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Abstract. The brain-computer interface is considered one of the main tools for 

implementing and designing smart medical software. The analysis of brain signal 

data, called EEG, is one of the main tasks of smart medical diagnostic systems. 

While EEG signals have many components, one of the most important brain 

activities pursued is the P300 component. Detection of this component can help 

detect abnormalities and visualize the movement of organs of the body. In this 

research, a new method for processing EEG signals is proposed with the aim of 

detecting the P300 component. Major features were extracted from the BCI 

Competition IV EEG data set in a number of steps, i.e. normalization with the 

purpose of noise reduction using a median filter, feature extraction using a 

recurrent neural network, and classification using Twin Support Vector Machine. 

Then, a series of evaluation criteria were used to validate the proposed approach 

and compare it with similar methods. The results showed that the proposed 

approach has high accuracy. 

Keywords: brain-computer interface; EEG signal; P300 component; recurrent neural 

network; twin support vector machine. 

1 Introduction 

The brain-computer interface is a clinical application that can restore bodily 

functions for people with disabilities. Generally, the brain-computer interface is 

a communication method based on neural activity produced by the brain, which 

is independent of the natural outflow system, including nerve and muscle 

movements [1]. The brain-computer interface can provide control over 

prosthetics, electronics, and communication directly arising from brain signals. 

This technology has been studied over the past decade using different methods 

for recording and processing neural signals [2]. The hardware of the brain-

computer interface can capture brain signals and various features, including local 

field potential, electrocardiogram, single-agent activity, and the brain’s main 

signal, electroencephalography. The recording and analysis of electro-

physiological brain signals is the basis for research and development related to 

the brain-computer interface. 
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Due to the fact that brain signal processing can be used in the field of smart 

medical engineering there are different methods for analyzing this data based on 

data mining. Data mining methods can be used to extract features or classify brain 

signal data, which enables the discovery of new knowledge from the data. 

Electroencephalographic signals contain vital information about the various 

behaviors and movements of the body. Based on the analysis of these signals, the 

processing system can obtain useful information. Therefore, being able to analyze 

the different behaviors of electromagnetic signals using a smart method is an 

attractive capability that can be used widely in the medical sciences. One of these 

uses is to improve diagnosis of diseases, for example epilepsy and multiple 

sclerosis [1]. 

The P300 component is one of the most important signal components associated 

with cognitive brain activity. The challenge is the detection of this component 

based on training patterns and artificial intelligence. It is necessary to consider a 

data set with EEGs from different individuals as input. First, normalization is 

performed on the data. Further, training and data testing is carried out based on 

the use of Twin Support Vector Machine, followed by classification. After that it 

is also necessary to identify and extract features to be able to detect different 

movements based on the available data. In this study, a recurrent neural network 

was used for this task because of its fast learning convergence in improving the 

space state, i.e. the EEG signal. 

In recent years, companies and organizations have strongly focused on 

developing the quality of their products and services, justified by increasing 

consumer demand and fierce competition between companies. Competition is 

very prominent between companies and organizations in relation to product 

introduction. It is often seen that companies are reluctant to take innovative risks 

or adopt cutting-edge technologies, generally called strategies. Strategic 

innovations are costlier than other innovations and lead to related research that 

may take a long time. Risks can be facilitated by using collaboration strategies. 

However, collaboration can also be an obstacle, especially when companies and 

organizations are looking to work with technology partners who want to 

communicate intensively. Technology innovations may face another challenge, 

i.e. the inherent risk of science-based innovations, which is often difficult to 

define and measure. Organizations may face significant financial losses and 

future opportunities when the development or implementation of new products 

and their supply in an organization is shut down. Research in the field of 

knowledge-based networks focuses mainly on concepts, mechanisms and 

components. 

The idea behind knowledge-based networks is similar to that behind normal 

supply chain management, i.e. the usual knowledge chain aimed at adapting 
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resources such as product supply chains to customer demand. As a general rule, 

knowledge-based networks can be used in a variety of sectors, including 

universities, institutes, hospitals, manufacturers, retailers, customers, and more. 

