (for simplicity’s sake) an estimation of the nadir point GZ are obtained. Using 

both points the initial region is drawn, representing the (estimated) range of values for each 

objective function. The resulting region is a rectangular parallelepiped, which is unexplored with 

regards to the existence of non-dominated solutions, thus assuming the colour green (Figure 5.3). 

 

Figure 5.3 Output of the first step of the interactive method. 

 

More often than not, the first three solutions (�1, �2, and �3) allow to draw conclusions with 
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disregarding the ideal and (estimated) nadir values, are usually better than the (estimated) nadir 

value. For the sake of simplicity, here, it will be assumed that G�( !) = "#�  for � ≠ ! (� = 1, 2, 3 and 

! = 1, 2, 3). When it is not the case, the inclusion of each of the three solutions is handled as an 

iteration (with the corresponding procedure being described as follows), only lacking the DM 

intervention (and thus skipping the definition of the region of interest and the computation of the 

weighted sum program). 

Until the DM considers to have sufficient knowledge on the set of non-dominated solutions, the 

following iterations are performed (depicted in Figures 5.4-5.9). 

The DM is required to indicate a subregion to carry on the search for non-dominated solutions. 

This can be done by: choosing a pair of (currently) adjacent non-dominated solutions or by 

imposing bounds on the objective functions. In the latter, the bounds can be defined numerically or 

graphically, having in mind that the definition of the subregion should be done within the non-

dominated unexplored region (coloured green or yellow). The chosen subregion is called region of 

interest and is represented with the colour blue (Figures 5.4, 5.6, and 5.8). 
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Figure 5.4 First iteration of the method with the DM-defined region of interest. 

 

Within the region of interest a weighted sum program (MOP % ,& ) is solved to optimality with 

' = 3 and the additional constraints: 

  "� ≥ &)�*
�  � = 1, 2, 3,  

  "� ≤ &), 
�  � = 1, 2, 3.  

Where &)�*
�  and &), 

�  are respectively the lower and upper bounds of the (DM-defined) region 

of interest for the objective function � ("#� < &)�*
� < &), 

� < "�∗, � = 1, 2, 3). The resulting non-

dominated solution, say .'+�/  for the �/th iteration, allows to characterize and eliminate regions in 

the objectives space (see Figures 5.5 and 5.7). 
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Figure 5.5 First iteration of the method with the region characterization after obtaining .4. 

 

The first regions to be update are the ones coloured red (found to be unfeasible or dominated in 

the previous iteration). These are now considered explored and cleared of any colour, in order not 

to clutter the image. Then, the following non-dominated unexplored regions (currently yellow or 
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· by unfeasibility, where "1 ≥ "1( '+�/ ) ∩ "2 ≥ "2( '+�/) ∩ "3 ≥ "3( '+�/ ) 

· by dominance, where "1 ≤ "1( '+�/ ) ∩ "2 ≤ "2( '+�/) ∩ "3 ≤ "3( '+�/ ). 
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one solution obtained thus far; and green, where found solutions have two criteria in which are 

better than any currently obtained solution. 

 

Figure 5.6 Second iteration of the method with the DM-defined region of interest. 
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trade-off which (s)he may consider potentially more advantageous. 
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The remaining (green) regions stay unaltered. Empirical tests have shown that, often, the green 

region is quickly reduced, remaining only yellow non-dominated unexplored regions. 

 

Figure 5.7 Second iteration of the method with the region characterization after obtaining .5. 
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found in the DM-defined region of interest (subregion seen in Figure 5.8 with colour blue), thus 

being considered explored. 

 

Figure 5.8 Third iteration of the method with the DM-defined region of interest. 

 

The proposed interactive method has several interesting features (inherited from the method by 

Ferreira et al., 1996), from both the DM as well as the computational point of view.() 
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indication of the region of interest can be done by choosing two adjacent non-dominated solutions 

or by imposing bounds on the objectives (where both graphical and numeric input are allowed). 

 

Figure 5.9 Third iteration of the method after no solution was found in the region of interest. 

 

From the computational point of view, a single-objective mixed integer programming problem 

has to be solved at each iteration. Moreover, as the structure of the problem remains almost 

unchanged, computational advantages exists. 
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only to be defined an additional colour in the previously described colour hierarchy (if one wishes 

to distinguish the different non-dominated unexplored regions). It should be noted, however, that 

the regions to be eliminated by unfeasibility or dominance are always only two per iteration (when 

a non-dominated solution is found), which may become less relevant when several objectives are 

simultaneously considered (the number of different regions obtained in each iteration is 2'), 

reducing the usefulness of the method. For example, if five objective functions are considered 

(' = 5), at each iteration 32 different regions are generated, from which only 2 can be eliminated 

by unfeasibility or dominance. 

5.3.2 Step-by-Step Example 

In order to further examine the proposed interactive method a step-by-step example is applied to a 

multi-objective CLRP. The formulation used for the problem follows the CLRP2 formulation 

presented in Section 4.3.1, thus all objective functions are to be minimized. Data regarding the test 

instance can be seen in Appendix B. 

The method starts by obtaining the payoff table (as seen in Table 5.2), with three solutions 

(corresponding graphical representation can be seen in Figure 5.10), from which the ideal point 

"∗ = (115.0240, 6.8483, 0.054717) and the (estimated) nadir point "# = (155.5355, 18.3037, 

0.227730) are obtained, allowing to define the (estimated) range of values for the objective 

functions. 
 

Table 5.2 Payoff table of the test instance. 

Solution "1 "2 "3 

.1  115.0240 18.3037 0.227730 

.2  155.5355 6.8483 0.059434 

.3  138.4380 7.9179 0.054717 
 

 

.1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10 Graphical representation of the efficient solutions .1, .2, and .3 of the test instance. 
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With this information it is possible to draw the initial region (as seen in Figure 5.11). 

Afterwards, further information can be obtained with the inclusion of the three solutions in the 

payoff table. Figures 5.12, 5.13, and 5.14 display how the inclusion of, respectively, .1, .2, and .3 

allow to categorize the different regions in the objectives space (always having in mind the colour 

hierarchy, where red surpasses yellow which in turn overlaps green). 

 

Figure 5.11 Initial region characterization of the method (test instance). 

 

In Figure 5.12, the inclusion of .1 does not allow to draw conclusions on the remaining regions, 

as the values for the second and third objective functions correspond to the (estimated) nadir 

values. Upon including .2 (depicted in Figure 5.13), as the value for the first objective function 

corresponds to the (estimated) nadir value, conclusions can only be drawn regarding a region 
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where: any newly found solution is better than any existing solution with regards to only one of the 

objective functions ("1), which happens for "3 ≥ 0.059434, and thus, is coloured yellow. The 

inclusion of .3 (Figure 5.14), on the other hand, allows to define several different regions, as the 

following characterization is made: 

· red, by dominance, when "1 ≥ 138.4380 ∩ "2 ≥ 7.9179 ∩ "3 ≥ 0.054717 

· yellow, when "1 ≤ 138.4380 ∩ "2 ≥ 7.9179 ∩ "3 ≥ 0.054717 

· yellow, when "1 ≥ 138.4380 ∩ "2 ≤ 7.9179 ∩ "3 ≥ 0.054717. 

 

Figure 5.12 Region characterization of the method after the inclusion of .1 (test instance). 
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(DM) interaction is required at each iteration in order to continue the search for non-dominated 

solutions. The weighted sum program to be solved at each iteration is the following: 

(CLRP3) min %1"1 + %2"2 + %3"3 (5.1) 

 s.t.:  ∈ 2.   

Where: the weights %�  (� = 1, 2, 3) satisfy ∑ %� =3
�=1  1 and %� > 0; "�  (� = 1, 2, 3) are the 

objective functions of CLRP2 as given in (4.1), (4.2), and (4.3); and constraints are the same as 

defined for CLRP2. 
 

 

 

 

Figure 5.13 Region characterization of the method after the inclusion of .2 (test instance). 
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Let us assume that, at this point (in the first iteration of the method), the DM wants to explore 

the green region, in order to find solutions that are better than any current solution with regards to 

two objective functions (possibly providing a more preferred trade-off). 

Let 4 denote a positive small enough number, based on the aforementioned DM’s preferences 

(from which the region of interest is obtained), the following constraints are added to the CLRP3 

formulation: 

  "1 ≤ 138.4380 − 4,  (5.2) 

  "2 ≤ 7.9179 − 4,  (5.3) 

  "3 ≤ 0.059434 − 4.  (5.4) 

 

Figure 5.14 Region characterization of the method after the inclusion of .3 (test instance). 
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Solving the new formulation finds the problem to be unfeasible. Based on this information, the 

region of interest is considered explored as is void of any non-dominated solutions (Figure 5.16). 

In the second iteration, it is assumed that the DM is searching for a solution which, comparing 

with .3, may be more expensive (worse regarding "1), but with an inferior overall obnoxious 

effect (better regarding "2). The corresponding region of interest can be seen in Figure 5.17 

(subregion with colour blue), being the following constraints therefore added to the original CLRP3 

formulation (with 4 > 0 and small enough): 

  "1 ≥ 138.4380 + 4,  (5.5) 

  "2 ≤ 7.9179 − 4.  (5.6) 

 

Figure 5.15 Output of the first step of the interactive method (test instance). 
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By solving the new formulation to optimality, .4 = (143.0114, 7.5433, 0.057692) is attained, 

allowing to characterize the following regions: 

· coloured red, by unfeasibility, when "1 ≤ 143.0114 ∩ "2 ≤ 7.5433 ∩ "3 ≤ 0.057692 

· coloured red, by dominance, when "1 ≥ 143.0114 ∩ "2 ≥ 7.5433 ∩ "3 ≥ 0.057692 

· coloured yellow, when "1 ≤ 143.0114 ∩ "2 ≥ 7.5433 ∩ "3 ≥ 0.057692 

· coloured yellow, when "1 ≥ 143.0114 ∩ "2 ≤ 7.5433 ∩ "3 ≥ 0.057692 

· coloured yellow, when "1 ≥ 143.0114 ∩ "2 ≥ 7.5433 ∩ "3 ≤ 0.057692. 

Based on the output of the previous iteration and obeying to the colour hierarchy, Figure 5.18 is 

obtained. 

 

Figure 5.16 First iteration of the method after no solution was found in the region of interest (test instance). 
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Let us assumed that the DM considers not to have sufficient knowledge about the set of Pareto 

solutions. Thus, the method proceeds to a third iteration where it is assumed that the DM wants to 

search for a solution that has a good trade-off regarding both cost and equity (respectively, "1 and 

"3) while completely disregarding the overall obnoxious effect ("2). To that extent, the DM 

defines a region of interest with an upper bound for "1 of 120 and for "3 of 0.1 (as seen in Figure 

5.19). Likewise, to the original CLRP3 formulation, the following upper bounds are added: 

  "1 ≤ 120,  (5.7) 

  "3 ≤ 0.1.  (5.8) 

 

 

Figure 5.17 Second iteration of the method with the DM-defined region of interest (test instance). 
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The new formulation, when solved to optimality, is able to obtain a new non-dominated 

solution, say .5, with .5 = (117.0605, 11.6599, 0.059004). Again, this allows to characterize 

several regions in the following fashion: 

· coloured red, by unfeasibility, when "1 ≤ 117.0605 ∩ "2 ≤ 11.6599 ∩ "3 ≤ 0.059004 

· coloured red, by dominance, when "1 ≥ 117.0605 ∩ "2 ≥ 11.6599 ∩ "3 ≥ 0.059004 

· coloured yellow, when "1 ≤ 117.0605 ∩ "2 ≥ 11.6599 ∩ "3 ≥ 0.059004 

· coloured yellow, when "1 ≥ 117.0605 ∩ "2 ≤ 11.6599 ∩ "3 ≥ 0.059004 

· coloured yellow, when "1 ≥ 117.0605 ∩ "2 ≥ 11.6599 ∩ "3 ≤ 0.059004. 

This region characterization (obeying to the colour hierarchy) can be seen in Figure 5.20. 

 

Figure 5.18 Second iteration of the method with the region characterization after obtaining .4 (test instance). 
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.5 is a highly equitable solution, while at the same time being only 1.77% worse than the ideal 

value regarding cost ("1). As it seems to be an interesting trade-off to this specific instance, it is 

assumed that the DM is satisfied with her/his current knowledge on the set of non-dominated 

solutions, and thus the method ends. Were it not the case, new iterations would follow (similarly to 

the previous three shown), ultimately ending the method when the DM would so desire, or all of 

the objectives space had been explored. Figure 5.21 depicts the graphical representation of the 

efficient solutions .4 and .5. 

 

Figure 5.19 Third iteration of the method with the DM-defined region of interest (test instance). 

 

In Appendix C all the non-dominated solutions as well as the graphical representation of the 

corresponding efficient solutions of this test instance can be seen. Looking at the results, some 
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conclusions can be drawn. All solutions have 3 routes, which is due to routing not being obnoxious, 

leading to solutions with fewer vehicles in order to obtain the least feasible cost ("1) for each 

combination of depots to install. Also, the best solution regarding cost (.1) is the only one that 

requires to install three depots (one per route). The remaining solutions, in order to reduce the 

(individual and overall) obnoxious effect, require to install the least feasible number of depots (due 

to capacity constraints): two. 

 

Figure 5.20 Third iteration of the method with the region characterization after obtaining .5 (test instance). 

 

Other conclusions (drawn in Section 4.3.3) are also confirmed: obnoxious effect and equity 

seem positively correlated, while cost is negatively correlated with the remaining two objectives; 
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the links to the depots to install), significantly different route configurations can be found, 

validating the use of integrated location-routing multi-objective approaches. 

 

.4  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.21 Graphical representation of the efficient solutions .4 and .5 of the test instance. 

 

5.4 Summary 

In this chapter an interactive method for MOMIP is proposed. Firstly, MOMIP current approaches 

are introduced and discussed (also some multi-objective problem concepts are defined). Then, the 

work focuses on interactive methods, where there is an alternation between human intervention and 

computation phases. For these methods two different paradigms exist, the use of an implicit utility 

function and an open communication protocol. 

Given the characteristics of both paradigms, the use of open communication methods seems to 

be the most advantageous (for the required application). Thus, methods using this paradigm are 

reviewed, and a new open communication interactive method is presented. 

The newly proposed method is based on the method by Ferreira et al. (1996), extending it to the 

multi-objective case (as it was restricted to problems with two objective functions). The proposed 

method relies on graphical and numerical information, not being too demanding from the DM point 

of view (possibly even allowing to unfold data in a way that makes it visually appealing). 

Computation wise, it uses a weighted sum program that enables to obtain all non-dominated 

solutions of a given problem. 

