
LOCAL SENSORY CONTROL OF A

DEXTEROUS END EFFECTOR

! , /

 .Y7

A FINAL REPORT

for

GRANT NAG 9-326

Submitted to

Cliff Hess

Larry Li

._utomation and Robotics Division

Robotic Systems Technology Branch

Nasa Johnson Space Center

Houston, Texas 77058

by

Victor II. Pinto

Louis J. Everett

Mechanical Engineering Department

Texas A&M University

College Station, Texas 77843

Morris Driels

Mechanical Engineering Department

Naval Postgraduate School

Monterey, California 93943

(;!,t< ,.-(. "-! <771

:]_" ,'_i <;_>!l , "j.

) -- _ 7 . {

January 1988 to December 1990

i'; i:l;Tc._ _ _-i t'l 11 ':;" 2'_(.Jr El Jm],"'!..

_ (T,_>_,<_<; ^." Ilniv.) -'i _,

oS,J.! I :_I

(; :I.7

L;n L- I ._s

',.j 7 _] _97

https://ntrs.nasa.gov/search.jsp?R=19910008073 2020-03-19T19:53:53+00:00Z

CONTENTS

EXECUTIVE SUMMARY

Task Overview .. 1

Introduction .. 1

Generalized Inverse Kinematics .. 2

Pose Estimation of a Pre-Grasped Object 3

Work In Progress .. 4

Bibliography Generated from the Grant 4

TECHNICAL REPORT

Introduction ... 5

Kinematic Analysis of Manipulators ... 7

Pose Estimation of a Pre-Grasped Object 8

Kinematic Analysis of Manipulators 10

Homogeneous Transformations ... 10

Denavit-Hartenbcrg Parameters .. 11

Relation Between Joint and Task Space Coordinates 15

Inverse Kinematic Problem ... 15

Generalized Inverse Kinematics .. 17

Numerical Solution ... 17

Properties of Solutions ... 18

Algorithm .. 19

Stanford Manipulator .. 21

Dexterous Hand .. 28

Discussion ... 35

Pose Estimation of a Pre-Grasped Object 37

Pose Estimation Analysis ... 37
Noncontact Sensor Models ... 41

Examples .. 44

Discussion ... 51

Future Research ... 53

Grasp Algorithm ... 53

Implementation .. 54
Conclusions ... 57

References .. 58

Appendix ... 60

LIST OF TABLES

1 Link parameters for the Stanford Manipulator [2] 21

2 Analytical versus numerical results for the Stanford Manipulator 27

3 Link parameters for the Minnesota hand .. 33
4 Assumed values for the dexterous hand ... 34

5 Radial distances, r .. 50

6 Pose estimation results ... 51

ii

LIST OF FIGURES

1 The EVA Retriever [1] ... 6

2 Euler Angles [2] .. 11

3 The length a and the twist a of a link [2] 12

4 Link parameters of revolute joints [2] .. 13

5 Link parameters of a prismatic joint [2] ... 14

6 Example showing the multiple solutions for a nonredundant robot [6] 20

7 Flowchart for the inverse kinematics algorithm 22
8 Flowchart of subroutine to minimize functions 23

9 The Stanford Manipulator [2] ... 24

10 Coordinate frames for the University on Minnesota Hand [3] 29

11 Transformation from the palm frame to the contact point 30

12 Bar frame with respect to the palm frame 31

13 Finger contact points ... 32

14 Link parameters for a finger on the Minnesota hand 33

15 Resulting hand configuration .. 36

16 Transformation from the palm frame to the sensor frame 38

17 Triangulation scheme ... 40

18 Response curves for an optical reflectance sensor and an ideal sensor 41

20 Parameters for an ideal sensor .. 44

21 Forward model example using one finger of a dexterous hand 45

22 Pose estimation of a circle using a two-fingered hand 48

23 Grasping scheme ... 55

°°°

111

EXECUTIVE SUMMARY

Task Overview

Grant NAG 9-326 supported 24 months of research comprising two related tasks

in grasping using dexterous robot hands. This section of the report summarizes the

objectives and status of each task.

Introduction

There are four steps that must be taken to ensure the grasp of an arbitrary

object. The first step is the pre-grasp phase where approach to the object is planned,

but no contact is made. Next the object's position and orientation, or pose, within

the grasping region of the hand must be known to position and close the hand in

an appropriate manner. An added benefit from knowing the object pose has to do

with manipulation of the object. Using the sensor data can aid in grasping the object

in such a way which will either not require further manipulation or will make the

manipulation of the object easier. Third, the hand must close in a way to create an

envelope in which the object cannot escape. The forth step is to use the information

from tactile, force, and vision sensors to determine whether a stable grasp has been

achieved.

It is dearly understood that to achieve the grasp of an object requires low-

level control to move, monitor, and compensate the finger motions. To this end,

a method to calculate the joint coordinates for prescribed finger positions and a

method of determining the pose of the object within the grasping region of the hand

are necessary.

The Journal of Robotics and Automation has been used as a model for style and

format.

Generalized Inverse Kinematics

Controlling the motion of each finger of a dexterous hand will require the

inverse kinematic solution for the hand; i.e., to find the joint coordinates of each

finger given a fingertip pose. The desired fingertip positions are pre-selected contact

points on the target object. These contact points can be determined based on task

constraints. For example, the vision sensors locate and track the target object. Based

on the object's geometry, contact points are selected which are inputs to the inverse

kinematic algorithm.

Proposed solutions to the inverse kinematic problem have used analytical,

iterative, and knowledge-based systems. Numerical iterative techniques are useful

because of their generality in the sense that the same basic algorithm can be applied

to many different manipulators. This generality allows the user to quickly modify

the algorithm for the desired dexterous hand. The solution method consists of

writing the finger equations using homogeneous transformations, specifying desired

finger contact points, and determination of the joint coordinates by minimizing the

difference between the desired fingertip pose and the actual fingertip pose.

The finger equations can be written by treating each finger as an independent

manipulator. A finger may be modeled as a series of mechanical linkages connected by

prismatic or revolute joints. Each link is then defined in terms of special parameters

known as the Denavit-Hartenberg (link) parameters.

An equation may be obtained relating the joint variables in the link matrices to

the task space coordinates. Then, through a minimization process, the joint variables

are found for the required position and orientation. This minimization is accomplished

using a nonlinear least-squares technique.

The algorithm presented has been tested on a three-fingered dexterous hand.

Given a target object and selected contact points, feasible solutions were obtained. In

general, the limitations in the algorithm are that the fingers must have either revolute

or prismatic joints and are open loop kinematic chains. This algorithm can aid in

calculating the inverse kinematic solution for the various dexterous hands available on

site, or the ones currently being developed, and will provide an alternative to solving

for the solution to these hands analytically.

Pose Estimation of a Pre-Grasped Object

Knowledge about the object, such as the position and orientation, must be

obtained that will allow a grasp strategy to be formulated. The problem of grasping

objects by dexterous hands has been widely considered. In most studies, the object

is well defined by vision sensors and/or by tactile sensors, and the grasp strategy

uses the data from these sensors. The use of vision sensors may be limited because

the object may be hidden from view by the robot's arms or other objects. In the

space environment, tactile sensors cannot be used for the pre-grasp phase because

the object cannot be touched prior to grasping or the object will float away. The

pose estimation problem is to determine the pre-grasp position and orientation of an

object using local, noncontact sensors.

The pose estimation problem is divided into two subtasks: the forward model

and the inverse model. The forward model of the pose estimation problem assumes

the object pose and finger joint angles are known and solves for the sensor parameters.

The inverse model assumes sensory data is available, the finger joint angles are known,

and uses this information to find the object pose. Results from the forward model

will enable verification of the inverse model.

To develop the equations for pose estimation, a mathematical model of the sen-

sor characteristics is necessary for software implementation. The type of noncontact

sensors that are planned for use on the EVA Retriever are optical reflectance proxim-

ity sensors. Due to the complexity of modelling this type of nonlinear sensor, it was

decided to implement an ideal sensor.

The pose estimation equations were written using the concept of triangulation.

An example of a two-fingered hand surrounding a sphere is presented. By choosing

the object to be a sphere, only the position of the object frame was important.

Results show that a minimum of three sensors are needed to find the position of the

sphere. More complex shapescan also be implemented, but this will require more

computation to model them.

The algorithms for inverse kinematics and pose estimation were developed

assuming severalsimplifications. In retrospect, the investigation has provided a

softwareshellwhich canbeeasilyupgradedto take into accountmorecomplexshapes

and sensormodels.

Work In Progress

A strategy termed the Grasp Algorithm is proposed which utilizes the inverse

kinematics and pose estimation software to provide low-level control of a dexterous

hand when grasping an object. This algorithm is currently being implemented on site

using computer animation software and should be available for viewing by December,

1990.

Bibliography Generated from the Grant

To date, one paper titled "Pose Estimation of a Pre-Grasped Object Using

Local Sensors on a Dexterous Robotic Hand" was generated from grant support. It

will be presented at the Fifth International Conference on CAD/CAM Robotics and

Factories of the Future that will take place in December, 1990.

INTRODUCTION

Current work at NASA's Johnson SpaceCenter includes developing an au-

tonomous robot to perform tasks suchas object rescueand retrieval, spaceshuttle

experimentation,satellite repair, and spacestation construction. Dexterousendeffec-

tots with sensorscanhelp the robot perform this large variety of tasks. Of the tasks

previously mentioned,object rescueand retrieval is consideredthe most challenging

and one of the primary reasonsfor developingan autonomousrobot [1]. Object res-

cue and retrieval requires locating and tracking the object, movementtowards the

object, and grasping and maintaining a stable grasp of the object [1]. Stable grasp

must be ensuredto avoid having the object escapeand drift into space. The EVA

Retriever, shownin Figure 1, suppliedwith dexterousendeffectorsis currently under

developmentto perform this task.

There are four steps that must be taken to ensurethe grasp of an arbitrary

object. The first step is the pre-grasp phase where approach to the object is planned,

but no contact is made. Next the object's position and orientation, or pose, within

the grasping region of the hand must be known to position and close the hand in an

appropriate manner. An added benefit from knowing the object pose has to do with

manipulation of the object. Using the sensor data, the object can be grasped in such a

way which will either not require further manipulation or will make the manipulation

of the object easier. Third, the hand must close in a way to create an envelope in

which the object cannot escape (this may only be possible for objects smaller than

the palm width of the hand). Finally, using multiple sensor information, from tactile,

force, and vision sensors, determine whether a stable grasp h_s been achieved.

To achieve the grasp of an object requires low-level control to move, monitor,

and compensate the finger motions. To this end, a method to calculate the joint

coordinates for prescribed finger positions and a method of determining the pose of

the object within the grasping region of the hand are necessary.

Figure 1. The EVA Retriever [1].

Kinematic Analysis of Manipulators

A manipulator may be modeled as a series of mechanical linkages connected

by, but not limited to, prismatic or revolute joints. Each link is defined in terms

of special parameters known as the Denavit-Hartenberg (link) parameters. The

spatial position of a link frame relative to another frame is expressed as a 4 × 4

homogeneous transformation matrix [2]. Using this information permits defining a

generic manipulator whose configuration is based on user-supplied link parameters.

To control the motion of each finger of a dexterous hand will require the inverse

kinematic solution for the hand; i.e., to find the joint coordinates of each finger of a

dexterous hand for a given fingertip pose. Proposed solutions to the inverse kinematic

problem have used analytical, iterative, and knowledge-based systems. An analytical

closed-form solution [2, 3] is advantageous in that it allows the joint variables of a

particular manipulator to be easily found; on the other hand since only certain classes

of manipulators allow a closed-form solution, it is very difficult to solve explicitly for

the joint variables without having some geometric intuition about the manipulator,

and the solution only applies to the particular manipulator.

Numerical iterative techniques are useful because of their generality in the

sense that the same basic algorithm can be applied to many different manipulators,

including kinematically redundant manipulators and manipulators with less than six

degrees-of-freedom. Some techniques are more useful than others for certain classes of

manipulators. For example, Poon and Lawrence (1988) present an algorithm that is

useful for functionally partitionable manipulators, which are manipulators where each

link has its own task and the joints are controlled independently. These manipulators,

such as the Unimation PUMA and Unimate, Cincinnati Milacron, and the Stanford

manipulators, can be partitioned into major and minor linkage sets. The major

linkage controls the end effector position and the minor linkage changes the end

effector orientation. Furthermore, most iterative techniques utilize the manipulator

Jacobian, as in Goldenberg, Benhabib, and Fenton (1985). A necessary condition

for this method to function is that the Jacobian must be nonsingular and can

therefore be inverted. A problem arises at certain points in the joint space of the

manipulator, termed the joint-space singularities, where the Jacobian matrix loses

rank and becomes ill-conditioned [6]. Goldenberg, Benhabib, and Fenton overcome

the problem of singularities by utilizing the generalized inverse, or pseudoinverse.