A knowledge-based network includes all the processes of acquiring, creating and 

transforming knowledge. Although knowledge is considered in the form of data 

or information, the flow unit can be seen as a potential value that is added to a 

company, which in turn creates or concentrates activities. In general, knowledge 

is intended to improve overall performance by turning it into available products 

by expanding the shared vision of companies that focus on physical, information 

or financial chains. Knowledge refers to specific information in universities, 

companies, organizations, hospitals and other institutions that can be used to 

create a product or process innovation.  

The rest of this paper is organized as follows. In Section 2, related studies are 

reviewed to identify opportunities and challenges, datasets, methods, algorithms 

and results. After that, considering the challenges, a new method is proposed to 

solve these problems. Then the simulation conducted on the MATLAB platform 

is discussed and the obtained results are analyzed by making comparisons with 

other methods to validate the proposed approach. Finally, the last section contains 

the conclusion. 

1.1 Literature Review 

Many studies have been done on the brain-computer interface to detect motion 

from vital signals and to identify abnormalities. Firstly, we review motion 

detection techniques from vital signals and methods for detecting P300 and its 

application for motion detection and abnormalities are discussed. A lot of 

research has been done to visualize and detect the motion of fingers based on 

electrocardiograms and electroencephalographic signals. In [3], for example, the 

ability to use electrocardiograms and electroencephalographic signals with 

visualization was used to control a one-dimensional computer pointer in a robust 

and accurate way. Finger movements start from pyramidal and non-pyramidal 

cells in the cortex. The pyramidal cells as the main nerve output send axons to 

the spinal region. The movements of the fingers have three modes: motion, 

curvature, and constant [4]. Reference [5] proposes a method that can accurately 

use electrocardiogram and electroencephalogram signals to decode the flexural 

moment of the fingers. In [6], the use of a Gaussian sparse process with a pseudo 

input such as electrocardiogram and electroencephalogram signals is presented to 

decode the folding state of the fingers. Similarly, in [7] a method is introduced 

called dynamic non-parametric systems. In [8] and [9], decoding of the folding 

bends of electrocardiogram signals using amplitude modulation and specific bond 

characteristics in these signals is discussed. The same operation based on 

electrocardiogram signals is proposed in [10], using selective linear models. In 
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[11], various methods for classification of five-finger curvature in 

electrocardiogram signals based on Fisher’s linear discriminate methods, the 

support vector machine, and K nearest neighbor are presented. Also, the main 

component analysis method was used to extract the scattering property and a 

matrix for feature selection. 

In the study presented in [12], a Markov model and a support vector machine 

were used to detect body movements in electrocardiograms and EEG signals. In 

[13], the classification of a multichannel electrocardiogram signal according to 

individual finger movements is presented. This approach, based on a method 

called redundant spatial projection, yielded significant results in the classification 

of individual finger movements. In [14], a new study on the processing of 

electrocardiogram signals, the decoding of states to attain a natural understanding 

of the electrocardiogram signal is presented. Considering the three components 

of the electrocardiographic signal, i.e. low-pass filtered, low-frequency, and high-

frequency domain modulation, decoding and precision measurements of all 

natural states in individuals were conducted. In [15], the decoding of various 

gestures and finger movements in the initial sense of the cerebral cortex using a 

high-density electrocardiogram signal is proposed.  

