
Multiprocessor task scheduling in multistage
hybrid flow-shops: a genetic algorithm approach
F Sivrikaya Şerifoğlu1* and G Ulusoy2

1Abant Izzet Baysal University, Bolu, Turkey; 2Sabanci University, Istanbul, Turkey

This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The objective is to
minimize the make-span, that is, the completion time of all the tasks in the last stage. This problem is of practical
interest in the textile and process industries. A genetic algorithm (GA) is developed to solve the problem. The GA is
tested against a lower bound from the literature as well as against heuristic rules on a test bed comprising 400 problems
with up to 100 jobs, 10 stages, and with up to five processors on each stage. For small problems, solutions found by the
GA are compared to optimal solutions, which are obtained by total enumeration. For larger problems, optimum
solutions are estimated by a statistical prediction technique. Computational results show that the GA is both effective
and efficient for the current problem. Test problems are provided in a web site at www.benchmark.ibu.edu.tr/mpt-hfsp.

Keywords: multiprocessor tasks; hybrid flow-shops; make-span minimization; genetic algorithms

Introduction

Hybrid flow-shop scheduling problems combine the proper-

ties of flow-shop scheduling problems and parallel machine

(processor) scheduling problems. In flow-shops, jobs visit the

stages of the shop in the same order of machines, and there is

one machine at each stage. In hybrid flow-shops, at each

stage, there are one or more identical machines (processors)

to process the tasks. This availability of more than one

processor at any stage provides additional flexibility for

production planning and enhances the reduction of the

production lead-time. The optimization criterion is usually

the minimization of the make-span.

The two-stage hybrid flow-shop scheduling problem

is shown to be NP-hard by Gupta.1 Hoogeveen et al2

showed that the pre-emptive case is also NP-hard. Despite

the discouraging theoretical results, hybrid flow-shop

scheduling models have captured the attention of many

researchers. They are of practical interest in manufacturing

environments like in the textile and process industries.

Research on hybrid flow-shop scheduling concentrates

mainly on two-stage problems.3,4 Few researchers consider

three-stage problems.5,6 Recently, the multistage hybrid

flow-shop scheduling problem is being addressed more

frequently.7,8 Portmann et al9 provide a hybrid algorithm

crossing branch and bound with genetic algorithms (GAs) to

solve the multistage problem. Exact,10 local search,11 and

simulation12 approaches are available. Linn and Zhang13

and Riane and Artiba14 provide surveys on multistage

regular and hybrid flow-shop problems. Due date-based

criteria such as the minimization of the maximum lateness15

or tardiness16 and the minimization of the number of tardy

jobs17 have also been applied.

In all the above-cited research work, jobs require only a

single processor to be processed. This restriction can be

relaxed to allow for multiprocessor tasks. There are several

surveys on multiprocessor task scheduling,18–20 and various

research work on the general,21 more specific,22–24 single-

objective,25 and multiobjective26 formulations of the pro-

blem. Application of meta-heuristics to multiprocessor task

scheduling is also becoming popular.27

This paper considers multiprocessor task scheduling in

hybrid flow-shops, which is a relatively new area of research.

Oğuz and Ercan28 provide constructive algorithms for the

unit processing time case and Oğuz et al29 for the arbitrary

processing time case.

Application of meta-heuristics to the problem of multi-

processor task scheduling in a hybrid flow-shop environment

is even more recent. Oğuz et al.30 develop a tabu search-

based heuristic for the multiprocessor task scheduling in

a multistage hybrid flow-shop. Oğuz and Cheung31 provide a

GA and Sivrikaya Şerifoğlu and Tiryaki32 present a

simulated annealing algorithm for the multistage problem.

In this paper, a GA approach to the problem of

scheduling of multiprocessor tasks in a multistage hybrid

flow-shop is presented. The GA is tested against a lower

bound from the literature on a large test bed and against

actual and estimated optimum solutions. In the subsequent

sections, the problem is defined, the GA approach is

*Correspondence: F Sivrikaya Şerifoğlu, Department of Management,
Abant Izzet Baysal University, Bolu, Turkey.
E-mail: serifoglu_f@ibu.edu.tr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11738268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

discussed, and computational results are given. Concluding

remarks are provided in the last section.

Problem definition

The problem is the scheduling of n jobs each with m tasks in

a hybrid flow-shop with m stages. At each stage i¼ 1,y,m,
one task of job j is performed. Each stage i consists of mi

identical parallel processors. For the processing at any stage

i, job j requires size[i, j] processors simultaneously. That is,

size[i, j] processors assigned to job j at stage i start processing

it simultaneously and continue doing so for a period of time

equal to the processing time requirement of job j at stage i,

namely p[i, j]. Each processor can process only one job at a

time, and the processors do not break down. All jobs are

ready at the beginning of the scheduling period. Pre-emption

is not allowed. The objective is to minimize the make-span,

that is, the completion time of all the tasks in the last stage.

The genetic algorithm

GAs are developed by Holland33 as artificial adaptive

systems and are increasingly used to attack optimization

problems. The GA developed in this work is based on a

permutation representation of the n jobs. This permutation

denotes the sequence of jobs to be considered for scheduling

in the first stage. For the sequencing at any other stage

i¼ 2,y,m, the jobs are ordered according to non-decreas-
ing completion times at the immediately preceding stage i�1.
For the scheduling at any stage i¼ 1,y,m, the next job j

in the sequence associated with that stage is assigned to the

first available size[i, j] processors simultaneously. This type

of scheduling is also employed by other researchers.30,34

The objective function to be minimized is taken to be the

percentage deviation of the make-span from the lower

bound, that is, z¼ 100*(Cmax�LB)/LB, where z denotes the

objective function, LB the lower bound, and Cmax denotes

the make-span.