A knowledge-based solution using neural networks is proposed by Guez and

Ziauddin (1988). The drawback to this method is that it is computationally expensive

in that the network must be trained to conform to the manipulator used, versus simply

changing certain parameters as in most iterative techniques.

Pose Estimation of a Pre-Grasped Object

Knowledge about the object, such as the position and orientation, must be

obtained that will allow a grasp strategy to be formulated. The problem of grasping

objects by dexterous hands has been widely considered [8, 9, 10, 11]. In most studies,

the object is well defined by vision sensors and/or by tactile sensors, and the grasp

strategy uses the data from these sensors. The use of vision sensors may be limited by

the object being hidden from view by the robot's arms or other objects. In the space

environment, tactile sensors cannot be used because the object cannot be touched

prior to grasping or the object will float away. The pose estimation problem is to

determine the pre-grasp position and orientation of an object using local, noncontact

sensors. Noncontact sensors, such as proximity sensors, do not require touch to

operate.

The sensors that will be modeled are optical reflectance proximity sensors. This

type of sensor will be used on the EVA Retriever. The advantages of this type of

sensor are: good size/range ratio, low cost, good reliability, simple to use, and low

sensitivity to disturbances by using synchronous modulation or pulsed emmission

[12]. Balaure describes and gives the mathematical model of an optical proximity

sensor (1986). This model will be useful when implementing a real-world sensor in

software. Limited research has been performed on using proximity sensors mounted

on a dexterous end effector to determine the position and orientation of an object [14].

Furhman and Kanade apply the concept of triangulation to determine the position and

9

orientation of an object's surfaceusing a multilight sourceproximity sensor(1984).

Romiti and Raparelli (1987)presenta method of finding the position and orientation

of a dexteroushand basedon proximity sensordata.

10

KINEMATIC ANALYSIS OF MANIPULATORS

Robot manipulators can be consideredto consist of a series of rigid links

connected together by a seriesof joints. The relationship between adjacent links

is describedby 4 x 4 homogeneoustransformations whoseelementsare dependent

on the link parametersknown as the Denavit-Hartenberg parameters. The product

of these4 x 4 matrices gives the pose of a selectedframe relative to a reference

frame. This chapterdescribesthe kinematicsof a manipulator using the conceptof

homogeneoustransformations.

Homogeneous Transformations

Paul (1981)describesthe homogeneoustransformations that define the trans-

lation and orientation of a coordinateframe.

The transformation correspondingto a translation in the direction of vector

v = ai + bj + ck relative to a reference frame is given as a 4 x 4 homogeneous matrix

0Trans(a,b,c)= 0 1 " (1)

0 0

Orientation is frequently specified as the product of rotations about the x, g,

and z axes, as shown in Figure 2. The Euler transformation describes the orientation

of a coordinate frame in terms of a rotation ¢ about the z axis, then a rotation 0
I l!

about the new g axis, y, and finally a rotation about the new z axis, z , of ¢. Thus,

the Euler transformation is given by the product of the three rotation matrices

Euler(¢, 0, _/,) = Rot(z, ¢)Rot(y, 0)Rot(z, _/,)

r cos ¢ cos 0 cos ¢ _ sin 6 sin _¢,

Euler(6,0,_,)=]sinCcos0cos¢+cosesin_psin 0 cos ¢
[0

-cos¢cos0sin_b-sin¢cos_b cosesin0 0
-sin¢cos0sin¢+sin¢cos_/, sin6sin0 0

sin 0 sin ¢ cos 0 0
0 0 1

(2)

11

Z 7'

yl ll

Y

X
11/

Figure 2. Euler angles [2].

If a coordinate frame is translated in the direction given by v and then rotated

by angles ¢, tg, and ¢ as described above, the composite homogeneous transformation

matrix 2" which represents the position and orientation of the resulting coordinate

frame is

T = Trans(a,b,c)Euler(¢,O,¢). (3)

Denavit-Hartenberg Parameters

A serial link manipulator can be considered to consist of a sequence of links

connected together by actuated joints, and for an n degree-of-freedom manipulator,

there are n + 1 links and n joints.

Assigning coordinate frames to each link of the manipulator permits finding the

link parameters. Coordinate frames can be assigned to the links according to the

12

scheme presented in Paul (1981), pp. 50-52. In general, each link of the manipulator

will have assigned to it a series of link parameters, known as the Denavit-Hartenberg

parameters, which characterize each link and give the relationship between connected

links. The parameters are the distance d and angle 0 between adjacent links, and the

length a and twist angle a of a single link (Figures 3, 4, and 5).

Joint n Joint n+l

Link n

n

V w

G n

Figure 3. The length a and the twist a of a link [2].

Depending on what type of joint a link has will determine the joint variable.

For a revolute joint, the joint variable is 0. For a prismatic joint, the distance d is

the joint variable. Figure 4 shows the link parameters for revolute joints and Figure

5 shows the link parameters for a prismatic joint.

Having defined the link coordinate frames, the relation between the successive

frames n - 1 and n is the matrix A_ defined as

A_ = Rot(z,On)Trans(O,O,d_)Trans(an, O,O)Rot(x,_) (4)

which results in

[cos O. - sin O,_cos c_,_ sin 0,_ sin c_n a,_ cos 0,_]

A,_= /sina0n cosOncoso,_ -cosOnsinc_ ar_sin
G Jsin c_,_ cos C_r_ d,_ " (5)

0 0 1

13

Joint n

L

Link

Joint n-I '_. 8n-_ / ',

do

Link

@n Joint n+l

_ G°_I_ Link

._ an r--FZn

Zn-1 q _ Xn

/xo-, /

n+]

Figure 4. Link parameters of revolute joints [2].

14

Joint n

AAAA

Joint n+]

Linl-< n

Joint n-] 8o-i
N

Link n-2

Link n-1
Link

Xn- |

n+l

Figure 5. Link parameters of a prismatic joint [2].

15

Relation Between Joint and Task Space Coordinates

An equation may be obtained relating the joint variables 0 and d in the A

matrices to the task space coordinates, which are the required position and orientation

of the selected frame given by the T matrix. For example, if matrix A1 describes the

position and orientation of the first link relative to the base frame and matrix A2

describes the position and orientation of the second link relative to the first, then the

position and orientation of the second link relative to the base frame is the matrix

T2. This is represented as

T2 = AIA2.

More links may be added, and their position and orientation relative to the base frame

can be found. Thus, the transformation representing the position and orientation of

the end effector with respect to the base frame for an n degree-of-freedom manipulator

is

Tn(q)=IIAi(q)= n o a p (6)0 0 0 1
i=1

where n, o, a are orientation vectors, p is the position vector, and q is the vector

consisting of the joint variables [5]. Equation 6 in matrix form is

T,_(q)= ny oy ay py

O z a z pl z0 0

Inverse Kinematic Problem

Generally the target position and orientation of the end effector frame for an

n degree-of-freedom manipulator is given as the matrix Ttn, where the superscript

t designates target pose. The problem of finding the joint variables to achieve this

pose is known as the inverse kinematic problem (IKP). In other words, the IKP is

the determination of the vector q composed of the joint variables that will yield the

end effector target transformation T t

The inverse kinematics of a manipulator can be solved by finding the closed-

form solution. For example, for a six degree-of-freedom manipulator such as the

16

Stanford manipulator, the transformation from the baseframe to the end effector

frame yields a T,_matrix of the form

T6 = AIA2A3A4AsA6. (7)

Equation 7 is premultiplied six times by the A matrix inverses where, after each

multiplication, an equation is obtained for a joint variable in terms of the other

variables [2].

Conversely, the IKP may be solved iteratively until the actual end effector

transformation T,_ is coincident with the target transformation matrix T_. The next

chapter describes a numerical algorithm based on this idea for solving the IKP.

17

GENERALIZED INVERSE KINEMATICS

Two of the most widely usedmethodsof solving the inversekinematic problem

(IKP) are either analytical or numerical. One of the major drawbacks to solving

the IKP analytically is that the solution pertains to only a particular manipulator,

in contrast to the numerical solution which can be easily modified to find the joint

variables of different manipulators. This chapter presentsa numerical schemeused

to solvethe IKP.

Numerical Solution

As previously explained,the IKP is the determination of a vector q, consisting

of the n joint variables, that will yield the end effector target transformation T_. The

objective is to minimize the difference between the actual end effector transformation

T_ and the target transformation Tt_ through minimization of the residual functions

of position and orientation. Given the target transformation matrix Tt_ as

T_= (ntO °_0 atO pt)l

and T_ as

T_-- (_ a oa0 aa0 pa)

then the functions of residual position are defined as

rz = Pz -- Pz

a

r u = py - py (8)

rz = Pz -- Pz

and the residual orientation functions are

(9)

18

where, from Paul (1981), q_, 0, and _ are defined as

0, if a= and au = 0;
¢ = atan2(layl, la:cI) + rr, if a= and ay < 0;

atan2(a_, a,), otherwise, (10)
0 = atan2(a= cos _ + ay sin ¢, az),

= atan2(-n= sin ¢ + ny cos _, -o_ sin ¢ + o 9 cos ¢).

Goldenberg, Benhabib, and Fenton (1985) define the residual function vector

r = r(q) as

r = (r=ryrzreror¢)

where (r=ryrz) and (rororo) stand for the residual position and the residual orien-

tation, respectively. The r vector represents the six independent constraints on the

n unknown components of the vector q. The target vector q is obtained when the

residual functions are a minimum and T_ is equal to T_; i.e.,

r(q)=0. (11)

Properties of Solutions

Existence of Solutions

There are several conditions necessary for which solutions to the IKP exist. If

the desired end effector position is outside the work envelope of the manipulator, then

a solution clearly does not exist. The work: envelope of a manipulator is defined as the

locus of points in R 3 that can be reached by the manipulator as the joint variables

are swept through their respective limits [6].

In addition, even if the desired position is within the work envelope, the required

end effector orientation may be such that it causes one or more of the joint variable

limits to be exceeded. Goldenberg, Benhabib, and Fenton (1985) suggest a method to

prevent from converging to a nonfeasible solution: 1) impose upper and lower limits

on the joint variable displacements such that

ql_< q<qU (12)

/

19

where ql and qU designate the lower and upper limits, respectively, checking the

solution at each iteration against the limits and correcting those variable values which

are out-of-range to their nearest limit; or 2) reduce the iteration step size with a

criteria for reduction which is dependent on the numerical method chosen for finding

the joint variables.

In general, for an arbitrary end effector position and orientation to be possible,

the number of unknowns in q must be at least equal to the number of independent

constraints, or

for a general end effector pose n >_ 6. (13)

Equation 13 is a necessary but not sufficient condition for the existence of a solution

to the IKP. Also, the end effector position must be within the work envelope of the

manipulator, and the desired orientation must be such that none of the joint variable

limits are exceeded.

Uniqueness of Solutions [6]

When solutions are obtained, they are usually not unique. For example, a

kinematically redundant manipulator, where n > 6, can typically have infinitely

many solutions because it has more degrees of freedom than necessary to establish

an arbitrary end effector pose. Even when the manipulator is not kinematically

redundant, there may be times when the solution to the IKP is not unique. Several

distinct solutions can arise when the size of the joint-space work envelope is sufficiently

large. Figure 6 shows two solutions for a nonredundant robot placing a tool at point

p . The two solutions are referred to as the elbow-up and elbow-down solution. As

shown, both solutions give the same pose for the end effector, but their joint space

coordinates are clearly distinct.

Algorithm

The residual functions are minimized using a nonlinear least-squares technique

based on the Levenberg-Marquardt method. The least-squares algorithm is part

of the IMSL Library of Mathematical Routines and is labeled DUNLSF. Figure 7

2O

Figure 6.

elbow up

.p

Example showing the multiple solutions for a nonredundant robot [6].

shows a flowchart of the algorithm to solve a general inverse kinematic problem. The

first step (box 1) is to determine the link parameters for the manipulator. Next,

input the target position and orientation of the manipulator end effector frame as

data arrays POS(3) and EULER(3), as shown in box 2. In box 3, input an initial

guess of the joint coordinates in the array labeled XGUESS. In box 4, initialize

the parameters required by the IMSL software (LDFJAC,M,N,IPARAM). Next, a

subroutine labeled FORWARD, which is the driver for DUNLSF, is called by the main

program to find the joint coordinates (box 5). FORWARD contains the nonlinear r

functions to be minimized, and DUNLSF performs the minimization process. Figure

8 shows a flowchart for subroutine FORWARD. When a solution is obtained, the

program verifies whether the joint limits have been exceeded using a user-defined

subroutine called CONSTRAINT (box 6). If one or more joint coordinates exceeds

their respective limits, this subroutine replaces it with its nearest limit. Then the

iteration process begins again. Once all of the joint coordinates have been found, the

results are printed (box 7).

21

The next two sectionspresentexamplesof usingthe algorithm.

Stanford Manipulator

The analytical solution is presented and its results will be compared to the

results obtained numerically.

