1,287 research outputs found

    One Network, Many Robots: Generative Graphical Inverse Kinematics

    Full text link
    Quickly and reliably finding accurate inverse kinematics (IK) solutions remains a challenging problem for robotic manipulation. Existing numerical solvers are broadly applicable, but rely on local search techniques to manage highly nonconvex objective functions. Recently, learning-based approaches have shown promise as a means to generate fast and accurate IK results; learned solvers can easily be integrated with other learning algorithms in end-to-end systems. However, learning-based methods have an Achilles' heel: each robot of interest requires a specialized model which must be trained from scratch. To address this key shortcoming, we investigate a novel distance-geometric robot representation coupled with a graph structure that allows us to leverage the flexibility of graph neural networks (GNNs). We use this approach to train the first learned generative graphical inverse kinematics (GGIK) solver that is, crucially, "robot-agnostic"-a single model is able to provide IK solutions for a variety of different robots. Additionally, the generative nature of GGIK allows the solver to produce a large number of diverse solutions in parallel with minimal additional computation time, making it appropriate for applications such as sampling-based motion planning. Finally, GGIK can complement local IK solvers by providing reliable initializations. These advantages, as well as the ability to use task-relevant priors and to continuously improve with new data, suggest that GGIK has the potential to be a key component of flexible, learning-based robotic manipulation systems

    Resolution of Functional Redundancy for 3T2R Robot Tasks using Two Sets of Reciprocal Euler Angles

    Get PDF
    Robotic tasks like welding or drilling with three translational and only two rotational degrees of freedom ("3T2R") are of high industrial relevance but are rather scarcely addressed in scientific publications. Existing solutions for the resolution of the functional redundancy of robotic manipulators with more than five axes performing these tasks either expand the full kinematic formulation or reduce it in intermediate steps. This paper presents an approach to reduce the kinematic formulation from the start to solve the problem in a simpler way. This is done by using a set of reciprocal Euler angles to describe the end-effector orientation and the orientation error in inverse kinematics

    A Novel 4-DOF Parallel Manipulator H4

    Get PDF

    Local sensory control of a dexterous end effector

    Get PDF
    A numerical scheme was developed to solve the inverse kinematics for a user-defined manipulator. The scheme was based on a nonlinear least-squares technique which determines the joint variables by minimizing the difference between the target end effector pose and the actual end effector pose. The scheme was adapted to a dexterous hand in which the joints are either prismatic or revolute and the fingers are considered open kinematic chains. Feasible solutions were obtained using a three-fingered dexterous hand. An algorithm to estimate the position and orientation of a pre-grasped object was also developed. The algorithm was based on triangulation using an ideal sensor and a spherical object model. By choosing the object to be a sphere, only the position of the object frame was important. Based on these simplifications, a minimum of three sensors are needed to find the position of a sphere. A two dimensional example to determine the position of a circle coordinate frame using a two-fingered dexterous hand was presented

    An Algorithm for Calculating the Inverse Jacobian of Multirobot Systems in a Cluster Space Formulation

    Get PDF
    Multirobot systems have characteristics such as high formation re-configurability that allow them to perform dynamic tasks that require real time formation control. These tasks include gradient sensing, object manipulation, and advanced field exploration. In such instances, the Cluster Space Control approach is attractive as it is both intuitive and allows for full degree of freedom control. Cluster Space Control achieves this by redefining a collection of robots as a single geometric entity called a cluster. To implement, it requires knowing the inverse Jacobian of the robotic system for use in the main control loop. Historically, the inverse Jacobian has been computed by hand which is an arduous process. However, a set of frame propagation equations that generate both the inverse position kinematics and inverse Jacobian has recently been developed. These equations have been used to manually compile the inverse Jacobian Matrix. The objective of this thesis was to automate this overall process. To do this, a formal method for representing cluster space implementations using graph theory was developed. This new graphical representation was used to develop an algorithm that computes the new frame propagation equations. This algorithm was then implemented in Matlab and the algorithm and its associated functions were organized into a Matlab toolbox. A collection of several cluster definitions were developed to test the algorithm, and the results were verified by comparing to a derivation based technique. The result is the initial version of a Matlab Toolbox that successfully automates the computation of the inverse Jacobian Matrix for a cluster of robots