A step-by-step example, applied to a multi-objective CLRP, is then provided, allowing to 

further examine the workings of the proposed interactive method. 
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Chapter 6 

6. Development of Decision Support Systems 

Traditionally, the decision-making process required a lot of experience on either the addressed 

problem and/or the methods/approaches to solve it. Nowadays, computation tools are able to 

decrease significantly both the need for acquired experience, as well as the time to obtain solutions 

for a specific scenario. A computation tool intended to support managerial decisions is called a 

decision support system (DSS). 

In this chapter, the development of DSSs is addressed. Firstly, an introduction to these 

information systems is made, where the applicability to the location-routing problem (LRP) is 

studied. Secondly, as the development of a DSS follows the development of any other information 

system, current main software development methodologies are briefly reviewed, and human-

computer interaction (HCI) issues discussed. Finally, the focus will be on a decision-support tool 

for the LRP, where the main preliminary phases of the adopted software development process are 

presented (exploration, planning, and iterations to release). 

6.1 Introduction to Decision Support Systems 

Decision support frameworks can be divided according to the degree of structuredness, ranging 

from highly structured to highly unstructured decisions/problems, and the type of decision, which 

can be strategic, tactical or operational (Gorry and Scott-Morton, 1971). 

The degree of structuredness is based on the decision-making process by Simon (1977) 

composed of four phases (initially three, and later added the implementation phase): intelligence 

(involves searching for conditions that call for a decision), design (involves developing and 

analysing possible alternative courses of action), choice (where a course of action is selected from 

among the available ones), and implementation (involves adapting the selected course of action to 

the decision situation). 

In structured problems (where all phases of the decision-making process are structured) 

procedures to obtain solution(s) are known and all aspects of the problems are described with a 

high degree of completeness. The problem can thus be broken down into a series of well-defined 

steps, leading to solutions which the decision maker (DM) can easily agree on. Unstructured 

problems are the opposite (with none of the four phases being structured). As they cannot be solved 

with a high degree of certainty and only aspects of the problem are considered, DMs often disagree 

about the best solution, requiring the use of intuition, reasoning, and memory. Semi-structured 
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problems fall between structured and unstructured problems, having some elements of both. LRPs 

can be considered as semi-structured as, although methods to obtain solutions are known, the 

problem itself is not fully described (often oversimplified), thus relying on the DM’s experience for 

the choice of which solution to implement. 

Solving semi-structured problems may involve a combination of standard solution procedures 

and human judgement (Figure 6.1). For the structured portion of the decision, (operations research) 

models can be used; for the unstructured portion, a DSS can improve the quality of the information 

provided to the DM (e.g. by providing not only one but several alternative solutions and their 

potential impacts). This may help to better understand the nature of problems and thus to make 

better decisions (Turban et al., 2007). Moreover, DSSs are able to relax cognitive, temporal and/or 

economic limits on the DM, making them instrumental in decision-making scenarios (Holsapple, 

2008). 

 

Figure 6.1 Decision making according to the degree of structuredness. 

 

DSSs comprise a core subject area within the information systems discipline where business and 

organizational decision-making activities are supported (Burstein and Holsapple, 2008). Gorry and 

Scott-Morton (1971) originally define DSS as an interactive computer-based system which helps 

DMs use data and models to solve semi-structured and unstructured problems. Keen and Scott 

Morton (1978) present a similar definition, stating DSSs couple intellectual resources with 

computer capabilities in order to improve the quality of decisions in semi-structured problems. 

These are classic definitions, which have been extended over time. For example, Turban et al. 

(2007) define DSS as an umbrella term to describe any computerized system that supports decision 

making inside an organization. 

Here, the term DSS will be used following the definition by Turban et al. (2007), meaning any 

computerized system developed to support decisions regarding unstructured or semi-structured 

problems, using development processes and concepts of information systems. The application itself 

will be named decision-support tool (DST). 

The fundamental components of the DSS architecture are (Marakas, 1998): the data, the 

model(s), and the user interface. Data (which can come from many sources) are needed to solve 
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problems. Any problem to be solved, opportunity or strategy to be analysed requires some data. 

The data (of a specific scenario) are then manipulated by using models, which can be standard (e.g. 

spreadsheet functions) or customized (e.g. an algorithm to solve a specific problem). Models can be 

used to forecast the possible outcomes of decisions. As the DSS requires interaction with users, the 

user interface is crucial for a successful system, as it enables users to use, support or examine data, 

and allows them to analyse and evaluate solutions obtained by models. Figure 6.2 depicts how 

these main components interact. 

 

Figure 6.2 Main components of DSSs architecture. 

 

The development of DSS applications (DSTs) have been fairly active for several areas (see Eom 

and Lee, 1990, Eom et al., 1998, and Eom and Kim, 2006, for surveys of DSTs). However, for 

LRPs only few works have surfaced (the works by Coutinho-Rodrigues et al., 1997, Gorr et al., 

2001, and Lopes et al., 2008a), all of them restricted to specific models (e.g. the single-objective 

capacitated LRP in the work by Lopes et al., 2008a). The LRP, however, has several applications 

and variants (see Chapter 2), motivating the need to develop new DSTs capable of addressing 

(possibly several of) these problems. Moreover, the development and availability of DSTs may 

help both DMs and researchers. The former, by allowing to (easily) obtain scientifically-supported 

solutions may improve the quality of decisions. The latter, by aiding the process of gathering data, 

as well as enabling to visualize the inner-workings of developed models, reduces the time to obtain 

(real-world) instances and improves the functioning of models making them easier to understand 

and improve (e.g. in the tuning of parameters).()()()()()()() 

The development of such a DST (solver-oriented, according to the classification by Holsapple, 

2008) should follow the development steps of any other information system software. Thus, in the 

next sections, the development process of DSSs will be reviewed (identifying main strengths and 

weakness of different software development methodologies), HCI issues discussed, and the steps 

adopted for the development of a DST for LRPs presented.() 
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6.2 Development Process of Decision Support Systems 

The development of a DSS usually requires the involvement of several interested parties, to 

develop the required components (data, models, and user interface), throughout the different 

activities that compose the development process (Figure 6.3). 

 

Figure 6.3 Development process of DSSs (Whitten and Bentley, 2007). 

 

The parties interested in the development of DSSs are named stakeholders and can be both 

technical and non-technical. Within the technical stakeholders, systems analysts, systems designers, 

and systems builders can be included. Non-technical stakeholders (which are not part of the 

project’s technical teams) also play an important role, being systems owners and systems users. 

According to Whitten and Bentley (2007), their main roles are the following (left-hand side of 

Figure 6.3): 

· Systems analysts – coordinate the efforts of the remaining stakeholders during the 

development process. They serve as facilitators, bridging the communication gap that often 

exists between technical and non-technical stakeholders. 

· Systems owners – usually managers which tend to be more interested in the cost of the 

system, return value or benefits it will bring to the business. They pay for the system to be 

built and maintained, being among their biggest beneficiaries. Their contribution is important 

as they hold the knowledge of the organization’s business and mission. 

· Systems users – someone which will use or is affected by the system on a regular basis. 

Unlike system owners, they are mostly concerned with the functionality the system provides 
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to their jobs, and the system’s ease of use and learning. Being the main target of systems, 

they play a key role in the correct identification of requirements. 

· Systems designers – technological specialists interested in the correct technological choices 

and in the design of systems that support them. These can be database administrators (which 

design and coordinate databases), network architects (specialized in designing, installing, 

configuring and optimizing networks), Web architects (specialist who design complex Web 

sites) or even graphic artists (to design and construct compelling and easy-to-use interfaces). 

· Systems builders – construct the system according to the systems designers’ specification. 

These are mostly programmers, being specialists who convert requirements and statement of 

problems into computer applications, thus developing, testing and implementing systems. 

Depending on the size of the system (and often in practice), any one individual may play more 

than one of the different aforementioned roles. 

Regarding the main components of DSSs (which have been previously addressed), the choice of 

the most appropriate technologies varies according to the intended decision-support 

scenario/environment. 

Finally, concerning the development process of DSSs (right-hand side of Figure 6.3), several 

activities are required. In the following subsections the different main activities will be presented, 

followed by a review of current main software development methodologies and HCI issues. 

6.2.1 Main Development Activities 

The development process of any DSS (as of any information system) is characterized by several 

activities. Tasks considered within are, usually, identifying the problem, its analysis and 

understanding, identifying requirements, designing the solution and then, encoding, testing, 

deploying and maintaining the designed solutions. 

Overall, these tasks can be grouped into five main activities (Teixeira, 2008): 

· Problem analysis – where usually the systems analysts together with the owners establish the 

project scope, goals, schedule, and budget required to solve the problem (or found 

opportunity). 

· Requirements analysis – the main goal is to provide a more thorough understanding of the 

problems and needs that triggered the project. This is done by system analysts, which define 

with system users their needs with regards to functional and non-functional requirements 

(these will be further described in Section 6.3.1). 

· System design – refers to an abstract representation of the system where requirements are 

converted into a modelling language, in order to facilitate communication between 

stakeholders (namely, systems builders, which will then implement the solution). The 

primary stakeholders in this activity are systems analysts and systems designers. 

· System implementation – where systems builders (often programmers) have to interpret the 

models obtained in the system design activity, and convert them into programming language 

(encoding the models) to be executed in computers. Here, the system is constructed and 
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tested (preferably by an individual other than the programmer that encoded it). This activity 

should involve systems analysts and systems builders. 

· Deployment and maintenance – in this activity, the system is made available to systems users 

and placed into operation. Afterwards, the system will eventually need to be changed, be it 

due to found errors (either from software “bugs” or design and implementation flaws) or the 

need to continuously improve/adapt the system. 

These can be seen as the main activities in the development of DSSs which, over the years, have 

been used in different development processes. The different processes have been studied in an area 

named software engineering (Pressman, 2001; Sommerville, 2007), which concerns the 

practicalities of developing and delivering useful software (here, the software being the DST). 

These development processes usually follow a methodology. In the next section, some of the most 

known and used software development methodologies will be briefly reviewed.()() 

6.2.2 A Brief Review of Main Software Development Methodologies 

A software development process (or software lifecycle) is an approach that structures the 

development of a software product. The process defines not only the sequence in which the 

different tasks are to be performed but also the stakeholders involved and how to reach a certain 

goal (the “what”, “when”, “who”, and “how”). 

There are currently several methodologies for the software development process, each 

describing different approaches to the main development activities and tasks within. Some of the 

main methodologies in the literature will be briefly reviewed in the following subsections, where 

an overview, corresponding advantages and disadvantages are provided. From the reviewed 

methodologies only the first adopts a linear framework (where main activities are performed 

sequentially until the last phase is achieved and the methodology ends), the remaining 

methodologies use an iterative and incremental framework (in which development is incremental 

with activities being performed in iterations, often cyclic). 

Waterfall 

The waterfall methodology is a sequential development process (linear framework) in which the 

phases correspond to the main development activities, and are performed flowing downwards 

(similarly to a waterfall, see Figure 6.4) without ever returning to a previous phase. In practice, the 

phases overlap and feed information to each other (Sommerville, 2007). At the end of each phase, 

tangible deliverables are produced and carried on to the next phase as inputs. 
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Figure 6.4 Software development process using the waterfall methodology. 

 

The main advantage of this methodology is that the main focus is a clear definition of 

requirements, allowing better scheduling and (cost and time) estimating. Additionally, to fix and 

detect possible issues in early phases is often cheaper in time spent, money, and effort than fixing 

the same issues found later on in the development process (McConnell, 1996). 

However, the simplicity of managing the process becomes increasingly complex as the size of 

the (software) project increases, making this methodology more suitable for smaller projects; as 

large projects have to be fully analysed and understood before proceeding to the following phases 

(which can be very time consuming). Also, the need to follow a set of rigid procedures is an 

obstacle to flexibility and change, which is often required in the development of some projects. 

Moreover, as it does not allow (during the development) feedback from the systems owners or 

users, the risk of the project not fitting the stakeholders’ needs increases. A major part of this risk 

appears or rises towards the end of the project, with the cost of rectifying found issues usually 

increasing accordingly (Pressman, 2001). 

This methodology may be more appropriate for smaller projects with a short lifespan, albeit its 

use in practice has been reducing in favour of more flexible methodologies. 

Rapid Application Development 

Rapid application development (RAD) is a methodology that uses an iterative and incremental 

framework, which emphasizes in obtaining short development cycles (Pressman, 2001). RAD uses 

minimum planning in favour of rapid prototyping (see Figure 6.5). The absence of extensive 

planning usually allows to develop software much faster. 
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Figure 6.5 Software development process using RAD. 

 

The biggest emphasis is on fulfilling the main requirements, while high performance is of lesser 

importance. This causes to not being recommended in the development of large projects. As it 

focuses on developing prototypes, that are iteratively developed into full applications, the software 

may lack the scalability of a solution that was designed from the start as a full application 

(Pressman, 2001). 

Moreover, delivery deadlines are strict (timeboxing). If the project starts to fall behind in the 

schedule, the emphasis is on reducing the requirements in order to comply with deadlines. This 

causes applications to be less full featured than when using other methodologies (McConnell, 

1996). 

Rational Unified Process 

The rational unified process (RUP), created by the Rational Software Corporation, uses an iterative 

and incremental framework while still inheriting some aspects of the linear framework. In RUP, 

feedback exists throughout the development process (although not often). The methodology 

requires the delivery of several artefacts throughout the development, thoroughly detailing the 

process. 

RUP is divided into four development phases (Jacobson et al., 1999): 

· Inception – where an outline of the project is drawn (and roughly estimated), major risks are 

identified and prioritized, and the elaboration phase is planned in detail. 

· Elaboration – the system architecture is designed. Although the emphasis is on the 

requirements analysis and system design activities, implementation is started. At the end of 

this phase it is possible to plan the activities and estimate the resources required to complete 

the project. 

· Construction – is when the software is built, thus implementation is the most prominent 

activity. In this phase the bulk of the required resources are expended, producing the first 

external release of the software. 
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· Transition – where the software is transitioned from development into production, making it 

available to users. Other activities include training users and testing the software to validate 

it against the users’ expectations. 

Figure 6.6 depicts the four development phases and their main activities (left-hand column). The 

curves in the figure approximate the extent to which corresponding activities are performed in each 

of the development phases. 

 

Figure 6.6 Software development process using RUP (Jacobson et al., 1999). 

 

In each of the development phases, iterations are performed (e.g. in Figure 6.6, C3 is the third 

iteration of the construction phase) within which all main activities are usually performed. 

This methodology is mostly oriented at large projects, where large development teams are 

involved, and all activities ought to be thoroughly documented. RUP overcomes some of the 

obstacles of the waterfall methodology, while still maintaining some of its advantages (Teixeira, 

2008). 