A lower bound is developed by Oğuz et al30 and is given

by formula (1), where the set of jobs is denoted by J and the

set of stages is denoted by M:

LB1 ¼max
i2M

min
j2J

� Xi�1
k¼1

p½k; j�
()

þ 1

mi

X
j2J

p½i; j�size½i; j�

þ min
j2J

Xm
k¼iþ 1

p½k; j�
())

ð1Þ

The results of GA runs employing LB1 indicated that the

performance of LB1 is rather weak and the deviations of the

GA solutions from LB1 are relatively large. Oğuz
35 has

provided an improved version of LB1, which combines ideas

introduced in two earlier papers,29,30 and which is given by

expression 2 below. Henceforth, LB will denote this lower

bound in expression 2. The rationale of these lower bound

formulations is given in the appendix.

LB ¼max
i2M

min
j2J

Xi�1
k¼1

p½k; j�
()(

þ max
X
j2Ai

p½i; j� þ

P
j2Bi

ðp½i; j�size½i; j�

mi

2
6666

3
7777

0
B@

1
CA

8><
>: ;

1

mi

X
j2J

p½i; j�size½i; j�g
þ min

j2J

Xm
k¼iþ 1

p½k; j�
())

ð2Þ

where

Ai ¼ j size½i; j�j 4
mi

2

� �
and

Bi ¼ j size½i; j� ¼ mi

2

���n o
:

The objective function needs to be transformed into a

fitness function to be maximized by the GA. In this

application, a popular and effective transformation is

employed. The fitness function is defined to be the deviation

of the objective function from the maximum (hence worst)

objective function value in the current population. In

mathematical terms, f¼Zmax�z, where f denotes the fitness

function and Zmax the largest percentage deviation value in

the current generation.

The selection operator employed is the roulette wheel

selection operator. For the mutation operation, the job

exchange mutation and the job replacement mutation

operators are tried. The former operator exchanges places

of the jobs at two randomly selected positions, and the latter

moves a randomly chosen job to a randomly chosen

position. Since the job exchange mutation operator

performed better for various settings of the other GA

parameters, it is preferred to the replacement operator.

Two different crossover operators are experimented with.

One is the two-point crossover (version 1) suggested by

Murata et al36 for GA applications to flow-shop scheduling

problems. Here, the child inherits jobs of one parent

positioned outside two randomly selected points in the same

positions as they are. The remaining jobs are ordered in the

mid-part of the child in the order of their appearance on the

other parent chromosome. The other crossover operator is a

uniform order-based crossover (UOBX) suggested by

Davis37 for permutation representations. UOBX combines

the relative orderings of jobs on the two parent chromo-

somes in the two children. Randomly selected jobs from one

of the parents are fixed on one child. The rest of the jobs are

first ordered so that they are in the same order as they

appear on the other parent, and then they are fed into the

gaps on the child in the new order. The process is repeated

for the second child starting with the other parent. UOBX

performed better for various settings of other GA para-

meters; therefore, this operator is utilized in the numerical

study.

The initial population is generated randomly but is seeded

with three chromosomes: one denoting the shortest proces-

sing time (SPT) sequence according to stage 1 processing

times, an other denoting the longest processing time (LPT)

sequence according to stage 1 processing times, and the last

one denoting the shortest total processing time (STPT)

sequence. When generating job sequences according to the

SPT and LPT rules, the tiebreak rule is that the job with a

smaller total processing time is preferred. The tiebreak rule

employed when sequencing jobs according to the STPT rule

is that the job with a smaller processing time in the first stage

is preferred.

A number of preliminary experiments are performed to

fine tune the parameters of the GA. Population sizes of 50,

75, and 100; number of generations of 200 and 400; various

values for crossover and mutation probabilities from the

ranges 0.65–1.00 and 0.15–1.00, respectively, are tried. As a

result, the parameters of the GA are set as follows: the

population size is set at 50, the number of generations at 400,

and both the probabilities for crossover and mutation at

0.75. Elitist strategy is employed by reproducing two of the

best chromosomes at each generation intact into the next

generation. The GA is replicated 5 times for each problem

instance. A replication is stopped before 400 generations are

generated, if the objective function value of an individual

equals LB.

An example problem

A small example problem with five jobs and two stages is

considered (n¼ 5, m¼ 2). Figure 1 illustrates the hybrid
flow-shop under consideration. There are four processors in

the first stage (P11, P12, P13 and P14) and two processors

in the second one (P21 and P22). Problem data are given in

Table 1. According to Table 1, job 1, for example, is to be

processed simultaneously on two processors in the first

stage for 86 time units and on one processor in the second

stage for 90 time units. LB for this problem is found to be

337 using expression 2.

Figure 2 illustrates the Gantt chart for the schedule

represented by an example solution [1 4 3 2 5]. This sequence

gives the job sequence to be considered when scheduling in

the first stage. The sequence of jobs in the second stage is

obtained by sorting the jobs according to their completion

times in the first stage. This second sequence turns out to be

[4 1 3 2 5].

