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Preface

This thesis presents a research work that passes through different stages of evolution. The first
ideas were developed during my Master Thesis through a collaboration with STMicroelectron-
ics (Advanced System Technologies, Agrate, Italy).

The first efforts were towards the realization of a natural language speech recognition sys-
tem. The subject was appealing because of the huge amount of possible applications of that
technology in the development of advanced human–machine interfaces (space systems, sup-
port for disabled people and consumer applications, among them). The Hidden Markov Model
(HMM) was chosen as the main algorithmic tool to be used to build the system. The early analy-
sis on the related algorithmic framework brought to the identification of the major performance
bottlenecks in that class of systems and to the development of some hardware solutions aimed
to achieve better performances, and open new possibilities for the development of systems
more advanced than the state of the art allowed.

After that work, my collaboration with STM continued through the Ph.D., initially on the
same subject. After the early work I realized how the usefulness of the HMM framework, and
the wide range of possible applications, would have justified the effort put in the develop-
ment of an hardware architecture that provided a reconfigurable tool to be used in any pattern
recognition task, and not only in speech recognition. So the development of that architecture
begun and was carried out through different incremental improvements, and using different
methodologies and tools.

As a parallel line of research, the algorithms implemented in the hardware architecture
were tested on different applications, with a particular focus on advanced human–machine
interfaces. Anyway most of the work have been concentrated on two of these applications.

The first one was natural language speech recognition. This application was chosen mainly
because it is an application still far from being fully functional and useable, but also because
it is among the ones in which the HMMs are most successful. Moreover a good part of the
problems related to this applications are due to the tradeoff between speed and accuracy: the
introduction of a speed improvement through hardware seemed thus a promising solution.
Finally, treating this application allowed also to maintain a continuity with the early work.

The second application was introduced in the project thanks to a fruitful collaboration with
the Laboratory of Non–Linear Systems at the EPFL (École Polytechnique Fédérale de Lau-
sanne). The problem of Brain Computer Interfaces was faced and some really interesting results
on the classification of the electroencephalographic signal were obtained. Even in this case the
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HMMs showed to be a really valuable and effective tool.
The topics in this thesis are organized as following:

Overview on Human–Machine Interfaces: The topic of human–machine interface design is
introduced and the main issues are stressed. The field of interest is identified as the
development of advanced interfaces. Particular attention is paid to pattern recognition
systems for time series, and the choice of the HMM algorithmic framework is motivated.

Hidden Markov Models for pattern recognition: The theory of HMMs is introduced, and its
applications to the problem of pattern recognition are discussed.

Development of a hardware architecture: The chosen algorithms are analyzed from the point
of view of the implementation as a digital hardware system. Then the development of a
dedicated hardware architecture for HMM processing is described in detail, from system
level operation down to the processing sub–systems and basic components.

Implementation and Testing: The core subsystem of the hardware architecture is implemen-
ted at register transfer level and described using an hardware description language. Some
FPGA–based fast–prototyping hardware platforms are selected for testing. The mapping
of the design on the hardware platforms is described, along with several mapping con-
figuration variations. Finally the hardware tests made for functional verification of the
system are discussed.

Application: The application of the developed system to two real–world pattern recognition
systems is described. The first application is a phonetic recognizer (a sub–system of
a speech recognizer); the second application is a binary classifier for electroencephalo-
graphic signal (brain–computer interface). The description of the BCI application also
brings some new research results on the classification of the EEG signal.
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Chapter 1

An overview of human-machine
interfaces

1.1 Introduction to human-machine interaction

Since the appearance of machines, developed in order to aid humans in all kind of different
tasks, one of the main issues has always been to provide a proper way of control on such
machines, namely a user interface. Of course the concept of machine can be easily extended to
any kind of device that can be controlled by a user (nowadays the most common example is a
computer).

The main goal of a user interface should be to provide a suitable control on the system
to which it is applied, while being comfortable and natural for the user (user friendliness).
Nonetheless a good user interface should provide also enough feedback to grant proper op-
eration; in other words the quantity of informations given on the controlled system’s status,
should be enough to allow the user to take decisions on which kind of control to apply to the
system in every moment during the interaction.

So, we could say that a good user interface should have a good balance between usability
for the person that interacts with it, and effectiveness of control on the system. The quality of
the feedback plays its role in both factors, since it increases the usability and allows for better
control.

As one can imagine, as systems get more and more complex, the user interface could be-
come really difficult to manage. Such increase in complexity brought to the development of
different kind of techniques that, properly mixed together, can allow for interaction with the
most advanced devices and machines.

As a wider topic, Human Machine Interaction (HMI) is concerned with

• methodologies and processes for designing interfaces (i.e., given a task and a class of
users, design the best possible interface within given constraints, optimizing for a desired
property such as ‘learnability’ or efficiency of use)

1



CHAPTER 1. AN OVERVIEW OF HUMAN-MACHINE INTERFACES

• methods for implementing interfaces (e.g. software toolkits and libraries; efficient algo-
rithms)

• techniques for evaluating and comparing interfaces

• developing new interfaces and interaction techniques

• developing descriptive and predictive models and theories of interaction

A long term goal of HMI is to design systems that minimize the barrier between the hu-
man’s cognitive model of what user wants to accomplish and the computer’s understanding
of the user’s task. This topic is addressed by the theory of Computer Supported Cooperative Net-
works (CSCW). CSCW focuses on the study of tools and techniques of groupware as well as their
psychological, social and organizational effects [1].

People with hands on HMI are usually designers concerned with the practical application
of design methodologies to real-world problems. In the field of Human Computer Interaction
(HCI) their work often revolves around designing graphical user interfaces and web interfaces.
On the other hand researchers in HMI are interested in developing new design methodologies,
experimenting with new hardware devices, prototyping new software systems, exploring new
paradigms for interaction, and developing models and theories of interaction.

A number of diverse methodologies for HMI design have emerged since the rise of the
field in the 1980s. Most design methodologies start from a model of how users, designers, and
technical systems interact. Early methodologies, for example, treated users’ cognitive processes
as predictable and quantifiable and encouraged designers to look to cognitive science results
in areas such as memory and attention when designing user interfaces. Modern models tend
to focus on a constant feedback and communication between users, designers, and engineers,
and push for technical systems to be adapted to the types of experiences users want to have,
rather than forcing the user to adapt his experience to a completed system [2].

Among the modern approaches, user-centered design (UCD) is widely practiced design phi-
losophy rooted in the idea that users must take center-stage in the design of any HMI system.
Users and designers work together to articulate the wants, needs, and limitations of the user
and create a system that addresses these elements. Often, user-centered design projects are
informed by ethnographic studies of the environments in which users will be interacting with
the system.

1.2 Human-machine interfaces

As already noted, the concept of HMI can be applied to a wide variety of systems, ranging
from industrial machinery, to vehicles, electronic devices and so on. Anyway, since a computer
(but we could say ‘a machine’ in the widest sense) shall not waste your time or require you to do
more work than is strictly necessary1, low complexity systems should not need highly complex

1Jef Raskin, Expert in human-computer interaction who began the Macintosh project for Apple Computer, in The
Humane Interface: New Directions for Designing Interactive Systems.
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1.2. HUMAN-MACHINE INTERFACES

interfaces. Furthermore is well known that really complex systems, even if of mechanical type,
often need a computer to handle the interface and control tasks, in order to allow the user to
concentrate on the overall system operation instead of technical details.

Given these premises, I’m going to focus the attention on human-computer interaction (HCI
from now on) [3] without a great loss of generality, understood that the computer itself can be
in turn used to provide commands to almost any kind of complex machine or device.

1.2.1 Different kinds of user interfaces for HCI

Nowadays the most commonly used user interfaces for HCI can be classified as follows:

Graphical User Interfaces (GUI): Provide a complex graphical feedback on a display, usually
with buttons and other similar means [4]. Input is provided by devices such as keyboards,
pointing devices (like mice) and touch devices (like touch screens). This class is used
almost in any kind of application.

Command line interfaces: The user provides commands through a keyboard in the form of
character strings. The systems provides feedback by printing text on a display. This kind
of interface is one of the earliest, and it is still used in UNIX terminals, usually for system
administration tasks.

Tactile interfaces: Make use of haptic input and feedback. This means that input is provided
through devices that are sensible to touch and tactile manipulation [5, 6, 7]. Feedback
also can be provided through vibrating devices that can be handheld (really popular is
the Force Feedback technology used in gaming) or applied on the skin in different parts of
the body [8]. This interfaces are used for complex manipulation tasks (like 3D modeling
and interaction with virtual environments) and for aid to visually impaired users.

Gesture interfaces: The user provides the commands through gestures. Gestures can be traced
with a stylus on a touch-sensible device, or just in the air and recognized through a video
camera. Often it is possible to find this class of interfaces in handheld devices, but in
general the field of application is wide.

It is clear that the shared feature of the interfaces described, is that they are all hand con-
trolled (in opposition to the interfaces that I will describe in Section 1.3 and that are going to be
called, in this work, advanced (or new generation) user interfaces).

Most of the real world user interfaces are often a mix of the classes described here, according
to the specific needs. This kind of interfaces are often referred to as multimodal interfaces [9].
The main point in developing multimodal interfaces is on integrating humans, computational
devices, and environments in a seamless manner, leveraging the unique capabilities of each to
satisfy system-level requirements. Since multimodal interfaces usually make use, along with
the classes of interfaces already introduced, of more advanced techniques, more details will be
given in Section 1.3.

3
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1.3 New generation interfaces

As already noted, usually when we talk about human computer interface, we think about the
kind of interfaces we are used to in our everyday life: a mouse, a keyboard, a screen. And
even if we leave apart our computer experience, we realize that the most common tasks, like
getting money or buying tickets from an automatic machine, involves a really similar way of
interaction, based on screen prompts and button or touch-screen input. All of this interaction
is based on using our hands to provide the input, and of our eyes to get the feedback (audio
feedback is a common exception, but it is rarely crucial in the task).

This common idea of HMI is due to the fact that the greatest part of the interfaces we deal
with in our everyday life is of that kind. Nevertheless technology is rapidly evolving towards
totally different paradigms, and some hands-free interfaces are already available along with
some interesting evolutions of the popular touch and sight kind of interaction.

1.3.1 Hands-free interfaces

There are a lot of cases in which having the ability to control a system without the use of our
hands can turn extremely useful, both because the user needs his hands to perform a different
task in parallel or because the user cannot use his hands owing to some kind of disability (e.g.
neurological pathologies, accidents).

Some of the most promising technologies that can be used in hands-free interfaces are the
following:

Vocal interfaces: The main technologies involved in a fully vocal interface are speech recognition
for the input part [10] and speech synthesis for the feedback part [11]. Speech recognizers
analyze audio waveform and provide the corresponding text. The extracted text is then
processed in order to extract its meaning and translate it in an actual command for the
systems [12]. Typical speech recognizers make use of techniques like Hidden Markov Mod-
els [13], Neural Networks [14] and other kinds of statistical classifiers. Typical drawbacks of
this technology is low accuracy under certain conditions (namely very large vocabulary,
speaker independentness, continuous speaking, highly noisy environments) especially
when these conditions are present altogether [15]. On the other side successful appli-
cations have been deployed with medium sized vocabularies and specific training for
speaker adaptation [16, 17]. More details on speak recognition can be found in Section
5.1.

Brain-computer interfaces: In brain-computer interfaces (BCI) the input is provided by bio-
logical signals coming from the user’s brain [18]. Common techniques for signal acquisi-
tion are Electroencephalogram (EEG) [19] and Electrocorticogram (ECoG) [20] but also more
advanced like Functional Magnetic Resonance Imagery (fMRI) [21]. The signal is classified
(which technique is most suitable is still matter of discussion), and used to provide com-
mands to a system (e.g. a wheelchair [22]). The research on BCI is still ongoing, but some

4
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results have already been obtained with invasive techniques (like ECoG [23]). Non inva-
sive techniques (EEG) are still affected by the problem of really low SNR, but the effort on
this part of the problem is consistent and begins to provide significant results [24]. More
details on BCI systems can be found in Section 5.2.

Image-based interfaces: This class of interfaces relies on capturing the user with a video cam-
era, and interpreting the footage in some way in order to extract commands or some
other informations useful for the interface’s operation. Most of the techniques used in
this kind of interfaces make use of some form of object/feature tracking in the captured
video [25]. Gesture recognition [26] interprets some movements of the user and translates
them in commands; gestures can be produced with hands, arms, head, face expressions
and, in principle, with almost any part of the body but, since we are talking about hands-
free control, the most interesting features are clearly the one extracted from the image of
the user’s head (head movements and facial features). Expression recognition [27] can pro-
vide useful informations on the context in which the interface is used (e.g. the mood of
the user). An even more advanced technique is eye tracking [28], in which eye movements
can be used to replace a pointing device, and eye blinking as a selection command. Fi-
nally, most of the informations that can be extracted from a footage of the user (position,
posture, movements, and so on) can be successfully used as a complement to other kind
of interfaces when developing the so called multimodal interfaces. More detail on multi-
modal interfaces can be found in Section 1.4.1. An example of image-based interface can
be found in the experiment setup described in Section 5.2.

1.3.2 Evolution of standard interfaces

When talking about new generation or advanced interfaces, we surely do not talk only of
hands-free interfaces. Even the most widely used kinds of interfaces are quickly evolving.
In this section I’ll give a brief overview of the directions that this evolution has taken, showing
some examples.

Web-based interfaces: This is the most straightforward and common evolution of graphical
user interfaces. The principle is the same: the user controls a system through a graphi-
cal interface shown on a display, using some kind of pointing device. The fundamental
difference is that the system is remotely controlled: the interface is on a web server that
accepts inputs and provides outputs by generating web pages which are sent through the
Internet and viewed by the user using a web browsing application. Newer implementa-
tions utilize Java, AJAX, or similar technologies to provide realtime control [29, 30].

Attentive user interfaces: They track the user attention deciding when to interrupt the user,
the kind of warnings, and the level of detail of the messages presented through the feed-
back channel of the interface. This technology is basically a feature that can be applied to
any kind of interface to raise the level of adaptability to the user’s behavior [31]. The next

5
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step in this kind of technology are the Non-command user interfaces [32], which observe
the user to infer his needs and intentions, without requiring that he formulates explicit
commands, and the Zero-Input interfaces, that grab inputs from a set of sensors instead of
querying the user with input dialogs [33].

Zooming user interfaces: These are graphical user interfaces in which information objects are
represented at different levels of scale and detail, and where the user can change the scale
of the viewed area in order to show more detail [34]. In some applications can be used
also along with tracking technologies in order to provide hands free operation [35].

1.4 Human-machine interfaces in space systems

All the interfaces described so far find their application in a wide variety of systems, with no
particular restrictions. Anyway, a really interesting field of application is HCI/HMI in space
environment. This is mainly due to the fact that, if some tasks that are commonly performed
on earth with the aid of machines can be also performed without them (clearly at the expense
of some more effort and time), the same cannot be said when we are talking about space. In
other words, since man cannot go in space without the aid of machines, the human-machine
interaction becomes an even more critical issue, and the two [. . . ] should be wed in such a way that
the respective strengths of each complement the weaknesses of the other2.

As everybody knows, the application of any commonly used technology in space becomes
sensibly more difficult, with respect to the terrestrial use, since the behavior of both the users
and the devices changes radically. As regards the systems themselves, the designer should
deal with several problems. In mechanical systems, for example, the reduced gravity (or the
total absence of it) makes the designer’s task quite tougher [36]. The same is true for electronic
systems, since the the currents injected by the particles that compose the radiation present in
space give rise to the need of different design strategies, both from the point of view of the
production process [37, 38] and of the hardware architectures [39]. Even the users show a
definitely different behavior due to the different gravity (different use of muscles), the different
living spaces, the variations in day-night cycles, irradiation (light flashes and other similar
effects) [40, 41].

Given all these premises, it is clear that interfaces for space systems are more likely to make
use of advanced techniques than interfaces for terrestrial systems. In particular all the major
space groups, like NASA [42], are focusing on multimodal interfaces in order to exploit the most
useful characteristics of every technique.

1.4.1 Multimodal interfaces

A multimodal interface can include speech and natural language interfaces, multimedia sys-
tems, adaptive and intelligent interfaces and displays, ubiquitous computing, and mobile and

2Dr. Eugene Konecci, NASA Director of Biotechnology and Human Research (speech, 1964)
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wearable computing [9]. The aim is to find ways to couple humans and computers into coop-
erative, efficient systems. For example, team interfaces that reflect mixed-initiative models of
content, activity, and dialogue, will require advances in spoken and visual languages, flexible
movement among levels of abstraction, and consistent coordination of multiple representa-
tions.

Multimodal interfaces go far beyond simple displays and voice-response systems. They
help decision makers accomplish high-bandwidth, heterogeneous, real-time data integration
and interpretation. In space systems applications include remote science, model-based predic-
tive control, onboard system management and procedure execution, information management
for ground operations.

A representative example might be an intelligent maneuvering system for the International
Space Station [43]. The ISS will offer serious challenges to humans performing intricate docking
and assembly maneuvers. An intelligent maneuvering system could enhance the performance
of astronauts by integrating tele-robotic systems with software for monitoring, scheduling, and
decision support. Such an intelligent system would reduce the probability of mishaps, while
freeing operators from routine monitoring and manipulation tasks.

Another broad area of application is enhancement of air traffic safety and capacity. A new
generation of performance aids is needed both on the ground and in the air. In the cockpit, a
new generation of displays and interfaces could mitigate information overload and improve
situation awareness. Some groups are also developing systems that can assist pilots in flying
severely damaged aircraft by reconfiguring the flight-control computer system.

This kind of interfaces must be useful even under difficult conditions, and their safety and
reliability must be established in advance through rigorous design and testing. However, en-
gineering design of such flexible, robust performance-enhancement systems is still beyond the
state of the art. Research is focused on developing better models of attention, memory, concep-
tual structure, decision-making, learning, and higher-level perception needed for principled
design and testing of novel human-computer systems. These will permit early, reliable design
choices (minimizing life cycle cost) and reduce system risk.

1.5 Dealing with time series: the HMM

From the considerations made in Section 1.4 it seemed reasonable to focus this thesis on what
I defined advanced interfaces (see Section 1.3) since these are in some way the building blocks of
multimodal interfaces (see Section 1.4.1), and multimodal interfaces are the ones that promise
to provide the user with the most comfortable and efficient interaction experience.

When designing user interfaces that are supposed to deal with a lot of informations to
be passed from the user to the system and back, often some kind of machine learning [44] is
involved, since a suitable interpretation of user input, based also on prior knowledge of the task
and of its context, allows to infer from the inputs more information than is actually contained
in it.

Is well known that machine learning is concerned with the development of algorithms and
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Sensor Feature 
Extraction Classificator High Level 

Processing

INPUT OUTPUT

Figure 1.1: A block diagram that describes a generic pattern recognition system.

techniques that allow computers to ‘learn’. Machine learning has a wide spectrum of applica-
tions including natural language processing, data retrieval, medical diagnosis, bioinformatics
and cheminformatics, security, stock market analysis, classification of DNA sequences, speech
and handwriting recognition, object recognition in computer vision, robotics [45]. Some ma-
chine learning systems attempt to eliminate the need for human intuition in the analysis of
the data, while others adopt a collaborative approach between human and machine. Which of
the two approaches to choose is tightly related to the goals and specifications of the selected
application.

Anyway in all the mentioned applications, the goal is to extract meaning from some kind
of input (that can be provided in quite a lot of different ways). That can be stated also as
identifying a pattern in the input and assign it to a known class. The techniques that allow to do
this belong to a branch of machine learning known as pattern recognition [46].

1.5.1 Pattern recognition systems

Pattern recognition aims to classify data (patterns) based on either a priori knowledge or on
statistical information extracted from the patterns. A complete pattern recognition system,
typically consists of:

• a sensor that gathers the observations to be classified or described

• a feature extraction mechanism that computes numeric or symbolic information from the
observations

• a classification or description scheme that does the actual job of classifying or describing
observations, relying on the extracted features

A fourth part could be added, and it is the one that translates the result of the classification into
informations directly usable by the system through high level processing. A general represen-
tation of this kind of system is depicted in Figure 1.1.
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The classification or description scheme is usually based on the availability of a set of pat-
terns that have already been classified or described. This set of patterns is called the training set
and the resulting learning strategy is characterized as supervised learning. Learning can also be
unsupervised, in the sense that the system is not given an a priori labeling of patterns, instead it
establishes the classes itself based on the statistical regularities of the patterns [47].

The classification or description scheme usually uses either the statistical (decision theoretic)
approach or the syntactic (structural) approach. Statistical pattern recognition is based on statis-
tical characterizations of patterns, assuming that the patterns are generated by a probabilistic
system. Structural pattern recognition is based on the structural interrelationships of features.

When the classification task is highly complex and involves a high number of classification
targets and high variability in the inputs (due usually to differences between the sources that
produce the input and to external noise scenarios), usually statistical classification performs
better since a well chosen training data-set can take into account variations that are difficult to
identify with a structural approach. Most often some techniques taken from structural pattern
recognition are used in statistical frameworks to put constraints and improve generalization
and outlier inputs.

Statistical classification

In statistical classification individual items are subdivided into groups on the base of quan-
titative information related to one or more characteristics inherent the items. The reference
quantities used in the classification process are taken from a training set made of previously
labeled items of the same type.

Formally the problem could be stated as follows: given a training data-set

{(x1, y1), . . . , (xn, yn)}

the aim is to build a classifier h : X → Y that can map an object x ∈ X to its correct classification
label y ∈ Y.

If, for example, the problem at hand is filtering spam, then xi could be some representation
of an e-mail, and the classification labels would be Y = {Spam, Non− Spam}.

Even if statistical classification techniques are many, each of them always solve one of three
precise mathematical problems.

The first one is to find a map from a feature space (which is typically a multi-dimensional
space) to a set of labels. This is equivalent to partitioning the feature space in different regions
and assigning a label to each of them. Algorithms that solve this problem (like the nearest-
neighbour algorithm) typically do not provide a confidence level or class probabilities, unless
some kind of post-processing is applied. This problem can be solved also by first applying
unsupervised clustering to the feature space and then trying to apply labels to the resulting
clusters.

The second problem is to consider the classification task as an estimation problem where
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the goal is to estimate a goal function of the form

P
(
class|~x

)
= f

(
~x;~θ
)

(1.1)

where the input feature vector is ~x and the function f is usually parametrized through some
parameter vector ~θ. In the bayesian approach to this problem, instead of choosing a single
parameter vector ~θ, the result is integrated over all the possible parameter vectors, weighting
each of them according to their likelihood given the training dataset D. This means that the
goal function in (1.1) becomes

P
(
class|~x

)
=
∫

f
(
~x;~θ
)

P
(
~θ|D

)
d~θ (1.2)

The third and last problem is closely related to the second one, and it consists of estimating
the probabilities of the features conditioned to the classes, namely

P(~x|class) (1.3)

After estimating this function, one can easily find the class probability of equation (1.1) by
means of the Bayes’ rule

P(class|~x) =
P(~x|class)P(class)

P(~x)
(1.4)

1.5.2 Time series in pattern recognition

A wide range of algorithms can be applied for pattern recognition, from very simple Bayesian
classifiers to much more powerful neural networks. Anyway, the patterns to be classified are
usually groups of measurements or observations, defining points in an appropriate multidi-
mensional space. In particular when dealing with user interfaces, the temporal dimension is
always present, since it is natural for the user’s interaction with the systems to evolve in time.
Given this premise, it is clear that the input measurements will be some kind of time series.

In statistics and signal processing, a time series is a sequence of data points measured at
successive times with a defined sampling rate (usually uniform). A common notation for repre-
senting time series is

X = {X1, X2, . . . , XN} (1.5)

where Xi are the samples corresponding to the time interval i and N is the length of the se-
quence.

Time series analysis comprises methods that attempt to understand certain characteristics
of the data, like how it was generated (i.e. by which kind of source) or to make forecasts on the
evolution of the time series itself.

Models for time series data can have many forms. Three broad classes of practical impor-
tance are the autoregressive (AR) models, the integrated (I) models, and the moving average
(MA) models. Combining these basic techniques, one cane obtain more complex models, like
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ARMA models. Further details on time series analysis can be found in [48]. These three classes
depend linearly on previous data points. Non-linear dependence on previous data points is
of interest because of the possibility of producing a chaotic time series [49], and is thus useful
when dealing with chaotic systems.

Of course there are a lot of tools that can be applied for time series analysis. Even if not
with the intent to be exhaustive, some of them are here listed:

Autocorrelation methods, making use of the autocorrelation function and the spectral density
function;

Frequency analysis, that usually involver the application of the Fourier transform to investi-
gate the series in the frequency domain;

Filtering, linear or nonlinear, often used to remove unwanted noise;

PCA, principal components analysis (or also empirical orthogonal function analysis), used to
reduce the number of dimensions of the problem;

Time-frequency analysis techniques, like wavelet transforms, short-time Fourier transform,
chirplet transform and fractional Fourier transform;

Chaotic analysis techniques, like correlation dimension, recurrence plots, recurrence quantifi-
cation analysis and Lyapunov exponents;

Again, for further details refer to [48, 49].
From a pattern recognition system-level point of view, the methods we mentioned for time

series analysis are the ones to be used in the front-end for feature extraction (cf. Figure 1.1).
In pattern recognition, features are the individual measurable heuristic properties of the phe-
nomena being observed. Choosing discriminating and independent features is crucial to any
pattern recognition algorithm for being successful in classification. Features are usually nu-
meric, but structural features such as strings and graphs are used in syntactic pattern recognition
[50].

While different areas of pattern recognition obviously have different features, once the fea-
tures are decided, they are classified by a much smaller set of algorithms. These include nearest
neighbor classification in multiple dimensions, neural networks or statistical techniques such
as Bayesian approaches.

Just to propose some examples, in character recognition, features may include horizontal
and vertical profiles, number of internal holes, stroke detection. In speech recognition, fea-
tures for recognizing phonemes can include noise ratios, length of sounds, relative power, fil-
ter matches. In spam detection algorithms, features may include whether certain email headers
are present or absent, whether they are well formed, what language the email appears to be,
the grammatical correctness of the text, markovian frequency analysis.

In all these cases, and many others, extracting features that are measurable by a computer is
absolutely not trivial, and with the exception some neural networking and genetic techniques
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that automatically infer features, hand selection of good features forms the basis of almost all
classification algorithms.

When it comes to the classification task itself, the choice of the algorithms to apply depends
obviously on the kind of input the system has to decode, and on the kind of output to extract.
This directly reflects on the kind of features coming out from the front-end (since, as already
noted, they extract from the data the informations that are most important for the extraction of
the desired meaning).

While there is a wide choice of algorithms suitable for classification (see Page 11), not all
of them are the best choice if the system has to deal with time series (i.e. when system’s input
evolves in time).

A typical example is the speech recognition task, especially the continuous speech case.
The most natural representation for speech is indeed a time series (a sequence of samples or
other kind of features in time). Some techniques, like neural networks, are most suitable for the
classification of static patterns (pictures for example) or already segmented inputs (like single
spoken words), but have problems when the input is a continuous stream of data. In the case
of neural networks some efforts to solve this problem have been made with time-delay neural
networks [51], but some other problems arise because the increase in complexity in the training
procedures is significant.

Some other techniques, instead, seem more suitable for time series classification, since they
can deal with continuously changing inputs in the most natural way. The Hidden Markov
Models (HMM) in particular, have some characteristics that make them one of the best choices
for time series classification. Among the most interesting, there is the ability to automatically
segment a continuous stream of data, taking into account each segment’s context in time.

For this and for other reasons that will be better described in Chapter 2, this thesis focuses
on the use of HMMs for pattern recognition on time series, along with the development of
methods and tools to improve systems based on this paradigm.

Of course good results have been obtained also with other approaches, and many examples
can be found in literature (see for example [52, 53]) but, as I’m going to show in Chapters 3 and
4, algorithms that can be applied to solve the problem through HMMs seem to be particularly
suitable when developing real-time system with a mixed hardware-software architecture. In
the perspective of building advanced user interfaces for complex systems, this feature make
the use of HMMs one of the most interesting choices.
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Chapter 2

Use of HMMs in pattern recognition

For reasons explained in 1.5.2, this thesis is going to focus on the use of HMMs for time
series processing. In this chapter I am going to introduce the basic theory of Hidden Markov
Models. Then I will show how this theory is applied to pattern recognition problems. Finally
I will discuss the common problems and limitations with respect to other methods along with
the advantages in using such technique.

2.1 Introduction to Hidden Markov Models

The theory of HMMs is definitely not new, and it has been applied to many different different
problems since its first publications by Baum and his collaborators [54] between the end of the
sixties and the beginning of the seventies. To be precise it begun to be applied some years later,
along with the publication of the first tutorial documents that provided enough informations
and details to allow for practical use.

2.1.1 Discrete Markov processes

The HMM is actually an extension of the concept of Markov chain. Markov chains are used
to model systems that can be described as a set of N distinct states S1, S2, . . . , SN . In discrete
Markov processes the time is sampled at regular steps t = 1, 2, . . . , N. At each time step the
system can change its state (or stay in the same state) according to a set of transition probabil-
ities associated to the states. In a complete statistical description of the system, the probability
of being in a certain state Sj at a certain time t would depend on the system’s state at every
time step before t. Formally this means that we can express the probability of being in state Sj
at time t as

P[qt = Sj|qt−1 = Si, qt−2 = Sk, · · · ] (2.1)
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Figure 2.1: A graphical representation of a generic, not fully connected, 5-states markov chain.

A widely used approximation is to consider only first order processes, that is state probability
in Equation (2.1) is assumed to depend only on previous system’s state:

P[qt = Sj|qt−1 = Si, qt−2 = Sk, · · · ] ' P[qt = Sj|qt−1 = Si] (2.2)

A further and really common approximation is to consider that state transition probabilities do
not change in time. This means that it is possible to describe the system through a set of static
state transition probabilities of the following form:

aij = P[qt = Sj|qt−1 = Si]
∀ 1 ≤ i, j ≤ N
∀ t

(2.3)

and, since transition probabilities should satisfy the basic stochastic constraints, it follows that

∑N
j=1 aij = 1 ∀ i

aij ≥ 0 ∀ i, j
(2.4)

A typical representation of a Markov process, given the approximations described by Equa-
tion (2.3), is shown in Figure 2.1.