Agile Software Development 

The agile methodology encompasses several methods that intend to overcome the rigidness and 

excessive number of deliverables of previous methodologies. It uses an iterative and incremental 

framework, encouraging frequent inspection and adaptation of the development process, teamwork, 

and collaboration between self-organizing cross-functional teams. 

The agile manifesto, where the methodology was first presented, defines a set of principles that 

should be prioritize (Highsmith and Cockburn, 2001): 

· individuals and interactions over processes and tools 

· working software over comprehensive documentation 
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· customer collaboration over contract negotiation 

· responding to change over following a plan. 

These priorities do not dismiss the importance of the second set of items (processes, tools, 

documentation, contracts, and plans), but rather focuses on the first. This methodology relies on 

short feedback loops (at most six months) between systems users/owners and designers/builders, 

where working software is presented and evaluated (being the main measure of progress). Within 

each of these loops a miniaturized version of an entire software development process is performed, 

with a release at the end. 

The agile methodology is most effective in smaller projects, where a constant shift of 

requirements may exist, allowing to quickly respond to them. If applied in large projects, it would 

be difficult to assess the effort required at the beginning of the software development process, and 

the lack of emphasis on necessary analysis, designing and documentation could prove to a be a risk 

(Sommerville, 2007). 

Some of the best known agile methods are: extreme programming (XP), scrum, crystal, and 

adaptive software development. Among these, XP (Beck, 1999) is probably the best known and 

most widely used (Sommerville, 2007). XP is based on the notion of frequent releases in short 

development iterations, enabling to quickly obtain feedback from users. By using short iterations it 

may be easier to eliminate risks in the project and respond to changing requirements. 

XP can be divided into five development phases (Ambler, 2002; Beck and Andres, 2004):()() 

· Exploration – includes the development of the architectural spike and of the initial user 

stories. The architectural spike intends to identify areas of maximum risk, to get started with 

estimating them correctly. A user story is a high-level requirement formulated as a small text 

in the language of the user, being used for the specification of requirements. 

· Planning – is where planning for the iterations and releases is performed, defining priorities 

for the different requirements (obtained from user stories). The purpose is to schedule a date 

by which the smallest, most valuable set of user stories will be implemented. 

· Iterations to release – encompasses the primary effort of the project, as is where major 

development occurs. In this phase, system design, implementation and testing occurs 

iteratively, and several of these iterations may exist for a single release. 

· Productionizing – focuses on certifying that the software is ready to go into production. 

Since it is the phase where releases are incorporated into the final product, extensive testing 

as well as performance tuning are required. 

· Maintenance – is the normal state of XP projects, encompassing the planning, iterations to 

release, and productionizing phases after the first release of the system. This phase also 

includes other tasks, such as the operation and support of the system. 

Figure 6.7 depicts the tasks performed within the different main development phases of the XP 

methodology and how they relate. 
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Figure 6.7 Software development process using XP (Ambler, 2002). 

 

XP proposes a set of 12 different practices emphasizing four essential values (Beck and Andres, 

2004): communication, simplicity, feedback, and courage. Constant communication with systems 

owners/users and fellow designers/builders is required. The design should be simple and clean. 

Feedback should be obtained by testing the software (with users) from the start, thus also allowing 

users to obtain feedback regarding its development. Facing the need to evaluate the software, users 

should have the courage to elicit new requirements and technical stakeholders should be able to 

courageously respond to changing requirements and technology. 

6.2.3 A Brief Review of Relevant Human-Computer Interaction Issues 

The development process (and final deployment) of DSSs may be more successful if the correct 

methodology is chosen, however, the overall success may depend mostly on the ability to interact 

with users (i.e. meet the user’s expectations and needs, be it by allowing to easily attain goals, be 

more productive, or simply by providing an enjoyable experience). Most often it is that specific 

ability and not the number of functionalities or the overall quality that determines the outcome of a 

system (Sharp et al., 2007). 

This aspect falls within the subject of HCI, where interaction between people (users) and 

computers is studied. This subject draws on many disciplines, although it is in computer science 

and system design that it must be considered as a central concern (Dix et al., 2004). The goal here 

is to study the interaction at the user interface software level (user interface design), in order to 

allow an easy interaction between humans and computers which, as seen previously, plays a key 

role in DSSs. 

In order to achieve this, the concept of usability emerges. The standard ISO 9241-11 (ISO, 

1998) defines usability as the extent to which a product can be used by specified users to achieve 

specified goals with effectiveness, efficiency, and satisfaction in a specific context. Basically, 

usability refers to the study of the ease of use with which people can employ a particular tool in 

order to achieve a specific goal. Usability goals and objectives include (Rubin and Chisnell, 2008): 
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· Usefulness – concerns the degree to which a system enables a user to achieve her/his goals, 

being an assessment of the user’s willingness to use the product. 

· Efficiency – is the quickness with which the user’s goal can be accurately and completely 

accomplished being usually a measure of time. 

· Effectiveness – is the extent to which the system behaves in the way that users expect it to, 

and the ease with which they use it to do what they intend. 

· Learnability – has to do with the user’s ability to operate the system to some level of 

competence after some amount and period of training (which may be no time at all). It can 

also refer to the ability of infrequent users to relearn the system after periods of inactivity. 

· Satisfaction – refers to the user’s perceptions, feelings, and opinions of the system, usually 

captured through both written and oral questioning. 

In order to specify or measure the usability of a system it is necessary to use techniques that 

allow to measure and verify the aforementioned goals. Usability engineering (Nielsen, 1993) is a 

field mainly concerned with HCI issues in human-computer interfaces. Currently, within usability 

engineering, several techniques exist (Dix et al., 2004; Rubin and Chisnell, 2008); some of these 

will be reviewed in the next subsections (an extensive survey and a taxonomy of usability 

evaluation techniques can be seen in Ivory and Hearst, 2001). Overall, they can be separated into 

techniques which require real (target) users and techniques which do not. The order in which they 

are described in the following subsections somewhat follows the order in which they are employed 

in the software development process. Among them, the most used is usability testing, mainly due to 

its cost/benefit ratio (Mitchell, 2007).()()() 

Paper Prototyping 

Paper prototyping is a technique which requires real target users, as the appearance of the software 

is to be presented to them on paper, and questions regarding it are to be asked. This allows to learn, 

for example, whether the planned flow of screens (or pages) meets the users’ expectations and 

needs. Questions made to users can range from navigation between screens to particular attributes, 

such as organization and layout, or even where certain options or types of information might be 

found. 

Although it seems a simple technique it can provide a great deal of useful feedback. The value 

of paper prototype evaluation is that critical information can be collected quickly and 

inexpensively. It easily allows to determine which functions and features are intuitive and which 

are not. Moreover, users feel more comfortable being critical of paper prototypes because of not 

having a polished look (Klee, 2000). 

Testing interfaces at early stages of the development process helps to identify software usability 

problems even before any code is written and development of the software begun. The costs and 

risks of later changes are therefore reduced and the overall quality of the software is increased. 
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Expert or Heuristic Evaluations 

Expert evaluations involve reviewing a system, usually by usability specialists who have little or no 

involvement in the project. The specialists perform the review according to generally accepted 

usability principles (heuristics) and previous experience. Even though it does not require users, the 

specialists should adopt the view of the software’s target users. 

The heuristic evaluation is a technique that helps to identify interface usability problems. The 

most used usability heuristics for user interface design were proposed by Nielsen (1994). The set of 

heuristics is the following: 

· visibility of system status 

· match between system and real world 

· user control and freedom 

· consistency and standards 

· error prevention 

· recognition rather than recall 

· flexibility and efficiency of use 

· aesthetic and minimalist design 

· help users recognize, diagnose, and recover from errors 

· help and documentation. 

According to Nielsen (1993), several different evaluators (usability specialists) should be used 

in order to find a significant number of usability problems. The author recommends five evaluators 

as a reasonable number (which may be able to find around 75% of usability problems). The 

evaluators should provide a list of usability problems, with ratings or judgments about the 

seriousness of the problems for users. 

This technique is fairly inexpensive and can be used early in the development process, however 

it may not be able to identify as many usability issues as other techniques (e.g. usability testing). 

Moreover, results are often biased by the preconceptions of the evaluators. 

Usability Testing 

Usability testing usually involves selecting a group of users, representative of the system’s target 

users, which are required to perform a set of realistic tasks in the system (thus being a technique 

which requires users). During the time that users perform the tasks, data regarding their 

performance are obtained (either using video or observation techniques). It is intended to evaluate 

the number of errors made by users, time required to perform the tasks, if they were able to 

successfully complete them, and if they chose the most adequate course of action. The behaviour of 

users should also be evaluated. Often a questionnaire is also provided to users in order to access 

their opinion of the system. 

According to Rubin and Chisnell (2008), usability testing is most powerful and effective when 

implemented as part of an iterative development process. The authors stress that using this 
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technique throughout the development process increases the probability of finishing with a usable 

system, as exposed usability deficiencies allow to gradually shape or mould it. Moreover, even if 

important flaws or deficiencies are missed during one of the tests, subsequent tests offer the 

opportunity to identify these problems or issues. According to the stage of the development process 

(and the corresponding main development activities) in which the tests are applied, Rubin and 

Chisnell (2008) classify them into: 

· Exploratory or formative study – is conducted early in the development process (in 

requirements analysis) and, as such, the system is still in the preliminary stages of being 

defined and designed. The objective is to examine the effectiveness of preliminary design 

concepts. 

· Assessment or summative test – is the most common type of usability test used, being 

conducted either early or midway into the development process (usually in system design). 

The purpose is to expand the findings of the exploratory study by evaluating the usability of 

lower-level operations and appearance of the system. 

· Validation or verification test – usually conducted late in the development process (during 

system implementation activities) intending to measure the usability of the system against 

established benchmarks, or to confirm that problems found earlier have been solved and that 

new ones have not emerged. 

· Comparison test – is not associated with any specific stage of the development process. In 

the early stages, it can be used to compare several radically different interface styles. 

Towards the middle, the test may allow to measure the effectiveness of a single element. 

Nearer the end of the development process, it may be used to see how the system stacks up 

against similar systems. This test is usually performed together with one of the previous 

(depending on when is performed). 

Results of usability testing provide a reliable overview of the real problems that target users will 

encounter, helping to understand the users different behavioural patterns when using the system. 

This technique, however, is expensive, time consuming, and the validity of the findings relies 

heavily on the correct identification of target users and key tasks (Mitchell, 2007). 

6.3 Development of a Decision-Support Tool for Location-Routing 

Problems 

Previous sections have addressed methodologies and techniques for the development of DSSs. In 

this section the main phases of the methodology adopted for the development of a DST for LRPs 

will be presented, thus covering some of the main development activities. In Chapter 7, the 

developed tool (and its main components) will be presented and tested with regards to its usability 

(using usability testing as described earlier). 

In order to develop the tool some concepts of the XP agile methodology were adopted (which 

will be discussed hereafter). This choice was due to the desire to make the tool available online and 

be able to quickly respond to user feedback, promoting a tool with continuous development 
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(incorporating new models and functionalities, as well as improving the user interface), which may 

lead to a scenario of changing requirements and small releases. 

Albeit some of the XP’s practices may be perceived as inappropriate for research projects, 

Wood and Kleb (2002) have shown that, although some adaptations to the original practices have 

to be performed, several advantages could still be found with regards to more traditional 

methodologies. Likewise, some practices of the XP methodology were either not employed (e.g. 

pair programming and collective ownership) or had to be adapted (e.g. rather than an on-site 

customer, contact with users was performed during acceptance tests and in order to obtain user 

stories). Nevertheless, most of its defining practices were used, namely, planning game, simple 

design, the use of a naive metaphor, refactoring, unit tests, and the continuous and incremental 

incorporation of functionalities in small iterations. 

The following subsections cover the first steps in the development of the DST following the 

main phases of the XP methodology: exploration, planning, and iterations to release. Within these 

phases, some of the main development activities of the software development process are also 

covered (such as requirements analysis, system design, and system implementation). 

The exploration phase allowed to obtain the DST’s current main high-level requirements (based 

on the user stories). Afterwards, in the planning phase, guidelines for planning iterations and 

releases are provided (in some cases high-level requirements are converted into a modelling 

language). Finally, in the iterations to release phase, mostly system implementation issues are 

addressed, where code is developed (based on the defined models, when available), tested, and 

integrated in the tool (after acceptance tests). 

It should be stressed that development activities were (are to be) performed iteratively in short 

iterations, representing the main development phases (and providing best practices and guidelines 

to be) considered in (future) development iterations. 

6.3.1 Exploration 

In the exploration phase it is required to create spike solutions (in the architectural spike) to obtain 

answers to tough technical or design problems. A spike solution is a very simple program to 

explore potential solutions, where only the problem under examination is to be addressed (ignoring 

all other concerns). The goal is to reduce the risk of technical problems or increase the reliability of 

user stories estimations (Wells, 2009). 

To that extent several small prototypes were developed in different programming languages, in 

order to test different objects and data input options, to meet some of the user stories. The final 

choice was on the extensible application markup language (XAML) technology, part of the 

Windows Presentation Foundation subsystem, with C# as code-behind. XAML is a declarative 

markup language (based on extensible markup language – XML), where objects and their 

properties are defined in XML. This choice was mainly due to its ability to separate the user 

interface from the code logic (allowing to easily change the interface at any given time without 

altering any of the implemented functionalities). Moreover, building user interfaces is easier and 
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needs less code using XAML, while still maintaining the performance of the C# language (used for 

the code logic). 

User stories are used for the specification of requirements and to create time estimates for the 

planning phase, being high-level requirements formulated as a short text in the language of the user 

(or written by the user). As it is essential to the correct development of the DST, definition of 

requirements has to be made. In this phase, only enough requirements to make a first good release 

are required (Beck and Andres, 2004). In the requirements analysis presented hereafter (although 

not strictly part of the XP methodology), requirements are classified and some user stories (high-

level requirements) described, allowing to further understand the goals of the DST. 

Requirements Analysis 

Requirements analysis plays a key role in the success of a software. In software requirements 

engineering (Wiegers, 2003), a subdiscipline of software engineering, the underlying tasks are 

studied, namely, identifying stakeholders and their needs, determining the conditions to meet, and 

documenting all of them in the form of requirements that are easy to analyse, communicate, and 

implement. 

A requirement is a property that must be exhibited. A software requirement is a property that 

must be exhibited by a software. Software requirements may be classified according to some of its 

attributes (Abran et al., 2004): 

· High- and low-level requirements – high-level requirements are drawn from general 

functionalities, objectives, and business rules. Low-level requirements are based on the 

users’ needs, functionalities and constraints. 