The make-span associated with the solution is 376. The

percentage deviation from the LB is 11.57%. This is a

considerable deviation for a small problem like the one

considered. The GA has been run on this problem, and in all

the replications this same solution has been found. After

totally enumerating all the solutions for the example

P12P11 P13 P14

P22P21

Figure 1 Illustration of the hybrid flow-shop in the two-stage
example problem.

Table 1 Example problem data

Job j Stage i Processing
time p[i,j]

Processor requirement
size[i,j]

1 1 86 2
2 90 1

2 1 99 4
2 62 2

3 1 76 4
2 94 1

4 1 14 1
2 68 2

5 1 88 4
2 27 2

1 3
P11

P12

2 5

1
86

14

3

3

3
162

22

2

2
261

5

5

5
349

4 1
176

3
256

2

2

323

5

376

P13

P14

P21

P22
5

time

4

82

4

Figure 2 The Gantt chart for the schedule represented by the
example chromosome [1 4 3 2 5] (not to scale).

problem, it has been verified that the solution found by the

GA is, in fact, the optimal solution. More on this will be

discussed in the next section on computational study.

Computational study

For comparison purpose, a similar experimental study as

proposed by Oğuz et al30 is employed. The number of jobs is

taken to be n¼ 5, 10, 20, 50, 100 and the number of stages
m¼ 2, 5, 8, 10. For each combination of n and m, 10

instances are generated for each of two types of problems,

type-a and type-b. In type-a problems, the number of

processors available at each stage mi are allowed to vary and

are determined randomly from the set {1,y, 5}, whereas in

type-b problems they are set equal to 5 for all stages, that is,

mi¼ 5 for i¼ 1,y,m. In both cases, processor requirements
of jobs, as given by size[i,j], are determined randomly from

the set {1,y,mi}. Processing time requirements p[i,j] are

taken to be integers and are determined randomly from the

interval [1,100]. The test bed comprises 400 problems and is

provided in the web site at www.benchmark.ibu.edu.tr/mpt-

hfsp as well as in the OR Library at http://mscmga.ms.ic.

ac.uk/info.html.

Comparison of the GA Solutions with the lower bound

The GA algorithm is replicated five times on each one of the

10 instances of type-a and type-b problems for each

combination of n and m. The best solution from these five

replications, that is, the solution with the make-span value

that deviates least from the lower bound, is taken to be the

GA solution for the corresponding problem. Table 2 gives

the average percentage deviations of GA solutions from LB.

The average is taken over the deviations corresponding to

the 10 instances for each combination of n and m. Table 2

also gives the average run times per replication of GA in

CPU seconds, including input and output operations where

each replication of GA consists of up to 20 000 chromosome

evaluations. The GA algorithm is compiled in Turbo Pascal

7.0 and is run on a computer with PIII processor of

1000MHz and with 512MB RAM. The run times for the

GA are reasonable with at most 2.7 s per 1000 chromosome

evaluations for 100-job problems.

From Table 2, it is observed that the deviations from LB

are large, especially for small problems with five and 10 jobs.

This may be rooted in the weak performance of the GA

algorithm or in the inadequacy of LB or both. The lower

bound has an important effect on the numerical results. In

fact, the results reported in Table 2 are significantly better

than the results obtained by employing the earlier version of

the lower bound (LB1) in the objective function evaluation

within the GA. The results of these experiments employing

LB1 in the objective function formula in the GA are

provided in Table 3. From a comparison of Tables 2 and 3, it

can be deduced that the improvement in the lower bound

resulted in improvements of the results of all the problems.

The deviations for the problems with smaller numbers of

jobs remain large even after the improvement in the lower

bound, but the deviations for problems with larger numbers

of jobs are significantly smaller.

The results obtained are similar with respect to the

magnitudes of deviations and their behaviour with increas-

ing n and m to the ones obtained by Oğuz et al30 employing

their tabu search algorithm. The results are also similar in

that much larger deviations are observed for type-b

problems. In general, the deviations of the GA solutions

from their respective lower bounds both in Tables 2 and 3

are smaller as compared to the deviations of the tabu search

solutions; but since the test problems are different, it is hard

to reach any conclusions as to the comparative performance

of the two meta-heuristics.

According to the findings of Oğuz et al,30 the average

percentage deviations from the lower bound increase, in

general, with increasing m and mi values. They associate this

with the degradation of the performance of the lower bound.

The results reported in Tables 2 and 3 indicate that the

average percentage deviation for a given n and m does

indeed significantly increase, when mi is increased to 5 in

type-b problems. But for a given n, deviations do not always

increase with increasing m. The effect of increasing mi on

Table 2 Average percentage deviations of solutions of GA
(employing LB) from LB and average CPU times in seconds for

type-a and type-b problems

Type-a problems Type-b problems

n m Avg%dev CPU sec. Avg%dev CPU sec.

5 2 6.67 0.38 10.74 0.44
5 21.64 0.80 31.74 1.00
8 24.27 1.00 24.44 1.18
10 22.51 1.16 29.26 1.40

10 2 0.95 0.30 7.73 0.72
5 9.12 1.10 14.98 1.56
8 16.35 1.84 22.25 2.20
10 13.35 2.08 17.95 2.62

20 2 0.92 0.76 2.38 1.42
5 1.40 1.80 8.26 3.02
8 5.71 3.58 12.08 4.54
10 8.64 4.40 21.54 5.58

50 2 0.99 2.38 3.23 3.78
5 1.57 5.60 10.30 9.18
8 2.88 11.98 16.57 14.68
10 2.95 15.52 17.92 18.38

100 2 0.45 5.72 1.86 9.08
5 1.91 16.94 8.12 25.42
8 1.73 33.14 10.90 48.50
10 1.71 40.91 18.60 53.14

problem difficulty is quite significant as can be deduced by a

comparison of deviations for type-a problems with that of

type-b problems in the tables. The mi values for type-a

problems are generated from a uniform distribution. An

investigation over the resulting distribution of mi values

employed in the experiments both for each n separately and

over all n indicates that they are very close to the assumed

distribution.