The kind of process just described is said to be an observable process. That is true because the
model’s output is the temporal sequence of states itself, and each state corresponds to an ob-
servable event. The model can be completely described by means of an N × N transition matrix
A, containing the transition probabilities aij, and an N × 1 vector of initial state probabilities
Π, containing the probability πi of each state to be the first of the sequence produced by the
model.
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Figure 2.2: Probability density function for duration d in the same state for a first order, time
invariant Markov process. Interpolated curves are shown for different values of the state’s
self-transition probability.

To clarify the operation of a Markov chain, let’s assume we want to calculate the probability
of a specified state sequence, given the model λ = (Π, A) with three states S = {Sa, Sb, Sc}. If
the chosen sequence is, for example, O = {Sc, Sa, Sb, Sa}, its probability can be simply calcu-
lated using the expression

P(O|λ) = P(Sc, Sa, Sb, Sa|λ)
= P(Sc) · P(Sa|Sc) · P(Sb|Sa) · P(Sa|Sb)
= πc · aca · aab · aba

(2.5)

Another interesting problem is, given the model’s current state is Si, to compute the proba-
bility to stay in the same state for a time d. Formally the problem reduces to the calculation of
the probability for the sequence

O = {S(1)
i , S(2)

i , · · · , S(d)
i , S(d+1)

j 6= Si} (2.6)

This probability can be calculated with the same method used in Equation (2.5), that is

P(O|λ, q1 = Si) = (aii)d−1(1− aii) = pi(d) (2.7)

where qt denotes the sytem’s state at time t. The quantity pi(d) is the discrete probability
density function of duration d in state i. The exponential trend of this quantity, shown also in
Figure 2.2, is a typical feature of Markov chains. Finally, given the duration pdf, it is possible
to compute the expected value for the permanence in a given state i (measured in time steps)
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using the formula

di =
∞

∑
d=1

d · pi(d) =
∞

∑
d=1

d · (aii)d−1 · (1− aii) =
1

1− aii
(2.8)

Though Markov processes can be useful when applied to simple problems, they have not
enough modeling power and flexibility to handle complex behaviors. The Hidden Markov
Models provide an extension to this theory that allows to build models for really complex
phenomena.

2.1.2 From Markov chains to Hidden Markov Models

The fundamental difference between Markov chains and HMMs is that in the latter there are
two processes going on concurrently: an observable process and a hidden process (from which
the name Hidden Markov Model).

The concept is that if we look at a complex system, we can see the outputs of that system,
while there are some other underlying processes that remain hidden to the observer. The overall
behavior of HMMs is similar to that of Markov chains but, assuming to be in state Si at time
t, the observation is generated by a probability density function tied to Si, instead of being the
state itself (see Figure 2.3). So the hidden process is the one that controls the transitions between
states, while the observable one rules the emission of symbols (or observations) according to
the present state’s PDF.

In order to better emphasize the differences between Markov chains and HMMs, let’s con-
sider a simple coin toss experiment. As one can expect the outcome of any coin toss experiment
will be of the kind O = {O1, O2, O3, · · · , OT} = {Head, Cross, Cross, · · · , Head}. The observer
anyway does not know the number of coins used to perform the experiment, neither any other
details on the process. At this point the question is: how to build a Markov model capable of
reproducing accurately the observed phenomenon?

A possible choice could be to assume that a single coin is used for the experiment, and use
a two–state Markov chain in which the states represent the Head and Cross events (see Figure
2.4.a). Such kind of model is observable and requires only one parameter to be specified (e.g.
the probability of observing a Head event).

Using the HMMs, on the other hand, allow for more complex scenarios to be specified. One
can assume, for example, that the coin is randomly chosen (in a set of two or three coins) before
the toss. In the HMM each state would represent one of the coins, and each coin would have
its own PDF for the emission of the Head/Cross events. Furthermore, the choice of the coin
would be ruled by the transition probabilities between the states.

A two–state HMM (like the one shown in Figure 2.4.b) would require four parameters to be
specified, whilst a three–state HMM (like the one in Figure 2.4.c) would require nine.

From a pure theoretical point of view, more complex HMMs are capable of modeling with
higher detail the proposed experiment. Nonetheless the complexity that an HMM can reach in
real applications is strongly limited by practical issues like, for example, the need for suitable
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Markov Chain

Hidden Markov Model

O1 = S1 O2 = S2 O3 = S3

S1 S2 S3

S1 S2 S3

b1→ O1 b2→ O2 b3→ O3

Figure 2.3: A comparison of observation output between Markov Chains and HMMs.

training data-sets. Furthermore it could also be that the experiment was actually done with a
single coin. This eventuality would allow the Markov chain to outperform the HMMs since, in
this particular case, the HMM approach, even if more powerful, is clearly less suitable for the
problem.

Indeed the real usefulness of HMMs comes out when dealing with more challenging prob-
lems. For this purpose we consider another experiment (see Figure 2.5). We assume to have N
different jars, each one full of colored balls. Let’s say that the possible colors are M. The obser-
vation are produced in the following way: first a jar is randomly chosen, then a ball is extracted
from the chosen jar and its color recorded as an observation, and finally the extracted ball is
put back in the jar. The process is repeated as many times as needed to obtain the sequence of
desired length.

It is quite clear to see that the most straightforward way to model this experiment is by
using a HMM in which each state represents one of the jars. In that way the state emission PDFs
will model the distribution of different colors inside each jar, while the transition probabilities
will rule the choice of the jar from which to extract the color at each time step. It is also easy to
guess that modeling such a problems using simple Markov chains would be extremely difficult.
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Figure 2.4: Models for a coin toss experiment: (a) first order, time invariant Markov chain; (b)
two–state HMM; (c) three–state HMM.

2.1.3 Characterization of HMMs

Now that is better understood how HMMs work and on which kind of problems is worth to
apply them, it is necessary to define the theory in a more precise way.

An HMM can be completely described through the following set of parameters:

Number of states, N: For most of the applications the states have a precise correspondence
with some of the elements that make up the application itself. In the particular class of
ergodic models, the states are connected in such a way that it is possible to reach any state
starting from any other, in a finite number of steps. The set of states is described using
the notation S = {S1, S2, . . . , SN}, while qt is used to specify the state at time t.

Number of observable symbols, M: This is the dimension of the discrete alphabet used. The
sequences output by the system that the model describes can be composed only by sym-
bols from this alphabet. The set of symbols is expressed by the notation V = {v1, . . . , vM}.
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Figure 2.5: Representation of the N–Jars experiment for the production of color sequences, and
its relations with HMM emission probabilities.

Transition probability matrix, A: The values in the transition probability matrix are the tran-
sition probabilities associated with the arcs that connect states (see for example Figure
2.4.c at page 18 for a reference HMM diagram). In particular

aij = P[qt+1 = Sj|qt = Si] 1 ≤ i, j ≤ N (2.9)

In the particular case in which it is possible to reach any state of the model from any other
in a single step, it is aij > 0 for every couple (i, j). Otherwise aij = 0 for some (i, j). This
means that there is no direct connection between some couples of states.

Emission probability distributions, B: These are the discrete probability distributions associ-
ated with each of the states in the model. Each PDF defines the emission of symbols (or
observations) from the state to which it is associated. For the set of PDFs the notation
B = {b1(k), b2(k), . . . , bN(k)} is used, where

bj(k) = P[vk at time step t|qt = Sj] 1 ≤ j ≤ N, 1 ≤ k ≤ M (2.10)

Initial state probability distribution, Π: This vector contains the probability for each state to
be the first of a sequence. This set of probability is addressed with Π = {π1, π2, . . . , πN}
where

πi = P[q1 = Si] 1 ≤ i ≤ N (2.11)
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After defining a model λ(A, B, Π) (the quantities N,M and V will follow from these ones),
it is possible to use the HMM as a sequence generator. The output observations would be of
the type O = {O1, O2, . . . , OT} where each symbol Ot would be taken from the alphabet V , and
T is the length of the sequence.

A sequence is generated using the following algorithm:

1. time is initialized at t = 1;

2. an initial state q1 = Si is chosen according to the initial state probability distribution Π;

3. an observation Ot = vk is chosen according to the emission probability distribution bi(k)
tied to the state qt = Si;

4. a transition towards a new state qt+1 = Sj is performed according to the PDF of transition
from state Si (the PDF is actually the ith row of the transition matrix A);

5. time is incremented by one step (t = t + 1) and, if t < T, the process is repeated from step
3 (otherwise it ends).

Of course an HMM can be used not only to generate sequences, but also to model a se-
quence generator and check if an existing sequence has been generated from a similar system.
This last use is most common in pattern recognition and allows to use the HMM as a classifier.
In next section I’ll show in detail how to use a HMM in this way.

2.2 Use of HMMs for pattern recognition

Assumed that we choose to use HMMs in our pattern recognition system, it is first of all nec-
essary to solve some practical problems that arise whenever one tries to applied the theory
described in the previous sections.

In general, all the needs of an HMM user can be fulfilled by solving three major problems:

Problem 1: Given an observation sequence O = {O1, O2, . . . , OT} and a model λ(A, B, Π), how
is it possible to compute efficiently the probability P(O|λ) (likelihood of the sequence
given the model)? This is referred to as the scoring problem.

Problem 2: Given an observation sequence O = {O1, O2, . . . , OT} and a model λ(A, B, Π),
how is it possible to identify the sequence of model states Q = {q1, q2, . . . , qK} (with
K ≥ T) that best explains the production of the sequence? This is referred to as the best
state sequence problem.

Problem 3: How is it possible to adjust the model’s parameters (A, B, Π) in such a way that
the probability P(O|λ) is maximized? This is referred to as the training problem.
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The first problem is about how to compute the probability that an observation sequence
has been generated by a given model. From another point of view it is about the evaluation
of how much a certain model is suitable for modeling a given sequence (model scoring). The
latter interpretation is the most interesting since, assuming to have several models available for
a certain observation sequence, scoring them allows for the choice of the best one to be used
for spotting sequences of the same kind.

The second problem is about the hidden part of the HMM: its solution provides informa-
tions on that part. It is anyway important to stress that in most cases there is no correct state
sequence for a given observation sequence. In practice optimization methods are used to pro-
vide the best possible (but still sub-optimal) solution. In 2.2.2 will be shown how the choice of
the optimization criteria strongly depends on the kind of use intended for the resulting state
sequence (like making statistics, or trying to understand the internal behavior of the model, or
validating a certain chosen topology).

The third and last problem is about how to optimize the model’s parameters in such a way
that it best represents the desired observation sequence. The sequences used for the optimiza-
tion process are called training sequences and they make up the training data set. The process
itself is referred to as model training.

To clarify the role of each of the three problems just described, I will show the example of
a simple classifier for isolated spoken words. In this kind of systems the most straightforward
solution is to use an N-State HMM to model each of the W words to be recognized. The in-
put speech could be coded by a sequence of vectors containing spectral features, quantized so
that they can be represented using a code-book containing a finite number M of symbols. This
means that the observation space would be clustered into M regions. Thus a typical training se-
quence for the HMM that models the word wi would be a series of code-book vectors obtained
from the coding of several repetitions of that word.

The fist step to develop such a system is to build a model for each word. This implies
the solution of the training problem, since the model parameters must be optimized to fit the
training data set.

Then, if we want to refine the models, it is necessary to understand the meaning of each
state of the HMM and, eventually, correct the model topology and the other parameters with
the aim to obtain a model that better reproduces the real generator of the observations. Here
the solution to the best state sequence problems comes in handy.

Finally, when the model for each of the W words is set up, it is possible to evaluate the
system’s performance on input sequences that are not part of the training data set (test data
set). The classification process implies the evaluation of the likelihood of each model given the
test input sequence, and the selection of the best scoring model. This process clearly relies on
the solution to the scoring problem.

In the following sections the most popular solutions to each of the three problems will be
shown.
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2.2.1 Use of HMMs for classification

Since this thesis is focused on pattern recognition, the solution to the scoring problem is obvi-
ously one of the most interesting from that point of view. The aim, as already said, is to compute
the probability of observing the sequence O = {O1, O2, . . . , OT} given the model λ(A, B, Π),
thus P(O|λ). The simplest method could seem to enumerate all the possible state sequences of
length T of the kind Q = {q1, q2, . . . , qT}. The probability of the observation sequence O given
a state sequence Q and the model λ is given by

P(O|Q, λ) =
T

∏
t=1

P(Ot|qt, λ) = bq1(O1) · bq2(O2) · · · bqT (OT) (2.12)

where is assumed the statistical independence of observations. The probability of the state
sequence Q is, on the other hand

P(Q|λ) = πq1 · aq1q2 · aq2q3 · · · aqT−1qT (2.13)

The joint probability of O and Q is simply the product of (2.12) and (2.13), thus

P(O, Q|λ) = P(O|Q, λ) · P(Q|λ) (2.14)

Finally the probability of the observation sequence given the model can be obtained by sum-
ming the joint probability in (2.14) over all the possible observation sequences of length T in
the following way:

P(O|λ) = ∑∀Q(T)

[
P(O|Q, λ) · P(Q|λ)

]
=

= ∑∀Q(T)

[
πq1 · bq1(O1) · aq1q2 · bq2(O2) · aq2q3 · · · aqT−1qT · bqT (OT)

] (2.15)

The main drawback with this method is the computational weight. The number of operations
needed is proportional to 2TNT since there are NT possible sequences of length T, and the
computation of the joint probability for each sequence requires approximately 2T operations
(mostly multiplications). Taking into account a typical situation in which the HMM has N = 5
states and the sequence contains T = 100 symbols, the number of operations would be close to
1072. This is clearly unmanageable.

A definitely more efficient method is the forward–backward algorithm. This method requires
firstly to define the forward variable as

αt(i) = P(O1, O2, . . . , Ot, qt = Si|λ) (2.16)

The forward variable represents the joint probability of observing the partial sequence {O1, O2,
. . . , Ot} and of the state Si at time t given the model λ. The forward variables, for every couple
(i, t), can be calculated by induction using the following algorithm:

22



2.2. USE OF HMMS FOR PATTERN RECOGNITION

S1

S2

SN

S j

t +1

αt+1( j)

t

αt(i)

a1 j

a2 j

aN j

Figure 2.6: Graphical illustration of the recursion step in the calculus of the forward variables.

1. Initialization:
α1(j) = πj · bj(O1) ∀ 1 ≤ j ≤ N (2.17)

2. Induction:

αt+1(j) = bj(Ot+1) ·
N

∑
i=1

[
αt(i) · aij

]
∀ 1 ≤ j ≤ N, 1 ≤ t ≤ (T − 1) (2.18)

3. Termination:

P(O|λ) =
N

∑
j=1

αT(j) (2.19)

The first step initializes each of the N forward variables with the joint probability of state Sj
to be the initial one and of the first symbol O1 of the sequence to be emitted from that state.

The second step, the induction, is illustrated graphically in Figure 2.6: the main point is
that each state Sj can be reached at time t + 1 with a transition from one of the N possible
states at time t. The quantity αt(i) · aij in (2.18) is the joint probability of observing the sequence
{O1, . . . , Ot}, and reaching state Sj at time t + 1 passing through state Si at time t. Summing this
quantity over all the possible states at time t yields the probability of being in state Sj at time t,
taking into account all the possible partial sequences at time t. It is clear now that, multiplying
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that quantity by the probability bj(Ot+1) of emitting the symbol Ot+1 from state Sj at time t + 1,
the forward variable αt+1(j) is found. The induction step must be calculated for each of the N
states at each time step from 1 to T − 1.

The third and last step provides the needed probability P(O|λ) as the sum of the N forward
variables at time T. That is because each forward variable αT(j) represents the probability of
observing the whole sequence O and ending in state Sj. Summing over all the forward variables
at time T simply takes into account each of the states as a possible final state.

Calculating P(O|λ) using the forward variables requires approximately N2T operations
(again, mainly multiplications) instead of the 2TNT of the direct method. In the same practical
case shown at Page 22 for the direct method (for N = 5 and T = 100), the number of operations
needed by the forward variable method is 3000 against the 1072 of the direct method. The
difference spans 69 orders of magnitude and makes the computation fairly manageable.

In a way really similar to the one just seen, it is possible to define a backward variable βt(j) in
the following way:

βt(j) = P(Ot+1, Ot+2, . . . , OT|qt = Sj, λ) (2.20)

The backward variable is complementary to the forward one. It represents the joint probability
of observing the partial sequence {Ot+1, . . . , OT} and being in state Si at time t, given the model
λ. Also the steps needed to compute it are analogous to the ones in (2.17–2.19):

1. Initialization:

βT(j) = 1 ∀ 1 ≤ j ≤ N (2.21)

2. Induction:

βt(j) =
N

∑
i=1

[
aij · bj(Ot+1) · βt+1(j)

]
∀ 1 ≤ j ≤ N, (T − 1) ≥ t ≥ 1 (2.22)

As one can see, the initialization step defines arbitrarily the value of the backward variable at
time T to be 1 for every state. The induction step, on the other hand, takes into account all the
possible states Sj at time t + 1 and the transitions aij that connects them to state Si, and com-
putes the probabilities for the partial sequences in a backward fashion. Again the emission of the
symbol Ot+1 is taken into account by the contribution of the emission probabilities bj(Ot+1).

The graphical representation of this method is almost the same of the one shown in Figure
2.6 of Page 23, but mirrored horizontally. The number of operations needed for the computation
of the N backward variables is again, like the case of the forward variables, proportional to
N2T.

Even if the forward variable has no role in the solution of the classification problem, it will
have a fundamental role in the solution of the other two problems, as the reader will see in the
following sections.
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2.2.2 Exploring the hidden layer: optimal state sequences

As already noted, getting informations on the inner behavior of an HMM is extremely useful
in order to optimize the model itself, and make it fit in the best way to the entity that has to be
modeled. The inner behavior I am talking about is basically the sequence of states that actually
produce the observed symbols.

The problem of reconstructing such a sequence has more than one solution, mainly because
there is no correct solution in an absolute sense. The main issue is defining what is the optimal
state sequence. There are many optimum criteria that can be applied.

An example is the choice of the states that have individually the highest probability, in such
a way that the number of single correct states is maximized. To solve the problem in this way,
it is useful to define the following variable:

γt(i) = P(qt = Si|O, λ) (2.23)

This variable clearly represents the probability of being in state Si at time t given an observation
sequence and a model. It can be easily expressed, using the forward and backward variables,
in the following way:

γt(i) =
αt(i)βt(i)
P(O|λ)

=
αt(i)βt(i)

∑N
j=1 αt(j)βt(j)

(2.24)

Here the forward variable takes into account the part of the observation sequence that goes
from the beginning to time step t, and the backward variable for the remaining part of the
sequence. The denominator is a normalization factor that actually makes γt(i) a probability
density function, since it yields:

N

∑
i=1

γt(i) = 1 (2.25)

The computation of the γ variable enables to find, for every t, the state with highest proba-
bility, through the solution of

argmax
1≤i≤N

[γt(i)] (2.26)

Anyway, even if this solution maximizes the number of individually most likely states,
there could be some problems with the resulting sequence. In fact the transition matrix is not
considered at all in the optimization process and, if the model has some transitions with zero
probability (aij = 0 for some (i, j)), the method could produce a sequence not consistent with
the model. Actually this problem could be overcome by optimizing groups of two or three
states, or take at each time step the best state toward which there is a non–zero transition.

As a matter of fact it is possible to compute directly the whole sequence using a more com-
plex, yet more efficient technique, based on dynamic programming methods: the Viterbi al-
gorithm. The Viterbi algorithm [55] allows to obtain a unique most likely sequence of states
Q = {q1, . . . , qT} given an observation sequence O = {O1, . . . , OT}, since it considers the se-
quence as a whole, and not as a collection of single entities.
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Figure 2.7: Trellis representation for a fully connected 5–state HMM over a time span of six
steps. A generic path through the trellis is marked, corresponding to the state sequence Q =
{q1, . . . , q6} = {S3, S2, S4, S1, S5, S4}.

In order to treat the Viterbi algorithm, it is useful to interpret the time evolution of an HMM
by displaying it like a trellis structure. A trellis representation for a 5–state HMM over a small
window of time is shown in Figure 2.7. The horizontal axis represents the time and, for each
time step, all the HMM’s states are shown along the vertical axis. In this kind of diagram a
sequence of states can be drawn as a path through the trellis. As we will see in the following,
treating state sequences as paths makes the analysis of the subject more understandable.

Given these premises, to introduce the Viterbi algorithm the quantity δt(i) must be defined
as

δt(j) = max
q1,q2,...,qt−1

[
P(q1, q2, . . . , qt = j; O1, O2, . . . , Ot|λ)

]
(2.27)

This is the state sequence (path with maximum probability, among all the possible paths that
end in state Sj at time t and take into account the partial observation sequence {O1, . . . , Ot}. It
is easy to see that, for induction, the δ variable at next time step can be calculated as

δt+1(j) = max
1≤i≤N

[
δt(i) · aij

]
· bj(Ot+1) (2.28)

To obtain the state sequence itself, it is necessary to keep track of the argument i that maximizes
Equation (2.28). Usually this is done by means of a set of variables labeled ψt(j). The complete
procedure used to reconstruct the whole best path through the trellis, for a given observation
sequence, is the following:
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1. Initialization:
δ1(j) = πj · bj(O1)

ψ1(j) = 0
∀ 1 ≤ j ≤ N (2.29)

2. Induction:

δt(j) = max
1≤j≤N

[
δt−1(i) · aij

]
· bj(Ot)

ψt(j) = argmax
1≤j≤N

[
δt−1(i) · aij

] ∀ 1 ≤ j ≤ N
∀ 2 ≤ t ≤ T

(2.30)

3. Termination:
p∗ = max

1≤j≤N

[
δT(j)

]
q∗T = argmax

1≤j≤N

[
δT(j)

] (2.31)

4. Backtracking:
q∗t = ψt+1(q∗t+1) ∀ (T − 1) ≥ t ≥ 1 (2.32)

2.2.3 HMM Training

The last and most complex problem to solve is how to train an HMM model. In other words,
how to tune the parameters in such a way that the model becomes suitable for producing obser-
vation sequences of the same kind of the ones in a chosen training data set. More precisely the
goal is to optimize the parameters (A, B, Π) so that the probability of the training observation
sequence is maximized.

Since an analytical solution to this problem is not yet available, the most common approach
consists in finding a parameter set that locally maximizes the probability P(O|λ). One of the
most common methods used to achieve this result is the Baum–Welch algorithm [54], that per-
forms an iterative estimation of the parameters. An equivalent method, that will not be treated
here, is the EM procedure (Expectation–Maximization, [56]) that makes use of gradient descent
techniques.

To describe the Baum–Welch algorithm, the variable ξt(i, j) is defined as

ξt(i, j) = P(qt = Si, qt+1 = Sj|O, λ) (2.33)

that expresses the probability of transition between the states Si and Sj across the time interval
(t, t + 1), given and observation sequence and a model. The ξ variable can be directly expressed
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in terms of the forward and backward variables:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P(O|λ)
=

αt(i)aijbj(Ot+1)βt+1(j)

∑N
i=1 ∑N

j=1 αt(i)aijbj(Ot+1)βt+1(j)
(2.34)

Here the numerator provides P(qt = Si, qt+1 = Sj, O|λ), that is the joint probability of the two
states at the required time points and of the observation sequence. The denominator transforms
the value in a probability measure through normalization (like in 2.25 at Page 25).

Furthermore, by considering all the possible states at time t + 1 as a destination for the
transition, it is possible to obtain a relation with the γ variable:

γt(i) = P(qt = Si|O, λ) =
N

∑
j=1

ξt(i, j) (2.35)

One can observe that by summing the variable γt(i) over all the possible values of t for the
given observation, the result is a quantity that can be interpreted as the probability of passing
through the state Si or, in other words, the probability of transition from the state Si during the
time interval spanned by the observation.

In a similar way, by summing the variable ξt(i, j) over all the possible time values given
the observation (up to T − 1), it yields the probability of transition between the states Si and Sj
during the time interval spanned by the observation.

Thus
∑T−1

t=1 γt(i) = P(transition from Si)

∑T−1
t=1 ξt(i, j) = P(transition from Si to Sj)

(2.36)

The relations (2.36) can be used to obtain a method for the recursive estimation of the pa-
rameters of a HMM, that is based on the concept of event frequency. From this point of view
the initial state probabilities πi are estimated as the probability of each state Si at time t = 1.
The transition probabilities Aij are the ratio of the probability of transition between the states
Si and Sj and that of the transitions from the state Si. Finally the emission probabilities bj(k)
are obtained from the ratio between the probability of passing through state Sj while emitting
the symbol vk, and the simple probability of passing through state Sj.

Formally the formulas obtained are

πi = γ1(i) (2.37)

aij = ∑T−1
t=1 ξt(i, j)

∑T−1
t=1 γt(i, j)

(2.38)

bj(k) =
∑T

t=1
Ot=vT

k

γt(j)

∑T
t=1 γt(j)

(2.39)
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The application of equations (2.37–2.38–2.39) to an HMM produces a new model with mod-
ified parameters:

λ(A, B, Π) =⇒ λ(A, B, Π) (2.40)

Baum [54] showed that by repeating the estimation process, starting from the parameters pro-
duced by the previous iteration, two outcomes are possible:

1. The new parameters correspond to an improved model, that is most likely to produce the
training sequence. Thus

P(O|λ) > P(O|λ) (2.41)

2. The starting parameters of λ represent a critical point of the likelihood function. This
means that it is not possible to further improve the model. Thus

P(O|λ) = P(O|λ) (2.42)

In the second case one says that the model is an estimate of maximum likelihood for the HMM
given the training sequence. It is important to stress that the forward–backward algorithm
allows to find only local maxima for the likelihood function, and that the function itself is, in
real world applications, extremely complex, and contains a high number of relative maxima.

The formulae shown for the iterative estimation of HMM parameters can be found also
through the maximization of the Baum’s auxiliary function:

Q(λ, λ) = ∑
Q

P(Q|O, λ) log[P(O, Q|λ)] (2.43)

This function can be maximized using the known techniques of constrained optimization.
Baum showed that

max
λ

[Q(λ, λ)] =⇒ P(O|λ) ≥ P(O|λ) (2.44)

The one of the most interesting features of the Baum–Welch procedure is that the stochastic
constraints on the model parameters

∑N
i=1 πi = 1

∑N
j=1 aij = 1 1 ≤ i ≤ N

∑M
k=1 bj(k) = 1 1 ≤ j ≤ N

(2.45)

are automatically satisfied.
A last method, not exposed here, to obtain the equations (2.37–2.38–2.39), is to maximize

the quantity P(O|λ) using the Lagrange multipliers and the constraints in (2.45).
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Figure 2.8: A 4–state Bakis (or left–right) HMM.

2.2.4 HMM topologies

Up to now, even if implicitly, only ergodic (fully connected) HMMs have been taken into ac-
count, without focusing on the effect of zero–probability state transitions.

In many applications, anyway, an ergodic model is not the optimal way to represent the ob-
servation’s properties. A widely used non–ergodic model, used mostly when the observation
sequence is derived from a time series, is the left–right or Bakis HMM (shown in Figure 2.8). In
these models the state sequences have a common characteristic: while the time index increases,
the state index always increases (or remains the same). From a graphical point of view, taking
Figure 2.8 as a reference, the active state “moves” from left to right as time increases. It is fairly
clear that such kind of models is particularly suitable to reproduce signals that vary with time
(like speech, for example).

Formally a Bakis HMM can be described with the following relations:

aij = 0 ∀ j ≤ i

πi =
{

0 i 6= 1
1 i = 1

(2.46)

This means that there are no backwards transitions, and any state sequence starts in state S1 and
ends in state SN . Usually another constraint is added to left–right models, in order to avoid
“long jumps”:

aij = 0 ∀ j > i + ∆ (2.47)

In the model shown in Figure 2.8, for example, the value of the parameter ∆ is 2, in fact there is
no transition between states S1 and S4.

Though most of the applications use the topologies described, the possible variations are
many. To add flexibility to a Bakis model, for example, one can use a parallel version, like the
one shown in Figure 2.9.

It is important to stress that changes in the topology of the model, do not interfere in any
way with the training procedures described in 2.2.3. This happens because the shown training
algorithms have no effect on parameters that have zero value at the beginning of the computa-
tions.
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Figure 2.9: A HMM with a parallel Bakis topology.

2.2.5 HMM with a continuous observation space

The HMMs taken into consideration in the previous sections were capable of producing obser-
vation sequences made up only of symbols taken from a finite alphabet. This feature translated
in the use of discrete PDFs for the emission probabilities.

The main issue with discrete models is that, obviously, real world signals are continuous:
even if it is possible, and widely used, to quantize continuous feature spaces into finite code-
books, the unavoidable degradation introduced by this process could be unacceptable for cer-
tain applications. This problem can be avoided only with the use of continuous PDFs.

Of course this introduces some complications in handling the models. In particular, to
ensure the iterative estimation of the model parameters to be consistent, it is necessary to put
some restriction on the kind of continuous distributions that can be used.

The most general form of PDF for which there are means for estimating model parameters
with iterative procedures, is the following:

bj(O) =
M

∑
m=1

cjm · N
[
O, µjm, Ujm

]
1 ≤ j ≤ N (2.48)

where O is the observation sequence to be modeled, cjm a mixture coefficient for the mth com-
ponent of state j, and N a concave or elliptically symmetric PDF (like a gaussian, for example),
defined by its mean vector µjm and covariance matrix Ujm (for the mth component of state j).
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The mixture coefficients must satisfy the statistical constraints

∑M
m=1 cjm = 1 1 ≤ j ≤ N

cjm ≥ 0 1 ≤ j ≤ N
1 ≤ m ≤ M

(2.49)

so that the function has the characteristics of a PDF, that is∫ ∞

−∞
bj(x)dx = 1 1 ≤ j ≤ N (2.50)

A mixture like the one described by equation (2.48) can be applied in a wide variety of
problems, since it is capable of approximating with any precision almost every continuous
PDF.