Detecting the P300 component in vital signals, especially electromagnetic 

signals, for detecting and identifying characteristic behaviors was considered in 

[16]. The use of a convolutional neural network for detecting the P300 component 

in this research has been used before as an idea, which showed that the proposed 

method has high accuracy. In [17], a combination of two principle component 

analysis methods and a cross-covariance technique was used to extract distinct 

information from electroencephalographic signals. In order to make this data 

extraction robust, a multilayer perceptron neural network, a least squared support 

vector machine and logical regression were used. The results showed that the 

proposed method has a high degree of accuracy, about 99%. In [18], 

measurements of mental and physical activity were performed with an 

electromagnetic signal based on a probabilistic Gaussian distribution in two 

dimensions. The results showed that using the P300 component to measure 

mental and physical activity was 95.54% accurate. In [19], evolutionary 

computing algorithms were used to select and extract major features from 

electroencephalographic signal data to recognize emotions that occurred in a 

networked environment using sensors. The use of various data sets, including 

BCI Competition IV EEG, MAHNOB, and DEAP in the field of electromagnetic 

field signals, was proposed as a new challenge and the results suggested that the 

proposed method was accurate. In [20], sparse-matrix analysis was used to 

diagnose diseases and disturbances in the EEG signal. In [21], the brain-computer 

interface as measurement and control system is presented. This article surveyed 

several measurement and control systems, static as well as dynamic ones, for 
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brain-computer interfaces that use EEG signals. A number of features of EEG 

signals in the sleep stage were extracted and classified in [22]. A classification 

method was proposed based on an artificial neural network for automatic sleep 

stage detection with major features that are extracted for processing. References 

[16-19] used the same data set as was used in the present study, called BCI 

Competition IV EEG data. Thus, the proposed could be evaluated by making a 

comparison with previous methods in terms of several criteria, such as accuracy, 

sensitivity, specificity, and others. 

2 Proposed Method 

First, it is necessary to first primary noise reduction on the EEG signal, which is 

done by using a median filter. Next, we repeat the stimulation of the average EEG 

signal to detect the P300 component. For voice stimulation, P300’s average 

latency is about 300 ms (hence, the name P300), which is due to the positive 

polarity, but for other stimuli this may increase up to 1000 ms, for example for 

visual stimulation. In order to obtain an accurate and regular waveform, a 

Gaussian filter with a cut-off frequency of 8 MHz was applied to the average 

signal. It is necessary to extract features from the input signal with the P300 

component, i.e. the series of features listed in Table 1 with their empirically 

determined coefficients. 

Table 1 Initial features and their experimentally determined coefficients. 

Coefficient Features 

0.020 PD437 

0.011 PD312 

0.010 CD437 

-0.009 PT312 

-0.009 PD62 

0.007 FT937 

-0.006 FD937 

-0.005 PD187 

-0.003 FA531 

-0.188 Constant value 

 

A method is needed for extracting the features in the presence of overlap and 

noise in order to detect the presence of the P300 component in the recurrent neural 

network coding blocks, which are basically categorized into three categories that 

contain a common spatial pattern. This research used a common time pattern 

method that influences the structure of the neural network to extract and select 

the best features. The existence of overlap and noise as well as interference with 
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the brain-to-computer interface signals are among the most important issues that 

exist between adjacent and non-target parts. When the target character appears, 

the EPR protocol is obtained in the course of the target character. It is also located 

in adjacent non-target courses. These two adjacent periods are different in terms 

of the temporal patterns; a common time pattern is used for this purpose. 

Obtaining the time filters and extraction of the characteristics is done by Equation 

(1) with respect to the normal covariance matrices R1̃ and R2̃, and the time 

composition coincidence matrix R̃ according to Eq. (2): 

 Rã =
1

n
∑

Xa
′ (i)Xa(i)

trace(Xa
′ (i)Xa(i))

 , a ∈ {1,2}n
i=1    (1) 

 R̃ = R1̃ + R2̃ (2) 