A limited study on two sets of additional test problems is

conducted to see how the deviations change for problems

with even larger mi values. In the sets, there are 10 instances

for each combination of n¼ 5,10,20 and m¼ 2,5,8,10 (and
hence a total of 120 test problems in each one). In one set of

problems mi¼ 6 and in the other mi¼ 8. The average
percentage deviations from the lower bound for problems

with n¼ 20 are consistently higher for problems with mi¼ 6
and 8 as compared to deviations for problems with mi¼ 5.
For problems with n¼ 10, they are higher for problems with
mi¼ 8 but not for all problems with mi¼ 6. And for
problems with n¼ 5, there is again no consistent pattern.
Overall the 120 problems, the average percentage deviation

of average percentage deviations from the lower bound

obtained for problems with mi¼ 6 versus for problems with
mi¼ 5 is 24.98, With the same deviation for problems with
mi¼ 8 versus for problems with mi¼ 5 is 39.17. In summary,
it seems that mi has an effect on problem difficulty especially

for larger n; but this effect is also very much dependent on

the data.

Oğuz et al30 also note that the percentage deviations

decrease with increasing n, which they find to be expected

because of the increasing magnitudes of the make-span. Our

findings indicate, in general, a similar trend, but we do

associate it with the improving performance of the lower

bound with increasing n. The assumptions underlying the

lower bound formulae (no idle time and an even distribution

of total work content on the processors) become more

realistic with increasing n, since increasing the number of

jobs increases the range of processing times and processor

requirements and hence, increases possibilities for filling in

the gaps on the processors.

The results obtained with the simulated annealing

algorithm suggested by Sivrikaya Şerifoğlu and Tiryaki32

indicate that their algorithm performs similarly as compared

to the tabu search algorithm of Oğuz et al30 and the GA

algorithm proposed here, in that the performance degrades

significantly with increasing problem difficulty. In fact, the

degradation is worse for the simulated annealing algorithm

for problems with number of jobs larger than 20. The

researchers conclude that there is much room to improve the

performance of the algorithm.

The experimental study conducted by Oğuz and Cheung31

to test the performance of their GA algorithm is somewhat

different. The researchers report overall average percentage

deviations from the improved lower bound over problems

with n¼ 20, 50, and 100. The average percentage deviation
changes between 6.54 and 21.34 for problems with m¼ 2,
between 9.21 and 16.35 for problems with m¼ 5, between
6.95 and 15.65 for problems with m¼ 8, and between 10.29
and 14.50 for problems with m¼ 10. The deviations seem to
be higher than the ones given in Table 2, but again no

conclusions can be drawn as the test problems are different

and the deviations are not decomposed by Oğuz and

Cheung31 to reflect the effect of n.

To see whether the performance of the GA proposed in

this study can be improved any further, the two-opt local

search heuristic is integrated into the GA so that the best

chromosome of each population is subjected to the two-opt

heuristic. Solutions of the GA algorithm integrated with the

two-opt heuristic are compared to the solutions of the GA

algorithm without the two-opt heuristic. The results indicate

that the integration of the two-opt heuristic does not lead to

any statistically significant improvement. This may be due to

the local improvements misleading the algorithm to false

local peaks and hence, to a premature convergence. In

addition, CPU times are prohibitively longer as compared

with the CPU times resulting from the GA runs without the

two-opt heuristic.

Alternatively, the two-opt heuristic is integrated into the

GA so that only the best solution at the end of each

replication is two-opted. This integration cannot lead to

premature convergence; it refines solutions found by the GA

Table 3 Average percentage deviations of solutions of GA
(employing LB1) from LB1 and average CPU times in seconds

for type-a and type-b problems

Type-a problems Type-b problems

n m Avg%dev CPU sec. Avg%dev CPU sec.

5 2 9.26 0.50 24.89 0.62
5 25.71 0.82 40.20 0.92
8 26.30 1.00 32.42 1.20
10 24.14 1.16 34.56 1.42

10 2 2.88 0.46 12.75 0.88
5 10.45 1.12 19.58 1.58
8 19.01 1.76 33.92 2.20
10 13.68 2.08 30.75 2.64

20 2 5.46 1.20 6.17 1.50
5 6.17 1.80 12.62 3.04
8 5.89 3.60 25.20 4.58
10 8.79 4.26 30.22 5.60

50 2 3.40 2.36 7.36 3.78
5 2.56 5.56 15.84 9.24
8 5.44 12.40 23.08 14.72
10 4.43 15.40 26.58 18.38

100 2 3.31 5.82 9.34 9.08
5 4.81 19.14 16.24 25.44
8 2.95 31.88 20.89 41.86
10 3.07 45.78 28.01 52.82

if possible. The results displayed in Table 4 indicate that two-

opting does not provide any improvement at all for n¼ 5
and 10. The only statistically significant improvements are

observed for n¼ 50 and 100, and especially for type-b
problems. For smaller problems, the additional CPU time

needed is minor but for larger problems it becomes

significant as would be expected.