The formulae for the iterative estimation of the parameters are found, in the case of contin-
uous PDFs, in a way similar to the one shown in Section 2.2.3 for the discrete case (see [57, 58]).
The parameters are updated at each iteration according to the following:

cjk = ∑T
t=1 γt(j, k)

∑T
t=1 ∑M

k=1 γt(j, k)
(2.51)

µjk = ∑T
t=1 γt(j, k) ·Ot

∑T
t=1 γt(j, k)

(2.52)

U jk =
∑T

t=1 γt(j, k) ·
(
Ot − µjk

) (
Ot − µjk

)′
∑T

t=1 γt(j, k)
(2.53)

The quantity γt(j, k) is here the probability of state Sj at time t when the emission of the ob-
servation vector Ot is modeled only by means of the kth component of the mixture. It can be
computed using the following formula:

γt(j, k) =

[
αt(j)βt(j)

∑N
j=1 αt(j)βt(j)

]
·
[

cjk N (Ot, µjk, Ujk)

∑M
m=1 cjk N (Ot, µjk, Ujk)

]
(2.54)

It is interesting to note that if the mixture degenerates to a single gaussian component (M =
1), then the relation (2.54) reduces to the value γt(j) defined in 2.24 (Page 25) for the discrete
case.

2.2.6 Some more variations: null transitions, tied states, state durations

The HMMs can be adapted to many different situations by introducing some useful variations
on the theory exposed in the previous sections.
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Figure 2.10: Examples of application for null transitions: (a) a HMM with a high number of
states able to produce also short sequences through the use of null transitions; (b) finite state
machine that models the production of the word “two” at a phonetic level; (c) finite state ma-
chine that models a grammar for the production of digit sequences.

Null transitions

Null transitions are usually labeled in the graphical representation of HMMs with the symbol
φ, and the corresponding connection will be drawn as a dotted line. A null transition is always
performed instantly, so that any number of null transitions can be done without advancing in
time. Often, when using null transitions, the HMM framework is changed so that the emission
of symbols is tied to the transitions themselves instead of the states. Some examples of HMMs
containing null transitions are shown in Figure 2.10.

Figure 2.10.a shows a left–right HMM with a large number of states and null transitions
between every couple of adjacent states, in which it is so possible to jump forward over any
number of states instantly. This topology allows to generate both short and really long se-
quences with a single model.

Figure 2.10.b shows a finite state network (FSN) that is capable of modeling sequences with
“optional” segments. In particular it refers to an acoustic model for multiple pronunciations of
the word “two”, to be used in a speech recognition system. Here every connection corresponds
to a phonetic HMM, modeling a single sound. It can be seen that the model allows for up to
four pronunciations of the word “two” to be recognized: t-h-u, t-h-U-u, t-u, and t-U-u (these last
two passing through the null transition). Here the use of the null transition allow the sound h
to be an option in the pronunciation of the word.
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The last example, in Figure 2.10.c, shows a grammar model for the production of digit se-
quences, implemented again by means of a FSN. The null transition in this case allows for the
generation of sequences of any length.

Tied states and shared distributions

Another interesting variation on the HMM theory is the introduction of tied states. The idea
is to cluster the state parameters of a group of models into a set of classes whose number is
considerably lower than the total number of states. After the clustering, all the states belonging
to a certain cluster will share a common set of parameters. This solution can reduce greatly the
number of independent parameters thus simplifying model training.

Furthermore, the application of clustering can sometimes flatten some slight differences
between different states that actually model similar (if not identical) events occurring in the
sequences to be modeled, in such a way that robustness is improved along with classification
accuracy. Finally having a smaller number of parameters to estimate, enables to use more
complex models that, in this way, can be trained with a training data set that, without shared
parameters, would produce under-training problems (see Section 2.3.2).

Starting from a general set of models that do not share any PDF, a procedure should be
applied in order to merge the most similar sets of PDFs into a new one that can suitably re-
place the the whole merged set. Firstly, to perform the clustering procedure, a measure of the
distortion introduced by the merging process is needed. The increase of entropy is one of the
commonly used measures for this purpose.

In the example of discrete PDFs (the extension to the continuous case can be easily made
by replacing sums with integrals), taking two distributions α and β, containing respectively
the elements ai and bi, the entropy of the distribution obtained by merging the two can be
expressed as

Hα+β = −∑
i

ai + bi

∑i ai + ∑i bi
log
(

ai + bi

∑i ai + ∑i bi

)
(2.55)

Calculating the increase in entropy produced by the merging yields

Ω(α, β) = Hα+β

(
∑

i
ai + ∑

i
bi

)
− Hα ∑

i
ai − Hβ ∑

i
bi ≥ 0 (2.56)

It can be shown that Ω(α, β) reaches its minimum (equal to zero) only when α = β, that is when
we are merging two identical distributions. Thus the clustering can be made by merging pairs
of PDFs in such a way that the relation (2.56) is minimized.

A typical clustering algorithm that implements a clustering procedure for distribution shar-
ing is the following:

1. Estimate the parameters for all the models.

2. Create a cluster for each distribution present in the model set (one for each state of each
HMM).
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3. Merging: find all the similar pairs of PDFs using the variation of entropy as a measure,
and merge them into a new set of clusters.

4. Shifting: for each PDF contained in each cluster, move it in another cluster if the move-
ment (shift) causes a reduction in the overall entropy. Repeat the shifting procedure until
no more improvement is possible.

5. Repeat the procedure from step 3 until a predefined convergence criterion is met (a cho-
sen number of clusters, for example).

Step 4 is the most complex and implements a heuristic optimization algorithm. The men-
tioned overall entropy is a weighted sum of the entropy for each of the clusters (grand weighted
entropy). In order to reduce the computational weight of this step, a termination rule is often
used. It is furthermore important to note that moving a distribution from one cluster to an-
other is computationally expensive since it involves a new evaluation of the entropy for the
two clusters.

To address this issue the matrix of entropy increment Ω can be used to spot the shifts that
produce minor improvements. The matrix Ω contains all the values Ω(α, β) for all the possible
couples (α, β) and is calculated the first time that step 3 (see Page 35) is executed. Thus before
moving a certain distribution α from cluster P to cluster Q, the mean entropy increment before
and after the shift is evaluated for that distribution:

Ω(α) =
∑β 6=α

β∈P
Ω(α,β)

size(P)−1

Ω′(α) = ∑β∈Q Ω(α,β)
size(Q)

(2.57)

The total entropy will be calculated only if the ratio Ω′(α)/Ω(α) is less than a certain threshold.

Explicit state duration

One of the problems that could arise when modeling with HMMs is the lack of control on the
time of permanence in each state (or state duration). As already seen in Section 2.1.1 the state
duration PDF pi(d) (see (2.8), Page 16) has an exponential form (see Figure 2.2, Page 15). For
many real–world signals, this kind of duration PDF is not suitable and would be more useful
to model it with an arbitrary function. This can be obtained, for any state Si, setting to zero the
self transition probability aii and introducing an explicit duration PDF pi(d) in such a way that
the number d of observations produced by that state will depend directly on the PDF itself. For
a model of this kind the emission algorithm would be the following:

1. A starting state q1 = Si is chosen according to the initial state PDF Π.

2. A duration d1 for state q1 is chosen according to the duration PDF pq1(d1) (to avoid too
much computation the PDF is usually truncated to a maximum duration D).
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3. A sequence {O1, O2, . . . , Od1} of length d1 is generated according to the joint emission
probability bq1(O1, O2, . . . , Od1). In practice the observations are usually considered inde-
pendent in such a way that the joint PDF can be easily calculated as the product of the
factors bq1(Ot) for all t ∈ (1, . . . , d1).

4. The following state q2 = Sj is chosen according to the transition probability distribution
aq1q2 under the constraint aq1q1 = 0.

5. The steps are repeated for the following states.

The use of HMMs with explicit state duration requires some variations (not treated in this
work) in the formulas for the computation of P(O|λ) and for the iterative estimation of param-
eters.

Even if in some applications the use of explicit duration clearly improves the quality of the
models, the increase in computational cost and memory use is significant. In fact, if the du-
ration PDF are all truncated to the same maximum duration D, then the computational cost
will be D2/2 times the one needed for a standard HMM, while the memory occupation will be
increased approximately by D. This means that for D = 25, a reasonable value for many appli-
cations, the computational cost will be 300 times the original one. Of course also the number
of parameters to estimate will increase, with the already mentioned consequences on train-
ing data availability. To partially deal with the increase in number of parameters to estimate,
parametric functions, like gaussians, can be used as duration PDF.

A final and important consideration is that when using HMM topologies in which the num-
ber of states is proportional to the duration of the event to be modeled, like the Bakis one (see
2.2.4), the use of explicit duration produces no quality improvements in the model, and the
only effect is to make the computation longer.

2.2.7 Multiple observation sequences

In many of the possible topologies for an HMM, among which the Bakis one, a single observa-
tion sequence is not enough to estimate all the parameters of the model in a reliable way. This
happens since, in these kind of topologies, the states are transient for definition, and each of
them can produce only a limited number of observations, usually not enough for a good train-
ing. The model’s parameters must be thus estimated using multiple observation sequences.

The changes to apply on the iterative re–estimation procedure are here explained. First of
all let us assume to have a set O containing K independent observation sequences:

O =
[
O(1), O(2), . . . , O(K)

]
where O(k) =

[
O(k)

1 , O(k)
2 , . . . , O(k)

Tk

] (2.58)

36



2.3. LIMITATIONS AND COMMON PROBLEMS

The goal of the training procedure is to maximize the probability of all the set of observations:

P (O|λ) =
K

∏
k=1

P
(

Ok|λ
)

=
K

∏
k=1

Pk (2.59)

Since the formulae for the iterative re–estimation of parameters are based on event frequency
(see (2.37,2.38,2.39) at Page 28), it is sufficient to sum the occurrence frequencies for each of the
sequences in order to obtain the needed formulae:

aij =
∑K

k=1
1
Pk

∑Tk−1
t=1 α

(k)
t (i)aijbj

(
O(k)

t+1

)
β

(k)
t+1(j)

∑K
k=1

1
Pk

∑Tk−1
t=1 α

(k)
t (i)β

(k)
t (i)

(2.60)

bi(`) =
∑K

k=1
1
Pk

∑Tk−1
t=1

Ot=v`

α
(k)
t (i)β

(k)
t (i)

∑K
k=1

1
Pk

∑Tk−1
t=1 α

(k)
t (i)β

(k)
t (i)

(2.61)

2.3 Limitations and common problems

2.3.1 Choice of initial parameters for training

As already said in Section 2.2.3, the likelihood function in the training process contains many
relative maxima. This is one of the problems that makes HMM training definitely non trivial.
There is no way to know if the solution found is the optimal one. Anyway, some methods
have been developed in order to reduce as much as possible the probability to fall into highly
sub–optimal solutions.

In practice it is really important to choose a suitable starting point for the training, in or-
der to avoid falling into local maxima. The starting point is obviously defined by the initial
parameter set. Unfortunately there is no direct method to choose these parameters. The most
common methods are fundamentally empiric, and experience has shown that, for Π and A,
random parameters with uniform distribution, provide good training results in most of the
cases. Issues arise when choosing the initial parameters for the emission distributions B: start-
ing from a good estimate is fundamental when dealing with continuous mixtures made of
gaussian components.

The starting estimate for the B parameters can be obtained in several ways, and most of
them make use of a manual (or semi–automatic) segmentation of the observation according to
the HMM states. Anyway the details of this process are not in the goal of this work, and can be
found in [59].

2.3.2 Effects on under-training

It is unavoidable that the training is always going to be made using training sequences of finite
length. This constrain implies that some of the events represented by each model will occur in
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Figure 2.11: Representation of the deleted interpolation process as an extended HMM.

the training sequences with different frequencies. In other words the content of the training set
is never perfectly balanced among all the parameters to train. In particular for some events,
their occurrence in the training data set could be too low to grant a satisfying estimation of the
corresponding parameters.

The most straightforward solutions are the increase in dimension of the training set, or the
reduction of the number of parameters in the model. Anyway none of them is practical, since
finding a greater amount of good training data is usually really difficult and time consuming,.
On the other hand, changing the model itself can affect its correct behavior because the topol-
ogy, for example, tend to have some logical connection with the event to be modeled, and the
states often represent some specific sub–events that cannot be carelessly removed.

A more practical, and thus widely used, solution is to interpolate the under–trained param-
eters with the parameters of a reduced version of the model that can be correctly trained with
the available training data. The reduced model is generated by tying some parameters to be the
same, in a way similar to the one seen when talking about clustering for distribution sharing
(see Section 2.2.6). By naming λ = (A, B, Π) the main model and λ′ = (A′, B′, Π′) the reduced
model, the interpolation is done using the formula:

λ̃ = ελ + (1− ε)λ′ (2.62)

The variable ε ∈ [0, 1] is the weight of the main model’s parameters, while (1− ε) is the weight
of the reduced model’s parameters. A good interpolated model is obtained through the op-
timization of the ε quantity, and the optimal value depends on the amount of training data
available. The extreme case of under-training corresponds to ε = 0, while ε = 1 indicates that
there is no need for parameter interpolation.

The problem of the optimization of ε has been solved by Jelinek and Mercer [60]. The so-
lution is obtained by interpreting (2.62) as an extended HMM like the one shown in Figure
2.11, and by applying the forward–backward procedure to it. In the HMM representation the
weights represent the transition coefficients from a neutral state s̃ towards the two states rep-
resenting the original and reduced model. Two null transitions allow for returning into the
neutral state. In that way the value ε can be estimated through standard HMM methods. Usu-
ally the training data set T is split in two subsets T1 and T2 such that T = T1 ∪ T2. The set T1 is
used for training both λ and λ′, while the set T2 is used for the estimation of ε, assuming that
λ and λ′ are fixed. An evolution of this procedure, known as deleted interpolation, repeats the
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described training procedure with multiple partitions of the training data set.
A further, really common method used to avoid the introduction of errors due to under-

training, is to put constraints on the parameters to be estimated, in order to be sure that certain
(upper or lower) thresholds are not exceeded. On a discrete model, for example, it would be
possible to apply a constraint of the following form:

bj(k) ≥ δ (2.63)

while on a continuous model the same constraint would have the form:

Ujk(r, r) ≥ δ (2.64)

The constraints can be applied by means of a postprocessor that corrects the values exceeding
the thresholds after each training iteration, and renormalizes all the other parameters in such a
way that no statistical constraint is violated.

2.3.3 The choice of the model

A fundamental step in the implementation of an HMM based system, is the choice of the model
topology, of the number of states, the kind of symbols to be emitted (discrete or continuous
PDF, single component or mixture, and so on).

Again there is no exact method to make these choices. The most important factor to take
into account is, anyway, the nature of the signal to be modeled.

Talking, for example, about speech recognition, the most common models are left–right.
That is because the speech signal is represented as a time series and it seems to be logical to
associate each HMM state to a certain acoustic event. Furthermore, acoustic events have a
natural time evolution that closely matches the behavior of a Bakis model, without transitions
towards previous states.

The choice of the kind of PDF instead, is often related to the balance between processing
speed and accuracy. Continuous models are definitely more accurate than discrete ones, but
they are computationally much heavier than their discrete counterparts. When the system to
be implemented is highly complex, sometimes there is no choice but to use discrete models in
order to grant a real–time operation.
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Chapter 3

Development of a dedicated hardware
architecture

3.1 Towards hardware

In the previous chapters, the HMM has been introduced, and it has been shown how this mod-
eling paradigm can be useful to develop pattern recognition systems. It is also well known
that most of the systems that rely on pattern recognition are likely to benefit from real–time op-
eration. Some examples are speech recognition, video tracking, identification (through voice,
video, and other methods), brain–computer interfaces. Other applications, like DNA decoding,
in theory do not need real–time operation, but they usually deal with such huge amounts of
data that an increase in computation speed would be really useful in order to shorten process-
ing times.

Both real–time operation and increase in processing speed can be achieved through differ-
ent techniques. A first approach is to use more powerful devices to perform the computation
needed (an example can be found in [61]). This approach is of course the simplest, since it
does not need any effort to be spent on the system itself, but is nonetheless the most expensive,
both economically and from the point of view of power consumption (really important if the
system has to be used in portable devices). A second approach is to optimize the algorithms in
such a way that the functionality is maintained but the computational weight and the memory
requirements are reduced as much as possible (see [62]). On the other hand these changes on
the algorithms have always some effect on the accuracy of the system and, in some cases, such
kind of degradation cannot be tolerated.

The method I am going to propose in this work, and that was first introduced in [15], is
somewhat a different interpretation of the first of the two approaches just described. The idea is
to develop some dedicated hardware that takes care of the most time consuming operations. In
that way that computation is speeded up in a more efficient way with respect to what is possible
through the use of general purpose computers because the hardware is designed expressly for
the specific task, and also because some features are available, parallel processing above all,
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that cannot be widely and efficiently applied in software. Furthermore the increase in cost can
be strongly limited thanks to the availability of programmable devices and soft–processors.

A first step towards the development of an hardware architecture is the analysis of typical
problems that are solved with the use of HMMs, in order to identify the parts of the system
that are the most computationally costly and, among them, the ones for which a mapping
to hardware is possible. This work has already be done for speech-recognition systems in
[15, 63, 64, 65]. In this thesis I am going to extend it to a general pattern recognition system
and, in practice, to any system that needs to process time series using HMMs.

3.1.1 Choice of an algorithmic framework

Doing pattern recognition on a time series, as we could see in the previous chapters, is basically
a matter of correctly splitting the sequence (segmentation) and associate a meaning to each of
the segments (classification). When using HMMs this can be accomplished by finding some
kind of building blocks (or atoms) in the sequence, and by modeling each of these atoms with a
single HMM. In almost any application it is possible to find a finite set of atoms that, through
concatenation, can produce any possible input sequence.

A fairly understandable example is that of speech modeling: any language make use of a
certain set of sounds to build all the words in its dictionary, and this set usually contains a
really limited number of elements (around fifty for most languages, see [66]). By building an
HMM for each sound, one can recognize (or produce) any word by just knowing the correct
sequence of sounds.

Given a set of models that describe all the atoms needed to build the sequences of interest,
a search space must be built to allow for the application of the Viterbi algorithm (see page 27 in
Section 2.2.2). A search space is actually a trellis like the one shown in Figure 2.7 at Page 26. It
is built by connecting together different instances of the atom–models according to some rules
that will insure the production of the expected sequences or sub–sequences.

Again this concept can be easily explained using the example of speech modeling. Here
HMM chains are built by connecting the sound–models according to a set of rules that specify
how to compose, through sequences of atoms, each of the words to be modeled (these rules are
usually referred to as pronunciation or spelling dictionary). The result of this first step is a set of
HMM chains, one for each word, each made up of several atom–HMMs. One could obtain a
search space directly from this set of multi–atom HMMs by allowing transitions from each of
the chain’s exit states to all other enter states. An alternative is to create transitions between
word–models according to a set of transition probabilities that are consistent with the grammar
rules of the language to be modeled.

The process of search space building is illustrated in Figure 3.1. It is clear how the number
of states in the trellis can explode due to the fact that the number of multi–atom chains can be
very high (in speech, with N = 5 states in HMMs and W = 10000 words in dictionary, the
trellis would contain 50000 states).

The high–level architecture of a generic pattern recognition system based on the standard
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Figure 3.1: Search space building process. A high level representation of the trellis is shown,
along with the model–set (atom–HMMs) and the HMM chain building rules (sub–sequence tem-
plates).

processing method just described is shown in Figure 3.2. A signal processing front–end takes
care of converting the input signal into a stream of observations suitable for the specific task.
The kind of signal processing applied is strongly application–specific. As a general rule, the
task of the front–end is to reduce the components of the signal that do not carry information
useful for the task (like noise) while enhancing the useful ones. The influence of the application
on the design choices to be made for the front–end becomes clear when comparing classification
and identification tasks. In classification tasks (like image classification and speech recognition)
the aim is to ignore the differences between different realizations of the same event. This means
that the front–end should regard as noise any part of the signal that carries informations on the
source that produced the event, while enhancing all the informations related to the event itself.
In identification tasks (like person identification through voice or image) the situation is actu-
ally the exact opposite: since the events are only a carrier for informations related to the source,
the front–end will discard the actual content of the signal and enhance the source–specific fea-
tures. The core of the system is the Viterbi decoder itself. It receives the observations and feeds
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Figure 3.2: A standard HMM–based pattern recognition system.

them into the search space, producing a stream of "history" data that contains the scores for all
the states at each time step. The history data is then handled by a post–processing unit that
does backtracking and eventually applies post processing algorithms in order to produce the
classification hypothesis (in the form of a single class, or a sequence of classes, according to the
content of the observation sequence).

From the point of view of hardware implementation, a search space built in such a way
would need lots of memory and would not easily allow for parallel processing (one should
keep in mind that, in principle, each HMM state can be seen as a small processing unit). That is
because the application of the standard Viterbi algorithm require all the states in the trellis to be
evaluated for each incoming observation, and there is no direct way to split the Viterbi decoder
into smaller subsystems. Furthermore all the processing history (i.e. the state probabilities)
must be stored to allow for the final backtracking step and by consequence, since the number
of states is really high, the memory requirements would grow even more.

These problems can actually be solved by replacing the standard formulation of the Viterbi
algorithm with an alternative one that allows for a more functional architecture: the Token
Passing algorithm.

3.1.2 Splitting it down into pieces: Token Passing

The Token Passing is a conceptual model for the processing of connected HMMs, firstly intro-
duced by Young et Al. in [67] for speech recognition systems.

In the Token Passing paradigm the Viterbi algorithm is implemented by reorganizing the
decoder into different distinct conceptual levels. Each HMM state Si is supposed to be able
to hold, at each time step t, one or more packets of data called tokens. Each token contains
an alignment probability ψi(t) between the partial observation sequence {O1, . . . , Ot} and a
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partial state sequence {q1, . . . , qt = Si} that ends in state Si at time t.
A token can be passed from a state Si to another state Sj if there is a non–zero probability

transition between the two states, thus if aij 6= 0. In the passing process the token’s alignment
probability ψi(t) is updated according to the value of the transition probability aij.

Given these basic rules, the formulation of the Viterbi algorithm can be converted into the
application of the following steps to each state in each HMM for every incoming observa-
tion Ot:

1. For all the states Si from which there is a transition towards the current state sj, collect
the token there contained updating it with the transition probability aij.

2. Sort the list of collected tokens according to the alignment score, and keep only the N best
ones (where the value for N is am application dependent parameter).

3. Update the alignment probability of the retained tokens with the emission probability of
the current state bj(Ot).

Following this interpretation of the decoding process allows to treat the temporary data in
the network of HMM states as a flow of tokens through the system, and the system itself as
a set of processing elements that perform different tasks. As a matter of fact the system itself
is conceptually split into different layers (see Figure 3.3). The lowest layer is the atom–level
one: it manages the flow (and score update) of tokens between the states belonging to the same
atom–HMM chain, according to the input observation sequences and the model parameters. In
other words this layer associates segments of the input sequences to the corresponding atomic
units that are supposed to make up the signal to be modeled. The second layer, on the other
side, controls the flow of tokens between atom-HMMs while the third will control the flow of
tokens between groups of logically connected HMMs, and so on. Therefore the upper layers
are usually the ones concerned with the application of higher level rules. The number of layers
used can actually be arbitrarily high, depending on the complexity of the signal to be modeled.

In speech modeling, for example, the lower layer could model the base speech sounds,
the second layer the word chains (made up by sequences of base sounds), and the third layer
sequences of words, hence sentences. These three levels actually represent acoustic, lexical and
grammatical rules in the production of speech.

In this framework the architecture of the HMM–based pattern recognition system shown in
Figure 3.2 at Page 44, can be changed as shown in Figure 3.4. The feature extraction front–end,
given the same application, is the same used in the standard implementation, while the search
space is now broken into a low level HMM processing block that elaborates incoming data
by treating each atom-HMM independently and concurrently according to the Token Passing
algorithm. This segmentation of the search space is the main feature of the Token Passing ap-
proach that will enable us to introduce parallelism in the hardware architecture. On the other
hand, the cross–model transitions are handled by a specific module that controls the flow of the
tokens exiting the atom–HMMs back into the models themselves. In particular, tokens exiting
the last state of each atom–HMM are passed to the block called Token Flow Controller that, by
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Figure 3.3: Interpretation of the HMM decoding as a layered process through the use of the
Token Passing conceptual model.

applying application specific constraints on the possible atom sequences, selects which of the
incoming tokens have to be passed back to which atom–HMM, and applies the needed correc-
tions to the tokens’ alignment probabilities. Furthermore the Token Flow Controller serves also
the task of generating and storing the history as a lattice of recognized atom sequences along
with the relative start and end time points. From this lattice, via backtracking and/or other
post–processing techniques and thanks to higher level rules, the final classification hypothesis
is produced.

The most interesting characteristic of this approach is to split the recognition task into sev-
eral distinct sub–tasks:

The atomic level task: token flow management between the atom-HMMs’ internal states.

The atom grouping task: token flow management between atomic models belonging to the
same logical aggregate, among the ones specified by the relative rule set.

The higher level tasks: token flow management between atom aggregates, according to high
level rules.

This subdivision clearly makes the system more versatile and greatly simplifies data handling.
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Figure 3.4: An HMM–based pattern recognition system that implements the Token Passing
conceptual model.

3.1.3 Considerations on hardware implementation

In order to develop an hardware architecture that implements an HMM–based pattern recog-
nition system (or part of it), it is worth analyzing in greater detail the algorithms presented in
the previous sections, mainly to quantify the advantages brought by the choice of the Token
Passing paradigm instead of the standard approach.

In the search space used in the standard Viterbi algorithm, the system needs to access mem-
ories that have to hold the atom–HMMs’ parameters, the atom sequences building rules, and
the higher level rules. The alignment probability of each HMM state in the search space should
be held in another memory that contains also the informations on the topology of the whole
network of states. This last structure can turn out to be a significant problem since its dimen-
sions grow exponentially as the number of atom sequence templates to take into account grow.
Just to have an idea, using a 3–states HMM with 20000 atom sequences (in speech recognition,
for example, it is really easy because atom sequences usually correspond to words), the search
space would easily contain 300000 states. Moreover, as already stressed, during the decoding
process the temporal evolution oh the search space must be recorded to allow for backtracking
and post–processing, so a third memory is needed to store such data in the form of a lattice
containing atom sub–sequences.

Such a pattern recognition system implemented in hardware would be characterized by
a strictly sequential behavior: the use of a search space built as a single, huge network does
not allow for clustering the states into logically connected blocks that could be processed in
parallel. This means that it is not possible to exploit the greatest advantage given by hard-
ware implementation over software, that is parallelism. In addition, the memory is completely
centralized, and all the accesses are made from the search block. This implies the use of big
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Figure 3.5: The main logical blocks that make up a pattern recognition system’s architecture.

memories with consequent great latency in data retrieval. On the other hand for HMM param-
eters it is possible to reduce the quantity of data to be stored through the use of shared mixtures
(see Section 2.2.6, Page 34). Unfortunately the use of shared mixtures does not completely solve
the problem of data access latency, since the same issue comes up with the other memories (that
hold states’ probabilities and topology informations), and also introduces a loss of accuracy in
the classifier.

When using instead the Token Passing paradigm, the situation is significantly different.
Here the search space is segmented into clusters, each cluster corresponding to a single atom–
HMM. From the point of view of hardware implementation, this feature enables us to paral-
lelize the operations to be performed on each of the clusters, thus considerably speeding up
the evaluation process. The state clustering also allows to distribute the memory containing
the model parameters amongst the separate processing units, thus requiring smaller memories
and reducing data access latency. Data access latency can be reduced also for the access to
the states’ alignment probabilities, essentially because these probabilities are now handled as a
data flow (a flow of tokens in our case) and not stored in a central memory.

In the next sections I am going to show in more detail a possible system architecture, its
main components and how to implement them.

3.2 System level overview

As it is possible to notice in Figure 3.4, there are several building blocks that need to be imple-
mented in order to obtain a fully functional pattern recognition system. The whole architecture
can actually be logically split in three main parts, like shown in Figure 3.5: the front–end, that
translates the input signal into features suitable for he decoder, the atom–level decoder, that
segments and classifies the input sequences of observations into sequences of atom identifiers,
and the post–processor, that applies higher level rules and, using the classification data from
the decoder, reconstructs the original content of the input sequence in a comprehensible form.

In this work I am not going to focus on the implementation of the feature extraction front–
end, firstly because its content strongly depends on the application, secondly because it per-
forms a set of quite common signal processing tasks that have already been treated in literature
(see for example [68] and [69]) and that can also be performed by a suitable DSP. So in the
following I will treat the front–end as a black–box that provides the observations stream as
required.
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3.2.1 From the conceptual model to the architecture

Since the aim of this work is to exploit all the possibilities offered by the hardware implemen-
tation, dealing with the possibility to parallelize operations is one of the main points in the
definition of an efficient architecture.

As said in Section 3.1, the use of the Token Passing conceptual model allows to deal with
each atom–HMM as an independent machine, so that several of these machine can process
data in parallel. So implementing a parallel array of HMM processing devices seems the most
natural choice. According to the considerations made in Section 3.1.3 about the advantages of
having locally distributed memory resources, each processor will have his own memories to
store model parameters and temporary data (that is one or more tokens per HMM state).

The HMM processors array will then be controlled by a device that controls the flow of
tokens through the system. The token flow control module will be in charge of starting and
stopping the activity of the HMM processors, controlling when the front–end provides the
observations, collecting tokens output by the HMM array, and processing them in order to
choose which ones should be fed back into which of the array elements. The token flow control
device also have access to a memory containing the atom chain building rules, and uses them
to record the occurrence of any allowed sequence (on the basis of the tokens collected from the
HMM array) to allow for higher level post–processing. This kind of records are usually stored
in the form of a lattice, each element containing a sub–sequence identifier, start and end times
for the event, and eventually pointers to the most likely previous and next events.

Finally the post processing part receives the lattice information and applies the high level
rules to extract the most probable sequence. It is important to notice that high level rule sets
often take huge amounts of space to be stored and that the post-processing step usually make
use of algorithms, like dynamic programming ones (see [70]), that are particularly suitable to be
implemented as software, also because the data structures they work on (the lattice records) are
described with a high level of abstraction. These last considerations will show up to be really
important when choosing the devices that will have to perform each of the tasks described. A
representation of the architecture described so far is shown in Figure 3.6.

