19,330 research outputs found

    Multiprocessor task scheduling in multistage hyrid flowshops: a genetic algorithm approach

    Get PDF
    This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The objective is to minimize the make-span, that is, the completion time of all the tasks in the last stage. This problem is of practical interest in the textile and process industries. A genetic algorithm (GA) is developed to solve the problem. The GA is tested against a lower bound from the literature as well as against heuristic rules on a test bed comprising 400 problems with up to 100 jobs, 10 stages, and with up to five processors on each stage. For small problems, solutions found by the GA are compared to optimal solutions, which are obtained by total enumeration. For larger problems, optimum solutions are estimated by a statistical prediction technique. Computational results show that the GA is both effective and efficient for the current problem. Test problems are provided in a web site at www.benchmark.ibu.edu.tr/mpt-h; fsp

    Climbing depth-bounded adjacent discrepancy search for solving hybrid flow shop scheduling problems with multiprocessor tasks

    Full text link
    This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The problem even in its simplest form is NP-hard in the strong sense. The great deal of interest for this problem, besides its theoretical complexity, is animated by needs of various manufacturing and computing systems. We propose a new approach based on limited discrepancy search to solve the problem. Our method is tested with reference to a proposed lower bound as well as the best-known solutions in literature. Computational results show that the developed approach is efficient in particular for large-size problems

    An approach for scheduling a bi-objective flexible flow shop

    Get PDF
    This work considers a hybrid flow shop scheduling problem, a well-known production systems problem. It has been largely studied in the literature as a single objective optimization problem. We analyze a flow shop with two stages and ms identical and unrelated parallel machines at each stage s. Given a set of jobs with their process times, the objective is to schedule the jobs such that both the makespan and the maximum tardiness are minimized. Each job is to be processed on one of the first-stage parallel machines, and then on the second-stage parallel machines. The problem under study is NP-hard and it can be represented as FF2(Pm1,Pm2||w∗Cmax+(1-w)∗ Tmax). When m1=m2= 1 and the objective is only minimize the makespan, our problem reduces to F2||Cmax. A particle swarm optimization (PSO) approach is proposed to solve the problem. In the experimental phase, instances of 5, 10, 20, 50 and 100 jobs were run. The solution quality and run time of PSO is compared with a commercial solver used to solve the mathematical formulation. Experimental study clearly highlights the advantages, in terms of solution quality and run time, of using PSO to solve large-scale problems

    Integrating labor awareness to energy-efficient production scheduling under real-time electricity pricing : an empirical study

    Get PDF
    With the penetration of smart grid into factories, energy-efficient production scheduling has emerged as a promising method for industrial demand response. It shifts flexible production loads to lower-priced periods to reduce energy cost for the same production task. However, the existing methods only focus on integrating energy awareness to conventional production scheduling models. They ignore the labor cost which is shift-based and follows an opposite trend of energy cost. For instance, the energy cost is lower during nights while the labor cost is higher. Therefore, this paper proposes a method for energy-efficient and labor-aware production scheduling at the unit process level. This integrated scheduling model is mathematically formulated. Besides the state-based energy model and genetic algorithm-based optimization, a continuous-time shift accumulation heuristic is proposed to synchronize power states and labor shifts. In a case study of a Belgian plastic bottle manufacturer, a set of empirical sensitivity analyses were performed to investigate the impact of energy and labor awareness, as well as the production-related factors that influence the economic performance of a schedule. Furthermore, the demonstration was performed in 9 large-scale test instances, which encompass the cases where energy cost is minor, moderate, and major compared to the joint energy and labor cost. The results have proven that the ignorance of labor in existing energy-efficient production scheduling studies increases the joint energy and labor cost, although the energy cost can be minimized. To achieve effective production cost reduction, energy and labor awareness are recommended to be jointly considered in production scheduling. (C) 2017 Elsevier Ltd. All rights reserved

    Spatial-temporal data modelling and processing for personalised decision support

    Get PDF
    The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less Keywords Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio

    Optimizing production scheduling of steel plate hot rolling for economic load dispatch under time-of-use electricity pricing

    Get PDF
    Time-of-Use (TOU) electricity pricing provides an opportunity for industrial users to cut electricity costs. Although many methods for Economic Load Dispatch (ELD) under TOU pricing in continuous industrial processing have been proposed, there are still difficulties in batch-type processing since power load units are not directly adjustable and nonlinearly depend on production planning and scheduling. In this paper, for hot rolling, a typical batch-type and energy intensive process in steel industry, a production scheduling optimization model for ELD is proposed under TOU pricing, in which the objective is to minimize electricity costs while considering penalties caused by jumps between adjacent slabs. A NSGA-II based multi-objective production scheduling algorithm is developed to obtain Pareto-optimal solutions, and then TOPSIS based multi-criteria decision-making is performed to recommend an optimal solution to facilitate filed operation. Experimental results and analyses show that the proposed method cuts electricity costs in production, especially in case of allowance for penalty score increase in a certain range. Further analyses show that the proposed method has effect on peak load regulation of power grid.Comment: 13 pages, 6 figures, 4 table

    Spatial-temporal data modelling and processing for personalised decision support

    Get PDF
    The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less Keywords Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
    • 

    corecore