Analytical Solution

A sketch of the Stanford Manipulator is shown in Figure 9 with coordinate

frames assigned to the links. As shown, the manipulator consists of five revolute

joints with joint variables 01, 02, 04, 05, and 06, and a prismatic joint with variable

da. The link parameters are shown in Table 1.

Table 1. Link parameters for the Stanford Manipulator [2].

lJ Link] Variable I c_ l a f d II

1 81 -90 ° 0 0

2 82 90 ° 0 d2

3 dz 0 ° 0 da

4 84 -90 ° 0 0

5 8s 90 ° 0 0

6 0s 0 ° 0 0

The following abbreviations will be used for the sine and cosine of the angle 0

sin 0i = Si

cos Oi = Ci

sin(Oi + 0i) = Si5

cos(0i q- Oj) = Cij.

22

@

®

®

determine link

parameters

1
T

select tlrget pose

initialize IMSL param's I

input initial guess I

of joint variables I

I perform least-squares _minimization

Y

®

T

@ I print results]

i

select new joint

variable guesses

Figure 7. Flowchart for tile inverse kinematics algorithm.

23

start)

read initial joint
variable guesses

compute forward
kinematics

I
¥

compute new

guess

Figure 8. Flowchart of subroutine to minimize functions.

24

j- k
X

A

J

Zs,Z6

Z 4

I

Figure 9. The Stanford Manipulator [2].

/

25

Again, the target pose of the end effector frame relative to the base frame is

given by equation 7, and is rewritten below

T_ = A:A2A3A4AsA6. (14)

The procedure Paul uses to solve for the joint variables is to obtain six matrix

equations by successively multiplying equation 14 by the A matrix inverses. After

each multiplication, an equation relating a joint variable to the remaining joint

variables is obtained. Paul's solution will be summarized below.

Given the target pose

nno: oz az pz]

T_ = ny oy ay py

Oz a z plz0 0

the joint coordinate 0: is

01 = tan -1 - tan-1 [=v/r 2 d22

where + is for a right-hand coordinate system and - is for a left-hand coordinate

system and

p_ = r cos ¢

py = r sin

r = +V/pz 2+py2

These trigonometric substitutions for pz and Pu are necessary because the equation

used to obtain 01 is of the form

-Slpz + Clpy =- d2.

The remaining joint coordinates are

02 = tan-: C:p_ + S:py
pz

d3 = S2(Clpz ÷ Slpu) + Czpz

26

or

04 = tan -1 -Slaa + Clay if 05 > 0
C2(Cla_ + Siay) - S2a..

04=04+_- if 05<0.

For 05 = 0, the manipulator becomes degenerate with both the axes of joint 4 and

joint 6 aligned. Then, 04 can be assigned any value and is usually assigned a value

which will result in an overall manipulator configuration which is close to the previous

configuration in terms of total distance traveled by the manipulator to achieve the

new pose. The equation for 05 is

05 = tan -x C4[C2(Cla_ + Slay) - S2az] + S4[-Sla_ + Clay]

S2(Cla_ + Slay) + C2az

and finally, 06 is

where

06 = tan -1 $6
C6

s6= -c5{c4[c2(clo + SlOy)- S2oz]+ s4[-Slo + Cloy]}

+S5{S2(Clo_ + S_oy) + C2oz}

C6 -- -S4[C2(Cloz -}- Sloy) - S2oz] -Jr- C4[-Sloz -_- ClOy].

Numerical Solution

The left-hand-side of equation 14 is determined using the known target end

effector pose with equation 3. Because this manipulator has six degrees-of-freedom,

both the position and orientation required for the end effector can be specified. In

equation 14, the product of the A matrices on the right is the actual transformation

matrix T_. These matrices are unknown because the joint variables are unknown.

Example

Given an arbitrary Euler angle set of

¢ = 45 °

0 = 17.6 °

_¢, = 27.2 °,

27

a position vector with values

pz = 25.1 inches

py = 32.7 inches

p_ = 22.6 inches,

and d2 = 8 inches, then the target transformation matrix is

0.27626

T_ = 0.92269-0.26893
0

-0.93700 0.21381 25.1
0.32083 0.21381 32.7
0.13821 0.95319 22.6

0 0 1

Imposing the joint constraints listed below

-Tr < 01 < _r

-7r/2 < O, < _r/2

d3_> 0

-_-_< 04 < 7r

-_r/2 < Os < _r/2

-_r_< 0o_< 0

yields the results shown in Table 2, which compares the resulting joint variables for

the given T t matrix using both the analytical and numerical methods. As Table 2

shows, the results for all joint variables using both methods are equal.

Table 2. Analytical versus numerical results for the Stanford Manipulator.

Link

1

2

3

4

5

6

Variable Analytical Numerical

Result Result

01 0.7208 tad 0.7208 rad

02 1.0612 rad 1.0612 rad

da 46.326 in 46.326 in

04 3.113 rad 3.113 rad

0s 0.7548 rad 0.7548 rad

06 -2.585 tad -2.585 tad

28

In summary, the analytical and numerical solutions for a six degree-of-freedom

manipulator have been shown. The numerical solution is a more simple approach and

equations are easily obtained using the concept of homogeneous transformations. By

selecting appropriate joint variable limits, the solution will converge to the analytical

solution.

Dexterous Hand

To solve the inverse kinematics of a dexterous hand, each finger is treated as an

independent manipulator. A coordinate frame for the palm, or the palm frame, can

be selected to serve as the reference frame from which all measurements are made.

As a case study, the University of Minnesota hand, shown in Figure 10, is used.

Analytical Solution

The closed-form solution is presented in Koehler and Donath (1988). They

assume that the desired location of the fingertips, with respect to the reference frame,

are contact points on the object that have been determined based on task constraints;

e.g., to provide a stable grasp [3]. Since the fingers have only three degrees-of-freedom,

only the required fingertip position (or orientation, but not both) can be specified.

Given these three locations, the objective is to find the finger joint angles.

Numerical Solution

An equation is necessary which relates the desired fingertip positions to the

palm frame. As in the analytical solution, the desired fingertip positions are selected

contact points on the targeted object.

ci

The transformation from the palm frame to the ith contact point, Tpf, is

illustrated in Figure 11 and is given by

where Tf_ ' is the transformation from the palm frame to the base frame of finger i,

ci

and Tfb i is the transformation from the base frame of finger i to the contact point

c,
corresponding to finger i. The transformation Tfb _ is the product

7_

Ci

Tfb, = II Aj (16)
j=l

29

Z13

Z11

X13

X12

X11

Z22

Z

, X23

3

X22

X21

X2o

X 10 Z3_
Z Z 30

Z32

Z33

X32

2:

where _ = 45 °. The firs[

designates finger number,

designates link number.

subscript

the second

Figure 10. Coordinate frames for the University of Minnesota Hand [3].

3O

contact point i

 'object
Tfb_

pf

Y_

Figure 11. Transformation from the palm frame to the contact point.

where n designates the degrees-of-freedom of finger i.

Another equation for T_) is

TCp,f= Tobject cip f Wobjec_: (17)

and is also illustrated in Figure 11. The transformations given in equation 17 are

known assuming the pose of the object frame relative to the palm frame is known

and contact points on the object, one for each finger, have been specified. By equating

(15) to (17), the equation for finding the joint variables of each finger is

c, = Tobject c, (18)T_i T fbi pf Tobiect"

The objective is then to minimize tile difference between both sides of tile equation

above.

31

Example

If the target object is a rectangular bar with the base frame aligned to the palm

frame as shown in Figure 12, the matrix which describes the transformation from

palm frame to the bar frame T ha* ispf

Tbar
pl = Trans(2, 0, 2) =

1002]

0 1 0 0_
0 0 1 2."

0 0 0 1

X bar/_ Ybar

Zp/ /

•
Zbar 4 IllS/ /

" " 2"

Ybar

Zpf

Figure 12. Bar frame with respect to the pahn frame.

Selecting contact points on the bar as shown in Figure 13, the transformations

32

from the bar frame to the each contact point, T_ia_, are

1 0 0
T_ = Trans(0,-l,.5) = 0 1 00 0 1

0 0 0

1 0 0

0 1 0
T_r = Trans(0, 1,.5) = 0 0 1

0 0 0

[i°°1 0
T_a_ = Trans(0, 0, -.5) = 0 1

0 0

0
-I

.5

1

o]1
.5
1

0
0

1

Xbarl TC2

contact-point

Xbor

Figure 13. Finger contact points.

Figure 14 gives a graphical representation of tile link parameters and Table 3

lists the D-H parameters for the fingers. Note that all of the fingers have been chosen

33

Table 3. Link parameters for the Minnesota hand.

II Link I Variable I a] a I dl

1 01 90 ° 1" 0

2 02 0 ° 1" 0

3 0a 0 ° 1" 0

a3

cb 2

x 31 _ link 3

 axis 3

link 2

z2_¢" [_7) axis 2

x 1_" e B

z 1_ hnk

_, g"N-"--

Z o

JJz "J

X 0

© axis 1

O1

Figure 14. Link parameters for a finger on the Minnesota hand.

to have the same D-H parameters.

Using these parameters, the A matrix for each link of a finger can be determined

34

Table 4. Assumedvaluesfor the dexteroushand.

I[V'ariable]Value I

x!

Yf

zf

x 9

Zg

1"

4""

1"

1"

45 °

using equation 4. For example, the A matrix for link 1 is

A1 = Rot(z0, 01)Trans (0, 0, 0)Trans (al, 0, 0)Rot (x0,90 °)

-cos01 0 sin 01 0
sin 01 0 -cos01 alsin01

0 1 0 0
0 0 0 1

Next the transformation from the palm frame to the base frame of each finger

Tfbl,2,3
pl is determined using Figure 10. For fingers 1 and 2, this transformation is

the result of a translation from the palm frame to the finger base frame (0 link

frame) a distance xf along the x-axis, -l-yf along the y-axis, and zf along the z-axis.

Mathematically, this is expressed as

Tf_ ''2 = Trans(x/, +y/, zf)

= :l:yf

where -yf corresponds to finger 1, and +YI corresponds to finger 2. For finger 3,

the transformation is the result of a translation x 9 along the x-axis, a translation z a

along the z-axis, and a rotation ¢ about the y-axis. This is expressed as

T fba = Trans(O, zg)Rot(y, ¢)pf Xg_

= 0

The values for xg, Zg, x.f, y f, z f, and ¢ are listed in Table 4. Finally, impose tile

35

joint limits listed below: for fingers 1 and 2

-7r/6 _< 01 < rr/6

-7r/3 < t_2 < 0

-_r/2 < t_3 < 0

and for finger 3
-7r/6 < 01 < 7r/6

0 < t_2 < ,r/3

0 _< 03 < _r/2

The resulting hand configuration is shown in Figure 15.

Discussion

A numerical scheme was presented to solve the inverse kinematic problem for

a general manipulator and adopted to a dexterous hand. The scheme was based

on minimization of the residual functions of position and orientation. As examples,

the inverse kinematics for the Stanford Manipulator and the University of Minnesota

Hand were determined.

A benefit of using a numerical scheme versus an analytical method is that

it allows quick modification to conform to the desired hand. The scheme may be

modified to correspond to most recently developed dexterous hands; i.e., that have

revolute or prismatic joints, and fingers that are open kinematic chains. The routine

can be modified by changing the number of fingers, the number of links per finger (not

counting link 0), the D-H parameters, and the joint variable constraints. Contact

points on the object corresponding to each finger must also be defined. Depending on

the number of degrees-of-freedom for the fingers will determine the number of residual

functions that are minimized.

36

fingers

land2_

Zpf

/" _ jfinger 3-4s o A_s3o

zo= 1"

2,5 _'

Figure 15. Resulting hand configuration.

37

POSE ESTIMATION OF A PRE-GRASPED OBJECT

This chapter presents a method of calculating the pre-grasp pose of an object

using data from local, noncontact sensors. Local refers to sensors that are mounted

on the end effector and for the case of dexterous hands, the sensors are mounted on

the fingers. Noncontact sensors are sensors that do not require physical contact to

operate, such as proximity sensors.

The pose estimation problem is divided into two subtasks: the forward model

and the inverse model. The forward model is analogous to the forward kinematic

solution of a manipulator where the joint coordinates are known and the question

is to find the end effector pose. The forward model of the pose estimation problem

assumes the object pose and finger joint angles are known and solves for the sensor

parameters. The inverse model assumes sensory data is available, the finger joint

angles are known, and uses this information to find the object pose. Results from the

forward model will enable verification of the inverse model.

A discussion on a real-world sensor follows which exhibits the mathematical

equations for a fiber optic reflectance sensor. Due to the complexity of the real-world

model, an ideal sensor is defined and used in the pose estimation algorithm.

Pose Estimation Analysis

Forward Model

The forward model determines tile sensor parameters based on a known object

pose. The sensor parameters to determine are: r, the radial (sensor-to-trigger point)

distance, and the angles the trigger point may be offset from the sensor axes.

