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Time-of-Use (TOU) electricity pricing provides an opportunity for industrial users to cut electricity costs. Althoughmanymethods
for Economic Load Dispatch (ELD) under TOU pricing in continuous industrial processing have been proposed, there are still
difficulties in batch-type processing, since power load units are not directly adjustable and nonlinearly depend on production
planning and scheduling. In this paper, for hot rolling, a typical batch-type and energy intensive process in steel industry, a
production scheduling optimizationmodel for ELD is proposed underTOUpricing, inwhich the objective is tominimize electricity
costs while considering penalties caused by jumps between adjacent slabs. A NSGA-II based multiobjective production scheduling
algorithm is developed to obtain Pareto optimal solutions, and then TOPSIS based multicriteria decision-making is performed to
recommend an optimal solution to facilitate field operation. Experimental results and analyses show that the proposedmethod cuts
electricity costs in production, especially in case of allowance for penalty score increase in a certain range. Further analyses show
that the proposed method has effect on peak load regulation of power grid.

1. Introduction

Time-of-Use (TOU) electricity pricing, a practical demand
response program implemented by many power suppliers
to improve the peak load regulation ability of power grid,
provides an opportunity for electricity users to implement
Economic Load Dispatch (ELD), that is, cut electricity costs
by reducing power loads during on-peak periods and shifting
loads from on-peak to off-peak periods.

Unlike conventional energy conservation to reduce abso-
lute energy consumption, optimizing electricity costs under
TOU pricing means that industrial users adjust their produc-
tion schedule to avoid on-peak time periods, which will have
significant effect on cutting electricity costs. In recent years,
ELD under TOU pricing has become a hot area. Shrouf et al.
[1] proposed a single machine scheduling problem, in which
each time period has an associated price and the objective
is to minimize electricity costs while considering tradi-
tional scheduling performance measures. Fang et al. [2] also

considered job scheduling on a single machine to minimize
total electricity costs under TOU pricing and proposed the
algorithms for uniform-speed and speed-scalable machine
environments, respectively. Mitra et al. [3] formulated mixed
integer linear programming for continuous industrial pro-
cessing, which allows optimal production planning, and
provided a case study for time horizon of oneweek andhourly
changing electricity prices. Furthermore, they improved the
model with integration of operational and strategic decision-
making [4]. Ashok [5] presented a theoretical model for
batch-type load processing and proposed an integer pro-
gramming method to reschedule their operations to reduce
electricity costs under time-varying electricity price, but the
model is an abstract theoretical model and is difficult to be
applied to production directly. Wang et al. [6] proposed an
optimization model to minimize electricity costs for steel
plant, in which both power generation scheduling and batch
production scheduling were considered; although the model
has been believed to be effective under TOU pricing, the
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Figure 1: A process flow diagram of the hot rolling production procedure.

results cannot always be optimal because the production
load units are determined by fixed production planning and
scheduling.

The above analyses motivate the potential for more
benefits by ELD under TOUpricing in hot rolling production
scheduling. Until now, most of the related literatures focused
on specific part of the problem or the abstract simplified
problem; thus there are still difficulties, since the power load
units are not directly adjustable and nonlinearly depend on
the results of production planning and scheduling.

Hot rolling, a typical batch-type and energy intensive
process in steel production with characteristics of strong
schedulability, has become an important aspect of production
organization and energy saving [7]. The general process
flow of hot rolling production is illustrated in Figure 1.
Hot rolling is mainly organized and carried out by batch
scheduling program in steel mill, the primary task of which is
arranging and sequencing slabs into rolling units to smooth
jumps in width, gauge, and hardness between adjacent slabs;
all of these will directly affect product quality. Hot rolling
production scheduling has attracted attention from academia
and industry for a long time. An early method proposed
by Kosiba et al. treated steel production scheduling as a
discrete event sequencing problem and thus formulated it
as a traveling salesman problem [8]. Lopez et al. [9] formu-
lated the problem as a generalized prize collecting traveling
salesman problem with multiple conflicting objectives and
constraints and proposed a heuristic tabu search method to
determine good approximate solutions. Tang and Wang [10]
proposed a modified genetic algorithm based on the multiple
travelling salesman problem. Chen et al. [11] formulated the
problem as a nonlinear integer programming model, and
later it is corrected by Kim [12] and changed to a linear
programming model. Furthermore, Alidaee and Wang [13]
proposed a corrected integer programming formulation and
reduced the quantity of variables. Nevertheless, most of
proposed models are single objective or transformed models
based on weighted-sum approach. Jia et al. [14] formulated
the problem as a multiobjective vehicle routing problem with
double time windows and proposed a decomposition-based
hierarchical optimization algorithm to solve it. Soon after,
they proposed a P-MMAS algorithm to solve the problem;
multicriteria decision-making is performed to recommend
the optimal solution from the Pareto frontier [15]. Moon
et al. [16] proposed a production scheduling model with
time-dependent and machine-dependent electricity cost, in

which makespan was considered by using the weighted-
sum objective but batch sizing was not considered, which is
obviously simpler than batch scheduling problem. Because
of complexity of batch sizing problem, Sarakhsi et al. [17]
proposed a hybrid algorithm of scatter search and Nelder-
Mead algorithms to improve the performance of solving
algorithm.

Due to high energy consumption and rising energy
costs in hot rolling production [18], energy saving has also
been considered combined with the traditional objective
mentioned above. As is shown in Figure 1, slabs are heated
to high temperature before being rolled; the total energy
consumed in heating is affected by batch schedule. Since
Direct Hot Charge Rolling (DHCR) has significant benefits
on energy cost, great efforts have been made to improve the
ratio of DHCR while performing batch scheduling [19, 20].
Besides that, optimization of rolling schedule by adjusting
thickness reduction ratio of slabs between the rolling passes,
another way to reduce power consumption that used to drive
rolling motor, has also been proposed [21–23].