For each learning input vector in the recurrent neural network training rules, the 

network calculates the output unit response and then determines whether an error 

has occurred for this template. Here, an error means that the output calculated by 

the network is not the same as the target value. The learning of this rule is similar 

to the Hopfield law, with the difference that the weight only changes when the 

network response for the input is an error. The recurrent neural network 

distinguishes between errors in which the calculated output of the zero network 

(the unregulated area) has a target value of 1. It does not detect errors with 

calculated outputs of +1 and a target value of -1. In each case, the learning rule 

changes the network weights in the direction in which the response is aligned 

with the target value. In this network, only the weights on the connections from 

the linking units that send a nonparametric signal to the output unit will change, 

for the simple reason that these signals have caused the error. Therefore, 

according to the training rules the recurrent neural network, if an error occurs in 

the input pattern of the training set, the weights vary according to Eq. (3): 

 wi(new) = wi(old) + axit           (3)                                

where t indicates the target value, either +1 or -1. The learning rate determines 

the speed of the weight changes. In the network, if an error occurs, the weights 

will not change and the training will continue until there is no error. Recurrent 

neural networks are a group of neural networks that have a feedback loop from 

the output to their input. These networks are more powerful than feeder networks, 

since recurrent neural networks are able to recognize and recall temporary 

patterns in addition to spatial patterns. The complexity of these neural networks 

is a bit higher than that of other networks.  

The convergence theorem of the learning rule of the recurrent neural network 

describes that if there are weights that allow the network to generate the correct 

answer for all instruction patterns, then the learning method of the recurrent 

neural network finds values when determining the weight. This means that the 
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recurrent neural network will be able to solve the problem or learn the desired 

category. Additionally, the network will find these weights several times with a 

limited number of repetitive trainings. The key idea behind the neural network is 

that after training it has the ability to be generalized, so that new input patterns 

can be added. This makes it possible to identify unknown patterns in the tracks 

by training. In other words, the neural network is an appropriate regression for 

fitting the hidden function associated with inputs and outputs. One of the 

advantages of using a neural network is that it can bring a more complex division 

into the network structure. 

Many experiments have been done to find the number of neurons in the hidden 

layer in a recurrent neural network. The hidden layer is a layer whose existence 

is necessary because the patterns are divided into several classes. The multilayer 

perceptron neural network is trained using an error-back propagation algorithm. 

The back propagation algorithm for multi-layer networks, such as the recurrent 

neural network, is an extension of the LMS algorithm. Both have the same 

efficiency index, which is the mean squared error. This algorithm reduces the 

mean square of errors between the desired output and the actual output, which is 

a function of the stimulus used, called the Levenberg Marquardt algorithm, also 

known as trainlm. The transfer function is a linear or nonlinear function of type 

n. The transfer function is used to determine the properties of the neuron in order 

to solve various problems. Like Gaussi-Newton’s method, the Levenberg 

Marquardt algorithm was designed to approach a quadratic equation without 

computing the Hessian matrix. When the efficiency function has a view of the 

sum of the squares, the Hessian matrix is calculated with Eq. (4); its gradient is 

in the form of Eq. (5). 

 H = JTJ           (4)                                                                                                                                              

 g = JTe                (5)                                                                                                                                           

where J is a Jacobi matrix that contains the first derivatives of the network errors 

by considering weight and bias; e is the network error vector. The Jacobian matrix 

can be calculated using the standard back propagation error method, which has 

less computational complexity than the Hessian matrix. The feature extraction 

section is one of the most important parts of the P300 component detection 

system. In Table 1, the features are listed that are supposed to be extracted and 

used in order to enable visualization of motion in the classification stage. The 

feature vectors can be extracted by using Eq. (6): 

 Z = XH′         (6)                                                                                                                                                  

By multiplying the production filters in the training section and testing the 

recurrent neural network in the extraction phase of the features in the pre-

processed data X, the property vectors Z can be obtained. H is a time-space filter. 
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For learning purposes, the network uses two layers of the trainlm actuator 

function with 10 neurons. The number of neural network iterations is 1000, the 

network mutation rate is 0.001 and the weight of each layer is 1. In order to train, 

70% of the input data is used for training and 30% for testing. Now that the 

features have been identified and dimming, selection and extraction of the best 

features based on the initial features in Table 1 is conducted, after the detection 

of the P300 component it is necessary to do classification and to determine for 

each section which mode of motion is located on the wrist, elbow or shoulder. 