· Priority rating – enables trade-offs when the project is subjected to finite resources. Allows 

specifying, for example, which requirements are mandatory and which are not. 

· Product or process requirements – the first describe requirements on the software to be 

developed, while the second represent constraints on the development process of the 

software. 

· Functional or non-functional requirements – this is the most widely used classification. 

Functional requirements specify the actions that a software must be able to perform (its 

functionalities). Non-functional (or quality) requirements are the ones that constraint the 

software by specifying properties (such as reliability, safety, performance, and usability). 

Non-functional requirements generally determine how the functional requirements will be 

implemented. 

Requirements should be stated as clearly as possible (when possible, quantitatively) and should 

be verifiable. This is most important in non-functional requirements where goals should be defined 

in order to objectively test them (Abran et al., 2004). 

User stories differ from traditional requirements specification in the level of detail. A user story 

should only have enough detail to make a reasonable estimate of the implementation time, 
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providing high-level requirements to be used as input in the planning phase. The corresponding 

detailed requirements are to be obtained only when implementing the user story. 

In the developed DST several user stories were obtained from system users. Some of them can 

be seen in Figure 6.8. 

 

Figure 6.8 Some user stories of the DST. 

 

All the user stories assumed either the template form “as a [role], I can [capability]” (Cohn, 

2004), or were expressed in the form of a story. 

6.3.2 Planning 

In the planning phase, the iterations and releases were scheduled. Implementation priorities of the 

high-level requirements (obtained from user stories) were defined, based on the perceived difficulty 

and the number of procedures to implement. For the correct scheduling, it was also necessary to 

predict, for each of the high-level requirements, the amount of time required to correctly implement 

it. 

The highest priority requirements were implemented into several releases, each as a small 

project. The releases were separated into several iterations, each corresponding to the 

implementation of a high-level requirement (which in some cases corresponded to several 

functionalities), and subject to user acceptance. 

In this phase, modeling is also a potential activity (thus, part of system design activities are 

performed in this phase). Following the principles of “model with a purpose” and “depict models 

simply”, only if there is a valid purpose should models be created and, when used, simple models 

should be adopted (Ambler, 2002). This need was identified in some of the most complex 

functionalities (e.g. obtaining solution, see Figure 6.9) for which models were created, in order to 

facilitate maintenance. For this purpose the unified modeling language (UML) was used. 

UML is a standardized general-purpose modeling language in the field of software engineering, 

which can be used to describe software both structurally and behaviourally (Booch et al., 2005). 

As a user, I can insert/edit data regarding the location problem. 

As a user, I can obtain real online geographical data. 

As a user, I can save all the data into a single file, allowing to load it later. 

As a user, I can obtain several different solutions to location problems. 

As a user, I can visualize on the map all the data regarding a solution. 

As a user, I can print all the data regarding a solution. 

Selected solutions are highlighted on the map. 

As a user, I can insert data directly on the map. 
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UML diagrams represent different views of the system: static (or structural) and dynamic (or 

behavioural). Within these different views, several types of diagrams can be found. 

 

Figure 6.9 Activity diagram depicting how to obtain solutions in the DST. 
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During the development of the tool, the most used UML diagram was the activity diagram (as 

seen in Figure 6.9), which is a behavioural diagram that allows to graphically describe the 

workflows of stepwise activities. By showing the overall flow of the functionality (with a simple 

model) it facilitates the maintenance of more complex functionalities. 

6.3.3 Iterations to Release 

Most main development activities occur in this phase of the software development process, 

including modeling, programming, testing, and integration (system design and system 

implementation activities). These are performed in short iterations (one to three weeks long), with 

several of these iterations resulting in a release. 

In the DST development, a high-level functionality was implemented at each iteration. At the 

end of each iteration, acceptance tests were performed with users. These tests were based upon the 

previously collected user stories. When users accepted the iteration, the functionality was 

integrated in the DST. Moreover, the next iteration would be prepared, with a new list of high-level 

functionality and corresponding priorities. This procedure allows the evaluation of the software to 

be performed throughout the development process. 

Regarding the implementation (concerning programming), several coding standards and 

guidelines were defined. These were related to naming guidelines (for variables, objects, files, etc.), 

coding styles (code formatting, commenting, etc.), and language usage (variables, flow control, 

etc.). The goal was to enforce consistent style and formatting, thus helping to avoid common 

mistakes and improve code readability and maintenance, while not being overly restrictive. 

Moreover, code refactoring was commonly used to improve performance. 

In this phase, preliminary testing in the form of unit tests occurred. 

6.4 Summary 

In order to effectively support decisions, a computation tool is required. In this chapter the 

development of such a tool was addressed. Firstly, the decision-making process was addressed, 

suggesting DSSs are more fit to be used when interaction between computers and DMs is required, 

as is the case when solving semi-structured problems. Since determining the location(-routing) of 

facilities is a semi-structured problem, it is therefore prone to be tackled using DSSs. 

The correct development of DSSs was then addressed, namely their main components, involved 

stakeholders, and main development activities were identified. Several software development 

methodologies were analysed as well as their main advantages and disadvantages, allowing to draw 

conclusions on the most advisable method for the development of the intended tool. 

HCI issues were also addressed, as the success of DSSs relies greatly on the ability to be easy to 

learn and use by target users. To that extent, several techniques that allow to test the usability of 

software were presented. In Chapter 7, one of these techniques (usability testing) is applied to test 

the usability of the developed tool. 
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Finally, the development of the DST was briefly described, where main development phases 

followed the XP methodology. Although not in strict compliance with the methodology, most of its 

defining practices were adopted in the development of the DST. Main development phases, 

namely, elaboration, planning, and iterations to release (and corresponding activities) were then 

described, setting guidelines for future developments of the tool. 

In Chapter 7 the main components and functionalities of developed DST are described in detail, 

and results of usability testing presented and discussed. 
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Chapter 7 

7. A Decision-Support Tool for Location-

Routing Problems 

In this chapter a decision-support tool (DST) for location-routing problems (LRPs) is presented. 

The tool aims at allowing the exploration of the solution-finding process in a way easily 

understandable by the user, enabling access to online geographic data through Web map services 

(WMSs). This DST was developed for Windows platforms having an architecture that easily allows 

the integration of new functionality. 

The development of this tool intended not only to aid the solution-finding process but also to 

eventually foster greater insight of the problem at hand. This prompts the use of data/information 

visualization and human-computer interaction (HCI) methods. Moreover, by presenting approaches 

easy to work with and understand, the general public may have easier access and further 

understanding of the decision process involved in many of the current depot installation decisions. 

The three main components of the proposed DST architecture are: the data structure, the 

models, and the user interface. The following sections will address in detail these main 

components. Firstly, the data structure and supported problems (based on the models) are 

discussed. Then, the graphical user interface (GUI), as well as its main functionalities, are 

presented. The GUI, developed to fit the target user’s profile and intended tasks, is then evaluated 

with regards to its usability. The results of the usability testing concerning data input and 

visualization features are also examined. 

7.1 Data Structure and Supported Problems 

The developed tool has an open and modular architecture that allows to easily add or update new or 

existing functionality. The main components of the proposed DST’s architecture can be seen in 

Figure 7.1, where interaction with other applications, input and output features, and algorithm 

integration are also depicted. 

In the following subsections, the data structure and the supported problems (two of the DST’s 

main components) will be presented. 
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Figure 7.1 DST architecture (with its main components). 

7.1.1 Data Structure 

The tool presented in this chapter must support several data in order to solve instances of LRPs. 

Due to the complexity of the data to support, a data structure had to be defined having a set of 

characteristics: be flexible, in order to easily support future developments and file format 

evolutions, while maintaining compatibility; be able to hierarchically structure all the needed data, 

making it easier to interpret and maintain; and, be able to reflect its structure directly on the files 

obtained/generated by the tool, thus facilitating integration of new algorithms and interaction with 

other applications. 

For these reasons, the data structure created for the tool is based on the extensible markup 

language (XML) file format. This choice is justified by the several advantages this data 

serialization format presents, namely: 

· Freedom to define the data structure – allows to define any data structure without being 

restricted to a limited set of tags, which can later be validated by XML schemas. 

· Robustness – makes easier to ignore and tolerate errors in the documents. 

· Easiness of reading and editing – allows users to easily inspect files to change values or 

restore corrupted data (due to being human readable). 

· Version interoperability – being extensible it becomes easy to add new functionality in the 

format without losing the ability to read files of previous versions. 

· Operating systems interoperability – as XML is text-based it can be read in any operating 

system, even if the application that generated it is discontinued or incompatible. 
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· Transparent and documented content – allowing users/servers to easily inspect and verify its 

content. 

By normalizing the data structure, future developments and interaction with other algorithms 

and applications is facilitated. Figure 7.2 depicts the data structure (and corresponding file 

structure) of the clients. The remaining main data/file structures can be found in Appendix D. 

 

Figure 7.2 Data structure of the clients file. 

  <?xml version="1.0" ?> 

  <!--  Created by Rui Borges Lopes (c) University of Aveiro  --> 

- <Clients> 

  - <Client> 

      <Number>1</Number> 

      <Name>Lisbon Transport Inc.</Name> 

      <XCoord>1200</XCoord> 

      <YCoord>2509</YCoord> 

      <Colour>#FFFF8080</Colour> 

    - <Demand> 

        <Required>True</Required> 

        <DistType>Uniform</DistType> 

        <DistPar1>100</DistPar1> 

        <DistPar2>0</DistPar2> 

        <DistPar3>0</DistPar3> 

        <DistPar4>0</DistPar4> 

        <ServiceTime>10</ServiceTime> 

        <SplitService>True</SplitService> 

      </Demand> 

    - <Supply> 

        <Required>False</Required> 

        <DistType>Deterministic</DistType> 

        <DistPar1>0</DistPar1> 

        <DistPar2>0</DistPar2> 

        <DistPar3>0</DistPar3> 

        <DistPar4>0</DistPar4> 

        <ServiceTime>0</ServiceTime> 

        <SplitService>False</SplitService> 

      </Supply> 

    </Client> 

  </Clients> 

  <!--  Clients:       Clients                                                 --> 

  <!--  Client:        Client                                                  --> 

  <!--  Number:        Client number                             int           --> 

  <!--  Name:          Client name                               string        --> 

  <!--  XCoord:        Client x coordinate                       double        --> 

  <!--  YCoord:        Client y coordinate                       double        --> 

  <!--  Colour:        Client colour                             string        --> 

  <!--  Demand:        Client demand                                           --> 

  <!--  Required:      Client requires demand service            boolean       --> 

  <!--  DistType:      Client demand - distribution type         string        --> 

  <!--  DistPar1:      Client demand - distribution parameter 1  double        --> 

  <!--  DistPar2:      Client demand - distribution parameter 2  double        --> 

  <!--  DistPar3:      Client demand - distribution parameter 3  double        --> 

  <!--  DistPar4:      Client demand - distribution parameter 4  double        --> 

  <!--  ServiceTime:   Time required to service the demand       double        --> 

  <!--  SplitService:  Demand can be serviced more than once     boolean       --> 

  <!--  Supply:        Client supply                                           --> 

  <!--  Required:      Client requires supply service            boolean       --> 

  <!--  DistType:      Client supply - distribution type         string        --> 

  <!--  DistPar1:      Client supply - distribution parameter 1  double        --> 

  <!--  DistPar2:      Client supply - distribution parameter 2  double        --> 

  <!--  DistPar3:      Client supply - distribution parameter 3  double        --> 

  <!--  DistPar4:      Client supply - distribution parameter 4  double        --> 

  <!--  ServiceTime:   Time required to service the supply       double        --> 

  <!--  SplitService:  Supply can be serviced more than once     boolean       --> 
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The created formats are in strict compliance with the standards defined by the World Wide Web 

Consortium (2010). 

7.1.2 Supported Problems 

Although the proposed tool is mainly directed at supporting location-routing decisions, by doing 

so, it is also able to support closely related problems: the facility location problem and the vehicle 

routing problem (VRP). Regarding LRPs, the currently used data structure enables supporting (in 

squared brackets is the problem classification following the taxonomy proposed in Chapter 2): 

· the round-trip location problem [1.1.1] 

· the capacitated LRP (CLRP) [1.1.2] 

· the location-arc routing problem [1.1.3] 

· the plant-cycle location problem [1.1.6] 

· the travelling salesman location problem [1.2.1] 

· the stochastic LRP [1.2.2] 

· the transportation-location problem [2.1] 

· the many-to-many LRP [2.2] 

· the multi-level LRP [2.4]. 

This set of supported problems can be, in some cases, easily adapted to fit other well known 

problems. For example, if the CLRP has only one possible depot location it becomes a capacitated 

VRP (CVRP), or the multi-depot VRP when several possible depot locations with no depot 

installation costs exist; likewise, if the CLRP considers only direct links between depots and 

clients, rather than routes, it is equivalent to the discrete location-allocation problem. 

Thus, the data structure of the proposed tool can support location, routing, and integrated 

location-routing decisions (as they share the same elements, namely, clients, depots, and vehicles). 

Moreover, editing features of the GUI (which use the same input/visualization approach for all the 

problems) allow to maintain all the data required for these decisions. By addressing these decisions 

simultaneously it becomes possible to analyse logistics systems and determine which model(s) 

correspond(s) to a better approach for a specific scenario, with respect to location and routing 

activities. 

The tool imbeds several algorithms for the aforementioned problems (e.g. the active guided 

search metaheuristic presented in Chapter 3); still in order to run algorithms, it is not required for 

them to be imbedded into the tool. By simply obeying to the data structure, algorithms need only to 

import and export the data files. Thus, the time required for the DST to obtain solutions is related to 

the algorithms’ ability to solve the problem or the used commercial software (for integer 

programming). 
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7.2 Graphical User Interface 

Upon developing this tool, the profile of the target user was taken into consideration. This user 

(typically a decision maker – DM) will be, in general, someone with higher education (not 

necessarily having a background on modelling and optimization), having a good knowledge of the 

problem at hand (or a large professional experience in real installations of depots and logistics 

systems design), at least reasonable computer literacy, knowledge of (Web) map applications, and 

which may use the tool infrequently. 

According to this user profile, the information provided to users should neither be technical data 

regarding the used methods nor its validation; the focus should instead be on providing a usable 

interface, where the main usability goal should be easy and efficient access to solutions (results-

oriented) and ease to learn and remember (Mayhew, 1992; Dix et al., 2004; Sharp et al., 2007). The 

profile of the target users, as well as the task they intend to  perform using this DST, and usability 

principles (e.g. consistency, compatibility, familiarity, feedback, robustness, etc.) (Dix et al., 2004) 

were taken into consideration during the design of the tool.()()() 

The tool was developed for Windows platforms, using an extreme programming (XP) based 

methodology, and implemented in extensible application markup language (XAML), with C# as 

code-behind. Some of the concepts and features presented here were based on a DST intended to 

solve the CLRP (Lopes et al., 2008a). 