As mentioned previously, most methods of hot rolling
production scheduling concentrate on internal production
organization. Although some technical means have been
proposed and applied to achieve energy conservation, their
potential would be exhausted due to equipment and technol-
ogy constraints. In this context, methods utilizing favorable
external environments should be explored for energy saving.
TOU pricing provides an opportunity to reduce electricity
costs, but until now there are few published papers to imple-
ment ELD under TOU pricing for hot rolling production.

This paper considers the Hot Rolling Production Sche-
duling Problem (HRPSP) as a mixture of batch scheduling
problem and time-dependent job-shop scheduling problem.
The rolling units, modeled as power load units, are planned
and scheduled according to TOU prices. Primary objective
of the proposed model is to minimize electricity costs while
considering the traditional objective to minimize penalties
caused by jumps between adjacent slabs. A multiobjective
optimizationmodel and corresponding solving algorithm are
additionally proposed.

The rest of this paper is classified as follows: in Sec-
tion 2, characteristics of the problem and opportunities
under TOU pricing are presented, and amathematical model
with objective to minimize electricity costs in production
is formulated. A multiobjective optimization algorithm is
developed in Section 3 to solve the problem. Section 4
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Figure 2: Diagrammatic sketch of batch scheduling: (a) rolling unit and (b) rolling batch.

is dedicated to the experimental procedure and results to
evaluate the proposed method; also the peak load regulation
effect and robustness of the proposed method are further
discussed. Finally, conclusion and future research planning
are given in Section 5.

2. Problem Description and Formulation

HRPSP is an extremely complex problem which has signifi-
cant influence on product quality, production efficiency, and
energy consumption. In this paper, we study the Hot Rolling
Batch Scheduling Problem (HRBSP) combined with the job-
shop scheduling problem (JSP), where HRBSP focuses on
how rolling units are organized and the JSP concentrates on
when the rolling units are processed.

2.1. Problem Description. Hot rolling batch scheduling is a
key process in hot rolling. The task of HRBSP, as is depicted
in Figure 2, is to select, group, and sequence slabs into
rolling units with the constraints of production capacity and
rolling rules. Each rolling unit has a coffin-shaped width
profile consisting of a warming-up section and a coming-
down section. In the previous section slabs are arranged from
narrow to wide to warm up the rolls, and in the later section
slabs are scheduled with decreasing width to avoid marking
the coils surface. The major part of a rolling unit is the
coming-down section, in which the quality of rolling mainly
depends on the sequence of slabs. Inmost cases, thewarming-
up section is trivial and can be determined manually.

Several constraints restrict the scheduling, the most
important one of which is to smooth jumps in width, gauge,
and hardness between adjacent slabs. Other constraints, such
as cumulative rolling length of slabs in a rolling unit and
continuous rolling length of slabs with same width, are
also considered to ensure product quality and production
capability.

Because hot rolling is a key energy intensive process
in steel industry, many approaches, such as optimization of
batch schedulingwith the objective of improvingDHCR ratio
and optimization of reduction schedule, have been proposed
to achieve energy saving. In smart grid, TOU electricity
pricing, which is one of the most commonly implemented
demand response programs [24], provides a new opportunity
for steel mill to achieve ELD in hot rolling production,

which means cutting costs by shifting loads according to the
electricity price.

As is shown in Figure 3, a whole day is partitioned into
four types of periods based on the price of electricity: on-
peak, mid-peak, flat-peak, and off-peak periods. We can see
that the power cost for each rolling unit, which not only
is determined by the quantity of power demand but also is
dependent on the corresponding electricity pricing, should
be accumulated piecewise during the processing time.

Compared with flat electricity pricing, the objective of
ELD under TOU pricing is to minimize total power cost,
including charges for power consumed from shifting loads.
In this paper, we assume that rolling units can be scheduled
freely; therefore no operating costs from load shifting are
included. Consequently, rolling production is encouraged
during off-peak periods and discouraged during on-peak
periods. In addition, we should know that the scheduling on
fixed jobs is not always optimal, so the scheduled jobs (i.e., the
rolling units obtained by hot rolling batch scheduling) should
be created and associated with their operation time. Finally,
the problem is turned into optimal scheduling forminimizing
the electricity costs determined by batch scheduling solution
and job-shop scheduling solution under specified electric-
ity pricing, while the traditional objective that smoothing
changes between adjacent slabs should not be ignored to
ensure product quality.

2.2.Mathematical Formulation. We interpret the basicmodel
of the HRBSP as a vehicle routing problem (VRP), which is a
classical combinatorial optimization problem. In the model,
it can be considered that each rolling unit is a vehicle within
limited capacity and each slab is a customer that should be
visited at most once. Suppose that there are 𝑛 slabs to be
scheduled into 𝑚 rolling units; the objective of the problem
is to determine 𝑚 routes (rolling units) to minimize the
total distance traveled (penalties caused by jumps between
adjacent slabs).

The variables used in formulation are listed as follows:

𝑁: a set of slabs;𝑁 = {1, 2, . . . , 𝑛}𝑀: a set of rolling units;𝑀 = {1, 2, . . . , 𝑚}𝑇: a set of time periods; 𝑇 = {1, 2, . . . , 𝑡}𝜋𝑗: electricity price during time period 𝑗𝑊𝑖: power demand of slab 𝑖 during rolling procedure𝑙𝑗: rolling length of slab 𝑗
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Figure 3: Relationship between production scheduling and electricity costs under TOU pricing.

