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ABSTRACT 

 

Understanding the cognitive and functional behaviour of brain by its electrical activity 

is an interesting area. Electroencephalography (EEG) is a method that measures and 

record electrical activities in the brain. It has been used for pathology analysis, emotion 

recognition, clinical and cognitive research, diagnosing various neurological and 

psychiatric disorders and other applications. Since the EEG signals are sensitive to 

activities other than the brain activities such as eye blinking, eye movement, head 

movement, etc., and it is not possible to record EEG signals without any noise, it is very 

important to use an efficient noise reduction technique to get more accurate results. 

Numerous traditional techniques such as Principal Component Analysis (PCA), 

Independent Component Analysis (ICA), wavelet transformations and machine learning 

techniques were proposed for reducing the noise in EEG signals. The aim of this paper 

is to investigate the effectiveness of stacked autoencoders built upon Gated Recurrent 

Unit (GRU) based Recurrent Neural Network (RNN) layers (GRU-AE) against PCA. 

To achieve this, Harrell-Davis decile values for the reconstructed signals’ signal-to-

noise ratio distributions were compared and it was found that the GRU-AE  

outperformed PCA for noise reduction of EEG signals. 

 

Key words: ERP, electroencephalography, autoencoders, noise reduction, RNN, GRU, 

signal-to-noise ratio 
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1. INTRODUCTION 

Brain is the most important organ that controls the entire body. It can be considered as 

a collection of interconnected neurons. Understanding the cognitive and functional 

behaviour of brain by its electrical activity is an interesting area. 

Electroencephalography (EEG) is a method that measure and record electrical activities 

in the brain. First human EEG was recorded by Hans Berger, a German psychiatrist, in 

1924 (Haas, 2003). EEG signals demonstrate the condition of the brain, they are widely 

used in neuroscience and psychophysiological research. It helps researchers to 

understand how the brain works, which region of the brain is active against the stimulus 

and how these regions interact with each other. 

1.1   Background  

EEG signals are the brain rhythm signals from different brain regions. They reflect the 

activity of the related region (Niedermeyer & da Silva, 2005). They can reveal many 

important findings about brain. It has been used for pathology analysis, emotion 

recognition, clinical and cognitive research, diagnosing various neurological and 

psychiatric disorders such as epilepsy, Alzheimer’s disease, memory disorders, sleep 

disorders, schizophrenia and other applications (Xing, Li, Xu, Shu, Hu & Xu, 2019; 

Leite, Pereira, Gurjao & Veloso, 2018).  

 

Unlike other existing methods such as Magnetic Resonance Imaging (MRI), Functional 

Magnetic Resonance Imaging (fMRI) and Computed Tomography (CT), EEG has lower 

costs. EEG signals can be obtained by electrodes placed on the scalp. It can directly 

measure neural activity in brain, captures cognitive activity in real-time and in the 

absence of behavioural responses it can manage cognitive activities. Although these 

advantages, EEG signals are sensitive to activities other than the brain activities such as 

eye blinking, eye movement, head movement, etc., and it is not possible to record EEG 

signals without any noise.  

 

Since the presence of the noise in the EEG signals, numerous traditional techniques such 

as Principal Component Analysis (PCA), Independent Component Analysis (ICA), 
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wavelet transformations and machine learning techniques were proposed for reducing 

the noise in signals to get more accurate results. Although those techniques have some 

advantages, they also have some drawbacks. For example, those widely used traditional 

techniques operates under some assumptions about the data  and they can perform poorly 

when the noise in the signal is overlapped or have smaller amplitude and sometimes it 

is needed to manually identify the noise as a reference.  

 

The aim of this paper is to develop a noise reduction technique that can successfully 

reduce the noise in the EEG signals while protecting the information in the signal. 

1.2   Research Project  

Noise in the signals can be measured with the signal-to-noise ratio (SNR). It gives a ratio 

of the signal power to the noise power present in a signal. Lower SNR indicates that 

noise in the signal is greater. Noise reduction techniques helps to achieve higher SNRs.  

 

Preserving important information while reducing noise is extremely important for signal 

processing. Numerous techniques are available for noise reduction such as PCA, ICA 

and wavelet transformations. Besides those traditional techniques machine learning and 

deep learning techniques such as stacked autoencoders and convolutional autoencoders 

became popular for noise reduction. They showed that they significantly increased the 

SNRs when compared to the traditional techniques.  

 

Since the EEG signals can be treated as timeseries, Long Short Term Memory (LSTM) 

based Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU) based RNN, 

which aim to solve vanishing gradient problem caused by vanilla RNNs, proved their 

success on sequential data, and autoencoder with deep neural network layers showed 

success for noise reduction, in this research autoencoders with GRU layers were 

investigated to see if they are successful as PCA, which is used as a baseline in this 

research for noise reduction to increase the SNR. 

 

Can a stacked autoencoder built upon Gated Recurrent Unit based Recurrent Neural 

Network layers (GRU-AE) perform better and have a higher signal-to-noise ratio when 
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compared to Principal Component Analysis for noise reduction of 

electroencephalography signals?  

1.3   Research Objectives  

The objective of this research is to investigate the effectiveness of the deep learning 

approach GRU-AE for noise reduction on EEG signals by conducting a literature review 

for deep learning techniques and noise reduction techniques for EEG data.  To compare 

the performance of GRU-AEs against one of the traditional techniques PCA, signals will 

be reconstructed with both approaches and SNRs of reconstructed signals from GRU-

AE and PCA will be calculated and compared with the Harrell-Davis test. 

1.4   Research Methodologies  

This research can be categorised by four group; by its type, its objective, its form and by 

its reasoning. 

 

By type, this research is a secondary, also known as desk research, because it is a 

systematic review and a collation and expansion of an existing research and the data 

already exists.  

 

By objective, it is quantitative since it is aimed to develop hypotheses pertaining to 

related phenomena and EEG signals are the numerical data and it allows the 

measurement of SNR to be compared by calculation of the Harrell-Davis test.  

 

By form, this research is an example of empirical research because research hypothesis 

was defined and tested with a scientific method and the knowledge was gained by direct 

observation.  

 

For the last category, by reasoning, it is deductive because it is a top-down approach; 

from a theory the hypotheses were built, tested and the results were observed then the 

confirmation was made. 
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1.5   Scope and Limitations  

The scope of this research is the noise reduction on the EEG signals using GRU-AEs. 

Because of the required training time for GRU-AE and the size of the data, the main 

limitations of this research are time and available computational power. The research is 

limited with one dataset. The data used in this research was collected from a study (Ford, 

Palzes, Roach & Mathalon, 2013) and extensions of this study. EEG signals in the data 

are from 81 subjects; 49 of them diagnosed with schizophrenia and 32 of them are 

healthy control subjects. Since the aim of this study is reducing the noise on EEG signals, 

demographics of the subjects were not be analysed.  

1.6   Document Outline  

The remaining chapters of this research structured as follows: 

Chapter 2 – Literature Review and Related Work 

This chapter focuses on existing literature about Event Related Potentials, EEG, noise 

reduction techniques, related works with machine learning and deep learning on EEG 

data and autoencoders. Also, a table for summary of reviewed papers, gaps in the 

research and research question can be found in this chapter. 

Chapter 3 – Design and Methodology 

Research hypothesis is described in this chapter. Also, the data used in this research, 

architecture of the models, hyperparameters, strengths and limitations of the architecture 

are mentioned. Finally, technical and semantic evaluation metrics are described. 

 Chapter 4 – Results, Evaluation and Discussion 

In this chapter, the findings from the experiment are described. Selected model’s 

performance is evaluated, strengths and limitation of the selected model are detailed, 

and possible improvements are discussed. 

Chapter 5 – Conclusion 

This chapter gives an overview of the experiment which was carried out in this research 

with its results and further work is included. 
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2. LITERATURE REVIEW AND RELATED WORK 

In this chapter, literature review about Event Related Potentials, EEG, noise reduction 

techniques, applications of deep learning techniques on EEG data, autoencoders for 

noise reduction on EEG are mentioned.  

2.1    Event Related Potentials (ERPs) 

Event Related Potentials (ERPs) are voltage changes induced in the brain in response to 

various cognitive, sensory and motor events (Friedman & Johnson, 2000). First known 

ERPs were recorded in 1935-1936 by Pauline and Hallowell Davis who is an American 

physiologist, otolaryngologist and researcher and it became popular in the middle 1980s 

(Luck, 2005). ERPs have been used for over 80 years to study brain’s electrical activity 

following events of interest. (Thigpen, Kappenman & Keil, 2017) They represent neural 

activity evoked by an event and they can be used to investigate how the information is 

processed by the brain over time (Rugg, 2001). It is frequently used in general, 

experimental, clinical psychology and biomedical engineering. Amplitude, latency, and 

scalp distribution are the three measurable aspects of an ERP waveform (Johnson, 1992).  

2.2    Electroencephalography (EEG) 

EEG is a non-invasive electrophysiological method for measuring and recording the 

electrical activities in the brain. The difference between the EEG and ERP is that the 

EEG signals are spontaneous whereas ERPs are generated with an external stimulus. 