The main objective behind the development of this tool is to allow to obtain, edit and visualize 

data, solve instances of the supported problems and visualize the corresponding results. To that 

end, the following main functionalities are provided: 

· input (or edit) new (or existing) data in order to define the problem 

· interact with WMSs, to obtain and visualize online geographical data 

· obtain solutions and visualize them either through numeric or graphical representation 

· visually compare different solutions 

· allow user input to the solution obtaining process 

· save (export) data to easily understandable (XML) files. 

The conceptual model of the GUI is organized around a main window, with all functionalities 

accessible through the toolbar, or the menu (in a way easily understandable by users). This 

conceptual model, based on the information flow and similar map applications, aims to allow an 

easy and efficient access to solutions and it comprises four parts (Figure 7.3): 

· a toolbar with buttons allowing a quick access to main functionalities (Figure 7.3, Area A) 

· an extendable panel to edit/display data regarding the problems (Figure 7.3, Area B) 

· a visualization area displaying information regarding the maps (Figure 7.3, Area C) 

· a status bar with data regarding the used algorithm and objective function(s) value(s), if a 

solution was obtained (Figure 7.3, Area D). 
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Figure 7.3 General aspect of the GUI and the four different main areas. 

 

Regarding the toolbar (Figure 7.4), there is a set of buttons (with icons similar to commonly 

used applications, or having the same design concepts in mind) corresponding to different 

functionalities, besides the standard ones (New, Open, Save, Print, etc.). 

 

Figure 7.4 Toolbar of the main window of the GUI. 

 

These functionalities, which will be addressed as follows, are available from both the toolbar 

and the menu bar (thus providing greater flexibility and supporting users with different system 

experience and/or performing different tasks). 

 Import map: allows to import an image to the map using standard formats (e.g. BMP, 

JPEG, PNG, or GIF). 

 Pan: allows to pan the map (creates a panoramic effect of the map without changing the 

visualization scale). 

Area A 

Area C 

Area B 

Area D 
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/  Zoom out/in: allows to zoom out/in on a specific area of the map (i.e. changes the 

visualization scale). The interaction with WMSs provides new imagery and detailed data of the 

selected region. 

 Zoom to fit: allows changing the visualization scale in order to adjust the elements (clients, 

depots and vehicle routes) to the visualization area. 

 Hide map: allows to hide the map image in the visualization area, providing a better view 

of the different elements. 

 Objects size: allows changing the size of the graphical representation of the elements in the 

visualization area, thus facilitating their visualization. 

/  Display labels/images: allows to activate or deactivate the visualization of 

labels/images corresponding to clients and depots; 

 View required service: allows viewing on the visualization area the service required by 

clients. 

 Fix arc in solution: allows to fix an arc between clients/depots which has to appear in the 

solution(s) to be obtained (i.e. allowing the user to define constraints). 

 Import solution: allows to import a solution file, possibly obtained with other software 

(provided the solution’s data structure is obeyed). 

The extendable panel allows to edit/display data regarding the elements in the problem (clients, 

depots and vehicles) using a data grid. The panel is most useful when inserting large quantities of 

data, where, by extending it, the user can work with (and visualize) a bigger data grid (Figure 7.5). 

The visualization area, displaying information regarding the maps, will be addressed in detail 

later; while the status bar displays data regarding the used algorithm (name and time to obtain the 

solution), as well as the objective function(s) value(s) of the currently visualized solution. 

Upon developing the GUI it was taken into consideration the guidelines defined by Microsoft 

for the development of Windows applications (Microsoft Corporation, 2010). Additionally, the 

GUI was firstly subjected to informal tests of adaptation to real target users; then, a formal usability 

evaluation was made (addressed in Section 7.3). 

In order to obtain solutions, it is necessary to input all the data needed to specify and solve the 

problem. This step can be complemented with online geographic information obtained from 

interaction with WMSs. 

After obtaining the data, several changes can be made from a visualization point of view 

(namely, associating graphical representations to the elements, changing the visualization scale, 

etc.), thus making easier the information interpretation. Solution(s) can be obtained (possibly 

incorporating information provided by the user), visualized, and compared with other solutions. 

Finally, the user can export all the edited/obtained data. 
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Figure 7.5 GUI with the left panel extended to edit/display data. 

 

The following subsections will address, for each of these steps, the functionalities provided by 

the proposed DST, and how to use them. 

7.2.1 Data Input 

The supported data (which will allow defining the problem at hand) are the following: 

· data regarding the clients to be serviced (coordinates, demand and/or supply distribution) 

· data of the depots (coordinates, capacity and costs), already installed or to be determined, 

which will service the clients 

· available vehicles and related data, namely, capacity, cost and where they operate 

· distance matrix between clients and depots (by default Euclidean distances are assumed). 

Obtaining (or maintaining) this information can be done using a data grid (more suitable to 

insert/edit large quantities of data), or directly on the map, where coordinates are directly obtained 

(or altered, by dragging clients and/or depots across the map) and a form appears to edit the 

remaining data. In all data input methods (seen in Figure 7.6) numerical feedback and visual 

representation are provided. 
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Figure 7.6 Data input using the data grid (top-left), the map (top-right), and the form (bottom). 

 

In the last two cases (vehicle and distance matrix data), visual data input is not possible. It can 

be done however using data grid or specific forms (Figure 7.7), providing numerical feedback only, 

until a solution is obtained and (vehicle) routes are drawn. 
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Figure 7.7 Vehicle (top) and distance matrix (bottom) forms. 

 

7.2.2 Web Map Service Interaction 

Geographical data are currently available online from many servers. When the servers follow the 

OpenGIS WMS standard (Open Geospatial Consortium, Inc., 2010), maps and requested 

information layers are made available in geo-referenced images (with standard formats: JPEG, 

PNG, etc.). The standard is based on a query syntax for posting a request for the desired layers and 

zoom window to the server, returning the corresponding map image. Taking advantage of 

interaction with WMSs, users can quickly obtain correct coordinates and distances regarding 

clients and depots. Moreover, additional information can be made available in layers (e.g. 

demography, road network, satellite imagery, etc.), even combining different online servers. 

Figure 7.8 depicts the GUI interacting with the Demis Web Map Server (Demis, 2010), an 

OpenGIS WMS compliant. 
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Figure 7.8 GUI interacting with the Demis Web Map Server. 

 

By fully interacting with WMSs, the user can pan and zoom out/in any area of the world map 

and obtain the required imagery and geographical information. 

7.2.3 Graphical Representation 

Several representations for the elements involved in the process (clients, depots, and vehicle 

routes), as well as the map can be imported (Table 7.1). However, since superimposition of 

elements to the map may result confusing, transparency and size of their representation can be 

changed, allowing seeing the map underneath them; moreover, it is possible to define which are to 

be displayed simultaneously using a set of controls (presented previously). Users can also change 

the colour associated with the graphical representation of the elements, further distinguishing them 

from the map, as well as hide the map. 

 

Table 7.1 Graphical representation of some elements in the visualization area. 

Element With label With image With label and image 

Client    

Depot    
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Another useful view is the service-based visualization which, for each client, displays a circle 

representing the required service, with the radius directly proportional to its value (Figure 7.9). 

Through this option users can easily visually identify clients with higher required service values. 

 

Figure 7.9 Visualization area displaying the service required by clients. 

 

Finally, pan, zoom out/in, and zoom to fit allow fully evaluating the location of the elements in 

the map by changing the visualization scale. 

7.2.4 Obtaining and Visualizing Solutions 

Solution(s) can be obtained by: 

· importing a solution file 

· executing the algorithms. 

Importing solutions from files makes possible to obtain the solution data from other 

(optimization) software packages, using the proposed tool to insert, edit or visualize the problem 

data. On the other hand, the possibility of directly executing one of the supported algorithms 



7.2. Graphical User Interface 167 

 

(where several runs can be performed, as randomness may be associated with the algorithms) 

enables the quick test of alternative scenarios. 

As several types of problems are supported, it may be difficult for users to correctly identify the 

problem which they are addressing. For this reason, the tool abstracts the user (by default) from the 

choice of the type of problem (and consequently from the algorithms to use); still, the user is 

allowed to change it (top of Figure 7.10). After the type of problem (and corresponding model) has 

been obtained, users must define the desired objective(s) and algorithm (a list of algorithms able to 

solve the specific model is shown to users; as seen in the bottom of Figure 7.10). 

 

 

 

Figure 7.10 Choice and configuration of the type of problem (top) and algorithm (bottom). 
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After being obtained, an overview of the solution(s) data (algorithm name, time, objective 

function name and value) is displayed in a control panel (Figure 7.11). This allows the user to, at 

any given point, restore (or compare with) a solution previously obtained. Additionally, a solution 

data panel (Figure 7.12) displays all the data of the selected solution, namely, the total objective 

function value, depots to install and the vehicle routes data (capacity, assigned colour and tracing). 

Both options (control and solution data panels) use modeless dialog boxes (Microsoft Corporation, 

2010) allowing a quick change between them and the main window. This type of window is most 

useful when performing frequent, repetitive and pending tasks (as obtaining a solution or 

comparing several ones, since a continuous analysis needs to be performed). 

A solution can also be graphically visualized on the visualization area (Figure 7.13, left), where 

lines with different colours (for different routes, in order to facilitate interpretation of solutions) 

link clients and depots, representing the vehicle routes. Moreover, more than one solution can be 

simultaneously displayed, allowing visual comparison (Figure 7.13, right). This may also help to 

identify links common to all “good” solutions, that may be removed from the problem, reducing its 

size and difficulty. 

 

Figure 7.11 Solutions control panel displaying currently obtained solutions. 
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Figure 7.12 Solution data panel displaying (in tree view) all the data of the selected solution. 

 

 

  

Figure 7.13 Solution graphical representation (left) and visually comparing three different solutions (right). 
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Finally, users can contribute to the process of obtaining the solution (possibly capitalizing on 

their experience in the case under study or reflecting constraints not considered in the model). In 

order to do so, they have to define the links that must appear in the final solution and, henceforth, 

all obtained solutions will include them (e.g. some clients are to be serviced in a predetermined 

order). Figure 7.14 depicts this procedure where clients 3 and 20 were forced to be serviced 

sequentially, and a solution was obtained obeying it. 

 

 

Figure 7.14 Solution where the user defined clients 3 and 20 are to be serviced sequentially (seen in the 

top-right corner). 

 

7.2.5 Data Output and Other Characteristics 

Regarding data output, the following options are available: 

· printing the visualization area 

· exporting data 

· saving data to a file. 

All the information displayed in the visualization area, namely, elements graphical 

representation, map and solution(s), can be printed; and data regarding clients, depots and vehicles 

can be exported to easily understandable XML format files (following the previously presented 

data structure) facilitating the integration with other applications. 

Saving all the data to a single file (equally with XML format) is also possible. This allows users 

to easily recover previously saved problems, as well as editing the corresponding data outside of 

the tool. 
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Finally, besides the previously mentioned options, other characteristics have been added in 

order to improve the tool’s usefulness (e.g. the ability to define a different language, the possibility 

of integrating other algorithms, and a help file documenting the tool). 

7.3 Usability Evaluation 

The GUI and all its visualizations were developed taking into consideration usability principles and 

guidelines, as well as feedback from several users. Usability testing was also performed in order to 

understand its potential and limitations. Initially, heuristic evaluation (Dix et al., 2004) was made 

by two evaluators with knowledge in usability (producing a list of possible usability problems), 

then, usability testing was made with the collaboration of a total of 50 users. Users were computer 

engineering students attending an introductory course on HCI. The choice was due to being users 

with high computer literacy, knowledge of HCI issues, and some experience with map applications, 

albeit possessing little knowledge of the problem at hand. This set of users may help find more 

easily usability problems, as well as test the ability of users with little or no experience on real-

world depot installation decisions to use the tool. 

In the usability testing, observation techniques and questionnaires (Ware, 2004; Mitchell, 2007) 

were used to evaluate data input, some of the adopted interface objects, ease of navigation, and 

some of the proposed visualizations. Two different sets of tasks were devised for users to perform. 

The first was composed of a set of 16 tasks, while the second had 20 tasks. The tasks were 

relatively simple, yet regarded representative of the most common operations to be performed by 

target users.()() 

Users had to complete each task in a given time window, and were observed concerning the 

following data in each task: 

· time required to perform the task 

· whether completion of the task was successful 

· if mistakes were made 

· if the user felt lost 

· if the user requested help from the observer 

· difficulty to complete the task (both judged by the user and observed). 

After completion of all tasks of the given set, users were asked about age, gender, and previous 

experience with map applications; and to evaluate several features using a qualitative scale: 

where “1” is complete disagreement, “5” is complete agreement and “N” corresponds to not having 

an opinion or not wanting to express it. Moreover, users were encouraged to provide comments or 

suggestions. 

1 2 3 4 5 N 
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Results regarding users’ opinion, as well as the list of tested features, can be found in Table 7.2, 

from where a general positive opinion can be inferred. 

 

Table 7.2 Users’ opinion on general and specific aspects of the GUI. 

Feature Median 

A Is easy to learn 4 
B Organization is understandable 4 
C Response time is reasonable 3 
D Is easy to use 4 
E Is easy to insert large amount of data 3 
F Information layout is adequate 4 
G Help is needed using some functionalities 3 
H Further specific knowledge or tool usage experience is required 3 
I Text is easy to read 4 
J Amount of visible information is adequate 4 
K Icons used are easily understandable 4 

 

Looking at Figure 7.15, depicting a cluster analysis dendogram for the users’ opinion on general 

and specific aspects of the GUI, two groups can be seen (1 and 2). Group 1 encompasses aspects 

mainly external to the GUI (namely, user experience, WMS server responsiveness, and ability to 

insert large quantity of data), while group 2 concerns GUI-related features. Table 7.2 shows better 

median values for group 2, reflecting a general positive view of the GUI. 

 

Figure 7.15 Cluster analysis dendogram for users’ opinion on general and specific aspects of the GUI 

(Table 7.2). 
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Results on the two sets of tasks will be discussed in the following subsections, with the first set 

intended to test data input usability, and the second aiming at evaluating visualization aspects of the 

tool. 

7.3.1 Data Input Evaluation 

The first set of tasks mainly intended to test data input options. Eighteen users performed a total of 

16 tasks. Some of the tasks are the following: 

· loading and saving given files 

· changing visibility of graphical representations of the elements 

· inserting data regarding a single client or depot 

· inserting/editing data regarding several clients and depots 

· importing client, depot, and map graphical representations 

· hiding and displaying information on the map 

· identifying and deleting clients and depots. 