𝑝𝑖: processing time for slab 𝑖𝑃𝑖𝑗: the penalty for rolling slab 𝑗 immediately after
slab 𝑖, where 𝑃𝑖𝑗 = 𝑝𝑤𝑖𝑗 + 𝑝𝑔𝑖𝑗 + 𝑝ℎ𝑖𝑗; 𝑝𝑤𝑖𝑗 , 𝑝𝑔𝑖𝑗, and 𝑝ℎ𝑖𝑗,
respectively, represent the contribution due to width,
gauge, and hardness𝑠𝑖𝑗: binary variable with value of 1 if the widths of slab𝑖 and 𝑗 are the same; otherwise it is 0𝑡𝑠𝑖: processing start time of slab 𝑖𝐿: lower bound of the cumulative length of slabs
scheduled in a single rolling unit𝑈: upper bound of the cumulative length of slabs
scheduled in a single rolling unit𝑅: upper bound of the cumulative length of slabs with
the same width in a single rolling unit𝑇𝑆: total time that can be allocated for production

Five decision expressions are defined to identify the
scheduling solution as follows:

𝑥𝑘𝑖𝑗
= {{{

1 if slab 𝑗 is immediately after slab 𝑖 in unit 𝑘,
0 otherwise,

𝑦𝑘𝑖 = {{{
1 if slab 𝑖 is scheduled in rolling unit 𝑘,
0 otherwise,

𝑟𝑘𝑖𝑗
= {{{

1 if slab 𝑗 is rolled after slab 𝑖 in rolling unit 𝑘,
0 otherwise,

𝑑𝑗𝑖 = {{{
1 if slab 𝑖 is processed in time periods 𝑗,
0 otherwise.

(1)

V𝑖, a positive integer or 0, is a variable to indicate the idle
time allocated to rolling unit 𝑖 before production.

Note that production efficiency may not always be the
only one target in engineering, especially when production
capacity is abundant; then the target of our model is to
minimize electricity costs on the premise of processing all
products in given time horizon. According to basic VRP
model combined with consideration of relationship between
slab processing sequence and processing time as shown in
Figure 3, we formulate the hot rolling production optimiza-
tion problem as

min 𝑓1 = ∑
𝑘∈𝑀

∑
𝑖∈𝑁

∑
𝑗∈𝑁

𝑃𝑖𝑗 ⋅ 𝑥𝑘𝑖𝑗 (2)

min 𝑓2 = ∑
𝑗∈𝑇

(𝜋𝑗 ⋅ ∑
𝑖∈𝑁

𝑊𝑖 ⋅ 𝑑𝑗𝑖) (3)

s.t. ∑
𝑖∈𝑁

𝑥𝑘𝑖𝑗 = 𝑦𝑘𝑗 , 𝑗 ∈ 𝑁, 𝑘 ∈ 𝑀 (4)

∑
𝑗∈𝑁

𝑥𝑘𝑖𝑗 = 𝑦𝑘𝑖 , 𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀 (5)

∑
𝑘∈𝑀

𝑦𝑘𝑖 = 1, 𝑖 ∈ 𝑁 (6)

∑
𝑖∈𝑁

𝑟𝑘𝑖𝑗 ⋅ 𝑠𝑖𝑗 ⋅ 𝑙𝑗 ≤ 𝑅, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝑀 (7)

𝐿 ≤ ∑
𝑖∈𝑁

𝑦𝑘𝑖 ⋅ 𝑙𝑖 ≤ 𝑈, 𝑘 ∈ 𝑀 (8)

0 ≤ ∑
𝑖∈𝑀

V𝑖 ≤ 𝑇𝑆 − ∑
𝑖∈𝑁

𝑝𝑖 (9)

∑
𝑘∈𝑀

𝑟𝑘𝑖𝑗 ≤ 1, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (10)

𝑥𝑘𝑖𝑗 ≤ 𝑟𝑘𝑖𝑗, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝑀 (11)

𝑟𝑘𝑖𝑗 ≤ 𝑦𝑘𝑖 , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝑀 (12)

𝑟𝑘𝑖𝑗 ≤ 𝑦𝑘𝑗 , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝑀, (13)

where objective 𝑓1 is the traditional objective to ensure
product quality, which means to minimize the total penalties
caused by jumps between adjacent slabs, and objective 𝑓2
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means to minimize the total electricity costs in hot rolling
production, in which 𝑑𝑗𝑖 can be further formulated as

𝑑𝑗𝑖 = {{{
1 if∑

𝛼<𝑗

𝜆𝛼 ≤ 𝑡𝑠𝑖 < ∑
𝛼≤𝑗

𝜆𝛼,
0 otherwise, (14)

where the condition correspond to 𝑑𝑗𝑖 = 1 means that slab 𝑖
is processed in time period 𝑗. Note that variable 𝑡𝑠𝑖 not only
is determined by which rolling units the slab is scheduled in
but also depended on the processing time of previous slabs
and the idle time allocated for rolling units; then it can be
expressed as

𝑡𝑠𝑖 = ∑
𝛿∈𝑀

𝑦𝛿𝑖
⋅ (∑
𝛽<𝛿

∑
𝛼∈𝑁

𝑦𝛽𝛼 ⋅ 𝑝𝛼 + ∑
𝛼≤𝛿

V𝛼 + ∑
𝛽=𝛿

∑
𝛼∈𝑁

𝑟𝛽𝛼𝑖 ⋅ 𝑝𝛼) ,
(15)

where 𝛿 is a traversal variable to search the rolling unit
that slab 𝑖 is allocated in; expression in brackets indicates
the cumulative time before processing slab 𝑖. If slab 𝑖 is not
allocated in rolling unit 𝛿, the expression in brackets would
be ignored because 𝑦𝛿𝑖 = 0.