 

Electrical activities in the brain can be expressed in time series waveforms. EEG 

waveforms commonly classified by their frequency, amplitude and location on the scalp 

where electrodes are placed for recording. For a healthy person, EEG amplitude lies 

between the range of 10-10000μV having following frequency components; Delta (0.1-

4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta (13-30 Hz), Gamma (30-100 Hz) (Kaushal, 

Singh & Jain, 2016). Delta waves represent the grey matter of the brain. It can be found 

in all sleep stages and it induces growth hormone. Theta waves are related to 

subconscious activities and can be observed in deep relaxation. They are linked to the 

production of growth hormone and serotonin. Alpha waves represent the white matter 

of the brain. Those waves can act as a bridge between conscious and subconscious mind. 
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They induce serotonin. Beta waves are related to behaviour and actions. They can be 

observed in conscious state and they are linked to the production of Cortisol. Lastly, 

Gamma waves are related to consciousness and perception and they induce serotonin 

and endorphins. (Kumar & Bhuvaneswari, 2012).  

 

EEG signals can be obtained by placing electrodes on the subject’s scalp. The 10-20 

system is widely used for the placement of the electrodes. It is an internationally 

recognized system that standardized the electrode positions and provides reproducibility 

and comparability of results of the EEG signals analysis from different research (Jasper, 

1958). In this system, scalp is divided into five parts; frontal (F), temporal (T), central 

(C), parietal (P), and occipital (O). In each of those parts, the electrodes in the right side 

of the brain are denoted by even numbers and the electrodes on the left are denoted by 

odd numbers (Sahu, Nagwani & Verma, 2016). The “10” and “20” indicate that the 

distances between contiguous electrodes are either 10% or 20% of the total front-back 

or right-left distance of the skull (Homan, Herman & Purdy,1987). The 10-20 electrode 

placement system can be seen in Figure 2.2-1. 

 

Each electrode that captures the brain activity is called as a channel. Number of channels 

can vary based on the related research. This number can be up to 256 (Lau, Gwin & 

Ferris, 2012; Foresta, Morabito, Marino & Dattola,2019). In this research, EEG signals 

in the dataset were recorded by 64 channels. 

 

EEG analysis is extensively used for medical purposes such as diagnosing, monitoring 

diseases and disorders about the nerves, also used for neuroscience, cognitive science, 

cognitive psychology, neurolinguistics and psychophysiological research 

(Jafarifarmand & Badamchizadeh, 2013).  

 

EEG signals are low voltage signals, as it is mentioned before they contain many 

undesired noises which can be also called artefacts. Artefacts can be divided into two 

groups: external and biological. External artefacts generally caused by technical factors 

such as line interference and electrodes. Biological artefacts are mostly because ocular 

or muscular (Jafarifarmand & Badamchizadeh, 2013). Most common biological 

artefacts in the EEG signals are eye blinks, eye movement, arm movement, head 
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movement, jaw clenching and swallowing (Leite et al., 2018). If the noise in the EEG 

signal is not reduced properly, the results of the EEG analysis can be highly misleading. 

 

 

Figure 2.2-1 The 10-20 system (Kan & Lee, 2015) 

Level of noise in the signals can be compared to the level of desired signal with the 

signal-to-noise ratio (SNR) (Kaushal et al., 2016). It gives a ratio of the signal power to 

the noise power present in a signal. Signal (S) can be calculated as the square root of the 

sum of the squared signals in the reading divided by the length of the reading. Noise (N) 

can be calculated as the square root of the sum of the squared noise in the reading divided 

by the length of the reading and SNR can be calculated by the common logarithm of the 

ratio of the signal and noise multiply by 20. Mathematical representation of the SNR is:  

 

𝑆𝑁𝑅 = 20	 log+,(
.
/

)     ; 

 

𝑁 =	0
∑(𝑛𝑜𝑖𝑠𝑒)8

𝑙𝑒𝑛(𝑛𝑜𝑖𝑠𝑒) 											𝑆 = 	
0
∑(𝑠𝑖𝑔𝑛𝑎𝑙)8

𝑙𝑒𝑛(𝑠𝑖𝑔𝑛𝑎𝑙) 

Where signal is the voltage amplitude readings of the signal, noise is the voltage 

amplitude readings of the noise and len is the length of readings. With noise reduction 

techniques, SNRs can be increased.  
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2.3    Traditional Noise Reduction Techniques 

In this section, most common traditional noise reduction techniques such as Principal 

Component Analysis, Independent Component Analysis and Wavelet transformation 

and their applications on EEG data will be described. 

2.3.1  Principal Component Analysis (PCA) 

PCA, invented by Karl Pearson in 1901 (Pearson, 1901), is a method that extensively 

used in statistics, signal processing, and neural computing for feature extraction and 

denoising. It transforms the correlated values into uncorrelated values. First, it applies 

linear algebra computation on the covariance matrix of the data to produce set of 

eigenvectors and eigenvalues. Then linear combinations of the original data weighted 

by those eigenvectors to transform the attributes which are called principal components. 

Number of principal components is equal or less than the actual number of variables. 

Those components account for maximally explaining the variance in the data (M’ng & 

Mehralizadeh, 2016; Khatwani & Tiwari, 2013; Haufe, Dahne & Nikulin, 2014; Helal, 

Eldawlatly & Taher, 2017). In some applications, percentage of explained variance by 

the components is defined as a threshold, which is usually in the range of 80%-95% 

(Artoni, Delorme & Makeig, 2018). In this research 95% is selected for the explained 

variance (Hair, Anderson, Tatham & Black, 1995). 

 

PCA has been applied directly for noise reduction (Artoni et. al, 2018). It is used for 

extracting ERPs (Bromm & Scharein, 1982), subsequent frequency domain analyses, 

identifying and removing artefacts (Lagerlund, Sharbrough & Busacker, 1997; 

Casarotto, Bianchi, Cerutti & Chiarenza, 2004; Ghandeharion & Erfanian, 2010). It is 

firstly used for removing the ocular artefacts which are blinks and eye movement from 

a multichannel EEG data (Scherg  & Berg, 1991). 

 

For signal processing, PCA is extensively used for epileptic seizure detection using EEG 

signals (Ahmad, Fairuz, Zakaria & Isa, 2008; Subasi & Gursoy, 2010; Kevric & Subasi, 

2014; Xun, Jia & Zhang, 2016; Wang, Gong, Li & Qui, 2019). 

 



 

17 

 

Since PCA detects the coherent activity over data and removes the part of an EEG data 

that is spatially correlated over the scalp, it helps to increase the SNR (Kobayashi & 

Kuriki, 1999; Casarotto et. al, 2004). 

2.3.2  Independent Component Analysis (ICA) 

Another feature extraction and denoising technique is ICA. It was introduced by Herault 

and Jutten in 1986 (Herault & Jutten, 1986) and in the middle 1990s its mathematical 

formulation was presented (Comon, 1994). ICA is originally developed for blind source 

separation then it was generalized for feature extraction (Romero, Mananas, Clos, 

Gimenez & Barbanoj, 2003; Cao, Chua, Chong, Lee & Gu, 2003; Safieddine, 

Kachenoura, Albera, Birot, Karfoul, Pasnicu, Biraben, Wendling, Senhadji & Merlet, 

2012). It decomposes the mixed input data into set of independent components (ICs) 

(James, Kobayashi & Lowe, 1999). It uses high-order statistics and maps nonorthogonal 

and its components are statistically independent whereas PCA uses second order spatio-

temporal correlation information and finds orthogonal directions of the maximum 

variance and its components are uncorrelated (James et.al, 1999; Jung, Makeig, 

Humphries, Lee, McKeown, Iragui & Sejnowski, 2000; Cao et.al, 2003). 

 

ICA decomposes the EEG recordings into a brain-related and artefact- related ICs. After 

that, noise-free signal can be reconstructed by extracting the artefact-related ICs from 

the EEG signal (Romero et. al, 2013; Radüntz, Scouten, Hochmuth & Meffert, 2017). It 

has been proven that ICA performs more successful when the EEG signal has more 

channels (Jung, Humphries, Lee, Makeig, McKeown, Iragui & Sejnowski, 1997; 

Ungureanu, Bigan, Strungaru & Lazarescu, 2004). ICA is widely used for noise 

reduction and showed that it can successfully identify and remove ocular and muscular 

artefacts especially for eye movements and blinking based artefacts from EEG 

recordings (Vigário, Särelä, Jousmäki, Hämäläinen & Oja, 2000; Jung et. al, 2000; 

Vorobyov & Cichocki, 2002; Iriarte, Urrestarazu, Valencia, Alegre, Malanda, Viteri & 

Artieda, 2003; James & Gibson, 2003; Delorme & Makeig, 2004; Joyce, Gorodnitsky 

& Kutas, 2004; Flexer, Bauer, Pripfl & Dorffner, 2005; Crespo-Garcia, Atienza & 

Cantero, 2008; Zhou & Gotman, 2008; Safieddine et.al,2012; Somers & Bertrand, 2016; 

Zou, Nathan & Jafari, 2016; Frølich & Dowding, 2018). 
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2.3.3  Wavelet Transformation 

Wavelet transformation, also known as wavelet decomposition, which was formulated 

by Grossman and Morlet (1985), is a time-frequency analysis technique that transforms 

a time domain signal into different frequency components to provide an understanding 

about the characteristic of the signal (Kumar, Arumuganathan, Sivakumar & Vimal, 

2008; Turnip & Pardede, 2017; Heydari & Shahbakhti, 2015; Maddirala & Shaik, 2016; 

Satapathy, Dehuri & Jagadev, 2016).  It decomposes the signal into a set of functions 

called wavelet functions which fulfils the conditions such as zero mean amplitude, 

continuity and finite or near finite duration (Adeli, Zhou & Dadmehr, 2003) and has 

been frequently applied in signal processing for the feature extraction and denoising. 

