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Abstract	
 

Multirobot	 systems	 have	 characteristics	 such	 as	 high	 formation	 re-configurability	 that	 allow	
them	to	perform	dynamic	 tasks	 that	 require	 real	 time	 formation	control.	These	 tasks	 include	gradient	
sensing,	 object	 manipulation,	 and	 advanced	 field	 exploration.	 In	 such	 instances,	 the	 Cluster	 Space	
Control	approach	is	attractive	as	it	is	both	intuitive	and	allows	for	full	degree	of	freedom	control.	Cluster	
Space	 Control	 achieves	 this	 by	 redefining	 a	 collection	 of	 robots	 as	 a	 single	 geometric	 entity	 called	 a	
cluster.	 	 To	 implement,	 it	 requires	 knowing	 the	 inverse	 Jacobian	 of	 the	 robotic	 system	 for	 use	 in	 the	
main	control	 loop.	Historically,	 the	 inverse	 Jacobian	has	been	computed	by	hand	which	 is	an	arduous	
process.	 However,	 a	 set	 of	 frame	 propagation	 equations	 that	 generate	 both	 the	 inverse	 position	
kinematics	 and	 inverse	 Jacobian	 has	 recently	 been	 developed.	 These	 equations	 have	 been	 used	 to	
manually	compile	the	inverse	Jacobian	Matrix.	The	objective	of	this	thesis	was	to	automate	this	overall	
process.	To	do	this,	a	formal	method	for	representing	cluster	space	implementations	using	graph	theory	
was	developed.	This	new	graphical	representation	was	used	to	develop	an	algorithm	that	computes	the	
new	frame	propagation	equations.	This	algorithm	was	then	 implemented	 in	Matlab	and	the	algorithm	
and	 its	 associated	 functions	 were	 organized	 into	 a	 Matlab	 toolbox.	 A	 collection	 of	 several	 cluster	
definitions	 were	 developed	 to	 test	 the	 algorithm,	 and	 the	 results	 were	 verified	 by	 comparing	 to	 a	
derivation	 based	 technique.	 The	 result	 is	 the	 initial	 version	 of	 a	 Matlab	 Toolbox	 that	 successfully	
automates	the	computation	of	the	inverse	Jacobian	Matrix	for	a	cluster	of	robots.	
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1	
	

Chapter	1:	Introduction	
 

Robots	have	been	instrumental	in	developing	many	industries	in	modern	culture.	This	is	because	
a	robot	can	be	developed	to	complete	tasks	faster,	with	higher	precision,	and	more	cost	effectively	than	
human	labor.		It	can	work	in	harsh	environments,	complete	repetitive	tasks	with	less	wear	and	tear	than	
humans,	and	can	perform	tasks	 that	are	 far	more	complicated.	As	 the	 tasks	 that	a	 robot	can	perform	
grow	 in	 complexity,	 so	 does	 the	 task	 of	 developing	 a	 system	 to	 control	 the	 robot.	 This	 challenge	 in	
developing	 a	 system	 of	 control	 grows	 even	 more	 complicated	 when	 multiple	 robots	 need	 to	 be	
controlled	 at	 the	 same	 time.	 This	 has	 created	 the	 current	 demand	 for	 a	 control	 approach	 that	 is	
intuitive,	reliable,	and	most	importantly,	scalable.	

 
1.1	Formation	Control	of	Multirobot	Systems	

 
A	multirobot	system	(MRS)	can	be	defined	as	a	set	of	robots	operating	in	the	same	environment	

in	 an	 independent,	 cooperative,	 or	 competitive	 manner.	 	 The	 term	 robot	 applies	 to	 any	 electro-
mechanical	agent	that	is	guided	by	a	computer	program	or	electronic	circuitry.	This	definition	allows	the	
MRS	scope	to	range	from	a	group	of	two	sensor	equipped	actuators	to	a	large	set	of	complex	humanoid	
machines	with	hundreds	of	 sensors	 and	actuators	 that	 interact	with	 the	environment	 and	each	other	
using	very	complex	decision	making	[1].	

	
An	 MRS	 offers	 many	 advantages	 when	 compared	 to	 a	 single	 robot	 system.	 Having	 multiple	

robots	 performing	 the	 same	 task	 can	 increase	 coverage,	 production	 scales,	 and	 redundancy.	 Other	
advantages	 include	 increasing	 configurability,	 more	 modularity,	 and	 the	 ability	 to	 share	 sensor	
information.	Some	benefits	of	a	MRS	can	only	be	achieved	as	a	result	of	robots	working	in	a	cooperative	
fashion	to	complete	a	task	that	an	 individual	 robot	cannot	complete	on	 its	own.	For	example,	a	robot	
can	hand	off	a	task	that	it	is	unable	to	complete	to	another	robot	in	the	system.	Robots	can	even	work	
through	 coordinated	 and	 cooperative	 behaviors	 to	 accomplish	 tasks	 such	 as	 manipulating	 large	
unbalanced	 objects	 through	 obstacle	 filled	 paths.	 These	 advantages	 can	 be	 realized	 on	 land	 based	
agents,	and	also	for	applications	in	air,	sea,	and	space	[2].	

	
Systems	of	multiple	robots	have	their	origins	in	the	late-1980s,	and,	to	date,	have	been	applied	

in	several	domains	that	require	complex	co-ordination.	For	example,	the	CENTIBOTS	project	created	an	
experimental	 demonstration	 showing	 a	 large	 team	 of	 robots	 (approximately	 100)	 that	 could	
autonomously	patrol	a	building	for	an	extended	period	of	time.	[4]	In	the	FIRE	project,	a	simulation	of	a	
team	of	intelligent	heterogeneous	robots	that	explored	harsh,	humanly	inaccessible	planetary	surfaces	
was	created	[5].	Other	projects	include	simulations	of	satellite	formations	[6],	a	test	bed	of	underwater	
robot	 fleets	 [7],	 and	 a	 test	 bed	 of	 unmanned	 aerial	 robots	 [8].	 Implementation	 of	MRS’s	 is	 still	 in	 its	
infancy,	with	none	of	the	mentioned	examples	operating	routinely	due	to	ongoing	technical	challenges.	
Nonetheless,	the	study	of	MRS’s	is	a	growing	field	of	interest	especially	as	technological	improvements	
in	both	hardware	and	software	are	developing	exponentially	[3].	

	
The	control	of	robotic	systems	is	a	matter	of	ongoing	exploration	and	draws	on	work	in	control	

theory,	robotics,	biology,	and	artificial	intelligence.	The	control	strategy	employed	is	dependent	on	the	
classification	of	 the	MRS	based	on	the	 level	of	awareness,	coordination,	cooperation,	and	 information	
sharing	required	[1].	Sometimes,	it	is	possible	to	control	a	system	of	robots	by	controlling	the	behavior	
of	each	robot	 independently.	More	often,	however,	systems	need	to	be	strongly	coordinated,	and	the	
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system	needs	 to	 combine	 sensor	 information	across	multiple	 robots	 to	make	an	 informed	decision	of	
how	the	system	as	a	whole	should	be	controlled.	Several	control	techniques	have	been	proposed,	each	
with	its	own	pros	and	cons.	

	
One	version	of	control	includes	the	use	of	leader	follower	techniques,	in	which	‘follower’	robots	

regulate	their	position	relative	to	a	designated	‘leader’	robot	[9]	[10].	This	approach	requires	diligence	
on	part	of	the	operator	defining	the	system,	as	two	robots	with	similar	‘follow’	instructions	can	compete	
to	 occupy	 the	 same	 space	 and	 result	 in	 collision.	 A	 variation	 of	 this	 technique	 is	 to	 conduct	 leader-
follower	 chains.	 In	 a	 leader	 follower	 chain,	 one	 robot	 may	 be	 following	 a	 ‘leader’	 robot,	 while	
simultaneously	 acting	 as	 a	 leader	 for	 another	 robot	 [11].	 These	 techniques	 are	 highly	 susceptible	 to	
propagation	error	as	errors	accumulate	down	the	 follower	chains.	Furthermore,	 the	 failure	of	a	single	
robot	can	cause	the	entire	chain	to	no	longer	function.	

	
Another	technique	used	for	formation	control	is	the	creation	of	artificial	potential	fields.	These	

fields	can	be	used	to	attract	individual	robots	to	their	desired	formation	location,	while	others	are	used	
to	repel	them	from	nearby	robots	or	other	obstacles.	In	this	approach,	a	robot	(or	robots)	can	emit	some	
signal	that	assigns	some	‘penalty’	to	other	robots	nearby	based	on	their	position.	The	robots	receiving	
this	penalty	have	some	heuristic	(usually	to	minimize	penalty)	and	can	then	change	its	own	location	to	
minimize	 this	 penalty.	 Similarly,	 the	 robot	might	 have	 a	 heuristic	 to	 get	 equal	 penalties	 from	 two	 or	
more	other	robots	 in	this	system.	This	technique	is	widely	used	in	obstacle	avoidance	algorithms,	as	 it	
allows	robots	to	arrange	themselves	in	formations	that	prevents	them	from	colliding	with	each	other	or	
some	other	obstacle	[12]	[13]	[14]	[15].	These	methods	allow	for	fast	computation,	but	do	not	offer	a	
high	level	of	controllability.		

	
Multirobot	 control	 has	 also	 been	 a	 growing	 interest	 in	 the	 field	 of	 artificial	 intelligence.	

Algorithms	 considering	multiagent	 systems	 composed	 of	 multiple	 interacting	 intelligent	 agents	 being	
developed	and	simulated	for	possible	use	in	search	and	rescue,	transportation,	and	reconnaissance	[16]	
[17].	These	techniques	tend	to	be	very	computationally	expensive,	but	work	 is	being	done	to	 improve	
the	computational	costs	[19].	

	
Cluster	space	control,	a	control	methodology	developed	and	tested	at	the	Santa	Clara	University	

Robotic	Systems	Lab	offers	an	approach	that	is	intuitive,	stable,	and	scalable.	It	also	allows	a	full	degree	
of	 freedom	 to	 be	 maintained,	 and	 results	 in	 very	 precise	 control	 over	 individual	 robot	 control.	 This	
strategy	conceptualizes	an	‘n’	robot	system	as	a	single	entity	called	a	cluster.	The	desired	positions	and	
motions	 of	 the	 individual	 robots	 are	 then	 specified	 as	 a	 function	 of	 cluster	 states	 [18].	 This	method	
comes	 at	 the	 cost	 that	 the	 controller	 can	 be	 quite	 complex	 to	 develop.	 This	 research	 aims	 to	make	
developing	new	cluster	space	controllers	easier.	
 
1.2	Cluster	Space	Control	
 

Cluster	 Space	 Control	 is	 a	 control	 methodology	 that	 allows	 for	 the	 specification,	 control	 and	
monitoring	of	 the	motion	a	MRS	 [14].	 This	 strategy	 considers	 a	 system	of	n	 robots	 as	 a	 single	 entity,	
known	 as	 a	 cluster.	 This	 cluster	 is	modeled	 as	 a	 virtual	 articulating	mechanism	with	 a	 full	 degree	 of	
freedom.		

In	this	methodology,	we	first	consider	R	to	be	set	of	robot	state	pose	variables.	These	variables	
describe	 the	 position	 and	 orientation	 of	 each	 robot	 relative	 to	 the	 global	 frame.	We	 then	 consider	 a	
selection	of	cluster	space	variables,	C,	 	 	which	describe	the	position	and	orientation	of	overall	cluster,	
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the	 shape	 of	 the	 cluster,	 and	 the	 orientation	 of	 individual	 robots	 within	 the	 cluster.	 This	 set	 of	
variables,	C,	 	 can	 be	 defined	 through	 a	 formal	 set	 of	 forward	 kinematic	 transforms	 of	 robot	 state	
variables,	R.	

C = KIN R		 	 	 	 	 	 	 (Eq	1)	
	

Similarly,	 we	 can	 use	 the	 inverse	 kinematic	 transforms	 to	 take	 us	 from	 cluster	 space	 pose	
variables	to	robot	state	variables.	

R = INVKIN C		 	 	 	 	 	 (Eq	2)	
	

In	 other	words,	 we	 can	 control	 the	 positions,	motions,	 and	 even	 the	 actuator	 states	 of	 each	
robot	can	be	specified	as	a	function	of	cluster	state	variables.	

	

In	order	to	map	the	velocities	from	Robot	Space,	R,	to	Cluster	Space,	C,	the	velocity	kinematics	
of	 the	 system	also	need	 to	be	known.	The	velocity	 kinematics	 can	be	 found	by	 computing	 the	partial	
derivatives	of	the	kinematic	equations,	gi,	with	respect	to	each	robot	variable,	ri.	

	

C =
c+
c,
⋮
c.

= KIN R	/ = J R R =

123
143

⋯ 123
146

⋮ 	 ⋮
127
143

⋯ 127
146

r+
r,
⋮
r9

	 	 	 (Eq	3)	

	
This	matrix	of	partial	derivatives,	J R ,	is	known	in	Cluster	Space	as	the	Jacobian	Matrix.	It	is	also	

referred	 to	 as	 simply	 the	 Jacobian.	 Similarly,	 the	 inverse	 Jacobian,	J:+ R ,	 transforms	 Cluster	 Space	
velocities	to	robot	space	velocities.	The	Inverse	Jacobian	can	be	found	by	taking	the	partial	derivatives	of	
the	inverse	kinematics,	hi,	with	respect	to	each	cluster	space	variable,	ci:	

	

R =
r+
r,
⋮
r9

= INVKIN C	/ = J:+ C C =

1;3
1<3

⋯ 1;3
1<7

⋮ 	 ⋮
1;6
1<3

⋯ 1;6
1<7

c+
c,
⋮
c.

	 	 (Eq	4)	

	
Using	KIN,	J,	and	J-1,	a	cluster	space	controller	can	be	developed	as	shown	in	figure	1	below:	

	
Figure	1:	A	Resolved	Rate	Cluster	space	control	architecture	for	a	generic	multirobot	system.	
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In	 this	architecture	 in	 figure	1,	 the	desired	velocity	 control	 action	 is	 inputted	 in	 cluster	 space.	

The	 control	 actions	 are	 converted	 to	 robot	 space	 using	 the	 inverse	 Jacobian,	 and	 then	 passed	 to	 the	
individual	robots.	This	example	architecture	also	shows	a	feedback	loop	returning	to	the	controller.	

	
As	 figure	1	 shows,	determining	 the	 Jacobian	and	 inverse	 Jacobian	 is	 essential	 to	developing	a	

cluster	space	controller	[14]	[18].	However,	determining	the	inverse	Jacobian	can	be	quite	difficult,	and	
many	approaches	have	been	suggested	over	the	years.	

	
It	 is	 worth	 noting	 also	 that	 a	 different	 version	 of	 a	 controller	 for	 cluster	 space	 has	 been	

developed.	 This	 other	 version	 is	 a	 full	 dynamic	 controller	 and	 uses	 the	 transpose	 Jacobian	 as	 a	
replacement	for	the	inverse	Jacobian	[30].	This	controller	requires	further	work	to	develop	a	systematic	
way	to	compute	the	forward	Jacobian.	

 
1.3	Inverse	Jacobian	Matrices	

 
The	need	for	finding	the	inverse	Jacobian	is	not	unique	to	developing	cluster	space	controllers.	

When	 developing	 a	 controller	 for	 serial	 manipulators,	 the	 most	 common	 method	 involves	 using	 a	
Jacobian	based	Controller	[20].	As	a	result,	finding	different	efficient	methods	of	determining	the	inverse	
Jacobian	 is	 essential	 for	 continued	 work	 in	 the	 field.	 Several	 methods	 for	 determining	 the	 inverse	
Jacobians	 exist	 with	 analytical	 methods	 generally	 being	 infeasible	 and	 computational	 methods	
commonly	yielding	less	accurate	results.	

	
One	technique	for	determining	the	inverse	Jacobian	is	to	solve	for	the	inverse	kinematics	of	the	

system,	and	then	compute	the	partial	derivatives.	For	a	serial	link	manipulator,	the	closed	form	inverse	
kinematic	solution	can	be	obtained	symbolically	by	writing	a	system	of	equations	defining	the	forward	
kinematic	 relationships,	 and	 then	 solving	 the	 system	 of	 equations	 for	 the	 joint	 angles	 [20]	 [21].	
However,	 this	 often	 cannot	 be	 solved	 in	 closed	 form.	 Geometric	 and	 trigonometric	 methods	 of	
determining	an	analytic	 form	of	 inverse	kinematics	exist,	but	usually	do	not	contain	the	full	geometric	
description.	Therefore,	 these	methods	provide	 solutions	 that	are	only	valid	 in	 some	 local	 vicinity,	 and	
often	allow	for	multiple	solutions	[21]	[22]	[24].	Other	methods	still	are	based	on	Denavit-Hartenberg,	
and	 rely	 on	 transformation	 matrices	 [23].	 These	 approaches	 are	 also	 limited,	 as	 they	 restrict	 frame	
assignments	 throughout	 the	 entire	 robot.	 As	 a	 result,	 the	 inverse	 kinematics	 are	 typically	 solved	
numerically	[25].	

	
	On	the	other	hand,	parallel-link	manipulators	often	have	a	geometry	that	allow	for	closed	form	

solutions	 to	 the	 inverse	 kinematics.	 Hence,	 the	 inverse	 Jacobian	 can	 be	 calculated	 by	 direct	 partial	
differentiation.	 A	 drawback	 in	 these	 systems	 is	 that	 the	 forward	 kinematics	 are	 nonlinear,	 and	 often	
require	numerical	approaches,	and	as	a	direct	result,	the	forward	Jacobian	is	solved	numerically	[26].	

	
Instead	of	solving	for	the	inverse	Jacobian	directly,	another	approach	is	to	solve	for	the	analytic	

form	 of	 the	 Jacobian,	 then	 invert	 it.	 The	 kinematics	 can	 be	 defined	 symbolically,	 then	 differentiated	
directly,	as	the	Jacobian	Matrix	is	a	matrix	of	partial	derivatives	[27].	But	for	some	systems,	as	seen	with	
the	case	of	the	parallel	link	manipulators,	calculating	the	symbolic	form	of	the	kinematics	is	not	always	
possible.	Furthermore,	when	this	method	is	possible,	it	is	not	particularly	efficient	computationally,	as	it	
requires	using	a	computational	toolbox	that	has	a	symbolic	differentiation	library.	
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	Several	 other	 methods	 for	 computing	 the	 Jacobian,	 particularly	 in	 serial	 manipulators,	 have	
been	developed	over	the	years.	One	method	by	Vukobratovic	and	Potkonjak	recursively	computes	the	
Jacobian	 for	 each	 joint	 in	 the	manipulator.	 It	 does	 this	 by	making	use	of	 frame	propagations.	 First,	 it	
computes	the	Jacobian	for	a	manipulator	with	the	first	link	only,	then	for	the	first	two	links,	and	so	on	
and	so	forth	up	N	links	plus	the	end	effector.	More	efficient	methods	based	on	the	works	of	Pieper	and	
Whitney	utilize	the	property	that	rotational	joint	velocities	add	linearly,	and	translational	velocities	may	
be	 determined	 by	 taking	 appropriate	 cross-products	 of	 in	 the	 individual	 joint	 rate	 vectors	 and	 the	
position	vector	from	that	joint.	Others	have	also	used	skew	symmetric	matrices	to	compute	the	Jacobian	
geometrically.	 These	 methods	 have	 been	 used	 widely	 throughout	 the	 field	 and	 their	 computational	
efficiencies	have	been	compared	to	each	other	[28].		