38

se]3soT

Zobject

Figure 16. Transformations from the palm frame to the sensor frame.

Using Figure 16 the following equation can be written

which becomes

Tsensor,-pobject = Tobjec_
pf J-sensor pf

Tobject = TPf T °bject 19)
sensor _sensor"-pf •

In equation 19, T°ebj[Cotr, the transformation from the sensor frame to the object frame,

is unknown because r and the angular offsets are not known. For example, if the ideal

39

sensormodel is used (this model will be discussedin the next section) the offsets "y

and/3 are unknownsin the rpobject._ sensor matrices.

T_In,o_ is the transformation from the sensor frame to the palm frame given by

Pf rTfbTlinkTsens°r]-I (20)Tsensor -= [pf fb link J "

Tf_ is the transformation from the palm frame to the finger base frame, T_ k is

the transformation from the finger base frame to the link frame, and T sens°r is thelink

transformation from the link frame to the sensor frame. These transformations are

known because the finger joint angles and the sensor locations are known.

The transformation from the palm frame to the object frame, T °bject
pf , is

T °bjec' Trans(Xo, Yo, Zo) Euler(¢, O, ¢).pf =

This matrix is known because the position and orientation of the object are known.

Inverse Model

The inverse model determines the object pose given the sensor data. Using

a scheme based on triangulation, which is a method used to optically locate points

in space [15], the necessary equations are developed. From Figure 17 the following

transformation equations are written

Tobject TsensorlTobject __
pf = _pf _sensor 1

for i sensors. It then follows that

WsensorlTobjec_
pf -_ sensorl :

T,qensortTobject
pf "-sensorl :

_ T_'_O_,T:_o_
P]

Tsensor2Tobject
pf _sensor2

TsensoraTobject
pf "sensor3 (21)

TSen_°rlq'°bJ _ : T_'_°r'To_jecot "
pf "L sensorl p]

4O

sensor 2

object

sensor.
%

Figure 17. Triangulation scheme.

The known and unknowns in the matrices above are: the T se'_s°r matrices are knownp/

because the inverse kinematics are known, r (sensor-to-trigger point distance) for each

sensor is known because the sensors have been triggered. However, the angular offsets

are not known. Again, if the sensors used are ideal sensors, then for each equation

in (21) there are four unknowns (3' and /3 are unknown on both sides). Therefore

at least two equations must be available; i.e., at least three individual sensors must

trigger to obtain six equations with six unknowns with the assumption that only the

object position is desired but not the object orientation.

41

constant

Zs voltage

• / /fl I /1\ \

v,.\\ //', ',
I I t/ttlA I I ,.-'--

sensor

fiber optic sensor

ideal sensor

Figure 18. Response curves for an optical reflectance sensor and an ideal sensor.

Noncontact Sensor Models

Fiber Optic Reflectance Sensor

There are many different types of noncontact sensors available, each correspond-

ing to a particular need. Inherent to each sensor is the type of output that it gives.

For example, the typical output curve for an optical reflectance sensor is shown in

Figure 18. This is compared to an ideal sensor, which will be discussed in the next

section. The output response of an optical reflectance sensor represents diffused light

intensity from the object to the receiver, which is dependent on the distance, the

42

photometric propertiesof the object surface, and the local orientation of the object

[17].

To realize the complexity of modeling a sensor, Balaure (1986) presents the

mathematical equations which are described below for the fiber optic reflectance

sensor shown in Figure 19. The output from the sensor will depend on parameters:

h, a, _, 5, the slant angle of the object, the whiteness of surface of the object, and

the type of optics used. The received flux _(h, ¢,y) is expressed as

Lo / /D A(x,y) B(x,y__)_ dx dy• (h,_,y) = -T (h2 + u2) (h2 + v2)

The variable Lo is known as the source luminance. The functions A(z, y) and B(x, y)

are defined as

U v

A(x,y) = [cos(2 arctan _ - a) + cos a][cos(2 arctan _T)+ cosa]
u y

B(x,y) = [cos(arctan _ - a)][cos(arctan _ - a)]

where

u = + x)z + y2

v= (7-_:)2+Y2

Of more concern is the detection range of the sensor. The integration area,

or detection range, of the fiber optic sensor is D, the surface located within the

intersection of two ellipses. The equations of the ellipses are:

2
Y + x2(cos2a + tan2_sin 2a) + x[-Scos 2a + hsin 2a + (Ssin2a

+hsin2a)tan2_]+(2c°sa-hsina) 2-tan2_(sina+hcosa =0

and

y2 + x2(cos2 a + tan2 c,sin2 a) + [8c0s2 a _ hsin2 a _ (5 sin2 a+

t2hsin_'a)tan2T]+(-_cosa+hsina) 2-tan2T(sina+hcosa =0.

43

emitter

"--2"---.

fiber __.

Z"

_'eoe_veT _iber

I
/

h

X x

Y

Figure 19. Fiber optic reflectance sensor [13].

Ideal Sensor

An ideal sensor is defined with a spherical detection volume instead of a-"tear-

shaped" volume as for the fiber optic sensor (Figure 18). This sensor is possible if

the emitter and receiver lie exactly on top of each other [12]. Another simplification

is that the target object is chosen as a sphere. Later, a method of implementing the

procedure for other types of objects, such as cylinders or cubes, is discussed.

Using Figure 20, the transformation from the sensor frame to the object is

Sph(7,/3, r + R)= Rot(Zs,7)Rot(Ys, fl)Trans(Zs, r + R)

cos-)' cos/3 -sin7 cos'/ sin/3 (r+ R)cos 7 sin/3-
sin-}, cos¢3 cos 7 sin 7 sin/3 (r + R) sin 7 sin/3

- sin/3 0 cos 13 (r + R) cos/3
0 0 0 1

(22)

44

Z
S

X oloject

Y olo ject

sensor

xs

Figure 20. Parameters for the ideal sensor.

where r is the sensor-to-trigger point distance, R is radius of the sphere, 7 is the

offset angle in the Xs-Ys plane, and fl is the offset angle from the Zs axis.

Examples

Forward Model

To find the sensor parameters r, 7, and/3 of the ideal sensor, it is necessary to

calculate the transformations required by equation 19, which is rewritten below

Tobject = TPf rl_°bject
sensor _ sensor_pf "

Figure 21 shows one finger of the University of Minnesota hand supplied with an ideal

sensor in close proximity to a sphere. The following matrices can then be computed

115]10o 1
TspTs°r= 01_

45

X

J
I

pf

H

Figure 21. Forward model example using one finger of a dexterous hand.

and the inverse of the matrix above is

-1.5
0 0 1 5

= 0 -1 0
0 0 0

The transformation from the palm frame to the object frame is

1 0 0 1.5

Tobjec_ 0 1 0 0
pl = 0 0 1 3

0 0 0 1

46

and the product q'Pf T°bJectis
_ sensor_pf

TpI Tobject
sensor "-pf =

1 0 0 0

01 1 -2- 0 0
0 0 0 1

The last column of the matrix above is the position vector, as shown below

TPf rpobject =

_ sensor-'pf

TobjectThe transformation _se,_,or is

(23)

Tobject = R. Sph(7,/3, r + R),e_80?* (24)

where R is a matrix which reorients the x, y, z frame at the sensor to the Xs, Ys,

Zs frame required to find the sensor parameters. The matrix R is then

R = Rot(x, 90 °) =

1 0 0 0
0 0 -1 0
0 1 0 0
0 0 0 1

(25)

Equation 24 becomes

[cos 7 cos/3 -sin'), cos 7 sin/3 (r+R)cos 7 sin/3

Tobject / sin/3 0 - cos/3 --(r + R)cos 3 (26)

--sensor = L|sinT°c°s/3 cos"/ sin7 sin/3 (r + R) sin 7 sin/30 0 1

Equate the position vector of the matrix in equation 26 to equation 23 results in three

equations with three unknowns

(r+R) cos3' sin/3=0 (27)

-(r + R) cos/3 = -2

(r + R)sin3` sin/3 = 0.

The solution of equations 27-29 yield/3 = 0°, _/= 0 °, and

2
r- R=2-R=2- 1.5 =0.5inches.

COS/3

(28)

(29)

47

This procedure for finding r, 7, and /3 for a general three-dimensional case can be

programmed using a nonlinear least-squares algorithm.

Inverse Model

Figure 22 shows two fingers of a dexterous hand surrounding a circle. Recall

that at least three sensors must trigger for this scheme to work if using ideal sensors.

The three sensors used to demonstrate the procedure are a sensor from the first

link and a sensor from the second link of finger 1, and a sensor from the first link of

finger 2. Thus equation 21 for this example becomes

Tsens°rllw.°bJ ect __ rpsens°rl2Tobject
pf sensorl 1 _pf _sensorl2

(30)
wsens°rllT°bJ ect = Tsens°r21T°bJ ect

pf sensortl pf sensor21

where the first subscript stands for the finger number and the second subscript stands

for the link number. The following matrices are found: for the first link of finger 1,

W sens°rll is
pI

li]1 ?i
Tsensorll

Pf = 1o °
For the second link of finger 1, T se'_s°rl_ ispY

Tsensorl2
pf =

0.85264 0.5225 0 2.42632
0 0 -1 0

-0.5225 0.85264 0 4.73875
0 0 0 1

For the first link of finger 2, TS_"s°r21vf is

0.70711

TSe,_oT_l 0
pf = -0.70711

0

0.70711 0 1.35356
0 -1 0

0.70711 0 0.64645
0 0 1

Using equation 24, the transformations T°bject and T°bject_sensovll _sensorl2 are

Tobject,_,_,orlj = R1. Sph(Tu,/3U, rlj -+-R) (31)

where j is the link number 1 or 2. The R1 matrix is

R1 = Rot(x, 90 °) =
1 0 0 0

0 0 -1 0
0 1 0 0
0 0 0 1

48

Finger" 1 -_ .5°

seFISOK"

----_--

XF,= 1" I

Zpf

Finger"
-31_ ..,

"X__ pf

J iz9 =1'

8.8]85"

ZF= 5"

2

Figure 22. Pose estimation of a circle using a two-fingered hand.

49

For the first link of finger 2, rpobject is
_ aensor21

T °bject = R2" Sph(721,_21,r21 + R)
sensor21

(32)

where the R2 matrix is

R2 = Rot(z,-90 °) Rot(z, 180 °) =

-1
0
0
0

Then equation 31 becomes

Tobject =
sensorlj

COS71j COS/31j -- sin 71j

sin/3 U 0

sin 7U cos/3U cos 7U
0 0

cos 7U sin/31j

-- COS/31j

sin 7U sin/3 U
0

°°i]0 1

1 0
0 0

(rlj + R) cos _71j sin ill j"

-(rlj + R) cos/31j
(rlj + R) sin71 j sin/31j

1

and (32) becomes

T°bJ ect =
aensor21

- cos'721 cos/321 sin721 - cos 721 sin/321
- sin/321 0 cos/321

sin 721 COS/321 COS721 sin 721 sin/321
0 0 0

-(r21 + R)cos721 sin/321
(_21 + R) cos/321

(r21 + R) sin 721 sin f21
1

Taking the products required by equation 30 and looking at only the last column of

each, yields

TsensorllTobject
pf sensorll

(rll ,a_ R) cos711 sin/311 + 1.5]
--(rll q- R)sinTll sin/311 J= -(rll + R)cos/311 + 5

1

TsesoT12 objec[!]pf "_ sensorl2 _--

0.853(r12 + R)cos 712 sin 312 -- 0.523(r12 + R)cos 312 + 2.426]
--(r12 + R)sin71z sin/312 |

-0.523(r12 + R) cos 712 sin/312 1 0.853(r12 + R) cos/312 + 4.739/
-I

0

Tsensor21rpobject 0 __
Pf "_" nens°r21 0 --

1

(33)

(34)

-0.707(r21 + R)cos 721 sinf121 + 0.707(r21 + R) cos/321 + 1.354
-(r21+ R) sin 721 sin/321

0.707(r21 + R)cos 721 sin/321 + 0.707(r21 + R)cos/321 + 0.646
1

(35)

5O

Table 5. Radial distances, r.

Variable Distances

(in)

r11 0.7097087

r12 0.5216860

r:1 0.7141319

Also, from equation 30, the three equations above must all be equal to each other.

Equating them yields six equations with six unknowns

711, /311, 712, /312, 721, /321.

Software using a nonlinear least-squares technique was written to solve for the

unknowns. Table 5 lists the radial distances obtained from the forward model. These

distances were calculated using the known circle position and finger joint angles.

Then, the r values were input to the inverse model to calculate the offset angles

and compared to the values obtained in the forward model, as shown in Table 6.

The sensor parameters obtained match those given by the forward model with slight

differences due to roundoff error.