Wavelet transformation can be divided into two categories; Continuous Wavelet 

Transform (CWT) and Discrete Wavelet Transform (DWT). In the CWT, the input 

signal is expressed as a “weighted integral of the continuous wavelet function” and in 

the DWT, it is expressed as a “weighted sum of series of wavelet functions” because 

wavelet functions are taken at discrete points (Adeli et al., 2003; Satapathy et al., 2016).  

 

Wavelet transformations, especially DWT, which was found computationally faster than 

the CWT, has been used on EEG signals for epileptiform pattern detection (Indiradevi, 

Elias, Sathidevi, Dinesh Nayak & Radhakrishnan, 2008), epileptic seizure detection and 

characterization (Schiff, Aldroubi, Unser & Sato, 1994; Goelz, Jones & Bones, 2000; 

Alegre, Labarga, Gurtubay, Iriarte, Malanda & Artieda, 2003; Mormann, Fell, 

Axmacher, Weber, Lehnertz, Elger & Fernandez, 2005; Sharma, Pachori & Acharya, 

2017; Wang et al., 2019), artefact removal (Zikov, Bibian, Dumont, Huzmezan & Ries, 

2002; Rong-Yi & Zhong, 2005; Krishnaveni, Jayaraman, Anitha & Ramadoss, 2006; 

Aminghafari, Cheze & Poggi, 2006; Iyer & Zouridakis, 2007; Kumar et al., 2008; 

Akhtar, Mitsuhashi & James, 2012; Safieddine et. al, 2012; Jafarifarmand et al., 2013; 

Peng, Hu, Shi, Ratcliffe, Zhao, Qi & Gao, 2013; Mahajan & Morshed, 2015; Heydari & 

Shahbakhti, 2015; Turnip & Pardede, 2017). 

2.4    Machine Learning and Deep Learning for EEG 

As mentioned above, most common traditional noise reduction techniques have been 

used for denoising the EEG signals and they successfully increased the SNR. In addition 
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to those traditional techniques, machine learning and deep learning approaches are also 

used on EEG data for different purposes. 

 

Machine learning and deep learning have important roles in our lives, range of its 

application areas are extremely wide. One of the developing areas is the signal 

processing, especially for EEG signals.  

2.4.1  Supervised and Unsupervised Machine Learning  

An American computer scientist Tom Mitchell defines machine learning as “A computer 

program is said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E.” (Mitchell, 1997).  

 

Machine learning can be divided into two broad groups; supervised learning and 

unsupervised learning. In supervised learning, data is labelled, each instance is 

associated with a provided target value. It learns to predict new examples’ target values 

from a training set of examples of features and targets.  

 

Supervised learning tasks can be grouped as regression, where targets are continuous 

values and classification, where targets are categories. Logistic regression, decision tree, 

Support Vector Machine (SVM), random forest and k-nearest neighbors (kNN) are some 

examples for the supervised learning algorithms. 

 

In unsupervised learning, data is unlabelled, which means that data does not contain any 

target values. It learns to draw samples from a distribution, discover interesting 

structures in the data, denoise the data from some distribution and learns to cluster the 

data into related groups. Some of the popular unsupervised algorithms are; k-means 

clustering and hierarchical clustering. PCA and ICA can be also counted as an 

unsupervised learning algorithm. (Goodfellow, Bengio & Courville, 2016) 
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2.4.2  Deep  Learning  

Deep learning is a subfield of machine learning which is inspired by the biological neural 

networks of the brain (Goodfellow et al., 2016). It extracts low-level and high-level 

features of the data without any manual feature selections (Lauzon, 2012; Li, Lee, Jung, 

Youn & Camacho, 2019).  

 

Neural Networks (NN) are the set of algorithms, inspired by the human brain. They 

consist of at least three layers; input layer, hidden layer and output layer. Input layers 

take the input data, hidden layers encode high-level features between input and output 

and output layers which capture the result of the model and outputs the predicted value. 

Each layer contains neurons, also referred to as units, which are connected with each 

other by weights. It is possible to have more than one hidden layer. Deep learning 

architectures are the architectures which contain at least two hidden layers. An example 

for a deep learning architecture with two hidden layers can be found in Figure 2.4.2-1.  

They can directly optimize their parameters and extract features by automatically 

updating its weights with backpropagation (Li et al., 2019; Craik, He & Contreras-Vidal, 

2019).  

 

Deep learning is extensively and successfully used for various research area. Some of 

those are; emotion recognition, seizure detection, natural language processing, computer 

vision. Most prevalent deep learning architectures Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs) and Autoencoders (AEs) will be examined 

for EEG data in this research. 

 

Figure 2.4.2-1 Deep learning architecture with two hidden layers 
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2.4.3  Applications of Deep Learning on EEG Data 

2.4.3.1   Convolutional Neural Network (CNN) 

CNN is a type of deep neural network architecture. The concept is rooted in a work by 

Hubel and Wiesel which is  about primary visual cortex of cats and monkeys. It is noted 

that their visual cortex contains neurons that individually respond to small regions of the 

visual field (Hubel & Wiesel, 1968) which are similar to CNN’s filters. (LeCun, 

Kavukcuoglu & Farabet, 2010). Inspired by Hubel and Wiesel, Fukushima designed the 

first CNN architecture which is called “Neocognitron“ (Fukushima, 1980). In 1989, 

LeCun combined the CNN with backpropagation to learn hand-written digits (LeCun, 

1989). 

 

CNN consists of convolutional layers and pooling layers. Convolutional layers contain 

filters, sometimes referred to as convolutional kernels, feature detectors which are 

applied systematically on the input to produce subsamples of the input, called feature 

maps. Pooling layers are used for reducing the size of those feature maps. Generally 

maximum pooling is used to preserve the strong features (LeCun et al., 2010; Yao, 

Plested & Gedeon, 2018). CNN has proved its success on many tasks such as object 

recognition and detection, speech recognition, computer vision with image, video, sound 

and text. 

 

Hence CNNs can directly extract features, no prior knowledge is required about the data 

and availability of large datasets for EEG signal is increased, CNN architectures are 

frequently used on EEG data for various tasks. 

 

Mirowski, Madhavan, LeCun and Kuzniecky (2009) compared the performance of the 

CNN with logistic regression, and SVM for epileptic seizure detection. As a pre-

processing, they used wavelet transforms for feature extraction, then they separately fed 

them into CNN and other models. They reported that CNN outperformed other models. 

Antoniades, Spyrou, Took and Sanei (2016) also compared different CNN architectures 

for epileptic seizure detection and reported that more than two convolutional layers do 

not improve the accuracy. Liang, Lu, Wang and Zhang (2016) applied CNN with SVM 

at the end of the architecture and compared it with random forest and they reported that 
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CNN architecture resulted with higher accuracy for epileptic seizure detection. Page, 

Shea and Mohsenin (2016) used CNN with maximum pooling layer connected to a 

softmax classifier for another epileptic seizure detection task. Different than the previous 

examples, Acharya, Oh, Hagiwara, Tan and Adeli (2018) increased the depth and used 

thirteen layered CNN with 5 convolutional layers with 5 maximum pooling layers and 

three fully connected layers. Ullah, Hussain, Qazi and Aboalsamh (2018) proposed an 

ensemble of pyramidal one-dimensional CNN models and connected them with a 

softmax classifier for epileptic seizure detection. Finally, for the epileptic seizure 

detection, Wei, Zhou, Chen, Zhang and Zhou (2018) and Emami, Kunii, Matsuo, 

Shinozaki, Kawai and Takahashi (2019) converted EEG signals into images to use as 

input for CNN. 

 

For emotion recognition tasks,  Yanagimoto and Sugimoto (2016) used CNN consists 

of 5 convolutional layers with one fully connected layer and a softmax layer. Qiao, Qing, 

Zhang, Xing and Xu (2017) used CNN consists of two convolutional layers following 

by a maximum pooling layer then a fully connected layer and output layer with a softmax 

classifier and Salama, El-Khoribi, Shoman and Shalaby (2018) used CNN which 

contains 2 convolutional layers, each of them following by a maximum pooling layer, 

and they connected them into fully connected layer with a softmax classifier. Finally, 

for the emotion recognition Yang, Han and Min (2019) applied multi-column structure 

consist of 5 CNNs and they used weighted sum for the final decision. They reported that 

their architecture outperformed existing models. 

 

For motor imagery tasks, Sakhavi, Guan and Yan (2015) combined parallel CNNs with 

multilayer perceptron and reported that their architecture outperformed SVM and CNN 

architectures. Tang, Li and Sun (2017) used a CNN which consists of 2 convolutional 

layers with a fully connected layer and compared it with SVM, common spatial pattern 

with SVM, and autoregression and they concluded that CNN architecture can improve 

the classification performance. Wang, Cao, Zhang, Gong, Sun and Wang (2017) 

compared the CNN architectures with different activation functions such as Rectified 

Linear Unit (RELU), Scaled Exponential Linear Unit (SELU) and Exponential Linear 

Unit (ELU) and reported that CNN with SELU activation resulted with higher accuracy 

and finally for the motor imagery task, Abbas and Khan (2018) used Fast Fourier 
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Transform Energy Map for feature selection then applied a CNN and compared it with 

the existing 12 work and reported that their model can leverage the spatial and spectral 

information for more accurate classifications. 

 

CNN architectures are also extensively used for mental workload tasks (Hajinoroozi, 

Mao, Jung, Lin & Huang, 2016; Jiao, Gao, Wang, Li & Xu, 2018; Zeng, Yang, Dai, Qin, 

Zhang & Kong, 2018) and abnormal EEG detection (Vrbancic & Podgorelec, 2018; 

Leeuwen, Sun, Tabaeizadeh, Struck & Westover, 2019). 