Constraints (4) and (5) specify the sequence of slabs in
a rolling unit. Constraint (6) ensures that each slab can be
scheduled only once. Constraint (7) restricts the cumulative
length of continuously rolled slabs with the same width
in each rolling unit. Constraint (8) indicates rolling mill
production capacity, which restricts the lower and upper
bounds of cumulative length of slabs in each rolling unit.
Constraint (9) means that the total idle time allocated for
rolling units cannot be greater than margin of production
capability. Constraints (10)–(13) restrict the value of 𝑟𝑘𝑖𝑗, 𝑥𝑘𝑖𝑗,
and 𝑦𝑘𝑖 according to their logical relationship.

3. Production Scheduling
Optimization Method

As known that VRP is a classical NP-hard problem, it is hard
to find the optimal solution for large scale problem. Since
there are a large number of slabs in the day-ahead scheduling
problem combined with complex objective functions, such
as 𝑓2 with quadratic equation (15), it is difficult to find the
exact optimal solution, even a feasible solution. In this paper,
the production scheduling method consists of two stages.
In the first stage, objectives shown in (2)-(3) are optimized
simultaneously, and a set of Pareto optimal solutions is gen-
erated by the multiobjective optimization algorithm. In the
second stage, TOPSIS based multicriteria decision-making
is performed to recommend an optimal solution to facilitate
field operation.

3.1. NSGA-II Based Multiobjective Optimization. Recently,
many swarm intelligence algorithms are introduced to solve
complex optimization problem, in which Nondominated
Sorting Genetic Algorithmwith Elitism (NSGA-II) proposed
by Deb [25] is a typical method to solve multiobjective prob-
lem. NSGA-II has been widely used to solve combinatorial
optimization problems in engineering, such as hydrothermal
power scheduling problem [26], job sequencing problem
[27], and flow-shop scheduling problem [28]. In this paper, a
NSGA-II based Multiobjective Production Scheduling Algo-
rithm (MOPSA) is developed to solve the HRPSP; some
personalized changes are made to instantiate the algorithm,
in which themost important things are designing customized
chromosome code and genetic operators to adapt specific
problem.

3.1.1. Chromosome Encoding. In order to contain information
of both batch scheduling and job-shop scheduling, a hybrid
chromosome code consisting of two sections as shown in
Figure 4 is designed. The first section is a natural number



6 Mathematical Problems in Engineering

sequence 𝐶 that can be transformed to a two-dimensional
matrix 𝐵 through a code mapping procedure, where 𝐵
represents a batch scheduling solution and element 𝑏𝑖𝑗 in 𝐵 is
the original sequence of slab 𝑗 in rolling unit 𝑖. For each 𝑖, if the
minimal 𝑗 is foundwhile 𝑏𝑖𝑗 = 0, it can be resolved that the last
slab in rolling unit 𝑖 is 𝑏𝑖,𝑗−1. The second section is a floating
number sequence 𝑉 that represents the idle time allocated
during job-shop scheduling, where job means production of
rolling units.

According to above description, the hybrid chromosome
code 𝐺 can be expressed as

𝐺 = (𝐶, 𝑉) ,
𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝑚×𝑛) ,
𝑉 = (V1, V2, . . . , V𝑚) ,

(16)

where element 𝑐𝑖 in 𝐶 is a natural number that ranged from 1
to 𝑚 × 𝑛, 𝑚 is the quantity of rolling units, 𝑛 is the quantity
of slabs to be scheduled, any two numbers 𝑐𝑖 and 𝑐𝑗 are
assigned to different values, and V𝑖 in 𝑉 represents the idle
time allocated to rolling unit 𝑖 before rolling production.

Detailed steps of the code mapping procedure as men-
tioned previously are listed as follows.

Step 1. Set𝑓𝑖 (𝑖 = 1, 2, . . . , 𝑛) to 0, where𝑓𝑖 is a flag and𝑓𝑖 = 1
represents the fact that slab 𝑖 has been scheduled into rolling
units; for rolling unit 𝑘 (𝑘 = 1, 2, . . . , 𝑚), set num𝑘 = 0, where
num𝑘 means the slab quantity in rolling unit 𝑘; set 𝑑𝑘 = 0,
where 𝑑𝑘 is the accumulative rolling length in rolling unit 𝑘;
set 𝑞𝑘 = 0, where 𝑞𝑘 means the continuously rolled length of
slabs with same width in rolling unit 𝑘; define a loop variable𝑗 and set 𝑗 = 1.
Step 2. Confirm the variables 𝑠 and 𝑘 in accordance with
natural number 𝑐𝑗, by which slab 𝑠 scheduled in rolling unit 𝑘
can be determined. 𝑠 and 𝑘 can be calculated by

𝑠 = 𝑐𝑗 − [𝑐𝑗 − 1𝑚 ] × 𝑚,
𝑘 = [𝑐𝑗 − 1𝑛 ] + 1. (17)

Step 3. Check if condition 𝑓𝑠 = 0 is satisfied:
(i) If it is satisfied, it means that slab 𝑠 is an unscheduled

slab.Then if𝑤𝑠 ̸= 𝑤󸀠𝑘, set 𝑞𝑘 = 0, where𝑤𝑠 is the width
of the slab 𝑠 and𝑤󸀠𝑘 is the width of the latest appended
slab in rolling unit 𝑘. Furthermore, if 𝑑𝑘 + 𝑙𝑠 ≤ 𝑈 and𝑞𝑘 + 𝑙𝑠 ≤ 𝑅, put slab 𝑠 into rolling unit 𝑘 and update
matrix 𝐵(= [𝑏𝑖𝑗]) by 𝑏𝑘,num𝑘 = 𝑠, set num𝑘 = num𝑘 +1,𝑑𝑘 = 𝑑𝑘 + 𝑙𝑠, 𝑞𝑘 = 𝑞𝑘 + 𝑙𝑠, and 𝑓𝑠 = 1.

(ii) Otherwise, go to Step 4.