	
When	the	Jacobian	cannot	be	found	analytically,	it	is	often	found	using	a	perturbation	method	

using	 a	 first	 order	 numerical	 difference.	 A	 small	 change	 in	 each	 joint	 (or	 parameter)	 is	 made	
systematically,	and	 the	 resulting	movement	 is	used	 to	obtain	an	approximate	numerical	 solution	 [25].		
This	 method	 is	 only	 sufficient	 in	 the	 vicinity	 which	 the	 Jacobian	 was	 determined.	 Furthermore,	
difficulties	 arise	 when	 choosing	 the	 size	 of	 the	 small	 difference	 to	 use	 for	 the	 method.	 Too	 large	 a	
change	will	 result	 in	an	 inaccurate	function	 if	 the	systems	dynamics	are	nonlinear.	Too	small	a	change	
will	lead	to	numerical	problems	and	greater	inaccuracies	[25].	

	
While	 finding	 the	 Jacobian	 can	 be	 challenging	 on	 its	 own,	 several	 problems	 can	 arise	 when	

inverting	 the	 Jacobian	 Matrix.	 Typically,	 problems	 arise	 when	 the	 matrix	 is	 singular	 or	 has	 a	 poor	
condition	number.	Other	problems	arise	when	 the	 Jacobian	Matrix	 is	not	 square.	 If	 the	 Jacobian	 is	 in	
numerical	 form	but	 is	 not	 square,	 a	Moore	 Penrose	 Inverse,	 or	 least	 squares	 inverse,	 can	be	used	 to	
compute	the	pseudo-inverse.	In	the	event	that	the	matrix	is	singular,	or	has	a	poor	condition	number,	a	
damped	 least	 squares	approach	can	be	used.	The	damped	 least	 squares	approach	will	not	yield	 to	an	
accurate	result,	but	usually	one	that	is	close	enough	for	engineering	purposes.	[29]	These	techniques	to	
inverting	the	matrix	only	work	numerically.	The	analytic	form	of	the	Jacobian	matrix	may	be	evaluated	
to	make	use	of	these	numerical	techniques.	

	
Historically,	determining	both	the	kinematics	and	inverse	kinematics	of	a	system	has	been	quite	

difficult.	 For	 this	 reason,	 some	 roboticists	 use	 a	 transpose	 Jacobian	 instead	 to	 create	 a	 dynamic	
controller	instead	of	the	Inverse	Jacobian	for	use	in	a	resolved	rate	controller	[20].	This	technique	can	be	
implemented	both	 analytically	 and	numerically.	 In	 a	 strictly	 Cartesian	manipulator,	 the	 inverse	 of	 the	
Jacobian,	J,	is	equal	to	the	transpose	of	the	Jacobian	(JT	=	J-1).	This	is	not	true	for	other	cases,	but	often	a	
dynamic	controller	yields	satisfactory	results.	However,	poor	performance	has	also	been	noted	from	this	
type	of	controller.	Cluster	space	control,	however,	is	a	system	that	allows	for	systematic	determination	
of	 both	 the	 forward	 kinematics	 and	 inverse	 kinematics,	 therefore,	 allowing	 for	 quick	 computation	 of	
both	the	forward	and	inverse	Jacobian	by	computing	the	partial	derivatives.	This	allows	a	resolved	rate	
controller	to	be	developed	systematically.	

	
This	 research	 will	 present	 a	 systematic	method	 to	 compute	 the	 analytic	 inverse	 Jacobian	 for	

cluster	space	control	systems	given	only	the	geometric	description.	Similarly,	to	the	serial	manipulators,	
frame	propagation	will	 provide	 the	 foundation	 to	 the	approach.	A	 collection	of	Matlab	 files	has	been	
created	to	compute	this	 inverse	 Jacobian	 for	a	 large	variety	of	MRS	systems.	Creating	an	algorithm	to	
implement	 this	 technique	 provides	 a	 quick	 and	 accurate	 way	 to	 determine	 the	 inverse	 Jacobian	
compared	to	the	method	of	computing	partial	derivatives	of	the	inverse	kinematics.	This	is	essential	to	
further	the	study	of	cluster	space	control.	
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1.4	Project	Statement	
	

The	purpose	of	this	research	is	to	develop	a	software	suite	to	implement	a	new	frame	propagation	
technique	 for	 generating	 the	 inverse	 Jacobian	matrix	 for	 cluster	 space	 formation	of	mobile	 robots.	 In	
carrying	 out	 this	 work,	 a	 significant	 amount	 of	 effort	 and	 interest	 has	 been	 directed	 toward	 the	
following	tasks:	

	
1) Developing	a	small	library	of	Cluster	Space	Formulations	as	a	test	bed.	

2) Formalizing	a	method	for	representing	cluster	space	formulations	using	graph	theory.	

3) Using	 this	 graphical	 representation	 to	 develop	 an	 algorithm	 for	 implementing	 the	 new	 frame	
propagation	technique.	

4) Writing	an	implementation	of	the	algorithm	in	Mathworks	Matlab.	

5) Writing	additional	Matlab	files	that	compute	the	inverse	Jacobian	using	a	known	technique.	

6) Calculating	 the	 inverse	 Jacobian	 of	 all	 examples	 in	 the	 test	 bed	 using	 both	 techniques	 and	
comparing	results	against	each	other	as	a	verification	process.	

The	 discovery	 and	 successful	 implementation	 of	 this	 new	 technique	 will	 allow	 for	 cluster	 space	
controllers	to	be	developed	more	rapidly.	Further	work	on	this	software	suite	can	add	features	such	as	
automatically	developing	an	entire	controller	for	a	given	cluster,	a	plot	creator	to	compare	velocities	in	
different	spaces,	as	well	as	adding	more	examples	to	the	example	folder.	
 
1.5	Readers	Guide	
 

This	 section,	 Chapter	 1,	 provides	 a	 quick	 introduction	 to	 the	 control	 of	 multirobot	 systems,	
challenges	 in	 developing	 these	 control	methods,	 and	 possible	 drawbacks	 for	 each	 proposed	method.	
This	chapter	also	introduces	the	cluster	control	architecture	and	provides	some	background	on	current	
ways	to	determine	the	inverse	Jacobian	of	a	system.		

	
Chapter	2	introduces	the	homogeneous	transformation	matrix,	and	shows	how	it	can	be	used	to	

represent	a	cluster	as	a	graph.	The	conventions	for	creating	such	a	graph	are	outlined,	and	a	systematic	
way	of	calculating	the	inverse	kinematics	of	a	cluster	is	shown.	
	

Chapter	3	will	introduce	the	homogenous	transformation	matrix,	as	well	as	give	a	description	of	
what	 information	in	contains.	 It	will	then	explain	how	the	homogeneous	transformation	matrix	can	be	
obtained	for	each	robot	and	for	each	cluster.	

	
	 Chapter	 4	 presents	 a	 new	 formula	 to	 compute	 the	 inverse	 Jacobian	 for	 a	 cluster	 space	
formulation.	It	then	describes	an	algorithm	on	how	this	formula	can	be	implemented.	
	

Chapter	 5	 describes	 the	Matlab	 implementation	 of	 this	 new	 formula.	 	 It	 shows	 the	 result	 of	
using	this	new	technique	on	the	continuing	examples	and	compares	the	results	to	an	analytic	technique.		

	
Chapter	6	concludes	the	report	with	a	summary	of	the	findings	and	possible	directions	this	work	

can	be	extended.	
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Chapter	2:	Graph	Based	Representations	of	Clusters	
 
In	this	chapter,	the	factors	that	go	into	cluster	variable	selection	are	discussed.	A	quick	review	of	

the	 homogeneous	 transform	 matrix	 is	 covered,	 followed	 by	 a	 proposal	 of	 a	 new	 way	 to	 represent	
clusters.	The	cluster	is	then	characterized	as	graph	based	representation,	and	conventions	are	outlined	
to	do	 this	 systematically.	 Finally,	 the	 inverse	 kinematics	 for	 the	 entire	 robot	 cluster	are	 computed	by	
navigating	through	the	graph.	
 
2.1	Determining	Suitable	Cluster	Space	Variables	

 
A	 cluster	 is	 a	 system	 of	 “n”	 robots	 that	 are	 considered	 a	 single	 entity.	 These	 robots	may	 be	

located	in	the	plane,	or	in	three	dimensional	space.	Each	robot,	n,	is	free	to	have	“pn”	degrees	of	spatial	
and	 orientation	 freedom.	 Since	 the	 system	 is	 considered	 a	 single	 entity,	 a	 single	 frame	 of	 reference,	
known	 as	 a	 cluster	 frame,	 can	 be	 assigned	 to	 the	 cluster.	While	 the	 location	 of	 the	 cluster	 frame	 is	
typically	 chosen	 as	 the	 average	 location	 of	 all	 the	 robots	 in	 the	 cluster,	 this	 placement	 is	 not	 a	
requirement.	 After	 selection	 of	 a	 suitable	 cluster	 frame,	 cluster	 space	 pose	 variables	 are	 chosen	 to	
describe	 the	 location	 and	 orientation	 of	 the	 cluster	 frame	 with	 respect	 to	 the	 global	 frame.	 Other	
variables	are	chosen	to	define	the	geometry	of	the	cluster,	as	well	as	the	relative	rotation	of	each	robot	
(usually	with	respect	to	the	cluster	frame).	

	
		The	act	of	defining	the	cluster	variables	as	equations	of	robot	variables	is	known	as	finding	the	

Forward	 Position	 Kinematics	 (Eq	 1).	 As	mentioned	 in	 section	 1,	 this	 set	 of	 expressions	 is	 collectively	
described	by	the	function	KIN(R).		

𝐶 =
𝑐+
𝑐,
⋮
𝑐?

= 𝐾𝐼𝑁 𝑅	D =

𝑔+	(G3,GH,…,GJ)	
𝑔,	(G3,GH,…,GJ)	

⋮
𝑔?	(G3,GH,…,GJ)	

		 	 	 (Eq	5)	

	
The	cluster	variables	chosen	do	not	need	to	be	independent,	but	collectively,	they	must	span	

the	space.	In	order	to	fully	span	the	cluster	space	of	an	‘n’	robot	system	a	minimum	of	‘f’	variables	are	
needed	to	describe	the	geometry	of	the	system,	where	f	is:	

	
		𝑓 = 𝑝NN

OP+ 		 	 	 	 	 	 (Eq	6)	
	
The	total	number	of	cluster	space	variables	is	q.	Having	fewer	variables	than	f,	(q<f),	leads	to	the	

cluster	 not	 being	 fully	 defined.	 Having	 more	 than	 f	 variables,	 (q>f),	 results	 in	 one	 or	 more	 of	 the	
variables	being	over-constrained	(some	variables	will	be	dependent	variables).		

	
Since	 cluster	 variables	 are	 used	 in	 describing	 the	 geometry,	 the	 cluster	 variables	 also	 have	

implicit	 constraints.	 For	 example,	 consider	 the	 cluster	 variables	 L,	M,	 and	 N,	 where	 L	 is	 the	 distance	
between	Robot	1	and	Robot	2,	M	is	the	distance	between	Robot	1	and	Robot	3,	and	N	is	the	distance	
between	Robot	2	and	Robot	3.	As	a	 result	of	 the	 triangle	 inequality	 [24]	of	geometry,	L	must	be	such	
that	L	≤	M+N.	Furthermore,	if	L	=	M+N,	it	becomes	impossible	to	change	the	value	of	only	one	variable.	
See	figure	2	below.		
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Figure	2:	A	Cluster	of	3	robots,	with	the	distance	variables	M,	N,	and	L	shown	

	
2.2	The	Homogeneous	Transform	in	terms	of	Cluster	Space	
	 	

The	homogeneous	transform	matrix,	(also	referred	to	as	the	Transformation	Matrix	or	the	‘T’	
matrix)	has	the	following	form,	and	describes	the	position	of	frame	{i}	relative	to	frame	{i-1}:	

	

𝑇OO:+ = 	 𝑅OO:+ 𝑃OO:+

0 1
		 	 	 	 	 	 (Eq	7)	

	
Where	 𝑅OO:+ 	 	 is	a	3x3	Matrix	that	describes	the	rotation	of	frame	{i}	relative	to	frame	{i-1}	and	

𝑃OO:+ 	 is	a	3x1	vector	 that	describes	 the	position	of	 frame	 {i}	 relative	 to	 frame	 {i-1}.	 In	 terms	of	cluster	
space	 control,	 these	 transformation	matrices	 are	 used	 in	 several	 key	 ways.	 First,	 it	 can	 describe	 the	
robot’s	position	and	orientation	relative	to	the	cluster	frame	which	 it	helps	to	define.	 It	also	describes	
the	 relationship	 between	 two	 robots	 in	 a	 leader	 follower	 configuration,	 or	 two	 systems	 in	 a	 leader	
follower	 configuration	 (robot	 following	 robot,	 robot	 following	 a	 cluster,	 cluster	 following	 another	
cluster,	etc.)		These	matrices	also	describe	the	relationship	between	a	cluster	frame	and	global	frame.	

	
By	Euler’s	Rotation	Theorem,	any	rotation	 in	three	dimensional	space	can	be	represented	as	a	

single	rotation	about	some	axis.		By	this	theorem,	we	can	decompose	the	rotation	 𝑅OO:+ 	into	the	product	
of	three	rotations:	

	
𝑅OO:+ = 	 𝑅OO:+

U(𝛼) ∗ 𝑅OO:+
X(𝛽) ∗ 𝑅OO:+

Z(𝛾)		 	 	 	 (Eq	8)	
	
Which	can	further	be	expanded	as	follows:	 	
	

𝑅OO:+ = 	
cos(𝛼)cos(𝛽) cos(𝛼)sin(𝛽)𝑠𝑖𝑛(𝛾) − sin(𝛼)cos(𝛾) cos(𝛼)sin(𝛽)cos(𝛾) − sin(𝛼)sin(𝛾)
sin(𝛼)cos(𝛽) sin(𝛼)sin(𝛽)sin(𝛾) − cos(𝛼)cos(𝛾) sin(𝛼)sin(𝛽)cos(𝛾) − cos(𝛼)sin(𝛾)
−sin(𝛽) cos(𝛽)sin(𝛾) cos(𝛽)cos(𝛾)

							(Eq	9)	

	
This	is	useful	to	us,	as	we	can	now	determine	the	angles	for	each	rotation,	creating	a	vector	representing	
these	rotations	as	follows:	
	

𝜃OO:+ = 	
𝛼
𝛽
𝛾
	 	 	 	 	 (Eq	10)	

	
Obtaining	 these	 angles	 can	 be	 an	 involved	 process,	 based	 on	 the	 hierarchical	 depth	 of	 the	

rotations.	
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Since	these	rotations	are	orthogonal	to	each	other,	rows	are	linearly	independent,	and,	they	can	

be	 added	 and	 subtracted	 without	 affecting	 each	 other.	 This	 will	 prove	 to	 be	 very	 useful	 in	 creating	
computer	algorithms	that	involve	robotic	systems	that	have	multiple	degrees	of	rotational	freedom.	
 
2.3:	Graph	Based	Representations	of	Clusters 
 

A	 cluster	 can	 be	 represented	 in	 many	 different	 ways.	 Naturally,	 one	 way	 of	 representing	 a	
cluster	is	to	draw	a	physical	configuration	of	the	robot	cluster,	and	then	add	the	cluster	variables	to	the	
sketch	as	angle	and	distance	dimensions.		

 

 
Figure	3:	A	Physical	View	of	Example3,	a	cluster	of	two	2-robot	clusters.	

	
This	research	proposes	a	new	representation	for	clusters	space	formation	architecture.	This	new	

representation	is	a	formal	methodology	for	defining	the	cluster	based	on	graph	theory.	A	graph	based	
representation	 lends	 itself	 well	 to	 graph	 theory	 and	 to	 algorithmic	 information	 theory,	 allowing	 for	
existing	 theories	 and	 techniques	 for	 efficient	 computation	 can	 be	 applied	 to	 the	 cluster	 space	
architecture.	Graphs	were	also	chosen	as	they	are	capable	of	capturing	hierarchal	 information	needed	
while	using	the	new	propagation	based	equations.	

	
To	represent	a	cluster	as	a	graph,	G,	first	consider	each	frame	used	in	the	cluster	(robot	frames,	

cluster	frame,	and	global	frame),	as	a	vertex,	V.		
 

 
Figure	4:	A	group	of	unconnected	vertices	representing	all	the	frames	in	a	cluster.	
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Then,	for	each	cluster	frame,	draw	an	edge	connecting	that	cluster	frame	to	each	robot	frame	or	

cluster	frame	that	is	used	to	define	that	cluster	frame’s	position.	This	set	of	edges,	E1,	shall	be	colored	
red.	A	transformation	matrix,	T,	that	describes	the	component	frame’s	position	and	orientation	relative	
to	the	cluster	must	be	defined	for	each	of	these	edges.	

	
	

	
	

Figure	5:	Two	2-Robot	Clusters	represented	by	the	set	of	edges	E1.	
	
Leader	follower	relationships	are	then	added	to	the	graph,	connecting	follower	vertices	to	their	

leader	vertices.	This	set	of	edges,	E2,	shall	be	colored	blue.	A	 transformation	matrix,	T,	 that	describes	
the	position	and	orientation	of	the	frame	of	the	follower	relative	to	its	leader	must	be	defined	for	each	
of	the	edges	in	this	set.	
	

	
	
Figure	6:	A	2	robot	cluster	in	a	leader	follower	relationship	with	another	2	robot	cluster	and	a	fifth	

robot	in	a	leader	follower	relationship	with	cluster	frame	C2	
	
Finally,	a	single	edge,	E3,	is	drawn	from	the	primary	cluster	frame	to	the	global	frame.	E3	is	to	be	

painted	 black.	 A	 transformation	matrix,	 T,	 that	 describes	 the	 position	 and	 orientation	 of	 the	 primary	
cluster	frame	relative	to	the	global	frame	must	be	defined	for	this	edge.	
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This	 edge	 also	 indicates	which	 robot	 or	 cluster	 is	 leader	 or	 follower.	 The	 vertex	 closes	 to	 the	
ground	frame	is	leader,	with	the	other	vertex	on	the	other	end	of	the	blue	edge	is	the	follower.	

	

	
Figure	7:	A	completed	Cluster	Graph	of	a	5	Robot	Cluster.	

	
The	cluster	is	then	the	graph,	G,	that	is	described	by	the	set	of	all	vertices	and	edges	described	

by	G	=	{V,	E1,	E2,	E3}.	By	assigning	the	global	frame	as	the	root	frame,	the	graph	G	is	now	considered	a	
tree.	
	

By	 following	 this	 convention,	 we	 have	 a	 standard	 way	 of	 creating	 and	 understanding	 cluster	
trees.	For	example,	the	tree	shown	in	figure	7	can	be	described	as:	two	systems	of	2-robot	clusters,	with	
cluster	2	(R3	and	R4)	following	cluster	1	(R1	and	R2),	and	a	fifth	robot,	R5,	following	cluster	2.	
	
	
2.4	Determining	the	Inverse	Kinematics	from	the	Graph	Based	Representations	
	

By	defining	all	necessary	T	matrices	in	a	cluster,	we	can	compute	the	inverse	kinematics	of	the	
system.	 The	 inverse	 position	 kinematics	 allow	 computation	 of	 the	 ‘robot-space’	 pose	 variables,	 the	
elements	of	𝑅,	 as	a	 function	of	 the	cluster	 space	variables,	 the	elements	of	𝐶.	Collectively,	 this	 set	of	
equations	is	known	as	the	Inverse	Kinematic	Equations.	This	can	be	defined	as	the	function	INVKIN(𝐶):	

	

𝑅 =
𝑟+
𝑟,
⋮
𝑟g

= 𝐼𝑁𝑉𝐾𝐼𝑁 𝐶	D =

ℎ+	(j3,jH,…,jk)	
ℎ,	(j3,jH,…,jk)	

⋮

ℎl	(j3,jH,…,jk)	

		 	 	 (Eq	11)	

	
In	 order	 to	 compute	 the	 inverse	 Kinematics,	 not	 only	 must	 we	 compute	 the	 individual	

transformation	matrices	from	each	vertex	to	its	parent	vertex,	but	the	entire	transformation	from	each	
robot	node	frame	to	the	global	frame	must	be	determined.	This	can	be	done	by	performing	a	depth	first	
search	 from	 the	 root	 node	 down	 to	 the	 robot	 nodes.	 Once	 a	 robot	 node	 is	 found,	 the	 ‘T’	 matrices	
defined	along	the	path	from	the	root	node	to	the	robot	node	are	then	multiplied	together.	