2.4.3.2   Recurrent Neural Networks (RNN) 

RNN is another type of a deep neural network. They are rooted based on a work by an 

American psychologist David Rumelhart (Rumelhart, 1986). They are successful with 

sequential data such as timeseries, audio, video and text, and they are widely used for 

machine translation, speech recognition, language modelling and text generation. 

 

The network was inspired by the cyclical connectivity of neurons in the brain, it  has 

loops, neurons in the hidden layers are recursive; which means that their output is 

connected back to itself, so output of a hidden layer are not only depend on the input at 

that timestep but also depend on the previous timesteps (Mirowski et al., 2009; Graves, 

2012; Goodfellow et al., 2016). RNNs face vanishing gradient problems during training. 

To solve the vanishing gradient problems, Long Short Term Memory (LSTM) was 

introduced by Hochreiter and Schmidhuber in 1997. It is the special kind of RNN which 

can learn long-term dependencies (Michielli, Acharya & Molinari, 2019).  

 

LSTMs can control which information to add to or remove from cell state by its gates. 

They contain 3 gates: input, output and forget gate. Forget gate controls which 

information to remove from the cell state, input gate controls which new information to 

add to the cell state and output gate controls which information to output based on the 

cell state (Yu, Si, Hu & Zhang, 2019). Diagram of LSTM can be seen in Figure 2.4.3.2-

1.  
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Figure 2.4.3.2-1 LSTM architecture (Yu et al., 2019) 

 

As an alternative to the LSTM, Gated Recurrent Unit (GRU) was proposed in 2014 (Cho, 

Merriënboer, Gulcehre, Bougares, Schwenk & Bengio, 2014). The difference between 

LSTM and GRU is that GRU has 2 gates; update gate and reset gate. Update gate is the 

combination of forget gate and input gate from the LSTM. Update gate controls how 

much of the information from the previous timestep to keep and reset gates controls how 

much of the new information to pass to the next timestep. Diagram of a GRU can be 

seen in Figure 2.4.3.2-2. 

 

 

Figure 2.2.3.2-2 GRU architecture (Yu et al., 2019) 
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Since the EEG signals are also sequential, they have been extensively studied with 

different RNN architectures. LSTM architectures with various configurations are widely 

used for different tasks.  

 

For seizure detection Vidyaratne, Glandon, Alam and Iftekharuddin (2016) used RNN,  

Ahmedt-Aristizabal, Fookes, Nguyen and Sridharan (2018) and Tsiouris, Pezoulas, 

Zervakis, Konitsiotis, Koutsouris and Fotiadis (2017) used LSTM followed by a fully 

connected layer. Tsiouris et al. (2017) also compared LSTM network’s classification 

performance with decision tree and SVM and reported that LSTM outperformed other 

models. Finally,  Hussein, Palangi, Ward and Wang (2019) used LSTM connected with 

a fully connected layer and compared the network with existing works’ networks such 

as SVM, NN, decision tree, RNN and reported that their network outperformed those 

methods. 

 

For emotion recognition, Soleymani, Asghari-Esfeden, Pantic and Fu (2014) used 

LSTM and compare it with multi-linear regression and support vector regressor and they 

reported that LSTM outperformed those methods and Alhagry, Fahmy and El-Khoribi 

(2017) also used LSTM and compared their method with 4 existing work and reported 

that their method achieved highest accuracy for the emotion classification. LSTM 

architectures were also successfully performed for motor imagery tasks (Wang et al., 

2017; Wang, Jiang, Liu, Shang & Zhang, 2018; Luo, Zhou & Chao, 2018),  lapse and 

confusion detection (Davidson, Jones & Peiris, 2007; Ni, Yuksel, Ni, Mandel & Xie, 

2017) and sleep stage classification (Michielli et al., 2019).  

 

RNN architectures have been also used with CNN architectures for hybrid models. 

Convolutional recurrent networks which are consist of convolutional layers and LSTM 

layers (Thodoroff, Pineau & Jim, 2016; Li, Song, Zhang, Yu,  Hou &  Hu, 2016; Li, 

Huang, Zhou & Zhong, 2017; Supratak, Dong, Wu & Guo, 2017; Bresch, Großekathöfer  

& Garcia-Molina, 2018; Hefron, Borghetti, Kabban, Christensen & Estepp, 2018; 

Kuanar, Athitsos, Pradhan, Mishra & Rao, 2018; Ma, Qiu, Du, Xing & He, 2018; Yang, 

Wu, Qiu, Wang & Chen, 2018) and convolutional layers with GRU layers 

(Golmohammadi, Ziyabari, Shah, Weltin, Campbell, Obeid & Picone, 2017; Roy, Kiral-
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Kornek & Harrer, 2018; Affes, Mdhaffar, Triki, Jmaiel & Freisleben, 2019; Choi, Park, 

Kim, Cho & Kim, 2019) are the widely used hybrid models for CNN and RNN. 

2.4.3.3   Autoencoders  

Autoencoder (AE) is the NN that is used for unsupervised learning. AEs are similar to 

PCAs, they reduce the dimension by finding the important features of the input and they 

are widely used in denoising and feature extraction. AE’s aim is to learn the compressed 

representation of the input. Example structure for an AE can be seen in Figure 2.4.3.3-

1. They contain two main parts; “encoder” and “decoder”. Encoder part takes the input 

and compresses it into reduced dimensional code. Then the decoder part reconstructs the 

input from that code (Lauzon, 2012; Xing et al., 2019), thus they reduce the dimension 

of the input without losing any important information. AEs try to minimize the loss 

function L, expressed by Goodfellow et al. (2016) as follows: 

 

𝐿(𝒙, 𝑔(𝑓(𝒙)) 

 

There are many types of AE available such as sparse autoencoder, denoising 

autoencoders, variational autoencoders and stacked autoencoders. Stacked autoencoders 

are the AEs which are consist of multiple layers. Example structure for a stacked AE 

can be seen in Figure 2.4.3.3-2. The details of other types of AEs will be discussed in 

the next section.  

 

Figure 2.4.3.3-1 Autoencoder structure example 

Input Code Output
x x'
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Figure 2.4.3.3-2 Stacked autoencoder structure example 

 

EEG data has been used as an input for different types of AEs on various tasks. Helal et 

al. (2017) compared PCA and autoencoder for motor imagery tasks. They applied PCA 

then used linear discriminant analysis as a classifier for motor imagery task. Also, they 

used autoencoder with linear discriminant analysis classifier to compare the 

performances and they reported that autoencoder outperformed PCA. Jirayucharoensak, 

Pan-Ngum and Israsena (2014) used PCA for feature extraction, then they fed them into 

a stacked autoencoder which connected to a softmax classifier for an emotion 

recognition task. Supratak, Li and Guo (2014) used directly stacked autoencoders which 

connected to a softmax classifier for epileptic seizure detection. Yuan, Xun, Jia and 

Zhang (2017) converted EEG signals to spectrograms as inputs then fed them into 

stacked sparse denoising autoencoders for channel selection then for the detection of 

epileptic seizure they fed them into fully connected layer with a softmax classifier. 

Narejo, Pasero and Kulsoom (2016) used stacked sparse autoencoders connected with 

softmax classifiers for eye state classification and compared them with a deep belief 

network and reported that stacked sparse autoencoders outperformed deep belief 

network. Vařeka and Mautner (2017) used stacked autoencoder with a softmax classifier 

for P300 component detection and compared it with this task’s state-of-the-art methods 

and they reported that stacked autoencoder resulted with higher accuracy. Tsinalis, 

Matthews and Guo (2016) first applied Morlet wavelet for  feature extraction, then fed 

them into a stacked sparse autoencoder with softmax classifier for sleep stage 

classification.  
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Besides those examples, convolutional autoencoders (CAEs) which are autoencoders 

built upon convolutional layers also used on EEG data. Yao et al. (2018) converted EEG 

data into coloured images to use them as an input for a CAE for feature extraction and 

then connected them with fully connected layers for a classification task for alcoholism. 

Wen and Zhang (2018) were also use CAEs for feature extraction and then they fed them 

into different classifiers such as kNN, SVM and decision tree for epileptic seizure 

detection. 

 

2.5    Autoencoders for Noise Reduction on EEG 

As it mentioned above, there are various types of AE. In this section, sparse autoencoder, 

denoising autoencoders, variational autoencoders will be briefly described and examples 

of their applications for noise reduction on EEG data will be given.  

2.5.1  Sparse Autoencoders 

Sparse autoencoders are the autoencoders which have a sparsity penalty as training 

criteria. This penalty constrains the activation of the units in the hidden layers to be 

sparse, so the AE do not to entirely copy the input as an output, but it encourages the AE 

to learn the useful features. Sparse autoencoders try to minimize the loss function as 

follows (Goodfellow et al., 2016) ;  

𝐿(𝒙, 𝑔(𝑓(𝒙))) + 	𝛺(𝒉) 

 

where h is the code layer, 𝒉 = 	𝑓(𝒙)  and 𝑔(h) is the decoder output. 

 

Sparse autoencoders have been used for noise reduction of EEG data (Lin, Ye, Huang, 

Li, Zhang, Xue & Chen, 2016; Yang, Duan & Zhang, 2016; Hosseini, Soltanian-Zadeh, 

Elisevich & Pompili, 2017; Yang, Duan, Fan, Hu & Wang, 2018). Yang et al. (2016) 

used sparse autoencoders for removing the electrooculogram artefacts from the EEG 

signal and they found out that noise reduction with spare autoencoder is time saving than 

ICA and it requires less channels for the removal. Lin et al. (2016) used stacked sparse 

autoencoder to reduce the noise then used softmax classifier for epileptic seizure 
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detection. Hosseini et al. (2017) first applied PCA and ICA on the EEG data, then they 

used stacked sparse autoencoder with a softmax classifier to detect epileptic seizure. 