3.2.2 Defining the hardware platform

The next step is to choose the features of the hardware platform on which the architecture is
to be implemented. Taking into account all the considerations made so far, a possible choice
could be the following:

• A device capable of sampling the input signal. This depends on the application. An ADC
would be needed if the original signal is an analog one. This part will not be treated
in this work since can be implemented through standard methods and also because it is
highly application specific.

• A device that implements the signal processing front–end. The choice depends on the
kind of processing to be applied. The device could be a general purpose or specific pur-
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Figure 3.6: Representation of a parallel architecture implementing the Token Passing concep-
tual model.

pose DSP or, in case there is no ready made device able to perform the needed operations,
a custom hardware implemented on ASIC or on a PLD (like an FPGA). Also this digital
signal processing part is widely present in literature and will not be treated in this thesis.

• A device that implements the atomic–layer of the decoder, that is basically the parallel
HMM processor array and the token flow control module (see Figure 3.6). This is the
main focus of this thesis. Since it is based on the novel hardware architecture here de-
scribed, it is going to be implemented as custom hardware, as described in 3.3 (Page 54).
In particular the device will be an FPGA because it allows for several versions to be tested
and the workflow is fast, flexible. Furthermore many high performance fast–prototyping
boards are included in inexpensive development kits available on the market (some ex-
amples can be found in [71] and [72]).

• A device that implements the post–processor. Here the kind of processing to be per-
formed is more suitable to be handled through software than through hardware. For that
reason the best choice seem to be a microprocessor or a microcontroller. The integration
with the custom hardware on the FPGA can be also made easier since several vendors
offer, as an IP, some highly configurable soft–processors (see [73] and [74]) that can be
mapped directly onto another (or eventually the same) FPGA.

• An interface to retrieve the classification results. This is another standard task. The desti-
nation of the recognition data could be a specific device or even a general purpose com-
puter. In the latter case there are many possible alternatives among the standard inter-
faces, mainly driven by the needed bandwidth: RS232, USB, Ethernet, Wi-Fi, Bluetooth,
PCI and so on. No more details are going to be given here on this part.
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Figure 3.7: A possible hardware platform on which a Token Passing based pattern recognition
system can be implemented.

Figure 3.7 illustrates, in a simplified form, a platform like the one just described. Here the
microcontroller/microprocessor is used also to provide overall control over the whole system
(thus, we can call it a System Controller).

3.2.3 Refining the system architecture

The simplest realization of this kind of architecture is shown in Figure 3.8. Here the number
of HMM processors is selected on the basis of the number of atom-HMM used in the appli-
cation. This means that during initialization the System Controller takes care of loading the
model parameters from a global memory to the local memories. The main drawback is that,
after fixing the number of HMM processors, the architecture would be either oversized, if the
application requires few processors, or undersized, if the application requires more processors
than available. In the former case there is a waste of processing resources, while in the latter it
is not possible at all to run the application. An alternative would be to tailor the architecture to
each application by instantiating in each case the required number of HMM processors. This
last approach is viable if the system runs on a programmable device, but prevents the imple-
mentation on ASIC. Finally, let us consider an application that requires a really high number of
HMM processors and a platform with enough resources to map all the processors on hardware:
in that case it can easily happen that the input data rate is so slow that the HMM processors re-
main idle for most of the time between one observation and the following. This, again, wastes
processing resources (clock cycles, in this case) that could be used for other purposes.

In practice there is no real solution to the waste of resources that occurs when the number
of HMM processors is less than the ones really used by the application. On the other hand
some improvement can be applied to the management of the available resources, so that other
problems are solved; particularly when there are not enough HMM processors to evaluate
concurrently all the atom–HMMs needed by the application, but the input rate is slow enough
(with respect to the system’s speed) to allow for reusing each HMM processor several times for
each incoming observation.

Let us consider a system in which NH HMM processors are available and an application
that makes use of NA > NH atom–HMMs. In general it would not be possible to run this
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Figure 3.8: System level architecture that use static HMM processors.

application if each HMM processor works with a fixes parameter set loaded in the system
initialization phase. Anyway the problem can be solved by using a more complex control over
the system, and under certain constraints. At each time step t the system operation would be
the following:

1. Store the observation Ot in a buffer.

2. Load the first NH model parameters from a global memory into the HMM processors’
local memories.

3. Run the HMM processors on the currently stored observation Ot (feeding and recollecting
the tokens appropriately).

4. Load the next NH (or N < NH) remaining models and continue from step 3 until all the
NA atom–HMMs are evaluated. Then continue to step 5.

5. Increment time to t + 1 and, if there are more observations to process, continue from
step 1.

The constraints that have to be met with this type of control are mainly temporal. Without
reusing HMM processors, the time needed to process an observation would be TH, that is the
time needed by an HMM processor to evaluate an observation. In this case the only constraint
is TH ≤ TO, where TO is the time between observations. To evaluate the time needed with
resource reutilization, instead, let us assume that NA = QNH + R with R < NH. The time
needed to process a single observation would be the time needed to load all the models into
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the local HMM processor memories plus the actual processing time, that is clearly (Q + 1)TH.
With these assumptions, the time constrain for a system enabled to process at each frame more
atom–HMMs than HMM processors is:

(Q + 1)TH + NATL < TO (3.1)

Even if it is not straightforward to verify if this constraint is met, it is clear that in some com-
mon HMM–based application the solution would be viable. In classification of biological and
speech signals, for example, the observation frequency seldom reaches more than a few hun-
dred Hertz. Nonetheless, most FPGA–based fast prototyping boards can easily work with clock
frequencies of 50 MHz (modern FPGAs themselves can reach 400 MHz and more). This means
having a minimum cycle–budget of 104 to 105 clock cycles, that should be enough to meet the
constrain in (3.1) at least for Q = 1.

From the architectural point of view some changes should be introduced in order to allow
for HMM–processor reutilization (called dynamic HMM-processor allocation from now on). First
of all, observations should be stored for all the duration of the multi–pass process. This is
usually not a problem since it can be easily implemented as an output buffer in the front–end
or an input buffer in the devices receiving the data. Since the model parameters are now loaded
into the HMM processors’ local memories several times for each time step (instead of only one
during initialization), a local memory is added into the HMM decoder to speed up the process.
This memory is loaded with all the models during initialization and during run time, the HMM
processors are loaded from that memory, reducing off–chip data transfers. Finally the data is
now transferred by means of two buses: one used for the observations and (only during system
start–up) for loading the decoder’s local memory with the model parameters, and the other for
the token traffic. This last change is not strictly necessary for the proper working of the dynamic
HMM processor allocation, but increases the throughput between the decoder and the rest of
the system, thus speeding up the computation and allowing for more processing passes to be
done for each observation. The new system architecture is shown in Figure 3.9.

3.2.4 Keeping track of tokens

Another issue to deal with when trying to implement an HMM–based pattern recognition sys-
tem onto a hardware platform, is how to keep track of tokens.

At system level, the event of an HMM emitting a token can be interpreted as the recog-
nition of the class modeled by that HMM, with a likelihood given by the token’s alignment
probability. The first time this happens, the system level controller creates and stores a record
containing an ID for the HMM and the time step in which the event occurred. The emitted
token will be updated with a back–pointer to the record. The next time the same token will
be emitted from an HMM, another record will be created and back–linked to the previously
created one. The token, in turn, will be updated with the back–pointer to the last record cre-
ated. This means that each token is actually the tail of a back–linked chain of class records.
This concept is illustrated in Figure 3.10. The main problem to face when using this approach
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Figure 3.9: System level architecture that use dynamic allocation of HMM processors (control
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is that, with a high number of HMMs, the storage space needed by all the records produced is
likely to explode in few time steps. The common solution to this is to limit the number of active
tokens by keeping only the K ones with highest alignment probability (K–best). On the other
hand, since each state can hold, in real world applications, a limited number of tokens, some
pruning mechanism must be implemented in order to keep only the most likely in each state.
The main consequence of pruning is that some tokens entering an HMM may never come out
of it because they are discarded. In these cases the corresponding record chains become useless
and should be removed to free up precious space. All these considerations imply the necessity
of implementing inside each HMM processor a mechanism of notification for pruned tokens.
Details on this will be given in Section 3.3 along with a more comprehensive description of the
HMM processor and the architectural solutions found to implement it.

3.3 Going deeper: the HMM processor

The HMM processor is actually the core element of the dedicated architecture presented in this
work. As already said, it is in charge of performing the computations and control tasks needed
to apply the token passing algorithm on each atom–HMM’s internal state. The operations
to be implemented are basically the computation of emission probabilities, the token passing
between states (including the update of scores with transition probabilities), the overall control,
and the communication with the other devices in the architecture (see Figure 3.9, Page 54).

To define the HMM processor architecture, some assumptions have been made on the way
the HMMs are treated. First of all, to any N–state HMM, two more non–emitting states (here
called dummy states) are added: an entry state and an exit state. These two states work like
input and output buffers. Tokens entering the HMM are stored in the entry state and tokens
being emitted from the HMM are stored in the exit state. Passing through one of these dummy
states, do not make the observation time advance. This means that passing a token from the
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Figure 3.10: Representation of a typical chain of records created by a token being passed
through the state space. a) shows the possible trajectory of a token in the state space; b) shows
the corresponding chain of records.

exit state of an atom–HMM H1 to the entry state of another atom–HMM H2, produces the exact
behavior obtained by directly connecting with a transition the last emitting state of H1 to the
first emitting state of H2. This concept is better explained in Figure 3.11. It is going to be clearer
in 3.4.1 (Page 58), how the use of dummy states really simplifies the token passing process and
the management of cross–model transitions.

Furthermore, I am going to show how parallel processing can be exploited also within the
single HMM processor. This can be done by mirroring the memory in which HMM–internal
tokens are stored, so that the first half is used for reading data, and the second for storing
results. In that way, both token passing and emission probability computations can be done
concurrently for each emitting state in the HMM.

E1 S11 S12 X1 E2 S21 S22 X2

H1 H2

S11 S12 S21 S22

φ

t = 1 2 3 4 5

Figure 3.11: Illustration of the behavior of dummy states in HMMs. The state chain in the first
row is equivalent to the one in the second row. Observation time is shown in the lower part.
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3.3.1 Overview on the HMM processor architecture

An overall view of the architecture developed for the HMM processor is shown in Figure 3.12.
Of course it is a simplified representation, and there is no much detail on how data and control
signals are distributed among the various components of the subsystem (for details see Section
3.4), but it shows all the building blocks and their relationship.

All the architecture is managed by a dedicated control unit that provides also an interface
for external control. The FSM implemented by the HMM processor control unit is shown in
Figure 3.13.

After the reset signal, the HMM processor goes to Wait for Model state. In this state the
system is not able to process anything because there are no model parameters available in the
internal memory.

In order simplify the system level control, when instantiating an array of HMM processors,
an unique identification number (HMMID) is assigned to each instance. This allows to easily
address a specific device. As an example, when the proper ID number is received, the HMM
control changes its state to Load Model, and the model parameters are loaded locally from the
model bus (that will be used during processing also to receive the observations). Model param-
eters are split and stored in two different locations inside the HMM processor’s architecture:
the transition matrix is held in a memory accessible by the devices that perform token passing
tasks (TMAT RAM), while the gaussian mixtures are held in a memory internal to the device
that computes the emission probability (Emission Probability Computer).

After model parameters are correctly loaded, the system switches to Wait Command state,
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Figure 3.13: Finite State Machine that implements the overall control for the HMM processor
architecture.

and is actually ready for processing. In Wait Command state, two options are available: begin-
ning processing and loading a new model. The latter option allows to load the HMM processor
with a new set of parameters during run time, thus allowing for reutilization of a single pro-
cessing device for multiple logical atom–HMMs.

The actual HMM processing is split in three distinct stages: main processing stage, update
of the token scores with emission probabilities, and selection of emitted tokens.

The first state of the process is called Processing Data. In this state two devices in the ar-
chitecture are activated in parallel: the Token Passer and the Emission Probability Computer. The
Token Passer collects tokens sent to the HMM from the external token flow control unit, and
applies the token passing algorithm for each emitting state. Tokens are collected and stored
using a specific memory (the Token Buffer RAM) containing two twin banks, each capable of
storing one token per HMM state (including the dummy states). 1 The choice of the twin banks
for the tokens’ storage is due to the fact that one bank is needed to read tokens (from the algo-
rithmic point of view it contains the tokens computed in the previous time step) and the other
bank to store results during the processing stages. At the end of each time step the second bank
is dumped into the first one 2 so that the process can be repeated in the following time step.

1A possible extension to the computation model used in this work is to allow for holding multiple tokens in
each state. This choice can produce an increase in classification accuracy but requires a more complex control, more
hardware processing resources and much more bandwidth for the data flowing through the system. Since the aim
here is to introduce a basic architecture, variations like this one are not going to be treated in this work.

2Again, a possible improvement would be to use a ping–pong strategy with the two memory banks, so to avoid
dumping the second bank into the first one at each time step, and thus speeding up the process. This solution can be
applied without much effort, but I am not using it in this work for the sake of clarity. It will surely be implemented
in future architecture tuning stages.
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Concurrently with the Token Passer, the Emission Probability Computer is activated. This last
module loads from outside, through the observation bus, the features for the time step to be
processed, and computes the emission probabilities for each emitting state.

When both the Token Passer and the Emission Probability Computer are done, the system
goes in Apply Emission Probability state. In this state, the Token Updater module gets the com-
puted emission probabilities from the Emission Probability Computer, and updates the tokens
stored in the second bank of the token buffer memory. The Token Updater module also keeps
track of the best token’s score in the HMM and make it available on an output port. Best tokens
are used at system level control to tune the thresholds for pruning.

The last processing stage, after the scores are updated, is the Process Exit State, during which
the Eval Exit State module is activated. This module collects tokens from all the connected
emitting states, updates their scores with the appropriate transition probabilities, and selects
the one with highest probability as the one to be emitted from the HMM at the current time
step.

When also this step is completed, the system returns in the Wait Command state, ready for
the next time step.

Along with the modules that perform the actual data processing, also the Token Life Monitor
module is active. It is in charge of providing to the system level controller informations on the
pruned tokens, so that the records in the upper processing layers can be correctly updated. The
Token Life Monitor is basically a counter array that keeps track concurrently of new tokens fed
into the HMM, token replication due to multi–destination passing, and token pruning. Details
on its internal architecture can be found in 3.4.3 (Page 64).

3.4 Details of the architecture’s components

Some of the architecture components described in the previous section have undoubtedly a
complex behavior. For this reason in this section a deeper analysis of these components is
made, with the aim to clarify the actual implementation that will be presented in Chapter 4.

3.4.1 The Token Passer

The structure of the Token Passer module is shown in Figure 3.14.a, while the FSM that controls
its behavior is shown in Figure 3.14.b.

The Get Incoming Tokens state works also as a wait state when the module is idle. When
an activation signal is received from the external HMM processor controller, the Token Collector
sub–module takes care of reading the tokens fed into the HMM’s entry state from outside the
HMM processor, and write them in the Token Buffer memory.

Then the module goes into the Pass Tokens and Computer Score state. In this state the Score
Computer sub–module applies token passing on the HMM’s internal states: tokens from time
step t− 1 (stored in the first of the twin banks of the token buffer memory) are passed according
to the transition probabilities, and stored in the second bank of the token buffer and their score
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Figure 3.14: Architecture of the Token Passer module: a) shows the building blocks; b) shows the
FSM that controls the processing.

updated with the corresponding transition probability. For an N–states HMM, the token buffer
is capable of holding a list of at most N tokens per state (corresponding to the limit case of a
state that has transition coming from all the others HMM states). After the collection and up-
date, the token with the highest alignment probability (also referred to as best token) is selected.
This will be the only token to survive until next time step. 3

When the token passing is done, the state changes to Notify Survived and then to Notify
Pruned. In these states the Token Life Monitor Notifier sub–module is activated, and signals are
sent to the Token Life Monitor module (see Page 64) to notify which new tokens have been kept
in the HMM, which existing tokens have survived and, eventually, multiplied (through passing
to multiple states), and which tokens have been pruned.

After notification tasks have been performed, the Token Buffer Reorder module writes the
selected best token for each state to reserved locations into the Token Buffer memory. After that,
the state changes to Wait for Next Frame until the system passes to next time step, and the cycle
begins again from state Get Incoming Tokens.

3.4.2 The Emission Probability Computer

The Emission Probabilty Computer is likely to be the most articulated module in the HMM pro-
cessor architecture. Its architecture is shown in Figure 3.15. It can be noticed that, compared to
the other modules, it is the only one that takes full advantage of parallel processing, since the
emission probabilities for all the emitting states in the HMM are computed concurrently by an
array of independent devices.

3This because I am using a one–token–per–state approach. In multiple–tokens–per–state approaches, a prede-
fined number M of tokens per state is held, and the token list must be sorted according to likelihood, so that in the
next time steps it will be easier to keep only the highest probability tokens.
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Figure 3.15: Architecture of the Emission Probability Computer module.

Since the processing of each state’s probability is not necessarily synchronous, the observa-
tion for the current time step is loaded, from the external observation bus directly connected to
the front–end (see Figure 3.9), in a local buffer.

In the architecture there is a number of emission probability computing blocks equal (at
least) to the number of emitting states in the HMM. Each processing block loads, into its local
memory, the needed model parameters for the corresponding state from the model bus during
the HMM processor’s model loading phase, or during runtime model re–loading (see Section
3.3.1, Page 56).

In order to understand how a single emission probability processing block works, it is nec-
essary to give some more detail on how scores are treated in the proposed architecture. So, let
us consider the operations performed on the alignment scores during a token passing session.
I showed in Section 2.2.2 how most of the processing is due to the evaluation of the recursion
step (equation 2.30, Page 27) in the Viterbi algorithm. Thus, on the score of each token, passing
through a state Sj, the following operations are applied for every t in the token’s lifetime:

δt(j) = max
1≤j≤N

[
δt−1(i) · aij

]
· bj(Ot) (3.2)

In can be easily seen that the computation of this value requires N + 1 multiplication, plus the
operations needed to compute the emission probability bj(Ot). As already showed in 2.2.5, the
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computation of the emission probability is done according to (2.48, Page 31), thus:

bj(Ot) =
M

∑
m=1

cjm · N
[
Ot, µjm, Ujm

]
=

M

∑
m=1

cjm ·
[
(2π)−N/2|Ujm|−1/2

]
· e−

1
2 (Ot−µjm)U−1

jm (Ot−µjm)′ (3.3)

Assuming that the factors (2π)−N/2|Ujm|−1/2 can be pre–computed and stored for a given set of
model parameters, that the covariance matrix is directly stored in its inverse form, and that the
gaussians components are L–dimensional, the computation of an emission probability requires
2L − 1 sums and 2L2 multiplications to obtain the exponent, plus two more multiplications
and the evaluation of the exponential in order to obtain the term of the sum. In synthesis the
number of operations needed are M(2L− 1) + M− 1 ∝ 2LM for the sums and to 2M(L2 + 1) ∝
2ML2 for the multiplications, plus the evaluation of M exponentials.

The number of operations needed is definitely high since it is quite common, in particular
when using also the derivatives of the feature coefficients, to work with high values of L (for
speech recognition it is common to have L = 36 and M = 4, so that the number of multipli-
cations gets easily over 104). Furthermore, one should remember that the computations are
made on probabilities that, by definition, are always less than unity. The relation (3.2) implies a
large number of multiplications between values of that kind and, clearly, the product of a large
number of factors less than one leads to problems of underflow when using fixed–point values
and a finite number of bits for the representation, as is our case.

Fortunately all these issues have a solution. First of all it is possible to simplify the com-
putations themselves by assuming that the covariance matrices Ujm used to describe the gaus-
sian components are all diagonal, thus implying the independentness of the observation coeffi-
cients belonging to the same vector Ot. This assumption does not introduce sensible changes
in the system’s accuracy because the independence is a true condition in most of the cases4,
but nonetheless it greatly reduces the number of multiplications needed. The introduction of
diagonal covariance matrices changes the (3.3) in the following way:

bj(Ot) =
M

∑
m=1

[
cjm · N

(
O, µjm, Ujm

)]
=

M

∑
m=1

[
cjm ·

(
(2π)−N/2

L

∏
i=1

σ−1
jmi

)
· exp

(
−1

2

L

∑
i=1

(Oti − µjmi)2σ−2
jmi

)]
(3.4)

Here the subscript i is used to indicate the single elements of vectors, like Oi. In the case of
the diagonal covariance matrix, we know that the elements on the diagonal Uii represent the
variance of the multidimensional gaussian along the dimension i, so they are indicated with σ2.

4 In fact an accurately designed front–end provides a set of parameters as much independent as possible (maxi-
mizing the amount of informations carried by each parameter), mainly because reducing the number of parameters
needed to model the signal also reduces the complexity of the classifier’s models.
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It is straightforward to verify that to evaluate the relation (3.4) are necessary M(L + 1)− 1 ∝
ML sums, 2M(L + 1) ∝ 2ML multiplications and the evaluation of M exponentials, with a neat
advantage with respect to the evaluation of (3.3).

Now it is still necessary to solve the problem of underflow. This issue can be dealt with by
just changing the representation of numbers from linear to logarithmic. By using this technique
the dynamic range of values is highly compressed, so that the risk of underflow becomes min-
imal. Furthermore all the products are transformed in sums, thus dramatically reducing the
resources needed to implement the operations in hardware. In logarithmic scale the relation
(3.4) becomes:

ln[bj(Ot)] = ln

{
M

∑
m=1

[
cjm ·

(
(2π)−N/2

L

∏
i=1

σ−1
jmi

)
· exp

(
−1

2

L

∑
i=1

(Oti − µjmi)2σ−2
jmi

)]}

= logadd
1≤m≤M

[
ln(cjm)− N

2
ln(2π)−

L

∑
i=1

ln(σjmi)−
1
2

L

∑
i=1

(Oti − µjmi)2σ−2
jmi

]
(3.5)

In the last equation the notation logadd is used to indicate the operation that in literature [75,
76] is usually called soft–combining or soft–add, and that can be defined for a generic set of K
variables xk through the following relation:

ln

(
K

∑
k=1

xk

)
= logadd

1≤k≤K
[ln(xk)] (3.6)

The main advantage in making use of the logadd operation, is that it can be easily estimated
thanks to an approximation known as Jacobian logarithm, widely used in coding and decod-
ing algorithms for telecommunications. With this approximation, the logadd operation can be
computed in the following way:

logadd [ln(x), ln(y)] ∼= max [ln(x), ln(y)] + ln
[
1 + e−| ln(x)−ln(y)|

]
=̂ max [ln(x), ln(y)] + fMAP (| ln(x)− ln(y)|) (3.7)

How to deal with the logadd operation depends on the target application: in some cases it
is enough to just ignore the fMAP term and replace the operation with a simple maximum
selection; in other cases, when the number of bits used for the representation is not too high,
the values of the fMAP can be stored in a look–up table; finally, if none of the previous solutions
is viable, the computation of the fMAP can be done through the use of well known techniques
for the evaluation of the exponential and of the logarithm (like the CORDIC algorithm [77, 78]).

When using the logarithmic scale, some of the model parameters (namely cjm and aij) are
stored directly in logarithmic scale. Also the constants are pre–calculated when possible: in
this case, for the equation (3.7), a constant Gjm is assumed to be stored along with the model
parameters, and it is defined as:

Gjm = −(N/2) ln(2π)−
L

∑
i=1

ln(σjmi) (3.8)
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Method Sums Multiplications Other
Original 2ML 2ML2 M exponentials

DCM ML 2ML M exponentials
DCM & LS ML 2ML (M− 1) logadds

Table 3.1: Computation of emission probabilities: comparison of the number of operations
needed in function of the method used (DCM stands for diagonal covariance matrices and LS for
logarithmic scale).

From now on, when talking about emission probability calculation, the variables bj(Ot, cjm
and aij are assumed to be in logarithmic scale while the others in linear scale5. Moreover I
assume to store the inverse variances (ivarjmi = σ−2

jmi) in order to replace divisions with multi-
plications. The relation (3.5) will be thus written in the following way:

bj(Ot) = logadd
1≤m≤M

[
Gjm + cjm −

1
2

L

∑
i=1

(Oti − µjmi)2ivarjmi

]
(3.9)

It is straightforward to see that this implementation needs M(L + 2) ∝ ML sums/subtractions,
2LM multiplications and M − 1 logadd operations. Also the N + 1 multiplications needed to
evaluate the alignment probability in (3.2), become N + 1 sums with the introduction of the
logarithmic scale.

In Table 3.1 is shown a comparison of the number of operations needed by the three evalua-
tion methods for bj(Ot) (original, with diagonal covariance matrices, with diagonal covariance
matrices and logarithmic scale). It can be seen that a great reduction in the number of multi-
plications is obtained by introducing the diagonal covariance matrices. On the other hand the
method that uses logarithmic requires more operations (the logadd operation requires the com-
putation of an exponential and a logarithm, even if in some circumstances it can be avoided).
Nonetheless, using logarithmic scale cannot be avoided because of the already discussed nu-
merical representation problems.

So, referring again to Figure 3.15 (Page 60), each of the processing blocks contains a couple
of specific sub–modules: the first one (Evaluate Gaussian Component) computes in turn each of
the M arguments of the logadd function as they are written in (3.9), and sends them to the second
block (LOG ADD) that applies the logadd function (or whichever function has been chosen to
replace it). The two blocks work in pipeline: when the first result is passed to the LOG ADD
block, it is simply stored as the last result. For all the following values, the operation is applied
taking as arguments the incoming value and the stored one. The result is then stored replacing
the old one, and the cycle repeats until all the M terms have been sent. At this point the value
for bj(Ot) is ready and kept until requested from outside the Emission Probability Computer.

5 Note that there will be no change of notation. So, for example, the value ln[bj(Ot)] will be written just as bj(Ot)
and so on for all the variables in logarithmic scale. This is done to avoid unpleasantly cluttered formulas.
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Figure 3.16: Architecture of the Token Life Monitor module.

3.4.3 The Token Life Monitor

The Token Life Monitor is an essential component for system–level control. Its purpose is to
notify to the system controller if some tokens that are supposed to be inside the HMM have
been pruned or not. In other word this module allows the system controller to know if it has
to wait for certain tokens to be emitted from the HMM, or if it can discard all the tracking
information related to them, and free up some precious storage resources. The architecture of
this module is shown in Figure 3.16.

As a matter of fact the Token Life Monitor is just a bank of counters with an application
specific controller. During the processing stages the Token Passer module sends through the
Input IDs bus, some numbers that identify univocally a certain token traveling through the
system. Along with the IDs, some control signal specify if the token has just been fed into the
HMM, if it was pruned or if it was duplicated. When a new token is fed into the HMM, a new
counter is activated for it, and that counter keep track of the number of instances of that token
inside the HMM until there are no more inside the HMM, because of pruning or emission. At
that point the counter is free and can be used for other new tokens. When a counter is freed,
the corresponding token ID is notified as pruned. Of course this happens also when a token is
emitted from the HMM and there are no more instances left: in that case is up to the system
controller to realize that the notification of pruning has happened concurrently with the token
emission.

There are some factors that require particular attention when designing this module. First
of all the number of counters should be enough to track all the different tokens that can be
present in the HMM at the same time. When holding a single token in each state this number
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is just the number of HMM states, but when keeping a list of tokens in each state the problem
must be handled carefully, in order to avoid “losing” incoming tokens with high probability
(because there are no free counters to track them). Also the number of bits in each counter
must be tuned according to the expected lifetime of a token inside the HMM. Another impor-
tant issue is how to obtain unambiguous IDs for every token traveling in the system. Also this
can be done through the estimation of the tokens’ lifetime: by using a progressive counter that
flips over a period longer than that lifetime, there is never the risk of having two tokens with
the same ID.

Now that the whole architecture have been described thoroughly, the actual implementa-
tion of the system, along with the methodologies used, can be described. Chapter 4 gives all
the details on that topic.
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Chapter 4

Implementation and testing of the
architecture

In this chapter I will show the approach used and the results obtained for the actual implemen-
tation in hardware of the architecture described in Chapter 3. First of all, the overall design
flow will be described along with the tools and techniques used. Then the implementation de-
tails will be discussed and, finally, the results of the tests made on the implemented design will
be shown.

4.1 A design flow for the architecture

In Section 3.2 I explained how the proposed architecture can be mapped on a platform contain-
ing one or more FPGAs for the custom hardware, a front–end for the feature extraction, and a
device (most likely a microcontroller or a soft–processor) capable of performing the tasks of a
system level controller plus the high level pattern recognition operations (see Figure 3.7, Page
51).

Of course it could be possible to design the whole hardware platform but, at this early stage
of development, using a fast prototyping platform provides the same level of effectiveness, the
possibility to experiment several solutions, and a highly reduced cost. In Section 3.2.2 I already
mentioned that on the market there are many high performance development kits that can be
suitable for the goals of this work.

A typical design flow for these kind of fast–prototyping platforms is shown in Figure 4.1.
First of all, the custom hardware present in the system is described at RTL level using a chosen
hardware description language (depending on the one supported by the design tools used). Then
it is simulated in order to check if the behavior is the one expected. To simulate the described
subsystem (referred to, in this context, as Unit Under Test, or UUT) a testbench is needed to
provide the proper stimuli. The testbench can be described at a behavioral or also RTL level
(sometimes, for testing purposes in the later stages, it can be useful to have a sythesizable
testbench). Depending on the RTL simulation results, some modifications could be needed on
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Figure 4.1: Typical design flow adopted for fast–prototyping hardware platforms. The step
of defining a soft–processor is applied only when the microprocessor / microcontroller is not
implemented using a ready–made device.

the description. Otherwise it is possible to pass to the timing simulation stage, using the code
produced by the synthesizer. At this stage all the necessary time constraints should be specified
in order to obtain more significative simulation results. The timing simulation allows to know
if the UUT can be run at the selected speed on the target device, or if some architectural changes
are needed to match the specifications. Even from this point it could be necessary to step back
and make some changes in the HDL description or in the synthesizer’s parameters. the last
main step is the mapping onto a programmable device. Here the constraints to be met concern
the resources available on the target device. An eventual overmapping can only be corrected
by downscaling the UUT or by changing the target device. Less severe cases of overmapping
can be dealt with by changing some implementation strategies in the synthesis stage. The very
final step is the test of the system running on the hardware platform. At this stage, the needed
stimuli can be provided by an external pattern generator or by a testbench mapped directly
into the device (the choice depends on the application).