	
This,	in	fact,	implements	a	technique	proposed	by	Dr.	Chris	Kitts	to	compute	inverse	kinematics.	

In	 this	 proposal,	 the	 inverse	 kinematics	 can	 be	 found	 my	 finding	 the	 product	 of	 intermediate	
homogeneous	transforms,	such	that	the	homogeneous	transform	for	any	robot,	i,	is	found	by:	

	
𝑇OD = 	 𝑇m+

D ∗ ( 𝑇mn
mno3p

qP, ) ∗ 	 𝑇O
mr 		 	 	 	 (Eq	12)	
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Where	d	 is	 the	number	of	hierarchical	 frame	steps	between	{G}	and	{i},	and	𝐶N	 is	 the	n

th	 local	
cluster	 frame	between	{G}	and	 {i}.	 In	 the	case	 that	n<2,	 the	product	 term	vanishes.	 In	 the	case	of	 a	1	
robot	system,	it	is	assumed	that	the	robot	is	following	some	cluster	frame,	even	if	that	frame	is	incident	
with	the	robot	frame,	resulting	in	a	T	matrix	which	is	equal	to	the	identity	matrix.	

The	result	of	equation	12	will	also	have	the	form	of	a	homogeneous	transform	matrix.	The	
resulting	matrix	will	yield:	

𝑇OD = 	 𝑅OD 𝑃OD

0 1
		 	 	 	 	 (Eq	13)	

	
Where	 𝑃OD 	is	the	position	vector	of	robot	i	relative	to	the	global	frame,	and	 𝑅OD 	is	the	relative	rotation	of	
robot	i	with	respect	to	the	global	frame.	

From	 this	 matrix,	 the	 position	 𝑥, 	𝑦, 𝑎𝑛𝑑	𝑧	 for	 each	 robot	 i	 can	 be	 recovered	 from	 𝑃OD .	
Furthermore,	 𝑅OD 	 	 can	 be	 decomposed	 into	 	𝑅U 𝛼 , 𝑅X 𝛽 , 𝑎𝑛𝑑	𝑅Z(𝛾)	 for	 each	 robot	 i.	 Finding	 these	
yields	the	inverse	kinematic	equations	of	the	system.	

This	 shows	 that	 the	 tree	 structure	 described	 in	 section	 2.3	 accurately	 produces	 the	 inverse	
kinematics	 for	 a	 given	 cluster.	 This	 result	 lends	 credibility	 that	 this	particular	method	 for	describing	a	
cluster	as	a	graph	is	valid.	
	
2.5 A	few	notes	on	the	Tree	Representation	of	a	cluster	space	formulation		
	

Just	like	with	serial	manipulator,	this	method	is	much	simpler	than	algebraically	rearranging	the	
forward	kinematic	equations	to	isolate	the	individual	robot	variables.	However,	this	method	allows	for	
the	possibility	 of	 some	 information	 contained	 in	 the	 forward	 kinematic	 equations	 to	be	 lost.	 In	 other	
words,	if	one	were	to	try	to	isolate	the	robot	variables	from	the	system	of	equations	obtained	from	the	
propagation	technique	for	the	inverse	kinematics,	then	multiple	solutions	can	be	obtained	for	some	of	
the	 robot	 variables.	 This	 can	 possibly	 be	 avoided	 with	 a	 more	 rigorous	 method	 of	 selecting	 cluster	
variable	(see	future	work	in	Section	6.2).	

There	 are	 other	 similarities	 of	 this	 technique	 to	 the	 propagation	 technique	 used	 by	 serial	
manipulators.	 	 If	 a	 homogeneous	 transformation	 matrix,	 𝑇xy ,	 is	 an	 edge	 that	 describes	 a	 path	 from	
vertex	{A}	to	vertex	{B},	then	the	matrix	 𝑇xy ,	the	edge	E2	that	is	a	path	from	{B}	to	{A},	can	be	found	by	
inverting		 𝑇xy .	This	frame	transformation	technique	is	also	used	in	serial	and	parallel	manipulators.	

𝑇yx = 𝑇:+x
y 		 	 	 	 	 	 (Eq	14)	

	
Using	 equation	 12	 and	 14,	 it	 is	 possible,	 although	 unnecessary,	 to	 create	 an	 edge	 from	 any	

vertex	 in	 the	 graph	 to	 each	 vertex	 in	 the	 graph,	 including	 itself.	 This	 may	 be	 useful	 if	 you	 need	 to	
describe	one	robot	in	a	cluster	relative	to	another.	

	
Furthermore,	it	 is	possible	for	a	robot	to	have	two	leaders.	For	example,	in	figure	7,	R3	can	be	

following	R1	at	a	specific	distance	and	angle,	but	follow	the	orientation	of	R2.	Another	example	is	that	
robot	R3	 can	be	 told	 to	 stay	a	distance	d1	 from	R2,	 and	a	distance	d2	 from	R3.	 If	 this	occurs,	 the	 ‘T’	
matrices	for	each	blue	edge	will	be	ill-defined.	Configurations	like	those	shown	in	figure	7	do	not	present	
a	problem	mathematically,	and	can	be	solved	with	incomplete	HTM’s	like	equations	15	and	16.	The	trick	
is	to	propagate	from	R3	to	R1	to	C1	to	G,	and	then	from	R3	to	R2	to	C1	to	G.	Then,	toss	out	any	results	
containing	xx	and	yy.	The	rest	of	this	research	will	assume	that	each	follower	has	only	one	leader.	
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Figure	8:	A	Robot	with	two	leaders.	

	
	

𝑇3.1 =
cos(𝑥𝑥) −sin(𝑥𝑥) 𝑙 ∗	 cos(𝜃j)
sin(𝑥𝑥) cos(𝑥𝑥) 𝑙 ∗	 sin(𝜃j)

0 0 1
			 	 	 	 (Eq	15)	

	
	

	

𝑇3.2 =
cos(𝐴) −sin(𝐴) 𝑦𝑦
sin(𝐴) cos(𝐴) 𝑦𝑦
0 0 1

		 	 	 	 (Eq	16)	
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Chapter	3:	Jacobian	Propagation	Algorithm	
 
This	section	presents	the	given	formulas	used	for	determining	the	inverse	Jacobian	of	a	cluster.	

This	also	lays	the	mathematical	foundation	for	the	implementation	of	these	formulae.	A	particular	way	
to	implement	these	formulas	is	then	presented.	This	chapter	concludes	with	a	run	time	analysis	of	this	
particular	implementation.		
 
3.1	The	Inverse	Jacobian	Algorithm	
	

The	Robot	Space	position	variables,	𝑅,	 and	 the	Cluster	Space	variables,	𝐶,	 are	mapped	by	 the	

functions	KIN	(Eq	1)	and	INVKIN	(Eq	2).		To	map	the	velocities	from	Robot	Space,	𝑅,	to	Cluster	Space,	𝐶,	
the	 matrix	 of	 partial	 derivatives,	 𝐽 𝑅 ,	 known	 as	 the	 Jacobian	 Matrix	 is	 used.	 Similarly,	 the	 inverse	
Jacobian,		𝐽:+ 𝑅 ,	transforms	Cluster	Space	velocities	to	robot	space	velocities.	

	

𝐽:+ 𝐶 𝐶 =

p�3
pj3

⋯ p�3
pjk

⋮ 	 ⋮
p�J
pj3

⋯ p�J
pjk

𝑐+
𝑐,
⋮
𝑐?

		 	 	 	 (Eq	17)	

	
For	cluster	space	control,	the	inverse	Jacobian	historically	has	been	computed	by	taking	partial	

derivatives	of	the	 inverse	kinematics.	This	process	 is	a	time	consuming	and	computationally	expensive	
process.	There	is	a	need	for	faster	calculation	of	the	Jacobian	for	uses	in	high	speed	systems.	
	

It	was	proposed	by	Dr.	Kitts	that	each	row	of	the	matrix,	𝛻hn	 ,	 is	a	robot	space	velocity	vector	
that	can	be	developed	by	performing	a	velocity	propagation	analysis	for	each	robot	n.	The	propagation	
starts	with	determining	the	velocity	of	a	robot,	n,	with	a	fixed	frame	{n}	relative	to	its	local	cluster	frame	
{i}.	 Both	 the	 linear	 velocity	 of	 robot	 n	 relative	 to	 frame	 {i},	 𝑉NO ,	 and	 its	 angular	 velocity,	 𝜔NO ,	must	 be	
determined	and	written	using	cluster	space	variables.	These	velocities	are	then	propagated	from	frame	
to	 frame	(from	cluster	 to	 leader	cluster	or	 to	parent	cluster).	The	propagation	continues	until	 the	 last	
frame;	that	of	global	frame	{G}.	The	result	of	performing	these	propagations	for	each	robot	 leads	to	a	
system	 of	 linear	 equations	 in	 cluster	 variable	 that	 are	 assembled	 to	 form	 the	 inverse	 Jacobian.	 This	
results	in	mapping	cluster	space	velocities	to	robot	space	velocities.	

	

𝐽:+ 𝐶 𝐶 =

𝛻ℎ+
𝛻ℎ,
⋮

𝛻ℎg

=

𝑉+D 	
𝜔+D
⋮
𝑉ND 	
𝜔ND

	 	 	 	 	 (Eq	18)	

	
To	find	the	linear	and	angular	velocities	of	robot	n	with	a	fixed	object	frame	{n}	in	frame	{i},	the	

rate	of	change	of	their	linear	and	angular	position	can	be	taken	as	follows:	
	

𝑉NO = 𝑃NO 	+ 𝜔NO 	×	 𝑃NO 		 	 	 	 (Eq	19)	
	

𝜔NO = 		 𝜃NO 	 	 	 	 	 	 	 (Eq	20)	
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Where:	
𝑉NO 	=	The	total	linear	velocity	of	the	frame,	n,	relative	to	frame	i	
𝑃NO 	=	The	position	of	the	frame,	n,	relative	to	frame	i	

𝑃NO 	=	The	derivative	of	 𝑃	N
O or	𝛻 𝑃	N

O 	
𝜃NO 	=	The	angle	of	the	two	argument	arctangent	of	the	position	vector,	 𝑃NO 	
𝜔NO 		=	the	derivative	of	 𝜃NO ,	or		∇ 𝜃NO ,	or	 𝜃NO 	

	
Since	the	linear	and	angular	velocities	of	the	frame	{n}	in	frame	{i}	are	known,	then	it	is	possible	

to	calculate	the	velocities	of	that	frame	relative	to	frame	{i-1}	as	follows:	
	

𝑉NO:+ = 𝑉OO:+ 	+ 𝑅	O
O:+ ( 𝑃NO 	+ 𝜔NO:+ 	×	 𝑃NO )	 	 	 (Eq	21)	

	
𝜔NO:+ = 	 𝜔OO:+ + 𝑅	O

O:+ ∗ 	 𝜔NO 		 	 	 	 (Eq	22)	
Where:	

𝑉NO:+ 	=	The	total	linear	velocity	of	the	object	n	relative	to	frame	{i-1}	
𝑉OO:+ 	=	The	total	linear	velocity	of	frame	{i}	relative	to	frame	{i-1}	
𝑅	O

O:+ =	The	rotation	matrix	that	describes	the	fixed	rotation	of	frame	{i}	relative	to	frame	{i-1}		
𝜔OO:+ 	=	the	angular	velocity	of	frame	{i}	about	frame	{i-1}	
𝜔NO:+ 	=	the	angular	velocity	of	the	object	n	relative	to	frame	{i-1}	

	
Therefore,	 for	 any	 robot,	 n,	 with	 hierarchical	 depth	 m,	 these	 equations	 can	 be	 applied	

recursively	from	the	robot	through	the	hierarchal	path	of	frames	back	to	the	global	frame	{G}.	Doing	so	
results	in	the	equations:	

	

𝑉ND = (	 	�
qP+

�
�P+ 𝑅)	q

q:+ ( 𝑃��:+ 	+ 𝜔�D 	×	 𝑃��:+ )		 	 	 (Eq	23)	
	

𝜔�D = (	 	�
OP+ 	 𝑅	O:+

O:, )	 𝜔OO:+�
�P+ 		 	 	 	 (Eq	24)	

Where:	
	 𝑉ND 	=	The	total	linear	velocity	of	robot	n	relative	to	global	frame	
	 𝜔�D 	=	The	total	angular	velocity	of	frame	k	relative	to	the	global	frame	
	 𝑅q

q:+ 	=	The	rotation	matrix	that	describes	the	fixed	rotation	of	frame	{j}	relative	to	{j-1}	
	 𝑃��:+ 	=	The	instantaneous	position	of	frame	{k}	relative	to	frame	{k-1}	

	 𝑃��:+ 	=	The	rate	of	change	of	instantaneous	position	of	frame	{k}	relative	to	frame	{k-1}	
	

For	equations	23	and	24,	j	is	the	number	of	steps	that	the	current	frame	is	away	from	the	cluster	
frame,	 and	m	 depth	 level	 of	 robot	 n.	 It	 is	 worth	 noting	 that	 when	 j	 =	 1,	 𝑅	q

q:+ becomes	 the	 identity	
matrix,	and	when	k=1,	 𝜔�D 		,	becomes	a	zero	vector.	

	
By	 applying	 these	 formulas	 for	 each	 robot	 in	 a	 given	 cluster,	 we	 can	 determine	 the	 inverse	

Jacobian	of	that	entire	system.	A	derivation	of	these	formulas	can	be	found	in	Appendix	C.	
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3.2	An	implementation	of	the	Formula	

	
The	recursive	nature	of	the	formulae	in	section	3.1	lend	themselves	to	creating	an	algorithm	for	

execution.	In	an	attempt	to	do	this	as	quickly	and	as	efficiently	as	possible,	the	Cluster	Tree	Inverse	
Jacobian	algorithm	was	created.	This	algorithm	is	outlined	as	follows:	

	
invJ	=	invjacfxn(clusterTree)	
	
Initialization	
	 {	
	 Index	all	nodes	on	clusterTree	
	 Create	list	of	cluster	variables	
	 Create	list	of	all	robot	nodes	
	 Create	empty	invJ	matrix	to	populate	
	 }	
Main	Loop		
	 {	

For	each	node	listed	in	list	of	all	robot	nodes	
	 Linear	Velocity	Propagation	Subroutine	
	 Save	Result	to	invJ	matrix	

	 	 Angular	Velocity	Propagation	Subroutine	
	 	 Save	Result	to	invJ	matrix	
	 End	

}	
Termination	
	 {	
	 Terminate	after	all	elements	in	list	of	all	robot	nodes	has	been	visited	
	 Display	final	invJ	Matrix	showing	the	inverse	Jacobian	

}	
	

Both	subroutines	in	the	Main	Loop	are	rather	involved	sequences	which	require	traversal	of	the	
Cluster	Tree	that	is	taken	as	an	input.	A	detailed	of	explanation	of	the	initialization,	main	loop,	and	
termination	steps	are	as	follows:	
	

	
Initialization	
	
1) Let	us	start	by	creating	a	cluster	tree	as	listed	in	section	2.3.	This	tree	must	have	all	T	

matrices	defined	and	recorded	as	edges.	Let	all	nodes	in	the	tree	begin	colored	white,	with	
all	edges	retaining	their	previous	coloration.	Nodes	on	the	tree	are	indexed	by	a	breadth	
first	search	algorithm.	

2) Create	a	list	containing	the	derivatives	of	each	of	the	cluster	variables.	(‘cluster_var’)	
3) Create	a	list	of	all	the	robot	nodes	that	are	present	in	the	tree,	as	well	as	their	index	in	the	

tree.	(‘robot_node’)	
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4) We	shall	also	create	a	blank	matrix	mxn	in	size	named		𝐽:+.	The	size	of	m	is	the	sum	of	all	
the	degrees	of	freedom	of	all	the	robots	in	a	cluster,	and	n	is	determined	by	the	number	of	
cluster	variables.	Initialize	all	entries	in	this	matrix	to	0.	

	
Figure	9:	Initial	tree	with	all	nodes	colored	white.	

	
	
Main	Loop		
1) Visit	the	first	element	in	the	‘robot_node’	list,	and	color	the	node	yellow.		

	
Figure	10:	Tree	with	current	node	colored	yellow.	

	
2) Perform	Linear	Velocity	Propagation	Subroutine	

2.1)	Create	a	variable,	‘𝑣𝑎𝑟𝐴′ = 	
𝑒𝑥𝑝𝑟1
𝑒𝑥𝑝𝑟2
𝑒𝑥𝑝𝑟3

.	Each	expression	in	this	variable	is	

automatically	factored	by	the	list	‘cluster_var’.	Initialize	all	entries	to	0.	
	
2.2)	Compute	the	conjugate	rotation	of	the	yellow	node	from	the	global	frame.	

2.2.1)	Extract	the	local	rotation	of	current	frame	from	the	parent	frame	by	
extracting	it	from	the	HTM.	Save	this	as	the	variable	‘RR’.	



	 18	

2.2.2)	Update	the	current	node	to	the	parent	node,	coloring	the	new	node	
yellow,	and	the	old	node	red.	Repeat	step	2.2.1,	adding	the	previously	extracted	
rotation	to	the	new	rotation	(‘RR’	=	‘RR’	+	‘new	result’).	

	 	 	
Figure	11:	Cluster	tree	with	explored	node	colored	red	and	current	node	yellow	
	
2.2.3)	Repeat	until	root	node	is	current	node.	Save	result	as	‘RR’.	Turn	this	node	
red.	

	 	 	
Figure	12:	Cluster	tree	with	all	nodes	from	leaf	to	root	explored	once.	

	
2.3)	Return	to	red	node	with	the	highest	index,	and	make	this	node	the	current	node,	by	
changing	the	color	of	the	node	to	yellow.	Extract	the	local	position	of	this	node	from	the	
HTM,	and	get	the	local	velocity	by	partial	differentiation.	
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Figure	13:	Returning	to	the	robot	node	of	the	current	subroutine.	

	
2.4)	Rotate	the	local	velocity	in	step	2.3	and	rotate	it	by	the	‘RR’	calculated	in	step	2.2	
	
2.5)	 Find	 the	global	 angular	 velocity	by	differentiating	 the	 variable	 ‘RR’	 from	step	2.2.	
Then	take	the	cross	product	of	that	with	the	position	of	the	current	node	relative	to	its	
parent	node.	
	
2.6)	Rotate	the	cross	product	calculated	in	step	2.5	by	‘RR’	determined	in	step	2.2	
	
2.7)	Update	the	value	of	‘varA’	to	include	the	the	results	of	steps	2.4	and	2.6	as	follows:	
‘varA’+=	step2.4	+	step2.6	
	
2.8)	Update	the	current	node	on	the	tree	by	changing	the	color	of	the	current	node	to	
the	color	green	and	its	parent	to	yellow,	thus	making	the	parent	the	new	current	node.	
	
	

	
Figure	14:	Cluster	Tree	with	Explored	nodes	are	green	and	current	node	is	yellow.	

	
2.9)	Repeat	steps	2.2	thru	2.8	until	the	root	node	is	reached.	
	
2.10)	Get	the	local	position	of	the	root	node	and	differentiate	it.	
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2.11)	Add	the	result	to	‘varA’.	(‘varA’	+=	‘step2.10’).	Color	the	root	node	green.	
	

3) 	Save	the	result	of	step	2.11	to	the	first	rows	of	the	matrix	named		𝐽:+	below	where	varb	
was	last	stored.	If	this	is	the	first	iteration	of	the	loop,	save	to	the	top	rows	of			𝐽:+.	
	