Yang et al. (2018) used sparse autoencoders to remove ocular artefacts and reported that 

sparse autoencoders outperformed  the traditional noise reduction techniques.  
 

2.5.2  Denoising Autoencoders 

Another type of AEs is the denoising autoencoder (Vincent, Larochelle, Bengio & 

Manzagol, 2008). The difference between denoising autoencoders and other 

autoencoders is that denoising autoencoders first corrupt the input x into 𝒙C by some form 

of noise such as binary noise or Gaussian noise. Corruption by binary noise can be 

implemented by choosing randomly fixed number of input and force their value to be 

zero. Corruption by Gaussian noise can be implemented by adding a number of 

generated Gaussian random value into the data (Dong, Liao, Liu & Kuang, 2018). After 

corruption of the input, they stochastically learn to reconstruct the corrupted inputs into 

original input. The loss function for the denoising autoencoder is shown below 

(Goodfellow et al., 2016) ; 

𝐿(𝒙, 𝑔(𝑓(	𝒙	C))) 

Xu and Plataniotis (2016) used stacked denoising autoencoders for noise reduction then 

connected them with a softmax classifier for emotion recognition. Yin and Zhang (2017) 

used stacked denoising autoencoder for noise reduction then used multilayer perceptron 

classifier for mental workload task.  

 

Denoising autoencoders can be used with a sparsity penalty thus they become denoising 

sparse autoencoders (Luo & Wan, 2013).  Qiu, Zhou, Yu and Du (2018) used denoising 

sparse autoencoder, they both introduce sparsity penalty and corrupted the input. They 

reconstructed the EEG signals then fed them into a denoising sparse autoencoder with  

a softmax classifier for an epileptic seizure detection. Leite et al. (2018) used denoising 

sparse autoencoders which are consist of convolutional layers as a noise reduction 

technique. 
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2.5.3  Variational Autoencoders 

Variational autoencoders are the generative models, which can generate samples that are 

not available in the input. They draw a sample 𝒛 from the code distribution 

𝑝FGHIJ(𝒛)	and run it through a differentiable generator network 𝑔(z) then x is sampled 

from a distribution 𝑝FGHIJ(𝒙; 	𝑔(𝒛)) = 𝑝FGHIJ(𝒙	|	𝒛) (Goodfellow et al., 2016; Dong et 

al., 2018). 

 

Wang, Abdelfattah, Moustafa and Hu (2018) used stacked variational autoencoder to 

extract features to fed into a Gaussian mixture-hidden Markov model for classification 

task. Aznan, Atapour-Abarghouei, Bonner, Connolly, Al Moubayed and Breckon (2019) 

used variational autoencoder built upon convolutional layers to generate synthetic EEG 

data to train a steady state visual evoked potential classifier. Bi, Zhang and Lian (2019) 

firstly used ICA and Kalman smoother for noise reduction of EEG before applying it 

directly into a variational autoencoder. After feature extraction with the autoencoder, 

they fed its output into SVM for a classification task. Dai, Zheng, Na, Wang and Zhang 

(2019) converted EEG data into image and fed them into a deep CNN for feature 

extraction. Then they used the output of the CNN as input to stacked variational 

autoencoder with a classifier for motor imagery task. They also compared the model 

with CNN, CNN followed by a stacked autoencoder and reported that CNN followed by 

a stacked variational autoencoder outperformed other models. 

2.6    Summary of Literature Review  

2.6.1  Table with Summary of Reviewed Papers  

Reviewed papers about applications of deep learning on EEG data are summarised on 

the Table 2.6.1-1. As it can be seen from the table various types of deep neural networks 

have been used on EEG data for both supervised and unsupervised learning. Some 

investigations worked with a single channel EEG data and others worked with multi-

channel EEG data which vary from 3 channels to 128 channels. For the classification 

tasks, it is reported that deep learning architectures such as CNNs, RNNs and AEs 

outperformed the classical supervised learning techniques such as decision trees and 

SVM. For the noise reduction, it is also reported that models trained with deep learning 
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architectures performed as successfully as or better than the traditional noise reduction 

techniques PCA, ICA and wavelet transformations. 

2.6.2  Gaps in the literature 

Deep learning architectures have been widely used for noise reduction, feature 

extraction or feature selection since the computational power is developed and 

availability of large EEG dataset is increased.  

 

Hence the EEG signals are timeseries data, autoencoders built upon LSTM based RNN 

layers are constantly used directly for noise reduction and also for classification tasks 

with fully connected layers because they do not make any assumptions, they extract 

features without the need of any prior knowledge about the data and without identifying 

the artefacts manually and they easily overcome vanishing gradient problem. Although 

GRUs have simpler structure than LSTMs and they require less time for training, not 

much work done with GRU. 

2.6.3  Research  questions  

“Can a stacked autoencoder built upon Gated Recurrent Unit based Recurrent Neural 

Network layers perform better and have a higher signal-to-noise ratio when compared 

to Principal Component Analysis for noise reduction of electroencephalography 

signals?” 
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Table 2.6.1-1 Summary of Reviewed Papers 

Papers
Number of 
Channels Application of Deep Learning

Copmarison 
Against Classical 

Methods
Helal et al. (2017) 22 AE Yes
Wen & Zhang (2018) 23 CAE No
Yao et al. (2018) 64 CAE No
Abbas & Khan (2018), Wei et al. (2018) 22 CNN Yes
Acharya et al. (2016), Ullah et al. (2018) 1 CNN Yes
Antoniades et al. (2016) 12 CNN No
Emami et al. (2018) 19 CNN No
Hajinoroozi et al. (2016) 30 CNN Yes
Jiao et al. (2018) 21 CNN Yes
Liang et al. (2016), Yanagimoto & Sungimoto (2016) 24 CNN Yes
Mirowski et al.(2009) 15 CNN Yes
Page et al. (2016) 18 CNN Yes
Qiao et al. (2017) 32 CNN No
Sakhavi et al. (2015), Vrbancic et al. (2018) 8 CNN Yes
Salama et al. (2018) , Yang et al. (2019) 32 CNN Yes
Tang et al. (2017) 28 CNN Yes
Zeng et al. (2018) 16 CNN Yes
Affes et al. (2019), Choi et al. (2019) 23 CNN + GRU No
Roy et al. (2018) 4 CNN + GRU No
Golmohammadi et al. (2017) 1 CNN + GRU, CNN + LSTM No
Bresch et al. (2018), Supratak et al. (2017) 1 CNN + LSTM No
Hefron et al. (2018) 128 CNN + LSTM No
Kuanar et al. (2018) 64 CNN + LSTM Yes
Li et al. (2016), Li et al. (2017), Yang et al. (2018) 32 CNN + LSTM Yes
Ma et al. (2018) 64 CNN + LSTM No
Thodoroff et al. (2016) 3 CNN + LSTM Yes
Wang et al. (2017) 3 CNN, LSTM Yes
Leite et al. (2018) 19 Denoising Sparse AE Yes
Qiu et al. (2018) 100 Denoising Sparse AE Yes
Ahmedt-Aristizabal et al. (2018) 1 LSTM No
Alhagry et al. (2017) 32 LSTM Yes
Davidson et al. (2017) 16 LSTM No
Hussein et al. (2019), Michielli et al. (2019), Ni et al. (2017) 1 LSTM Yes
Soleymani et al. (2014) 14 LSTM Yes
Tsiouris et al. (2017) 18 LSTM Yes
Wang et al. (2018) 22 LSTM No
Luo et al. (2018) 22 LSTM, GRU Yes
Vidyaratne et al. (2016) 18 RNN Yes
Yang et al. (2016) 3 Sparse AE Yes
Yang et al. (2018) 32 Sparse AE Yes
Jirayucharoensak et al. (2014) 32 Stacked AE Yes
Supratak et al. (2014) 23 Stacked AE No
Xing et al. (2019) 32 Stacked AE + LSTM Yes
Xu et al. (2016) 32 Stacked Denoising AE Yes
Yin et al. (2017) 11 Stacked Denoising AE Yes
Hosseini et al. (2017) 15 Stacked Sparse AE Yes
Lin et al. (2016) 128 Stacked Sparse AE Yes
Narejo et al. (2016) 14 Stacked Sparse AE No
Tsinalis et al. (2016) 1 Stacked Sparse AE Yes
Yuan et al. (2017) 23 Stacked Sparse AE Yes
Dai et al. (2019) 5 Stacked Variational AE No
Wang et al. (2018) 52 Stacked Variational AE No
Bi et al. (2019) 16 Variational AE Yes
Aznan et al. (2019) 1 Variational AE with Convolutional Layers No
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3. DESIGN AND METHODOLOGY 

In this chapter, the null hypothesis (𝐻,)	and the alternate hypothesis (𝐻+)	are described. 

Data understanding, data preparation, architecture of the models, hyperparameters, 

strengths and limitations of the architecture, technical and semantic evaluation metrics 

are also described in order to reject or accept the null hypothesis. 

3.1    Hypothesis  

(𝑯𝟏) ∶ If a stacked autoencoder built upon Gated Recurrent Unit based Recurrent Neural 

Network layers is used for noise reduction of electroencephalography signals, the signal-

to-noise ratio can be increased when compared to Principal Component Analysis. 