Once 7 and 13are obtained for any sensor, the object frame position with respect

TsensorTobjectto the palm frame is the position vector from the product pf sensor for that

particular sensor. For example, using equation 33 with values obtained from Table

6 for the sensor on link 1 of finger 1, the object frame position with respect to the

palm frame is

TsensorllTobject
pf _sensorll

1.8125]

-2 × 10 -5
2.8125

1

which agrees with the input values to the forward solution.

51

Table 6. Poseestimation results.

sensorparameters forward solution inversesolution percent error
(degrees) (degrees) (%)

-.." 0 0.38080

8.1301 8.1302 "-0

712 _ 0 0.24633 -

fl12 13.8251 13.8251 0

_21 _ 0 _ 0

_21 33.0371 33.0373 _ 0

The overall procedure can be programed using the nonlinear least-squares

technique to solve a general three-dimensionM problem.

Discussion

There are some limitations in the pose estimation algorithm: the fact that only

the position is calculated versus both the position and orientation, and that the object

and sensor characteristics are modeled as being spherical.

To estimate the orientation of the object is a more complex problem. Furhman

and Kanade (1984) describe a method of estimating the orientation of a surface using

a multilight proximity sensor. The three-dimensional locations of the spots of light

on the surface of the object are computed using triangulation. Then, by fitting a

surface to a set of points, the orientation and curvature of the surface are calculated.

The pose estimation algorithm used an ideal model for the sensor. A more real-

istic model of the sensor characteristics is the "tear shaped" model as shown in Figure

18. This shape must be modeled mathematically and the equation development must

take the difference of sensor models into account.

The pose estimation algorithm also used a spherical model for the target object.

Other types of objects can be used, but it will require more computation to model

them. One possible way of representing objects mathematically is to use Fourier

52

Descriptors, which is a method usedin imaging processesto representa shape. The

problem with using a method such as Fourier Descriptors is that the computation

time required may make the program run too slow for a real-time environment.

An alternative would be to treat objects as geometric primitives and develop the

algorithm to handle these specific primitives.

53

FUTURE RESEARCH

This chapter discussesfuture extensionsof the investigation. The first section

presentsa graspstrategy using the inversekinematic and poseestimation algorithms

to provide low-level control of a dexterous hand when grasping an object. The

secondsection lists some ideas for research,softwaredevelopmentand simulation,

and hardwaredesignand implementation of the graspstrategy.

Grasp Algorithm

Tomovic, Bekey,and Karplus (1987) proposeda method for graspingarbitrary

objects using a multifingered hand. They defined the basic elements involved in

grasping basedon the philosophy of reflexcontrol (i.e.; eachaspectof the grasping

task is initiated and terminated using sensorydataand rulesof behavior derived from

humanexpertise). Thesebasic elementsare

1. Representtarget objects asgeometricalprimitives.

2. Preshapeand align the hand to conformwith the selectedgeometricalprimitive.

3. Determine the most suitable hand configuration for the primitive (1, 2, or 3

fingeredgrasp).

4. Separation of the grasping task into a target approach phase and a shape

adaptation phasewhile applying reflex control philosophy.

Keepingthesebasicelementsin mind, a strategytermed the Grasp Algorithm is

proposed which utilizes the inverse kinematic and pose estimation software to provide

control of a dexterous hand when grasping an object. Figure 23 shows a flowchart

for the proposed strategy. First, the vision system will locate and identify the object

as some geometric primitive and determine its coordinate frame, as shown in box

1. A strategy similar to the one proposed by Rao, et al (1988) could be used to

accomplish the task of object identification. Using this information, the robot will

move towards the object and preshape the hand (box 2). High-level reasoning will

select the appropriate preshape based on parameters such as object size and shape,

and the location of the selected grasping points.

54

Next, the robot will position the hand closeenough to the object such that

the object is within the grasping region of the hand (box 3). Data obtained from

the proximity sensorsshould be able to answerthe question of whether the object

is within the grasping region. Chammas (1989) discusses a method of obtaining the

grasping pre-image of a hand, which is the region the object must be to be grasped

successfully.

Once the object is within reach, position commands should be sent to the hand

based on the type of grasp that is required. These position commands are input to

the inverse kinematics software which determines the joint angles necessary (box 4).

Now, the object pose is calculated from the proximity sensor data using the pose

estimation software (box 5), and any adjustments to the finger positions are made

if necessary. Once sensor outputs reach some threshold, the hand is closed and the

object is grasped. Vision or tactile sensors can then verify if the object has been

successfully grasped through measurement of force and slip (boxes 6 and 7).

Implementation

This work presented algorithms to determine the inverse kinematics of a ma-

nipulator and the pose estimation of a pre-grasped object. These algorithms were

developed assuming several simplifications such as: the inverse kinematics did not

take into account the mechanical constraints of the manipulator and, as a result,

multiple solutions were available; the pose estimation algorithm used a spherical sen-

sor model which may or may not be a close estimation of an actual sensor model.

Likewise, the object to be grasped was limited to a sphere, and thus orientation did

not matter. In retrospect, this investigation provided a software shell which can be

easily upgraded to take into account the factors listed above.

At present, software is being developed based on the inverse kinematic and pose

estimation algorithms to simulate the movement of a three-dimensional model of the

University of Minnesota hand. The modeling software that is being used is called

TOPAS (AT&T Bell Laboratories).

Other subjects which should be considered in the future are:

55

Vision

Sensing

d_b
C) I Loca,eoo__en_i_y objec_

I
T

oi_ov.,o0o_.c,jPreshape hand

Proximi±y,

Vision

Sensing

TactiLe, Fopce,

Vision Sensing

continue

Figure 23. Grasping scheme.

56

1. Increase the sensor model complexity of the pose estimation algorithm to match

the characteristics of actual sensors.

2. Use actual finger dimensions and other physical constraints to increase useful-

ness of the inverse kinematics algorithm.

3. Implement the grasp algorithm in conjunction with a robot hand controller and

driver to adequately close the hand; i.e.; provide correct timing, force, and form

of the hand on the object.

4. Use multisensory data together with the grasp algorithm to successfully manip-

ulate an object.

57

CONCLUSIONS

A numerical schemewasdevelopedto solve the inversekinematics for a user-

definedmanipulator. The schemewasbasedon a nonlinear least-squarestechnique

which determinesthe joint variablesby minimizing the differencebetweenthe target

end effector pose and the actual end effector pose. The schemewasadopted to a

dexteroushandin which thejoints areeither prismatic or revoluteand the fingersare

consideredopen kinematic chains. Feasiblesolutions wereobtained using a three-

fingereddexteroushand.

An algorithm to estimate the position and orientation of a pre-grasped object

was also developed. The algorithm was based on triangulation using an ideal sensor

and a spherical object model. By choosing the object to be a sphere, only the position

of the object frame was important. Based on these simplifications, a minimum of three

sensors are needed to find the position of a sphere. A two dimensional exainple to

determine the position of a circle coordinate frame using a two-fingered dexterous

hand was presented.

\

/
t<

58

REFERENCES

1 D. McFalls and E. Franke, "A Robotic Assistant for Space Station Freedom",

Robotics Today, vol. 2, no. 2, pp. 1-6, Second Quarter, 1989.

2 R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control,

Cambridge, MA, The MIT Press, chaps. 1-3, 1981.

T. Koehler and M. Donath, "Inverse Kinematics for a Multifingered Hand",

IEEE International Conference on Robotics and Automation, vol. 1, pp. 234-

239, 1988.

4 J.K. Poon and P.D. Lawrence, "Manipulator Inverse Kinematics Based on Joint

Functions", IEEE International Conference on Robotics and Automation, vol.

2, pp. 669-674, 1988.

A. A. Goldenberg, B. Benhabib, and R. G. Fenton, "A Complete Generalized

Solution to the Inverse Kinematics of Robots", IEEE Journal of Robotics and

Automation, vot. RA-1, no. 1, pp. 14-19, March, 1985.

6 R.J. Schilling, Fundamentals of Robotics, Englewood Cliffs, N J, Prentice-Hall,

chaps. 3 and 5, 1990.

7 A. Guez and A. Ziauddin, "Solution to the Inverse Kinematics Problem in

Robotics by Neural Networks", Neural Network's, vol. 1, no. 1, p. 337, 1988.

H. Kobayashi, "Grasping and Manipulation of Objects by Articulated Hands",

IEEE International Conference on Robotics and Automation, vol. 3, pp. 1514-

1519, 1986.

9 G. B. Dunn and J. Segen, "Automatic Discovery of Robotic Grasp Configura-

tions", IEEE International Conference on Robotics and Automation, vol. 1, pp.

396-401, 1988.

10 K. Rao, G. Medioni, H. Liu, and G. A. Bekey, "Robot Hand-Eye Coordination:

Shape Description and Grasping", IEEE International Conference on Robotics

and Automation, vol. 1, pp. 407-411, 1988.

11 S. A. Stansfield, "Robotic Grasping of Unknown Objects: A Knowledge-Based

Approach", Sandia Report SAND-I087. UC-32, Sandia National Laboratories,

Albuquerque, NM, June, 1989.

59

12

].3

14

15

16

17

18

19

B. Espiau, "Useof Optical ReflectanceSensors",Recent Advances in Robotics,

G. Beni and S. Hackwood, Editors, Santa Barbara, CA, John Wiley & Sons,

pp. 313-357, 1985.

E. Balaure, "Optical Reflectance Sensors and Their Applications in Automatic

Grasping", Recent Trends in Robotics: Modeling, Control, and Education, M.

Jamshidi, L.Y.S. Luh, and M. Shahinpoor, Editors, New York, Elsevier Science

Publishing, pp. 523-528, 1986.

D.J. Balek and R.B. Kelley, "Using Gripper Mounted Infrared Proximity Sen-

sors for Robot Feedback Control", IEEE International Conference on Robotics

and Automation, 1985.

M. Furhman and T. Kanade, "Optical Proximity Sensor Using Multiple Cones

of Light for Measuring Surface Shape", Optical Engineering, vol. 23, no. 5, pp.

546-553, September/October, 1984.

A. Romiti and T. Raparelli, "Dynamic Six Component Measurement of Robot

Precision", Proceedings of the 2nd International Conference on Robotics and

Factories of the Future, New York, Springer-Verlag, pp. 497-502, 1987.

B. Espiau, "An Overview of Local Environment Sensing in Robotics Applica-

tions", Sensors and Sensory Systems for Advanced Robots, P. Dario, Editor,

New York, Springer-Verlag, pp. 125-151, 1988.

R. Tomovic, G.A. Bekey, and W.J. Karplus, "A Strategy for Grasp Synthesis

with Multifingered Robot Hands", IEEE International Conference on Robotics

and Automation, vol. 3, pp.83-89, t987.

C.Z. Chammas and J.K. Salisbury, "Hands: An Automatic Grasping Ap-

proach", MIT Technical Report, MIT Artificial Intelligence Laboratory, Cam-

bridge, MA, 1989.

Supplementary Sources Consulted

2

G.B. Thomas and R.L. Finney, Calculus and Analytic Geometry, 6th Edition,

Reading, MA, Addison-Wesley, pp. 717-718, 1984.

P. Coiffet, Robot Technology Volume 2: Interaction with the Environment,

London, Kogan Page Ltd., p. 100, 1983.

6O

APPENDIX A

MAIN PROGRAM FOR INVERSE KINEMATICS

* BY: VICTOR H. PINTO *

TEXAS A&M UNIVERSITY, DEPT OF MECHANICAL ENGINEERING *

COLLEGE STATION, TEXAS 77843 *
**

* PROGRAM DESCRIPTION:

* THIS PROGRAM CALCULATES THE NECESSARY JOINT ANGLES OF EACH FINGER

* OF A MULTIFINGERED HAND GIVEN THE KINEMATIC PARAMETERS OF EACH

* FINGER AND THE DESIRED POSITION OF THE CONTACT-POINT FRAME.

* THIS TASK IS ACCOMPLISHED USING A LEAST-SQUARES MINIMIZATION

. PROCESS.

• HAND MODELED: UNIV.. OF MINN. HAND

* PARAMETERS:

* NOL = NUMBER OF LINKS PER FINGER

* NOF = NUMBER OF FINGERS

* LDFJAC,M,N = PARAMETERS USED IN THE LEAST-SQUARES ROUTINE, WHERE

* M IS THE NUMBER OF FUNCTIONS AND N IS THE NUMBER

* OF UNKNOWNS.

* INPUT VARIABLES:

* AL,AA,DD = MATRICES WHICH CONTAIN THE REQUIRED D-H KINEMATIC

* PARAMETERS OF EACH FINGER.

* CI,C2,C3 = MATRICES WHICH DEFINE THE POSITION OF THE

* CONTACT-POINT WITH RESPECT TO THE OBJECT FRAME.

* FI,F2,F3 = MATRICES WHICH DEFINE THE TRANSFORMATION FROM

* THE PALM FRAME TO h FINGER-BASE FRAME.