Comparison of the GA solutions with the optimal solutions
for small problems

As noted above, the deviations of GA solutions from LB are

large, especially for small problems with five and 10 jobs.

Incorporation of the two-opt heuristic has not led to a

decrease in the deviations. This leads to the hypothesis that

the solutions found by the GA are already good solutions

and it is the LB that remains weak.

To test this hypothesis, the GA solutions are compared to

the optimal solutions for 5-job problems, which are obtained

by the total enumeration of the job sequences for each one of

the 80 problem instances. The results are presented in

Table 5. GA is able to find the optimal solution for all

problem instances. This means that the deviations reported

in Tables 2 and 3 for n¼ 5 correspond to deviations of the
optimal solutions from LB and from LB1, respectively.

This result explains why for the case of 5-job problems,

two-opting the best solution at the end of each replication

has not led to any improvement. Although we do not have

numerical evidence, it might be conjectured that the same

reasoning holds for the case of 10-job problems, that is, GA

solutions are either optimal or close to optimal.

Comparison of the GA solutions with the solutions of
heuristic rules

GA solutions are compared to the best of the solutions

provided by the heuristic rules (SPT, LPT, and STPT),

which are employed to seed the initial population. The

improvement brought about by the GA algorithm over these

heuristic rules is thus illustrated. Table 6 gives the average

percentage deviations of GA solutions from the best of

solutions of these rules.

Table 4 Comparison of solutions of GA with the two-opt
heuristic to solutions of GA without the two-opt heuristic

(t9,0.01¼ 2.821; t9,0.005¼ 3.250)

Type-a problems Type-b problems

n m Avg%dev t-Value Avg%dev t-Value

5 2 0.00 — 0.00 —
5 0.00 — 0.00 —
8 0.00 — 0.00 —
10 0.00 — 0.00 —

10 2 0.00 — 0.00 —
5 0.00 — 0.00 —
8 0.00 — 0.00 —
10 0.00 — 0.00 —

20 2 0.00 — �0.07 1.86
5 0.00 — �0.18 1.25
8 �0.11 1.00 �0.06 1.00
10 �0.14 1.31 �0.22 1.41

50 2 �0.70 2.63 �1.17 4.12
5 �0.65 1.75 �2.16 9.01
8 �1.33 3.25 �2.42 5.59
10 �0.81 2.79 �1.79 5.01

100 2 �0.99 3.34 �2.59 5.12
5 �2.09 2.49 �4.41 17.09
8 �1.27 3.31 �4.09 11.09
10 �1.77 3.38 �3.80 9.20

Table 5 Average percentage deviations of GA solutions from
the optimal solutions for 5-job problems

Type-a problems Type-b problems

n m Avg%dev t-Value Avg%dev t-Value

5 2 0.00 — 0.00 —
5 0.00 — 0.00 —
8 0.00 — 0.00 —
10 0.00 — 0.00 —

Table 6 Average percentage deviations of GA solutions from
the best of SPT, LPT, and STPT solutions and the corre-

sponding t-values (t9,0.01¼ 2.821; t9,0.005¼ 3.250)

Type-a problems Type-b problems

n m Avg%dev t-Value Avg%dev t-Value

5 2 �5.22 2.89 �8.80 4.15
5 �6.88 3.84 �6.93 4.56
8 �7.77 3.60 �7.22 3.63
10 �5.28 5.61 �7.19 3.88

10 2 �7.32 3.73 �16.91 7.40
5 �14.98 7.77 �17.45 8.80
8 �17.00 9.23 �13.54 9.09
10 �14.59 12.27 �14.98 9.21

20 2 �12.72 4.92 �18.81 7.98
5 �16.36 19.12 �21.74 11.49
8 �15.02 10.06 �20.18 17.12
10 �17.65 13.67 �18.06 17.71

50 2 �12.66 6.20 �17.35 25.99
5 �11.57 6.30 �21.90 14.59
8 �14.39 7.86 �19.69 15.82
10 �15.22 10.93 �20.72 14.40

100 2 �8.82 5.00 �15.55 16.44
5 �10.55 4.36 �20.13 24.51
8 �12.06 6.80 �18.84 13.31
10 �11.49 9.05 �19.40 22.03

As the t-values reported in Table 6 indicate, the GA yields

statistically significant improvements as compared to the

heuristic rules. The relative performance of the GA improves

with increasingmi, and it first improves and then deteriorates

with increasing n.

Comparison of GA solutions with the estimated optima

Encouraged by the successful comparisons of the GA

solutions to the optimal values for the 5-job problems,

optimum solutions for the other larger problems are sought.

Rardin and Uzsoy38 discuss the statistical estimation of

optimal values for combinatorial optimization problems as a

way to evaluate the performance of heuristics.

The basis of the estimation method applied here is a result

by Fisher and Tippett39 about the distribution of least

values, which briefly states that the least of M random

variables with a common distribution on real numbers

greater than or equal to a is asymptotically distributed

Weibull, with a being the location parameter. Objective

function values for feasible solutions to an optimization

problem can be thought of as points from an objective value

distribution, and due to the very large number of such

solution values for a combinatorial optimization problem,

the continuity assumption can be approximately justified.