 

(𝐻,) ∶ If a stacked autoencoder built upon Gated Recurrent Unit based Recurrent Neural 

Network layers is used for noise reduction of electroencephalography signals, the signal-

to-noise ratio cannot be increased when compared to Principal Component Analysis. 

3.2    Data  

3.2.1  Data  Understanding  

The data used in this research is originally from a work by Ford et al. (2013) which can 

be found on Kaggle1. It contains EEG signals for 81 subjects; 49 of them diagnosed with 

schizophrenia and 32 of them are healthy control subjects, in separate 81 files. Each file 

has signals that were recorded by 64 electrodes (channels) which were placed on each 

subjects’ scalps with 10-20 system. Each subject was recorded under three different 

conditions; 

 

For condition 1 (Button Tone),  in every 1-2 seconds subject pressed a button to deliver 

1000 Hz, 80 dB sound pressure level, tone with no delay between  pressing a button and 

tone onset. For condition 2 (Play Tone) subject passively listened to the tones that were 

generated for condition 1. For condition 3 (Button Alone) similar to condition 1, subject 

 
1 https://www.kaggle.com/broach/button-tone-sz 
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pressed  a button but without a tone generated. Each condition has approximately 100 

trials and each trial have a record for 700ms. The stimuli for each trial starts at 100ms, 

which indicates that first 100ms are considered as noise and the rest 600ms considered 

as signal combined with signal noise. An example of a signal from one channel and one 

trial can be seen from figure 3.2.1-1. 

 

 

Figure 3.2.1-1 Example of an EEG signal 

3.2.2  Data Preparation 

As a data preparation step, firstly 81 files were combined into one list and subject 46 

was removed because it does not have data for condition 3. Then the list was divided 

into 3 separate lists by each condition. 

 

Hence EEG signals are sequences, for training and test splitting, data did not directly 

split randomly. Firstly, for each subject, each condition’s trials were divided into 3 parts. 

Then randomly 70% of each part was selected for the train set and 30% for the test set. 

This split was applied for each condition for all subjects which resulted with 3 train sets 

and 3 test sets for each condition for multiple people (across subject). 
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For GRU-AE, input was reshaped as 3-dimensional array as (samples, timesteps, 

features). For sample, number of observations for each subject’s each condition’s each 

trial was considered, 700ms was taken into account as timesteps and 64 channels were 

considered as features. With all the data from 80 subjects, train and test sets became; 

 

• For condition 1: train_C1 (5336, 700, 64), test_C1 (2402, 700, 64). 

• For condition 2: train_C2 (5189, 700, 64), test_C2 (2355, 700, 64). 

• For condition 3: train_C3 (5319, 700, 64), test_C3 (2395, 700, 64). 

 

For the last step of data preparation, data was standardized with StandardScaler so the 

mean of the distribution became zero and the standard deviation became one.  

3.3    Modelling  

In this section design of the proposed architecture and its hyperparameters will be 

described. 

3.3.1  GRU-AE Design 

For the experiment, autoencoder built upon GRU based RNN layers is purposed as 

GRU-AE. Three main architectures were designed with different number of layers, and 

they were manipulated by different number of neurons. As a result, totally 9 models 

were designed, 3 for each main architecture which are; 

• Architecture 1: AE with one GRU layer in the middle. For this architecture three 

models were designed where S is 45, 35 and 25. 

• Architecture 2: AE with one GRU layer for the encoder part and one GRU layer 

for the decoder part. For this architecture three models were designed too. 𝑥+ and 

S for those models are 19 and 45, 29 and 35, 39 and 25 respectively. 

• Architecture 3: AE with two GRU layers for encoder and two GRU layers for 

decoder part. Three models were also designed for this architecture.	𝑥+, 𝑥8 and 

S for those models are 58, 55 and 45, 55, 45 and 35 and for the last model 51, 38 

and 25 respectively. 
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Figure 3.3.1-1 Architecture 1 

 

 

Figure 3.3.1-2 Architecture 2  
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Figure 3.3.1-3 Architecture 3 

3.3.2  Hyperparameters  

It is important to select the right hyperparameters for an effective model. 

Hyperparameters for the GRU-AE are; 

• Activation function : Activation functions determine the output of hidden 

neurons based on its input. They can be linear and non-linear. The default 

activation function for the GRU layer in Keras is hyperbolic tangent activation 

function (tanh). Since the EEG inputs are continuous signals, and the task is to 

reconstruct the EEG signals, outputs should not be limited in a range, they can 

be any real value. To have continuous real valued outputs, linear activation 

function is selected. 

• Number of epochs : Number of epochs defines the number of times that the 

whole training set is passed forward and backward through the learning 

algorithm. To prevent overfitting, early stopping technique is applied. It will be 

trained till the validation error has failed to decrease for a set number of training 

iterations (model patience = 10). 

• Batch size : Batch size is the number of training examples to be passed through 

the learning algorithm for each epoch. 512 is selected for the batch size. 
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• Optimizer : Optimizers  help to reduce the error over time. Since they require 

little memory space and make the model converge faster than the other 

optimizers, Adam optimizer is selected. 

• Dropout rate : Dropout is a regularization strategy that tries to prevent 

overfitting. The dropout rate is selected 0.25 

• Loss function : Loss function is used to evaluate how well the learning algorithm 

models the given data. Reconstruction of timeseries EEG data with autoencoders 

can be treated as a regression problem. Mean Squared Error (MSE) is selected 

since it is commonly used for regression.     

3.4    Evaluation of the Architecture 

3.4.1  SNR  

SNRs can be calculated with the following formula: 

𝑆𝑁𝑅 = 20	 log+,(
.
/

) 

 

𝑁 =	0
∑(𝑛𝑜𝑖𝑠𝑒)8

𝑙𝑒𝑛(𝑛𝑜𝑖𝑠𝑒) 											𝑆 = 	
0
∑(𝑠𝑖𝑔𝑛𝑎𝑙)8

𝑙𝑒𝑛(𝑠𝑖𝑔𝑛𝑎𝑙) 

 

where signal is the voltage amplitude readings of the signal, noise is the voltage 

amplitude readings of the noise and len is the length of readings. 

 

Since we know that the stimuli for each trial starts at 100ms, signal (S) and noise (N) 

can be easily calculated and eventually SNR can be calculated by the common logarithm 

of the ratio of the signal and noise multiply by 20. 

 

For the comparison; 

• SNR of the test data before the reconstruction, 

• SNR of the PCA reconstructed test data,  

• SNR of the GRU-AE reconstructed test data will be calculated for each 

condition. 
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3.4.2  Hypothesis Testing 

To see whether the GRU-AE have significantly higher SNR than the PCA, firstly three 

training sets for each condition are fed into train 9 different GRU-AE models. Then three 

test sets for each condition are fed into both PCA and trained GRU-AEs to reconstruct 

the signals. After the reconstructions, reconstructed signals and raw signals (original 

signals from the test set) are plotted to see how accurate the signals are. SNRs for raw 

and reconstructed signals for each condition will be calculated. SNRs will be calculated 

for all trials by averaging 64 channels’ SNRs (trial-wise). 

 

Because of the nature of the brain signals, distributions of the SNRs generally overlap, 

and the difference cannot be seen when applying some of the statistical tests such as t-

tests. Since it is a distribution-free approach, Harrell-Davis test will be conducted 

(Harrell & Davis, 1982). 

 

Harrell-Davis decile values for the SNR distributions will be calculated for 9 deciles, 

then Harrell-Davis decile value differences between raw signals and PCA reconstructed 

signals (PCA_SNRs), and Harrell-Davis decile differences between raw signals and 

GRU-AE reconstructed signals (GRU_SNRs) will be calculated. To statistically show 

the performance of the model, mean difference of the GRU_SNRs and the PCA_SNRs 

will be compared.  

 

Positive mean difference values will indicate that GRU-AE reconstructed signals have 

higher SNR when compared to PCA and it will show that there is an evidence to support 

to reject the null hypothesis and accepting the alternate hypothesis which indicates the 

GRU-AEs performed better than the PCA. Also, if majority of the decile values (5 or 

more deciles) are positive, it will also indicate that GRU-AE reconstructed signals have 

higher SNR than the PCA reconstructed signals. 

 

Those evaluation steps will be conducted for 9 different GRU-AE models and each of 

them will be compared with PCA. The best model will be selected based on the mean 

Harrell-Davis decile value differences. 
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Figure 3.4.2-1 Evaluation summary 

3.5    Summary  

To see whether a stacked autoencoder built upon GRU based RNN layers increases the 

SNR when compared to PCA for noise reduction of EEG signals, 9 different GRU-AEs 

were designed with different number of hidden layers and neurons. For each condition, 

with 80 subjects, test signals were reconstructed with PCA. For the GRU-AEs, 9 models 

were trained separately with the training sets and tested with the test signals for each 

condition to reconstruct the signals. 

 

For hypothesis testing, for each condition SNRs of the raw test signals and reconstructed 

signals will be calculated. Then Harrell-Davis decile values will be calculated for those 

SNR distributions and difference between raw test signals and reconstructed signals’ 

SNR distributions will be calculated and examined. Positive mean difference decile 

values will indicate GRU-AEs perform better than the PCA. 

 

3.5.1  Strengths of Design 

• Training time: GRUs have simpler structure than LSTMs and they require less 

time for training. 