* BAR = TRANSFORMATION MATRIX FROM THE PALM FRAME TO THE

* OBJECT FRAME (IN THIS CASE h RECTANGULAR BAR).

* OUTPUT VARIABLES:

* X = VECTOR OF LENGTH N WHICH CONTAINS THE JOINT ANGLES FOR A

* PARTICULAR FINGER (RADIANS)

* XN,YN,ZN = POSITION COOR OF THE FINGERTIP FRAME (INCHES)

* PHID,THETAD,PSID = EULER ANGLES OF THE FINGERTIP FRAME (DEGREES)

* ***NOTE*** NOF AND NOL MUST BE ENTERED INTO THE PARAMETER LIST OF

* SUBROUTINE FORWARD.

* ***NOTE*** THE JOINT VARIABLE CONSTRAINTS MUST BE SET IN SUBROUTINE

* CONSTRAINT.

* ASSUMPTIONS: 3 FINGERS, 3 LINKS

61

INTEGERLDFJAC,M,N,I, J, NOL,NOF,COUNT, IPARAM (6), FLAG, FLAG2

PARAMETER (LDFJAC=3,M=3,N=3)

PARAMETER (NOF=3, NOL=3)

DOUBLE PRECIS ION FJAC (LDFJAC, N), FSCALE (M), FVEC (M), RPARAM (7),

& X (N), XGUESS (N), XSCALE (N), DEG ,POS (3), XN, YN, ZN, PHID, THETAD,

& PS ID, PHI, THETA, PSI, AL (NOF, NOL), AA (NOF, NOL), DD (NOF, NOL),

& FI(4,4),F2(4,4),F3(4,4),CI(4,4),C2(4,4),C3(4,4),BAR(4,4),

& T(4,4)
COMMON /CONTACT/ CI,C2,C3

COMMON /DH_PARAMETERS/ AA,At,DD

COMMON /FING_BASE/ FI,F2,F3

COMMON /BAR/ BAR

COMMON COUNT ,POS ,T,XN ,YN, ZN

CHARACTER*23 OUTPUT

EXTERNAL DUNLSF, FORWARD

C *********calculate the joint angles for each finger***********

DO i0 COUNT=I,NOF

C open data files for results:

20

WRITE (6,*) 'ENTER OUTPUT FILE NAME F0R FINGER ',COUNT

READ (5,20) 0UTPUT

FORMAT (A)

OPEN (UNIT=I5,FILE=OUTPUT,STA_-US='NEW')

C ca%l subroutine POSITION to compute the position

C of the contact-point frarae:

CALL POSITION (COUNT,POS)

C call IMSL routine to compute least-squa_res minimization:

DATA XGUESS /0.20,0.20,0.20/

DATA XSCALE /N*I.O/, FSCALE /M*I.0/

FLAG2=O

CONTINUE

IPARAM(1)=O

FLAG=O

CALL DUNLSF (FORWARD,M,N,XGUESS,XSCALE,FSCALE,IPARAM

+,RPARAM,X,FVEC,FJAC,LDFJAC)

C check joint variable constraints:

FLAG2=FLAG2+I

IF (FLAG2.GT.3) THEN

WRITE (6,*) 'NO JOINT SOLUTION AVAILABLE FOR

+FINGER ',COUNT

GOTO i0

ELSE

62

WRITE(6,*) ' WORKING ...
ENDIF

CALL CONSTRAINT (COUNT,FLAG,X,N)

C if FLAG is >= I, then a joint limit has been exceeded.

IF (FLAG.GT.O) THEN

DO 6 1=1,6

XGUESS(1)=X(1)

CONTINUE

GOTO 5

ENDIF

C compute the Euler angles of the contact-point frame:

IF ((T(I,3).EQ.O.O).AND.(T(2,3).EQ.O.O)) THEN

PHI=O.O

ELSEIF ((T(t,3).LT.O.O).AND.(T(2,3).LT.O.O)) THEN

PHI=DATAN2(DABS(T(2,3)),DABS(T(I,3)))+3.14159DO
ELSE

PHI=DATAN2(T(2,3),T(I,3))

END IF

THETA=DATAN2(DCOS(PHI)*T(I,3)+DSIN(PHI)*T(2,3),T(3,3))

PSI=DATAN2(-DSIN(PHI)*T(I,I)+DCOS(PHI)*T(2,1),-DSIN(PHI)*T(I,2)

++DCOS(PHI)*T(2,2))

PHID = PHI * 180.ODO/3.14159DO

THETAD = THETA * 180.ODO/3.14159DO

PSID = PSI * 180.ODO/3.14159DO

C write results to data file:

25

30

35

40

45

I0

WRITE (15,25) COUNT

FORMAT (' ',5X,'INVERSE SOLUTION FOR FINGER',IX,I2)

DO 35 J = I,N

DEG = X(J) * 180.ODO/3.14159DO

WRITE (15,30) COUNT,J,DEG,FVEC(J)

FORMAT (' ',2X,'THETA',IX,I2,I2,1X,'=',IX,FIT.II,4X,

+'TOLERANCE =',IX,F15.11)
CONTINUE

WRITE (15,40) COUNT

FORMAT (' ',2X,'POSITION AND ORIENTATION OF CONTACT FRAME',IX,

+12)

WRITE (15,45) 'X-DIRECTION =',XN,'Y-DIRECTION =',YN,

+'Z-DIRECTION =',ZN

FORMAT (' ',2X,A,2X,FI7.11)

WRITE (15,45) 'PHI =',PHID,'THETA =',THETAD,'PSI =',PSID
CONTINUE

CLOSE(15)

CALL EXIT

END

63

APPENDIX B

SUBROUTINE TO MINIMIZE RESIDUAL FUNCTIONS

SUBROUTINE FORWARD (M,N,X,F)

C THIS SUBROUTINE CALCULATES THE NON-LINEAR FUNCTIONS FOR USE

C IN THE IMSL ROUTINE DUNLSF.

INTEGER M,N,I,J,COUNT,NOF,NOL

PARAMETER (NOF=3, NOL=3)

DOUBLE PRECISION X(N),F(M),R(4,4),TO(4,4), T(4,4),TEMP(4,4),

FI(4,4),F2(4,4),F3(4,4),AL(NOF,NOL),AA(NOF,NOL),DD(NOF,NOL),

TH(NOF,NOL),POS(3),XN,YN,ZN

COMMON /DH_PARAMETERS/ AA,AL,DD
COMMON /FING_BASE/ FI,F2,F3

COMMON COUNT,POS,T,XN,YN,ZN

C initialize TO matrix to identity matrix:

DATA TO /I.,0.,0.,0.,0.,i.,0.,0.,0.,0.,i.,0.,0.,0.,0.,I./

C initialize variables:

TH(COUNT,I)=X(1)

TH(COUNT,2)=X(2)

TH(COUNT,3)=X(3)

C initialize T matrix to identity matrix:

DO 20 I=i,4

DO 30 J=l,4

T(I, J)=TO(I, J)
3O CONTINUE

20 CONTINUE

C compute the transformation matrix T for the finger:

DO 40 I=I,NOL

CALL TRANSFORM (AL(COUNT,I),AA(COUNT,I),DD(COUNT,I),
+ TH (COUNT, I) ,R)

CALL MATMULA (T,R)
40 CONTINUE

C compute the overall transformation matrix with respect to the
C ha/%d base frame

64

IF (COUNT.Eq.I) THEN

DO 50 I=I,4

DO 60 3=1,4

TEMP(I, J) =FI (I, J)

60 CONTINUE

50 CONTINUE

ELSE IF (COUNT.EQ.2) THEN

DO 70 I=i,4

DO 80 J=l,4

TEMP(I,J)=F2(I,J)

80 CONTINUE

70 CONTINUE

ELSE IF (COUNT.EQ.3) THEN

DO 90 I=l,_

DO I00 S=I,4

TEMP(I,J)=F3(I,J)

I00 CONTINUE

9O CONTINUE

END IF

CALL MATMULA (TEMP,T)

DO 110 I=1,4

DO 120 J=l,4

T(I,J)=TEMP(I,J)

120 CONTINUE

110 CONTINUE

C compute position:

XN=T (I .4)

YN =T (2,4)

ZN=T(3.4)

C calculate functions:

F(1)=(POS(1))-(XN)

F(2)=(POS(2))-(YN)

F(3)=(POS(3))-(ZN)

C calculate rms values for position errors:

PRMS =DSQRT (F (i) *_2+F (2) **2+F (3) **2)

C print rms values to screen:

C PRINT *, PRMS

RETURN

END

65

APPENDIX C

SUBROUTINE TO CHECK JOINT CONSTRAINTS

SUBROUTINE CONSTRAINT (COUNT,FLAG,X,N)

C SUBROUTINE TO VERIFY AND CORRECT THE JOINT VARIABLES

C IN ORDER TO MAINTAIN MECHANICAL LIMITS.

INTEGER N, FLAG, COUNT

DOUBLE PRECISION X(N), PI, PI2, PI3, PI6

PI=3.14159265DO

PI2=PI/2

PI3=PI/3

PI6=PI/6

IF ((COUNT.EQ.I).OR.(COUNT.EQ.2)) THEN

IF (X(1).LT.-PI6) THEN

X(1)=-PI6

FLAG=FLAG+I

ENDIF

IF (X(1).GT.PI6) THEN

X(1)=PI6

FLAG=FLAG+I

ENDIF

IF (X(2).LT.-PI3) THEN

x(2)=-pi_
FLAG=FLAG+I

ENDIF

IF (X(2).GT.O.ODO) THEN

X(2)=O.ODO

FLAG=FLAG+I

ENDIF

IF (X(3).LT.-PI2) THEN

X(3)=-PI2
FLAG=FLAG+I

ENDIF

IF (X(3).GT.O.ODO) THEN

X(3)=O.ODO

FLAG=FLAG+I

ENDIF

ELSEIF (COUNT.EQ.3) THEN

IF (X(1).LT.-PI6) THEN

X(i)=-Pl6

FLAG=FLAG+I

ENDIF

IF (X(i).GT.PI6) THEN

X(1)=PI6

FLAG=FLAG+I

66

ENDIF
IF (X(2).GT.PI3) THEN

X(2)=PI3
FLAG=FLAG+I

ENDIF
IF (X(2).LT.O.ODO) THEN

X(2)=O.ODO
FLAG=FLAG+I

ENDIF
IF (X(3).GT.PI2) THEN

X(3) =P12
FLAG=FLAG+I

ENDIF
IF (X(3).LT.O.ODO) THEN

X(3) =0. ODO
FLAG=FLAG+I

ENDIF
ENDIF

RETURN
END

67

APPENDIX D

SUBROUTINE TO CALCULATE

CONTACT-POINT LOCATION

SUBROUTINE POSITION (POS)

C THIS SUBROUTINE CALCULATES THE REQUIRED POSITION OF
C THE CONTACT-POINT WITH RESPECT TO THE PALM FRAME.

INTEGER l,J

DOUBLE PRECISION X(4,4),POS(3),CP(3),C(4,4),BAR(4,4)

COMMON /CONTACT/ CP

COMMON /BAR/ BAR

C initialize matrices:

100

DATA C /I.,0.,0.,0.,0.,I.,0.,0.,0.,0.,1.,0.,0.,0.,0.,I./

DO I00 I=1,3

C(I,4)=CP(I)

110

DO ii0 I=1,4

DO ii0 J=l,4
X(l, J)=BAR(I,J)

CALL MATMULA (X,C)

C retrieve positions:

POS(1)=X(1,4)
POS(2)=X(2,4)
POS(3)=X(3,4)

RETURN

END

68

APPENDIX E

SUBROUTINE TO CALCULATE THE A MATRIX

SUBROUTINE TRANSFORM (AL,AA,DD,TH,TT)

C SUBROUTINE TO COMPUTE THE INDIVIDUAL T MATRIX

DOUBLE PRECISION AL,AA,DD,TH,TT(4,4)

TT(I,
TT(I,

TT(I,

TT(I,
TT(2,

TT(2,

TT(2

TT(2

TT(3

TT(3
TT(3

TT(3

TT(4

TT(4

TT(4

TT(4

I)=DCOS(TH)

2)=-DSIN(TH)*DCOS(AL)

3)=DSIN(TH)*DSIN(AL)

4)=DCOS(TH)*AA

i)=DSIN(TH)

2)=DCOS(TH)*DCOS(AL)

3)=-DCOS(TH)*DSIN(AL)

4)=DSIN(TH)*AA

i)=o.o
2)=DSIN(AL)

3)=DCOS(AL)

4) =DD

i)=o.o
2)=0.0

,3)=o.o
4)=i .o

RETURN

END

69

APPENDIX F

SUBROUTINE TO POST-MULTIPLY MATRICES

SUBROUTINE MATMULA (A,B)

C SUBROUTINE TO POST-MULTIPLY MATRICES

20

tO

40

30

INTEGER l,J

DOUBLE PRECISION A(4,4), B(4,4), C(4,4)