4) Perform	Angular	Velocity	Propagation	Subroutine	
	

4.1)	Create	a	variable,	𝑣𝑎𝑟� = 	
𝑒𝑥𝑝𝑟1
𝑒𝑥𝑝𝑟2
𝑒𝑥𝑝𝑟3

.	Each	expression	in	this	variable	is	automatically	

split	and	sorted	by	the	list	‘cluster_var’.	Initialize	all	entries	to	0.	
4.2)	Perform	a	search	to	find	the	green	node	with	the	largest	index.	Make	this	node	the	
current	node	(colour	it	yellow).	

	 	 	 	
Figure	15:	Returning	to	robot	node	being	computed	and	mark	as	current	node	

	
	 4.3)	Calculate	‘RR’	for	the	current	node	similarly	to	step	2.2.	Use	red	again.	

4.4)	Calculate	global	angular	velocity	by	differentiating	the	result	of	step	3.3.	Save	the	
result	to	‘varB’.	

	
5) Save	the	‘varB’	to	rows	of	the	matrix	named		𝐽:+	directly	below	where	varA	was	stored.	
6) 	Return	to	red	node	with	the	highest	index	and	color	this	node	black.	Restore	all	non-black	

nodes	to	the	color	white.	

	
Figure	16:	A	cluster	tree	with	a	single	fully	explored	robot	node	

	
7) Go	to	the	following	element	listed	in	the	‘robot_node’	list	and	color	it	yellow.	
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Figure	17:	A	fully	explored	robot	node	and	a	new	robot	node	selected.	

	
8) Repeat	steps	2	through	7	of	Main	Loop	

	
Termination	

	
1) Continue	Repeating	steps	2	through	7	until	all	nodes	for	elements	in	the	list	‘robot_node’	

are	colored	black.	

	
Figure	18:	A	fully	explored	cluster	tree.	

	
	

Upon	completion	of	this	algorithm,	the	inverse	Jacobian	will	be	obtained	and	saved	into	the		matrix			
𝐽:+.	
	
This	implementation	only	supports	non-cyclic	graphs,	and	clusters	that	are	defined	in	a	Cartesian	co-
ordinate	system	
	
3.3	Run	Time	Analysis	of	this	algorithm	
	

Scalability	 of	 this	 algorithm	 is	 important	 to	 consider	 with	 respect	 to	 the	 number	 of	 cluster	
variables,	number	of	robots,	and	hierarchical	depths	present	in	a	cluster.	To	analyze	how	this	algorithm	
would	 respond	 to	 an	 increase	 in	 any	 of	 these	 conditions,	 runtime	 analyses	were	 performed,	 and	 the	
growth	rates	expressed	in	Big	O	notation.	
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It	 was	 determined	 that	 the	 runtime	 increases	 linearly	 to	 an	 increase	 in	 number	 of	 cluster	

variables.	 In	 the	 algorithm	 above,	 there	 are	 no	 loops	 that	 are	 affected	 by	 the	 length	 of	 the	 list	
‘cluster_var’.	 	However,	the	length	of	‘cluster_var’	affects	how	‘varA’	and	‘varB’	are	factored,	and	how	
many	partial	derivatives	need	to	be	calculated	for	each	step	involving	a	differentiation.	If	we	assume	a	
parsing	 function	 scales	 linearly	 with	 the	 number	 of	 delimiters,	 and	 if	 we	 assume	 that	 taking	 partial	
derivatives	scales	linearly	with	the	number	of	partials	taken,	then	the	above	algorithm	has	a	runtime	of	
O(n)	with	respect	to	number	of	cluster	variables.	

	
The	 algorithm	 also	 scales	 linearly	 with	 an	 increase	 in	 the	 number	 of	 robots.	 The	 number	 of	

robots	 in	 the	 cluster	 directly	 affects	 the	 length	 of	 the	 list	 ‘robot_node’.	 For	 each	 element	 in	 this	 list,	
subroutine	A	 is	performed	exactly	once,	and	so	 is	subroutine	B.	Therefore,	the	algorithm	above	scales	
linearly	with	the	number	of	robots.	Therefore,	this	algorithm	scales	like	O(n)	with	respect	to	number	of	
robots	in	the	cluster.	

	
An	exponential	increase	occurs	with	an	increase	in	hierarchal	depth.	For	any	vertex	at	depth	d,	

step	2.2	of	the	linear	velocity	propagation	subroutine,	as	well	as	all	of	the	angular	velocity	propagation	
subroutine,	 needs	 to	 compute	 with	 the	 d-1	 vertices	 above	 it	 in	 the	 tree	 already	 solved.	 Since	 the	
algorithm	didn’t	 save	 the	previous	 result,	 it	 recomputed	this	 information	every	 time	the	current	node	
updated	to	the	parent	node.	Therefore,	this	algorithm	scales	like	O(n2)	with	respect	to	overall	hierarchal	
depth	of	the	cluster.	
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Chapter	4:	Matlab	Implementation	of	Algorithm	
 

This	 section	 will	 describe	 a	 Matlab	 toolbox	 that	 was	 created	 to	 test	 the	 algorithm	 stated	 in	
Chapter	 3.	 It	 will	 outline	 each	 file	 used	 in	 each	 of	 the	 folders	 of	 the	 toolbox.	 The	 first	major	 folder,	
Cluster_Builder,	 contains	 files	 that	 guide	 the	 user	 in	 creating	 a	 cluster	 tree	 to	 use	 for	 their	 custom	
cluster	space	configuration	of	robots.	The	second	major	folder	contains	files	that	compute	the	 inverse	
kinematics	and	the	 inverse	Jacobian	analytically	by	taking	partial	derivatives	of	the	 inverse	kinematics.	
The	third	folder	contains	a	list	of	examples	used	for	verifying	the	algorithm	described	in	section	three.	
Finally,	 the	 fourth	major	 folder	contains	 files	 that	 implement	 the	algorithm	stated	above.	The	Archive	
folders	contained	deprecated	files,	and	the	@tree	folder	contains	the	definition	of	the	tree	class.	

	
	

	
	

Figure	19:	Directory	of	the	Cluster	Space	Control	Inverse	Jacobian	Toolbox	
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4.1	The	Cluster_Builder	Folder	
 

The	 files	 in	 this	 folder	allows	 the	user	of	 the	 toolbox	 to	enter	 information	about	 their	 custom	
clusters,	and	then	compute	the	inverse	Jacobian	for	that	cluster	using	either	the	direct	approach,	or	the	
propagation	based	approach.		
	

To	build	a	cluster	tree	using	the	files	in	this	folder,	one	must	manually	create	a	cluster	tree	and	
have	all	 edges	defined	and	 ready	 to	be	 inputted.	 The	user	must	 also	have	downloaded	 the	 tree	 class	
from	the	MathWorks	website,	as	it	 is	not	a	standard	class.	This	class	was	created	by	Jean-Yves	Tinevez	
on	13	March	2012	and	updated	on	18	Nov	2015		It	can	be	downloaded	from	the	link:	
http://www.mathworks.com/matlabcentral/fileexchange/35623-tree-data-structure-as-a-matlab-class	

	
The	file	clusterbuilder2.m	is	then	given	the	number	of	robot	nodes	and	number	of	cluster	nodes	

as	 input,	 and	 then	 guides	 the	 user	 on	 how	 to	 enter	 all	 the	 cluster	 information	 into	 a	 single	Matlab	
variable.	Table	4	lists	all	the	files	in	this	folder,	and	provides	a	description	of	what	each	file	does.	Figure	
19	and	20	shows	how	this	function	looks	on	screen.	
	

Table	1:	A	list	of	all	the	files	in	the	Cluster_Builder	folder	
File	Name	 Description	

 
Clusterbuilder2.m 

This	is	the	main	function	that	calls	all	the	other	subroutines.	It	takes	the	
number	of	robot	nodes	and	the	number	of	cluster	nodes	as	input,	and	the	
final	result	in	a	variable	containing		the	cluster	information.	The	function	
command	is		
[	obj_out	]	=	clusterbuilder2(	num_robots,num_clusters		)	

 
Robotnamer.m 

This	program	names	all	the	robots	as	R1,	R2,	R3.	Etc…	The	name	of	the	robot	
at	node	(n)	can	later	be	renamed	by	using	the	command	
example.txt_tree=example.txt_tree.set(n,’newrobotname’).	

 
Clusternamer.m 

This	program	names	all	the	clusters	as	C,	C1,	C2,	C3…,.	The	name	of	the	
cluster	at	node	‘m’	can	later	be	renamed	by	using	the	command	
example.txt_tree=example.txt_tree.set(‘m’,‘newclustername’).	

Variablecreator.m Asks	 the	 user	 to	 list	 all	 variable	 names	 that	 will	 be	 used	 to	 describe	
geometric	features	of	the	cluster.	It	stores	this	information	in	a	vector.	

Symbolicbank.m Loads	a	bank	of	symbolic	variables	to	memory.	It	also	loads	all	assumptions	
on	symbolic	variables.	

Treecreator.m 
Asks	 user	 to	 arrange	 the	 robot	 nodes	 and	 cluster	 nodes	 into	 an	
arborescence.	 (Tree	 structure,	 not	 a	 graph)	 that	 spans	 all	 nodes	with	 only	
one	root.	Calls	subroutines	robot_tree.m	and	cluster_tree.m 

Robot_tree.m Subroutine	of	treecreator.m.	It	adds	robot	nodes	to	the	tree	
Cluster_tree.m Subroutine	of	treecreator.m	It	adds	cluster	nodes	to	the	tree.	

Htmdefiner.m asks	 the	 user	 to	 enter	 the	 homogeneous	 transformation	 matrix	 that	
describes	the	position	and	orientation	of	each	node	relative	to	its	parent.	

Msot.m Compiles	 all	 the	 information	 into	 a	 single	 structure	 containing	 all	 the	
attributes	listed	in	table	4.1	
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Figure	20:	User	entering	tree	information	for	example3	into	clusterbuiler2.m	

	
	

	
	

Figure	21:	User	entering	HTM	matrices	for	each	edge	on	the	tree	of	example3	
	

	
Once	the	user	finishes	the	entry	sequence	for	that	cluster,	the	clusterbuilder2.m	function	

outputs	 a	 variable	 as	 seen	 in	 figure	 22	 with	 the	 attributes	 listed	 in	 table	 2.	 The	 attributes	
example.propinvjac,	example.inv_kin,	and	example.dirinvjac	are	not	initially	saved	in	this	variable.	They	
are	only	created	after	the	inverse	kinematics	or	the	respective	Jacobian	function	is	used	on	the	variable.	
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Table	2:	A	list	of	all	the	variable	attributes	saved	in	each	example	variable.	

Attribute	 Description	
example.robotnodes	 A	vector	containing	all	nodes	in	the	cluster	tree	that	belong	to	robot	

nodes.	Each	value	that	describes	a	node	is	saved	as	type	double.	
example.clusternodes	 A	vector	containing	all	cluster	type	nodes	in	the	cluster	tree.	

	
	
	

example.htm_tree	

Tree	type	class.	Each	node	of	this	tree	contains	the	homogeneous	
transformation	matrix	of	the	corresponding	example.txt_tree	node	
relative	to	the	parent	of	that	node.	
Each	contains	a	3x3	or	4x4	array	whose	elements	are	all	type	
symbolic.	
To	view	the	tree	structure,	use	the	command	
disp(example.htm_tree.tostring).	
	To	view	the	homogeneous	transform	matrix	at	a	particular	node	(n),	
use	the	command	example.htm_tree.get(n)	

example.txt_tree	 Contains	the	information	about	the	cluster	tree.	To	view	this	
attribute,	use	the	command	disp(example.txt_tree.tostring).		

example.var	 A	vector	of	symbolic	type	elements.	The	vector	contains	all	the	
cluster	variables	needed	to	describe	the	system	

example.propinvjac	 Contains	the	inverse	Jacobian	of	the	cluster	as	computed	by	the	
velocity	propagation	approach	

example.inv_kin	 Contains	the	inverse	kinematics	for	each	robot	as	computed	by	the	
direct	approach.	

example.dirinvjac	 Contains	the	inverse	Jacobian	of	the	cluster	as	computed	by	direct	
differentiation	of	the	inverse	kinematics	

	

 
Figure	22:	Display	of	attributes	initially	saved	in	the	Matlab	variable	example3.	
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4.2	The	Inverse	Kinematics	Folder	
 

The	second	major	 folder	of	 the	Toolbox	contains	 files	 that	execute	 the	algorithm	described	 in	
section	3.	This	folder	contains	files	that	work	for	clusters	with	6	degrees	of	freedom,	and	an	optimized	
set	of	subroutines	for	working	with	clusters	that	are	limited	to	the	plane.	Table	3	is	a	list	of	all	the	files	
and	which	steps	 in	 the	algorithm	that	 they	 refer	 to.	Figures	23	and	24	show	the	 result	of	using	 these	
functions.	
	

Table	3:	Description	of	all	Files	in	the	Inverse	Kinematics	folder		
File	Name	 Description	
invkin.m This	 file	 computes	 the	 inverse	 kinematics	 for	 each	 robot	 by	 tracing	 a	

path	from	each	robot	node	back	to	the	root	node.	It	then	multiplies	the	
homogeneous	 transform	 matrices	 from	 root	 back	 down	 to	 the	 leaf	
nodes	 (robot	 nodes).	 It	 then	 saves	 the	 results	 as	 a	 variable	 attribute,	
example.inv_kin	

dirinvjac.m This	 file	 first	 calls	 the	 program	 invkin.m	 to	 compute	 the	 inverse	
kinematics	of	each	robot.	Each	element	in	the	vector	example.inv_kin	is	
It	 then	 differentiated	 by	 each	 symbolic	 element	 in	 the	 vector	
example.syms.	 The	 resulting	 array	 is	 saved	 as	 the	 variable	 attribute	
example.dirinvjac	
	

	
	
	

	
Figure	23:	The	function	invkin.m	being	used	on	example3	variable	
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Figure	24:	The	function	dirvinvjac.m	being	used	on	example3	variable	

	
4.3	The	Test_Bed	Folder	
 

The	third	major	folder	of	the	Toolbox	is	full	of	example	clusters.	Each	sample	cluster	is	saved	as	
a	variable,	and	each	attribute	of	the	variable	contains	information	that	describes	the	cluster.	A	full	list	of	
all	the	attributes	can	be	found	in	table	2.	
 

Each	of	the	examples	saved	in	the	test	bed	represent	a	different	type	of	cluster.	These	examples	
vary	 in	number	of	robots,	number	of	degrees	of	freedom,	hierarchical	depth	of	robots,	and	clusters	of	
different	 types	 of	 configurations.	 To	 load	 an	 example	 to	 the	 active	 workspace,	 use	 the	 command	
load('example.mat').	All	examples	included	in	this	folder	are	listed	in	table	4.	

	
Figures	25	and	26	show	the	physical	view	and	graphical	view	of	Example3.	The	Cluster	frame,	C,	

is	determined	by	two	subclusters,	C1	and	C2.	Robot1	and	Robot2	 form	the	subcluster	C1,	and	Robot3	
and	 Robot4	 form	 subcluster	 C2.	 Equations	 25	 and	 33	 give	 the	 forward	 and	 inverse	 kinematics	 of	 the	
system	respectively.	Equations	26-32	give	the	HTM’s	for	each	edge	needed	for	the	graph.	
	
 

 
Figure	25:	A	Physical	View	of	Example3,	a	cluster	of	two	2-robot	clusters.	

{C} 
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Figure	26:	A	Graph	representing	a	cluster	of	clusters.	Here	cluster	{C1}	and	{C2}	form	a	single	cluster	{C}.		
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Table	4:	Examples	in	the	test	bed	folder	and	an	explanation	of	their	configuration	
Name	 Number	of	Robots	 Configuration	

Example1	 2	
2	robots	with	cluster	frame	defined	as	midpoint	between	
both	robots.	The	robots	are	limited	to	the	plane.	

Example2	 4	

2	robots	with	cluster	frame	defined	as	midpoint	between	
both	robots	with	the	cluster	frame	acting	as	leader	to	
another	cluster	frame.	The	follower	cluster	has	2	robots	
with	its	cluster	frame	defined	as	midpoint	between	the	
robots	in	that	frame.	The	robots	are	limited	to	the	plane.	

Example3	 4	
A	cluster	of	clusters.	Two	clusters	of	2	robots	each	form	a	
cluster.	The	robots	are	limited	to	the	plane.	

Example4	 2	

A	cluster	of	2	robots	with	one	robot	being	located	directly	
above	the	cluster	frame	and	is	free	to	have	a	different	
orientation	than	the	cluster	frame.	The	robots	are	limited	
to	the	plane.	

Example5	 2	

A	cluster	of	2	robots	with	one	robot	being	located	directly	
above	the	cluster	frame.	This	robot	is	also	forced	to	be	
aligned	with	the	cluster	frame.	This	system	is	
overconstrained.	The	robots	are	limited	to	the	plane.	

Example6	 2	
A	cluster	of	2	robots	with	the	cluster	frame	arbitrarily	
placed.	This	system	will	have	redundant	degrees	of	
freedom.	The	robots	are	limited	to	the	plane.	

Example7	 2	 Example	1	extended	into	6	degrees	of	freedom	per	robot	

Example8	 3	
3	robots	with	cluster	frame	defined	as	the	average	
location	of	the	three	3	robots.	The	robots	are	limited	to	
the	plane.	

Example9	 3	
3	robots	with	cluster	frame	as	the	midpoint	between	
Robot	1	and	Robot	2	with	Robot	3	following	the	cluster	
frame.	

Example10	 3	

3	robots.	Robot	1	is	it’s	own	cluster	with	the	cluster	
frame	incident	with	robot	1.	That	cluster	frame	plus	
robot	2	form	another	cluster	frame	located	at	the	
midpoint.	Finally,	robot	3	is	following	the	robot	1	cluster.	
The	robots	in	this	example	are	also	limited	to	the	plane.	

	
A	full	description	of	each	cluster,	including	the	physical	view,	the	forward	kinematics,	the	graph	

based	representation,	the	homogeneous	transform	matrices	used	and	the	inverse	kinematics	can	be	
found	in	the	Appendix	B.	

	
4.4	The	Velocity_Propagation_Technique	Folder	
 

The	main	computation	of	this	subfolder	 is	to	execute	the	algorithm	described	in	section	3.4.	 It	
does	 this	 by	 taking	 the	 cluster	 tree	 that	was	 built,	 and	 traversing	 it	 accordingly.	 It	 is	 also	 capable	 of	
determining	 the	 number	 of	 degrees	 of	 freedom	 based	 on	 the	 size	 of	 the	 homogeneous	 transform	
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matrices,	 and	 adjusts	 the	 computation	 accordingly.	 Below	 is	 a	 list	 of	 all	 the	 files	 associated	with	 this	
velocity	propagation	approach.	

	
Table	5:	Descriptions	of	the	files	in	the	Velocity_Propagation_Technique	Folder	

File	Name	 Description	

Invjacfxn.m 

The	main	function	of	the	algorithm.	 It	takes	the	cluster	tree	as	an	 input	
and	outputs	the	inverse	jacobian	of	the	system.	It	also	saves	the	inverse	
Jacobian	as	an	attribute	to	the	input.	The	tree	implementation	described	
in	section	3	made	used	of	different	color	nodes.	This	toolbox	circumvents	
color	usage	by	using	additional	indices	and	counters.	It	also	distinguishes	
between	3x3	and	4x4	HTMs,	and	calls	other	files	as	appropriate.	

gettheRR3.m Calculates	the	product	of	rotations	for	the	current	node.	Does	Step	2.2	of	
Section	3.	Only	works	with	3	Degrees	of	Freedom	(3DOF)	

getthev3.m Calculates	the	local	velocity	of	one	frame	relative	to	its	parent.	Performs	
step	2.3	

rotatedwxp3.m 
Calculates	 the	 local	 angular	 velocity,	 and	 rotates	 it	with	 respect	 to	 the	
Step	2.5	and	2.6	

getthefinv3.m Calculates	 the	 local	velocity	of	 the	main	cluster	 frame	relative	 to	global	
frame.	This	is	the	step	2.10	and	step	2.11	

getthewthing3.m Calculates	 the	 local	 angular	 velocity.	 This	 is	 the	 same	 as	 the	 angular	
velocity	propagation	subroutine.	

gettheRR6.m The	same	as	get	the	RR6,	but	is	only	called	when	dealing	with	more	than	
3DOF	per	robot.	

getthev6.m Does	the	same	as	getthev3,	but	called	when	user	enters	a	4x4	matrix.	
rotatedwxp6.m Does	the	same	as	rotatedwxp6,	but	called	when	user	enters	a	4x4	matrix.	
getthefinv6.m Does	the	same	as	getthefinv3,	but	called	when	user	enters	a	4x4	matrix.	

getthewthing6.m Does	 the	 same	 as	 getthewething3,	 but	 called	 when	 user	 enters	 a	 4x4	
matrix.	