Some changes on the design flow must be taken into account when the architecture con-
tains also a software part, as in our case. If the device running the software is a ready–made
device (like a DSP or microcontroller), some testbench that reproduces its behavior should be
developed. In some cases the manufacturer provides models that enable the designer to sim-
ulate the device in an RTL simulator, along with the rest of the architecture. On the other
hand, if one chooses to use a soft–processor, the device must be configured in a way suitable
for the application (Definition of Soft–Processor in Figure 4.1). In this latter case most of the in-
tegrated development environments enable the designer to simulate the soft–processor (and
the software running on it) along with any peripheral and custom hardware present in the ar-
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chitecture, greatly simplifying the design and test process. A step that is independent from
whether one uses a soft–processor or a ready–made device, is the development and testing of
the embedded software. The strategies that can be used are many. For example it is possible
to develop and test the hardware and the software part separately (using a specific testbench
for each part), and then put them together for final testing. Another option is to develop and
test thoroughly one of the two parts and then use it as the testbench for the development of the
other one. The choice is usually made according to the features of the specific architecture to
be developed.

4.1.1 Choice of the design tools and strategies

As just said, the architecture proposed in Chapter 3 requires the development of both a software
and a hardware part. The implementation of the whole architecture is undoubtedly a complex
task and goes actually beyond the goals of this work. For that reason in this chapter, and in
the ones following, I will describe only the implementation of the custom hardware for the
HMM processors, also because it is the most innovative and critical part of the architecture.
Even if the implementation of the rest of the system is left to future work, particular attention
will be payed on the effects of any design choice made for the part described onto the whole
architecture. Furthermore implementation guidelines will be provided for the part that will be
implemented in a later stage.

The architecture of a single HMM processor have been described at RTL level using the
VHDL language [79]. A testbench has also been described in VHDL, reproducing the expected
behavior of the rest of the system (i.e. the system controller, the front–end and the external
memories).

The design has then been simulated using both the internal simulator of the software used
for design entry1 and with Modelsim [81]. Since HMM model parameters were needed in order
to test the proper operation of the system, they were generated using HTK, an open–source
HMM modeling toolkit [82]. From HTK, also the HMM simulator was used in order to verify
the correctness of the results produced by the system (for more details on testing see Section
4.3).

After checking the correct behavior of the design, a platform has been chosen for synthesis
and mapping. As already said only the custom hardware is going to be implemented for this
thesis. This means that at this stage any generic development board would be suitable. For this
thesis Xilinx [83] devices are used, so Xilinx ISE integrated development environment (IDE)
[84] has been used. This IDE provides tools for synthesis and mapping on Xilinx FPGAs and
also an Embedded Development Kit (EDK) that allows to map custom soft–processors (Xilinx’s
IP is called MicroBlaze) onto the FPGA itself. Since Xilinx produces a wide variety of FPGAs,
it is possible to first synthesize the design and then choose a specific device according to the
amount of needed hardware resources.

The synthesis process produces also an HDL code with timing informations. This was used

1 In the present work Aldec Active HDL was used [80].
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Figure 4.2: The HMM processor entity as generated by the design entry software. Input ports
are on the left and output ports on the right.

to perform a simulation taking into account also signals’ propagation times. This insures that
the design is going to behave in the same way as the simulated model also when mapped onto
the selected device.

The final step of the process was to map the design onto a development board and check
that the behavior was the one expected.

More details on the topics explained here will be given in the next sections.

4.2 Implementation details

In this section I will explain in detail how each component of the architecture shown in Chapter
3 was described in VHDL, along with its features and its interface. I will use a top–down
approach starting from the HMM processor itself.

It is important to stress that an effort has been made to make the VHDL code completely
device independent. This allows to easily port the design on other platforms with a minimum
effort. Furthermore the code has been conceived to be as much parametric as possible, making
possible to scale it in many ways to fit the needs of the application in which the hardware
is going to be used. For this latter purpose a package has been written, containing all the
parameters that characterize the system, like number of HMM states, word length to be used
for probability computations, gaussian mixtures’ size parameters and so on.

4.2.1 The Top Level: HMM Processor

The HMM processor was described as a self consistent entity named hmmp. Its interface is
shown in Figure 4.2. As any other entity in the design it has a clock and a reset port. Then
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Figure 4.3: Expected timing diagram for model parameters loading into the internal HMM
processor’s memory.

there is a set of error signals that notify if there was some problem in processing data (the mean-
ing of each error signal will be explained later, in the section dealing the corresponding entity).
The bus btscore_out provides the best token at the end of each time step. This is used from
the system level controller for pruning purposes. The ready signal notifies that the HMM pro-
cessor is ready for processing. This basically means that a set of model parameters has been
properly loaded and that the entity is idle. The load_model port is directly connected to the
external device that is in charge of loading HMM model parameters into the HMM processors.
When instantiated, the HMM processor is assigned an unique identification number through
the generic HMMP_ID. If this number is received on the load_model port and the HMM pro-
cessor is idle, the process of loading a new model is initiated by asserting the send_model
signal. Then the model is received through the port model_bus. The first value received must
be the model ID itself to notify that the rest of the data is incoming. The model data is sent in
the following way: for each of the emitting states2 Sj, the M gaussian components of the mix-
ture are sent sequentially, following the order µjm, Gjm, ivarjm and cjm (refer to Equation (3.9),
Page 63). Finally, after all the mixtures are sent, the matrix of transition coefficients is loaded.
During the loading process the ready signal goes low and it is asserted again when the process
is complete. The expected waveforms during the loading process are shown in Figure 4.3. The
number of clock cycles needed for model loading is proportional to the number of parameters
in the model set thus:

Ncycles ∝ 2M(N − 2)(L + 1) + N2 (4.1)

The next_frame input port is used to notify to the HMM processor that the system is passing
to the next time step. The handshaking signals request_obs and obs_ready are used to

2 In this implementation, the emitting states for an N–state HMM are indicated with the indexes from 2 to N − 1
since the indexes 1 and N are reserved for the entry and exit state respectively.
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request a new observation from the front–end (or, to be more precise, from the buffer in which
it is stored). Observation data is sent through the model_bus since model and observation
data–flows never overlap in time (see also Section 3.3.1, Page 56). The flow of tokens is split
over two buses with their own handshaking signals: the token_bus_in (for receiving tokens),
with the control signals req_input_tok and rdy_input_tok, and the token_bus_out (for
outputting tokens), with the control signals req_output_tok and rdy_output_tok. Finally
some ports are dedicated to the notification of token pruning to the system level controller: the
output bus dtok_ids is used to send the identification numbers of tokens that have been
pruned during the last time step, while the two signals req_dtok and rdy_dtok are used for
handshaking.

When models are loaded (and the ready signal is asserted) the assertion of the signal
next_frame actually starts the HMM processor3. First of all the ready signal is set to log-
ical zero, and two parallel processes are activated. The first process gets the observations for
the current time step from model_bus, using the signals request_obs and obs_ready for
handshaking. The observations are stored in a local buffer and then the emission probabilities
are computed for all the emitting states. The second process begins by getting the incoming
tokens from token_bus_in, using the signals req_input_tok and rdy_input_tok for
handshaking. Then tokens are passed between internal HMM states, and the alignment prob-
abilities are updated accordingly. After both processes are over the tokens’ scores are updated
with the computed transition probabilities. Finally the token passing is applied towards the
HMM’s exit state, and the token to be output is selected. At this point the ready signal is
asserted again and, before going to next frame, the system controller must collect the emitted to-
ken from token_bus_out, using the signals req_output_tok and rdy_output_tok for
handshaking. Moreover, the ID numbers of the tokens pruned during the last time step must
be collected through the dtok_out bus, using the signals req_dtok and rdy_dtok for hand-
shaking. The IDs will be sent sequentially while the signal rdy_dtok stays high after the
request. The whole cycle restarts when the signal next_frame is asserted again. If any of the
error signal is asserted during processing, then the results generated must not be considered
reliable.

The handshaking procedure used for communicating with external devices is really simple:
basically the device requesting data asserts the request signal and waits for the ready signal.
When the ready signal is asserted it means that the first requested value is on the bus. The
ready signal stays high as long as there is valid data on the bus. This protocol is illustrated in
Figure 4.4

4.2.2 The HMM processor control

The detailed version of the architecture in Figure 3.12 (Page 56) is shown in Figure 4.5. All

3 In this implementation is mandatory to reset to logical zero the next_frame signal before the end of the time
step, in order to avoid that the HMM processor restarts processing with unpredictable results on the overall system
behavior.
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Figure 4.4: Expected signaling for a generic data transfer through a bus with two control sig-
nals.

the building blocks are implemented by a VHDL entity. The entity hmmp_control (shown
in Figure 4.6) communicates with the external control device and provides to the entities that
make up the architecture the control signals needed to insure that the data processing is per-
formed correctly. The function of the signals ready and next_frame have already been de-
scribed, and also the one of load_model and send_model. The signals modmem_wen and
modmem_waddr are used to control writes on the local model memory during the model load-
ing stage. Then four couples of signals are used to activate all the other entities in the architec-
ture and to monitor their state:

• compute_emprob and emprob_computed for the Emission Probability Computer (entity
emprob_computer)

• pass_tokens and tokens_passed for the Token Passer (entity tokenpasser)

• update_tokens and tokens_updated for the Token Updater (entity token_updater)

• process_xit_state and xit_state_done for the Evaluate Exit State module (entity
eval_xit_state)

The hmmp_control entity also stores all the informations on the model during the loading
stage. These informations are put on a set of output ports so that they can be read at any
moment from the architecture components that need it for processing. These information are
namely the length L of each observation vector (port swidth), the number M of gaussian
components in each mixture (port ngaussians) and the number N of states in the HMM
(port nstates). Furthermore, also the static model ID is available. That should be connected
to an output port of the HMM processor to allow the system controller to distinguish between
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Figure 4.6: The hmmp_control entity as generated by the design entry software. Input ports
are on the left and output ports on the right.

the physical processors. In this implementation it is left open since the tests presented here are
made with a single HMM.

The representation of the state machine implemented in the hmmp_control (actually, the
detailed version of the one in Figure 3.13, Page 57) is shown in Figure 4.7. The states’ names
are shown in boldface, along with the signals asserted when the state is active. In particular,
for any state = S, is assumed a statement of the kind:

signal <= ’1’ when state = S else ’0’;

On the transition arcs are indicated the events that produce the change of state. The behavior
of this FSM is substantially identical to the one described in 3.3.1 (Page 56). Furthermore, since
in the loading_model state the local controller handles the whole parameter loading oper-
ation, another state machine is activated to perform the task. Its diagram is shown in Figure
4.8. This second FSM directly controls the handshaking with the external device that provides
the model parameters. The loading process is divided into several stages. In the first stage the
model is requested and the system waits until the data is available on the model_bus. Then
the addresses are generated to load the gaussian mixtures into the local memory inside the
emprob_computer entity. In this stage also the values for the number of states, mixtures and
length of observation vector are collected and written on the ports nstates, ngaussians and
swidth respectively. When all the gaussians are loaded, the transition coefficients are sent and
the proper addresses are generated in order to write them into the local transition matrix mem-
ory (entity hmm_tmat_ram). Finally, when all the model has been stored, the model_loaded
signal is asserted and the control goes back to the main FSM.
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reset

wait_for_model

loading_model
start_mloader <= '1'

waiting_command
ready <= '1'

processing_data
compute_emprob <= '1'
pass_tokens <= '1'

upd_toks
compute_emprob <= '1'
update_tokens <= '1'

proc_xit_state
process_xit_state >= '1'

load_model <= HMMP_ID

model_loaded <= '1'

next_frame <= '1'

load_model <= HMMP_ID

emprob_computed <= '1'
and

tokens_passed <= '1'

tokens_updated <= '1'

xit_state_done <= '1'

reset <= '1'

Figure 4.7: Detailed view of the state machine that controls the HMM processor.

4.2.3 The processing blocks

In this section I will refer to Figure 4.5 and give details on the implementation of the entities that
make up the HMM processor’s architecture. First of all I will describe the internal memories
and how data is stored inside them, so that the following introduction of the processing blocks
themselves will be clearer. The processing blocks will be introduced according to the order of
activation given by the state machine in Figure 4.7.

Memories

The main memories used inside the HMM processor at the top level are two: one for the tokens
(entity tokenbuffer_ram), one for the transition matrix (entity hmm_tmat_ram).

The token_buffer memory must be a dual port RAM since read and write accesses
are made simultaneously during processing. Furthermore, when using dynamic allocation of
HMM processors, an external memory is used to store the token buffers of all the non allocated
HMMs (the HMMs that are active but not currently mapped onto any HMM processor). Thus
while loading a new model the current token buffer is saved to the external memory while the
one belonging to the new model is loaded from the same memory. A single token is stored as
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reset

idle
if start_mloader = '1' then

send_model <= '1'
model_loaded <= '0'

reset <= '1'

get_tmat
read model info

(model_bus)
generate write addresses for internal memory

(modmem_wen, modmem_waddr)

get_gaussians
read model info

(model_bus)
generate write addresses for internal memory

(modmem_wen, modmem_waddr)

end_of_task
model_loaded <= '1'

incoming data

all gaussians loaded

transiton coefficients loaded

Figure 4.8: Detailed view of the state machine that controls the loading of model parameters.

two memory words: the first one containing the HMM identification number of the last model
from which the token was emitted and the alignment score; the second one contains a back-
pointer to the last record of the chain stored in the lattice (see Section 3.2.4, Page 53 for further
details). Since the number NBHMMID of bits needed to represent the HMM ID depends on the
number NHMMS of HMM used by the application (to be precise NBHMMID = dlog2(NHMMS)e),
the word length WL must be chosen is such a way that there are enough bits NBSCORE to repre-
sent the alignment scores (that because NBSCORE = WL− NBHMMID). The structure of a single
token is shown in Figure 4.9(c). A single token buffer must be able to contain, for each of the
N states, N or more tokens4 and the whole buffer must be mirrored (see Section 3.3.1, Page
56). So the token_buffer RAM, in our implementation where N tokens are kept for each
state, will contain a number of words given by NWTB = 4N2. The addresses are composed by
concatenating a bit to identify one of the two banks, followed by the state number, the token
number (in the state’s list) and a bit to specify one of the two fields. The number of bits needed
for addressing will be NBTBADDR = 2 + 2dlog2(N)e. The structure of the token buffer is shown
in Figure 4.9(a).

The hmm_tmat_ram memory does not need to be a dual port RAM since write and read
access never overlap in time (the former occurs during model loading, the latter during pro-
cessing). This memory must contain one word for each transition coefficient, that is N2 words.
The items are stored in such a way that the transition coefficient aij will be addressed by simply
concatenating the representations in dlog2(N)e bits of the numbers i and j. So the number of

4 N is the minimum to be able to collect the token coming from all the other states (in the hypothesis of a
fully connected HMM). More than N tokens are needed only when collecting multiple tokens from every incoming
connection in order to produce multiple hypotheses.
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Figure 4.9: (a) Structure of the token buffer RAM. (b) Structure of a single HMM state RAM. (c)
Structure of a single token as stored in memory.

bits needed for addressing is always 2dlog2(N)e.

All the other memories in the HMM processor are inside the emprob_computer entity
(see ahead in this section for details). One is used to locally store the observations (entity
observation_ram), and the others are used to keep gaussian mixtures. Since the entity pro-
cesses each HMM state in parallel, there is a memory (entity hmm_state_ram) that holds a
single gaussian mixture for each of the N − 2 emitting states in the HMM.

The observation_ram is a single port RAM capable of holding a complete observation
vector, thus L parameters. The addressing is sequential.

The hmm_state_ram is also a single port RAM. It must contain a whole gaussian mix-
ture, so N means, N inverse variances, a mixture weight and a G constant. In total it is
NWSMEM = 2M(L + 1). The address of mean and inverse variance elements is obtained by
concatenating the mixture number (from 0 to M − 1, represented with dlog2(M)e bits), a bit
that will be ’0’ for means and ’1’ for inverse variances, and the parameter number (from
0 to L − 1, represented with dlog2(L + 1)e bits). The G constant and the mixture weight are
addressed as the (L + 1)th element (index L) of the mean and inverse variance vectors, respec-
tively. The structure of the state RAM is shown in Figure 4.9(b).
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clock emprob_bus

compute_emprob emprob_computed

mm_datain(GEN_WL-1:0) error(1:MAX_NSTATES-2)

mm_waddr(STATE_ADDR_NBITS-1:0) request_observation

mm_wen(1:MAX_NSTATES-2)

ngaussians(NGAUSS_MSB-NGAUSS_LSB:0)

nstates(NSTATE_MSB-NSTATE_LSB:0)

obs_databus(GEN_WL-1:0)

obs_ready

reset

swidth(SW_MSB-SW_LSB:0)

Figure 4.10: The entity emprob_computer as generated by the design entry tool.

Computation of emission probability

The interface of the emprob_computer entity is shown in Figure 4.10. Control on the en-
tity is provided through the signal compute_emprob (enable) and feedback on the entity’s
status through the signal emprob_computed. The model parameters are loaded on the in-
ternal memories through the mm_datain port, using the signals mm_wen and mm_waddr to
control the internal memories (write enable and write address, respectively). Through the in-
put ports nstates, ngaussians and swidth the HMM controller provides size informations
on the model, that are needed for the computations. During processing the observation data
is got directly from outside the HMM processor into the local buffer using the obs_databus
port and the request_observation and obs_ready signals for handshaking. Computa-
tion results are output through the emprob_bus. Eventual errors are notified by asserting the
error signal. The emprob_computer entity’s internal architecture is shown in detail in Fig-
ure 4.11. The entity is made up by a control unit ec_cpu_ctrl, a buffer observation_ram
for the current observation vector, and a processing block for each of the N − 2 emitting states
in the HMM5 (in Figure 4.11 is shown a 5–state HMM). Each processing block contains a
RAM hmm_state_ram to store the gaussian mixture relative to the corresponding emitting
state, a block eval_gaussian able to compute the score for a single gaussian component,
and a log_add module to compute the soft–add operation among the M values produced by
eval_gaussian.

The control unit implements the state machine shown in Figure 4.12. The entity becomes
active only when the signal compute_emprob is asserted. The process starts in the state
idle and, if an observation vector has not yet been loaded into the local buffer, it switches

5 In practice the architecture is built to be able to handle a certain maximum number NMAX of HMMs. So the
processing blocks in emprob_computer will be NMAX − 2, and some of them will remain idle when the actual
number of states in the loaded model is less than the maximum allowed.
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reset
emprob_computed <= '0'

request_observation <= '0'
obs_wen <= '0'

obs_waddr,obs_raddr <= "0...0"
mod_raddr <= "0...0"
sending_data <= '0'

idle

get_obs
get observation vector

obs_loaded <= '1'

run
if req_obs_loc = '1' 

then
sending_data <= '1'

generate read addresses 
for observations and 

model parameters

sending_data <= '0'

if emprob_ready = '1' 
then

emprob_computed <= '1'

done

done

obs_loaded = '0'

done

done

obs_loaded = '1'

compute_emprob = '1'

compute_emprob = '0'

Figure 4.12: The FSM implemented by the Emission Probability Computer’s control unit
ep_cpu_ctrl.

to get_obs state. In this state the observation vector is loaded and then the FSM goes back to
idle state. When there is an observation vector in the local buffer, from idle state the FSM
switches to the run state. In this state the controller first waits for the req_obs_loc to be
asserted (i.e. all the eval_gaussian blocks are ready to process). Then the addresses are gen-
erated in order to send the observation values and the model parameters, in the correct order,
to the eval_gaussian entities. When the first data are ready on the observation and model
buses, the sending_data signal is asserted to notify the eval_gaussian blocks to begin
processing. Finally when the computation is over, the emprob_ready signal is asserted. This
means that it can be notified to the external entities, through the emprob_computed signal,
that emission probabilities can be read and used. The process ends in the done state and stays
like that until the signal compute_emprob goes low and high again for the next frame.

All the eval_gaussian blocks, when instantiated, have assigned an unique identifica-
tion number from 0 to NMAX − 2. If the number of model states, provided through the port
nstates, is less than the ID, the block disables automatically. Otherwise it gets ready for pro-
cessing. The processing itself begins on assertion of the signal obs_ready. This means that the
first value of the current observation vector is ready on the bus. For each of the M gaussians,
the value

Pjm = Gjm + cjm −
1
2

L

∑
i=1

(Oti − µjmi)2ivarjmi (4.2)

is computed. The value is put on the result bus and the signal result_ready is asserted as
soon as the req_result signal goes high (so that the value can be safely read). After that the
process repeats with the next gaussian component. Actually the parameters used in the com-
putation of (4.2) are floating point numbers (in this work they were generated using the HMM
toolkit HTK [82]). Thus some normalization was performed to allow a correct representation
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and avoid precision issues with the operations to be performed. After considering the typical
ranges of the parameters, and assuming that the calculations are done with a WL bits precision,
I obtained the following formula for the computation performed by the hardware:

2(WL−∆1)Pjm = −2−1

{
G′

jm +
L

∑
i=1

[(
2−(WL−∆1)(O′

ti − µ′jmi)
2
)
· 2−(WL−∆2)ivar′jmi

]}
(4.3)

Here scaled variables are used. The values are stored directly in the scaled form and are defined
as follows:

G′
jm = 2(WL−∆1)(Gjm + cjm) (4.4)

O′
ti = 2(WL−∆1)Oti (4.5)

µ′jmi = 2(WL−∆1)µjmi (4.6)

ivar′jmi = 2(WL−∆2)ivarjmi (4.7)

The values for ∆1 and ∆2 are chosen on the basis of the specific model parameters being used,
and of the available word length WL. I will show in Section 4.3 that in the actual tests, good
results have been obtained with ∆1 ∈ [8, 12] and ∆2 − ∆1 = 3.

In the arithmetic architecture (see Figure 4.13) the most significant bit of each variable in-
volved in the computation is doubled in order to allow for overflow and underflow checks
throughout the process. Double precision is used temporarily to store multiplication results.
The shift values ∆1 and ∆2 can be set through the package parameters LSO = WL− ∆1 and
LSV = WL− ∆2, in order to match the normalization used for any specific parameter set.

The last element in the computing block of the emprob_computer entity is the log_add.
This block has the same ID–based activation mechanism used also for the eval_gaussian
entity (port nstates is used to get the number of states in the model, and port id to get
the entity’s identification number). When active and enabled through the enable signal, the
module gets the M gaussian score from eval_gaussian using the signals req_result and
result_ready for handshaking. Data is received through the result port. Whenever a new
value is received, the request signal req_result is put low, and a side process is activated
that actually accumulates the results using the soft–add operation. In this implementation
this module is simplified and just keeps the maximum among the values received. As can be
seen in 4.3, the results are good even with this approximation. Anyway the extension is quite
straightforward because every FPGA manufacturer provides an IP that implements the Cordic
algorithm [77], with which the fMAP function (see (3.7), Page 62) can be easily evaluated. In
these cases the constraints are given by the tradeoff between precision and used hardware re-
sources. When the side process has finished to compute a single soft–add operation, the main
process gets a new gaussian score and the cycle repeats until all the M values have been re-
ceived (the number of gaussians to read is obtained through the ngaussians port). When the
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Figure 4.13: Evaluation of a single gaussian component from a mixture. Boxes represent regis-
ters (word length is indicated inside). The hardware for error detection is not shown.

result is ready it is scaled to the word length NBSCORE used for token scores, and registered on
the output port emprob. Contextually the signal emprob_ready is asserted, so that external
units know when to safely read the value. The entity log_add restart processing only when
enable goes down and then up again.

Token Passing

The token passing between internal states of the HMM is handled by the entity tokenpasser.
The technique used is to sequentially process each emitting state by collecting all the incoming
tokens, applying the transition probabilities, and selecting the token with the highest align-
ment probability in each state. The sequential behavior has been chosen because there is no big
advantage in processing the states in parallel since all of them would read simultaneously from
the same memory (the first bank of the tokenbuffer_ram). The entity’s interface is shown
in Figure 4.14. The signals pass_tokens and tokens_passed are used for enabling the pro-
cess and notifying its end. The process is controlled by the state machine shown in Figure 4.15
that is substantially identical to the one shown in Figure 3.14(b) (Page 59). Upon enable, the
entity starts in the state get_incoming. In this state the tokens fed from outside are collected
through the port token_bus_in using the signals request_token and token_ready for
handshaking. Incoming tokens are saved into the entry state location of the token buffer’s
first bank (writes to the token buffer are managed through the ports tb_wen, tb_waddr and
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clock add_id

nstates(NSTATE_MSB-NSTATE_LSB:0) born_id

pass_tokens error

reset id_out(GEN_WL-1:0)

tb_rdata(GEN_WL-1:0) request_token

tlm_ready send_id

tmat_rdata(GEN_WL-1:0) tb_raddr(TB_ADDR_NBITS-1:0)

token_bus_in(GEN_WL-1:0) tb_waddr(TB_ADDR_NBITS-1:0)

token_ready tb_wdata(GEN_WL-1:0)

tb_wen

tlm_send

tmat_raddr(TMAT_ADDR_NBITS-1:0)

tokens_passed

Figure 4.14: The tokenpasser entity interface as generated by the design entry software.
Input ports on the left, output ports on the right.

tb_wdata for write enable, addresses and data respectively). When collection has been per-
formed, the process begins the actual token passing by switching to the passing state. At this
point each of the emitting states is processed sequentially. For each state, tokens are collected
from all the N states in the HMM6, and the corresponding transition probability is applied to
their alignment score. Reads from the token buffer are handled using the ports tb_raddr and
tb_rdata (for addressing and data respectively). All the collected data is read from token
buffer’s first bank: at any time step t the first bank of the token buffer will always contain the
results from time step t− 1. The transition probabilities are read from the tmat_ram through
tmat_rdata, using tmat_raddr for addressing. For each state track is kept of the token that
has highest score after the application of the transition probability. Also, any best token com-
ing from the entry state, is marked as newborn. These informations are used by the Token Life
Monitor to keep track of the birth and death of tokens in the HMM. Results of the token pass-
ing computations are stored in the second bank of the token buffer. After the token passing,
the state switches to notify_survive. Here IDs of the survived tokens are read from the
token buffer and sent to the Token Life Monitor. The tokenpasser waits for the tlm_ready
signal from the token_life_monitor entity, then asserts tlm_send to notify that data is
being sent. A set of flag–signals provides the needed informations on the token whose ID is
being sent through the id_out bus. The send_id signal just tells the token_life_monitor
that the ID on id_out must be recorded. The signal born_id notifies that the ID belongs to
a newly born token, so that a new counter in the Token Life Monitor must be initialized for
that ID. Finally the add_id signal indicates if the token counter must be incremented (signal

6 This is done to simplify the control: states from which there is no transition towards the current state have a
zero transition probability that, when applied to any token’s alignment score, will cause the immediate pruning of
the token itself.
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reset

get_incoming
get tokens from outside
into the token buffer

passing
collect tokens

apply transition probabilities
select best token

notify_survive
send ids of survived tokens
to the token life monitor

notify_prune
send ids of pruned tokens
to the token life monitor

reorder_tbuf
move best tokens to position 0

in the token buffer

done
tokens_passed <= '1'

tokens_updated <= '1'

tpass_tokens <= '1'

tpass_tokens <= '0'

Figure 4.15: The FSM that controls the tokenpasser entity.

high) or decremented (signal low). Thus in notify_survive state add_id will be always
high. The tasks performed in the next state, notify_prune, are almost the same as the ones
performed in notify_survive. In particular both the signal born_id and add_id will be
always low (because no new counters are initialized during pruning, and counters are always
decremented). The last stage of processing corresponds to the reorder_tbuf state. Here the
best token of each state is moved, in the token buffer’s second bank, in order to be first of the
state’s token list7. Finally, when the done state is reached, the signal tokens_passed is as-
serted to notify that the results of the token passing can be read from the second bank of the
token buffer.

Notification of tokens’ lifespan

The token_life_monitor entity’s task is strictly related to the token passing process since
token pruning mechanism depends only on the token passing stage. Its interface is shown in
Figure 4.16. After reset the process asserts the tlm_ready signal and waits for the assertion
of tlm_send to activate. When active it manages an array of counters according to the IDs
incoming from the id_in bus and the flag signals born_id and add_id, as already described.
Whenever a token’s counter reaches zero, the token’s id is stored in a list of pruned token’s IDs,
and the counter is freed in order to be used for the next newborn token. When the tlm_send

7 In a multiple–tokens–per–state implementation, the reorder_tbuf state would be in charge of sorting the
token lists by score, with the best tokens on top.
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add_id dtok_out(GEN_WL-1:0)

born_id rdy_dtok

clock tlm_ready

id_in(GEN_WL-1:0)

nstates(NSTATE_MSB-NSTATE_LSB:0)

req_dtok

reset

send_id

tlm_send

Figure 4.16: The token_life_monitor entity interface as generated by the design entry soft-
ware. Input ports on the left, output ports on the right.

signal goes low (meaning that the tokenpasser entity has sent all the token informations
for the current time step), the process goes in a state in which it waits for an outside device
to request the list of pruned token’s IDs. The request is made through the req_dtok signal.
Upon request the signal rdy_dtok is asserted and the IDs are sent sequentially through the
dtok_out bus. After the last value is sent, the rdy_signal is put low, the signal tlm_ready
is asserted again, and the entity goes idle again, waiting for the next tlm_send assertion.

Finalization and results’ output

The last tasks to accomplish in order to complete a time step processing, is the application of
the emission probabilities and the selection of the token to output.