DO I0 I=I,4

DO 20 J=1,4

C(I,J)= A(I, l)*S(l, J)+A(I,2)*B (2,J)+A(I,3)*B(3,J)
++A(I,4)*B(4, J)
CONTINUE

CONTINUE

DO 30 I=I,4

DO 40 J=l ,4

A(I,J)=C(I,J)
CONTINUE

CONTINUE

RETURN

END

7O

APPENDIX G

DATA FOR IKP EXAMPLE USING UNIV. OF MINN. HAND

BLOCK DATA

DOUBLE PRECISION AL(3,3),AA(3,3),DD(3,3)

DOUBLE PRECISION FI(4,4),F2(4,4),F3(4,4)

DOUBLE PRECISION CI(4,4),C2(4,4),C3(4,4)

DOUBLE PRECISION BAR(4,4)

COMMON /DH_PARAMETERS/ AA,AL,DD

COMMON /FING_BASE/ FI,F2,F3

COMMON /CONTACT/ CI,C2,C3

COMMON /BAR/ BAR

DATA

+

+

DATA

+

+

DATA

DATA

+

+

+

DATA

+

+

+

DATA

+

+

+

DATA

+

+

+

DATA

+

+

+

DATA

+

+

+

DATA

+

+

+

END

AL /I .5708D0,1.5708DO,I.5708DO,

0.0,0.0,0.0,

o.o,o.o,o.oi
AA /I.ODO, I.ODO,I.ODO,

I .ODO, I.ODO,I.ODO,

i .ODO, I.ODO,I.ODO/

DD /9*0. O/

F1 /I.0,0.0,0.0,0.0,

0

0

1

F2 /1
0

0

1

F3 /0
0

0

0

cl /1
0

0

0

c2 /1
0

0

0

C3 11
0

BAR

.0,I.0,0.0,0.0,

.0,0.0,i.0,0.0,

•ODO,-I .ODO,4.0DO,I.O/

.0,0.0,0.0,0.0,

.0,I.0,0.0,0.0,

.0,0.0,i.0,0.0,

•ODO, I.ODO,4.0DO,I.0/

.70711D0,0.0,-0. 70711D0, O. O,

.0, 1.0, 0.0, 0.0,

.70711D0,0.0, 0.70711D0,0.0,

•5DO, O.ODO,I.ODO, 1.0/

.0,0.0,0.0,0.0,

0,I.0,0.0,0.0,

0,0.0,1.0,0.0,

ODO,-1.0DO,O.5DO, 1.0/

0,0.0,0.0,0.0,
0,1.0,0.0,0.0,

0,0.0,i.0,0.0,

ODO, 1.0DO,O.5DO,I.O/

0,0.0,0.0,0.0,

0,I.0,0.0,0.0,

0 0,0.0,I.0,0.0,

O.ODO,O.ODO,-O.5DO, 1.0/

/1.0,0.0,0.0,0.0,

0.0,1.0,0.0,0.0,

0.0,0.0,1.0,0.0,

2.0DO,O.ODO,2.0DO, 1.0/

71

APPENDIX H

MAIN PROGRAM FOR POSE ESTIMATION

* BY: VICTOR H. PINTO *

TEXAS A_M UNIVERSITY, DEPT OF MECHANICAL ENGINEERING *

COLLEGE STATION, TEXAS 77843 *
**

* PROGRAM DESCRIPTION:

* THIS PROGRAM FINDS THE POSITION 0F h SPHERE GIVEN THE SENSOR

* DISTANCES (INVERSE SOLUTION). THIS IS ACCOMPLISHED USING A LEAST-

* SQUARES MINIMIZATION PROCESS.

* HAND MODELED: UNIV. OF MINN. HAND

* PARAMETERS:

* N0L = NUMBER OF LINKS PER FINGER

* N0F = NUMBER OF FINGERS

* N0S = NUMBER 0F SENSORS PER LINK

* SSEN = LINK NUMBER OF THE REFERENCE SENSOR

* LDFJAC,M,N = PARAMETERS USED IN THE LEAST-SQUARES ROUTINE.

* WHERE M IS THE NUMBER OF FUNCTIONS, AND N IS

* THE NUMBER OF UNKNOWNS.

* INPUT VARIABLES:

* AL,AA,DD,TH = MATRICES WHICH CONTAIN THE REQUIRED D-H KINEMATIC
* PARAMETERS OF EACH FINGER LINK

* FI,F2,F3 = TRANSFORMATION MATRICES BETWEEN THE PALM FRAME

* TO THE FINGER BASE FRAME

* ZETA = (NOF,2) MATRIX WHICH CONTAINS THE NECESSARY SENSOR FRAME

* ROTATIONS

* RS = (NOF,NOL) MATRIX OF SENSOR VALUES

* XGUESS = VECTOR OF LENGTH N CONTAINING THE INITIAL GUESS FOR

* THE LEAST-SQUARES ROUTINE.

* XSCALE = VECTOR OF LENGTH N CONTAINING THE DIAGONAL SCALING

* MATRIX FOR THE VARIABLES (USED IN LSQ ROUTINE). ALL

* ENTRIES HAVE BEEN SET TO 1.0.

* SGAMMA,GAMMAI,GAMMAJ,SBETA,BETAI,BETAJ = SENSOR PARAMETERS

* THAT ARE CALCULATED PRIOR TO FINDING THE OBJECT POSITION

* OUTPUT VARIABLES:

* XO,YO,ZO = POSITION COORDINATES OF OBJECT FRAME

* ***NOTE*** RS(NOF,NOL) AND ZETA(NOF,2) MUST BE DIMENSIONED

* IN SUBROUTINE FORWARD. ALSO, NOF AND NOL MUST BE ENTERED

* INTO THE PARAMETER LIST OF SUBROUTINE FORWARD.

72

ASSUMPTIONS:3 FINGERS,3 SENSORSPERFINGER,1 SENSORPERLINK
SSEN= 1

INTEGERLDFJAC,M,N,NOL,NOF,NOS,FING,LINK,SENS,IPARAM(6),
SSEN

PARAMETER(LDFJAC=6,M=6,N=6)
PARAMETER(NOF=3,NOL=3,NOS=I)
DOUBLEPRECISIONFJAC(LDFJAC,N),FSCALE(M),FVEC(M),RPARAM(7),

& X(N),XGUESS(N),XSCALE(N),XO,YO,ZO,RADIUS,R,RS(NOF,NOL),
& ZETA(NOF,2),SGAMMA,GAMMAI,GAMMAJ,SBETA,BETAI,BETAJ,

AL(NOF,NOL),AA(NOF,NOL),DD(NOF,NOL),TH(NOF,NOL),FI(4,4),
F2(4,4),F3(4,4)

COMMON/DH_PARAMETERS/ AL,AA,DD

COMMON /JOINT_ANGLES/ TH

COMMON /FING_BASE/ FI,F2,F3

COMMON /SENSOR_VALUES/ RS

COMMON /OPARAM/ RADIUS

COMMON /FINGER/ FING

COMMON /LINK/ LINK

COMMON /REF_SENSOR/ SSEN

COMMON /SENSOR_ORIENT/ ZETA

CHARACTER*23 OUTPUT

EXTERNAL DUNLSF,FORWARD

C initialize data:

SSEN = 1

C open data files for results:

120

WRITE (6,*) 'ENTER OUTPUT FILE NAME '

READ (5,120) OUTPUT

FORMAT (A)

0PEN (UNIT=I5,FILE=0UTPUT,STATUS='NEW')

C determine parameters of the object:

WRITE(6,*) 'ENTER RADIUS 0F SPHERE'

READ(5,*) RADIUS

WRITE (15,*) ' OBJECT TYPE = SPHERE'

WRITE (15,*) ' RADIUS (INCHES)= ',RADIUS,' INCHES'

C enter sensor values:

6

5

OPEN (UNIT=I6,FILE='SEN_VAL.DAT',STATUS='OLD')

DO 5 I=I,NOF

WRITE (15,*)

WRITE (15,*) ' FING',I,' SENSOR VALUES'

DO 6 J=I,NOL

READ (16,*) RS(I,J)

WRITE (15,*) 'FING(',I,') LINK(',J,')= ', RS(I,J)
CONTINUE

CLOSE (16)

73

C enter joint angles:

DO 11=I,NOF

WRITE (6,*) 'ENTER FING',I,' JOINT ANGLES'

WRITE (15,*)

WRITE (15,*) 'FING',I,' JOINT ANGLES'

DO 2 J=I,NOL

WRITE (6,*) 'FING(',I,') LINK(',J,')'

READ (5,*) TH(I,J)

WRITE (15,*) 'FING(',I,') LINK(',J,')= ',TH(I,J)
CONTINUE

CONTINUE

C *************** calculate object position *******************

DO i0 FING=I,NOF

DO 20 LINK=SSEN+I,NOL

C call least-squares IMSL routine:

C

IPARAM(1)=O

the guesses are arbitrary
DATA XGUESS /0.2,0.2,0.2,0.2,0.2,0.2/

DATA XSCALE /N*I.O/, FSCALE /M*I.O/

C ***NOTE*** RS(NOF,NOL) AND ZETA(NOF,2) MUST BE DIMENSIONED

C IN SUBROUTINE FORWARD. ALSO, NOF AND NOL MUST BE ENTERED
C INTO THE PARAMETER LIST OF SUBROUTINE FORWARD.

CALL DUNLSF (FORWARD,M,N,XGUESS,XSCALE,FSCALE,IPARAM

+,RPARAM,X,FVEC,FJAC,LDFJAC)

C calculate the sensor parameters based on constraint eqn's:

R=RS(FING,LINK)

CALL TRUE (R,X(3),X(4),GAMMAI,BETAI)

WRITE(15,.)

WRITE(15,,) 'FINGER:',FING,' LINK:',LINK

WRITE(15,.) 'R =',R, 'INCHES'

WRITE(15,.) 'GAMMA =',GAMMAI.180.ODO/3.14159DO,

WRITE(15,.) 'BETA =',BETAI*I80.ODO/3.14159DO,'

' DEGREES'

DEGREES'

20 CONTINUE

R=RS(FING,SSEN)

CALL TRUE (R,X(1),X(2),SGAMMA,SBETA)

WRITE(15,*)

WRITE(15,*)

WRITE(15,*)

WRITE(15,*)

WRITE(15,*)

'FINGER:',FING,' LINK:',SSEN

'R =',R, 'INCHES'

'GAMMA =',SGAMMA*I80.ODO/3.14159DO,' DEGREES'

'BETA =',SBETA*I80.ODO/3.14159DO,' DEGREES'

74

i0

CALL OBJ (NOF,NOL,RS,ZETA,FING,SSEN,SGAMMA,

+ SBETA,X0,Y0,ZO)

WRITE(15,.)

WRITE(15,*) 'POSE OF OBJECT (WITH RESPECT TO THE BASE FRAME)'

WRITE(15,*) ' X-COORDINATE',X0,' INCHES'

WRITE(15,*) ' Y-C00RDINATE',Y0,' INCHES'

WRITE(15,*) ' Z-C00RDINATE',Z0,' INCHES'

CONTINUE

CLOSE(15)

CALL EXIT

END

75

APPENDIX I

SUBROUTINE TO CALCULATE SENSOR PARAMETERS

SUBROUTINE FORWARD (M,N,X,F)

C THIS SUBROUTINE CALCULATES THE NON-LINEAR FUNCTIONS FOR USE

C IN THE IMSL ROUTINE DUNLSF.

INTEGER M,N,FING,LINK,NOF,NOL,SSEN

PARAMETER (NOF=3,NOL=3)

DOUBLE PRECISION X(N),F(M),RS(3,3)

DOUBLE PRECISION SSMAT(4,4),LMATI(4,4),LMATJ(4,4)

DOUBLE PRECISION RADIUS,ZETA(3,2)
COMMON /OPARAM/ RADIUS

COMMON /FINGER/ FING

COMMON /LINK/ LINK

COMMON /SENSOR_VALUES/ RS

COMMON /SENSOR_ORIENT/ ZETA

COMMON /REF_SENSOR/ SSEN

C calculate sensor to object transformations:

CALL PRODUCT (NOF,NOL,RS,ZETA,N,X,SSMAT,LMATI,LMATJ)

C calculate functions:

F(1) = SSMAT(I,4) - LMATI(I,4)

F(2) = SSMAT(2,4) - LMATI(2,4)

F(3) = SSMAT(3,4) - LMATI(3,4)

F(4) = SSMAT(I,4) - LMATJ(I,4)
F(5) = SSMAT(2,4) - LMATJ(2,4)

F(6) = SSMAT(3,4) - LMATJ(3,4)

C calculate rms values for position functions:

C PRMS=DSQRT(F(1)**2+F(2)**2+F(3)**2+F(4)**2+
C + F(S)**2+F(6)**2)

C print rms values to screen:

C PRINT *, PRMS

RETURN

END

76

APPENDIX J

SUBROUTINE TO CALCULATE OBJECT LOCATION

SUBROUTINE OBJ (NOF,NOL,RS,ZETA,FING,SSEN,SGAMMA,

SBETA,XO,YO,ZO)

C This subroutine calculates the matrix which specifies the

C transformation from the palm frame to the object frame.