 
To	use	 the	main	 function,	 one	uses	 the	 command	 [	 inv_jac_prop,	 example]	 =	invjacfxn(example).	
Figure	27	shows	what	this	execution	looks	like	in	the	Matlab	environment.	
	

	
	

Figure	27:	The	function	invjacfxn.m	being	used	on	example3	variable	
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Chapter	5:	Results	
 

This	 section	will	 state	 the	 results	of	 implementing	 this	algorithm	 in	Matlab.	 It	will	present	 the	
findings	 from	 10	 examples	 that	 the	 algorithm	 developer	 created,	 and	 an	 example	 from	 another	
researcher	 in	 Santa	Clara	University’s	Robotic	 Systems	 Lab.	 Finally,	 it	 outlines	 some	additional	 testing	
that	can	be	done	to	test	the	robustness	of	this	Matlab	implementation.	
 
5.1	Results	from	Test_Bed	Examples	
 

Each	of	 the	 ten	 systems	 in	 the	Test_Bed	Folder	had	 the	 inverse	 Jacobian	 computed	using	 the	
functions	dirinvjac.m	and	invjacfxn.m.	Each	result	for	each	example	was	compared	element	by	
element	 in	 the	 matrix	 to	 ensure	 that	 they	 are	 indeed	 the	 same.	 For	 all	 ten	 examples,	 the	 matrices	
produce	matched.	An	example	of	these	can	be	seen	in	Chapter	4	in	figures	24	and	figure	27.	
	

An	interesting	finding	was	that	by	using	the	function	which	uses	the	newly	created	algorithm,	a	
less	compact	form	of	each	of	the	elements	in	the	matrix	were	obtained.	This	may	be	the	result	of	some	
optimization	 within	 Matlab’s	 built-in	 ‘Symbolic	 Math	 Toolbox’.	 However,	 after	 using	 simplification	
features,	it	is	clear	that	the	results	were	the	same.	An	attempt	was	made	to	automate	this	step,	but	was	
unsuccessful.	
 
5.2	Results	from	a	Third	Party	Cluster	
 

To	 remove	 any	 bias	 that	 may	 be	 present	 in	 the	 ten	 example	 clusters	 listed	 above,	 it	 was	
suggested	that	the	algorithm	be	tested	on	a	cluster	definition	not	previously	encountered	by	the	author.	
Alex	Mulcahy	 of	 Santa	 Clara	 University’s	 Robotic	 Systems	 Lab	 requested	 an	 analysis	 of	 the	 following	
cluster	given	his	use	of	this	particular	cluster	definition	in	his	own	research.	

	

 
Figure	28:	The	Alex	Cluster.	A	5	robot	cluster	with	robots	1	and	2	forming	the	main	cluster,	robot	4	following	robot	

2,	robot	3	following	robot	1,	and	robot	5	following	robot	3.	
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After	 discussing	 the	 cluster	 with	 him	 for	 a	 few	 minutes,	 we	 sketched	 out	 the	 robot	 tree	

together,	 and	 then	 entered	 the	 transformation	matrices	 into	 the	 cluster	 builder	 program.	 At	 first,	 it	
appears	that	the	results	are	very	different.	However,	after	running	the	simplify	function	on	both	results,	
more	 compact	 forms	were	 of	 each	were	 obtained.	 In	 compact	 form,	 it	 is	 clear	 that	 both	 techniques	
yielded	 the	 same	 result	 for	 this	 cluster.	 This	 result	 has	 significantly	 helped	 test	 against	 any	 bias	 that	
might	have	been	created	using	an	internal	test	bed.		

	
Figure	29:	Columns	1	through	7	of	the	inverse	Jacobian	of	the	Alex	Cluster.	

	

	
Figure	30:	Columns	8	through	15	of	the	inverse	Jacobian	of	the	Alex	Cluster.	

	
5.3	Further	Testing	II	
 

Currently,	 there	 are	 about	 200	 variables	 in	symbolicbank	 file.	 This	 means	 that	 there	 are	
enough	variables	to	describe	a	cluster	with	up	to	about	33	robots,	each	with	6	degrees	of	freedom.	This	
limitation	 can	 be	 increased	 by	 adding	more	 variables	 to	 the	symbolicbank	 file.	 However,	 clusters	
that	approach	this	limit	in	size	have	not	yet	been	tested.	There	are	also	other	types	of	cluster	definitions	
that	 should	 also	 be	 compatible	with	 this	 implementation,	 but	 have	 not	 yet	 been	 tested.	 Examples	 of	
these	 are	 recorded	 in	 Table	 6.	 This	 testing	 may	 be	 helpful	 in	 demonstrating	 the	 robustness	 of	 this	
implementation	of	the	algorithm.	
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Table	6:	Other	Cluster	Definition	to	test	Robustness	of	Toolbox	
Example	 Number	

of	Robots	
Configuration	 Reason	for	Testing	

Example	11	 20	 Each	with	3	degrees	of	
Freedom.		

Will	test	the	ability	to	work	
work	with	a	large	number	of	
robots.	

Example	12	 4	 Each	with	6	degrees	of	
freedom,	not	limited	to	
the	plane.	Cluster	frame	
at	the	centre	of	the	
pyramid	formed.	

This	will	fully	test	its	ability	to	
work	with	spacecraft	and	other	
6DOF	vehicles.	

Example	13	 4	 Each	with	6	degrees	of	
freedom,	tested	in	
nonstandard	axes.	

Results	could	be	used	to	
expand	the	field	of	cluster	
control	in	a	mathematical	
sense.	

Example	14	 16	 A	cluster	of	clusters	of	
clusters.		

Test	ability	to	scale	depth.	
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Chapter	6:	Conclusions	
 

This	Chapter	summarizes	the	work	that	has	been	done	in	this	research.	It	summarizes	the	results	
and	conclusions	drawn,	as	well	as	outlines	possibilities	for	future	work.	
	
6.1	Summary	
 

This	thesis	has	completed	its	main	objective	of	automating	the	process	of	computing	the	inverse	
Jacobian.	Several	steps	were	taken	in	order	to	achieve	this	objective.	

	
The	frame	equations	that	were	presented	by	Dr.	Chris	Kitts	were	studied	in	depth	to	guarantee	a	

throughout	 understanding	 of	 the	 mathematics	 involved	 in	 this	 computation.	 From	 there,	 a	 few	 test	
cases	were	computed	manually	to	ensure	proper	understanding	of	the	equations.	

	
Once	 the	 equations	 were	 understood,	 substantial	 effort	 was	 put	 into	 finding	 a	 graph	 based	

representation	 for	 cluster	 space	 formulations.	 Graphs	 were	 considered	 as	 they	 lend	 themselves	 to	
existing	theories	from	algorithmic	information	theory.	Trees	were	considered	particularly	for	clusters	as	
it	was	an	easy	way	to	capture	hierarchal	information.	

	
Once	this	graph	based	representation	was	formalized,	an	algorithm	was	developed	that	makes	

use	of	 this	 representation.	The	algorithm,	by	 traversing	 the	tree	and	visiting	relevant	nodes,	executed	
the	frame	propagation	equations,	thus	allowing	for	the	inverse	Jacobian	to	be	built.	

	
This	algorithm	was	then	implemented	in	Matlab,	and	all	the	files	created	were	saved	to	a	Matlab	

toolbox.	 A	 collection	 of	 several	 cluster	 definitions	 were	 then	 developed	 to	 test	 the	 algorithm.	 This	
included	 defining	 the	 formal	 set	 of	 kinematic	 equations,	 depicting	 them	 as	 tree	 structures,	 and	
determining	the	homogeneous	transform	matrices	needed.	

	
The	result	is	the	initial	version	of	a	Matlab	Toolbox	that	successfully	automates	the	computation	

of	the	inverse	Jacobian	Matrix	for	a	cluster	of	robots.	
	
The	results	were	verified	by	comparing	the	Jacobian	Matrix	that	was	obtained	to	one	obtained	

by	a	derivation	based	technique.	All	results	were	mathematically	equal,	although	certain	elements	in	the	
matrix	were	sometimes	obtained	in	a	more	compact	form.	

	
By	completing	this	research,	a	systematic	way	for	determining	the	inverse	Jacobian	of	a	cluster	

of	robots	can	now	be	done	quickly	and	systematically.	This	allows	us	to	build	controllers	for	more	cluster	
configurations	rapidly.	Doing	this	can	allow	for	a	group	of	robots	to	be	tested	in	simulation	in	different	
geometric	 descriptions,	 and	 may	 help	 a	 researcher	 decide	 if	 he	 wants	 a	 more	 or	 less	 centralized	
description	for	the	group	of	robots	being	controlled.	

	
It	also	expands	on	previous	work	in	cluster	control	on	Jacobian	analysis,	such	as	poor	condition	

number	avoidance.	Rapid	development	of	these	matrices	means	that	they	can	be	studied	more	readily.	
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6.2	Future	Work	
 

Currently	this	toolbox	only	works	as	a	proof	of	concept	and	 is	not	optimized	for	run-time.	The	
program	can	be	optimized	in	Matlab,	or	transcribed	into	another	language	such	as	python	for	possibly	
faster	runtimes.	

	
Further	 optimization	 in	 computational	 efficiency	 can	 be	 achieved	 by	 modification	 of	 the	

algorithm.	For	example,	the	angular	velocity	propagation	subroutine	is	already	computed	as	part	of	the	
linear	 velocity	 propagation	 subroutine.	 Capturing	 that	 information	 would	 prevent	 the	 need	 to	 re-
compute	it.	
	

The	toolbox	can	also	be	developed	further	to	provide	more	value	to	fellow	researchers.	Further	
files	can	be	written	that	would	automatically	populate	the	computed	inverse	Jacobian	into	a	controller	
in	a	Simulink	model.	 It	can	also	be	modified	to	replace	the	symbols	with	actual	values	and	compute	a	
numerical	value	for	the	inverse	Jacobian	based	on	the	analytical	model.	

	
Further	work	could	also	involve	creating	a	tool	to	help	researches	create	a	physical	sketch	of	the	

multirobot	 system,	 and	 use	 that	 information	 to	 automatically	 create	 a	 cluster	 tree,	 as	 well	 as	 to	
determine	the	HTM’s	for	each	node.	

	
The	 forward	 Jacobian	 is	 also	 still	 computed	 manually.	 Finding	 a	 faster	 technique	 for	 quicker	

computation	of	 the	 forward	 Jacobian	would	directly	 compliment	 the	work	 that	has	 been	done	 in	 this	
research.	
	
	 Aside	from	graph	theory,	other	mathematical	techniques	can	be	explored.	For	example,	utilizing	
certain	 features	 of	 skew	 symmetric	 matrices	 can	 also	 be	 used	 to	 increase	 efficiency.	 Forcing	 our	
matrices	to	be	skew	symmetric	may	only	work	on	certain	clusters	with	restricted	types	of	movements.	
This	may	be	beneficial	when	small	computation	size	required	at	the	cost	of	some	loss	in	performance.	
	 	
	 Other	 techniques	 such	as	quaternions	promise	even	 faster	 computational	 efficiency,	 although	
this	may	require	thinking	of	clusters	in	new	ways	and	formalizing	a	way	to	think	of	them.		
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Appendix	A	–	Examples	used	in	the	Test_Bed	Folder	
 

Example	1:	A	Cluster	of	Two	Robots	
 
	
Physical	Diagram:	

	
	

Figure	31:	A	Physical	view	of	a	cluster	of	2	robots	for	example1	
	
Forward	Kinematics:	
	

𝑥j
𝑦j
𝜙+
𝜙,
𝜃j
𝑙

=

(𝑥+	+	𝑥,	)
2

(𝑦+	+	𝑦,)
2

𝜃+ − 	𝜃j
𝜃, − 	𝜃j

𝑎𝑡𝑎𝑛2 (𝑦, − 𝑦+ , 𝑥, − 𝑥+ )
1
2

𝑦+ − 𝑦, , + 𝑥, − 𝑥+ ,

	

	
Tree	Structure:	
	

	

	
Figure	32:	A	Graph	representing	a	cluster	of	2	robots	for	example1	
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Transformation	Matrices:	

𝑇mD = 	
cos(𝜃j) −sin(𝜃j) 𝑥j
sin(𝜃j) cos(𝜃j) 𝑦j
0 0 1

	

	

𝑇+m = 	
cos(𝜙+) −sin(𝜙+) 𝑙
sin(𝜙+) cos(𝜙+) 0

0 0 1
	

	

𝑇,m = 	
cos(𝜙,) −sin(𝜙,) −𝑙
sin(𝜙,) cos(𝜙,) 0

0 0 1
	

	

𝑇+D = 𝑇mD ∗ 𝑇+m = 	
cos(𝜃j + 	𝜙+) −sin(𝜃j + 	𝜙+) 𝑙 ∗ cos 𝜃j + 𝑥j
sin(𝜃j + 	𝜙+) cos(𝜃j + 	𝜙+) 𝑙 ∗ sin 𝜃j + 	𝑦j

0 0 1
	

	

𝑇,D = 𝑇mD ∗ 𝑇,m = 	
cos(𝜃j + 	𝜙,) −sin(𝜃j + 	𝜙,) −𝑙 ∗ cos 𝜃j 	+ 𝑥j)
sin(𝜃j + 	𝜙,) cos(𝜃j + 	𝜙,) −𝑙 ∗ sin 𝜃j + 	𝑦j

0 0 1
	

	
	
Inverse	Kinematics	
	

𝑥+
𝑦+
𝜃+
𝑥,
𝑦,
𝜃,

=

𝑙 ∗ cos 𝜃j + 𝑥j
𝑙 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙+
−𝑙 ∗ cos 𝜃j + 𝑥j
−𝑙 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙,
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Example	2:	Two	Clusters	of	Two	Robots	in	a	Leader	Follower	Formation	
	

	
Physical	Diagram	
	

	
Figure	33:	Physical	View	of	2	clusters	of	2	robots	each	in	a	leader	follower	configuration,	where	cluster	{C1}	is	

leader	and	{C2}	is	follower.	
	
Forward	Kinematics	

𝑥j
𝑦�
𝜙+
𝜙,
𝜙l
𝜙�
𝜃j+
𝑙
𝑚
𝑛
𝜃j,
𝜙j

=

(𝑥+	+	𝑥,	)
2

(𝑦+	+	𝑦,)
2

𝜃+ − 	𝜃j+
𝜃, − 	𝜃j+

𝜃l − 	𝜃j+ − 	𝜙j
𝜃� − 	𝜃j+ − 	𝜙j

𝑎𝑡𝑎𝑛2 (𝑦, − 𝑦+ , 𝑥, − 𝑥+ )
1
2

𝑦+ − 𝑦, , + 𝑥, − 𝑥+ ,

	
(𝑥+	+	𝑥,	)

2
−
(𝑥l	+	𝑥�	)

2

,

+
(𝑦+	+	𝑦,)

2
−
(𝑦l	+	𝑦�)

2

,

1
2

𝑦� − 𝑦l , + 𝑥� − 𝑥l ,

acos
(𝑦l − 𝑦m+ , + 𝑥l − 𝑥m+ , − 4𝑙, − 	𝑚,))

4𝑙𝑛
− 𝜙j + 	𝜋	

acos
(𝑦j, − 𝑦+ , + 𝑥j, − 𝑥+ , − 4𝑙, − 	𝑚,))

4𝑙𝑚
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Tree	Diagram	

	
	

Figure	34:	A	Graph	representing	2	clusters	of	2	robots	each	in	a	leader	follower	configuration,	where	cluster	{C1}	is	
leader	and	{C2}	is	follower.		

	
	
	
Transformation	Matrices:	
	

𝑇m+
D = 	

cos(𝜃j+) −sin(𝜃j+) 𝑥j
sin(𝜃j+) cos(𝜃j+) 𝑦j

0 0 1
	

	

𝑇+m+ = 	
cos(𝜙+) −sin(𝜙+) 𝑙
sin(𝜙+) cos(𝜙+) 0

0 0 1
	

	

𝑇,m+ = 	
𝑐𝑜𝑠(𝜙,) −𝑠𝑖𝑛(𝜙,) −𝑙
𝑠𝑖𝑛(𝜙,) 𝑐𝑜𝑠(𝜙,) 0

0 0 1
	

	

𝑇m,
m+ = 	

𝑐𝑜𝑠(𝜃j,	) −𝑠𝑖𝑛(𝜃j,) 𝑚 ∗ cos	(𝜙j)
𝑠𝑖𝑛(𝜃j,) 𝑐𝑜𝑠(𝜃j,) 𝑚 ∗ sin	(𝜙j)

0 0 1
	

	

𝑇lm, = 	
𝑐𝑜𝑠(𝜙l) −𝑠𝑖𝑛(𝜙l) 𝑛
𝑠𝑖𝑛(𝜙l) 𝑐𝑜𝑠(𝜙l) 0

0 0 1
	

	

𝑇�m� = 	
𝑐𝑜𝑠(𝜙�) −𝑠𝑖𝑛(𝜙�) −𝑛
𝑠𝑖𝑛(𝜙�) 𝑐𝑜𝑠(𝜙�) 0

0 0 1
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Inverse	Kinematics:	
	
	

𝑥+
𝑦+
𝜃+
𝑥,
𝑦,
𝜃,
𝑥l
𝑦l
𝜃l
𝑥�
𝑦�
𝜃�

=

𝑙 ∗ cos 𝜃j+ + 𝜙j + 𝑥j
𝑙 ∗ sin 𝜃j+ + 𝜙j + 𝑦j

𝜃j+ + 	𝜙+
−𝑙 ∗ cos 𝜃j+ + 𝜙j + 𝑥j
−𝑙 ∗ sin 𝜃j+ + 𝜙j + 𝑦j

𝜃j+ + 	𝜙,
𝑚 ∗ cos 𝜙j + 	𝜃j+ + 𝑛 ∗ cos 𝜃j, + 	𝜃j+ + 𝑥j
𝑚 ∗ cos 𝜙j	 	+ 	𝜃j+ + 𝑛 ∗ sin 𝜃j, + 	𝜃j+ + 	𝑦j

𝜃j + 	𝜙j + 	𝜙l
𝑚 ∗ cos 𝜙j + 	𝜃j+ − 𝑛 ∗ cos 𝜃j, + 	𝜃j+ + 𝑥j
𝑚 ∗ cos 𝜙j	 	+ 	𝜃j+ − 𝑛 ∗ sin 𝜃j, + 	𝜃j+ + 	𝑦j

𝜃j + 	𝜙j + 	𝜙�

	 	 	

	
	
	

	
Example	3:	A	Cluster	of	two	2-robot	clusters	

	
Physical	Diagram	
	

	
Figure	35:	A	Physical	View	of	Example3,	a	cluster	of	two	2-robot	clusters.	