This operation is based on Twin Support Vector Machine. 

Twin Support Vector Machine is a powerful computing tool for learning with 

monitoring, which is currently performing better than many other systems in a 

wide variety of applications. However, one of the main challenges of this method 

is the high computational cost that comes with major quadratic programming 

problems. The training dataset in the support vector machine is classified in order 

of classification by Eq. (7): 

 Data = {(xi, yi) |xi ∈ Rp, yi ∈ {−1,1}}i=1
n  (7) 

where y is 1 and 1, and each  xi is a real p-dimensional vector. The goal is to find 

the separator superconductor with the maximum distance from the margin points 

that separate the points with yi = 1 from the points with yi = 1. Each vector can 

be written as a set of points x that satisfy Eq. (8):  

 w. x − b = 0                (8)                                                                                                                                  

where w is the normal vector, which is perpendicular to the superposite. It must 

choose w and b so that the greatest possible distance between the parallel clouds 

that separate the data is created. If the learned data is linearly separable, then two 

super-vectors can be considered at the margin of the points so that they have no 

common point and then we try to maximize their distance. The kernel structure 

of the support vector machine is twin-like and does not compute as a classical 

state, i.e. single-to-single data, but does pairwise comparisons. Here, the kernel 

will be defined in the form of Eq. (9) and w will be calculated with the help of 

the alpha terms in Eq. (10): 

 k(xi, xj) = xi. xj                              (9)                                                                                                                

 w = ∑ αiyji xi                  (10)                                                                                                                             

where k is the kernel, the alpha value for all i is positive, and w is a soft state. In 

general, in the classification stage there are two main objectives: 1) the separation 

of the signal into two groups containing P300 and non-P300 components; 2) 

visualization of motion after detecting the presence or absence of the P300 

component in the wrist, elbow and shoulder in the area of the arm. Basically, 

there is a two-way relationship between the extracted blocks and the 
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classification. The longer the information vector of attributes is from the 

separated classes, the simpler the classification structure. The overall structure of 

the proposed approach is depicted in Figure 1. 

 

Figure 1 Proposed method structure. 

2.1 Simulation and Results 

The standard data set used by this study was the BCI Competition IV EEG dataset 

based on the research mentioned at http://www.bbci.de/competition/iv. The data 

set can be downloaded directly from https://sccn.ucsd.edu/~arno/ fam2data/ 

publicly_available_EEG_data.html. The first dataset at this address was used for 

the classification of continuous EEG signals without trial structure (data set 1), 

i.e. 64-channel electroencephalogram signals in a frequency range of 0.05 to 200 

Hz, with a sampling rate of 1000 Hertz and 2 classes (healthy and patient), based 

on movement recognition and the P300 component. This dataset was entered as 

input into the proposed system. The data include movements of the left hand, the 

right hand, the left and the right leg. Three areas were considered as moving parts, 

i.e. the right wrist, the right knee, and the left shoulder joint. The entire BCI 

Competition IV EEG data set was entered as input; the data file EEG_100.MAT 

was optional. In this case, the matrix of the signal was 3 × 10,000. The motor 

features of three areas, namely the right wrist, the right knee, and the left shoulder 

joint, were considered. To reduce the noise in the signal and to improve the signal 

space, a normalization step including noise reduction with a median filter was 

performed on the signal. Then, Twin Support Vector Machine was used to 

classify the signal data. In this section, the data in the row and column of the 

dataset are compared to each other according to two distinct classes. The 

classification was based on the data in the input signal, each of which has a certain 

range. The purpose of classification was to distinguish three areas of motion, i.e. 

http://www.bbci.de/competition/iv
https://sccn.ucsd.edu/~arno/%20fam2data/%20publicly_available_EEG_data.html
https://sccn.ucsd.edu/~arno/%20fam2data/%20publicly_available_EEG_data.html
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the right wrist, the right knee, and the left shoulder joint. Disruptions were also 

considered. In the next step, the recurrent neural network was used to extract the 

most important features from the classes. 