For the estimation process, K-independent samples each

consisting of Tk objective values are obtained. Let zi be the

minimum value of sample i, i¼ 1,y,K. These sample
minima, assumed to be independent, are sorted so that

z(1)pz(2)p?pz(K). As shown by Zanakis,
40 the location

parameter a of the Weibull distribution can then be

estimated as

âa ¼ ½zð1ÞzðKÞ � z2ð2Þ�=½zð1Þ þ zðKÞ � 2zð2Þ� ð3Þ

This estimate of a also provides an estimate of the optimum

solution value.

Ovacik et al41 integrate such an estimation procedure with
a simulated annealing heuristic and apply it on a single

machine maximum lateness problem with sequence-depen-

dent set-up times. Ghashghai and Rardin42 make use of the

solutions generated by their GA algorithm to estimate the

optima for the problem of finding sub-graphs that meet

survivability requirements.

Here, 20 sample optima zi are obtained by two-opted SPT,

LPT, STPT solutions, a set of 12 randomly generated and

two-opted solutions and best solutions of five runs of a

smaller GA (population size¼ 25, number of gener-

ations¼ 40). Repeated values among these zi values are

eliminated, and the rest of the zi array is subjected to runs

test (at a significance level of 0.05) to guarantee that the

assumption of independent sample minima holds. Using

expression (3), estimates for the optimum values are then

obtained. The GA solutions are compared to these estimates,

and the results are presented in Table 7 and Figure 3.

For a few problem instances, many or all the zi values are

the same and the runs test fails. For various other problems,

even though there are many distinctly different zi values, the

runs test still fails. For 5-job problems, for instance, all runs

tests fail; therefore, these problems are not included in

Table 7. The column ‘ncases’ in Table 7 gives the number of

problem instances among 10 for which the runs test is

successful and an estimate can be obtained. In total,

estimates are obtained for 280 from among 400 problems.

The results in Table 7 show that average percentage

deviations of GA solutions from estimated optima are not

statistically significant, except for three groups of problems

with n¼ 20 m¼ 8, n¼ 20 m¼ 10, and n¼ 100 m¼ 10. For
some problems, the GA solutions are slightly better than the

Table 7 Average percentage deviations of GA solutions from
the estimated optima (t1,0.01¼ 31.821; t4,0.01¼ 3.747;

t5,0.01¼ 3.365; t6,0.01¼ 3.143; t7,0.01¼ 2.998; t8,0.01¼ 2.896)

Type-a problems Type-b problems

n m Avg%dev t-Value ncases Avg%dev t-Value ncases

10 2 0.00 2.00 2 �0.31 0.59 7
5 �1.08 2.28 9 �0.48 1.41 10
8 �0.46 1.75 10 �0.67 1.87 10
10 1.24 1.23 10 �0.39 0.98 10

20 2 0.01 0.24 8 �0.61 1.90 10
5 �0.61 1.58 9 �1.49 2.74 10
8 �1.65* 3.39 9 �1.49 1.91 10
10 �1.41* 4.60 10 �1.18 2.30 10

50 2 0.14 0.57 5 0.13 1.30 10
5 0.26 1.88 9 �0.67 1.91 10
8 �0.21 0.83 8 �0.25 0.29 9
10 �0.11 0.27 9 0.33 0.49 9

100 2 0.24 0.92 5 0.20 1.46 9
5 �0.05 0.16 8 0.22 0.52 10
8 0.04 0.00 6 �0.07 0.22 10
10 0.45* 3.34 9 �0.54 1.47 10

*Statistically significant at 0.01 significance level.

0

2000

4000

6000

0 2000 4000 6000
estimates

G
A

 s
o

lu
ti

o
n

s

Figure 3 Scatter diagram of GA solutions versus estimated
optima for 280 problems.

estimates, and the deviations are negative. The maximum

deviation occurs for 20-job problems, and it is less than 1.70%.

Figure 3 illustrates a scatter diagram of the GA solutions

versus estimated optima. As the deviations are small and

mostly insignificant, the plotted values are concentrated

along the diagonal.

Concluding remarks

The problem of multiprocessor task scheduling in a multi-

stage hybrid flow-shop setting is addressed by means of a

GA approach. GA results are compared with a lower bound

and its improved version from the literature, with solutions

obtained by SPT, LPT, and STPT heuristic rules, with

optimum solutions for small problems, and with estimated

optimum values for larger problems. The performance of the

lower bound is found to be inadequate for problems

involving small number of jobs and for problems involving

large number of processors per stage. But its performance is

observed to improve with increasing the number of jobs.

For possible further improvement, the two-opt local search

heuristic is integrated into the GA so that the best chromosome

of each population is subjected to the two-opt heuristic. The

results indicate that the integration of the two-opt heuristic

does not lead to any statistically significant improvement.

The GA is able to provide significant improvements over

heuristic dispatching rules; it is able to find optimum

solutions for small problems and near-optimum solutions

for larger problems.

There is a need for better lower bounds and for more

benchmark results. The test problems employed here are

provided in a web site at www.benchmark.ibu.edu.tr/mpt-

hfsp to facilitate interaction among current and potential

researchers working on the same and similar subjects.

References

1 Gupta JND (1988). Two-stage hybrid flow-shop scheduling
problem. J Opl Res Soc 39: 359–364.

2 Hoogeveen JA, Lenstra JK and Veltman B (1996). Pre-emptive
scheduling in a two-stage multiprocessor flow-shop is NP-hard.
Eur J Opl Res 89: 172–175.