Step 4. Update 𝑗 = 𝑗 + 1; go to Step 2 to repeat the above
operations until 𝑗 = 𝑚 × 𝑛 + 1.
Step 5. Check if 𝑓𝑖 = 1 (𝑖 = 1, 2, . . . , 𝑛) and 𝑑𝑘 ≥ 𝐿 (𝑘 =1, 2, . . . , 𝑚) are all satisfied:

(i) If they are satisfied, it means that all slabs are
scheduled into rolling units with subjection to given
constraints. Perform idle time allocation procedure
to generate sequence 𝑉 of chromosome code; then𝐺 = (𝐶,𝑉) represent a feasible solution of the model
in this paper.

(ii) Otherwise, a large number should be assigned to
functions 𝑓1 and 𝑓2 to avoid chromosome being
selected into new population in next selection oper-
ator.

The detailed steps of idle time allocation as mentioned
above based on section 𝐶 of chromosome code are listed as
follows.

Step 1. Confirm the electricity price𝜋𝑠𝑖 corresponding to each
rolling unit 𝑖 when the production starts and price 𝜋𝑒𝑖 when
the production completes.

Step 2. Create a random floating number sequence 𝑉 that
represents the idle time allocated for rolling units before
production. For elements in 𝑉, the constraint as (9) in
Section 2.2 must be satisfied.

Step 3. Sort time periods in descending order based on
electricity price; after that, a new set of time periods 𝑇󸀠 =(𝑡󸀠1, 𝑡󸀠2, . . . , 𝑡󸀠𝑡) is generated, in which the price associated with𝑡󸀠𝑘 is 𝜋󸀠𝑘; define a loop variable 𝑗 and set 𝑗 = 1.
Step 4. Adjust the idle time allocation for rolling units. For
each rolling unit 𝑖 that started from time period 𝑡󸀠𝑗, if 𝜋𝑒𝑖 < 𝜋󸀠𝑗
and V𝑖+1 > 0, set V𝑖+1 = 0; V𝑖 = V𝑖 + V𝑖+1; for rolling unit 𝑖 that
completed in time period 𝑡󸀠𝑗, if 𝜋𝑠𝑖 < 𝜋󸀠𝑗 and V𝑖 > 0, set V𝑖 = 0;
V𝑖+1 = V𝑖+1 + V𝑖.

Step 5. Update variable 𝑗 = 𝑗 + 1; go to Step 4 to repeat the
above operation for the left time periods until 𝑗 = 𝑡, which
represent the fact that adjustment of idle time allocation is
completed.

The benefits of hybrid encoding and mapping procedure
above are not only containing complete information of
production scheduling but also handling constraints. From
Step 5, we can see that all constraints from (4)–(8) in
Section 2.2 are satisfied in accepted feasible solution, which
is helpful to reduce the difficulty of problem solving.

3.1.2. Design of Genetic Operators. In order to instantiate the
MOPSA algorithm, customized genetic operators are defined
to match hybrid chromosome code; the most important
operators for genetic algorithm are selection, crossover, and
mutation.

Selection operator, which means selecting individuals
from population, is done based on the frontier rank of
individuals by nondominated sorting. If many individuals
have the same rank, the individual with the maximum
crowded distance will be selected preferentially.

Partially Mapped Crossover (PMX) mentioned in [29]
and Scramble Sublist Mutation (SSM) mentioned in [30] are
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adopted to perform operation on section 𝐶 of chromosome
code.ThePMXoperator is performed on two parent chromo-
somes: randomly select two crossover points 𝑘1 and 𝑘2 and
separate the chromosome code into three sections; swap the
gene codes in range [𝑘1, 𝑘2]; after that, replace the other gene
codes out of range [𝑘1, 𝑘2] according to mapping relationship
determined by the middle section.

Unlike the crossover operator, SSM mutation operator is
performed on single parent chromosome: randomly select
two positions 𝑝1 and 𝑝2 that separated less than a fixed length
in the chromosome code; then rearrange the gene codes
within [𝑝1, 𝑝2].

After crossover or mutation operation, update section 𝑉
of the chromosome code to allocate idle time for rolling units
immediately.

3.1.3. Decision Expressions and Fitness Function Calculation.
We choose the objective functions 𝑓1 and 𝑓2 to be the fitness
functions in our genetic algorithm. 𝑓1 represents penalties
and 𝑓2 represents electricity costs in production, which are
both cost-oriented and need to find minimum value.

In fitness function calculation,most needed variables and
expressions are static and can be precomputed except the
variables 𝑥𝑘𝑖𝑗 in 𝑓1 and 𝑑𝑗𝑖 in 𝑓2, so the key of fitness function
calculation is to determine the values of 𝑥𝑘𝑖𝑗 and 𝑑𝑗𝑖 based on
chromosome code.

According to the characteristics of chromosome code in
this paper, we usematrix𝐵(= [𝑏𝑖𝑗]) generated in chromosome
code mapping procedure instead of part 𝐶 to perform the
following calculation. In order to determine the value of𝑥𝑘𝑖𝑗, each row in matrix 𝐵 should be traversed to search the
adjacent elements that satisfy the following equation:

𝑏𝑘,𝑗1 = 𝑖,
𝑏𝑘,𝑗1+1 = 𝑗, (18)

where the first equation means slab 𝑖 is assigned in rolling
units 𝑘 and processedwith the sequence 𝑗1 and the next equa-
tion indicates that slab 𝑗 is allocated after slab 𝑖 immediately in
rolling unit 𝑘. 𝑥𝑘𝑖𝑗 can be determined to be 1 if (18) is satisfied;
otherwise, it is 0. For each rolling unit 𝑘, penalties between
adjacent slabs are accumulated by 𝑃𝑖𝑗 ⋅ 𝑥𝑘𝑖𝑗.