    Trajectory tracking control of an aerial manipulator in presence of disturbances and modeling uncertainties

    Get PDF
    Development and dynamic validation of control techniques for trajectory tracking of a robotic manipulator mounted on a UAV. Tracking performances are evaluated in a context of simulated dynamic disturbance on manipulator base

    Inverse Kinematic Algorithm with Newton-Raphson Method iteration to Control Robot Position and Orientation based on R programming language

    Get PDF
     The homogeneous transform program is a function used to calculate the homogeneous transformation matrix at a specific position and orientation of a three-link manipulator. The homogeneous transformation matrix is a 4x4 matrix used to represent the position and orientation of an object in three-dimensional space. In the program, the rotation matrix R is calculated using the Euler formula and stored in a 4x4 matrix along with the position coordinates. The Jacobian matrix function calculates the Jacobian matrix at a specific position and orientation of a three-link manipulator using the homogeneous transformation matrix. The Euler formula used in the program is based on the rotation matrices for rotations around the x, y, and z-axes. The output of these functions can be useful for future research in developing advanced manipulators with improved accuracy and flexibility. Research gaps in exploring the limitations of these functions in real-world applications, particularly in scenarios involving complex manipulator configurations and environmental factors

    Solving robotic kinematic problems : singularities and inverse kinematics

    Get PDF
    Kinematics is a branch of classical mechanics that describes the motion of points, bodies, and systems of bodies without considering the forces that cause such motion. For serial robot manipulators, kinematics consists of describing the open chain geometry as well as the position, velocity and/or acceleration of each one of its components. Rigid serial robot manipulators are designed as a sequence of rigid bodies, called links, connected by motor-actuated pairs, called joints, that provide relative motion between consecutive links. Two kinematic problems of special relevance for serial robots are: - Singularities: are the configurations where the robot loses at least one degree of freedom (DOF). This is equivalent to: (a) The robot cannot translate or rotate its end-effector in at least one direction. (b) Unbounded joint velocities are required to generate finite linear and angular velocities. Either if it is real-time teleoperation or off-line path planning, singularities must be addressed to make the robot exhibit a good performance for a given task. The objective is not only to identify the singularities and their associated singular directions but to design strategies to avoid or handle them. - Inverse kinematic problem: Given a particular position and orientation of the end-effector, also known as the end-effector pose, the inverse kinematics consists of finding the configurations that provide such desired pose. The importance of the inverse kinematics relies on its role in the programming and control of serial robots. Besides, since for each given pose the inverse kinematics has up to sixteen different solutions, the objective is to find a closed-form method for solving this problem, since closed-form methods allow to obtain all the solutions in a compact form. The main goal of the Ph.D. dissertation is to contribute to the solution of both problems. In particular, with respect to the singularity problem, a novel scheme for the identification of the singularities and their associated singular directions is introduced. Moreover, geometric algebra is used to simplify such identification and to provide a distance function in the configuration space of the robot that allows the definition of algorithms for avoiding them. With respect to the inverse kinematics, redundant robots are reduced to non-redundant ones by selecting a set of joints, denoted redundant joints, and by parameterizing their joint variables. This selection is made through a workspace analysis which also provides an upper bound for the number of different closed-form solutions. Once these joints have been identified, several closed-form methods developed for non-redundant manipulators can be applied to obtain the analytical expressions of all the solutions. One of these methods is a novel strategy developed using again the conformal model of the spatial geometric algebra. To sum up, the Ph.D dissertation provides a rigorous analysis of the two above-mentioned kinematic problems as well as novel strategies for solving them. To illustrate