The token_updater, whose interface is shown in Figure 4.17(a), is in charge of performing
the first task. Upon enable through the update_tokens signal, the entity collects the best
token for each state from token buffer’s second bank (through the tb_raddr and tb_rdata
signals), collects the corresponding emission probability from the emprob bus, updates the
token’s score, and writes the result in the first bank of the token buffer. Furthermore, the best
token among all the states is selected and its score is registered on the btscore_out port. At
the end of the process the signal tokens_updated is asserted.

The selection of the token to be output is instead performed by the eval_xit_state entity
(its interface is shown in Figure 4.17(b)). The entity is enabled through the proc_xit_state
signal. Upon enable the process gets the tokens from token buffer’s first bank (through the
ports tb_raddr and tb_rdata), and updates the scores with the transition probabilities got
through tmat_raddr and tmat_rdata. The highest scoring token is selected and written as
the first in the exit state list into the first bank of the token buffer. Finally the process waits for
the assertion of req_output_tok. When the data is requested, the read address for the output
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clock btscore_out(TOK_SCORE_WL-1:0)

emprob error

nstates(NSTATE_MSB-NSTATE_LSB:0) tb_raddr(TB_ADDR_NBITS-1:0)

reset tb_waddr(TB_ADDR_NBITS-1:0)

tb_rdata(GEN_WL-1:0) tb_wdata(GEN_WL-1:0)

update_tokens tb_wen

tokens_updated

clock error

nstates(NSTATE_MSB-NSTATE_LSB:0) rdy_output_tok

proc_xit_state tb_raddr(TB_ADDR_NBITS-1:0)

req_output_tok tb_waddr(TB_ADDR_NBITS-1:0)

reset tb_wdata(GEN_WL-1:0)

tb_rdata(GEN_WL-1:0) tb_wen

tmat_rdata(GEN_WL-1:0) tmat_raddr(TMAT_ADDR_NBITS-1:0)

xit_state_done

(a) (b)

Figure 4.17: Entity interfaces of (a) token_updater and (b) eval_xit_state, as generated
by the design entry software. Input ports on the left, output ports on the right.

token is generated8 and the rdy_output_token signal is asserted. Upon process completion
the signal xit_state_done is asserted until eval_xit_state goes low and up again.

4.3 Test of the architecture

The testing process passes through the actual implementation into hardware of the architec-
ture (synthesis and mapping of the VHDL code) to end up with tests aimed to verify that the
intended functionality has been preserved. In this section this process will be described along
with the considerations that affected the various design choices.

4.3.1 System Implementation

Referring to the system description provided in Section 4.2 (Page 70), the core component of
the architecture can be easily identified as the HMM Processor (entity hmmp) or, to be more
specific, in a parallel array of these processors. In principle one or more of these processors can
be mapped onto a single device. The choice of the number of processors in the parallel array
basically depend on the resources provided by the programmable device, and on the number
of bits used for the fixed point representation of the quantities to be processed (is obvious
that this last characteristic directly reflects on the amount of resources needed to map a single
processor).

So the first thing to do is to choose a target device. A single HMM Processor has been
synthesized, with three different word lengths for fixed point representation (32, 24 and 16
bits), in order to check for resource occupation. For all these word lengths, some preliminary
tests have been made in order to choose the optimal values for the parameters ∆1 and ∆2 (refer
to 4.2.3, Page 79). The final values chosen were ∆1 = 10 and ∆2 = 7. On the basis of the results
two FPGAs have been selected for mapping the design. The first one was a Xilinx Virtex-II 3000

8 It should be noted that the output bus of the token buffer has also a direct connection to one of the HMM
processor’s ports (refer to the architecture diagram in Figure 4.11, Page 80).
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Figure 4.18: Xilinx Virtex FF1152 Proto Board used for the implementation tests on the
Virtex II 3000 device.

XC2V3000 XC4VSX55

Logic Cells 32256 55296
Block RAM (Kb) 1728 5760

18x18bit Multipliers 96 512
Digital Clock Managers 12 8

User I/O 720 640

Table 4.1: Details of the Xilinx FPGAs chosen as target devices for the architecture.

(XC2V3000). This is a device with three million equivalent gates, for which a prototyping board
was available to make the tests (Xilinx HW-AFX-FF1152-200 Proto Board, shown in Figure
4.18). The second device was a Xilinx Virtex-4 VSX55 (XC4VSX55). This second device was not
available on a board but has been taken as a reference because it provides the most suitable set
of resources for the architecture to be mapped. The details for both of the devices are shown in
Table 4.1.

The implementation strategy adopted was the following: firstly a single HMM Processor
was mapped onto each of the devices in three different versions: 32-bit, 24-bit and 16-bit word
length. Then resource occupation was checked for each case, and finally the highest possible
number of HMM Processors (for each device and each work length) was estimated and then
mapped onto the device.
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Before showing the implementation results, it is important to define the target performance
that the mapped device should achieve in order to allow for correct operation in the context
described so far. The most straightforward measure for a digital system’s performance is of
course the working clock frequency. Given the main application and architectural parameters,
it is possible to define a minimum clock frequency that the system should reach in order to
be able to provide real–time operation. This minimum clock frequency can be easily found
by computing the number of clock cycles (or cycle budget) needed, in a worst–case scenario, to
perform all the operations that must be completed in a second. In a worst–case hypothesis we
should assume NH < NA (refer to Equation (3.1), Page 53), meaning that it will be necessary
to use each HMM Processor several times for each incoming observation. So let us call CBH

the cycle budget needed to load the model parameters into the HMM Processor (CBL) plus the
cycle budget needed to fully process an observation (CBP). In a multi–pass processing scheme
(as seen in Section 3.2.3, Page 51), the number of passes is defined as Npasses = dNA/NHe so
that, for each incoming observation, the cycle budget will be CBH · Npasses. At this point, the
minimum clock frequency is easily found by taking into account the observation frequency fobs
in the following way:

fclock ≥ fmin = CBH · Npasses · fobs = (CBL + CBP)
⌈

NA

NH

⌉
· 1

Tobs
(4.8)

While the values NH, NA and Tobs are found easily, the values CBL and CBP must be evaluated
through a detailed analysis of the architecture or, more reasonably, through simulation. A
waveform output from a simulation session is shown in Figure 4.19. In this simulation a single–
gaussian model (M = 1, N = 5) trained with HTK is loaded and processed using as input
a stream of observation vectors of length L = 39 each. In the figure both the loading time
(5460 ns) and the processing time (5060 ns) for the HMM Processor have been marked. Since
the simulation clock period is 20 ns, it is found that CBL = 273 and CBP = 253. Using these
parameters it is possible to plot the minimum clock frequency in function of the observation
period. This plot is shown in Figure 4.20 for NA = 60, NH ∈ [1, 2, 4] and Tobs ∈ [1ms, 10ms]. It
can be seen that, with single gaussian models (plot on the left), even in the worst–case situation
of a single HMM processor and an observation period of 1 ms, the minimum clock frequency is
less than 35 MHz (easily reachable with modern devices and accurate architecture definition).
The situation changes when the models become more complex. The plot on the right in Figure
4.20 shows the common case of a model that uses a mixture of 4 gaussian components to define
the emission probability PDF. Here a single HMM processor could not be enough since the
cycle budget for a single observation is almost 4 times the one shown for a single gaussian
model. On the other hand it is possible to reach manageable frequencies by using more HMM
processors in the array9 (in fact it can be seen that with two processors the minimum frequency
for 1 ms observation period drops suddenly from more than 120 MHz down to 60 MHz).

9 In some situations where the computational load is really high, a possible approach is to predict which HMMs
will be active during the next frame and process only the ones that are supposed to be active. This allows to process
at each time step only a subset of the whole atomic–HMM list. This technique is widely used in software for speech
recognition.
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Figure 4.20: Minimum clock frequency in function of the observation period. On the left: load-
ing and processing a HMM with single gaussian PDF for emission probabilities. On the right:
loading and processing a HMM with 4–gaussian mixture PDF for emission probabilities.

Now that it is clear what should be the system’s working frequency given the architectural
specification and the application’s details, some considerations can be made on the actual im-
plementation results.

The implementation results for the Virtex II device are shown in Table 4.2. In the 32 bits
and 24 bits case no more than 2 HMM Processors can be mapped on the device. This is actually
due to the limited number of embedded multipliers (in fact in both cases only half of the FPGA
slices are used): one should remember that the available multipliers are 18x18 bits (two bits
are reserved for parity checks), so more than one multiplier is used for a single multiplication
whenever the factors are wider than 16 bits. Anyway the working frequency allow for obser-
vation periods of less than 1 ms (note that in the table is shown only the minimum observation
period for the single gaussian case. For the generic M–gaussian model that value should be
multiplied by M). The 16 bits case is different because fewer multipliers are used thanks to the
shorter word length. In this case is possible to fit up to six HMM processor into the device,
and the limiting factor is actually the available resources for logic. Here the working frequency
allows for observation periods far smaller than 1 ms. In order to give an idea of the level of
resource occupation inside the device, Figure 4.21 shows some snapshots of the various config-
urations mapped. Taking into account all the implementation results for the Virtex 2 device, it
seems that the application that would provide a better use of the available hardware resources
would be one that can take advantage of the 16 bits precision array of 6 HMM Processors.

The implementation results for the Virtex 4 device are shown in Table 4.3. With this device
the performance achievable is clearly higher with respect to the Virtex 2 device. The maximum
number of HMM processors on a single device allow for a high level of parallelism in the
system. Also the working frequencies are much higher. Both these features are reflected in
the possibility to process observations at a much higher rate (over 30 KHz). Here, since the
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Word
NHMMP

fMAX TOBS Occupied BRAMs Embedded 18x18b
Length (clock) (min) Slices Used Multipliers Used

32 bits
1 61 MHz 0.6 ms 27 % 8 % 41 %
2 57 MHz 0.3 ms 55 % 16 % 83 %

24 bits
1 67 MHz 0.5 ms 22 % 8 % 41 %
2 65 MHz 0.3 ms 45 % 16 % 83 %

16 bits
1 79 MHz 0.5 ms 16 % 8 % 10 %
6 76 MHz 78 µs 97 % 50 % 62 %

Table 4.2: Mapping on Virtex II device (XC2V3000). The left part of the table shows the system’s
structural and performance–related parameters versus the word length. The right part shows
the resource occupation versus the word length. The Tobs values are computed assuming a
model set with L = 39 and M = 1.

Word
NHMMP

fMAX TOBS Occupied RAMB DSP48 Slices
Length (clock) (min) Slices Used (18x18b Multipliers)

32 bits
1 77 MHz 0.5 ms 14 % 2 % 7 %
7 74 MHz 66 µs 99 % 17 % 54 %

24 bits
1 75 MHz 0.5 ms 11 % 2 % 7 %
9 70 MHz 53 µs 99 % 22 % 70 %

16 bits
1 108 MHz 0.3 ms 16 % 8 % 10 %
11 108 MHz 30 µs 99 % 27 % 21 %

Table 4.3: Mapping on Virtex 4 device (XC4VSX55). Again, the Tobs values refer to a model set
with L = 39 and M = 1.

number of embedded multipliers is really high (refer to Table 4.1, Page 88) the constraint for
the maximum number of HMM processors in a single device is the quantity of logic slices.
Figure 4.22 shows some snapshots of the various configurations mapped. The configuration
that makes better use of the available hardware resources is the array of 9 HMM processors
with a precision of 24 bits, so the ideal application to be run onto this device is one that needs
a high number of parallel processors with a medium precision of the numeric representation.

All of the implementation solutions shown in this section have been tested in order to insure
the intended functionality and behavior. The next section will provide the details about how
this functional verification has been done.

4.3.2 Functional Verification

The testing of the implementation described in Section 4.2 was mainly aimed to verify the
functionality of the HMM decoding process. To do this, it is necessary to have a reference
system capable of performing the same kind of processing, in order to compare the results. The
chosen system was the open source toolkit HTK [82], that contains, among its many tools, a
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(a) 16 bits, 1 HMMP (c) 24 bits, 1 HMMP (e) 32 bits, 1 HMMP

(b) 16 bits, 6 HMMP (d) 24 bits, 2 HMMP (f) 32 bits, 2 HMMP

Figure 4.21: Different configurations of the HMM Processor array placed and routed onto a
Virtex II 3000.

fully configurable HMM decoder. The HTK is structured as a set of command–line tools that
allow to perform all the operations related to the design and analysis of a system based on
HMMs (See Figure 4.3.2). Many of the tools are specific to the speech recognition problem,
nonetheless the toolkit can be used to model any kind of HMM–based system.

For this work, the tools used are the ones for data preparation (tools HCopy, HList and
HLStats), the ones for model training (tools HCompV and HERest), the Viterbi decoder (tool
HVite) and the one to output results (tool HResults). The overall processing flow for HTK
is shown in Figure 4.3.2. Detailed informations on the HTK tools are not going to be provided
here. For further details refer to the HTKBook [59].

Several model-sets have been trained using HTK in order to test the architecture. The source
signals were from the two applications described later in more detail in Chapter 5: an EEG
signal classification task and a speech recognition task. The two tasks represent two problems
that must be handled in a totally different way from the point of view of hardware resources
utilization.
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(a) 16 bits, 1 HMMP (c) 24 bits, 1 HMMP (e) 32 bits, 1 HMMP

(b) 16 bits, 11 HMMP (d) 24 bits, 9 HMMP (f) 32 bits, 7 HMMP

Figure 4.22: Different configurations of the HMM Processor array placed and routed onto a
Virtex 4 SVX55.
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Figure 4.23: Software architecture of the HTK Toolkit.

The first tests were made on automatic speech recognition(ASR). The speech recognition
task taken into account was actually the implementation of a phonetic recognizer. The goal is
to correctly split a continuous speech sequence and to label each phonetic sound. The model-
set contains a number NA of HMMs around 50 that can be processed in several passes per time
step, using always the same observation vector, and switching models into the same HMM
processors. Since the computations must be as precise as possible, the highest possible number
of bits should be used for data representation, thus requiring more FPGA resources and allow-
ing for less processors on a single device. This translates into being forced to use a multi–pass
strategy. The model-set was trained on a randomly chosen half of a speech database. The other
half was used for testing. The recognition of the test set has been done with both HVite and
a HMM processor device. The configuration of the hardware device was done according to
application–specific needs. In particular, in this application, the observation rate is such that
Tobs = 10 ms. Also, the models make use of mixtures with M = 4 gaussian components for
emission probability PDFs. Referring to the plot on the right in Figure 4.20 (Page 91) it is clear
that any configuration capable of running at a minimum clock frequency of 20 MHz would be
suitable for the application. Since, as it can be seen in Table 4.2 and 4.3 (Pages 92), all the con-
figurations can reach that working frequency, all of them have been tested on the application.
The Virtex II configurations were tested on the Xilinx HW-AFX-FF1152-200 Proto Board (whose
architectural diagram is shown in Figure 4.25 for reference) while the Virtex 4 configurations
were tested through simulation of a post–place and route (black–box) simulation model automat-
ically generated with the IDE software Xilinx ISE. Given the word length, all the configurations
produced the same behavior (with longer idle time for the faster ones). As expected, a slight
decrease in accuracy was observed when decreasing the representation precision. The detailed
results can be found in Section 5.1.2.
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Figure 4.24: HTK processing stages, along with the tools involved in each stage.

The Brain–Computer Interface task is a binary classifier intended to discriminate between a
command and a no–command pattern in a multi–channel electroencephalographic recording.
The task relies on information taken from a high number of channels (NA

∼= 60 in the tests
shown here). So a couple of HMMs was trained for each of the channels (one for each of the
two classes to be spotted), providing a model–set of about 120 HMMs. It is clear that such a
number of HMMs will never fit in an single hardware parallel array (and as I will show in a
while, there is no need to do that) so also in this case a multi–pass technique must be applied.
Since the sampling frequency of electroencephalogram (EEG) is of few hundreds Hertz (far less
than the typical 16 KHz of recorded speech signals), the observation period will be larger than
in the speech recognition task, in order to collect in a single observation vector enough samples
(thus enough information). In the tests made in this work, the EEG was sampled at 256 Hz
and a front–end was used with an observation period Tobs = 10 ms. Even with such a high
number of HMMs to be processed in each frame, the observation rate is low enough that any
of the shown hardware configurations could be able to do the processing with no effort. On the
other hand, EEG preprocessing could be really computationally intensive because advanced
techniques, like independent component analysis for example, are often used. Moreover, one
of the most interesting applications of BCI are interface systems for impaired people: in this
context, reducing power consumption for portability is fundamental, and can be achieved also
by scaling down the systems’ clock frequency. Given these considerations, all of the configura-
tions showed in the previous section could be interesting for this purpose: the single–processor
ones because they are small enough to be used in really compact systems, and the parallel
ones because they can accomplish the task required working at really low frequencies (below
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Figure 4.25: Diagram of the Xilinx Virtex II Proto Board used for the implementation tests (HW-
AFX-FF1152-200).

5 MHz with a parallel array of 11 HMM processors) with lower power consumption. As for the
speech recognition application, the Virtex II configurations were tested on the Xilinx Virtex II
Proto Board, and the Virtex 4 configurations were tested through simulation of a post–place and
route simulation model. Also for the BCI task, all the configurations were found functionally
equivalent with a slight decrease in accuracy towards lower word lengths. Detailed results are
presented in Chapter 5.2.2.

A last thing worth saying is that in both of the applications taken into account for the func-
tional verification the HMM Processors array is only a part of the system. Both the application
need also a signal processing front–end (from signal to feature, like the ones shown in Figure
5.2, Page 105, and Figure 5.18, Page 128) and post–processing back–end (from lattice to result,
not treated in this work). In speech recognition the front–end is quite standard signal process-
ing while for BCI that part can reach high levels of complexity (this needing an important com-
putational effort). On the other hand the back–end is for both the applications a complex, time
consuming and computationally expensive task because it should translate raw data from the
classifier into information with a high level of abstraction (for example a sentence in ASR and a
sequence of commands in BCI). From these considerations it is clear how the HMM Processor
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array cannot use all the observation period Tobs to process an observation, but should be faster
in order to leave a certain time margin to allow for all the other operations to be performed.
The optimal processing time for the HMM Processor array depends on the application and on
the specific characteristics of the front–end and back–end implementations. In particular in a
simple processing framework it would be

Tobs ≥ Tf e + Thmm (4.9)

where Tf e is the processing time of the front–end and Thmm the processing time of the HMM
Processor array. The back–end processing time Tbe has not been taken into account since in
most cases it processes several items output from the front–end/classifier chain in order to
provide an output item itself. The time taken by the back–end to provide the output is usually
tuned on the application level of intended user interactivity, but will not be treated here since
it is outside the aims of this work. As an alternative the three parts of the system can be seen
as cascaded blocks, thus allowing for a pipeline. In that case the constraint is

Tmax = max(Tf e, Thmm) ≤ Tobs (4.10)

meaning again that the HMM Processors array’s processing time must be just below the obser-
vation period.

The next chapter will show how all the considerations made here have been applied to real
systems.
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Chapter 5

Selected applications for
human-machine interfaces

As already explained in the previous chapters, the HMMs are suitable for many pattern recog-
nition tasks that can be useful in the context of a multimodal human–machine interface. Of
course a multimodal interface requires an extremely complex high level control in order to col-
lect the data from all the various input channels and merge them into actual control commands,
but to grant the necessary machine–user interactivity, also all the interface elements should per-
form their task quickly and efficiently to avoid slowdowns that can affect all the system. It is
not realistic to think that many highly complex recognition tasks and the overall interface con-
trol can be run on a single computer, even if really powerful. The introduction of an hardware
HMM engine like the one described in the previous chapters could provide the means to build
the most complex and computationally demanding elements of the interface in an inexpensive
way.

To show that the described architecture can be actually applied to problems of interest, two
application that are likely to be part of a multimodal interface have been chosen.

The first application is automatic speech recognition (ASR). Since speech is among the most
used forms of interaction between humans, it is obvious that it would be one of the most
promising among the advanced techniques to be used in a multimodal interface. Research
on this application is still ongoing, and good results have been obtained. The main problem
is that the complexity of the system grows rapidly when trying to provide an interface that
allows the user to speak in a natural way. Techniques are known to deal with the problem, but
real time processing is far from being achieved with software solutions, because of extremely
high computational needs. All the details on the approach used to deal with this application
are provided in Section 5.1

The second application is brain–computer interface (BCI). Is known that biological signals
are a huge source of informations on the state and attitude of the user. The interesting thing
is that all these informations are provided unconsciously. Moreover it has been shown that
biological signals can be also modulated in a conscious way. The advantage in using this kind
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of input is that, with proper training of the user, it would require a minimum level of attention,
and allow for other tasks to be performed by the user himself. Research on BCI is still at the
beginning, but encouraging results have already been obtained with Electroencephalogram
(EEG). The main problems are given by high levels of noise in the signal, mixing of the signal
sources and limited knowledge on the mechanisms that produce the signal itself. The use of
biological signals in interfaces is thus still a challenge. Details on the work I did on BCI during
my research, can be found in 5.2.

5.1 Applications to speech recognition

5.1.1 Introduction to ASR

Automatic speech recognition is formally the conversion of speech, sampled as audio wave-
forms, into the corresponding text. The algorithmic framework used in speech recognition is
not new anymore [10]. A great effort has been made in the past years in order to develop the
necessary technologies. Nonetheless all the ASR systems available nowadays provide only ba-
sic functions, a limited vocabulary and, usually, the need for some adaptation or training time
for each new user. In fact ASR is actually used only as a side option in commercial devices and
services, because its capabilities and its reliability still do not allow for it to be the main mean
of communication between the user and the system.

There are many classes of speech recognition, and whether a speech recognizer belongs to a
class or another depends on a set of fundamental parameters that are used to provide the most
relevant features.

Speaking mode. There are two main modes of speech production when talking about ASR
systems: continuous speech and isolated word. In continuous speech recognition the user
can speak fluently, as in normal speech production, while in the other case he is forced to
put pauses between words in order to make the recognizer react as expected. Of course
continuous speech provides the most natural way of communication, at the expense of
higher computational needs.

Speaking style. According to the application the user will be requested to speech in a certain
way. Application for text dictation in word processors, for example, can expect that the
speaker pronounces sentences with a regular structure and words that are suitable for
a written text. The opposite situation is represented by a control interface that allows
the user to provide commands using natural speaking. In that case the sentences would
be fragmented, not always grammatically correct, and there could be words taken from
jargon and sounds produced in moment of hesitation. All these factor must be taken into
account and introduce a high level of complexity in the process of sentence building and
meaning extraction.

User adaptation. In most of the cases a speech recognizer needs some specific training for
each new user, and must know which user is interacting with the system in each moment
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(speaker dependentness). This means that before first use, the speaker must read some
predefined text so that the system spots the main characteristics of his voice. To make the
training procedure faster, sometimes the recognizer just adapts some predefined models
to the user’s voice. This needs less training text to be spoken, and less computations.
In opposition to the speaker dependent systems there are the speaker independent systems.
These systems are able to recognize any user without any specific training. It is clear that
this last kind of system can find many application in interrogation of publicly accessible
databases, for example. However the training of speaker independent systems is more
difficult and needs huge amounts of accurately selected training data. Furthermore the
models are always less robust than speaker dependent ones, so that also the effects of
noise are stronger.

Vocabulary size. The size of the vocabulary is strictly tied to the recognizer’s target applica-
tion. Small dictionaries can be used for command and control applications, while large
ones are needed for dictation or smooth interaction. Anyway large vocabularies make
the system’s computational demand explode and require substantial storage capacity,
thus they can be used only in systems that run on powerful platforms.

Grammar. The presence or absence of a set of grammar rules usually depends on the size of
the dictionary or some task specific needs. Grammar rules put constraints on the possible
sequences of words thus reducing the overall complexity in the production of the output
recognition hypothesis. A grammar could be of several types, but the most common
in complex tasks are statistical grammars and sets of rules based on the language to be
modeled.

Task perplexity. The perplexity actually measures the hardness of the recognition task. Let us
assume that a recognizer has spotted a certain word inside a sentence. The perplexity
is defined as the mean number of words that, given a vocabulary and a grammar, can
be considered as possible successors of the current one. It is important to note that the
perplexity is a useful measure only in presence of a grammar. When there is no grammar,
the possible successors of any word are simply all the words in the dictionary.

Noise level. The level of noise in the input signal directly affects the recognition performance.
The signal processing front–end is in charge of dealing with the noise, so the expected
noise level is an important factor to take into account when designing the whole system.
In some cases environment models are used to identify the scenario and better isolate the
signal from the environmental background.

Sampling quality. The channel through which the speech signal can reach the recognizers are
many. Different approaches should be adopted whether the input is taken from the phone
line, from a high performance microphone or any other mean. Since the aim is to make
speech recognizers usable in any environment and condition, it is common to assume
that commercial level microphones are used. This clearly reflects in the need of a further
design effort in order to increase system’s robustness.
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Parameter Possible Parameter Range

Speech Mode Isolated Words → Continuous Speech
Speaking Style Dictation → Spontaneous Speech

User Adaptation Speaker–Dependent → Speaker–Independent
Vocabulary Size Small (W < 100 words) → Large (W > 10000 words)

Grammar None → Rule Set → Statistical
Perplexity Low (PP < 10) → High (PP > 100)

SNR High (> 30dB) → Low (< 10dB)
Sampling Quality Telephone Band → High Fidelity

Table 5.1: Parameters that characterize a generic speech recognition system. Typical range is
shown (from low complexity to high complexity).

A summary of the speech recognition characterizing parameters is shown in Table 5.1 along
with some typical values (ordered from smallest to highest design effort needed to implement
the feature).

The diagram of a generic automatic speech recognition system is shown in Figure 5.1. The
front–end is in charge of extracting from the speech signal the feature that are most likely to
carry informations on the meaning, discarding as much as possible all the informations related
to noisy factors like background sounds, mood and state of the speaker, intonation1, dialectal
inflexions.

The feature vectors produced by the front–end are fed into the low level classifier. Since the
speech signal is highly variable and the mechanisms of language production really complex,

1 Some advanced techniques try to extract in a parallel feature channel, also the informations given by the
intonation (referred to as prosody), in order to use them when reconstructing the sentence (for example, knowing if
a sentence is interrogative or not gives a cue on the kind of syntactical constructions that are more likely to have
been used).

Feature 
Extraction

Recognition of 
Atomic Units

Lexical 
Decoding

Syntactical 
Decoding

Semantical 
Decoding

Acoustic Models Lexicon Grammar Task Model

Speech Sentence
(text)

Lexical Constraints

Syntactical Constraints

Semantical Constraints

Figure 5.1: Representation of the main components of a generic ASR system.
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the classifier is always a statistical one. Statistical classifiers can be trained on real data and
take automatically into account complex phenomena that are too difficult to model explicitly.
The low level classifier uses a set of acoustic models to spot the atomic units (chosen as the
base building blocks of speech) into the input stream. The choice of an atomic unit for speech is
another crucial factor and depends strongly on the target application. In simple systems with
small vocabularies, it is possible to choose the word as the base unit. This implies the training of
a model for each of the words in the dictionary. Word based systems are very simple because
they totally remove the lexical processing stage. On the other hand it becomes impossible to
use this approach as soon as the vocabulary grows too much, either because too much training
data would be necessary, and because too many models should be evaluated concurrently. The
solution when dealing with large vocabularies is to use phonemes as atomic units. Phonemes are
recognized also by the human brain as the building blocks of speech [85] and phonetic alpha-
bets have been identified for all the major spoken languages [66]. It has also been shown that
all the sounds in almost every language can be reproduced through a set of 50 or 60 phonemes.
This allows to build an acoustic model set containing a reasonable amount of models, recog-
nize the phoneme sequences, and leave the task of building words out of phoneme sequences
to a dedicated part of the system. Since they are the most powerful and flexible, from now on
I will refer only to phoneme–based ASR systems. The output of the phonetic recognizer is one
(or more, if keeping track of multiple hypotheses) phonetic sequences.

After the phonetic recognition, the next task is to aggregate phoneme sequences in order
to build words. This task is called lexical decoding, and makes use of a lexical model known
also as pronunciation dictionary. The pronunciation dictionary provides the phonetic sequence
needed to build every word present in the dictionary. Given this information it is possible to
check whether a certain phonetic sequence corresponds to an existing word or, if not (maybe
because of some errors in the phonetic recognition), which is the word that most resembles the
phonetic sequence. So the lexical decoding can have the capability of recovering some of the
eventual error introduced by the phonetic recognizer. The output of the lexical decoder should
be one or more sequences of words.

In some application, like command and control interfaces, word recognition is enough for
the needs of the interface. In all the other cases a further step must be performed, that is the
grouping of sequences of words into separate sentences. This is known as syntactical decoding.
The syntactical decoder makes use of a grammar to look in a stream of words for sequences
that are compatible with the specified grammatical rules. The output of the syntactical decoder
is a set of grammatically correct sentences.

The final step to be performed in order to make the output of the ASR system usable in a
real interface, is the semantic decoding. The semantic decoding is a highly complex task because
it associates words or sentences (according to the kind of speech recognizer) to an actual com-
mand or action to be performed. This association is made thanks to a set of rules that specifies
the actual task to be performed.

In most of the practical situation is preferable to apply the lexical, grammatical and (less
frequently) syntactical constraints, directly during the phoneme recognition process. These
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constraints reduce the perplexity of the task and allow for a dramatic reduction of the error,
mainly because it becomes less probable to produce phonetic sequences that do not match the
ones allowed by the lexical and grammatical rules. Usually, when applying constraints in this
way, keeping track of multiple recognition hypotheses can greatly improve the recognition
accuracy, at the expense of course of heavier computational needs.

Automatic speech recognition has been chosen to be studied in this work mainly because
most of the ASR systems already developed are based on HMM classifiers [86, 87, 88]. This
allows us to test the hardware architecture described in Chapter 3 directly on an algorithmic
framework that has already been accurately verified. Furthermore this thesis focuses on the
implementation of advanced speech recognizers, that is the ones that are still beyond the state
of the art. In particular from now on, whenever talking about ASR, I will refer to real–time
continuous–speech speaker–independent recognition with large vocabulary. Systems that be-
long to this class are also called natural language speech recognizers, because the user can speak
to the interface in the same way he speaks to any other person.