	
	
	
	
	
	
	
	

{C} 
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Forward	Kinematics	

𝑥j
𝑦�
𝜙+
𝜙,
𝜙l
𝜙�
𝜃j
𝑙
𝑚
𝑛
𝜃j+
𝜃j,

=

(𝑥+	+	𝑥,	+	𝑥l	+	𝑥�)
4

(𝑦+	+	𝑦, + 𝑦l	+	𝑦�)
4

𝜃+ − 	𝜃j+ − 	𝜃m
𝜃, − 	𝜃j+ − 	𝜃m
𝜃l − 	𝜃j, − 	𝜃j
𝜃� − 	𝜃j, − 	𝜃j

𝑎𝑡𝑎𝑛2 (𝑦� − 𝑦j+ , 𝑥� −
(𝑥+	+	𝑥,)

2
)

(𝑦+	+	𝑦,)
2

− 𝑦�
,

+
(𝑥+	+	𝑥,)

2
− 𝑥�

,

(𝑦+	+	𝑦,)
2

− 𝑦+
,

+
(𝑥+	+	𝑥,)

2
− 𝑥+

,

	
(𝑦l	+	𝑦�)

2
− 𝑦+

,

+
(𝑥l	+	𝑥�)

2
− 𝑥+

,

acos
(𝑦� − 𝑦+ , + 𝑥� − 𝑥+ , − 4𝑙, − 	𝑚,))

4𝑙𝑚

acos
(𝑦� − 𝑦l , + 𝑥� − 𝑥l , − 4𝑙, − 	𝑛,))

4𝑙𝑛

	

	
	

	
	

Tree	Diagram	
	

	
Figure	36:	A	Graph	representing	a	cluster	of	clusters.	Here	cluster	{C1}	and	{C2}	form	a	single	cluster	{C}.		
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Transformation	Matrices	
	

𝑇mD = 	
cos(𝜃j) −sin(𝜃j) 𝑥j
sin(𝜃j) cos(𝜃j) 𝑦j
0 0 1

	

	

𝑇m+
m = 	

cos(𝜃j+) −sin(𝜃j+) 𝑙
sin(𝜃j+) cos(𝜃j+) 0

0 0 1
	

	

𝑇m,
m = 	

cos(𝜃j,) −sin(𝜃j,) −𝑙
sin(𝜃j,) cos(𝜃j,) 0

0 0 1
	

	

𝑇�+
m+ = 	

cos(𝜙+) −sin(𝜙+) 𝑚
sin(𝜙+) cos(𝜙+) 0

0 0 1
	

	

𝑇�,
m+ = 	

cos(𝜙,) −sin(𝜙,) −𝑚
sin(𝜙,) cos(𝜙,) 0

0 0 1
	

	

𝑇�l
m, = 	

cos(𝜙l) −sin(𝜙l) 𝑛
sin(𝜙l) cos(𝜙l) 0

0 0 1
	

	

𝑇��
m, = 	

cos(𝜙�) −sin(𝜙�) −𝑛
sin(𝜙�) cos(𝜙�) 0

0 0 1
	

	
Inverse	Kinematics	

𝑥+
𝑦+
𝜃+
𝑥,
𝑦,
𝜃,
𝑥l
𝑦l
𝜃l
𝑥�
𝑦�
𝜃�

=

𝑚 ∗ cos 𝜃j+ + 𝜃j + 𝑙 ∗ cos 𝜃j + 𝑥j
𝑚 ∗ sin 𝜃j+ + 𝜃j + 𝑙 ∗ sin 𝜃j + 𝑦j

𝜃j + 𝜃j+ + 	𝜙+
−𝑚 ∗ cos 𝜃j+ + 𝜃j + 𝑙 ∗ cos 𝜃j + 𝑥j
−𝑚 ∗ sin 𝜃j+ + 𝜃j + 𝑙 ∗ sin 𝜃j + 𝑦j

𝜃j + 𝜃j+ + 	𝜙,
𝑛 ∗ cos 𝜃j, + 𝜃j − 𝑙 ∗ cos 𝜃j + 𝑥j
𝑛 ∗ sin 𝜃j, + 𝜃j − 𝑙 ∗ sin 𝜃j + 𝑦j

𝜃j + 𝜃j, + 	𝜙l
−𝑛 ∗ cos 𝜃j, + 𝜃j − 𝑙 ∗ cos 𝜃j + 𝑥j
−𝑛 ∗ cos 𝜃j, + 𝜃j − 𝑙 ∗ cos 𝜃j + 𝑥j

𝜃j + 𝜃j, + 	𝜙�
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Example	4:	A	Two	Robot	Cluster	with	the	Cluster	frame	Position	Determined	by	One	Robot	
	

Physical	View	
	

	
	

Figure	37:	A	Two	robot	cluster	sharing	a	single	cluster	frame.	The	Cluster	frame	is	located	on	top	of	Robot	1.	
However,	robot	1	is	free	to	have	a	different	orientation	than	the	cluster	frame.	

	
Forward	Kinematics	

	
𝑥j
𝑦j
𝜙+
𝜙,
𝜃j
𝑟

=

𝑥+
𝑦+

𝜃+ − 	𝜃j
𝜃, − 	𝜃j

𝑎𝑡𝑎𝑛2 (𝑦, − 𝑦+ , 𝑥, − 𝑥+ )
𝑦+ − 𝑦, , + 𝑥, − 𝑥+ ,

	

	
	
Tree	Diagram	

	
Figure	38:	Tree	Diagram	of	a	Two	robot	cluster	sharing	a	single	cluster	frame.	

	The	Cluster	frame	is	located	on	top	of	Robot	1.		



	 48	

	
Transformation	Matrices	
	

𝑇mD = 	
cos(𝜃j) −sin(𝜃j) 𝑥j
sin(𝜃j) cos(𝜃j) 𝑦j
0 0 1

	

	

𝑇+m = 	
cos(𝜙+) −sin(𝜙+) 0
sin(𝜙+) cos(𝜙+) 0

0 0 1
	

	

𝑇,m = 	
cos(𝜙,) −sin(𝜙,) 𝑟
sin(𝜙,) cos(𝜙,) 0

0 0 1
	

	

𝑇+D = 𝑇mD ∗ 𝑇+m = 	
cos(𝜃j + 	𝜙+) −sin(𝜃j + 	𝜙+) 𝑥j
sin(𝜃j + 	𝜙+) cos(𝜃j + 	𝜙+) 	𝑦j

0 0 1
	

	

𝑇,D = 𝑇mD ∗ 𝑇,m = 	
cos(𝜃j + 	𝜙,) −sin(𝜃j + 	𝜙,) r ∗ cos 𝜃j 	+ 𝑥j)
sin(𝜃j + 	𝜙,) cos(𝜃j + 	𝜙,) r ∗ sin 𝜃j + 	𝑦j

0 0 1
	

	
	
Inverse	Kinematics:	

𝑥+
𝑦+
𝜃+
𝑥,
𝑦,
𝜃,

=

𝑥j
𝑦j

𝜃j + 	𝜙+
𝑟 ∗ cos 𝜃j + 𝑥j
𝑟 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙,
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Example	5:	Two	Robot	Formation	with	Cluster	frame	incident	to	Robot	1	

	
Physical	Diagram	
	

	
	
Figure	39:	Physical	view		diagram	of	a	Two	robot	cluster	sharing	a	single	cluster	frame.	The	Cluster	frame	is	located	

on	top	of	and	oriented	with	Robot	1.		
	
Forward	Kinematics	
	

𝑥j
𝑦j
𝜙+
𝜙,
𝜃j
𝑟

=

𝑥+
𝑦+
0

𝜃, − 	𝜃j
𝜃+

𝑦+ − 𝑦, , + 𝑥, − 𝑥+ ,

	

	
Tree	Structure	

	

	
Figure	40:	Tree	diagram	of	a	Two	robot	cluster	sharing	a	single	cluster	frame.	The	Cluster	frame	is	located	on	top	of	

and	oriented	with	Robot	1.		
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Transformation	Matrices	

𝑇mD = 	
cos(𝜃j) −sin(𝜃j) 𝑥j
sin(𝜃j) cos(𝜃j) 𝑦j
0 0 1

	

	

𝑇+m = 	
1 0 0
0 1 0
0 0 1

	

	

𝑇,m = 	
cos(𝜙,) −sin(𝜙,) 𝑟
sin(𝜙,) cos(𝜙,) 0

0 0 1
	

	

𝑇+D = 𝑇mD ∗ 𝑇+m = 	
cos(𝜃j) −sin(𝜃j) 𝑥j
sin(𝜃j) cos(𝜃j) 𝑦j
0 0 1

	

	

𝑇,D = 𝑇mD ∗ 𝑇,m = 	
cos(𝜃j + 	𝜙,) −sin(𝜃j + 	𝜙,) r ∗ cos 𝜃j 	+ 𝑥j
sin(𝜃j + 	𝜙,) cos(𝜃j + 	𝜙,) r ∗ sin 𝜃j + 	𝑦j

0 0 1
	

	
	
	
	
	
	
Inverse	Kinematics:	

𝑥+
𝑦+
𝜃+
𝑥,
𝑦,
𝜃,

=

𝑥j
𝑦j
𝜃j

𝑟 ∗ cos 𝜃j + 𝑥j
𝑟 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙,
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Example	6:	A	Two	robot	cluster	with	a	redundant	variable	
Physical	Diagram:	
	
	

	
Figure	41:	A	Graph	representing	a	cluster	of	2	robots.	

	
	
Forward	Kinematics	

𝑥j
𝑦j
𝜙+
𝜙,
𝜃j
𝑚
𝑛
𝑙

=

(𝑥+	+	𝑥,	)
2

(𝑦+	+	𝑦,)
2

𝜃+ − 	𝜃j
𝜃, − 	𝜃j

𝑎𝑡𝑎𝑛2 (𝑦, − 𝑦+ , 𝑥, − 𝑥+ )
𝑦+ − 𝑦j , + 𝑥j − 𝑥+ ,

𝑦j − 𝑦, , + 𝑥, − 𝑥j ,

𝑦+ − 𝑦, , + 𝑥, − 𝑥+ ,

	

	
Tree	Structure	

	
Figure	42:	A	Graph	representing	a	cluster	of	2	robots.	
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Transformation	Matrices	

𝑇mD = 	
cos(𝜃j) −sin(𝜃j) 𝑥j
sin(𝜃j) cos(𝜃j) 𝑦j
0 0 1

	

	

𝑇+m = 	
cos(𝜙+) −sin(𝜙+) 𝑚
sin(𝜙+) cos(𝜙+) 0

0 0 1
	

	

𝑇,m = 	
cos(𝜙,) −sin(𝜙,) n
sin(𝜙,) cos(𝜙,) 0

0 0 1
	

	
Inverse	Kinematics	

𝑥+
𝑦+
𝜃+
𝑥,
𝑦,
𝜃,

=

𝑚 ∗ cos 𝜃j + 𝑥j
𝑚 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙+
𝑛 ∗ cos 𝜃j + 𝑥j
𝑛 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙,

	

	
	

Example	7:	Two	Robot	Cluster	with	extended	dimensional	degrees	of	Freedom	
	
	
Physical	Diagram	
	
	

	
Figure	43:	A	sketch	of		a	cluster	of	2	robots	in	3D.	
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Forward	Kinematics	

𝑥j
𝑦j
𝑧j
𝛼+
𝛽+
𝛾+
𝛼,
𝛽,
𝛾,
𝜙j
𝜃j
𝑙

=

(𝑥+	+	𝑥,	)
2

(𝑦+	+	𝑦,	)
2

(𝑧+	+	𝑧,	)
2
𝛼�+
𝜙�+
𝜃�+
𝛼�,
𝜙�,
𝜃�,

𝑎𝑡𝑎𝑛2 (𝑧, − 𝑧+ , 𝑦+ − 𝑦, , + 𝑥, − 𝑥+ ,)
𝑎𝑡𝑎𝑛2 (𝑦, − 𝑦+ , 𝑥, − 𝑥+ )

𝑧+ − 𝑧, , + 𝑦+ − 𝑦, , + 𝑥, − 𝑥+ ,

	

	
	
Tree	Diagram	

	
Figure	44:	Two	Robots	in	3	Dimensional	Space		

	
	
Transformation	Matrices	
	
	
The	Transformations	for	this	system	are:	
	

𝑇mD =

1 0 0 𝑥j
0 1 0 𝑦j
0 0 1 𝑧j
0 0 0 1

	

	

𝑇+m 	= 	

cos(𝛾+)cos(𝛽+) −cos(𝛾+)sin(𝛽+)𝑠𝑖𝑛(𝛼+) − sin(𝛾+)cos(𝛼+) −cos 𝛼+ sin 𝛽+ cos 𝛾+ + sin(𝛼+)sin(𝛾+) 𝑙 ∗ cos(𝜃j)cos(𝜙j)
sin(𝛾+)cos(𝛽+) −sin 𝛾+ sin 𝛽+ 𝑠𝑖𝑛 𝛼+ + cos(𝛾+)cos(𝛼+) −cos 𝛼+ sin 𝛽+ sin 𝛾+ − sin(𝛼+)cos(𝛾+) 𝑙 ∗ sin(𝜃j)cos(𝜙j)
−sin(𝛽+) cos(𝛽+)sin(𝛼+) cos(𝛽+)cos(𝛼+) 𝑙 ∗ sin(𝜙j)

0 0 0 1

	

𝑇,m =

cos(𝛾+)cos(𝛽+) −cos(𝛾+)sin(𝛽+)𝑠𝑖𝑛(𝛼+) − sin(𝛾+)cos(𝛼+) −cos 𝛼+ sin 𝛽+ cos 𝛾+ + sin(𝛼+)sin(𝛾+) −𝑙 ∗ cos(𝜃j)cos(𝜙j)
sin(𝛾+)cos(𝛽+) −sin 𝛾+ sin 𝛽+ 𝑠𝑖𝑛 𝛼+ + cos(𝛾+)cos(𝛼+) −cos 𝛼+ sin 𝛽+ sin 𝛾+ − sin(𝛼+)cos(𝛾+) −𝑙 ∗ sin(𝜃j)cos(𝜙j)
−sin(𝛽+) cos(𝛽+)sin(𝛼+) cos(𝛽+)cos(𝛼+) −𝑙 ∗ sin(𝜙j)

0 0 0 1
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Inverse	Kinematics	

𝑥+
𝑦+
𝑧+
𝜃�+
𝜙�+
𝛼�+
𝑥,
𝑦,
𝑧,
𝜃�,
𝜙�,
𝛼�,

=

𝑥j + l ∗ cos(𝜃j)cos(𝜙j)
𝑦j + l ∗ sin(𝜙j)cos(𝜃j)

𝑧j + 𝑙 ∗ sin(𝜙j)
𝛾+
𝛽+
𝛼+

𝑥j − l ∗ cos(𝜃j)cos(𝜙j)
𝑦j − l ∗ sin(𝜙j)cos(𝜃j)

𝑧j − 𝑙 ∗ sin(𝜙j)
𝛾,
𝛽,
𝛼,

		

	
	
	
	
	
	

Example	8:	Three	Robot	Cluster	with	Cluster	Frame	at	Centroid	Location	
	
Physical	View	
	

	
Figure	45:	Physical	view	of	a	three	robot	Cluster	in	formation	
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Forward	Kinematics	

𝑥j
𝑦j
𝜃j
𝑙
𝑚
𝜙j
𝜙+
𝜙,
𝜙l
𝑟
𝑥
𝛼
𝑎
𝑏
𝑅

=

	
(𝑥+	+	𝑥, + 𝑥l)

3

	
(𝑦+	+	𝑦,+	𝑦l)

3
𝑎𝑡𝑎𝑛2 (𝑦j − 𝑦+ , 𝑥j − 𝑥+ ) 	+ 	π/2

(𝑦, − 𝑦+ , + 𝑥, − 𝑥+ ,)
(𝑦l − 𝑦+ , + 𝑥l − 𝑥+ ,)		

acos	(
(𝑙, + 	𝑚, − (𝑦, − 𝑦l , − 𝑥, − 𝑥l ,)

2𝑙𝑚
)

𝜃+ − 𝜃j
𝜃, − 𝜃j
𝜃l − 𝜃j

𝑙, + 𝑚, − 2𝑙𝑚𝑐𝑜𝑠(𝜙j)

𝑙, +
𝑟
4

,
− 2𝑙𝑟𝑐𝑜𝑠(𝛼)

acos 𝑟, + 𝑙, − 𝑚,

2𝑟𝑙
acos 𝑙, + 𝑥, − 𝑟

4
,

2𝑙𝑥
𝜙j − 𝑎
2𝑥
3

	

	
	
	
	
Tree	Structure	
	

	
Figure	46:	Cluster	tree	of	a	three	robot	Cluster.	
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Transformation	Matrices	
	

𝑇mD = 	
cos(𝜃j) −sin(𝜃j) 𝑥j
sin(𝜃j) cos(𝜃j) 𝑦j
0 0 1

	

	

𝑇+m = 	
cos(𝜙+) −sin(𝜙+) 0
sin(𝜙+) cos(𝜙+) 𝑅

0 0 1
	

	

𝑇,m = 	
cos(𝜙,) −sin(𝜙,) −𝑙 ∗ sin	(𝑎)
sin(𝜙,) cos(𝜙,) R − 𝑙 ∗ cos(𝑎)

0 0 1
	

	

𝑇lm = 	
cos(𝜙l) −sin(𝜙l) m ∗ sin	(𝑏)
sin(𝜙l) cos(𝜙l) R − m ∗ cos	(𝑏)

0 0 1
	

	
Inverse	Kinematics	

	

𝑥+
𝑦+
𝜃+
𝑥,
𝑦,
𝜃,
𝑥l
𝑦l
𝜃l

=

−𝑅 ∗ sin 𝜃j + 𝑥j
𝑅 ∗ cos 𝜃j + 𝑦j

𝜃j + 	𝜙+
−𝑙 ∗ 𝑠𝑖𝑛(𝑎 − 𝜃j) − 𝑅 ∗ sin 𝜃j + 𝑥j
−𝑙 ∗ 𝑐𝑜𝑠 𝑎 − 𝜃j + 𝑅 ∗ cos 𝜃j + 𝑥j

𝜃j + 	𝜙,
𝑚 ∗ 𝑠𝑖𝑛(𝑏 − 𝜃j) − 𝑅 ∗ sin 𝜃j + 𝑥j
−𝑚 ∗ 𝑠𝑖𝑛 𝑏 − 𝜃j + 𝑅 ∗ cos 𝜃j + 𝑥j

𝜃j + 	𝜙l
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Example	9:	Three	Robot	Cluster,	Cluster	Frame	between	R1	and	R2,	R3	follows	Cluster	Frame	
	
	

Physical	Diagram	
	

	
Figure	47:	Physical	Sketch	of	a	three	robot	Cluster.	Custer	frame	is	defined	by	frames	1	and	2,	while	the	third	frame	

follows	that	cluster	frame.	
	