The firstly mentioned two tasks were directed at evaluating some interface features (e.g. using 

menu and toolbar options, change viewing conditions); the following two tasks aimed at testing 

data input for both unitary and massive data insertion (thus testing data input using data grids and 

forms, as well as directly on the map); the last three intended to test ease of use of the interaction 

with the WMS and to identify information on the map. 

The data obtained from user performance can be seen in Table 7.3 where, for each of the 16 

tasks, is displayed: median required time (in seconds); number of users who completed correctly, 

with errors, felt lost or requested help; and median values for easiness felt and observed. Figure 

7.16 shows the boxplots of the times taken by users in order to perform the different tasks. 

Observing Table 7.3, as well as Figure 7.16, it can be concluded that the most difficult tasks were 

related to the first contact with the different data input options (tasks 2 to 5)2. This may be due to 

the difficulty to understand some concepts regarding the addressed problem which led to some 

misunderstanding about the data to be inserted (mainly in task 4), which may not happen to users 

with experience on location decisions. 

On the other hand, (task 6) very few users had difficulty completing the massive input of data 

(task 12) (although time to completion somewhat varies, mainly due to the users’ different ability 

to quickly insert data using the keyboard), meaning the previous data input experience helped 

significantly. 

 

 

 

                                                      

2 Task 6 was similar to tasks 4 and 5; however it may be concluded that users did learn from those previous 

tasks and therefore, data concerning task 6 do not show any difficulty. 
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Table 7.3 Data concerning user performance for the first set of tasks. 

  Completed   Easiness 

Task Time Correctly With errors Felt lost Req. help Felt Observed 

1 9      _ 17      _ 0      _ 3      _ 0      _ 5 5 
2 36      _ 17      _ 1      _ 2      _ 0      _ 5 5 
3 15      _ 16      _ 1      _ 5      _ 0      _ 4 5 
4 69      _ 10      _ 5      _ 6      _ 2      _ 4 4 
5 42      _ 14      _ 4      _ 3      _ 0      _ 5 4 
6 34      _ 18      _ 0      _ 0      _ 0      _ 5 5 
7 6      _ 18      _ 0      _ 0      _ 0      _ 5 5 
8 40      _ 17      _ 1      _ 2      _ 0      _ 5 5 
9 10      _ 17      _ 1      _ 2      _ 0      _ 5 5 

10 57      _ 15      _ 3      _ 2      _ 1      _ 5 4 
11 56      _ 15      _ 3      _ 3      _ 0      _ 5 4 
12 120      _ 16      _ 2      _ 4      _ 1      _ 5 5 
13 31      _ 18      _ 0      _ 2      _ 0      _ 5 5 
14 41      _ 17      _ 1      _ 2      _ 0      _ 5 5 
15 8      _ 18      _ 0      _ 1      _ 0      _ 5 5 
16 23      _ 14      _ 3      _ 6      _ 1      _ 5 4 

 

 

Figure 7.16 Boxplots of time spent, in seconds, in each task of the first set of tasks. 
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Accessing menu and toolbar options was considered trivial (tasks 1, 7, 8, and 9). Tasks 10 and 

11 were related with interaction with the WMS where slow server responsiveness led to significant 

time variations. Tasks 13 to 15 aimed at testing the ability of identifying information on the map 

while task 16 regarded visibility options, which performed slightly worse due to the icons used to 

identify the functionality (found by some users to be inadequate). 

Users’ easiness felt values concerning the 16 tasks (Table 7.3) can be seen in Figure 7.17 where 

all mode values are 5, stating a general favourable perception of the GUI; task 4 has the least 

positive opinion and tasks 7 and 15 were considered the easiest. The null hypothesis of equal 

median of the 16 tasks is rejected by the Friedman test (non-parametric ANOVA) for a significance 

value (�) of 5%, as the p-value < 0.00004. Ordering the sum of ranks (Table 7.4) one can confirm 

that task 4 was felt as the most difficult one, followed by task 3. On the other hand, tasks 7 and 15 

were considered the easiest. 
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Figure 7.17 Bar charts of easiness felt values of the first set of tasks. 
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Table 7.4 Sum of ranks for the Friedman test concerning easiness felt values of the first set of tasks. 

Task Sum of ranks 

4 89.5 
3 102.5 
5 116.5 

10 117.5 
16 122.0 
12 122.5 
11 123.5 
9 139.0 

13 146.5 
8 147.5 
1 149.0 

14 149.0 
2 154.5 
6 156.5 
7 170.0 

15 170.0 

 

Table 7.3 suggests a good agreement among the felt and observed easiness. This was 

statistically confirmed using the Wilcoxon matched pairs test for felt and observed values; the null 

hypothesis of equal median was not rejected for a significance value (�) of 5%, except for the pair 

“task 2 felt - task 2 observed” (with a p-value = 0.043)3. As can be shown in Figure 7.18 the 

perception of the users was more favourable (left bar chart) than the observers (right bar chart). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.18 Bar charts of easiness felt (left) and observed (right) values for task 2 of the first set of tasks. 

                                                      

3 This border value suggests that the sample should be increased; so, no definitive conclusions can be drawn. 

15 

9 

6 

3 

4 5 

12 

Fr
eq

ue
nc

y 

Easiness observed 

15 

9 

6 

3 

4 5 

12 

Fr
eq

ue
nc

y 

Easiness felt 



7.3. Usability Evaluation 177 

 

Additional conclusions can also be drawn, namely, for massive input of clients or depots data, 

the preferred method was the data grid (used by around 88% of the users). To identify and delete 

clients and depots data, all users chose the data grid as opposed to the map (probably due to being 

easier and faster to identify). Still, the direct data input on the map was considered valuable since it 

makes easier to obtain coordinates of a specific location. 

Looking at the obtained results, data input options can be regarded as adequate for the intended 

tasks and, consequently, for the operations to be performed in the DST. 

7.3.2 Data Visualization Evaluation 

In the second set of tasks, the main goal was to test the tool’s ability to provide users with accurate 

data visualization features. The set was composed of 20 tasks which were performed by 32 users. 

Some of the tested tasks involved: 

· interacting with the WMS (using zoom and navigation options) 

· identifying clients and depots in the visualization area 

· solving a specific problem using different algorithms 

· obtaining information regarding the visualized solution (e.g. depots to install) 

· obtaining information regarding a specific route 

· changing the visualized solution (also to more than one simultaneously) 

· changing graphical representation of the elements 

· defining constraints on the problem 

· obtaining information when elements overlap the map. 

User ability to easily interact with the WMS was evaluated with the firstly mentioned task; 

while the following task regarded identifying information in the visualization area. Then, easiness 

of obtaining solution(s) was tested, and the following two tasks required information regarding 

(specific aspects of) solution(s) to be given by users. They were also requested to recover 

previously obtained solution(s) to the visualization area, changing graphical representations 

associated with the elements, and to define constraints on the problem. Finally, the ability to obtain 

information when elements overlap the map was tested. 

Data regarding the corresponding user performance are given in Table 7.5, displaying, for each 

task, the same fields as Table 7.3. Boxplots with the time required by users to perform each task (of 

the second set) are shown in Figure 7.19. 
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Table 7.5 Data concerning user performance for the second set of tasks. 

  Completed   Easiness 

Task Time Correctly With errors Felt lost Req. help Felt Observed 

1 10      _ 31      _ 0      _ 5      _ 0      _ 5 5 
2 150      _ 5      _ 19      _ 25      _ 13      _ 3 3 
3 113      _ 24      _ 7      _ 10      _ 1      _ 4 4 
4 30      _ 26      _ 6      _ 8      _ 4      _ 5 5 
5 54      _ 15      _ 14      _ 26      _ 14      _ 3 3 
6 15      _ 29      _ 2      _ 4      _ 3      _ 5 5 
7 40      _ 30      _ 2      _ 0      _ 0      _ 5 5 
8 11      _ 29      _ 1      _ 5      _ 2      _ 5 5 
9 21      _ 26      _ 6      _ 9      _ 4      _ 4 4 

10 60      _ 23      _ 8      _ 19      _ 6      _ 3 4 
11 166      _ 8      _ 24      _ 29      _ 15      _ 3 3 
12 30      _ 15      _ 10      _ 16      _ 7      _ 5 4 
13 20      _ 22      _ 9      _ 10      _ 10      _ 4 4 
14 57      _ 19      _ 10      _ 12      _ 6      _ 4 4 
15 16      _ 27      _ 4      _ 5      _ 2      _ 5 5 
16 64      _ 12      _ 16      _ 16      _ 4      _ 4 3 
17 20      _ 27      _ 3      _ 6      _ 1      _ 5 5 
18 10      _ 31      _ 0      _ 3      _ 1      _ 5 5 
19 18      _ 25      _ 5      _ 5      _ 2      _ 5 5 
20 23      _ 23      _ 7      _ 3      _ 1      _ 4 4 

 

Again, slow server responsiveness led to significant time variations in the interaction with the 

WMS (although selecting the feature, tested in the first task, was straightforward). Moreover, as the 

provided imagery, at some zoom levels, did not provide information on the location of important 

cities (required to perform tasks 2 and 3) many users felt lost. Task 5 results are due to the icon 

assigned to the feature (view required service), which most users had difficulty to find. Although 

the general view of solution data was easily accessible (tasks 8 and 9); regarding obtaining 

information on specific aspects of solutions, namely, cost, capacity and tracing of the routes (tasks 

10 and 11), a high error rate and time variation occurred. This may be due to the need of using a 

different window to obtain the information, which users had difficulty to find. 
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Figure 7.19 Boxplots of time spent, in seconds, in each task of the second set of tasks. 

 

Recovering previously obtained solutions to the visualization area (tasks 12 and 13), which also 

required the use of a different window, was somewhat difficult. In task 16 users had to insert a 

constraint in the problem, and some difficulties were experienced, although they were able to easily 

identify it visually (task 17). Obtaining information from the visualization area was deemed easy 

(task 6), even when elements overlap the map (tasks 19 and 20); as was running the algorithms to 

obtain new solutions (task 7). Confirming results from the previous set of tasks, accessing menu 

and toolbar options was also considered trivial (tasks 4, 15, and 18). 

User easiness felt values, concerning the 20 tasks (Table 7.5), can be seen in Figure 7.20 where 

15 of the 20 tasks have a mode value 5, stating, once again, a general favourable perception of the 

GUI, being the easiest ones tasks 6, 7, and 18. On the other hand, tasks 2, 5, 10, and 11 were 

considered the most difficult ones. The null hypothesis of equal median of the 20 tasks is rejected 

by the Friedman test (non-parametric ANOVA) for a significance value (�) of 5%, as the p-

value < 0.00000. Ordering the sum of ranks (Table 7.6), again tasks 11, 2, and 5 were felt as the 

most difficult ones. On the other hand, tasks 6, 18, and 7 were considered the easiest. 
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Figure 7.20 Bar charts of easiness felt values of the second set of tasks. 

 

Once again, for this second set of tasks, Table 7.5 suggests a good agreement among the felt and 

observed easiness. This was statistically confirmed using the Wilcoxon matched pairs test for felt 

and observed values; the null hypothesis of equal median was not rejected for a significance value 

(�) of 5%, except for the pairs “task 1 felt - task 1 observed” with a p-value = 0.013 and “task 12 

felt - task 12 observed” with a p-value = 0.020. For task 1, Figure 7.21, the perception of observers 

was more favourable (right bar chart) than the users (left bar chart). Concerning task 12, Figure 

7.22, the perception of users was more favourable (left bar chart) than the observers (right bar 

chart). 
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Table 7.6 Sum of ranks for the Friedman test concerning easiness felt values of the second set of tasks. 

Task Sum of ranks 

11 157.0 
2 179.5 
5 183.0 

10 213.5 
14 235.5 
16 252.5 
13 258.5 
12 292.0 
3 298.0 

20 308.5 
9 321.5 
1 342.0 

17 343.5 
4 351.0 

19 353.0 
8 362.0 

15 378.0 
6 400.5 

18 418.5 
7 442.0 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.21 Bar charts of easiness felt (left) and observed (right) values for task 1 of the second set of tasks. 
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Figure 7.22 Bar charts of easiness felt (left) and observed (right) values for task 12 of the second set of tasks. 

 

Results obtained in this set of tasks may lead to conclude that data visualization features are not 

as easy to use as data input options. This was mostly true when users attempted to obtain specific 

numerical results regarding the visualized solution. Also, it should be noted that, the users of the 

second set of tasks did not experienced inputting data (due to happen when using the tool in a real 

scenario), which may have somewhat hampered the results. 

7.4 Summary 

In this chapter a DST developed to address location-routing decisions is presented (accessible 

through the site: http://lore.web.ua.pt/). The tool was developed in XAML, with C# as code-behind 

(based on some XP methodology concepts and practices), and has three main components which 

are discussed here: the data structure, the models (general enough to supported several problems), 

and the GUI. 

The data structure is based on XML and allows supporting several other logistics problems 

besides the most common LRPs (e.g. the CVRP, the multi-depot VRP, and the discrete location-

allocation problem). Regarding the GUI, it allows the exploration of the solution-finding process in 

a way easily understandable by the user. Furthermore, the tool enables access to online geographic 

data through WMSs. A usable user interface was a great concern throughout the development of 

this tool, which was designed to allow decision-makers with a moderate computer literacy to be 

able to obtain good quality solutions without much learning effort. The profile of the target users 

(who may not have specific knowledge on the used methods) as well as the tasks they have to 

perform were taken into consideration in the development of visualization and interaction 

solutions. 
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Usability evaluation was performed which allowed finding usability problems and gather new 

ideas, which helped improve the proposal. Test results allowed identifying usability problems, 

obtaining new ideas, and, at the same time, attesting the ease of use and learnability of the adopted 

visualization solutions. Results were generally positive in the three dimensions of usability: ease of 

learning, ease of use, and satisfaction. 

The main identified problem was concerning the use of additional windows to obtain specific 

numerical data. Firstly, by not having a toolbar button to those functionalities (only accessible from 

the menu), users had some difficulty in finding the corresponding feature. Secondly, as the users 

were starting to get used to having all the information in the main window, the use of other 

windows (even tough of a different type: a modeless dialog box) felt somewhat cumbersome. For 

future releases of the tool, highlighting selected clients and/or depots was also considered an 

interesting feature as it would help identify information on the map (due to the superimposition of 

these elements to the map). 

The main limitation of the usability evaluation is that, although users had high computer 

literacy, and some experience with map applications, they had little knowledge of the problem at 

hand, and thus only partially fitting the target user profile. 