Meanwhile, it should be noted that calculation of 𝑑𝑗𝑖 in𝑓2 would depend not only on 𝐵 but also on sequence 𝑉 that
represents the allocated idle time for rolling units. According
to (14)-(15) defined in Section 2.2, the determination of 𝑑𝑗𝑖
mainly depends on variables 𝑦𝑘𝑖 , 𝑟𝑘𝑖𝑗, and V𝑖, in which the
first two variables can be easily calculated on matrix 𝐵 by a
traversal procedure as done in determining 𝑥𝑘𝑖𝑗, and the last
variable V𝑖 can be directly identified by the sequence 𝑉 in
chromosome code. Once 𝑑𝑗𝑖 is known, fitness function 𝑓2 can
be accumulated by 𝜋𝑗 ⋅ 𝑊𝑖 ⋅ 𝑑𝑗𝑖 for each time period.

3.2. TOPSIS Based Multicriteria Decision-Making. AsMOP-
SA generate more than one Pareto optimal solution, in order

to facilitate field operation, only a few solutions should be
accepted. In this paper, Technique for Order Preference by
Similarity to an Ideal Solution (TOPSIS) [31], a widely used
multicriteria decision-making method to identify solutions
from finite alternatives, is adopted as the method to select a
recommended optimal solution.

Detailed steps of the TOPSIS based multicriteria
decision-making for HRPSP are listed as follows.

Step 1. The decision matrix𝑋 can be expressed as

𝑋 = [[[[[[[

𝑥11 𝑥12𝑥21 𝑥22... ...𝑥𝑚1 𝑥𝑚2

]]]]]]]
, (19)

where 𝑋 is a two-dimensional matrix with the size of 𝑚 × 𝑛,
which means that there are 𝑚 solutions generated by the
multiobjective algorithm and 𝑛 objectives for the HRPSP,
where 𝑛 = 2. The element 𝑥𝑖𝑗 in 𝑋 is the value of the𝑗th objective with respect to the 𝑖th solution. Then the
normalized decision matrix 𝑍(= [𝑧𝑖𝑗]) can be calculated
according to

𝑧𝑖𝑗 = 𝑥𝑖𝑗√∑𝑚𝑖=1 𝑥2𝑖𝑗 . (20)

Step 2. Multiply the normalized decision matrix by its asso-
ciated weights to calculate the weighted normalized decision
matrix 𝑉(= [V𝑖𝑗]), in which V𝑖𝑗 is calculated as

V𝑖𝑗 = 𝑤𝑗 ⋅ 𝑧𝑖𝑗, (21)

where 𝑤𝑗 is a weight factor associated with the 𝑗th objective.
In our context,𝑤1 and𝑤2 are set to different values according
to preference of two objectives.

Step 3. Identify the ideal solution 𝑠+ and the nadir solution 𝑠−
of each objective according to the following equations:

𝑠+ = (𝑠+1 , 𝑠+2 ) ,
𝑠+𝑗 = {{{

max
1≤𝑖≤𝑚

V𝑖𝑗 if 𝑓𝑗 is benefit-oriented,
min
1≤𝑖≤𝑚

V𝑖𝑗 if 𝑓𝑗 is cost-oriented,
𝑠− = (𝑠−1 , 𝑠−2 ) ,
𝑠−𝑗 = {{{

min
1≤𝑖≤𝑚

V𝑖𝑗 if 𝑓𝑗 is benefit-oriented,
max
1≤𝑖≤𝑚

V𝑖𝑗 if 𝑓𝑗 is cost-oriented.

(22)

It should be known that both of the objectives in HRPSP
are cost-oriented, which are said to find the minimum of
objective functions.
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Table 1: Production data description.

Group Id Slab quantity Rolling units quantity Processing time/(min) Characteristics
1 450 8 1421.75 Many varieties of slabs and full production load
2 415 8 1323.05 Many varieties of slabs and not full production load
3 450 8 1427.88 Few varieties of slabs and full production load
4 415 8 1318.33 Few varieties of slabs and not full production load

Table 2: TOU electricity tariffs.

Time period Time frame Electricity price/(CNY⋅kWh−1)
On-peak 18:00–21:00 0.878
Mid-peak 08:00–11:00, 15:00–18:00 0.778
Flat-peak 07:00-08:00, 11:00–15:00, 21:00-22:00 0.628
Off-peak 00:00–07:00, 22:00–24:00 0.428

Step 4. Measure the distances 𝑑+𝑖 and 𝑑−𝑖 of the 𝑖th solution
from the ideal solution 𝑠+ and the nadir solution 𝑠− by

𝑑+𝑖 = √ 𝑛∑
𝑗=1

(V𝑖𝑗 − 𝑠+𝑗 )2, 𝑖 = 1, 2, . . . , 𝑚,

𝑑−𝑖 = √ 𝑛∑
𝑗=1

(V𝑖𝑗 − 𝑠−𝑗 )2, 𝑖 = 1, 2, . . . , 𝑚.
(23)

Step 5. Calculate 𝐶∗𝑖 that represents the relative closeness of𝑖th solution with respect to the ideal solution according to

𝐶∗𝑖 = 𝑑−𝑖(𝑑−𝑖 + 𝑑+𝑖 ) , 𝑖 = 1, 2, . . . , 𝑚. (24)

After completing the above steps, the decision-making
can be finally performed on the Pareto optimal solutions
according to the sequence determined by𝐶∗𝑖 (𝑖 = 1, 2, . . . , 𝑚)
in descending order; the solution that owns the maximal rel-
ative closeness will be selected as the recommended optimal
solution.

4. Experimental Results and Analyses

In this section, we perform a series of experiments to evaluate
the effectiveness and performance of the proposedmethod in
different scenario.