SNR Calculation

•For raw signals
•For PCA reconstructed 

signals
•For GRU-AE 

reconstructed signals

Harrell-Davis Decile Value 
(HD) Mean Differences 
Calculation

•Calculate HDs for raw 
signals' SNRs

•Calculate HDs for GRU-
AE reconstructed SNRs

•Calculate HDs for PCA 
reconstructed SNRs

•Calculate mean HD 
differences of GRU-AE 
HDs and PCA HDs

Mean HD difference 
Comparison

•Accept or reject null 
hypothesis



 

41 

 

• Generally applicable: Proposed models can be applied for other timeseries data 

for reconstruction. 

• Evaluation metric: Because of the nature of the brain signals, distributions of 

the SNRs generally overlap, and the difference cannot be seen when applying 

other tests. A distribution-free metric Harrell-Davis will be used. 

• No prior knowledge required: GRU-AEs can extract features without the need 

of any prior knowledge about the data and without identifying the artefacts 

manually. 

• Handling Vanishing Gradient : Unlike vanilla RNNs, GRU based RNNs easily 

overcome vanishing gradient problem. 

3.5.2  Limitations of Design 

• Training time: Training deeper models with Architecture 3 requires more 

training time than Architecture 1, 2 and other deep learning architectures such as 

Convolutional autoencoders. 

 

• Using only one data: Since the whole training set divided into 3 conditions, each 

set resulted with lower sample sizes. 

 

• Trial-wise: Channel-wise analysis cannot be done since the SNRs are calculated 

by averaging the channels. 
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4. RESULTS, EVALUATION AND DISCUSSION 

In this chapter, the results from the experiment are described and evaluated, strengths 

and limitation of the selected model are detailed, and possible improvements are 

discussed. 

4.1    Results 

For the experiment, raw test signals were fed into PCA for reconstruction. Also, 9 

different GRU-AEs were designed with different number of hidden layers and neurons. 

Number of layer and neurons for each model can be seen in Table 4.1-1.  

 

Architecture 1 
(64,45,64) 
(64,35,64) 
(64,25,64) 

Architecture 2 
(64,45,19,45,64) 
(64,35,29,35,64) 
(64,39,25,39,64) 

Architecture 3 
(64,58,50,45,50,58,64) 
(64,55,45,35,45,55,64) 
(64,51,38,25,38,51,64) 

Table 4.1-1 Architecture Structures 

For the selected number of neurons, the models were trained with 3 train sets for each 

condition separately. Changes in the training and validation loss can be seen in Appendix 

A.  After training, test signals were reconstructed with 3 models for Architecture 1. To 

see the reconstruction capacity of the GRU-AEs and PCA, raw signals were plotted 

against the reconstructed signals for each condition. 

4.1.1  Architecture 1 Results 

Plots for the first model of Architecture 1 (64,45,64) is displayed in the following figures 

(for randomly selected trial and channel). Plots from other models can be found in 

Appendix B.  
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Figure 4.1.1-1 Raw vs PCA reconstructed signal for each condition 
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Figure 4.1.1-2 Raw vs GRU_AE reconstructed signal for each condition 
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4.1.2  Architecture 2 Results 

To make the GRU-AE deep, one more layer was added to the encoder and the decoder 

part. Plots for the first model of Architecture 2 (64,45,19,45,64) is displayed in the 

Figure 4.1.2-1 and Figure 4.1.2-2 and others can be found in Appendix C.  

4.1.3  Architecture  3 Results 

To make the GRU-AE deeper, another layer was added to the encoder and the decoder 

part. Plots for the first model of Architecture 3 (64,58,50,45,50,58,64) is displayed in 

the Figure 4.1.3-1 and Figure 4.1.3-2 and others can be found in Appendix D.  

 

From the plots, it can be seen that both PCA reconstructed signals and GRU-AE 

reconstructed signals are similar to raw signals.  

 

After inspecting the reconstruction capacity visually, for testing the hypothesis, SNRs 

for raw signals, PCA reconstructed signals and GRU-AE reconstructed signals were 

calculated and Harrell-Davis decile values were calculated for each SNR distribution. 

 

SNR distributions for each model was plotted and based on the mean difference decile 

values, best model was selected. 



 

46 

 

 

Figure 4.1.2-1 Raw vs PCA reconstructed signal for each condition 
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Figure 4.1.2-2 Raw vs GRU-AE reconstructed signal for each condition 



 

48 

 

 

Figure 4.1.3-1 Raw vs PCA reconstructed signal for each condition 
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Figure 4.1.3-2 Raw vs GRU-AE reconstructed signal for each condition 
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4.2    Evaluation 

In order to evaluate the proposed model, after the SNRs were calculated for raw signals, 

all reconstructed signals from 9 GRU-AE models and PCA, for each condition, Harrell-

Davis decile values for the SNR distributions were calculated for 9 deciles, then the 

Harrell-Davis decile differences between raw signals and PCA reconstructed signals 

(PCA_SNRs), and Harrell-Davis decile differences between raw signals and GRU-AE 

reconstructed signals (GRU_SNRs) were calculated. From 9 models, the model with the 

highest mean difference was selected as the best model and the model with the lowest 

mean difference was  selected as the worst performed model. Summary of the results of 

the Harrell-Davis decile calculations can be seen in Table 4.2-1. 

 

 

Table 4.2-1 Harrell Davis Decile Calculation Summary 

Positive mean Harrell Davis decile value difference indicates that all GRU-AE models 

outperformed  the PCA for noise reduction in all conditions which also means GRU-AE 

reconstructed signals have higher SNRs than the PCA reconstructed one. 

 

For all models, it can be said that the highest mean Harrell-Davis decile differences are 

highest for Condition 1 and lowest for Condition 3 which means the models performed 

better on the Condition 1 data.   

 

Architecture 1 with 45 neurons (64,45,64) was selected as the worst performed model 

when compared to other architectures since the mean Harrell-Davis decile difference is 

the lowest. Although the Architecture 1 with 45 neurons was selected as the worst 

performed model, as it mentioned before, it outperforms PCA. Best model was selected 

from Architecture 2 with (64,35,29,35,64) since it has the highest mean Harrell-Davis 

#  Positive 
differences

Mean 
Difference

# of 
Positive HD 
difference

Mean 
Difference

# of 
Positive HD 
difference

Mean 
Difference

Architecture 1 (64,45,64) 5 1.202 4 0.236 4 0.204
Architecture 1 (64,35,64) 6 1.476 5 0.302 4 0.354
Architecture 1 (64,25,64) 6 1.670 6 0.821 5 0.584
Architecture 2 (64,45,19,45,64) 6 2.325 5 0.830 4 0.786
Architecture 2 (64,35,29,35,64) 6 2.906 5 0.976 5 0.800
Architecture 2 (64,39,25,39,64) 6 2.557 6 0.837 4 0.428
Architecture 3 (64,58,50,45,50,58,64) 6 2.444 4 0.579 4 0.096
Architecture 3 (64,55,45,35,45,55,64) 6 2.420 4 0.626 4 0.574
Architecture 3 (64,51,38,25,38,51,64) 6 2.332 5 0.676 4 0.783

Condition 2 Condition 3

Architecture

Condition 1

# of Neurons
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decile difference. Summary of the structure of the  best model can be found in Appendix 

E. 

4.2.1  Condition 1 

 

In Table 4.2-2, for Condition 1, it is shown that the mean Harrell-Davis decile difference 

between PCA reconstructed signals’ and raw signals’ SNR distribution (PCA_SNRs) is 

0.175,  and the mean Harrell-Davis decile difference between GRU-AE reconstructed 

signals’ and raw signals’ SNR distribution (GRU_SNRs) is 0.321. To see if the GRU-

AE outperformed the PCA for noise reduction, Harrell-Davis decile differences (GRU-

PCA) were divided by the related decile’s PCA_SNRs.  6 deciles out of 9 have positive 

Harrell-Davis decile difference value, that means for that negative 3 deciles ( Decile 

2,3,4), PCA outperformed GRU-AE and have a higher SNR. In overall, it can be 

concluded that GRU-AE performed better since most of the deciles  (≥ 5) have positive 

Harrell-Davis decile difference and the mean Harrell-Davis decile difference is positive 

(2.906).  

 

It can be said that there is an evidence to support rejecting the null hypothesis. 

 

 

Table 4.2-2 Harrell Davis decile differences for Condition 1 (Best model) 

 

Decile PCA_SNRs GRU_SNRs GRU- PCA
(GRU-PCA)/ 
PCA_SNRs

1 -0.020 -0.692 -0.671 32.890
2 0.030 -0.347 -0.378 -12.511
3 0.081 -0.179 -0.261 -3.208
4 0.135 0.090 -0.045 -0.334
5 0.152 0.321 0.169 1.109
6 0.187 0.537 0.349 1.865
7 0.270 0.796 0.526 1.947
8 0.320 1.071 0.752 2.351
9 0.424 1.289 0.865 2.043

Mean 0.175 0.321 0.145 2.906
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4.2.2   Condition 2 

 

In Table 4.2-3, for Condition 2, it is shown that the mean Harrell-Davis decile difference 

between PCA reconstructed signals’ and raw signals’ SNR distribution (PCA_SNRs) is 

0.165,  and the mean Harrell-Davis decile difference between GRU-AE reconstructed 

signals’ and raw signals’ SNR distribution (GRU_SNRs) is 0.172. 5 deciles out of 9 

have positive Harrell-Davis decile difference value. It can be concluded that GRU-AE 

performed better since most of the deciles (≥ 5) have positive Harrell-Davis decile 

difference and the mean Harrell-Davis decile difference is positive (0.976). 

 

It can be said that there is an evidence to support rejecting the null hypothesis. 