3 Sundararaghavan PS, Kunnathur AS and Viswanathan I
(1997). Minimizing make-span in parallel flow-shops. J Opl
Res Soc 48: 834–842.

4 Haouari M andM’Hallah R (1997). Heuristic algorithms for the
two-stage hybrid flow-shop problem. Opns Res Lett 21: 43–53.

5 Riane F, Artiba A and Elmaghraby SE (1998). A hybrid three-
stage flow-shop problem: Efficient heuristics to minimize make-
span. Eur J Opl Res 109: 321–329.

6 Dessouky MM, Dessouky MI and Verma SK (1998). Flow-
shop scheduling with identical jobs and uniform parallel
machines. Eur J Opl Res 109: 620–631.

7 Gupta JND et al (2002). Heuristics for hybrid flow shops with
controllable processing times and assignable due dates. Comput
Opns Res 29: 1417–1439.

8 Riane F, Artiba A and Iassinovski S (2001). An integrated
production planning and scheduling system for hybrid flowshop
organizations. Int J Production Econom 74: 33–48.

9 Portmann M-C, Vignier A, Dardilhac D and Dezalay D (1998).
Branch and bound crossed with GA to solve hybrid flow-shops.
Eur J Opal Res 107: 389–400.

10 Moursli O and Pochet Y (2000). A branch-and-bound algorithm
for the hybrid flow-shop. Int J Production Econom 64: 113–125.

11 Negenman EG (2001). Local search algorithms for the multi-
processor flow-shop scheduling problem. Eur J Opl Res 128:
147–158.

12 Grangeon N, Tanguy A and Tchernev N (1999). Generic
simulation model for hybrid flow-shop. Comput Ind Eng 37:
207–210.

13 Linn R and Zhang W (1999). Hybrid flow shop scheduling: a
survey. Comput Ind Eng 37: 57–61.

14 Riane F and Artiba A (1999). Scheduling multistage flow-shop
problem: a brief review. In: Proceedings of the International
Conference on Industrial Engineering and Production Manage-
ment, Glasgow, ISBN 2-930294-02-7, Volume 2. Facultés
Universitaires Catholiques de Mons, Mons, Belgium,
pp 323–335.

15 Botta-Genoulaz V (2000). Hybrid flow shop scheduling with
precedence constraints and time lags to minimize maximum
lateness. Int J Production Econom 64: 101–111.

16 Vignier A, Billaut J-C and Proust C (1996). Minimizing
maximum tardiness in some two-stage hybrid flow-shops. In:
Proceedings of the 5th International Workshop on Project
Management and Scheduling. Scientific Publishers OWN PAN,
Poznan, Poland, pp 253–257.

17 Gupta JND and Tunc EA (1998). Minimizing tardy jobs in a
two-stage hybrid flow-shop. Int J Production Res 36: 2397–2417.

18 Brucker P and Kraemer A (1996). Polynomial algorithms for
resource-constrained and multi-processor task scheduling pro-
blems. Eur J Opl Res 90: 214–226.

19 Drozdowski M (1996). Scheduling multiprocessor tasks — an
overview. Eur J Opl Res 94: 215–230.

20 Lee C-Y, Lei L and Pinedo M (1997). Current trends in
deterministic scheduling. Ann Opns Res 70: 1–41.

21 Chen J and Chung-Yee L (1999). General multiprocessor task
scheduling. Naval Res Logistics 46: 57–74.

22 Amoura AK, Bampis E, Manoussakis Y and Tuza Z (1999). A
comparison of heuristics for scheduling multiprocessor tasks on
three dedicated processors. Parallel Comput 25: 49–61.

23 Cai X, Lee C-Y and Li C-L (1998). Minimizing total flow time
in multiprocessor task systems with pre-specified processor
allocations. Naval Res Logistics 45: 231–242.

24 Bianco L, Blazewicz J, Dell’Olmo P and Drozdowski M (1997).
Linear algorithms for pre-emptive scheduling of multiprocessor
tasks subject to minimal lateness. Discrete Appl Math 72: 25–46.

25 Drozdowski M and Dell’Olmo P (2000). Scheduling multi-
processor tasks for mean flow time criterion. Comput Opns Res
27: 571–585.

26 Cai X, Wong T-L and Lee C-Y (2000). Multiprocessor task
scheduling to minimize the maximum tardiness and the total
completion time. IEEE Trans Robotics Automat 16: 824–830.

27 Correa RC, Ferreira A and Rebreyend P (1999). Scheduling
multiprocessor tasks with genetic algorithms. IEEE Trans
Parallel Distributed Syst 10: 825–837.

28 Oğuz C and Ercan MF (1997). Scheduling multiprocessor tasks
in a two-stage flow-shop environment. Comput Ind Eng 33:
W269–W272.

29 Oğuz C, Ercan MF, Cheng TCE and Fung YF (2003). Heuristic
algorithms for multiprocessor task scheduling in a two-stage
hybrid flow-shop. Eur J Opl Res 149: 390–403.

30 Oğuz C et al. (2004). Hybrid flow-shop scheduling problems
with multiprocessor task systems. Eur J Opl Res 152: 115–131.

31 Oğuz C and Cheung B (2002). A genetic algorithm for flow-shop
scheduling problems with multiprocessor tasks. In: Valls V et al
(eds). Proceedings of the Eighth International Workshop on
Project Management and Scheduling. Fundacion Universidad-
Empresa de Valencia, Valencia, Spain, pp 282–286.