Initializing the parameters is essential. The recurrent neural network iteration 

number was set to 100. The training method used was back propagation error. 

The threshold of the vector carriers was set to 0.8 and the total number of classes 

according to the number of different states in the input EEG signal and its website 

was 100. The first three features of the P300 component were detected according 

to Table 2 and the values contained therein. 

Table 2 P300 component used features. 

Coefficient Features 

0.020 PD437 

0.011 PD312 

0.007 FT937 

 

The P300 component was detected from the EEG signal within the core of the 

training and testing data by the recurrent neural network. After this, the three 

features mentioned in Table 2 were extracted with the recurrent neural network. 

The initial frequency of the signal was 1.42 Hz, the sampling frequency of the 

input signal was 350 Hz, and the amount of motion in the EEG signal was set to 

26 by default. Then the fast Fourier transform was applied to the signal data in 

the training phase of the recurrent neural network to determine the frequency of 

the signal. Figure 2, shows the input signal. 

 

Figure 2 The input signal. 

Identifying the P300 component in the signal was performed as shown in Figures 

3 and 4. With a magnification of up to 3 times in an area, the P300 component 

can be determined. 
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Figure 3 P300 determination in the signal. 

 

Figure 4 Zooming 3x in an area to determine the P300 component. 

Then, the fast Fourier transform was used to identify the signal range in the input 

data (upper part of Figure 5), and then the peak of the frequency domain was 

determined, also using the Fourier transform (lower part of Figure 5), which was 

0.2219 Hz. 

 

Figure 5 a) Upper part: determination of the signal range in the input data; b) 

lower part: frequency domain peak at a rate of 0.2219. 
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Three features (PD437, PD312 and FT937) were used to reveal the P300 

component, the various stages of which can be seen for 8 steps with PD437 in 

Figure 6, for 8 steps with PD312 in Figure 7 and for 8 steps with FT937 in Figure 

8. 

 

Figure 6 Eight steps with PD437. 

 

Figure 7 Eight steps with PD312. 
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Figure 8 Eight steps with FT937. 

Finally, after a total of 24 processes, the P300 component was detected in 

processes 25 and 26, the result of which can be seen in Figure 9. The reason for 

conducting the previous 24 steps was that each component with an adjusted 

coefficient should be processed as much as possible so that the accuracy and 

precision of P300 component detection is improved, after which the correct 

macro properties can be extracted during classification. 

  

Figure 9 P300 detection. 

During each of the 8 steps, the extraction of the features was done by two-to-two 

comparison. Four comparative operations were performed, giving a total of 8 

steps for each feature, which is a total of 24 processes involving 12 comparisons, 

after which the P300 component was detected. Then followed a double-to-two 

comparison and in the final phase, the 26th process, the P300 signal was clearly 

detected. Now that feature extraction was completed, motion visualization was 

done by using the vector-based backup settings and classification based on the 

extracted features. It should be noted that no toolkit for modeling the recurrent 

neural network was used in the previous steps. After extracting the primary macro 

features, the three areas of motion were visible, i.e. the right wrist, the right knee, 

and the left shoulder joint, as shown in Figure 10. In Figure 10, the common 

angles are represented by degrees in relation to time in the three joints. It is also 
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possible to observe the features of disturbances in the time interval of the total 

EEG signal after detecting the P300 component, as well as disturbances and 

motor disorders in the three areas of motion, i.e. the right wrist, the right knee, 

and the left shoulder joint. The output of this section is given in Figure 11. 

  
Figure 10   Angles and output of three movement areas, i.e. right wrist, the right 

knee, and the left shoulder joint. 

  

Figure 11  Disease and disturbances in movements in the total EEG signal. 