 

 

Table 4.2-3 Harrell Davis decile differences for Condition 2 (Best model) 

4.2.3  Condition 3 

 

In Table 4.2-4, for Condition 3, it is shown that the mean Harrell-Davis decile difference 

between PCA reconstructed signals’ and raw signals’ SNR distribution (PCA_SNRs) is 

0.163,  and the mean Harrell-Davis decile difference between GRU-AE reconstructed 

signals’ and raw signals’ SNR distribution (GRU_SNRs) is 0.060. 5 deciles out of 9 

have positive Harrell-Davis decile difference value. It can be concluded that GRU-AE 

Decile PCA_SNRs GRU_SNRs GRU- PCA
(GRU-PCA)/ 
PCA_SNRs

1 -0.026 -0.560 -0.534 20.151
2 0.036 -0.322 -0.358 -9.817
3 0.064 -0.236 -0.300 -4.708
4 0.120 -0.019 -0.139 -1.158
5 0.125 0.121 -0.004 -0.033
6 0.199 0.275 0.076 0.383
7 0.239 0.503 0.264 1.104
8 0.304 0.712 0.408 1.345
9 0.428 1.076 0.648 1.513

Mean 0.165 0.172 0.007 0.976
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performed better since most of the deciles (≥ 5) have positive Harrell-Davis decile 

difference and the mean Harrell-Davis decile difference is positive (0.800). 

 

It can be said that there is an evidence to support rejecting the null hypothesis. 

 

 

Table 4.2-4 Harrell Davis decile differences for Condition 3 (Best model) 

4.3    Discussion 

In this section, strengths and the limitations of the selected model are discussed. 

4.3.1  Strengths  

• Higher SNRs: GRU-AEs performed better than the PCA. All the 9 models 

resulted with the positive mean Harrell-Davis decile differences. 

• Training time : Architecture 2 required less time than Architecture 3. 

4.3.2  Limitations 

• Training time: GRU-AEs required more training time than other techniques 

such as PCAs, CNNs. 

• Trial-wise: Channel-wise SNR differences cannot be visualised.  

 

Decile PCA_SNRs GRU_SNRs GRU- PCA
(GRU-PCA)/ 
PCA_SNRs

1 -0.017 -0.646 -0.629 36.945
2 0.020 -0.444 -0.464 -23.118
3 0.057 -0.272 -0.329 -5.804
4 0.095 -0.138 -0.233 -2.454
5 0.171 -0.012 -0.183 -1.068
6 0.190 0.201 0.011 0.060
7 0.238 0.349 0.111 0.466
8 0.307 0.630 0.323 1.055
9 0.411 0.871 0.460 1.121

Mean 0.163 0.060 -0.104 0.800
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5. CONCLUSION 

5.1    Research Overview 

Brain is the most important organ that controls the entire body. Understanding its 

cognitive and functional behaviour by its electrical activity is an interesting area. 

Electrical activities can be measured with EEG. EEG signals are used for various tasks 

such as emotion recognition, seizure detection and other clinical or cognitive research. 

It is advantageous since it has lower costs, safe, and captures the activities in real-time.  

In this research EEG signal analysis is explored. 

5.2    Problem Definition 

Besides all the advantages, EEG signals are sensitive, they can be easily affected by the 

artefacts (noise) such as eye blinking, eye movement and head movement and it is nearly 

impossible to record clean EEG signals. Power of the noise in the signals can be 

measured with SNR. Increase in the SNR indicates that the noise in the signal has 

reduced. In EEG signal analysis, to get accurate results, it is extremely important to 

reduce the noise while protecting the information in the signal. Noise reduction can be 

done with numerous techniques from traditional such as PCA, ICA to deep learning 

techniques such as CNNs, RNNs and autoencoders and it is shown that they 

outperformed traditional techniques. Hence EEG signals are sequences, they can be 

treated as timeseries, LSTM based RNN and GRU based RNN, which aim to solve 

vanishing gradient problem caused by vanilla RNNs, proved their success on sequential 

data, and autoencoder with deep neural network layers showed success for noise 

reduction, in this research autoencoders built upon GRU based RNN layers were 

investigated to see if they are successful as PCA, which is used as a baseline in this 

research for noise reduction to increase the SNR. 

5.3    Design/Experimentation, Evaluation & Results 

To answer the research question “Can a stacked autoencoder built upon Gated 

Recurrent Unit based Recurrent Neural Network layers (GRU-AE) perform better and 

have a higher signal-to- noise ratio when compared to Principal Component Analysis 
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for noise reduction of electroencephalography signals?”, three main architectures were 

designed with different number of layers, and they were manipulated by different 

number of neurons. As a result, totally 9 models were designed. For each condition, 

models were trained separately. Test sets for each condition were fed into 9 GRU-AE 

models and PCA. To see whether a GRU-AE increases the SNR when compared to PCA 

for noise reduction of EEG signals for each condition SNRs of the raw test signals and 

reconstructed signals were calculated. Then Harrell-Davis decile values were calculated 

for those SNR distributions and difference between raw test signals and reconstructed 

signals’ SNR distributions were calculated and examined. Positive mean difference 

decile values indicated that GRU-AEs perform better than PCA. In overall, all GRU-AE 

models resulted with higher mean Harrell-Davis decile difference for SNR distributions 

and concluded that GRU-AE outperformed PCA. From 9 GRU-AE models, Architecture 

1 with 45 neurons (64,45,64) was selected as the worst performed model when compared 

to other architectures since the mean Harrell-Davis decile difference is the lowest and 

Architecture 2 with (64,35,29,35,64) was selected as the best model since it has the 

highest mean Harrell-Davis decile difference. For the best model, for each condition, 

most of the deciles’ mean Harrell-Davis decile difference resulted positive and 

compared to the PCA, it increased the SNR which are the evidences to support rejecting 

the null hypothesis. 

5.4    Contributions and impact 

From the evaluation, it can be concluded that stacked autoencoders built upon GRU 

based RNN layers can be used for noise reduction of EEG signals and they can increase 

the SNRs when compared to traditional noise reduction technique PCA. For the 

architecture, it can be said that making the architecture of GRU-AE deep (from 

Architecture 1 to Architecture 2) helps to improve the performance but it has also shown 

that making the architecture deeper (Architecture 2 to Architecture 3) did not improve 

the performance of the autoencoders. 

5.5    Future Work & recommendations 

In this research, SNRs were calculated by trial, channel SNRs were averaged for each 

trial. For future work, SNRs can be calculated by channel-wise to see the impact of the 
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GRU-AEs for each channel’s SNR. Since the evaluation done for each condition 

separately, training sets were divided into three different sets for each condition which 

resulted with lower sample size for the training. GRU-AEs performance against PCA 

for  noise reduction on EEG can be investigated with more than one dataset in the future. 

 

Another interesting and challenging area of development is the application of 

autoencoders to remove noise from continuous EEG signals gathered in ecological 

settings and not constrained to stimuli. Example of ecological settings include the 

execution of daily tasks by participants, like searching for information on the web 

(Longo, Dondio & Barrett, 2010; Longo, Barrett & Dondio, 2009a; Dondio & Longo, 

2011; Longo, Barrett & Dondio, 2009b) or interacting with web-sites for the sake of 

usability inspection (Longo, 2017; Longo, 2018a; Longo & Dondio, 2015) or even more 

complex mental activities performed by train drivers (Balfe, Crowley, Smith & Longo, 

2017),  human reasoners (Crotti, Debruyne, Longo & O'Sullivan, 2019; Dondio & 

Longo, 2014), teachers and learners (Longo, 2018b; Orru, Gobbo, O'Sullivan & Longo, 

2018) exposed to continuous exertion of effort (Longo & Barrett, 2010) and mental 

workload (Longo, 2015; Rizzo & Longo, 2017; Rizzo & Longo, 2018; Orru & Longo, 

2019). 

 

Also, the use of transformer based variational autoencoders, which are the state-of-art 

for some Natural Language Processing tasks (Liu & Liu, 2019), can be investigated for 

noise reduction of EEG signals to see whether they can increase the SNRs when 

compared to GRU-AEs.  

 

Lastly, for the supervised deep learning tasks, such as emotion recognition from EEG 

signals (Soleymani et al., 2014; Alhagry et al., 2017), GRU-AE (Cowton, Kyriazakis, 

Plötz & Bacardit, 2018), traditional or other deep learning techniques for noise reduction 

can be used for reconstruction then they can be fed into classifiers to compare the 

classification results.  
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APPENDIX A 

Architecture 1 

 
Training loss and validation loss changes during trainings for Architecture 1  

 

Architecture 2 

 
Training loss and validation loss changes during trainings for Architecture 2  
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Architecture 3 

 
Training loss and validation loss changes during trainings for Architecture 3 
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APPENDIX B 

Architecture 1 (64,35,64) 

 
Raw signals vs PCA and GRU-AE reconstructed signals for each condition 

 

Architecture 1 (64,25,64) 

 
Raw signals vs PCA and GRU-AE reconstructed signals for each condition 
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APPENDIX  C  

Architecture 2(64,35,29,35,64) 

 
Raw signals vs PCA and GRU-AE reconstructed signals for each condition 

 

Architecture 2(64,39,25,39,64) 

 
Raw signals vs PCA and GRU-AE reconstructed signals for each condition 
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APPENDIX  D 

Architecture 3 (64,55,45,35,45,55,64) 

 
Raw signals vs PCA and GRU-AE reconstructed signals for each condition 

 

Architecture 3 (64,51,38,25,38,51,64) 

 
Raw signals vs PCA and GRU-AE reconstructed signals for each condition 



 

83 

 

APPENDIX E  

 

 
Summary of the structure of the best model 
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