As the best decision may not be the most cost efficient, this type of tool can help DMs make a 

more scientifically supported decision, by providing the total estimated costs of a set of different 

solutions (thus improving the DM’s insight and judgement). From this point it is up to the manager 

to make the decision, taking into consideration the estimated cost, the service level or even the 

company strategy and motivation. 
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Chapter 8 

8. Conclusions 

The location of facilities and the distribution of materials have been studied in this thesis. These are 

two highly related logistics activities that have been addressed using an integrated approach: the 

location-routing problem (LRP). With the purpose of supporting location(-routing) decisions of 

semi-obnoxious facilities, several approaches for LRPs were developed, and incorporated in a 

decision-support tool (DST). 

In this final chapter, main conclusions regarding the developed approaches and decision support 

are summarized. During the course of the work presented in this thesis some limitations, future 

work, and promising research directions were also identified. These will be presented in the 

following subsections. 

8.1 General Conclusions 

The LRP has been attracting increasing attention from the research community (see Appendix A 

for a brief analysis). This problem has been studied using different objectives and constraints, 

representing different real-world scenarios, which has led to a somewhat disperse body of 

knowledge. With the taxonomy presented in this thesis, it becomes possible to segment the existing 

research, where several variants of the LRP have emerged as poorly studied, and foster future 

studies. Although mainly focused on the problems intrinsic characteristics, the taxonomy also 

categorizes papers according to the adopted algorithmic approaches and used objectives, which 

were analysed, and some conclusions drawn. 

Regarding the different algorithmic approaches a separation was made between exact and 

heuristic, with different found methods being listed. As the LRP is NP-hard, exact approaches are 

restricted to small instances. In order to tackle bigger instances, heuristic approaches are required to 

be employed. However, due to the lack of comprehensive studies benchmarking solution quality, 

no absolute conclusion can be made on the effectiveness of a single method or approach. 

Moreover, the lack of strong lower bounds (for almost all variants of the LRP) makes increasingly 

difficult to conclude on the performance of heuristics for large instances. 

Looking at objectives found in LRP papers, a natural separation is regarding the number of 

addressed objectives (single- or multi-objective), which leads to different models and approaches. 

This was also the separation adopted in the proposed taxonomy. The majority of single-objective 

models focused on cost (or a surrogate such as distance) minimization. Multi-objective models 
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have revealed to be scarcely studied, with objectives falling into the category of cost minimization, 

environmental aspects or equitable distribution. 

From the newly proposed LRP taxonomy two basic single-objective problems were chosen to 

be studied: the capacitated LRP (CLRP) and the location-arc routing problem (LARP). For solving 

the CLRP a new metaheuristic (active guided search) was developed, with results suggesting that 

the approach is competitive (providing best average results for two out of the three sets of 

benchmark instances, with reasonable computing times; new best results were also found; and 

several best known results matched). In order to solve the LARP, several constructive methods, 

heuristic improvements, and metaheuristic approaches were proposed. A new set of benchmark 

instances was also developed, which allowed to compare the different proposed approaches. The 

approach that performed best was the tabu search combined with a greedy randomized adaptive 

search procedure (outperforming the remaining, results wise, and being extremely competitive 

regarding computing times). The newly developed instances also appeared to be balanced 

(concerning location and routing costs) and representative of several different cost configurations. 

The previous basic single-objective LRPs addressed only cost minimization. However, when 

considering the location of a semi-obnoxious facility, several other objectives gain relevance. By 

reviewing the obnoxious and semi-obnoxious facility location (and routing) literature, two other 

important objectives (besides cost) were identified: obnoxious effect minimization and equitable 

distribution (through the minimization of the maximum individual obnoxious effect). This suggests 

the use of multi-objective approaches in the location(-routing) of these facilities (being defined and 

modelled as a multi-objective CLRP). 

Two types of approaches can be thought of when solving multi-objective problems (each 

corresponding to a different decision-making scenario): non-interactive and interactive methods. 

Approaches for both methods are proposed in this thesis. 

The defined multi-objective CLRP was firstly solved using an evolutionary algorithm (a non-

interactive method). Regarding the three addressed objectives, it could be concluded that obnoxious 

effect and equity seem positively correlated, while cost is negatively correlated with the remaining 

two objectives. Results also suggest that the study of the location of semi-obnoxious facilities 

should simultaneously consider routing, as the routes (and corresponding cost) may change 

significantly when different possible facility locations are considered. 

Concerning interactive methods for multi-objective mixed integer programming (MOMIP) 

problems (as is the defined multi-objective CLRP), current state of the art was reviewed. The 

review pointed to an open communication protocol paradigm as the most appropriate for current 

decision-making scenarios. A new interactive multi-objective method, following the open 

communication protocol, was thus proposed. The newly proposed method relies on graphical and 

numerical information, and is not too demanding from the decision maker (DM) point of view. 

Computation wise, it uses a weighted sum program that enables to obtain all non-dominated 

solutions of any given MOMIP problem (being applied to a multi-objective CLRP test instance 

with a step-by-step example). 
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LRP approaches have been somewhat restricted to the academic community. However, the 

underlying location and routing decisions are essential for the correct management of 

organizations. In order to effectively support these decisions, a computation tool must be made 

available to DMs (from which the general public can also profit). Such a tool should be able to 

incorporate advanced algorithms and, at the same time, be easy to learn and work with. For the 

correct development of such a tool, firstly, the decision-making process was studied, where it could 

be concluded that a decision support system (DSS) is most applicable to this type of problems. 

Then, the development of a DSS application (DST) was analysed, with main DSS components, 

stakeholders, development activities, and software development methodologies being identified. 

Out of the main software development methodologies, extreme programming was found to be the 

most appropriate for the development of the intended DST (mainly due to the constant user 

feedback, reduced development time, and frequent releases). 

Finally, the developed DST is presented, with its main components (data, models, and user 

interface) and functionalities discussed. The adopted data structure allows supporting not only 

(several variants of) the LRP but also other closely related problems. Regarding the graphical user 

interface (GUI), it allows the exploration of the solution-finding process in a way easily 

understandable by the user. This was one of the main concerns throughout the development of the 

tool, which was designed to allow DMs with a moderate computer literacy to be able to obtain 

good quality solutions without much learning effort. The profile of the target users (who may not 

have specific knowledge on the used methods), as well as the tasks they intend to perform, were 

taken into consideration in the development of visualization and interaction solutions. 

To test the adopted visualization and interaction solutions, usability evaluation (usability 

testing) was performed, allowing to find usability problems and gather new ideas to help improve 

the proposal. Two sets of tasks were devised to test data input and visualization features, where 

data visualization features appeared to be not as easy to use as data input options. This was mostly 

true when users attempted to obtain specific numerical results regarding the visualized solution. 

Nevertheless, overall results attest the ease of use and learnability of the GUI, being generally 

positive in the three dimensions of usability: ease of learning, ease of use, and satisfaction. 

8.2 Limitations 

During the development of the work presented in this thesis some limitations were identified, 

which will be enumerated, as follows, for future consideration. 

The metaheuristic presented to tackle the single-objective CLRP, although appearing 

competitive when comparing with other approaches in the literature, may require further testing, 

mainly on real-world instances (as existing sets of benchmark instances are mostly randomly 

generated). This potential limitation derives from the fact that tuning of the metaheuristic took into 

consideration results obtained in the specific sets of benchmark instances, which may have led to 

biased results. This may, however, also hold true for the remaining approaches in the literature. 
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Regarding the LARP, conclusions on the proposed approaches were based on the results 

obtained for the newly devised set of benchmark instances. However, not only the instances lack 

lower bounds, but also the developed upper bounds used the same local search methods (although 

within different frameworks). This may prevent from allowing to draw absolute conclusions on the 

performance of the proposed approaches, as well as the applicability of the instances. 

The benchmark instances used to evaluate the proposed multi-objective CLRP evolutionary 

algorithm, were devised envisioning the location of desirable facilities. Therefore, for undesirable 

(obnoxious and semi-obnoxious) facility location (the underlying decision of the defined multi-

objective CLRP), although the clients structure might hold, the possible depot locations will 

eventually be different. Moreover, lacking results from other multi-objective approaches, the 

proposed algorithm could only be compared with regards to one of the objective functions (cost) 

and the number of generated non-dominated solutions. 

Concerning the interactive multi-objective method (presented for tackling MOMIP problems), 

although, from a numerical point of view, being equally valid for more than three objectives, the 

graphical representation may result confusing. Moreover, the number of subregions to be 

eliminated may be less relevant as the total number of obtained subregions greatly increases with 

the number of objectives considered, while still only two of the subregions are to be eliminated by 

unfeasibility and dominance. Another limitation of the proposed method is that the three objective 

proposal may require dedicated graphical tools, as by hand drawing of the three-dimensional object 

may be somewhat confusing and error prone. 

Finally, regarding the developed DST, usability evaluation was performed (using two sets of 

tasks) in order to validate the GUI and obtain new ideas. Obtained results were encouraging on 

both sets of tasks, although performing worst in the second set. Two limitations of the study were: 

the users of the second set of tasks did not experienced inputting data, which is due to happen when 

using the tool in a real scenario; users had high computer literacy, and some experience with map 

applications, yet little knowledge of the problem at hand, and thus only partially fitting the target 

user profile. 

8.3 Future Work 

Encountered limitations and ideas led to consider some future work and identify promising 

research directions, which will be addressed in this last section. 

Development of new sets of benchmark instances may prove useful, as the existing sets are 

mostly randomly generated. New sets should either be based on real-world problems, or generated 

using a structure that allows to draw conclusions on which real-world situation is more fit to be 

tackled with a specific approach. In the latter case, in order to allow to make inferences, a 

sufficiently large sample of instances with different cost structures, spreading and grouping 

patterns is required. For the different LRP variants addressed in this thesis, this need was identified 

for the (single- and multi-objective) CLRP and the LARP. 
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The development of new sets of benchmark instances would allow to further test the proposed 

approaches, as well as draw more conclusions on their applicability to specific scenarios. 

New lower and upper bounds to tackle the LARP and the defined multi-objective CLRP should 

also be developed. For the LARP, it would enable to further test the proposed instances and fine-

tune the approaches. Regarding the defined multi-objective CLRP, a deeper analysis could be 

provided, as the existence of other approaches would allow to compare results using most common 

quality metrics in the multi-objective literature, namely, distance to the Pareto-optimal front and 

diversity (space covered of the obtained non-dominated front). 

The evolutionary algorithm, proposed for tackling the defined multi-objective CLRP, could be 

improved with the inclusion of local search. It has been proven, in the single-objective literature, 

that genetic algorithms perform better when hybridized with local search procedures (although 

hybridization is still rarely used in multi-objective optimization). 

Regarding the interactive multi-objective method, and following the work by Ferreira (1997), a 

new proposal can also be made. By applying the Tchebycheff metric, instead of the weighted sum 

program, it may be possible to increase the knowledge regarding the explored regions at each 

iteration. Larger regions would be eliminated by unfeasibility, while still maintaining the 

advantages of the proposed method. 

Finally, the proposed DST has significant room for improvement, either by encompassing other 

variants of the LRP (or related problems), or by incorporating other functionality (e.g. integrating 

with geographic information systems). Also, the proposed interface solutions can be used to 

develop a browser-based application (or a Web service). Providing such an application may further 

improve the availability of the tool to DMs, while enabling to continuously update and maintain 

both the tool, as well as the used algorithms. 

Nowadays, with the increasing interest and awareness of the importance of these problems, 

further development of DSTs may be a promising research subject, from where both practitioners 

and researchers can profit. Moreover, the need to divulge the works in the area to wider audiences 

(in order to reach DMs) as well as the recent appearance of new and extremely dynamic (and 

increasingly integrated) navigation tools further supports this interest. 

As the best decision may not be the most cost efficient, this type of tool can help DMs make a 

more scientifically supported decision, by providing the total estimated costs of a set of different 

solutions (thus improving the DM’s insight and judgement). From this point on it is up to the 

manager to make the decision, taking into consideration other aspects such as the service level or 

even the organization strategy and motivation. 

Overall, the work presented in this thesis may help to clarify some of the aspects related to the 

LRP, allowing to solve some of its variants, and presenting them in a way that researchers, DMs 

and the general public can use and contribute to. 
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Appendices 

A. A Brief Analysis of the Location-Routing Problem Literature 

This analysis aims to help the reader understand the research trends in the location-routing problem 

(LRP) and identify the core journals for the subject. Firstly, the number of publications per journal 

is analysed. Then, some information on the evolution of the research over the years is presented. 

Finally, this information is cross-analyzed in order to present the publication evolution and identify 

the most significant journals for future publications. 

Some journals have changed their titles over the years. This was the case of “Operational 

Research Quarterly”, called “Journal of the Operational Research Society” since 1978, “AIIE 

Transactions” currently named “IIE transactions”, “Naval Research Logistics Quarterly” that 

became “Naval Research Logistics”, and finally “4OR A Quarterly Journal of Operations 

Research”, which appeared in 2003 replacing “JORBEL” and “Ricerca Operativa”, the journals of 

the Belgian and Italian operations research societies respectively. These changes were taken into 

account in this analysis by considering both the older and the more recent versions of the journals 

as a single publication (since invariably the newer publications led to the discontinuation of the 

older ones). Table A.1 lists for each journal the total number of papers devoted to LRP and the 

number of papers per year. 

Analysing Figure A.1 it is possible to observe the evolution of LRP publications over the years. 

It can be concluded that ever since the 1970s there has been a constant increase of works in this 

area. Another observation that can be made is regarding the algorithmic approach: over the years 

there appears to be a shift of focus from the exact studies to the heuristic approaches (probably due 

to the reasons mentioned in Section 2.2.3). 

Finally, this analysis focuses on the journals with the most publications in the area. Looking at 

Table A.1 it can be concluded that around fifty percent of the publications can be found in only 

four journals: “European Journal of Operational Research” (EJOR), “Transportation Science” (TS), 

“Computers & Operations Research” (C&OR), and “Journal of the Operational Research Society” 

(JORS), formerly named “Operational Research Quarterly”. 

Figure A.2 shows the evolution of LRP publications in the four core journals for the subject. 

One can observe the pioneer and somewhat steady (although not very significant) stream of 

publications in JORS. It is also possible to observe the “competition” between EJOR and TS (from 

1970 to 2000). In the last decade however, TS has lost some of its relevance in LRPs to C&OR. 

 

 



216 Appendices 

 

 

Table A.1 Publications per journal (and year of publication). 

