265 research outputs found

    Applied Advanced Classifiers for Brain Computer Interface

    Get PDF

    Review of real brain-controlled wheelchairs

    Get PDF
    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future

    Extraction of the Major Features of Brain Signals using Intelligent Networks

    Get PDF
    The brain-computer interface is considered one of the main tools for implementing and designing smart medical software. The analysis of brain signal data, called EEG, is one of the main tasks of smart medical diagnostic systems. While EEG signals have many components, one of the most important brain activities pursued is the P300 component. Detection of this component can help detect abnormalities and visualize the movement of organs of the body. In this research, a new method for processing EEG signals is proposed with the aim of detecting the P300 component. Major features were extracted from the BCI Competition IV EEG data set in a number of steps, i.e. normalization with the purpose of noise reduction using a median filter, feature extraction using a recurrent neural network, and classification using Twin Support Vector Machine. Then, a series of evaluation criteria were used to validate the proposed approach and compare it with similar methods. The results showed that the proposed approach has high accuracy

    Design of hardware architectures for HMM–based signal processing systems with applications to advanced human-machine interfaces

    Get PDF
    In questa tesi viene proposto un nuovo approccio per lo sviluppo di interfacce uomo–macchina. In particolare si tratta il caso di sistemi di pattern recognition che fanno uso di Hidden Markov Models per la classificazione. Il progetto di ricerca è partito dall’ideazione di nuove tecniche per la realizzazione di sistemi di riconoscimento vocale per parlato spontaneo. Gli HMM sono stati scelti come lo strumento algoritmico di base per la realizzazione del sistema. Dopo una fase di studio preliminare gli obiettivi sono stati estesi alla realizzazione di una architettura hardware in grado di fornire uno strumento riconfigurabile che possa essere utilizzato non solo per il riconoscimento vocale, ma in qualsiasi tipo di classificatore basato su HMM. Il lavoro si concentra quindi sullo sviluppo di architetture hardware dedicate, ma nuovi risultati sono stati ottenuti anche a livello di applicazione per quanto riguarda la classificazione di segnali elettroencefalografici attraverso gli HMM. Innanzitutto state sviluppata una architettura a livello di sistema applicabile a qualsiasi sistema di pattern recognition che faccia usi di HMM. L’architettura stata concepita in modo tale da essere utilizzabile come un sistema stand–alone. Definita l’architettura, un processore hardware per HMM, completamente riconfigurabile, stato decritto in linguaggio VHDL e simulato con successo. Un array parallelo di questi processori costituisce di fatto il nucleo di processamento dell’architettura sviluppata. Sulla base del progetto in VHDL, due piattaforme di prototipaggio rapido basate su FPGA sono state selezionate per dei test di implementazione. Diverse configurazioni costituite da array paralleli di processori HMM sono state implementate su FPGA. Le soluzioni che offrivano un miglior compromesso tra prestazioni e quantità di risorse hardware utilizzate sono state selezionate per ulteriori analisi. Un sistema software per il pattern recognition basato su HMM stato scelto come sistema di riferimento per verificare la corretta funzionalità delle architetture implementate. Diversi test sono stati progettati per validare che il funzionamento del sistema corrispondesse alle specifiche iniziali. Le versioni implementate del sistema sono state confrontate con il software di riferimento sulla base dei risultati forniti dai test. Dal confronto è stato possibile appurare che le architetture sviluppate hanno un comportamento corrispondente a quello richiesto. Infine le implementazioni dell’array parallelo di processori HMM `e sono state applicate a due applicazioni reali: un riconoscitore vocale, ed un classificatore per interfacce basate su segnali elettroencefalografici. In entrambi i casi l’architettura si è dimostrata in grado di gestire l’applicazione senza alcun problema. L’uso del processamento hardware per il riconoscimento vocale apre di fatto la strada a nuovi sviluppi nel campo grazie al notevole incremento di prestazioni ottenibili in termini di tempo di esecuzione. L’applicazione al processamento dell’EEG, invece, introduce di fatto un approccio completamente nuovo alla classificazione di questo tipo di segnali, e mostra come in futuro potrebbe essere possibile lo sviluppo di interfacce basate sulla classificazione dei segnali generati dal pensiero spontaneo. I possibili sviluppi del lavoro iniziato con questa tesi sono molteplici. Una direzione possibile è quella dell’implementazione completa dell’architettura proposta come un sistema stand–alone riconfigurabile per l’accelerazione di sistemi per pattern recognition di qualsiasi natura purchè basati su HMM. Le potenzialità di tale sistema renderebbero possibile la realizzazione di classificatiori in tempo reale con un alto grado di complessità, e quindi allo sviluppo di interfacce realmente multimodali, con una vasta gamma di applicazioni, dai sistemi di per lo spazio a quelli di supporto per persone disabili.In this thesis a new approach is described for the development of human–computer interfaces. In particular the case of pattern recognition systems based on Hidden Markov Models have been taken into account. The research started from he development of techniques for the realization of natural language speech recognition systems. The Hidden Markov Model (HMM) was chosen as the main algorithmic tool to be used to build the system. After the early work the goal was extended to the development of an hardware architecture that provided a reconfigurable tool to be used in any pattern recognition task, and not only in speech recognition. The whole work is thus focused on the development of dedicated hardware architectures, but also some new results have been obtained on the classification of electroencephalographic signals through the use of HMMs. Firstly a system–level architecture has been developed to be used in HMM based pattern recognition systems. The architecture has been conceived in order to be able to work as a stand–alone system. Then a VHDL description has been made of a flexible and completely reconfigurable hardware HMM processor and the design was successfully simulated. A parallel array of these processors is actually the core processing block of the developed architecture. Then two suitable FPGA based, fast prototyping platforms have been identified to be the targets for the implementation tests. Different configurations of parallel HMM processor arrays have been set up and mapped on the target FPGAs. Some solutions have been selected to be the best in terms of balance between performance and resources utilization. Furthermore a software HMM based pattern recognition system has been chosen to be the reference system for the functionality of the implemented subsystems. A set of tests have been developed with the aim to test the correct functionality of the hardware. The implemented system was compared to the reference system on the basis of the tests’ results, and it was found that the behavior was the one expected and the required functionality was correctly achieved. Finally the implementation of the parallel HMM array was tested through its application to two real–world applications: a speech recognition task and a brain–computer interface task. In both cases the architecture showed to be functionally suitable and powerful enough to handle the task without problems. The application of the hardware processing to speech recognition opens new perspectives in the design of this kind of systems because of the dramatic increment in performance. The application to brain–computer interface is really interesting because of a new approach in the classification of EEG that shows how could be possible a future development of interfaces based on the classification of spontaneous thought. The possible evolution directions of the work started with this thesis are many. Effort could be spent of the implementation of the developed architecture as a stand–alone reconfigurable system suitable for any kind of HMM–based pattern recognition task. The potential performance of such a system could open the way to extremely complex real–time pattern recognition systems, and thus to the realization of truly multimodal interfaces, with a variety of applications, from space to aid systems for the impaired

    EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing

    Get PDF
    We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments

    Multichannel dynamic modeling of non-Gaussian mixtures

    Full text link
    [EN] This paper presents a novel method that combines coupled hidden Markov models (HMM) and non Gaussian mixture models based on independent component analyzer mixture models (ICAMM). The proposed method models the joint behavior of a number of synchronized sequential independent component analyzer mixture models (SICAMM), thus we have named it generalized SICAMM (G-SICAMM). The generalization allows for flexible estimation of complex data densities, subspace classification, blind source separation, and accurate modeling of both local and global dynamic interactions. In this work, the structured result obtained by G-SICAMM was used in two ways: classification and interpretation. Classification performance was tested on an extensive number of simulations and a set of real electroencephalograms (EEG) from epileptic patients performing neuropsychological tests. G-SICAMM outperformed the following competitive methods: Gaussian mixture models, HMM, Coupled HMM, ICAMM, SICAMM, and a long short-term memory (LSTM) recurrent neural network. As for interpretation, the structured result returned by G-SICAMM on EEGs was mapped back onto the scalp, providing a set of brain activations. These activations were consistent with the physiological areas activated during the tests, thus proving the ability of the method to deal with different kind of data densities and changing non-stationary and non-linear brain dynamics. (C) 2019 Elsevier Ltd. All rights reserved.This work was supported by Spanish Administration (Ministerio de Economia y Competitividad) and European Union (FEDER) under grants TEC2014-58438-R and TEC2017-84743-P.Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L.; Gomez, E.; Villanueva, V. (2019). Multichannel dynamic modeling of non-Gaussian mixtures. Pattern Recognition. 93:312-323. https://doi.org/10.1016/j.patcog.2019.04.022S3123239

    Review of EEG-based pattern classification frameworks for dyslexia

    Get PDF
    Dyslexia is a disability that causes difficulties in reading and writing despite average intelligence. This hidden disability often goes undetected since dyslexics are normal and healthy in every other way. Electroencephalography (EEG) is one of the upcoming methods being researched for identifying unique brain activation patterns in dyslexics. The aims of this paper are to examine pros and cons of existing EEG-based pattern classification frameworks for dyslexia and recommend optimisations through the findings to assist future research. A critical analysis of the literature is conducted focusing on each framework’s (1) data collection, (2) pre-processing, (3) analysis and (4) classification methods. A wide range of inputs as well as classification approaches has been experimented for the improvement in EEG-based pattern classification frameworks. It was uncovered that incorporating reading- and writing-related tasks to experiments used in data collection may help improve these frameworks instead of using only simple tasks, and those unwanted artefacts caused by body movements in the EEG signals during reading and writing activities could be minimised using artefact subspace reconstruction. Further, support vector machine is identified as a promising classifier to be used in EEG-based pattern classification frameworks for dyslexia

    Noise Reduction of EEG Signals Using Autoencoders Built Upon GRU based RNN Layers

    Get PDF
    Understanding the cognitive and functional behaviour of the brain by its electrical activity is an important area of research. Electroencephalography (EEG) is a method that measures and record electrical activities of the brain from the scalp. It has been used for pathology analysis, emotion recognition, clinical and cognitive research, diagnosing various neurological and psychiatric disorders and for other applications. Since the EEG signals are sensitive to activities other than the brain ones, such as eye blinking, eye movement, head movement, etc., it is not possible to record EEG signals without any noise. Thus, it is very important to use an efficient noise reduction technique to get more accurate recordings. Numerous traditional techniques such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), wavelet transformations and machine learning techniques were proposed for reducing the noise in EEG signals. The aim of this paper is to investigate the effectiveness of stacked autoencoders built upon Gated Recurrent Unit (GRU) based Recurrent Neural Network (RNN) layers (GRU-AE) against PCA. To achieve this, Harrell-Davis decile values for the reconstructed signals’ signal-to- noise ratio distributions were compared and it was found that the GRU-AE outperformed PCA for noise reduction of EEG signals
    corecore