4.1. Experimental Procedure. In experimental procedure, four
groups of production data as is shown in Table 1 are collected
from a steel mill for experimental procedure. For each group
of production data, if there are many slab varieties in width,
gauge, and hardness, the penalty score between adjacent slabs
will be larger. At the same time, full production load means
that the idle time for processing slabs will be short.

According to constraints of production equipment and
capability, the lower and upper bounds of the cumulative
length of slabs scheduled in a single rolling unit are, respec-
tively, set to 5 and 10 kilometers, and the upper bound of the

continuously rolled length of slabs with the same width is
set to 1 kilometer. For specific slab, rolling length, processing
time, and power consumption can be obtained by the hot
rolling process control system in steel mill. The penalties
caused by jumps between adjacent slabs in width, gauge, and
hardness are adopted by referring to [8]. The data in Table 2
are actually performed TOU electricity tariffs in steel mill.
According to daily power load distribution, a whole day is
split into eight periods that contain four types of time periods;
each type of time period is associated with corresponding
price.

In order to obtain excellent algorithm performance, the
NSGA-II parameters are determined by parameter sensitivity
analysis based on empirical value and a lot of tests. The
probability of crossover and mutation are set to 0.4 and 0.6,
respectively, the population size is set to 50, and the maxi-
mum iterations of algorithm are set to 5000. The production
scheduling optimization algorithm and TOPSIS decision-
making procedure are both implemented and performed in
MATLAB.

In experimental procedure, the proposedmethod (named
as PM) is compared with two conventional methods to eval-
uate effectiveness and performance. Since exact algorithm
for large scale HRBSP problem is too difficult to implement,
genetic algorithm is often used for solving this problem.
In this paper, a relatively new method in [32] with the
traditional objective to minimize jump penalties is adopted
as a comparison method (named as CM1), in which a hybrid
evolutionary algorithm with integration of genetic algorithm
and extremal optimization is designed to solve the hot rolling
scheduling problem.

Because electricity price during hot rolling changes over
time, it is natural to allocate the processing sequence and
the idle time of rolling units to avoid on-peak time periods;
then theMILPmethod proposed by [6] is adopted as another
comparison method (named as CM2) to find the low bound
of electricity costs on the basis of solution obtained in CM1.

Unlike single objective optimization, the result of mul-
tiobjective optimization is not a single solution but a set of
Pareto optimal solutions; in order to facilitate field operation,
we choose different values of objective weight factors 𝑤𝑗 in
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Table 3: Scheduling results obtained by different methods.

Method Group 1 Group 2 Group 3 Group 4𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2
CM1 5035 313254 4528 296357 2957 315894 2659 299623
CM2 5035 309078 4528 276813 2957 312753 2659 278717
PM, 𝑤 = [0.9, 0.1] 5129 308281 4573 275898 3090 311114 2710 277214
PM, 𝑤 = [0.4, 0.6] 7493 305691 6905 274022 3445 309242 3022 275397
PM, 𝑤 = [0.1, 0.9] 7701 305680 7665 273729 3478 309234 3308 274994

Table 4: Detailed parameters of scheduling results for group 1 of production data.

Method RUS SQ RL PT PD APL PST PCT AIT

PM, 𝑤 = [0.1, 0.9]

1 51 8.53 2.44 56.74 23.25 00:00 02:26 0
2 58 9.95 2.79 64.17 23.00 02:26 05:14 0
3 55 9.92 2.80 60.75 21.70 05:14 08:02 0
4 61 9.94 3.44 68.20 19.83 08:02 11:28 0
5 59 9.96 3.16 66.46 21.03 11:28 14:38 0
6 57 9.81 3.17 62.24 19.63 14:38 17:48 0
7 52 9.10 2.89 54.39 18.82 17:48 20:41 0
8 57 9.94 3.00 66.69 22.23 20:59 23:59 0.3

CM1

1 57 9.80 3.07 63.38 20.64 00:00 03:04 0
2 62 10.00 3.23 67.76 20.98 03:04 06:18 0
3 56 9.92 2.96 63.13 21.33 06:18 09:16 0
4 55 9.47 2.96 62.15 21.00 09:16 12:14 0
5 58 9.91 2.99 63.72 21.31 12:14 15:13 0
6 53 9.53 2.83 59.68 21.09 15:13 18:03 0
7 51 8.54 2.70 56.86 21.06 18:03 20:45 0
8 58 9.98 2.96 62.95 21.27 20:45 23:42 0

RUS: rolling unit sequence; SQ: slab quantity; RL: rolling length (km); PT: processing time (h); PD: power demand (MW⋅h); APL: average power load (MW);
PST: processing start time (HH:mm); PCT: processing complete time (HH:mm); AIT: allocated idle time (hour).

TOPSIS decision-making procedure to recommend solution
with different preference of penalty score and electricity
cost. In our experimental procedure, the objective factors𝑤(= [𝑤1, 𝑤2]) of the proposed method are set to [0.9, 0.1],[0.4, 0.6], and [0.1, 0.9], respectively.

Optimization results obtained by different methods are
provided in Table 3, in which we can see that penalties
obtained by PM with 𝑤 = [0.1, 0.9] are roughly the same
as those obtained by CM1 and CM2 but electricity costs are
cut down obviously. It is obvious that load shifting to reduce
electricity cost inevitably results in an increasing of penalty
score, and we would just like to point out that minimizing
jump penalties is a guiding target but not a strictly rigid
constraint in engineering. If there is allowance for penalty
increase on electricity cost, more significant effect on elec-
tricity cost reduction is shown, which tells us that penalty
relaxation can play an import role, while electricity costs are
the key consideration in production; as a consequence, we can
utilize objective weight factors in TOPSIS procedure to adjust
preferences of the two objectives. In our cases, electricity
cost obtained by PM with TOPSIS decision-making on each
group of data is less thanCM1; even compared to CM2, which
includes load shifting on fixed rolling batches, the result is
still better; this advantage is attributed to TOU pricing based

batching to construct rolling units. Besides that, we can see
that the optimization effect is more significant, while the
production load is not full, that is, groups 2 and 4, which is
caused by more idle time margin which existed to avoid on-
peak time periods in such situation.