Up to now, all the known and working implementations of ASR systems are, basically, soft-
ware applications. It has been shown [15] that to obtain real–time continuous-speech speaker–
independent systems through software implementations on commercial platforms, it is nec-
essary to reduce dictionary size or simplify the task to avoid unacceptable degradation of the
accuracy. The only way to obtain really accurate software implementations of natural language
speech recognizers, is to run the system in batch mode because of the really long processing
time. So, with the software approach, the choice seem to be between real natural language ASR
and real time operation.

The alternative proposed here is to make use of dedicated hardware in order to speed up
the accurate software batch systems. Since the processing core of the class of ASR systems taken
into consideration is the HMM classifier, the hardware architecture described in the previous
chapters seems to be a suitable solution. The introduction of hardware acceleration in ASR
systems would therefore allow to develop highly accurate real time natural language speech
recognizers, but also ASR systems with a good level of complexity (even if not natural lan-
guage) that can be run on low processing power platform like portable devices.

5.1.2 Implementation of a phonetic recognizer

The aim of this section is to show how the hardware architecture described in the previous
chapters can be applied to a real implementation of a speech recognizer. Of course the imple-
mentation of a whole speech recognizer is an extremely complex task and it is beyond the goals
of this thesis.

A choice has been made in order to perform a meaningful test without the need to build
a really advanced system from scratch. The chosen ASR related task was the implementation
of a phonetic recognizer. Referring to Figure 5.1 (Page 102) the part of the system I decided to
implement is the one identified as “recognition of atomic units”. As already noted, a pho-
netic recognizer can be used as a stand–alone device, and its output phoneme sequences can
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Figure 5.2: Block diagram of a MFCC front–end for speech recognition.

be processed at a later stage with higher level rules, or it can be interconnected with the other
cascaded blocks in order to receive further constraints to be applied during the phonetic recog-
nition task itself.

The HTK’s Viterbi decoder, HVite, was configured as a phonetic recognizer in order to
provide a suitable reference system. This was done by using a dictionary containing one entry
for each phoneme in the model set and a grammar that allows for any word sequence to be
produced. In that way the output of HVite will be an unconstrained sequence of words that
exactly matches the phoneme sequence produced by the low level decoder.

A model set was trained using a database of 200 isolated italian words spoken by 13 differ-
ent speakers (7 males and 6 females), so 2600 isolated words in total. Each word was recorded
as a single channel PCM waveform with a sampling frequency of 16 KHz. The Sampa com-
puter readable phonetic alphabet for italian [66] was used as the phonetic set (see Table 5.2
for details). This phonetic alphabet contains 43 sounds for consonants (29 obstruents and 14
sonorants) and 7 vocalic sounds for a total of 50 phonemes, each of them modeled by a HMMs.

The front–end signal processing was done offline and the feature vectors stored in order to
speed up the tests. The HTK tool HCopy was used as the offline signal processing front–end.
The tool was set up to extract Mel Frequency Cepstral Coefficients (MFCC) from the input speech.
This kind of signal processing is quite common when treating speech for ASR systems and it
was shown to be one of the most effective [89, 90]. A diagram of the MFCC front–end is shown
in Figure 5.2. First of all a pre-emphasis filter is applied to the speech signal. This is done by
applying the first order difference equation

s′n = sn − ksn−1 (5.1)

where sn is the generic nth audio sample, and k is the pre-emphasis coefficient that, in the tests
shown here, has been chosen to be k = 0.97 and, in general, is always in the range 0 ≤ k ≤ 1.

The pre-emphasized signal is then split into overlapped windows and each window bound-
ary is smoothed through sample–by–sample multiplication with an Hamming function defined
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Example
Symbol

Word Transcription

Consonants

Plosives
p pane pane
b banco banko
t tana tana
d danno danno
k cane kane
g gamba gamba
pp coppa kOppa
bb gobba gObba
tt zitto tsitto
dd cadde kadde
kk nocca nOkka
gg fugga fugga

Affricates
ts zitto tsitto
dz zona dzOna
tS cena tSena
dZ gita dZita
tts bozza bOttsa
ddz mezzo mEddzo
ttS braccio brattSo
ddZ oggi OddZi

Fricatives
f fame fame
v vano vano
s sano sano
z sbaglio zbaLLo
S scendo Sendo
ff beffa bEffa

Example
Symbol

Word Transcription

Fricatives (Cont.)
vv bevvi bevvi
ss cassa cassa
SS ascia aSSa

Nasals
m molla mOlla
n nocca nOkka
J gnocco JOkko
mm grammo grammo
nn panna panna
JJ bagno baJJo

Liquid
r rete rete
l lama lama
L gli Li
rr ferro fErro
ll colla kOlla
LL foglia fOLLa

Semivowels
j ieri jEri
w uomo wOmo

Vowels

i mite mite
e rete rete
E meta mEta
a rata rata
O moto mOto
o dove dove
u muto muto

Table 5.2: The Sampa phonetic alphabet for the italian language. Each phoneme symbol is
shown along with an example word and its transcription. Phonemes are grouped into phonetic
classes.
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Figure 5.3: Hamming windowing function used in the front–end.

as

Hn = 0.54− 0.46 cos
[

2π
n− 1
N − 1

]
(5.2)

where N is the arbitrary number of samples in the window. The hamming function is shown
in Figure 5.3. In the tests made, the sliding window was 25 ms wide with an overlap of 10 ms
(400 samples per window with a 160 sample overlap at 16 KHz). So the output of the sliding
window stage was a stream of vectors containing 400 samples each, with a rate of one vector
every 10 ms.

After windowing, the magnitude of the Fourier transform is extracted. This is done through
FFT (512 points in the tests) and amplitude computation. The output of the magnitude extrac-
tion stage was a vector of 256 magnitude values for each input window.

The next processing stage is the application of a bank of NM triangular filters evenly dis-
tributed along the MEL frequency scale. This frequency scale is used because it reproduces the
frequency resolution of the human ear, so it is likely to be effective in speech recognition. The
MEL scale is defined as

MEL( f ) = 2595 log10

(
1 +

f
700

)
(5.3)

and an example MEL filter bank is shown in Figure 5.4. The filter bank is applied to the FFT
magnitude vectors by multiplying each filter coefficient with the corresponding magnitude
value, and summing together the results for each of the filters. The results is a vector containing
one value mj for each of the triangular filters in the array. In the tests NM = 26 triangular filters
were used, distributed from zero frequency to the Nyquist frequency. Thus the output of the
filter bank was a vector of 26 elements for each input FFT magnitude vector.

The final step in order to obtain the actual cepstral coefficients is to apply the cosine trans-
form to the filter bank’s output. This is done by computing a Discrete Cosine Transform, de-
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fined as

ci =

√
2

NM

NM

∑
j=1

mj cos
[

πi
NM

(j− 0.5)
]

(5.4)

where 0 ≤ i ≤ NC and NC is an arbitrarily chosen number of cepstral coefficients. The DCT
allows to remove the high intercorrelation between the MEL coefficients, thus reducing the
number of needed parameters. Moreover the coefficient c0 is particularly useful because it is
proportional the the signal’s energy, so it can be used as a measure for it. In the tests a number
of cepstral coefficient NC = 12 was used, plus the coefficient c0 as an energy measure.

Finally, to better catch the dynamics of the feature coefficients, first and second order dif-
ferences were computed, adding two more sets of 13 coefficients to each feature vector. The
difference with calculated as follows:

dt = ∑Θ
θ=1 θ(ct+θ − ct−θ)

2 ∑Θ
θ=1 θ2

(5.5)

where Θ is half the width of the regression window, that was set to 2 for both first and second
order differences. The first and last vectors of each stream on which differences were calculated,
were suitably replicated in order to allow for correct computation. The final feature vectors in
the tests contained 39 coefficients each: this is the final stream width L used throughout the
final system.

The feature vectors have been calculated for all the database and stored to avoid re-compu-
tation for each test. Then the database was randomly split in two parts containing respectively
10% and 90% of the data, taking care to keep in each subset an even distribution of phoneme
occurrences and a male–female speaker balance the most close to 50%. The bigger part was
used for training the HMMs while the smaller part was used for testing purposes. This partition
was done 10 times, the tests repeated for each partition and the results obtained by averaging
the outcome of each test. In this way the results are supposed to statistically more reliable.

So 10 model-sets were trained using the corresponding database partitions. The training
was made by first initializing each model’s parameters with average values computed from

m1 mP

freq

1

mj... ... Energy in
Each Band

MELSPEC

Figure 5.4: A bank of triangular filters evenly distributed along the MEL frequency scale.
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the training data-set. This procedure is known as flat–start ad was done using the HTK tool
HCompV. Then the model was re-estimated with the Baum–Welch iterative procedure using the
HTK tool HERest. The number of iterations was chosen in order to obtain the best recognition
performance on the test sets. The training procedure was done as follows:

1. Apply flat–start procedure and a first pass of the Baum–Welch algorithm providing as
initial parameters the ones obtained from the flat–start.

2. Run the recognizer with the model obtained from a single iteration.

3. Apply another iteration of the Baum–Welch algorithm providing as initial parameters the
ones from the model obtained with the last iteration.

4. Run the recognizer with the model obtained from the last iteration.

5. If the accuracy of the current model is better than the one from previous step, continue
from Step 3, otherwise discard the current model, keep the one from the previous step
and continue from Step 6.

6. If more components in each gaussian mixture are needed, split each gaussian component
into two almost overlapping components using the HTK tool HHEd and continue from
Step 7. Otherwise the training procedure is over.2

7. Apply an iteration of the Baum–Welch algorithm providing as initial parameters the ones
obtained from the component splitting process and continue from Step 2.

One HMM for each of the phonemes in the Sampa phonetic alphabet shown in Figure 5.2 (Page
106) was trained, plus one HMM to model the silence (or background noise) at the beginning
and at the end of each word. The correct association between training data segments and
the corresponding HMM chains was made by providing a phone level transcription for every
word in the training data sets. The emission PDFs were modeled as mixtures of 4 gaussian
components. The HMM topology used for all the phonemes is shown in Figure 5.5 (a left–right
5–state HMM). The topology for the silence model was almost the same, with the exception of
a transition from S2 to S4 and a transition from S4 to S2, introduced to allow for longer silences
to be modeled.

For each of the 10 partitions of the speech database, the performance was evaluated both
with HVite and with all the hardware configurations described in Section 4.3 (Page 87). In the
hardware tests, the models’ parameters and the test observation stream was preloaded onto an
on–board memory. Since the phonetic recognizer requires a much simpler control with respect
to a full speech recognizer, the system controller was written directly in VHDL and mapped

2 The splitting process requires the specification of a target number of components in the mixtures. The HHEd
tool picks the component with the highest weight and splits it by duplicating the component, dividing the weight
of each by 2, and perturbing the means by 0.2σ in opposite directions. The process is repeated until the required
number of mixtures is reached. It is recommendable to increase the number of component in a progressive way,
always interleaving the splitting operation by a suitable number of training iterations.
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1 2 3 4 5

Figure 5.5: The topology of the HMM used to model each phoneme in the phonetic recognizer.
The emitting states are drawn in a darker tint.

together with the rest of the design (instead of being implemented on a microcontroller, as said
in Section 3.2, Page 48), in order to control model loading, to feed the observations from the
memory into the system, and to provide the necessary system level control signals. The tokens
output from the HMM processors in the mapped array were routed to an output bus and fed
into a logic analyzer to view and store the results. It should be remember that since in the used
configuration the HMM classifier is totally unconstrained, the system’s output at each time
step is just the phoneme corresponding to the HMM that outputs the token with the highest
probability (some simple post–processing can be applied to avoid phonemes with durations
too short to be realistic).

The comparison of the results obtained from HVite and the hardware implementation are
shown in Figure 5.6. The plot reports two performance measures, averaged over the 10 trials
made with the different partitions of the speech database. The first is the percentage of correctly
recognized phonemes (Spotted Phoneme Percentage, SPP). This measure is computed in the
following way:

SPP = 100
(

NPC

NP

)
(5.6)

where NPC is the number of correctly recognized phonemes and NP is the total number of
phonemes that make up the input sequence. The second measure is the Phone Recognition Rate
(PRR). This measure takes into account also the number of errors present in the recognized
sequence. It is defined as

PRR = 100
(

NPC − NE

NP

)
= 100

[
NPC − (NPI + NPD + NPS)

NP

]
(5.7)

where the total number of errors NE is given by the sum of insertion errors NPI , deletion errors
NPD and substitution errors NPS. It is clear that the PRR will be always less or equal to the SPP.

The comparison has been made between the results from HTK’s HVite and the hardware
architecture implemented with three different word lengths (for score computations): 32, 24
and 16 bits. As already checked in 4.3.2 (Page 92) all the configurations of the hardware archi-
tecture had exactly the same functional behavior for a given word length (i.e. they provided the
same results for the same input), so the results referred to a certain word length are applicable
to any HMM processor configuration using the same number of bits for number representation.
Moreover, when interpreting the results, it is important to remember that the HVite software
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Figure 5.6: Comparison of the recognition performance (average over 10 trials): HTK’s HVite
(software, floating point arithmetic) vs. HMM processor array (hardware, fixed point). Both
systems were configured as phonetic recognizers. Percentage of spotted phonemes and Phone
Recognition Rate are shown. For the hardware implementation, results obtained with different
word lengths are reported.

implementation makes use of a 32 bits floating point arithmetic, while all the hardware config-
uration use fixed point arithmetic.

From the plot in Figure 5.6 it can be seen that the percentage of recognized phonemes from
the hardware system is really close to the one given by the software decoder, and the mis-
match seems to be due to the quantization introduced by the fixed point representation. As
expected the accuracy decreases as the precision is reduced but, even with 16 bits of precision
the accuracy is still close to the one provided by HVite. On the other hand the results on the
phone recognition rate are quite surprising. The PRR of the 32 bits and 24 bits versions of the
hardware recognizer is higher than the one provided by HVite. This means that even if the
number of correctly spotted phonemes is higher for the software recognizer, the hardware ver-
sion introduces a lower number of errors, thus providing a better overall result. Actually in
many of the tests made during the development of this work, it was a common result that the
introduction of a small amount of quantization in statistical classifiers improved robustness to
noise and could lead to better performance. Clearly, as can be seen from the PRR of the 16 bits
version of the hardware recognizer, too much quantization produces again a degradation in
performance.

As a final consideration, it can be noticed that even the HTK’s recognizer’s performance
is really low. This is obviously due to the fact that HVite is designed to give the best per-
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formance through the use of a dictionary and a grammar, and by keeping track of multiple
recognition hypotheses during the decoding process. Some tests have been made by providing
all of these elements (thus making HVite work as a full speech recognizer), and the result ob-
tained was a Word Error Rate3 of 99.8%. The little amount of errors is probably due to a slight
model under-training, but with a bigger speech database the HTK recognizer has been proven
to easily reach an accuracy of 100%. The purpose of this test was to show that the level of accu-
racy reached by the hardware architecture (really close to the one given by HVite in phonetic
recognition mode) is likely to be suitable to obtain a really high accuracy whenever the support
of lexical and syntactical constraints is added. However, as already said, the implementation
of a whole ASR systems goes out of the subject treated in this thesis and will be left to future
developments.

5.2 Applications to brain-computer interfaces

5.2.1 Introduction to Brain–Computer Interfaces

Research on Brain–Computer Interfaces (BCIs) has been going on for more than 30 years, but
from the mid-1990s there has been a dramatic increase in working experimental systems. Years
of animal experimentation have produced early working implants in humans designed to re-
store damaged hearing, sight and movement. The common thread throughout the research is
the remarkable cortical plasticity of the brain, which often adapts to interaction with external
devices. With recent advances in technology and knowledge, leading edge research could now
conceivably attempt to produce BCIs that augment human functions rather than simply restor-
ing them. However referring to BCI still does not identify a precise and well defined subject.
Since the related techniques are still developing, different frameworks and approaches are con-
tinuously proposed as the research on the field goes on. However the common factor is always
the same: taking signals from the brain of human or animal subjects, and process the recordings
in order to transform them in informations that can be used to drive a system’s interface. Also
the opposite is a matter of research, that is exploiting the knowledge on the brain in order to
provide signals that can be understood by it, thus creating a working communication channel
from a machine to the nervous system of a living organism. Since this last topic is more related
to life functions support than to human–machine interfaces, from now on I will refer only to
the communication from the brain to the machine.

The main factors that characterize the different approaches to BCI are the subjects and the
way the neural signal is acquired. Two are the main ways to record a signal from the brain:
through invasive measures and through non–invasive measures. Usually the invasive mea-
sures are done only on non–human subjects because they imply some risk for the health of
the subject. Anyway there are some situations in which invasive recordings are made also on
human subjects.

3 The word error rate (WER) is defined as the ratio between the number of correctly recognized words to the
total number of words fed into the recognizer.
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The most commons invasive technique are the electrocorticogram (ECoG) and the implant of
electrodes.

ECoG: The electrocorticography is done by placing arrays of electrodes directly on the cerebral
cortex, and allows to record really clear signals directly from single neurons or small
groups of them. The biggest drawback to ECoG is the requirement of surgery in order
to place the electrodes under the skull, directly onto the brain’s surface, with all the risk
factors that this procedure implies. In fact ECoG recordings on human subject are done
almost only when brain surgery must be performed to cure some kind of pathologies
(ECoG monitoring is usually done on epileptic patients). Furthermore the duration of
ECoG recording is limited by the reaction of the living organisms to the presence of the
electrodes (rejection or scar–tissue build–up).

Implanted Electrodes: The implant of electrodes is done to monitor specific deep regions of
the brain, with a resolution that can reach the single neuron. The invasiveness of this
approach is even higher than in the ECoG recordings because of the presence of wires in
the brain along with the electrode itself (with the same problems of biological tolerance),
but the signal has an extremely high SNR and spatial resolution.

On the opposite side there are the non–invasive techniques. The most widely used for BCI
are the Magnetoencephalography (MEG), the Functional Magnetic Resonance Imaging (fMRI) and
the Electroencephalography (EEG).

EEG: Electroencephalography is the neurophysiologic measurement of the electrical activity of
the brain by recording from electrodes placed on the scalp. The resulting traces are known
as an electroencephalogram and represent an electrical signal (post-synaptic potentials)
from a large number of neurons. The actual measurements are voltage differences be-
tween different parts of the brain. The EEG is capable of detecting changes in electrical
activity in the brain with a sub–millisecond resolution. It is one of the few techniques
available that has such high temporal resolution, together with MEG, but it is the only
non–invasive technique that allow to directly measure brain activity. On the other hand
it has poor spatial resolution, provides a highly noisy signal, and it is really difficult to
recover the original sources from the measured signals.

MEG: The MEG is an imaging technique used to measure the magnetic fields produced by
electrical activity in the brain via extremely sensitive devices such as SQUIDs4. MEG
signals derive from the net effect of ionic currents flowing in the dendrites of neurons
during synaptic transmission. In accordance with Maxwell’s equations, any electrical
current will produce an orthogonally oriented magnetic field. It is this field which is
measured with MEG. In order to generate a signal that is detectable, approximately 50,000
active neurons are needed. Since current dipoles must have similar orientations to gen-
erate magnetic fields that reinforce each other, it is often the layer of pyramidal cells in

4 SQUID — Superconducting Quantum Interference Devices, are used to measure extremely small magnetic
fields. They are one of the most sensitive magnetometers known.
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the cortex, which are generally perpendicular to its surface, that give rise to measurable
magnetic fields. Furthermore, it is often bundles of these neurons located in the sulci of
the cortex with orientations parallel to the surface of the head that project measurable
portions of their magnetic fields outside of the head. With current MEG techniques only
cortical activity can be detected, while monitoring of deep activity is still not achievable.
Also, the action potentials do not usually produce an observable field.

fMRI: Functional magnetic resonance imaging is the use of magnetic resonance imagery (MRI)
to measure the hemodynamic response (changes in blood flow and blood oxygenation)
related to neural activity in the brain or spinal cord of humans or other animals. It is ac-
tually one of the most recently developed forms of neuroimaging. When nerve cells are
active they consume oxygen. The local response to this oxygen utilization is an increase
in blood flow to regions of increased neural activity, occurring after a delay of approxi-
mately 1 to 5 seconds. Hemoglobin, that carries oxygen in blood, is diamagnetic when
oxygenated but paramagnetic when deoxygenated. The magnetic resonance (MR) signal
of blood is therefore slightly different depending on the level of oxygenation. These dif-
ferential signals can be detected, using an appropriate MR pulse sequence, as a so called
blood–oxygen–level dependent (BOLD) contrast. The precise relationship between neural
signals and BOLD is under active research but, in general, informations on neural activ-
ity can be obtained with moderately good spatial and temporal resolution: images are
usually taken every 1 to 4 seconds, and the voxels in the resulting image typically repre-
sent cubes of tissue about 2 to 4 millimeters in humans. Recent technical advancements
have advanced spatial resolution to the millimeter scale.

When thinking about a user interface that makes use of biological signals, one should con-
sider the principles already exposed in Chapter 1 when choosing how to acquire the input sig-
nal. From the point of view of user–friendliness the use of invasive methods should be clearly
excluded, unless some cases in which it is unavoidable and in which a tailored solution should
be developed. So the choice should be made between the various non–invasive techniques.
On the other hand the adoption of MEG and fMRI raises the problems costs and portability
because the equipment is extremely expensive and unwieldy. Furthermore the time resolution
would not be high enough to provide a suitable interactivity for the most common task. In
contrast EEG is quite inexpensive, the recording equipment can be really small and the tempo-
ral resolution can be high enough for the reaction times expected by a typical user. The factors
that could raise problems with the use of EEG are the lower quality of the recorded signals and
the need for a usually high number of electrodes that must be correctly placed. Anyway these
are problems that can be dealt with, respectively, through signal processing techniques and the
use of small sets of electrodes. For the reason just exposed, in the application presented here
the EEG was chosen as the system’s input channel.
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Principles of Electroencephalography

The first recording of the electric field of the human brain was made by the German psychia-
trist Hans Berger in 1924 [91]. He gave this recording the name electroencephalogram (EEG).
The recorder signals are made up mainly of spontaneous activity. The amplitude of the EEG is
about 100 µV when measured on the scalp, and about 1 mV when measured on the surface of
the brain. The bandwidth of this signal was at the beginning thought to be ranging roughly
from 1 Hz to about 50 Hz, but new results show that some components can reach much higher
frequencies [92, 93, 94]. As the phrase spontaneous activity implies, this activity goes on contin-
uously in the living individual. Evoked potentials are other components of the EEG that arise in
response to a stimulus (which may be electric, auditory, visual, and so on). Such signals are
usually below the noise level and thus not readily distinguished, and one must use various
techniques like trains of stimuli and signal averaging to improve the SNR.

The number of nerve cells in the brain has been estimated to be on the order of 1011. Cor-
tical neurons are strongly interconnected. In the cortex the surface of a single neuron may be
covered with 1000 to 100000 synapses [95]. Many are the models developed to describe an ex-
citable neuron [96], but the main common characteristics are that the resting voltage is around
−70 mV, and the peak of the action potential is positive. The amplitude of the nerve impulse
is about 100 mV and lasts about 1 ms. The bioelectric impressed current density Ji associated
with neuronal activation produces an electric field, which can be measured on the surface of
the head or directly on the brain tissue. For the EEG the basis for the impressed current density
Ji appears to arise from the action of a chemical transmitter on post-synaptic cortical neurons.
The action causes localized depolarization (an excitatory potential, EPSP) or hyperpolarization
(an inhibitory potential, IPSP). The result in either case is a nonzero primary source. For distant
field points the effect is the same of a net dipole for each active cell. Since neural tissue is gener-
ally composed of a very large number of small, densely packed cells, the whole brain appears
as a continuous volume source distribution. Although in principle the EEG can be analytically
evaluated, the complexity of the brain structure and its electrophysiological behavior actually
preclude any computation.

The spontaneous EEG is usually recorded using the internationally standardized 10 − 20
system. In this system 21 electrodes are located on the surface of the scalp, as shown in Figure
5.7. The positions are determined as follows: the reference points are nasion, which is the delve
at the top of the nose, and inion, which is the bony lump at the base of the skull on the mid–line
at the back of the head. From these points, the skull perimeters are measured in the transverse
and median planes. Electrode locations are determined by dividing these perimeters into 10%
and 20% intervals as shown in Figure 5.7 [97]. In addition to the 21 electrodes of the interna-
tional 10− 20 system, intermediate 10% electrode positions are also used. The locations and
nomenclature of these electrodes have been standardized by the American Electroencephalo-
graphic Society [98] (refer to Figure 5.8). In this setup, four electrodes have different names
compared to the 10− 20 system (T7, T8, P7, and P8) and are drawn black with white text in
the Figure 5.8. Besides the international 10-20 system, many other electrode systems exist for
recording electric potentials on the scalp. Bipolar or unipolar electrodes can be used in the
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Figure 5.7: The international 10− 20 system for EEG electrode placement, seen from (A) left
and (B) above the head. Labels: A = Ear lobe, C = central, Pg = nasopharyngeal, P = parietal, F
= frontal, Fp = frontal polar, O = occipital.

Figure 5.8: Location and nomenclature of the intermediate 10% electrodes, as standardized by
the American Electroencephalographic Society.
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Figure 5.9: Examples of EEG waveforms in the various frequency bands.

EEG measurement. In the first method the potential difference between a pair of electrodes is
measured. In the latter method the potential of each electrode is compared either to a reference
electrode or to the average of all electrodes. The most recent guidelines for EEG-recording are
published in [99].

The traditional use of the EEG in a clinic environment, the habit of visual inspection and the
limited performance of early recording systems, brought to the classification of the signal into
differently looking waves named alpha, beta, delta, and theta waves, as well as spikes associated
with epilepsy. An example of each waveform is given in Figure 5.9. The alpha waves have a
frequency fα ∈ [8, 13] Hz and can be measured from the occipital region in an awake person
when the eyes are closed. The frequency range of the beta waves is fβ ∈ [13, 30] Hz and this
kind of waveforms is detectable over the parietal and frontal lobes. The delta waves have a
frequency range fδ ∈ [0.5, 4] Hz and are detectable in infants and sleeping adults. The theta
waves have a frequency range fθ ∈ [4, 8] Hz and, as the delta waves, are recorded from children
and sleeping adults.

5.2.2 Implementation of a Binary EEG Classifier

Many are the ways the EEG signal can be processed in order to extract informations from it,
and many are the ways to use this kind of informations in a practical way. Since research is still
ongoing on the subject and, unlike the ASR application, there are no publicly available systems
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to take as a reference in order to reproduce their behavior, part of the work done for this thesis
was to identify a possible EEG–based BCI application and check for the applicability of HMM
techniques on that application.

The choice was to develop an application that could be a starting point for an EEG–based
user interface. Thinking about the most common user interfaces currently available, since the
feedback is always visual the base operations that must be performed in order to interact with
the interfaces themselves are pointing some target and selecting it. The movement of a cursor
or pointer through EEG is a widely studied problem (of which some examples can be found
in [100, 101]), whereas the selection task is almost not treated at all. Managing to identify a
selection task can be interpreted as being able to identify the will to perform an action through
the EEG. This will is the event I aimed to identify through analysis of the EEG signal. So the
pattern recognition task will consist of discriminating between two classes: select and don’t
select.

Data Recording

First of all, it is necessary to obtain some EEG recordings that emphasize (or at least make iden-
tifiable in time) the parts of the signal that are likely to contain the events that will allow for
classification. A dedicated recording setup was developed for the purpose. It consisted of a
simulated point-and-click BCI task reproducing the selection of a button appearing on a dis-
play. Since the task to be performed through the EEG was only the selection, the movement of
the cursor was controlled through head movement using a commercial web–cam and an free–
ware software (VisualMouse, [102]) capable of converting head movements into the movements
of a mouse pointer. The software used to provide the visual stimuli was written in Python
programming language [103] using an open–source library designed on purpose to produce
stimuli for vision research experiments (Vision Egg [104]).

The experiment was performed as follows:

• The subject, with the electrodes already in place for EEG recording, sat in front of a flat–
panel 19′′, 60 Hz display where the stimuli are going to be displayed. In order to reduce
any disturbance, the display was placed in such a way that nothing but the screen is
on the visual field of the subject. Also auditory stimuli were excluded. A web–cam is
pointed on the subject’s face its output is used by the VisualMouse software to drive the
movements of the on–screen pointer (see Figure 5.10).

• The subject was given some time to learn how to control the mouse pointer with head
movements. Then he was instructed on how to react to the visual stimuli that were going
to be presented. After that the experiment begun.

• The visual stimuli were organized in trials. Each trial was performed in the following
way (refer to Figure 5.11):

1. Blank screen for 1 second (here blank means that the screen is filled with the back-
ground color, that is black in this experiment).
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EEG

STIMULUS

FACE TRACKING

Figure 5.10: Representation of the experimental setup used for the EEG selection recordings.

2. Flash of a sync target in the upper–left corner of the screen with a 100 ms duration.
This flash was captured through a photodiode placed on the upper–left corner of
the display, directly from the EEG recording equipment, and the spikes saved in a
separate channel, in order to be used later for alignment of the EEG waveforms.

3. After 500 ms after the sync flash, appearance of a colored visual cue (green or red)
in the center of the screen with duration 2 seconds. The subject was instructed to
remember the color of the cue and to perform a selection, in a later stage, only if the
presented cue was green.

4. Blank screen for 2 seconds. This time is intended to let any reaction evoked by the
colored cue to settle in the EEG traces, so that it will not interfere with the part of the
signal to be classified (the one corresponding to the actual selection).

5. A white target square appears in a peripheral part of the display, and an arrow
pointer appears in the center. At this point the subject is requested to move the
arrow on the target square using head movements and, when the pointer reaches
the target, to keep the pointer on the target and, if the cue was green, try to select
the button mentally. If the cue was red the subject must just keep the pointer on the
target. In any case the target disappears after 3 seconds of permanence of the pointer
on it. It is extremely important to stress that no guidelines were given to the subjects
on how to actually perform the selection. The aim was to check if there is some way
of performing an EEG selection that is spontaneous and does not require any specific
training. Of course this approach will produce a smaller amount of meaningful tri-
als just because in some cases the subject’s selection waveforms would be identical
to the non–selection ones.