Forward	Kinematics	
	

𝑥j
𝑦j
𝜙+
𝜙,
𝜃j
𝑙
𝑚
𝜙j
𝜙l

=

(𝑥+	+	𝑥,	)
2

(𝑦+	+	𝑦,)
2

𝜃+ − 	𝜃j
𝜃, − 	𝜃j

𝑎𝑡𝑎𝑛2 (𝑦, − 𝑦+ , 𝑥, − 𝑥+ )
𝑦+ − 𝑦j , + 𝑥+ − 𝑥j ,

𝑦l − 𝑦j , + 𝑥l − 𝑥j ,

acos
(𝑦l − 𝑦+ , + 𝑥l − 𝑥+ , − 𝑙, − 	𝑚,))

2𝑙𝑚
𝜃l −	𝜃j

	

Tree	Structure	
	

	
Figure	48:	Cluster	tree	of	a	three	robot	Cluster.	Custer	frame	is	defined	by	frames	1	and	2,	while	the	third	frame	

follows	that	cluster	frame.	
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Transformation	Matrices	
	

𝑇mD = 	
cos(𝜃j) −sin(𝜃j) 𝑥j
sin(𝜃j) cos(𝜃j) 𝑦j
0 0 1

	

	

𝑇+m = 	
cos(𝜙+) −sin(𝜙+) 𝑙
sin(𝜙+) cos(𝜙+) 0

0 0 1
	

	

𝑇,m = 	
cos(𝜙,) −sin(𝜙,) −𝑙
sin(𝜙,) cos(𝜙,) 0

0 0 1
	

	

𝑇lm = 	
cos(𝜙l) −sin(𝜙l) m ∗ cos	(𝜙<)
sin(𝜙l) cos(𝜙l) m ∗ sin	(𝜙<)

0 0 1
	

	
Inverse	Kinematics	

	

𝑥+
𝑦+
𝜃+
𝑥,
𝑦,
𝜃,
𝑥l
𝑦l
𝜃l

=

𝑙 ∗ cos 𝜃j + 𝑥j
𝑙 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙+
−𝑙 ∗ cos 𝜃j + 𝑥j
−𝑙 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙,
m ∗ cos 𝜃j+	𝜙j + 𝑥j
m ∗ sin 𝜃j+	𝜙j + 𝑦j

𝜃j + 	𝜙l
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Example	10:	A	Three	Robot	Cluster	in	a	different	definition	
	

Physical	Drawing:	
	
	

	
Figure	69:	Physical	View	of	a	three	robot	Cluster.	Custer	frame	is	defined	by	frames	1	and	2,	while	the	third	frame	

follows	Robot	1	
	
	

Forward	Kinematics:	
	

𝑥j
𝑦j
𝜙+
𝜙,
𝜃j
𝑙
𝑚
𝜙j
𝜙l

=

(𝑥+	+	𝑥,	)
2

(𝑦+	+	𝑦,)
2

𝜃+ − 	𝜃j
𝜃, − 	𝜃j

𝑎𝑡𝑎𝑛2 (𝑦, − 𝑦+ , 𝑥, − 𝑥+ )
1
2

𝑦, − 𝑦+ , + 𝑥, − 𝑥+ ,

𝑦+ − 𝑦l , + 𝑥+ − 𝑥l ,

acos	(
𝑦l − 𝑦j , + 𝑥l − 𝑥j , − 𝑙, − 	𝑚,

2𝑙𝑚
)

𝜃l − 	𝜃j
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Graph	Tree	

	
Figure	50:	Cluster	tree	of	a	three	robot	Cluster.	Custer	frame	is	defined	by	frames	1	and	2,	while	the	third	frame	

follows	Robot	1	
	

	
Transformation	Matrices	

𝑇mD = 	
cos(𝜃j) −sin(𝜃j) 𝑥j
sin(𝜃j) cos(𝜃j) 𝑦j
0 0 1

	

	

𝑇m+
m = 	

1 0 𝑙
0 1 0
0 0 1

	

	

𝑇�+
m+ = 	

cos(𝜙+) −sin(𝜙+) 0
sin(𝜙+) cos(𝜙+) 0

0 0 1
	

𝑇�,
m = 	

cos(𝜙,) −sin(𝜙,) −𝑙
sin(𝜙,) cos(𝜙,) 0

0 0 1
	

	

𝑇�l
m+ = 	

cos(𝜙l) −sin(𝜙l) m ∗ cos(𝜙j)
sin(𝜙l) cos(𝜙l) m ∗ sin(𝜙j)

0 0 1
	

	

𝑇�+
D = 𝑇mD ∗ 𝑇m+

m ∗ 𝑇�+
m+ = 	

cos(𝜃j + 	𝜙+) −sin(𝜃j + 	𝜙+) 𝑙 ∗ cos 𝜃j + 𝑥j
sin(𝜃j + 	𝜙+) cos(𝜃j + 	𝜙+) 𝑙 ∗ sin 𝜃j + 𝑦j

0 0 1
	

	

𝑇�,
D = 𝑇mD ∗ 𝑇�,

m = 	
cos(𝜃j + 	𝜙,) −sin(𝜃j + 	𝜙,) −𝑙 ∗ cos 𝜃j + 𝑥j
sin(𝜃j + 	𝜙,) cos(𝜃j + 	𝜙,) −𝑙 ∗ sin 𝜃j + 𝑦j

0 0 1
	

	

𝑇�l
D = 𝑇mD ∗ 𝑇m+

m ∗ 𝑇�l
m+ = 	

cos(𝜃j + +𝜙l) −sin(𝜃j + 	𝜙l) m ∗ cos 𝜃j+	𝜙j + 𝑙 ∗ cos 𝜃j + 𝑥j
sin(𝜃j + 𝜙l) cos(𝜃j + 	𝜙l) m ∗ sin 𝜃j+	𝜙j + 𝑙 ∗ sin 𝜃j + 𝑦j

0 0 1
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Inverse	Kinematics	

𝑥+
𝑦+
𝜃+
𝑥,
𝑦,
𝜃,
𝑥l
𝑦l
𝜃l

=

𝑙 ∗ cos 𝜃j + 𝑥j
𝑙 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙+
−𝑙 ∗ cos 𝜃j + 𝑥j
−𝑙 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙,
m ∗ cos 𝜃j+	𝜙j + 𝑙 ∗ cos 𝜃j + 𝑥j
m ∗ sin 𝜃j+	𝜙j + 𝑙 ∗ sin 𝜃j + 𝑦j

𝜃j + 	𝜙l
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Appendix	B	–	Code	used	in	Toolbox	
 
B.1	Tree	Data	Structure	Folder	
 
Tree	data	Structure	as	MATLAB	Class	
By	Jean-Yves	Tinevez	
13	Mar	2012	(Update	13	Feb	2016)	
A	per-value	class	that	implements	a	generic	tree	data	structure	
https://www.mathworks.com/matlabcentral/fileexchange/35623-tree-data-structure-as-a-matlab-class	
	
Description:	

A	tree	is	a	hierarchical	data	structure	where	every	node	has	exactly	one	parent	(expect	the	root)	and	no	
or	several	children.		
Along	with	this	relational	structure,	each	node	can	store	any	kind	of	data.	
This	class	implements	it	using	plain	MATLAB	syntax	and	arrays.	Most	useful	methods	are	implemented,	
using	overloading	of	MATLAB	functions	for	tree	objects.	

CJW	Notes:	

	 It	is	a	rather	intuitive	class	to	use.	For	example,	you	can	type	find(	(a.^2	.*	b)	>	(c	-	5)	&	d	),	
with	a,	b,	c	and	d	being	tree	objects.	Doing	this	will	compute	an	actual	solution	for	you.	A	rather	long	
tutorial	is	included	to	walk	you	through	these	tree	structures.	It	also	shows	several	other	features	that	
were	not	utilized	in	this	research.	The	tutorial	can	be	found	here:	http://tinevez.github.io/matlab-tree/	

 
 
B.2	Cluster_Builder	Folder	
 

B.2.1 cluster_tree.m 

function [the_cluster, node_count, cluster_nodes,cc,cp ] = cluster_tree( 
the_cluster, clustercell,node_count,cluster_nodes,cc,cp ) 
  
    y = the_cluster.get(cp); 
    if cp>1 
        y=num2str(cell2mat(y)); 
    end 
  
    fprintf('How many cluster children does %s have \n', y ) 
    prompt5 = input(' : '); 
         
    for i=(cc):(prompt5+cc-1) 
        the_cluster = the_cluster.addnode(cp, clustercell(i)); 
        node_count = node_count+1; 
        cluster_nodes = [cluster_nodes, node_count]; 
    end 
        cc= cc+prompt5; 
        cp = cp+1; 
end 
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B.2.2 clusterbuilder2.m 

function [ obj_out ] = clusterbuilder2( num_robots,num_clusters  ) 
  
    % CLUSTERBUILDER2 - create your own cluster tree 
  
    %num_robots = number of robots in the cluster 
    %num_clusters = number of clusters to consider (main cluster + 
subclusters) 
    % Check number of inputs. 
  
    if nargin > 2t 
        error('clusterbuilder2 requires at most 2 inputs'); 
    elseif nargin < 2 
        error('clusterbuilder 2 requires at least 3 inputs') 
    end 
  
    robotnamer           % Names the Robots R1, R2, R3, etc.... 
    clusternamer         % Names the Cluster Frames C, C1, C2, C3, etc... 
    variablecreator      % Asks user for the cluster variables to be used 
    symbolicbank         % Loads from this variable bank 
    treecreator          % Arranges the tree into an Arborescence 
    htmdefiner           % Arranges the  HTM's 
    msot                 % Matlab struct with all information of the tree 
  
end 
 
 
 
 

B.2.3 clusternamer.m 

% Creating a cell with the cluster frame names. Saves them symbollicaly. 
  
for ii=1:(num_clusters+1) 
    clusterarray(ii)= 'C'; 
end 
  
 clustercellinit = num2cell(clusterarray); 
 clustercell = genvarname(clustercellinit); 
 clustercell = clustercell(2:numel(clustercell));  
  
 for ii=1:(num_clusters) 
    clustersyms(ii)= sym(clustercell(ii)); 
 end 
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B.2.4 htmdefiner.m 

% Defines the homogenous transforms for each edge in the arborescence 
  
t = the_cluster; 
namt=t; 
fprintf('The Cluster tree we created is visible above. \n') 
prompt6 = input('Enter the 3x3 or 4x4 T matrix from cluster frame to Ground 
Frame \n >> '); 
            tst = prompt6; 
            sz = length(prompt6); 
            if sz <3 
                error('Not a Valid Homogeneous transform matrix'); 
            elseif sz > 4 
                error('Not a Valid Homogeneous transform matrix'); 
            else 
            end 
             
t=t.set(1,prompt6); 
  
for i=2:node_count 
        var1 = t.get(i); 
        var1=num2str(cell2mat(var1)); 
        var2 = t.getparent(i); 
        if var2>1 
            var2 = namt.get(var2); 
            var2=num2str(cell2mat(var2)); 
        else 
            var2 = namt.get(var2);     
        end 
        
        fprintf('What is the Transformation from %s to %s \n >>', var1, var2) 
        subt = input(' : '); 
        t=t.set(i,subt); 
end 
 
 

B.2.5 msot.m 

 
% Creates a structure type data type containing all the tree information 
  
obj_out.robotnodes=robot_nodes; 
obj_out.clusternodes=cluster_nodes; 
obj_out.htm_tree=t; 
obj_out.txt_tree=the_cluster; 
obj_out.var=variablesyms; 
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B.2.6 robot_tree.m 

 
function [the_cluster, node_count, robot_nodes,rc] = 
robot_tree(the_cluster,robotcell,node_count,robot_nodes, rc, cp) 
  
    y = the_cluster.get(cp); 
    if cp>1 
        y=num2str(cell2mat(y)); 
    end 
  
    fprintf('How many robot children does %s have? \n', y ) 
    prompt4 = input(' : '); 
  
    for i=(1+rc):(prompt4+rc) 
        the_cluster = the_cluster.addnode(cp, robotcell(i)); 
        node_count = node_count+1; 
        robot_nodes = [robot_nodes, node_count];  
        rc = rc+1; 
    end 
  
end 
  
 
 

B.2.7 robotnamer.m 

 
% This function names all the robots as R1, R2, R3 etc..... 
  
for ii=1:(num_robots+1) 
    robotarray(ii)= 'R'; 
end 
  
  
robotcellinit = num2cell(robotarray); 
robotcell = genvarname(robotcellinit); 
robotcell = robotcell(2:numel(robotcell)); 
  
  
 for ii=1:(num_robots) 
    robotsyms(ii)= sym(robotcell(ii)); 
 end 
  
 clear robotcellinit; 
 clear robotarray; 
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B.2.8 symbolicbank.m 

 
% Lists some variables that can be used as cluster variables 
% If your cluster variable is not listed, please add it here 
  
syms a b c d e f g h i j k l m n o p q r s t u v w x y z; 
syms A B C D E F G H I J K L M N O P Q R S T U V Q X Y Z; 
syms alpha1 alpha2 alpha3 alpha4 alpha5 alpha6 alpha7 alpha8 alpha9; 
syms beta1 beta2 beta3 beta4 beta5 beta6 beta7 beta8 beta9 beta10; 
syms gamma1 gamma2 gamm3 gamma4 gamm5 gamma6 gamma7 gamma8 gamma9 gamma10; 
syms theta1 theta2 theta3 theta4 theta5 theta6 theta7 theta8 theta9; 
syms xc yc zc xc1 yc1 zc1 xc2 yc2 zc2 ; 
syms phic phic1 phic2 phic3 phic4 phic5 phic6 phic7 phic8 phic9 phic10; 
syms phic11 phic12 phic13 phic14 phic15 phic16 phic17 phic18 phic19 phic20; 
syms phi1 phi2 phi3 phi4 phi5 phi6 phi7 phi8 phi9 phi10 phi11 phi12 phi13; 
syms phi14 phi15 phi16 phi17 phi18 phi19 phi20 phi21 phi22 phi23 phi24; 
syms tc tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8 tc9 tc10 tc11 tc12 tc13 tc14 tc15; 
syms tc16 tc17 tc18 tc19 tc20; 
syms aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo pp qq rr ss tt uu vv; 
syms ww xx yy zz; 
syms AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR SS TT UU VV WW; 
syms XX YY ZZ; 
syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 
 
 

B.2.9 treecreator.m 

 
%This step allows us to create a tree 
% Let us create the base node, C, and start defining downward from there. 
  
display('Let us now start creating our cluster tree') 
the_cluster = tree('C'); 
node_count=1; 
robot_nodes= []; 
cc = 1; % Number of clusters we have assigned so far 
rc = 0; %Robot counter 
cp = 1 ;% Current Cluster position 
cluster_nodes = 1; 
  
while (numel(cluster_nodes)<num_clusters) || (numel(robot_nodes)<num_robots) 
  
    [the_cluster, node_count, robot_nodes,rc] = ... 
    robot_tree( the_cluster,robotcell,node_count,robot_nodes, rc,cp); 
     
    [the_cluster, node_count, cluster_nodes, cc,cp ] = ... 
    cluster_tree( the_cluster, clustercell,node_count,cluster_nodes, cc,cp); 
end 
  
fprintf(' \n \n \n \n '); 
disp(the_cluster.tostring) 
fprintf(' \n \n \n \n '); 
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B.2.10 variablecreator.m 

% This program accepts the users input about which variables to use 
  
display('What Cluster variables will you use?'); 
display('Please state your variables with no commas') 
prompt3 = input('Example: a b c d xc yc phi1 \n >> ', 's'); 
prompt3 = strsplit(prompt3); 
  
for ii=1:numel(prompt3) 
    variablesyms(ii)= sym(prompt3(ii)); 
end 
  
clear ii; 
assume(variablesyms>0);             % Assumes variables are positive only 
assumeAlso(variablesyms<0.1);       % Assumes variables are less than pi 
 
 
B.3	The	Inverse_Kinematics	Folder	
 

B.3.1 dirinvjac.m 

function [ d_invjac, cluster ] = dirinvjac(cluster, opt1) 
  
% This will use the htm to compute the inverse kinematics, then solve for 
% the inverse Jacobian 
% If 2 is chosen in the option 1 field, then the calculation assumed a 4x4 
% transformation matrix that can be optimized for a 3x3 case. 
  
    if nargin > 2 
        error('dirinvjac requires at most 2 inputs'); 
    elseif nargin ==2 
        [inv_kin, cluster] = invkin(cluster, opt1); 
    elseif nargin ==1 
        [inv_kin, cluster] = invkin(cluster); 
    elseif nargin < 1 
        error('dirinvjac requires at least 1 input') 
    end 
  
    d_invjac = jacobian(inv_kin,cluster.var); 
    cluster.dirinvjac = d_invjac; 
end 
    
 
 

B.3.2 invkin.m 

 function [ inv_kin, cluster ] = invkin(cluster, opt1) 
  
% This fxn uses the htm to get the inverse kinematics. 
% It automatically defaults to option0 or option 1 based on the size of the 
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% homogeneous transform matices 
% Option 2 is an optimized version of Option 0. If selected, the program 
% assumes the cluster is in the z=0 plane, and optimizes the matrix 
% multiplication accordingly. 
  
    if nargin > 2 
        error('invkin requires at most 2 inputs'); 
         
    elseif nargin ==1 
            tst = cluster.htm_tree.get(cluster.robotnodes(1)); 
            sz = length(tst); 
            if sz == 4 
                opt1 = 0; 
            elseif sz == 3 
                opt1= 1; 
            else 
                error('This cluster has invalid transformation matrices'); 
            end 
    elseif nargin < 1 
        error('clusterbuilder 2 requires at least 1 input') 
    end 
  
    page = 1; y=5;         %Initializaing some variables 
  
%Option1 == 0 - Case where the matrices are 4x4 matrices 
  
if opt1==0 
     
    for i=cluster.robotnodes 
        y=i; 
        x = cluster.htm_tree.get(i); 
        y = cluster.htm_tree.getparent(i); 
        while y>0 
            x = cluster.htm_tree.get(y)*x; 
            y = cluster.htm_tree.getparent(y); 
        end          
    
        T(:,:,page)=x; 
        page = page+1; 
    end 
  
    inv_kin = []; 
    page = page-1; 
     
    for i=1:page 
        ry = asin(-T(3,1,i)); 
        rz =asin(T(2,1,i)/cos(ry)); 
        rx =asin(T(3,2,i)/cos(ry)); 
        inv_kin = [inv_kin; T(1:3,4,i); rx;ry;rz]; 
        inv_kin = simplify(inv_kin); 
    end 
    cluster.inv_kin=inv_kin; 
  
  
%Option1 ==1 - Case where the HTM Matrices are 3x3 case 
elseif opt1==1 
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    for i=cluster.robotnodes 
       y=i; 
       x = cluster.htm_tree.get(i); 
       y = cluster.htm_tree.getparent(i); 
       while y>0 
            x = cluster.htm_tree.get(y)*x; 
            y = cluster.htm_tree.getparent(y); 
       end  
  
       T(:,:,page)=x; 
       page = page+1; 
    end 
  
    inv_kin = []; 
    page = page-1; 
     
    for i=1:page 
         inv_kin = [inv_kin; T(1:2,3,i); acos(T(1,1,i))]; 
         inv_kin = simplify(inv_kin); 
    end 
    cluster.inv_kin=inv_kin; 
  
  
%Option 2 - Solving the 4x4 case as the 3x3 case 
else 
    page =1; 
    y=5; 
    for i=cluster.robotnodes 
        y=i; 
        x = cluster.htm_tree.get(i); 
        x = x([1,2,4],[1,2,4]); 
        y = cluster.htm_tree.getparent(i); 
        while y>0 
            z= cluster.htm_tree.get(y); 
            x = z([1,2,4],[1,2,4])*x; 
            y = cluster.htm_tree.getparent(y); 
        end   
       T(:,:,page)=x; 
        page = page+1; 
    end 
  
    inv_kin = []; 
    page = page-1; 
     
    for i=1:page 
        inv_kin = [inv_kin; T(1:2,4,i); acos(T(1,1,i))]; 
        inv_kin = simplify(inv_kin); 
    end 
    cluster.inv_kin=inv_kin; 
end 
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B.4	The	Velocity_Propagation_Technique	Folder	
 

B.4.1 gettheRR3.m 

 
function [ RR ] = gettheRR3( t, current_node) 
  
% This function computes the product of all rotations from ground to 
% current node. 
% Calculates the product of rotations for the current node. 
% Does Step A.2 of Section 3. Only  works with 3 Degrees of Freedom (3DOF) 
     
    RR = eye(2); 
    y = t.getparent(current_node);      
     
    while y>0 
        FTpar = t.get(y); 
        Rpar = FTpar(1:2,1:2); 
        RR = Rpar *RR; 
        y= t.getparent(y); 
    end 
     
    RR = simplify(RR); 
  
end 
  
 

B.4.2 gettheRR6.m 

function [ RR ] = gettheRR6( t, current_node) 
  
% This function computes the product of all rotations from ground to 
% current node.  
% The same as gettheRR3, but is only called when dealing with more than  
% 3DOF per robot. 
  