Journal Total Year[number of articles] 
European Journal of Operational Research 25 1980, 1981[2], 1983[2], 1988[2], 1989[3], 

1990, 1994, 1995, 1996[2], 1998, 1999, 
2005[2], 2006, 2007[4], 2008 

Transportation Science 18 1976[2], 1977, 1982, 1985[2], 1988[2], 
1989[2], 1991[3], 1993, 1994, 1995, 
2007[2] 

Computers & Operations Research 11 1990, 1992, 2001, 2002[2], 2005[2], 
2007, 2008, 2009, 2010 

Operational Research Quarterly / Journal of the Operational Research Society 9 1964, 1969, 1989, 1992, 1994, 1996, 
2004, 2006, 2008 

Annals of Operations Research 7 1986, 1993, 1995, 2002, 2009[3] 
Networks 5 1986, 1988, 1990, 1995, 1999 

Operations Research 5 1972, 1988, 1990, 1999, 2009 
Studies in Locational Analysis 4 1993, 1996[2], 1999 
AIIE Transactions / IEE Transactions 2 1979, 1982 

Belgian Journal of Operational Research, Statistics and Computer Science / 4OR 2 1986, 2006 
Computers & Industrial Engineering 2 2002, 2010 
Computers & Mathematics with Applications 2 1977, 1978 

International Journal of Advanced Manufacturing Technology 2 2003, 2005 
Journal of Business Logistics 2 1984, 1996 
Location Science 2 1995[2]  

Naval Research Logistics Quarterly / Naval Research Logistics 2 1985, 1994 
Omega 2 1973, 1993 
Asia-Pacific Journal of Operational Research 1 2001 

Decision Sciences 1 1993 
Discrete Applied Mathematics 1 2004 
INFOR 1 1989 

Interfaces 1 1999 

International Journal of Industrial Engineering 1 2002 
International Journal of Logistics Research and Applications 1 2008 

International Journal of Physical Distribution & Logistics Management 1 2005 
International Journal of Production Economics 1 2004 
International Journal of Systems Applications, Engineering & Development 1 2007 

International Transactions in Operational Research 1 2004 
Journal of Heuristics 1 2005 
Journal of Mathematical Modelling and Algorithms 1 2008 

Journal of Modelling Management 1 2006 
Journal of Regional Science 1 1976 
Journal of Urban Planning and Development 1 1994 

Mathematical and Computer Modelling 1 2005 
OPSEARCH 1 2001 
Operations Research Letters 1 1987 

OR Spektrum 1 2000 
Photonic Network Communications 1 2003 

Production Planning & Control 1 1998 

TOP 1 1998 
Transportation Research Part B 1 1985 
Transportation Research Record 1 1989 

Waste Management 1 1999 
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Figure A.1 LRP publications by year and decade, categorized by algorithmic approach (exact and 

heuristic). 

 

 

Figure A.2 LRP publications by year in the core journals. 
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B. Test Instance Data 

In this appendix data regarding the test instance (used in the step-by-step example of Section 5.3.2) 

are presented. The data were generated having in mind the characteristics of a multi-objective 

capacitated LRP. 

Following the notation given in Sections 3.1.1 and 4.3.1, the test instance is composed of 10 

clients (�) and the number   of depots is 5. Data regarding the clients can be seen in Table B.1. 

The first three columns display, for each client, respectively, the number, x and y coordinates. For 

each client (community) ! ∈ # there is a demand $!  and a size %! , which can be seen in the last two 

columns. The depots’ data are shown in Table B.2 where, similarly to Table B.1, the first three 

columns characterize the depot’s number, x and y coordinate. In the last two columns of Table B.2 

it can be seen the capacity &'  and the cost (' , for each depot ' ∈ ). Finally, the vehicle capacity 

* = 140 and there is no vehicle fixed cost (+ = 0). 

 

Table B.1 Data regarding the clients of the test instance. 

Client X Y $!  %!  

1 24 33 60 60 
2 29 32 40 40 
3 17 29 20 20 
4 9 28 40 40 
5 22 26 20 20 
6 31 25 20 20 
7 30 17 20 20 
8 15 16 60 60 
9 15 9 40 40 

10 27 9 20 20 

 

 

Table B.2 Data regarding the depots of the test instance. 

Depot X Y &'  ('  

1 16 31 280 4 
2 26 29 280 5 
3 16 21 280 10 
4 28 21 280 24 
5 21 12 280 20 
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C. Non-Dominated and Efficient Solutions of the Test Instance 

All the non-dominated solutions of the test instance (used in the step-by-step example of Section 

5.3.2) can be seen in this appendix, where a total of 9 exists. The data of the test instance are 

available in Appendix B. 

Table C.1 displays, for each of the non-dominated solutions, the objective function values (,! , 

! = 1, 2, 3). The graphical representation corresponding to each of the efficient solutions is 

depicted in Figure C.1. 

 

Table C.1 Non-dominated solutions of the test instance. 

Solution ,1 ,2 ,3 

-1  115.0240 18.3037 0.227730 

-2  155.5355 6.8483 0.059434 

-3  138.4380 7.9179 0.054717 

-4  143.0114 7.5433 0.057692 

-5  117.0605 11.6599 0.059004 

-6  115.0433 13.9973 0.212346 

-7  116.6083 10.9503 0.215385 

-8  123.3988 9.8807 0.203279 

-9  125.6691 10.5903 0.057711 
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Figure C.1 Graphical representation of the efficient solutions of the test instance. 
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D. Decision-Support Tool Data Structure 

In the following figures it can be seen the data structure, adopted for the decision-support tool, for 

the depots (Figure D.1), vehicles (Figure D.2), graphs (Figure D.3), and solutions (Figure D.4). 

 

Figure D.1 Data structure of the depots file. 

 

 

 

 

 

 

 

 

 

  <?xml version="1.0" ?> 

  <!--  Created by Rui Borges Lopes (c) University of Aveiro  --> 

- <Depots> 

  - <Depot> 

      <Number>1</Number> 

      <Name>Leiria</Name> 

      <XCoord>1320</XCoord> 

      <YCoord>3224</YCoord> 

      <Capacity>12000</Capacity> 

      <FixedCost>100</FixedCost> 

      <VariableCost>0</VariableCost> 

      <Installed>True</Installed> 

      <Level>1</Level> 

      <Colour>#C0FF0000</Colour> 

    </Depot> 

  - <Depot> 

      <Number>2</Number> 

      <Name>Entroncamento</Name> 

      <XCoord>1650</XCoord> 

      <YCoord>3073</YCoord> 

      <Capacity>12000</Capacity> 

      <FixedCost>150</FixedCost> 

      <VariableCost>0</VariableCost> 

      <Installed>False</Installed> 

      <Level>2</Level> 

      <Colour>#C080C0C0</Colour> 

    </Depot> 

  </Depots> 

  <!--  Depots:        Depots                                                  --> 

  <!--  Depot:         Depot                                                   --> 

  <!--  Number:        Depot number                              int           --> 

  <!--  Name:          Depot name                                string        --> 

  <!--  XCoord:        Depot x coordinate                        double        --> 

  <!--  YCoord:        Depot y coordinate                        double        --> 

  <!--  Capacity:      Depot capacity                            double        --> 

  <!--  FixedCost:     Depot fixed cost                          double        --> 

  <!--  VariableCost:  Depot variable cost                       double        --> 

  <!--  Installed:     Depot has already been installed          boolean       --> 

  <!--  Level:         Depot level (primary, secondary, etc.)    unsignedByte  --> 

  <!--  Colour:        Depot colour                              string        --> 

 



222 Appendices 

 

Figure D.2 Data structure of the vehicles file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  <?xml version="1.0" ?> 

  <!--  Created by Rui Borges Lopes (c) University of Aveiro  --> 

- <Vehicles> 

  - <Vehicle> 

      <Number>1</Number> 

      <Name>Ford 12-AA-25</Name> 

      <Capacity>1000</Capacity> 

      <Availability>5</Availability> 

      <FixedCost>15</FixedCost> 

      <VariableCost>1</VariableCost> 

      <DirectTour>False</DirectTour> 

      <RteLength>0</RteLength> 

      <RteDuration>0</RteDuration> 

      <Level>1</Level> 

    </Vehicle> 

  - <Vehicle> 

      <Number>2</Number> 

      <Name>Opel 84-74-PG</Name> 

      <Capacity>750</Capacity> 

      <Availability>12</Availability> 

      <FixedCost>9</FixedCost> 

      <VariableCost>0</VariableCost> 

      <DirectTour>True</DirectTour> 

      <RteLength>300</RteLength> 

      <RteDuration>0</RteDuration> 

      <Level>1</Level> 

    </Vehicle> 

  </Vehicles> 

  <!--  Vehicles:      Vehicles                                                --> 

  <!--  Vehicle:       Vehicle                                                 --> 

  <!--  Number:        Vehicle number                            int           --> 

  <!--  Name:          Vehicle name                              string        --> 

  <!--  Capacity:      Vehicle capacity                          double        --> 

  <!--  Availability:  Number of available similar vehicles      double        --> 

  <!--  FixedCost:     Fixed cost for each used vehicle          double        --> 

  <!--  VariableCost:  Vehicle variable cost                     double        --> 

  <!--  DirectTour:    Vehicle can only perform a direct tour    boolean       --> 

  <!--  RteLength:     Vehicle maximum route length allowed      double        --> 

  <!--  RteDuration:   Vehicle maximum route duration allowed    double        --> 

  <!--  Level:         Level in which the vehicle operates       unsignedByte  --> 
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Figure D.3 Data structure of the graphs file. 

 

  <?xml version="1.0" ?> 

  <!--  Created by Rui Borges Lopes (c) University of Aveiro  --> 

- <Graphs> 

  - <Graph> 

      <Number>1</Number> 

      <Name>Distance matrix</Name> 

      <Objective>Cost</Objective> 

      <Complete>True</Complete> 

      <Directed>False</Directed> 

    - <Arcs> 

        <SrcObject>C</SrcObject> 

        <SrcNumber>2</SrcNumber> 

      - <Des> 

          <Obj>C</Obj> 

          <Num>1</Num> 

          <Len>55.8</Len> 

        </Des> 

      - <Des> 

          <Obj>D</Obj> 

          <Num>3</Num> 

          <Len>250</Len> 

        </Des> 

      </Arcs> 

    - <Arcs> 

        <SrcObject>D</SrcObject> 

        <SrcNumber>3</SrcNumber> 

      - <Des> 

          <Obj>C</Obj> 

          <Num>2</Num> 

          <Len>250</Len> 

        </Des> 

      </Arcs> 

    </Graph> 

  - <Graph> 

      <Number>2</Number> 

      <Name>Obnoxious effect matrix</Name> 

      <Objective>Obnoxious effect</Objective> 

      <Complete>True</Complete> 

      <Directed>True</Directed> 

    - <Arcs> 

        <SrcObject>D</SrcObject> 

        <SrcNumber>1</SrcNumber> 

      - <Des> 

          <Obj>C</Obj> 

          <Num>4</Num> 

          <Len>13.45</Len> 

        </Des> 

      </Arcs> 

    </Graph> 

  </Graphs> 

  <!--  Graphs:        Graphs                                                  --> 

  <!--  Graph:         Graph                                                   --> 

  <!--  Number:        Graph number                              unsignedByte  --> 

  <!--  Name:          Graph name                                string        --> 

  <!--  Objective:     Corresponding objective name              string        --> 

  <!--  Complete:      Graph is complete                         boolean       --> 

  <!--  Directed:      Graph is directed                         boolean       --> 

  <!--  Arcs:          Arcs with the same source node                          --> 

  <!--  SrcObject:     Arcs source node object type              string        --> 

  <!--                 C = Client | D = Depot                                  --> 

  <!--  SrcNumber:     Arcs source node object number            int           --> 

  <!--  Des:           Arc destination node                                    --> 

  <!--  Obj:           Arc destination node object type          string        --> 

  <!--                 C = Client | D = Depot                                  --> 

  <!--  Num:           Arc destination node object number        int           --> 

  <!--  Len:           Source node to destination length         double        --> 
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Figure D.4 Data structure of the solutions file. 

 

  <?xml version="1.0" ?> 

  <!--  Created by Rui Borges Lopes (c) University of Aveiro  --> 

- <Solutions> 

  - <Solution> 

      <Number>1</Number> 

      <Name>CLRP hybrid extended savings algorithm</Name> 

      <Time>P0DT1H27M14.3998722S</Time> 

    - <Objective> 

        <Number>1</Number> 

        <Name>Cost</Name> 

        <Value>15.445</Value> 

      </Objective> 

    - <Route> 

        <Number>1</Number> 

        <Name>Train</Name> 

        <Capacity>970</Capacity> 

        <VhcNumber>2</VhcNumber> 

        <Colour>#0080C0C0</Colour> 

      - <Objective> 

          <Number>1</Number> 

          <Name>Cost</Name> 

          <Value>7.8</Value> 

        </Objective> 

      - <Stop> 

          <Order>0</Order> 

          <Object>D</Object> 

          <ObjNumber>1</ObjNumber> 

          <Service>P</Service> 

          <SrvAmount>970</SrvAmount> 

          <Fixed>False</Fixed> 

        </Stop> 

      - <Stop> 

          <Order>1</Order> 

          <Object>C</Object> 

          <ObjNumber>4</ObjNumber> 

          <Service>D</Service> 

          <SrvAmount>970</SrvAmount> 

          <Fixed>False</Fixed> 

        </Stop> 

      </Route> 

    </Solution> 

  </Solutions> 

  <!--  Solutions:     Solutions                                               --> 

  <!--  Solution:      Solution                                                --> 

  <!--  Number:        Solution number                           int           --> 

  <!--  Name:          Solution name                             string        --> 

  <!--  Time:          Time needed to obtain the solution        duration      --> 

  <!--  Objective:     Objective                                               --> 

  <!--  Number:        Objective number                          unsignedByte  --> 

  <!--  Name:          Objective name                            string        --> 

  <!--  Value:         Objective value                           double        --> 

  <!--  Route:         Solution route                                          --> 

  <!--  Number:        Solution route number                     int           --> 

  <!--  Name:          Solution route name                       string        --> 

  <!--  Capacity:      Solution route total used capacity        double        --> 

  <!--  VhcNumber:     Number of the assigned vehicle            int           --> 

  <!--  Colour:        Solution route colour                     string        --> 

  <!--  Stop:          Solution route stop                                     --> 

  <!--  Order:         Stopping order (0 stands for departure)   int           --> 

  <!--  Object:        Object type in which the stop was made    string        --> 

  <!--                 C = Client | D = Depot                                  --> 

  <!--  ObjNumber:     Route stop object number                  int           --> 

  <!--  Service:       Service type performed in the stop        string        --> 

  <!--                 D = Delivery | P = Pickup                               --> 

  <!--  SrvAmount:     The amount serviced in the stop           double        --> 

  <!--  Fixed:         The corresponding stop order is fixed     boolean       --> 

 