C The data used is based on values obtained for the reference sensor.

INTEGER FING,SSEN,NOF,NOL

DOUBLE PRECISION RADIUS,XO,YO,ZO,SGAMMA,SBETA,ZETA(NOF,2),

OBJECT(4,4),R(4,4),RS(NOF,NOL),FI(4,4),F2(4,4),F3(4,4),

FS(4,4),AL(3,3),AA(3,3),DD(3,3),TH(3,3)

COMMON /DH_PARAMETERS/ AL,AA,DD

COMMON /JOINT_ANGLES/ TH

COMMON /FING_BASE/ FI,F2,'F3

COMMON /OPARAM/ RADIUS

CALL BASSEN

CALL SENOBJ
(NOF,NOL,FING,SSEN,OBJECT)

(NOF,NOL,RS,FING,SSEN,ZETA(FING,I),

ZETA(FING,2),SGAMMA,SBETA,R)

CALL MATMULA (OBJECT,R)

XO=OBJECT(I,4)

YO=OBJECT(2,4)

ZO=OBJECT(3,4)

RETURN

END

77

APPENDIX K

SUBROUTINE TO CALCULATE THE TRANSFORMATION

FROM THE FINGER BASE FRAME TO THE OBJECT FRAME

SUBROUTINE PRODUCT (NOF,NOL,RS,ZETA,N,X,SSMAT,

+ LMATI,LMATJ)

C This subroutine calculates the product of: (trans. from the finger

C base frame to the sensor frame) * (sensor frame orientation matrix)

C * (Sph(gamma,beta,r+R).

INTEGER I,J,N,FING,LINK,SSEN,TEMP,NOF,NOL

DOUBLE PRECISION X(N),ZETA(NOF,2),R(4,4)

DOUBLE

DOUBLE

COMMON

COMMON

COMMON

COMMON

PRECISION RADIUS,RS(NOF,NOL)
PRECISION SSMAT(4,4),LMATI(4,4),LMATJ(4,4)
/OPARAM/ RADIUS

/FINGER/ FING

/LINK/ LINK

/REF_SENSOR/ SSEN

TEMP = FING

CALL SENOBJ

&

CALL BASSEN

CALL MATMULA

CALL SENOBJ

&

CALL BASSEN

CALL MATMULA

(NOF,NOL,RS,TEMP,SSEN,ZETA(TEMP,I),

ZETA(TEHP,2),X(1),X(2),R)

(NOF,NOL,TEMP,SSEN,SSMAT)

(SSMAT,R)

(NOF,NOL,RS,TEMP,LINK,ZETA(TEMP,I),

ZETA(TEMP,2),X(3),X(4),R)

(NOF,NOL,TEMP,LINK,LMATI)

(LMATI,R)

TEMP = TEMP + l

IF (TEMP.GT.NOF)

TEMP = 1

ENDIF

THEN

CALL SENOBJ (NOF,NOL,RS,TEMP,LINK,ZETA(TEMP,I),

ZETA(TEMP,2),X(5),X(6),R)

CALL BASSEN (NOF,NOL,TEMP,LINK,LMATJ)

CALL MATMULA (LMATJ,R)

RETURN

END

78

APPENDIX L

SUBROUTINE TO CALCULATE THE TRANSFORMATION

FROM THE SENSOR FRAME TO THE OBJECT FRAME

SUBROUTINE SENOBJ (NOF,NOL,RS,FING,LINK,THETAI,

THETA2,GAMMA,BETA,ROTX)

INTEGER FING,LINK,NOF,NOL

DOUBLE PRECISION ROTX(4,4),ROTZ(4,4),PROD3(4,4)

DOUBLE PRECISION GAMMA,BETA,THETAI,THETA2

DOUBLE PRECISION RS(NOF,NOL),RADIUS

COMMON /OPARAM/ RADIUS

C calculate sensor frame orientation:

ROTX(1

ROTX(1

ROTX(1
ROTX(1
ROTX(2

ROTX(2
ROTX(2

ROTX(2

ROTX(3
ROTX(3

ROTX(3

ROTX(3
ROTX(4

ROTX(4
ROTX(4

ROTX(4

1)=1.0

2)=0.0
3)=o.o
4)=o.o
1)=0.0

2) =DCOS (THETA1)
3) =-DS IN (THETAI)

4)=0.0
1)=0.0

2) =DSIN(THETAI)

3) =DCOS (THETA1)

4):o.o
1)=0.0

2)=0.0
3)=0.0

,4)=1.0

ROTZ(I

ROTZ(I

ROTZ(1
ROTZ(1

ROTZ(2
ROTZ(2

ROTZ(2

ROTZ(2
ROTZ(3

ROTZ(3

ROTZ(3

ROTZ(3

ROTZ(4

ROTZ(4

ROTZ(4

ROTZ(4

I)=DCOS (THETA2)
2)=-DS IN(THETA2)
3)=0.0
,4)=0.0
I)=DSIN(THETA2)
2)=DCOS (THETA2)
3)=o.o

,4)=o.o
1)=0.0

,2)=0.0
,3)=1.0
,4)=o.o
I)=O.O

,2)=o.o
,3)=o.o
,4)=1.0

79

C calculate Sph(gamma,beta,r+R):

PROD3(I,1)=DCOS(GAMMA)*DCOS(BETA)

PROD3(I.2)=-DSIN(GAMMA)

PROD3(1,3)=DCOS(GAMMA)*DSIN(BETA)

PROD3(I,4)=(RS(FING,LINK)+RADIUS)*DCOS(GAMMA)*DSIN(BETA)

PROD3(2,1)=DSIN(GAMMA)*DCOS(BETA)

PROD3(2,2)=DCOS(GAMMA)

PROD3(2,3)=DSIN(GAMMA)*DSIN(BETA)

PROD3(2,4)=(RS(FING,LINK)+KADIUS)*DSIN(GAMMA)*DSIN(BETA)

PROD3(3

PROD3(3

PROD3(3

PROD3(3

PROD3(4

PROD3(4

PROD3(4

PROD3(4

1)=-DSIN (BETA)
2)=0.0
3)=DCOS (BETA)
,4)=(RS(FING,LINK) +RADIUS)*DCOS(BETA)
1)=o.o

,2)=0.0
,3)=o.o
,4)=1.0

CALL MATMULA (ROTX,ROTZ)

CALL MATMULA (ROTX,PROD3)

RETURN

END

80

APPENDIX M

SUBROUTINE TO CALCULATE THE TRANSFORMATION

FROM THE FINGER BASE FRAME TO THE SENSOR FRAME

SUBROUTINE BASSEN (NOF,NOL,FING,LINK,PROD)

C This subroutine computes the product of the finger base matrix F
C and the sensor transformation matrix.

INTEGER FING,LINK,NOF,NOL

DOUBLE PRECISION PKOD(4,4),FLPROD(4,4),TEMP(4,4),

& FI(4,4),F2(4,4),F3(4,4),FS(4,4),AL(3,3),AA(3,3),

& DD (3,3) ,TH(3,3) ,R(4,4)

COMMON /DH_PARAMETERS/ AL,AA,DD

COMMON /JOINT_ANGLES/ TH

COMMON /FING_BASE/ FI,F2,F3

IF (FING.EQ.I) THEN

DO i0 I=i,4

DO 20 J=l,4

PROD(I,J)=FI(I,J)

20 CONTINUE

i0 CONTINUE

ELSEIF (FING.EQ.2) THEN

DO 30 I=i,4

DO 40 J=l,4

PROD(I,J)=F2(I,J)

40 CONTINUE

30 CONTINUE

ELSEIF (FING.EQ.3) THEN

DO 50 I=I,4

DO 60 J=l,4

PROD(I,J)=F3(I,J)
60 CONTINUE

50 CONTINUE

EHDIF

C calculate transformation from the finger base frame to the link

C frame specified by FING and LINK:

8O
70

DATA TEMP /i.,0.,0.,0.,0.,I.,0.,0.,0.,0.,I.,0.,0.,0.,0.,I./

DO 70 I=I,4

DO 80 K=I,4

FLPROD(I,K)=TEMP(I,K)

CONTINUE

CONTINUE

C compute link matrix:

81

9O

DO90 J=I,LINK
CALL TRANSFORM (AL(FING,J),AA(FING,J),DD(FING,J),

+ TH(FING, J) ,R)

CALL MATMULA (FLPROD,R)
CONTINUE

CALL MATMULA (PROD,FLPROD)

C compute FS matrix:

FS(I,1)=I.O
FS(I,2)=O.O

FS(I,3)=O.O

FS(I,4)=-AA(FING,LINK)*0.5

FS(2,1)=0.0

FS(2,2)=1.0

FS(2,3)=0.0

FS(2,4)=0.0

FS(3,1)=O.O

FS(3,2)=0.0

FS(3,3)=I.0

FS(3,4)=0.0

FS(4,1)=0.0

FS(4,2)=0.0
FS(4,3)=0.0

FS(4,4)=I.0

C compute PROD matrix:

CALL MATMULA (PROD,FS)

RETURN

END

82

APPENDIX N

SUBROUTINE TO CALCULATE THE TRANSFORMATION

FROM THE SENSOR FRAME TO THE TRIGGER POINT

SUBROUTINE TRUE (RS,GAMMA,BETA,GAMMAS,BETAS)

DOUBLE PRECISION RS,GAHMA,BETA,FS(4,4),GAMMAS,BETAS

C compute the transformation from the sensor frame to the

C trigger point:

FS(I

FS(I

FS(I
FS(I

FS(2

FS(2

FS(2

FS(2

FS(3

FS(3
FS(3

FS(3

FS(4

FS(4

FS

FS

,1)=1.0

,2)=o.o
,3)=o.o
,4) =RS*DCOS (GAMMA) *DS IN (BETh)

,1)=o.o
,2)=1.0

,3)=o.o
4) =RS*DS IN (GAMMA) *DS IN (BETA)

.1)=0.0

2)=0.0
3)=1.0

4) =RS.DCOS (BETh)

1)=o.o
2)=o.o

(4,3)=0.0

(4,4)=1 .o

IF ((FS(I,4).EQ.O.O).AND.(FS(2,4).EQ.O.O)) THEN
GAMMAS=O.O

ELSEIF ((FS(I,4).LT.O.O).AND.(FS(2,4).LT.O.O)) THEN

GAMMAS=DATAN2(DABS(FS(2,4)),DABS(FS(I,4)))+3.14159DO
ELSE

GAMMAS=DATAN2(FS(2,4),FS(I,4))
ENDIF

IF (GAMMAS.LT.O.O) THEN

GAMMAS=GAMMAS+2DO*3.14159DO

ENDIF

BETAS=DATAN2(FS(I,4)*DCOS(GAMMAS)+FS(2,4).DSIN(GAMMAS),FS(3,4))

RS=DSIN(BETAS)*(FS(I,4)*DCOS(GAMMAS)+FS(2,4).DSIN(GAMMAS))+
+FS(3,4)*DCOS(BETAS)

RETURN

END

83

APPENDIX 0

DATA FOR POSE ESTIMATION EXAMPLE

BLOCK DATA

DOUBLE PRECISION AL(3,3),AA(3,3),DD(3,3)

DOUBLE PRECISION FI(4,4),F2(4,4),F3(4,4),ZETA(3,2)

COMMON /DH_PAKAMETEKS/ AL,AA,DD

COMMON /FING_BASE/ FI,F2,F3

COMMON /SENSOR_ORIENT/ ZETA

DATA

+

+

DATA

+

+

DATA

DATA

+

+

+

DATA

+

+

+

DATA

+

+

+

DATA
+

END

AL /1.5708DO,1.5708DO,I.5708DO,

0.0,0.0,0.0,

0.0,0.0,0.0/

hA /I.ODO, I.ODO, I.ODO,

1.0DO,I.ODO, I.ODO,

1.0DO, 1.0DO, I.ODO/

DD /9*0. O/

F1 /I.0,0.0,0.0,0.0,

0.0,I.0,0.0,0.0,

0.0,0.0,i.0,0.0,

I.ODO,-I.ODO,5.0DO, 1.0/

F2 /1.0,0.0,0.0,0.0,

F3

ZETA

0.0,i.0,0.0,0.0,

0.0,0.0,i.0,0.0,

1.0DO, 1.0DO,5.0DO,I.O/

/0. 70711DO,O. 0,-0. 70711D0,0. O,

0.0, 1.0, 0.0, 0.0,

0.70711D0,0.0, 0.70711D0,0.0,

1.0, 0.0, 1.0, 1.0/

/I •57080D0 ,I. 57080D0, -I .57080D0,

O.ODO, O.ODO, 3. 14159D0/