As can be seen in Figure 11 there were disturbances in the initial EEG signal of 

one individual for a total duration of 15 seconds, where the graph is reduced to 

zero (Fragmented line). Also, the diagnosis of abnormalities in the movement of 

organs of the body, i.e. the right wrist, the right knee and the left shoulder joint, 
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can be observed, reaching zero and converging to zero (line). Thus, with the 

proposed approach we were able to visualize motion after detecting the related 

P300 component in the EEG signal and then identifying disturbances and 

abnormalities in it. The evaluation criteria were derived after the proposed 

approach was applied. The results are presented in Table 3. 

Table 3 Evaluation criteria after applying the proposed method. 

Mean Square 

Error 
SNR (dB) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

0.0056 
126.4325 

dB 
99.75 % 99.01 % 100 % 

 

Finally, a comparison was made with other methods in terms of extracting 

classification-based features based on the evaluation criteria in Table 4 and 

Figure 12. 

Table 4 Feature extraction based on classification comparison. 

Specificity 

(%) 

Sensitivity 

(%) 

Accuracy 

(%) 
References 

100 % 98.99 % 99.66 % Zarei, Roozbeh et al., 2017, [31] 

- - 95.54 % Murat Yilmaz, Cagatay et al., 2018 [32] 

95.72 % 97.20 % 98.87 % Nakisa, Bahareh et al., 2018 [33] 

99.20 % 71.60 % - Samiee, Kaveh et al., 2016 [34] 

100 % 99.01 % 99.75 % Proposed method 

 

 

Figure 12   Feature extraction based on classification comparison. 

0

20

40

60

80

100

120

Zarei, Roozbeh,

et al., 2017, [31]

Murat Yilmaz,

Cagatay, et al.,

2018 [32]

Nakisa,

Bahareh, et al.,

2018 [33]

Samiee, Kaveh,

et al., 2016 [34]

Proposed

Method

Accuracy (%) Sensitivity (%) Specificity (%)



86     Shirin Salarian & Amir Shahab Shahabi 

3 Conclusion 

Smart medical diagnosis and the brain-computer interface are important areas in 

the field of smart medicine. Today, medical science relies on the brain computer 

interface and intelligent medical diagnostic systems to help doctors make the best 

decisions related to a patient’s situation, preventing problems in the future as 

much as possible. One of the most important parts of smart medicine is the study 

of the human brain, which carries out many processes that are virtually unknown 

to date. By capturing brain activity in EEG signals, information from the 

condition of the brain can be obtained. EEG signal processing can help doctors 

in various stages of the disease. Therefore, it is essential to provide an smart 

medical diagnostic system for EEG signal processing. One of the most important 

components of the brain is the P300 component. Intrinsic to this component is 

noise, which can be removed by extracting the appropriate information on the 

condition of the brain and the organs attached to it. Therefore, the first scope of 

this research was to detect the P300 component in EEG signals.  

To this end, we needed an appropriate dataset. We chose the BCI Competition IV 

EEG dataset, which contains EEG signals that are unique to one person. It is 

necessary to first reduce the noise in the signals with a median filter. Then 

extraction of EEG signal characteristics was done using a recurrent neural 

network, by training and testing to identify three features of the main P300 

component, i.e. PD437, PD312 and FT937. In the final phase, i.e. the selection 

and extraction of features, pairwise comparison was performed for each 

component in 4 stages and a total of 8 processes. This involved a total of 24 

processing steps in order to determine the classes and define the final class of the 

P300 component. After detection of the P300 component classification was 

performed using Twin Support Vector Machine to extract the major features from 

the EEG signal. In this phase, the aim was to identify and visualize motion in 

three areas, i.e. the right wrist, the right knee and the left shoulder joint. The 

results showed that this could be detected in access based on the angle of motion 

in terms of time (in seconds). Convergence was done to find abnormalities and 

disturbances in these three areas. Finally, a comparison with previous methods 

was done, which showed that the proposed approach had better results than the 

previous ones. 
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