4.2. Scheduling Results Analysis. In this section, group 1 of
data is chosen to have a detailed analysis on job scheduling
results firstly. Because the main idea of this paper is ELD,
the proposed method PM with [𝑤1, 𝑤2] = [0.1, 0.9], which
has the most significant effect on electricity cost reduction,
is selected to compare with the conventional method CM1.
Rolling parameters obtained by both methods are given in
Table 4, from which we can see that the parameters are
subjected to instantiated constraints, which represent the fact
that the schedule is feasible solution. Then, we analyze the
scheduling results from two aspects.

On one hand, rolling units in Table 4 are considered as
production jobs and are illustrated in Figure 5. As it can
be seen, in any subfigure, heavy loads are allocated in off-
peak and flat-peak periods by PM, while light loads are
allocated in on-peak or mid-peak periods. In addition, idle
time is allocated at 18:00 to 21:00 for our scenarios. Another
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Figure 5: Illustration of job scheduling results obtained by PM and CM1.

phenomenon is that the power load difference between heavy
load and light load in PM is greater than that in CM1 and
CM2, which is due to the fact that rolling units in PM are
organized by TOU electricity price and their processing time.

On the other hand, average power load distribution
among time periods is illustrated in Figure 6. Compared to
CM1, power load obtained by PM reduces greatly in the last
on-peak periods and increases substantially in last off-peak
period, especially for group 2 and group 4, which are charac-
terized by not full production load. At the same time, power
load in the first off-peak period increases in a certain extent.
In addition, power load distribution obtained by PM is also
better than that obtained by CM2 based on the principle of
load shifting corresponding to TOU pricing, which confirms
the effectiveness and advancement of the proposed method
furthermore.

From above results and analyses, we know that the advan-
tages of our proposed method on electricity cost reduction
can be attributed to two aspects: one is load shifting to avoid
on-peak time periods and the other one is TOUpricing based
load planning.

4.3. Robustness of the Algorithm. It is well known that NSGA-
II is a randomized algorithm; each run of the algorithm
may get different results. For evaluating robustness of the
algorithm, we use box plot to portray the convergence metric
in repeated operation, which is represented by average value
of minimum normalized Euclidean distance and indicates
the disparity between approximate Pareto frontier and ideal
Pareto frontier.

Assume that 𝑃∗ = (𝑝1, 𝑝2, . . . , 𝑝|𝑃∗|) are the optimal
solutions evenly distributed on ideal Pareto frontier and𝐴∗ =
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Figure 6: Power load distribution among time periods.

(𝑎1, 𝑎2, . . . , 𝑎|𝐴∗|) are the approximate solutions obtained in a
single run of the proposed algorithm. For any 𝑎𝑖, minimum
normalized Euclidean distance 𝑑𝑖 between 𝑎𝑖 and 𝑃∗ can be
calculated by

𝑑𝑖 = |𝑃∗|min
𝑗=1

√ 2∑
𝑚=1

(𝑓𝑚 (𝑎𝑖) − 𝑓𝑚 (𝑎𝑗)𝑓max
𝑚 − 𝑓min

𝑚

)2, (25)

where 𝑓max
𝑚 and 𝑓min

𝑚 , respectively, represent the maximum
andminimumvalues of the𝑚th objective function in𝑃∗, and
then the convergence metric 𝐶 can be expressed as

𝐶 (𝐴∗) ≜ ∑|𝐴∗|𝑖=1 𝑑𝑖|𝐴∗| . (26)

Note that the ideal Pareto frontier is always unknown
in real problem; the algorithm proposed in this application

is run 30 times, respectively, on each group of production
data, and then a pseudo-Pareto frontier, which consists of all
the solutions in 30 runs with removing dominated solutions,
is constructed to compare with the approximate Pareto
frontiers. For every run, box plots based on convergence
metrics are illustrated in Figure 7. In general, metric 𝐶 in less
than 10−2 means good statistical convergence performance
in Pareto optimality based multiobjective optimization. The
symbol “+” in Figure 7 refers to an outlier in box statistics;
nevertheless, it can be seen that the outlier is very close to10−2. Overall, we can see that the upper edges on different
groups of data are all less than 10−2, except a slightly larger
value on group 4 and an outlier on group 2. However, the
3rd quartile on group 4 is totally in the range of less than10−2. The statistical results show that the proposed algorithm
is stable in repeated run. On the whole, we can conclude that
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Figure 7: Box plots based on convergence metrics.

the proposed algorithm is robust and suitable for application
in engineering.

5. Conclusions

This paper presented the challenge of energy saving in hot
rolling production and formulated a multiobjective opti-
mization model of HRPSP under TOU electricity pricing.
Objective of the model is to minimize electricity costs in
production while considering penalties caused by jumps
between adjacent slabs. Since exact algorithm is difficult to
implement for solving the large scale problem, a NSGA-II
based production scheduling algorithm was developed to
obtain Pareto optimal solutions, and then TOPSIS decision-
making method was adopted to recommend solution with
different objective preferences. Experimental results and
analyses showed that the proposed method cuts electricity
costs in production, and the performance is better than load
shifting on fixed production load. Consider thatmultiple pro-
duction lines existed in most steel mills; HRPSP integrated
multiple parallel machine job-shop scheduling will be the
subject of further study, which is expected to have greater
benefits. Besides that,multistage scheduling problemwill also
be our next work.
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