6. The disappearance of the target is followed by 1 second of blank screen.

• The trials were grouped in trial sets. Each trial sets consisted of 8 trials with each target
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Figure 5.11: Timeline for a single trial in the EEG selection experiment.

presented in a different position. The position of the 8 targets in a trial set was deter-
mined by even distribution around a circle centered in the display (see Figure 5.12). The
appearance was pseudo–random: in the same trial set the target appears only once in
each of the 8 positions. Also the cues were presented in a pseudo–random order, with an
even distribution of the colors (i.e. 50% red, 50% green). This kind of setup insures that,
for any number of trial sets, there will be half selection trials and half non–selection trials.
Furthermore the pseudo random order of presentation of stimuli avoids the elicitation
of EEG potentials due to stimulus expectation [105], elicitation that would be present if
the pattern of target presentation was known. Several trial sets were performed for each
subject.

During the experiments the Python script that provides the stimuli also saves informations
on the ongoing experiment into two files: the first file contains the mouse coordinates for all
the duration of the experiment, sampled with the refresh frequency of the screen (60 Hz in
this experiment). A sample of coordinates recorded during a recording session is shown in
Figure 5.13(a). The second file contains a sequence of events related to what happens during
the recording. Each event is saved in the form

timecode eventname

A sample of an event file produced during one of the recording sessions is shown in Figure
5.13(b).

The event names are representative of the various phases of the trial:
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Figure 5.12: Possible locations for the appearance of targets in a 8 target trial set.

sync-on / sync-off Appearance or disappearance of the sync square on the dis-
play.

go-on / go-off Appearance or disappearance of a selection cue (a green spot
in the used set–up).

nogo-on / nogo-off Appearance or disappearance of a non–selection cue (a red
spot in the used set–up).

target-on / target-off Appearance or disappearance of a target square (in whichever
position).

ptr-on-target The pointer is moved from a blank part of the screen onto a
target square.

ptr-off-target The pointer is moved off from a target square to a blank part
of the screen.

A typical event sequence is like the one made up by the first 11 events in Figure 5.13(b): the
sync square flashes on and off, a cue appears and disappears, a target is presented, the pointer
goes on the target (and possibly off the target and again on it, for any number of times), and
finally (after 3 seconds of permanence in the ptr-on-tgt state) the target disappears. As it
can be seen later in this section, the part of the signal in which the selection–related features are
expected to be found is the last one in each trial, in particular the time time span corresponding
to the 3 seconds of pointer permanence onto the target.

The experiment was performed on 4 male subjects, and 10 trial sets were recorded for each
subject (in total of 320 trials, half of them corresponding to an attempted selection from the
subject).

The recording equipment used had 64 channel plus one electrode for on–scalp reference.
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37.5 7.3 (320, 251)
37.6 7.4 (313, 268)
37.7 7.5 (310, 281)
37.8 7.6 (288, 307)
37.9 7.7 (265, 316)
38.0 7.8 (259, 318)
38.1 7.9 (233, 321)
38.2 8.0 (235, 285)
38.3 8.1 (273, 230)
38.4 8.2 (317, 206)
38.5 8.3 (359, 197)
38.6 8.4 (426, 197)
38.7 8.5 (434, 200)
38.8 8.6 (463, 222)
38.9 8.7 (467, 225)
39.0 8.8 (473, 227)
39.1 8.9 (476, 227)
39.2 9.0 (479, 231)

59.6 sync-on
59.8 sync-off
60.2 go-on
62.2 go-off
64.2 target-on
66.4 ptr-on-tgt
66.8 ptr-off-tgt
67.5 ptr-on-tgt
68.5 ptr-off-tgt
68.9 ptr-on-tgt
73.2 target-off
74.2 sync-on
74.4 sync-off
74.8 nogo-on
76.9 nogo-off
78.8 target-on
81.1 ptr-on-tgt
85.5 target-off

(a) (b)

Figure 5.13: Samples of the reports produced during a recording session: (a) mouse coordi-
nates, with format total_time trial_time (xcoord,ycoord); (b) events, with format
total_time event_name.

The sampling rate was of 256 Hz with 16 bits per sample. The electrode placement was made
according to the 10 − 10 international system, taking only a subset of the specified locations
(refer to Figure 5.8, Page 116).

A sample of the recorded signal is shown in Figure 5.14. After a first inspection it could be
seen that the recordings were really noisy with a strong 50 Hz component, probably coming
in from the on–scalp ground contact. Furthermore, as expectable in an EEG recording, the
presence of muscular artifacts was significant.

Signal Processing

Signal processing on the recordings was performed using Mathworks’ Matlab [106] and the
open–source toolbox EEGLab [107], developed by the Swartz Center of Computational Neuro-
science at the University of California, San Diego. The recordings were imported in Matlab
along with the event markers saved by the stimulus script during the experiment. The event
markers were then aligned to the signal thanks to the channel containing the spikes corre-
sponding to the sync square flashes captured with the photodiode.

The recordings were processed by first removing the DC component via high–pass filter-
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ing. Then Independent Component Analysis (ICA) was performed, and finally the signal was seg-
mented in epochs containing the three second of signal before the disappearance of the target
in each trial (i.e. from the last ptr_on_tgt event to the tgt_off in each trial).

The ICA method allows to solve the so called cocktail party problem, that is recovering some
source signals from a set of observed signals that are a linear mixture of the original ones. For-
mally, given a set of N source signals {s1(t) . . . sN(t)}, it is assumed that each of the observed
signals {x1(t) . . . xN(t)} can be expressed as

xi(t) =
N

∑
j=1

aijsj(t) ∀ 1 ≤ i ≤ N (5.8)

where the signals are treated like random variables, and the sum made sample by sample. The
matrix notation is the most commonly used when treating the problem, thus

x = As (5.9)

where both the mixing matrix A and the components s are assumed to be unknown. By assum-
ing that the source components are statistically independent (for definitions on random variables
refer to [108]) and with a non–gaussian probability distribution, through the ICA method is possi-
ble to find an unmixing matrix W such that

s = Wx (5.10)

For a detailed overview of ICA theory and techniques refer to [109].
The reason for using ICA is that the signal recorded from each electrode using the EEG can

be seen as a mixture of signals produced by an extremely high number of sources inside the
brain. Clearly the number of electrodes used does not allow to recover all the single sources,
but only clusters of synchronized neighboring neurons (that are actually the main sources of
the signals recorded through electroencephalography). Moreover the fact that short distance
neural connections are always stronger than long distance ones, makes the signals produced
by the neuronal clusters likely to be independent one from another. Anyway the effectiveness
of the use of ICA on EEG sources separation has been proved more than once (see, for example
[110]. Furthermore, the ability of ICA of separating independent components has been shown
to be highly effective also for artifact removal [111, 112].

The application of the ICA on the recorded signal provided interesting results. The number
of components obtained was 59, because of the removal of some unusable channels. In particu-
lar the component accounting for most of the recorded signal power could be easily associated
with artifactual sources. Figure 5.15, for example, refers to the component with the highest
power among the ones identified. The upper–left corner of the figure shows a top view of the
projection of the averaged signal on the scalp along with the electrodes’ positions (for refer-
ence). The upper–right corner shows, for each of 40 selection trials from the same subject, the
time evolution of the signal’s amplitude (indicated by the color map). The bottom trace is the
average over all the trials (also called event-reated potential, ERP). Here the time span is referred
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Figure 5.15: Independent component 1 — Plots relative to 40 selection epochs taken from the
same subject. Top-left: Projection of the component over the scalp. Top-right: Map of the signal
amplitude for each trial and ERP. Bottom: ERP Spectrum.

to what I will call from now on, an epoch, that is the three seconds of pointer’s permanence on
the target (all the following considerations on experiment trials will be referred to the corre-
sponding epoch). Lastly the bottom of the figure shows the full spectrum of the component’s
signal averaged over the 40 epochs. Several considerations can be made on the contents of Fig-
ure 5.15: firstly the projection of the activity is localized exactly around the ground electrode;
secondly the ERP has a random time evolution, phenomenon that can be seen also in the non
consistent outcomes of the single trials; finally the signal’s spectrum has a strong peak at 50 Hz
and a secondary peak at 60 Hz. Noticeable second harmonics of these frequencies (100 Hz and
120 Hz) are also present. From these observations it is clear how the ICA processing has iso-
lated as the first independent component two main sources of noise coming from some kind of
ground loop: a 50 Hz source (with its second harmonic) corresponding to the power grid’s AC
frequency, and a 60 Hz source (also with its second harmonic) corresponding to the display’s
refresh frequency. The second independent component has almost the same characteristics of
the first one, with the exception of a lower power.

Figure 5.16 shows another interesting artifactual component extracted through the ICA (the
third one in order of decreasing power). Again, the epochs are taken from a single subject’s
recordings, and correspond to the trials in which a selection attempt was requested. In this
case the projection of the component’s activity is concentrated in the frontal region of the scalp.
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Figure 5.16: Independent component 3 — Plots relative to 40 selection epochs taken from the
same subject. Top-left: Projection of the component over the scalp. Top-right: Map of the signal
amplitude for each trial and ERP. Bottom: ERP Spectrum.

The ERP shows a clear peak towards the end of the epoch. The inter–epoch consistency is high,
confirming the peak of activity towards the epoch’s end. Finally, in the signal’s spectrum, a
marked peak is present at really low frequencies. A straightforward interpretation these fea-
tures can be found by observing the subjects during the selection trials: since the subjects had
no known means of making a mental selection, most of them tried to concentrate on the target,
and this action was always accompanied by contraction of the forehead muscles. The electrical
activity that produce these contractions is easily spotted by the EEG electrodes because of its
high intensity with respect to brain signals. The ICA processing manages to isolate it in a really
clear way, and the results are like the ones presented in Figure 5.16.

Of course, not every independent component obtained through ICA processing correspond
to some artifactual source. An example of a typical brain source component is shown in Figure
5.17. Here the scalp projection shows a left parietal–occipital activity. The ERP has a clearly
recognizable positivity towards the end of the epoch, and the single trial are consistent only
towards the end of the epoch, as if the subject’s control on his brain activity needs some time
to be exploited, and the effects become stable with a certain delay after the beginning of the
selection process. Also the signal’s spectrum is typical of brain sources, with high values at
lower frequencies and a constant decrease towards higher ones.
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Figure 5.17: Independent component 12 — Plots relative to 40 selection epochs taken from the
same subject. Top-left: Projection of the component over the scalp. Top-right: Map of the signal
amplitude for each trial and ERP. Bottom: ERP Spectrum.

EEG Classification

The classification tests for this experiment have been attempted on the 59 ICA components
extracted from the EEG recordings (as already said, some channels had to be removed because
of technical problems during the recording process). The main problem is that the temporal
position inside the single epochs of the (eventually present) discriminating events, is not known
neither easily identifiable. Here the automatic segmentation capabilities of the HMM classifiers
seem to be a really promising way of solving the problem. That is why the HMM has been
selected for the first classification tests.

The overall structure of the pattern recognition system set up for this task is similar to the
one shown in Figure 1.1 (Page 8): the independent components are fed in the system as 59
independent streams, processed by a feature extraction front–end, and then classified.

The front–end was an Linear Prediction Coding Cepstrum extractor (LPC–Cepstrum). It was
implemented, for each of the input channels, by a sliding window with Hamming profile, a
Linear Prediction Filter, and a DCT (see Figure 5.18). The windowing operation was already
described in Section 5.1.2 (Page 104) for the ASR front–end. The window used in the front–end
was 20 ms wide with 10 ms overlap. The linear prediction analysis is implemented through an
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Figure 5.18: Feature extraction front–end used in the EEG pattern recognition system.

all–pole filter with a transfer function of the form

H(z) =

(
p

∑
i=0

aiz−i

)−1

(5.11)

where p is the number of filter poles and a0 = 0. The filter coefficients ai are chosen in such
a way to minimize the filter’s prediction error, in the mean square sense, summed all over
the analysis window. This minimization was done using the autocorrelation method: given the
window samples {s1 . . . sN}, the first p + 1 terms of the autocorrelation sequence are calculated
using

ri =
N−i

∑
j=1

sjsj+i 0 ≤ i ≤ p (5.12)

The filter coefficients are then computed recursively using a set of auxiliary coefficients ki and
by initializing the prediction error E to r0. For any couple k(i−1)

j , a(i−1)
j related to a filter of order

i− 1, the filter of order i can be calculated in three steps:

1. Computation of a new set of reflection coefficients:

k(i)
j = k(i−1)

j ∀ 1 ≤ j ≤ (i− 1) (5.13)

k(i)
i =

ri + ∑i−1
j=1 a(i−1)

j ri−j

E(i−1) (5.14)
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2. Update of the prediction energy:

E(i) =
[

1−
(

k(i)
i

)2
]

E(i−1) (5.15)

3. Computation of the new filter coefficients:

a(i)
j = a(i−1)

j − k(i)
i a(i−1)

i−j ∀ 1 ≤ j ≤ (i− 1) (5.16)

a(i)
i = −k(i)

i (5.17)

This process is repeated recursively until the required filter order p is reached. Finally, in order
to obtain the LPC–cepstrum, it would be necessary to first apply a Fourier transform to the LPC
filtered data in order to extract the spectrum amplitude, and then apply the DCT. Anyway in
the case of LPC analysis, a simpler recursive formula exists that can be applied directly on the
filter coefficients to obtain the cepstral coefficients:

cn = −an − n−1
n−1

∑
i=1

(n− i)aicn−i (5.18)

In the EEG front–end an LPC filter of order 14 was used and 12 cepstral coefficients were ex-
tracted from each window of samples. To the vector of cepstral coefficients an energy coefficient
was appended, computed as

E = log

(
Ns

∑
n=1

s2
n

)
(5.19)

where Ns is the number of samples in the window. As in the ASR application, the features along
with their first and second order differences have been extracted using HTK’s HCopy tool, and
stored to avoid re-computation during the tests. The final feature vectors had a frequency of
100 Hz (10 ms period) and contained 39 parameters each.

For the implementation of the classifier, two HMMs were trained for each channel: one
trained on the features relative to the selection events and the other trained on the features
relative to the non–selection events. The topology used for all the HMMs is shown in Figure
5.19. The HMM has a 5–state left–right topology with emission probabilities PDFs modeled
using 4–component gaussian mixtures. The three emitting states are logically associated with
the expected structure of the input signal: the central state is supposed to model the actual
discriminating event, while the other two state shave been introduced in order to take into
consideration the leading and trailing background signal (where background refers to any part
of the signal not related to the event to be classified). The transitions are conceived in such a
way that the emission sequence can be of the form

< sequence >::= [OLBG, {OLBG}], OE, {OE}, [OTBG, {OTBG}];
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LBG E TBG

Figure 5.19: The topology of the HMMs used in the EEG classifier. The emitting states are
drawn in a darker tint and marked as following: LBG to model the leading background, TBG
to model the trailing background, E to model the discriminating event.

where OLBG is an emission from the leading background state, OE an emission from the event
state, OTBG an emission from the trailing background state, and the extended Bakus–Naur form
(EBNF) has been used to describe the repetition rules (square braces for optional items an curly
braces for optional repetitions).

The training was performed using the HTK tools (HCompV, HERest and HHEd) and the
procedure was the same used for the ASR classifier (see Page 109). The whole available data set
contained 40 selection epochs and 40 non–selection epochs for each of the 4 recorded subjects:
160 selection epochs plus 160 non–selection epochs in total. Since the data set was small and
problems of under–training could arise, 20 different partitions were made out of the available
data: each partition consisted of a training data set with 95% of the epochs (304 epochs), and
a test data set with the remaining 5% (16 epochs). Both the training and test data sets were
made in such a way that each one was made up of 50% selection epochs and 50% non–selection
epochs. For all of the 59 channels in each data set partition, a couple of HMMs was trained
separately. Thus the output of the training sessions was a collection of 20 models sets, each of
them consisting of 118 HMMs (two for each of the 59 input channels).

The test sessions were performed by using HTK’s HVite to recognize all of the 20 test
data sets using the corresponding model set. Actually for each model–set/training–set pair, 59
separate recognition sessions had to be performed, one for each input channel, thus providing
59 separate accuracy measures. As a matter of fact each model set behave like a set of 59 binary
classifiers running in parallel.

The accuracy obtained for each channel in the various sessions was then averaged in order
to make the measure statistically more significant. The results were analyzed and it could
be noted that while some channels did not allow at all for discrimination of the selection and
non–selection epochs (providing a chance level accuracy around 50%), other channels performed
clearly above 50% accuracy thus confirming the initial hypothesis on the possibility to correctly
classify the intent of selection in the EEG signal. A first interesting result is shown in Figure
5.20. It shows the accuracy percentage of two artifactual components (already described in this
section, Figures 5.15 and 5.16), in function of the training iteration index. The chance level (50%
accuracy) is marked for reference. As it could have been expected, the artifactual component
related to the forehead muscular contraction has the highest score among all the components
(on the right in the figure). That because the muscular contractions are likely to be present only
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Figure 5.20: Results of EEG Classification through HMM. Accuracy percentage vs. training
iteration index. The 50% chance level is marked for reference. Left: Component 1 (containing
50 Hz and 60 Hz noise). Right: Component 3 (forehead muscular contractions).

when a selection is required to the subject. When the selection os not required the subject tends
to be more relaxed and the contraction do not appear (or have a really low intensity). A more
unusual result has been obtained with the artifactual component containing the ground loop
noise (Figure 5.20 on the left). Even here the classification accuracy is quite high (save for a
drop halfway during the training process). Since the 50 Hz and 60 Hz noise could not have
been produced by a brain source (even because the intensity is too high), it is probable that
part of the brain or muscular signal has been collected by the ICA together with the noise (in
fact this can be also noticed from the signal’s spectrum at lower frequencies, see Figure 5.15,
Page 125). Since the noise does not change between the selection and non–selection epochs,
the HMM training procedure automatically discarded it while emphasizing the other residual
components of the signal.

Indeed these two results on artifactual components, even if interesting in some sense (a
classifier could be developed, for example, using only the muscular activity as input), are not
useful when it comes to the aims of this tests, that is developing a classifier for brain activity.
On the other hand significative classification results have been obtained with component that,
for their signal characteristics, clearly represent some kind of brain activity. The results for the
best scoring brain sources are shown in Figure 5.21. Both of the components scored around 70%
accuracy and seem to be complementary, reflecting a symmetrical parietal–occipital activity in
the brain (from the scalp projection it can be noticed that the activities have opposite sign, but
this is simply due to the ICA technique that can estimate components save for the sign). These
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Figure 5.21: EEG Classification through HMM. Accuracy vs. training iteration. Chance level
marked for reference. Left: Component 16 (right parietal–occipital brain source). Right: Com-
ponent 18 (left parietal–occipital brain source).

components are actually related to brain sources (neuronal clusters) that show to have a causal
relationship with the selection attempts made by the subjects during the experiment.

Other highly scoring components are the ones shown in Figure 5.22. The classification of
these components can be accurate up to 70%− 75% but their nature is not clearly identifiable
as in the examples shown in Figure 5.21. The component shown on the left of the figure shows
an occipital activity while the one shown of the right shows a right–occipital activity. This kind
of peripheral localization is sometimes characteristic of muscular artifacts. Further analysis
would be needed for a correct identification of these sources, but this is out of the aims of the
current work and will not be treated here.

Finally, other components provide lower but still significant classification accuracies. These
components are shown in Figure 5.23. All of them seem to be generated by brain sources, be-
cause of their localization, of their spectrum and of the low power levels of the signal. The
component shown in the upper left of the figure shows a frontal activity and levels of clas-
sification accuracy around 60% − 65%. The one shown in the upper right is localized in the
left–central zone of the scalp, with the same levels of accuracy (60%− 65%). Finally, the other
two components refer to right central–temporal activities, with accuracies around 60%.

The results of the classification tests just described confirmed the hypothesis made at the be-
ginning of this section about the possibility to use the EEG signal to accomplish selection tasks.
It is worth to stress that no tuning at all have been performed on the system and much higher
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Figure 5.22: EEG Classification through HMM. Accuracy vs. training iteration. Chance level
marked for reference. Left: Component 15 (not clearly identified occipital source, brain or
muscular). Right: Component 19 (not clearly identified left occipital source, brain or muscular).

accuracies are likely to be obtained. The points to develop are: a more accurate definition of the
front–end (experimenting also other methods for feature extraction), some refinements on the
HMM classifier (on the topology and emission probability PDFs for example), and the acqui-
sition of a bigger EEG database in order to better train the models. Furthermore, even if here
the case of a subject–independent classifier was studied, with the aim of a multi–user class of
interfaces, also the possibility of tailoring the classifier on a single subject could be explored.
Clearly, in that case, the reachable accuracy is going to be even higher than the one expectable
in a subject–independent system.

Given these preliminary results, the natural evolution of the system as a whole would be
to identify the independent components that allow for better classification (we saw that their
number is going to be of the order of 10 or less), and extract the classification results by mixing
the outputs of the single classifiers. The number of needed electrodes for the measurements
can be reduced by selecting only the ones that most contribute to the used components, thus
making the sampling equipment more compact, portable and wearable.

As a final step, in order to double–check the results obtained. The same classification tests
have been repeated with another classifier. The chosen classifier was the Support Vector Machine
(SVM). The basic SVM is a linear classifier: given a set of multi–dimensional data points of the
form

{(x1, c1), . . . , (xn, cn)} (5.20)
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Figure 5.23: EEG Classification through HMM. Accuracy vs. training iteration. Chance level
marked for reference. Upper Left: Component 23 (frontal brain source). Upper Right: Com-
ponent 39 (left central brain source). Lower Left: Component 49 (right temporal unidentified
source, brain or muscular). Lower Right: Component 50 (right central–temporal brain source).
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where xi is a generic vector and ci an identifier that specifies to which of two classes the cor-
responding vector belongs, a SVM trained on such a data set is able to discriminate the point
belonging to the two classes if they are separable by means of a hyper-plane

w · x− b = 0 (5.21)

where w is a vector pointing perpendicular to the mentioned hyper-plane. In order to achieve
the maximum margin possible, one should find the two hyper-planes that are parallel to the one
described by (5.21) and the most close to the points belonging to the two classes:

w · x− b = 1
w · x− b = −1

(5.22)

The support vectors are the one containing the elements of the data set lying on these two
planes. The main limitation of the SVM is that it can classify only linearly separable classes.
Anyway this limitation can be easily overcome through the use of the kernel trick, a technique
that allows to convert a linear classifier into a non–linear one by using a non–linear function to
map the original observations into a higher-dimensional space: linear classification in the new
space turns out to be equivalent to non–linear classification in the original space. More details
on SVMs and their application to pattern recognition can be found in [113].

The the same front–end used with the HMM classifier was used with the SVMs (refer to
Figure 5.18, Page 128). Also the data–set partitions for training and testing were the same (20
partition with 90% of the epochs used for training and 10% for testing, even distribution of
selection and non–selection epochs). In every session one SVM was trained for each of the 59
channels. All the tests were repeated with four different kinds of SVM: a linear one and three
non–linear ones using the kernel trick with different kernel functions (quadratic, polynomial
and gaussian radial basis function). The training and test of the SVM have been performed
using Matlab and the functions svmtrain() and svmclassify() from the Bioinformatics
Toolbox.

The non–linear classified performed poorly, without going beyond the chance level of clas-
sification accuracy. On the other hand, as can be seen from the plot in Figure 5.24, the linear
classifier provided good results. The figure shows, for each of the 59 channels, the accuracy
averaged over the results from the 20 data–set partitions. It is easily seen that part of the chan-
nels score over 60%. In order to make a comparison, the 11 channels that provided the highest
accuracy in the tests with the HMM classifiers, have been marked in red. It can be seen that
most of the channels that provided good results with the HMMs, provide good accuracy also
when classified with a linear SVM. This arises the hypothesis (still to be verified) that these
components carry some kind of information that is directly related to the brain dynamics ac-
tivated by the selection process. On the other hand, some channels that had high accuracy in
the HMM tests, scored poorly with the SVMs, and vice versa. This last phenomenon could be
due to the specific ability of each of the two classifiers of identifying a certain kind of content.
This can be favorably exploited in the implementation of a system, by using both HMM and
SVM classifiers, and feeding in each of them the channels that provide higher accuracy with
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Figure 5.24: EEG Classification through linear SVM. Averaged accuracy for all the component
classifiers. The channels that provided highest accuracy with the HMM classifiers are marked
in red.

that particular classifier. However this last test confirmed the hypothesis, made firstly on the
base of the results from the HMM tests, that the kind of EEG classification here proposed is
feasible and could lay the basis for a new class of BCI based on spontaneous brain commands.

Hardware Tests

The HMM based EEG classifier described in the previous pages was implemented as a paral-
lel array of HMM processors for comparison with the software implementation. The system
required 108 HMMs and, according to the considerations already made in Section 4.3.2 (Page
92) the minimum operating frequency should be evaluated in order to decide which of the im-
plementation solution proposed in 4.3.1 (Page 87) is suitable for the application. Figure 5.25
shows a plot of the minimum clock frequency required with NA = 108 atomic HMMs and an
observation period Tobs = 10 ms (according to Equation 4.8, Page 89). The plot shows that all
the described implementations are capable of running the system because, even in the worst
case situation of a single HMM processor mapped on the device, the minimum required clock
frequency is less that 25 MHz, whereas the lowest working frequency among the shown im-
plementations is 57 MHz (refer to Table 4.2, Page 92 and Table 4.3, Page 92). On the other hand
it has to be noted that the parallel array of HMMs is effective in computation only when the
same observation vector is provided to all the HMMs. The EEG classifier application to be
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Figure 5.25: Minimum clock frequency in function of the number of parallel HMM proces-
sors for an implementation of a 59-channel EEG classifier. Fixed parameters: NA = 108,
Tobs = 10 ms.

implemented here has to handle 59 different observation streams, and each observation vector
is always processed by no more than 2 HMM. For this reason in this case it has no sense to
use more than 2 HMM processors in parallel5. For this reason the tests have been performed
only on the configurations with one and two HMM processors on a single device. Also, a slight
variation on the system–level control of the architecture had to be made in order to deal with
the multiple input streams: let us indicate with (H⊕

c , H	
c ) a couple made up by the selection

and non–selection HMM for channel c, and O(c)
t the observation at time t for channel c. For

each time step t the model parameters for the couple (H⊕
1 , H	

1 ) is loaded and the observation
O(1)

t is processed; then the procedure is repeated for (H⊕
2 , H	

2 ) to process O(2)
t , and so on, up

to (H⊕
NC

, H	
NC

) to process O(NC)
t , where NC indicates the number of input channels (in this case

NC = 59). Only when all the channels have been processed for time step t, the time is incre-
mented to t + 1 and the cycle begins again reloading the models (H⊕

1 , H	
1 ) for the first channel,

in order to process O(1)
t+1. Apart from these changes in data feeding, the system’s behavior is

the same as in the ASR application.
The comparison has been made between the results from HTK’s HVite and the hardware

architecture implemented with three different word lengths (for score computations): 32, 24
and 16 bits. As already checked in 4.3.2 (Page 92) all the configurations of the hardware archi-

5 The only way to process more than 2 HMMs in parallel in this application is to provide multiple observation
buses to the architecture and route each of them to a couple of HMM processors. This has not been done in the
present work, even because the number of buses is so high that any advantage would be lost because of the huge
increment in needed hardware resources.
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tecture had exactly the same functional behavior for a given word length (i.e. they provided the
same results for the same input), so the results referred to a certain word length are applicable
to any HMM processor configuration using the same number of bits for number representation.

From the the comparison of the results obtained with the software and hardware imple-
mentations it could be seen that the accuracy is really similar between the two. The mismatch
introduced by the quantization in the hardware is, for this application, almost unnoticeable
even with 16 bits of precision. The decrease in accuracy with respect to the HVite’s floating
point software implementation is in fact of about 2% for the 16 bits implementation, and less
than 1% for the 24 and 32 bits implementations.

It has therefore been shown that the architecture based on the developed HMM processors
can be effectively applied also to BCI related classification tasks.
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Conclusions

In this thesis a new approach has been described for the development of human–computer in-
terfaces. In particular the case of pattern recognition systems based on Hidden Markov Models
have been taken into account.

The work has been focused on the development of dedicated hardware architectures, but
also some new results have been obtained on the classification of electroencephalographic sig-
nals through the use of HMMs.

The original contributions of this thesis can be summarized as follows:

The Hardware Architecture: A system–level architecture has been developed to be used in
HMM based pattern recognition systems. The architecture has been conceived in order
to be able to work as a stand–alone system: its output could be fed directly in a system’s
command interpreter.

The HMM Processor: A VHDL description has been made of a flexible and completely re-
configurable hardware HMM processor and the design was successfully simulated. A
parallel array of these processors is actually the core processing block of the developed
architecture.

Hardware Mapping: Two suitable FPGA based, fast prototyping platforms have been iden-
tified to be the targets for the implementation tests. Different configurations of parallel
HMM processor arrays have been set up and mapped on the target FPGAs. Some so-
lutions have been selected to be the best in terms of balance between performance and
resources utilization.

Functional Verification: A software HMM based pattern recognition system has been chosen
to be the reference system for the functionality of the implemented subsystems. A set
of tests have been developed with the aim to test the correct functionality of the hard-
ware. The implemented system was compared to the reference system on the basis of the
tests’ results, and it was found that the behavior was the one expected and the required
functionality was correctly achieved.
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Application tests: The implementation of the parallel HMM array was tested through its ap-
plication to two real–world applications: a speech recognition task and a brain–computer
interface task. In both cases the architecture showed to be functionally suitable and pow-
erful enough to handle the task without problems. The application of the hardware pro-
cessing to speech recognition opens new perspectives in the design of this kind of systems
because of the dramatic increment in performance. The application to brain–computer
interface is really interesting because of a new approach in the classification of EEG that
shows how could be possible a future development of interfaces based on the classifica-
tion of spontaneous thought.

The possible evolution directions of the work started with this thesis are many. Effort could
be spent of the implementation of the developed architecture as a stand–alone reconfigurable
system suitable for any kind of HMM–based pattern recognition task. The potential perfor-
mance of such a system could open the way to extremely complex real–time pattern recog-
nition systems, and thus to the realization of truly multimodal interfaces, with a variety of
applications, from space to aid systems for the impaired.
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