the different results introduced in the Ph.D. memory, examples are given at the end of each of its chapters.La cinemática es una rama de la mecánica clásica que describe el movimiento de puntos, cuerpos y sistemas de cuerpos sin considerar las fuerzas que causan dicho movimiento. Para un robot manipulador serie, la cinemática consiste en la descripción de su geometría, su posición, velocidad y/o aceleración. Los robots manipuladores serie están diseñados como una secuencia de elementos estructurales rígidos, llamados eslabones, conectados entres si por articulaciones actuadas, que permiten el movimiento relativo entre pares de eslabones consecutivos. Dos problemas cinemáticos de especial relevancia para robots serie son: - Singularidades: son aquellas configuraciones donde el robot pierde al menos un grado de libertad (GDL). Esto equivale a: (a) El robot no puede trasladar ni rotar su elemento terminal en al menos una dirección. (b) Se requieren velocidades articulares no acotadas para generar velocidades lineales y angulares finitas. Ya sea en un sistema teleoperado en tiempo real o planificando una trayectoria, las singularidades deben manejarse para que el robot muestre un rendimiento óptimo mientras realiza una tarea. El objetivo no es solo identificar las singularidades y sus direcciones singulares asociadas, sino diseñar estrategias para evitarlas o manejarlas. - Problema de la cinemática inversa: dada una posición y orientación del elemento terminal (también conocida como la pose del elemento terminal), la cinemática inversa consiste en obtener las configuraciones asociadas a dicha pose. La importancia de la cinemática inversa se basa en el papel que juega en la programación y el control de robots serie. Además, dado que para cada pose la cinemática inversa tiene hasta dieciséis soluciones diferentes, el objetivo es encontrar un método cerrado para resolver este problema, ya que los métodos cerrados permiten obtener todas las soluciones en una forma compacta. El objetivo principal de la tesis doctoral es contribuir a la solución de ambos problemas. En particular, con respecto al problema de las singularidades, se presenta un nuevo método para su identificación basado en el álgebra geométrica. Además, el álgebra geométrica permite definir una distancia en el espacio de configuraciones del robot que permite la definición de distintos algoritmos para evitar las configuraciones singulares. Con respecto a la cinemática inversa, los robots redundantes se reducen a robots no-redundantes mediante la selección de un conjunto de articulaciones, las articulaciones redundantes, para después parametrizar sus variables articulares. Esta selección se realiza a través de un análisis de espacio de trabajo que también proporciona un límite superior para el número de diferentes soluciones en forma cerrada. Una vez las articulaciones redundantes han sido identificadas, varios métodos en forma cerrada desarrollados para robots no-redundantes pueden aplicarse a fin de obtener las expresiones analíticas de todas las soluciones. Uno de dichos métodos es una nueva estrategia desarrollada usando el modelo conforme del álgebra geométrica tridimensional. En resumen, la tesis doctoral proporciona un análisis riguroso de los dos problemas cinemáticos mencionados anteriormente, así como nuevas estrategias para resolverlos. Para ilustrar los diferentes resultados presentados en la tesis, la memoria contiene varios ejemplos al final de cada uno de sus capítulos

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    A Comparative Study of Three Inverse Kinematic Methods of Serial Industrial Robot Manipulators in the Screw Theory Framework

    Get PDF
    In this paper, we compare three inverse kinematic formulation methods for the serial industrial robot manipulators. All formulation methods are based on screw theory. Screw theory is an effective way to establish a global description of rigid body and avoids singularities due to the use of the local coordinates. In these three formulation methods, the first one is based on quaternion algebra, the second one is based on dual-quaternions, and the last one that is called exponential mapping method is based on matrix algebra. Compared with the matrix algebra, quaternion algebra based solutions are more computationally efficient and they need less storage area. The method which is based on dual-quaternion gives the most compact and computationally efficient solution. Paden-Kahan sub-problems are used to derive inverse kinematic solutions. 6-DOF industrial robot manipulator\u27s forward and inverse kinematic equations are derived using these formulation methods. Simulation and experimental results are given
    • …
    corecore