32 Sivrikaya Şerifoğlu F and Tiryaki IU (2002). Multiprocessor
task scheduling in multistage hybrid flow-shops: A simulated
annealing approach. In: Baykasoglu A and Develi T (eds).
Proceedings of the 2nd International Conference on Responsive
Manufacturing. University of Gaziantep Printing Office,
Gaziantep, Turkey, pp 270–274.

33 Holland J (1975). Adaptation in Natural and Artificial Systems.
The University of Michigan Press: Ann Arbor.

34 Riane F, Raczy C and Artiba A (1999). Hybrid auto-adaptable
simulated annealing based heuristic. Comput Ind Eng 37: 277–280.

35 Oğuz C (September 2002). Personal communication.
36 Murata T, Ishibuchi H and Tanaka H (1996). Genetic
algorithms for flow-shop scheduling problems. Comput Ind
Eng 30: 1061–1071.

37 Davis L (1991). Handbook of Genetic Algorithms. Van Nostrand
Reinhold: New York.

38 Rardin RL and Uzsoy R (2001). Experimental evaluation of
heuristic optimisation algorithms: a tutorial. J Heuristics 7: 261–
304.

39 Fisher R and Tippett L (1928). Limiting forms of the frequency
distribution of the largest or smallest member of a sample. Proc
Cambridge Philos Soc 24: 180–190.

40 Zanakis SH (1979). A simulation study of some simple
estimators of the three-parameter Weibull distribution. J Stat
Comput Simulation 9: 419–428.

41 Ovacık IM, Rajagopalan S and Uzsoy R (2000). Integrating
interval estimates of global optima and local search methods for
combinatorial optimisation problems. J Heuristics 6: 481–500.

42 Ghashghai E and Rardin RL (1998). Using a hybrid of exact and
genetic algorithms to design survivable networks, Working paper
School of Industrial Engineering, Purdue University.

43 Santos DL, Hunsucker JL and Deal DE (1995). Global lower
bounds for flowshops with multiple processors. Eur J Opl Res
80: 112–120.

44 Syslo MM, Deo N and Kowalik JS (1983). Discrete Optimiza-
tion Algorithms. Prentice-Hall: Englewood Cliffs, NJ.

Appendix: The rationale of the lower bound formulations

The lower bound given in formula (1) is a stage-based lower

bound similar to the lower bound suggested by Santos et al43

for scheduling ‘single-processor’ jobs in hybrid flowshops.

Here, associated with each stage i, i¼ 1,y,m, is a lower
bound on the make-span, say LB(i). The overall lower

bound LB1 is the maximum of these bounds, that is,

LB1 ¼ maxi2M LBðiÞ, where LB(i) is defined as follows:

LBðiÞ ¼min
j2J

Xi�1
k¼1

p½k; j�
()

þ 1

mi

X
j2J

p½i; j�size½i; j�

þ min
j2J

Xm
k¼iþ 1

p½k; j�
()

The logic behind the proof for the LB(i) formulation is

similar to the one used in the proof provided by Santos et al43

It is based on the assumption that no idle times occur on the

processors throughout the duration of the schedule. Under

this assumption, the time needed to start processing on any

machine at stage i is at best equal to minj2J f
Pi�1

k¼1 p½k; j�g.
The minimum time required to finish processing of the

jobs at the remaining stages iþ 1 through to m is at best

minj2J f
Pm

k¼iþ 1 p½k; j�g: The middle part of the LB(i)

formulation pertains to the bound on the duration of the

processing of jobs at stage i. The minimum for the duration

of the processing of jobs at stage i occurs when the

constraints on the simultaneous processing on size[i,j]

processors are not respected and the jobs can be preempted

as often as required to allow an even distribution of the total

work content associated with stage i. The total work content

for stage i is given by
P

j2J p½i; j�size½i; j�, and when evenly
distributed over all the processors, it gives rise to a duration

of ð1=miÞ
P

j2J p½i; j�size½i; j�:
Looking at stage i from a different perspective, it can also

be thought that there are size[i,j] replicates of each job j, each

with the duration p[i,j], so that there are altogetherP
j2J size½i; j� ‘single-processor’ jobs in a set J0 to be

scheduled on mi processors at stage i. The make-span

associated with stage i is then bounded from below

by
P

j2J 0 p½i; j�=mi: (see, eg, Syslo et al,44 p 502). ButP
j2J 0 p½i; j� ¼

P
j2J p½i; j�size½i; j�; and this completes the

proof of LB1.

LB given in formula (2) differs from LB1 by the refinement

associated with the distribution of work content at stage i,

i¼ 1,y,m. We can be sure that jobs with size[i,j]4mi/2 (ie,

jobs jAAi) will have at least one common processor, on

which they all will be scheduled, and the best possible way to

do this is that they are scheduled one after the other with no

inserted idle time. This scheduling will give rise to a duration

of magnitude
P

j2Ai
p½i; j� on that bottleneck processor.

From the rest of the jobs, jobs with size[i,j]¼mi/2 (ie, jobs

jABi) can best be scheduled such that their work content

is distributed evenly on the processors. This gives rise

to a duration of magnitude ð1=miÞ
P

j2Bi
p½i; j�size½i; j� ¼

1
2

P
j2Bi

p½i; j�.
Finally, jobs with size[i,j]omi/2 will, in the best case, be

scheduled to fit in to the idle times on the processors not

used by the set of jobs in Ai so that no idle time and hence no

extension on the overall duration occurs.