  
    RR = eye(3); 
    y = t.getparent(current_node);      
     
    while y>0 
        FTpar = t.get(y); 
        Rpar = FTpar(1:3,1:3); 
        RR = Rpar *RR; 
        y= t.getparent(y); 
    end 
     
    RR = simplify(RR); 
end 
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B.4.3 getthev3.m 

function [ ppjac ,px,py] = getthev3(current_node,t, i,variablesyms,dof) 
  
% Calculates the local velocity of one frame relative to its parent.  
% Performs step A.3 
  
    trans = t.get(current_node); 
    px = trans(1,3); 
    py =trans(2,3); 
    ppjac((1+(dof*(i-1))),:) = jacobian(px,variablesyms); 
    ppjac((2+(dof*(i-1))),:) = jacobian(py,variablesyms); 
     
end 
  

B.4.4 getthev6.m 

function [ ppjac ,px,py,pz] = getthev6(  current_node,t, i,variablesyms,tpg) 
  
% This function gets the local velocity of each robot. See also geththev3 
  
    trans = t.get(current_node); 
    px = trans(1,4); 
    py =trans(2,4); 
    pz = trans(3,4); 
    ppjac((1+(tpg*(i-1))),:) = jacobian(px,variablesyms); 
    ppjac((2+(tpg*(i-1))),:) = jacobian(py,variablesyms); 
    ppjac((3+(tpg*(i-1))),:) = jacobian(pz,variablesyms); 
     
end 
 

B.4.5 invjacfxn.m 

 
function [ inv_jac_prop , cluster] = invjacfxn(cluster) 
% This function solves for the inverse Jacobian using a propagation 
% technique. It first checks the size of the T matrices, and executes the 
% algorithm. 
% This function, in its current form, does not have an optimization for 4x4 
% matrices that are limited to the xy plane. 
% Furthermore, this algorithm doesn't work if a cluster variable is used to 
% define an actuation state. 
  
% Determining to run 3 DOF case or 6 DOF 
    sz = length(cluster.htm_tree.get(cluster.robotnodes(1))); 
    if sz == 4 
        opt1 = 0; dof = 6; 
    elseif sz == 3 
        opt1= 1; dof = 3; 
    else 
        error('This cluster has invalid transformation matrices'); 
    end 
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% Propagation Algorithm 
  
    if opt1 == 1 
  
        for i=1:numel(cluster.robotnodes) 
            current_node = cluster.robotnodes(i); 
            parent_node = cluster.htm_tree.getparent(current_node); 
            rrall = zeros(1,numel(cluster.var)); 
            rrall= sym(rrall); 
            rrall2=rrall; 
  
            while parent_node>0 
                [RR] = gettheRR3( cluster.htm_tree,current_node);                                  
% Product of rotations, RR 
                [ppjac, px, py ] = getthev3( current_node,cluster.htm_tree, 
i,cluster.var,dof);      %local Velocity (linear component) 
                v_rotated((1 + (dof*(i-1))),:) = ppjac((1+(dof*(i-
1))),:)*(RR(1,1))+ ppjac((2+(dof*(i-1))),:)*RR(1,2); %Local Velocity 
                v_rotated((2 + (dof*(i-1))),:) = ppjac((1+(dof*(i-
1))),:)*(RR(2,1))+ ppjac((2+(dof*(i-1))),:)*RR(2,2); %Rotated 
                [RRwxp, RRwyp] = rotatedwxp3( cluster.htm_tree, current_node, 
cluster.var,RR,py,px ); % Global angular Velocity rotated 
                rrall = rrall +(v_rotated((1+(dof*(i-1))),:) +RRwxp);                                 
% Summing after each iteration 
                rrall2 =rrall2 +(v_rotated((2+(dof*(i-1))),:) +RRwyp);                                
% Summing after each iteration 
                current_node = parent_node;                                                           
% Updating current node 
                parent_node = cluster.htm_tree.getparent(current_node);                               
%Updating parent node 
            end 
  
            [wvarray] = thefinv3( cluster.htm_tree, current_node ,cluster.var 
);  % Adding the final Velocity Term 
            current_node = cluster.robotnodes(i);                                 
% Recalling current node 
            [wxarray] = thewthing3( cluster.htm_tree, current_node, 
cluster.var); % Product of rotations 
  
            inv_jac_prop((1+(dof*(i-1))),:) = rrall + wvarray(1,:);  % 
Assembling into one matrix 
            inv_jac_prop((2+(dof*(i-1))),:) = rrall2 + wvarray(2,:); % 
Assembling into one matrix 
            inv_jac_prop((3+(dof*(i-1))),:) = wxarray;              % 
Assembling into one matrix 
  
            cluster.propinvjac = inv_jac_prop;                       % Adds 
jacobian to cluster structure 
  
        end 
  
  
    else 
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        for i=1:numel(cluster.robotnodes) 
            current_node = cluster.robotnodes(i); 
            parent_node = cluster.htm_tree.getparent(current_node); 
            rrall = zeros(1,numel(cluster.var)); 
            rrall= sym(rrall); 
            rrall2=rrall; 
            rrall3 = rrall2; 
  
            while parent_node>0 
                [RR ] = gettheRR6( cluster.htm_tree,current_node); 
                [ppjac, px, py,pz ] = getthev6( 
current_node,cluster.htm_tree, i,cluster.var,dof); 
                v_rotated((1 + (dof*(i-1))),:) = ppjac((1+(dof*(i-
1))),:)*(RR(1,1))+ ppjac((2+(dof*(i-1))),:)*RR(1,2) + ppjac((3+(dof*(i-
1))),:)*RR(1,3); 
                v_rotated((2 + (dof*(i-1))),:) = ppjac((1+(dof*(i-
1))),:)*(RR(2,1))+ ppjac((2+(dof*(i-1))),:)*RR(2,2) + ppjac((3+(dof*(i-
1))),:)*RR(2,3); 
                v_rotated((3 + (dof*(i-1))),:) = ppjac((1+(dof*(i-
1))),:)*(RR(3,1))+ ppjac((2+(dof*(i-1))),:)*RR(3,2) + ppjac((3+(dof*(i-
1))),:)*RR(3,3); 
                [RRwxp, RRwyp, RRwzp ] = rotatedwxp6( cluster.htm_tree, 
current_node, cluster.var,RR,py,px, pz ); 
                rrall = rrall +(v_rotated((1+(dof*(i-1))),:) +RRwxp); 
                rrall2 = rrall2 +(v_rotated((2+(dof*(i-1))),:) +RRwyp); 
                rrall3 = rrall3 + (v_rotated((3+(dof*(i-1))),:) +RRwzp); 
                current_node = parent_node; 
                parent_node = cluster.htm_tree.getparent(current_node); 
            end 
  
            [wvarray ] = thefinv6( cluster.htm_tree, current_node 
,cluster.var ); 
            current_node = cluster.robotnodes(i); 
            [wxarray ] = thewthing6( cluster.htm_tree, current_node, 
cluster.var ); 
  
            inv_jac_prop((1+(dof*(i-1))),:) = rrall + wvarray(1,:); 
            inv_jac_prop((2+(dof*(i-1))),:) = rrall2 + wvarray(2,:); 
            inv_jac_prop((3+(dof*(i-1))),:) = rrall3 + wvarray(3,:); 
            inv_jac_prop((4+(dof*(i-1))),:) = wxarray(1,:); 
            inv_jac_prop((5+(dof*(i-1))),:) = wxarray(2,:); 
            inv_jac_prop((6+(dof*(i-1))),:) = wxarray(3,:); 
            cluster.propinvjac = inv_jac_prop; 
        end 
    end 
     
end 
   
% Further notes 
% For each Robot in the cluster, the following Algorithm is compiled. 
% V = V_final + sumall ((product of rotations)*(local_velocity + 
(global_angular_velocity x local position) ) ) 
  
%However, the algorithm expands this as 
 %V = V_final + sumall ((product of rotations)*local_velocity + (product of 
rotations)*(global_angular_velocity x local position) ) ) 
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B.4.6 rotatedwxp3.m 

function [ RRwxp, RRwyp ] = rotatedwxp3( t, current_node, 
variablesyms,RR,py,px ) 
  
    par =5; 
    wxarray = zeros(1,numel(variablesyms)); 
  
    while par>0 
        par = t.getparent(current_node); 
        tpar = t.get(par); 
        rz = acos(tpar(1,1)); 
         
        for j=1:numel(variablesyms)    % To find rz's position in cluster.var 
            check = 2* (variablesyms(j)/rz); 
            if check ==2 
                break; 
            else 
            end 
        end 
  
        wxarray(j) = 1; 
        current_node = par; 
        par = t.getparent(current_node); 
    end 
  
    RRwxp= wxarray* (-RR(1,1)*py +RR(1,2)*px); 
    RRwyp= wxarray* (-RR(2,1)*py +RR(2,2)*px); 
end 
  
 

B.4.7 rotatedwxp6.m 

function [ RRwxp, RRwyp, RRwzp ] = rotatedwxp6( t, current_node, 
variablesyms,RR,py,px, pz ) 
% This function gets the cross product, then multiplies it by the Rotation 
% Matrices 
  
    par =5; 
    wxarray = zeros(3,numel(variablesyms)); 
  
    while par>0 
        par = t.getparent(current_node); 
        tpar = t.get(par); 
        ry = asin(-tpar(3,1)); 
        rz = asin(tpar(2,1)/cos(ry)); 
        rx = asin(tpar(3,2)/cos(ry)); 
  
        % Find Rx's position in the cluster.var 
        for j=1:numel(variablesyms)  
            check = 2* (variablesyms(j)/rx); 
            if check ==2 
                wxarray(1,j) = 1; 
            else 
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                wxarray(1,j) = 0; 
            end 
        end 
         
               
        % Find Ry's position in the cluster.var 
        for k=1:numel(variablesyms) 
            check = 2* (variablesyms(k)/ry); 
            if check ==2 
                wxarray(2,k) = 1; 
            else 
                wxarray(2,k) = 0; 
            end 
        end 
  
         
        % Find Rz's position in the cluster.var 
        for l=1:numel(variablesyms)  
            check = 2* (variablesyms(l)/rz); 
            if check ==2 
                wxarray(3,l) = 1; 
            else 
                wxarray(3,l) = 0; 
            end 
        end 
         
        current_node = par; 
        par = t.getparent(current_node); 
    end 
  
    RRwxp= (RR(1,1)*(wxarray(2,:)*pz- wxarray(3,:)*py)  +  
RR(1,2)*(wxarray(3,:)*px- wxarray(1,:)*pz)   +  RR(1,3)*(wxarray(1,:)*py- 
wxarray(2,:)*px)); 
    RRwyp= (RR(2,1)*(wxarray(2,:)*pz- wxarray(3,:)*py)  +  
RR(2,2)*(wxarray(3,:)*px- wxarray(1,:)*pz)   +  RR(2,3)*(wxarray(1,:)*py- 
wxarray(2,:)*px)); 
    RRwzp= (RR(3,1)*(wxarray(2,:)*pz- wxarray(3,:)*py)  +  
RR(3,2)*(wxarray(3,:)*px- wxarray(1,:)*pz)   +  RR(3,3)*(wxarray(1,:)*py- 
wxarray(2,:)*px)); 
end 
  
 

B.4.8 thefinv3.m  

function [ wvarray ] = thefinv3( t, current_node,variablesyms ) 
% This function calculates the final velocity 
  
    v1 = t.get(current_node); wxx = v1(1,3); wyy = v1(2,3); 
  
% To find ww's position in variably syms 
    wvarray = zeros(1,numel(variablesyms)); 
  
    for j=1:numel(variablesyms) 
        check = 2* (variablesyms(j)/wxx); 



	 76	

        if check ==2 
            break; 
        else 
        end 
    end 
     
    for k=1:numel(variablesyms) 
        check = 2* (variablesyms(k)/wyy); 
        if check ==2 
            break; 
        else 
        end 
    end 
  
    wvarray(1,j) = 1;   wvarray(2,k) = 1; 
  
end 
  

B.4.9 thefinv6.m 

function [ wvarray ] = thefinv6( t, current_node,variablesyms ) 
% This Function calculates the final velocity 
    v1 = t.get(current_node); 
    wxx = v1(1,4);   wyy = v1(2,4);    wzz = v1(3,4); 
     
%To find ww's position in variably syms 
    wvarray = zeros(1,numel(variablesyms));  
  
    for j=1:numel(variablesyms) 
        check = 2* (variablesyms(j)/wxx); 
        if check ==2 
            break; 
        else 
        end 
    end 
     
    for k=1:numel(variablesyms) 
        check = 2* (variablesyms(k)/wyy); 
        if check ==2 
            break; 
        else 
        end 
    end 
     
    for l=1:numel(variablesyms) 
        check = 2* (variablesyms(l)/wzz); 
        if check ==2 
            break; 
        else 
        end 
    end 
     
    wvarray(1,j) = 1;  wvarray(2,k) = 1;   wvarray(3,l) = 1; 
end 



	 77	

 

B.4.10 thewthing3.m 

 
function [ wxarray ] = thewthing3( t, current_node, variablesyms ) 
%THEWTHING3 Calculates the angular velocity 
%   This program calculates the angular velocity for the cluster. It is 
%   called in the function invjacfxn.m 
  
    par=5; 
    wxarray = zeros(1,numel(variablesyms)); 
    while par>=0 
        tpar = t.get(current_node); 
        ww = acos(tpar(1,1)); 
  
        %To find ww's position in variable syms 
        for j=1:numel(variablesyms) 
            check = 2* (variablesyms(j)/ww); 
            if check ==2 
               wxarray(j) = 1;      
               break 
            else 
               % wxarray(j) = 0; 
            end 
        end 
  
         
         
        if current_node==1 
            break; 
        else 
            current_node = t.getparent(current_node); 
            par = t.getparent(current_node); 
        end 
    end 
end 
  

 B.4.11 thewthing6.m 

function [ wxarray ] = thewthing6( t, current_node, variablesyms ) 
%THEWTHING6 Calculates the angular velocity 
%   This function is called from the function invjacfxn.m 
  
    par=5; 
    wxarray = zeros(3,numel(variablesyms)); 
    while par>=0 
        tpar = t.get(current_node); 
        ry = asin(-tpar(3,1)); 
        rz = asin(tpar(2,1)/cos(ry)); 
        rx = asin(tpar(3,2)/cos(ry)); 
  
        for j=1:numel(variablesyms) % Gets Ry's position in cluster.var 
            check = 2* (variablesyms(j)/ry); 
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            if check ==2 
                wxarray(2,j) = 1; 
                break; 
            else 
              %  wxarray(2,j) = 0; 
            end 
        end 
  
  
        for k=1:numel(variablesyms) % Gets Rz's position in cluster.var 
            check = 2* (variablesyms(k)/rz); 
            if check ==2 
                wxarray(3,k) = 1; 
                break; 
            else 
             %   wxarray(3,k) = 0; 
            end 
        end 
  
        for l=1:numel(variablesyms) % Gets Rx's position in cluster.var 
            check = 2* (variablesyms(l)/rx); 
            if check ==2 
                wxarray(1,l) = 1; 
                break; 
            else 
           %     wxarray(1,l) = 0; 
            end 
        end 
  
        if current_node==1 
            break 
        else 
            current_node = t.getparent(current_node); 
            par = t.getparent(current_node); 
        end 
    end 
end 
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Appendix	C	-	The	Inverse	Jacobian	Formula:	A	Proof	
	

Consider	the	HTM	of	a	robot	at	hierarchical	depth	n,	in	a	fixed	frame,	{i},	relative	to	global	frame	
{G}.	The	HTM,	 𝑇OD ,	can	be	expanded	into	the	form:	
		

𝑇OD = 	 𝑇m+
D ∗ ( 𝑇m�

m�:+N
qP, ) ∗ 	 𝑇O

m� 	 	 	 	 (Eq	34)	
	

This	can	be	further	expanded	as	follows:	
	

𝑇OD = 	 𝑅+D 𝑃+D
0 1

∗ 𝑅,+ 𝑃,+
0 1

∗ 𝑅l, 𝑃l,
0 1

∗ … . .∗ 𝑅OO:+ 𝑃OO:+

0 1
		 	 	 (Eq	35)	

	

𝑇OD = 	 𝑅+D 𝑅,+ 𝑅+D 𝑃 + 𝑃+D,
+

0 1
∗ 𝑅l, 𝑃l,

0 1
∗ … . .∗ 𝑅OO:+ 𝑃OO:+

0 1
		 	 	 (Eq	36)	

	

𝑇OD = 	 𝑅+D 𝑅,+ 𝑅l, … 𝑅OO:+ 𝑅+D 𝑅,+ 𝑅l, … 𝑅 𝑃 +O
O:+

O:+
O:, … . . + 𝑅+D 𝑃 + 𝑃+D,

+

0 1
= 	 𝑅OD 𝑃OD

0 1
		 	 (Eq	37)	

	
By	taking	a	look	at	the	final	matrix,	the	position	vector	 𝑃OD 	describing	the	position	of	frame	[i}	

relative	to	{G}	can	be	recovered:	
	

𝑃OD = 𝑅+D 𝑅,+ 𝑅l, … 𝑅 𝑃 +O
O:+

O:+
O:, … . . + 𝑅+D 𝑃 + 𝑃+D,

+ 	 	 	 	 (Eq	38)	
	

This	can	be	written	more	compactly	as:	
	

𝑃ND = ( 𝑅q
q:+O

q
N:+
OP+ ) 𝑃O�+

O + 𝑃+D 		 	 	 (Eq	39)	
	

Taking	a	derivative	of	the	above	expression,	the	following	is	obtained:	
	

𝑃OD = ( 𝑅q
q:+O

q
N:+
OP+ ( 𝑃 + ( 𝜔OD 	×	 𝑃OO:+ 	))O�+

O + 𝑃+D 		 	 	 (Eq	40)	
	
This	equation	is	identical	to	the	equation	that	was	obtained	via	the	propagation	technique	(Equation	
23).	
	
Let	us	now	consider	the	final	matrix	also	provides	the	rotation	matrix,	 𝑅ND ,	which	gives	the	rotation	of	
robot	n	relative	to	the	global	frame.	
	

𝑅ND = 𝑅+D 𝑅,+ 𝑅l, … 𝑅NO:+ 		 	 	 	 	 (Eq	41)	
	

From	this	a	new	vector	can	be	created	to	represent	these	rotations:	
	

𝜃ND = 	
𝛼U
𝛽X
𝛾Z

		 	 	 	 	 (Eq	42)	

	
Where	𝛼U	,	𝛽X,	𝛾Z	are	the	sum	of	all	rotations	about	the	z,	y,	and	x	axis	respectively.	For	

example,	all	the	rotations	about	the	z	axis	are	found	by:	
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𝑅ND U =
𝑅+D U 𝜃+D 	
0
0

+ 	 𝑅+D ∗
𝑅,+ U 𝜃,+ 	
0
0

+ ⋯+	 𝑅+D ∗ 𝑅 ∗,
+ … ∗ 𝑅N:+

N:, ∗ 	
𝑅NN:+
U 𝜃OO:+ 	
0
0

		 (Eq	43)	

	
This	can	be	written	in	compact	form	as		
	

𝑅ND U = (	 	N
OP+ 	 𝑅	O:+

O:, )	 𝜃OO:+ 	�
NP+ 	 	 	 (Eq	44)	

	
Taking	a	derivative	of	this	yields:	
	

𝑅ND U = 𝜔�D = (	 	N
OP+ 	 𝑅	O:+

O:, )	 𝜃OO:+ 	�
NP+ 		 	 	 (Eq	45)	

	
This	equation	is	also	identical	to	the	equation	that	was	obtained	via	the	propagation	technique	

(Equation	24).	
	
	Arriving	at	the	propagation	equations	by	taking	derivatives	of	the	inverse	kinematics	shows	that	

the	propagation	method	of	computing	the	inverse	kinematic	equations	is	valid.	
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